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ABSTRACT OF DISSERTATION 

 
 
 

CHRONIC LOW INTENSITY CONTINUOUS AND INTERVAL TRAINING 
PREVENT HEART FAILURE-RELATED CORONARY ARTERY STIFFNESS 

 
Heart failure (HF) induced by aortic pressure over-load is associated with 
increased coronary artery stiffness. Perivascular adipose tissue (PVAT) and 
advanced glycation end products (AGE) both promote arterial stiffness. However, 
the mechanisms by which coronary PVAT promotes arterial stiffness and the 
efficacy of exercise to prevent coronary stiffness are unknown. The present study 
hypothesized both chronic continuous and interval exercise training would 
prevent coronary artery stiffness associated with inhibition of PVAT secreted 
AGE and the beneficial effects of interval exercise would be greater than 
continuous exercise.Yucatan mininature swine were divided into four groups: 
control-sedentary (CON), aortic-banded sedentary heart failure (HF), aortic-
banded HF continuous exercise trained (HF+CONT), and aortic-banded HF 
interval exercise trained (HF+IT). Coronary artery stiffness was assessed by ex 
vivo mechanical testing and coronary artery elastin, collagen and AGE-related 
proteins were assessed by immunohistochemistry. HF promoted coronary artery 
stiffness with reduced elastin content and greater AGE accumulation which was 
prevented by chronic continuous and interval exercise training. HF PVAT 
secreted higher AGE compared with CON and was prevented in the HF+CONT 
and HF+IT groups. Young healthy mouse aortas cultured in HF PVAT 
conditioned media had increased stiffness, lower elastin content and AGE 
accumulation compared with CON, which was prevented by PVAT from the 
HF+CONT and HF+IT groups. HF coronary PVAT secreted greater interleukin-6 
(IL-6) and IL-8 compared to CON which was prevented by both continuous and 
interval exercise training regimens. We conclude chronic continuous and interval 
exercise is a potential therapeutic strategy to prevent coronary artery stiffness via 
inhibition of PVAT-derived AGE secretion in a pre-clinical mini-swine model of 
pressure overload-induced HF.  
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CHAPTERⅠ 

Introduction 

Stiffening of the large elastic arteries is an independent predictor of 

cardiovascular events, promotes hypertension, and is associated with incident 

heart failure (HF) [1]. HF is defined as dysfunction of ventricular blood filling or 

ejection due to any structural or functional impairment of the heart. [2] The two 

types of HF are HF with reduced ejection fraction (HFrEF) and HF with preserved 

ejection fraction (HFpEF). HFpEF compromises almost 50% of HF patients [2]. In 

addition, no therapy has been shown to improve the survival rate in randomized 

control trial with HFpEF [3]. The increased afterload due to aortic stiffening and 

augmented pulse pressure contributes to the failure of the myocardium [4]. 

Recently, our laboratory reported increased coronary artery stiffness in an aortic-

banded mini-swine model of pressure overload-induced HF [5], indicating the 

increased afterload also promotes coronary vascular dysfunction. Therefore, 

identifying mechanisms and interventions to reduce coronary artery stiffness may 

also alleviate additional stress on an already failing myocardium.  

A key characteristic of arterial stiffening is remodeling of the extracellular 

matrix (ECM) within the vasculature. More specifically, reductions in elastin, 

increased collagen and a greater abundance of advanced glycation end products 

(AGE) collectively promote vascular stiffening [6]. AGE decreases arterial elastin 

and cross-links ECM proteins, in addition to influencing the artery through the 

receptor of AGE (RAGE)-mediated cellular signaling mechanisms [7]. Arterial 

AGE accumulation occurs in conditions where plasma glucose is elevated, such 

as diabetes. However, adipose tissue in non-diabetic conditions has also been 
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shown to secrete AGE [7]. Perivascular adipose tissue (PVAT) is an endocrine 

tissue shown to promote arterial dysfunction, including arterial stiffness [8, 9]. 

These findings are significant as recent evidence has shown PVAT surrounding 

the coronary arteries, which is associated with increased inflammation, predicts 

cardiac mortality [10]. Notably, both aging and HF promote PVAT oxidative stress 

and inflammation, which are important factors for AGE production in adipose 

tissue, suggesting PVAT may be a novel source of AGE contributing to arterial 

stiffness [5, 9, 11]. Currently, however, it is unknown if PVAT secretes AGE to 

promote arterial stiffening with HF. 

Both chronic continuous and interval exercise training programs are 

effective at reducing blood pressure and de-stiffening large elastic arteries such 

as the aorta [12, 13]. However, the influence of exercise training on other conduit 

arteries, such as the carotid artery, is controversial. Continuous exercise training 

for 16-weeks did not decrease carotid artery stiffness in HFpEF patients [14]. 

While 16-weeks interval training prevented carotid artery stiffness of HFpEF mini-

swine [15]. Thus, these data suggest interval exercise training may have greater 

beneficial effects on carotid artery stiffness compared to continuous exercise 

training. However, little is known about the efficacy of chronic continuous and 

interval exercise to prevent coronary artery stiffening in a translational large 

animal HF model.  

The mechanisms by which exercise prevents and/or reverses central 

(aorta and carotid) arterial stiffness have been attributed to maintaining elastin 

and lowering collagen content [16-18], while suppressing oxidative stress and 
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inflammation [19]. Importantly, non-exercise interventions that reduce PVAT 

oxidative stress, inflammation and AGE accumulation are associated with 

reductions in aortic stiffness [20]. These findings collectively suggest exercise 

may prevent coronary artery stiffness by lowering PVAT-related AGE secretion.  

The aim of this study was to determine the influence of both chronic 

continuous and interval exercise training on PVAT-related AGE secretion to 

promote coronary artery stiffness in a pre-clinical mini-swine model of pressure 

overload-induced HF. We hypothesize both continuous and interval exercise 

training will prevent coronary artery stiffness associated with ECM remodeling, 

AGE accumulation, oxidative stress and inflammation through a mechanism 

mediated by PVAT-related AGE secretion. We also hypothesize the beneficial 

effects of the interval exercise regimen will be greater than the continuous 

exercise program. 

 

 

CHAPTERⅡ 

Review of literature 

 

Cardiovascular disease (CVD) is the leading cause of death in the United 

States and has a serious financial burden on national health care [21-23]. 

According to an American Heart Association (AHA) statement, 40.5% of the U.S. 

population is predicted to have some form of CVD and the medical cost 

estimation is expected to be $818 billion by 2030 [24].  CVD is referred to 

coronary artery disease, atherosclerosis, heart failure, hypertension, arterial 

stiffness, and other heart or blood vessel-related disease [25, 26]. Specifically, 
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arterial stiffness is associated with myocardial infarction and stroke which are the 

two leading causes of death in the developed world [27]. Aortic pulse wave 

velocity (aPWV) is the gold standard measurement of arterial stiffness in clinical 

settings. Importantly, aPWV is considered a strong predictor of mortality due to 

cardiovascular-related events and all-cause mortality [28-31]. Thus, it is of great 

importance to understand the mechanisms of arterial stiffness to develop 

potential treatment strategies. 

 

Arterial stiffness 
 
Definition 

The most recent description of arterial stiffness is the reduced buffering 

capacity of arteries which is associated with decreased elasticity of the vascular 

wall [32, 33]. To better explain arterial stiffness, several models have been 

developed [34]. One of them is the Windkessel model [35] which describes the 

arterial system like a fire-hose system. The inverted air-filled dome, referred to 

large artery, was used to buffer the blood flow. The wide-bore hose was the 

conduit vessel. The fire hose nozzle was the peripheral artery/resistance [1]. 

However, elastic artery serves both “conduit” and “cushioning” functions. The 

Windkessel model ignores the “conduit” compliance while only focus on the 

peripheral resistance.  

Artery compliance (C) was first proposed by Spencer and Denison in 1963 

[36]. When given a certain amount of pressure to an artery, the degree of vessel 

volume change is termed as compliance [37]. The compliance can be calculated 

as C=ΔV/ΔP, where ΔV and ΔP are the volume and pressure changes in a 
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cardiac cycle during systole and diastole. Elastance is the reciprocal of 

compliance. Thus, stiffness can be quantified by elastic modulus/Young’s 

modulus [38]. Compared to the Windkessel model, elastic modulus covers the 

elastic properties (elastin and collagen region) of the arterial wall [1]. Thus, 

arterial stiffness can be also defined as an artery with a reduced capacity to 

expand or recoil during the cardiac cycle. The above explanation of arterial 

stiffness is focused on the arterial wall component alterations, the two primary 

proteins collagen and elastin [39]. However, the factors contributing to arterial 

stiffness are not limited to collagen or elastin.  

 

Measurement of arterial stiffness 
 
Aortic pulse wave velocity (aPWV) 

The aorta is the largest artery that contributes buffering effects to 

modulate blood pressure and maintain consistent blood flow to peripheral ends 

[32, 40-43]. Aortic stiffness affects blood pressure and blood flow. In addition, 

aortic stiffness is an independent predictor of CV events [28, 30, 44-47]. The 

most common and non-invasive clinical measurement of arterial stiffness is aortic 

pulse wave velocity (aPWV), which measures the pulse wave as it travels from 

carotid artery to femoral artery. Currently, pressure sensors (tonometer) which 

captures the wave form from pulse wave is a reliable and reproducible method to 

assess pulse wave velocity [48]. The PWV measurement system detects the time 

delay (Δt) between the feet of the two waveforms and records distance from 

carotid artery to femoral artery (D) [49, 50]. Then aPWV is calculated as D/Δt 
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[51]. Normal reference of aPWV value is about 6.2 m/s in less than 30 years old 

population and about 10.9 m/s in older than 70 years old population [52]. 

While aPWV is the gold standard assessment of arterial stiffness, this 

method does have disadvantages. The distance is measured on the body 

surface with a measurement tape by the investigator. In actuality, measured 

distance is an estimation over the true distance and is largely dependent on body 

shape [53]. Thus, systematic error in PWV estimation is dependent on distance 

measurement. To minimize the distance measurement error, some investigators 

recommend: 1) subtracting the distance from the carotid location to the sternal 

notch from the total distance or 2) subtracting the distance from the carotid 

location to the sternal notch from the distance between the sternal notch and the 

femoral site of measurement [50, 54]. In addition, heart rate and blood pressure 

are important confounders of PWV assessment. It has been shown that PWV 

increases with elevated blood pressure and increased heart rates [55, 56]. To 

minimize the blood pressure and heart rate influences, it is recommended that 

measurements be acquired in a quiet room with a minimal resting period of 10 

minutes with no smoking, meals, alcohol, and beverage containing caffeine at 

least 4 hours prior to measurement [54].  

 

Pulse wave analysis 

Pulse wave analysis is a measurement that allows the accurate recording 

of peripheral pressure waveforms and the corresponding central waveform used 

to assess central hemodynamic parameters [57]. The SphygmoCor system 
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(AtCor Medical, Australia) is one of the most widely used devices to estimate 

central blood pressure which is correlated well with invasive catheter 

measurements of aortic blood pressure [58, 59]. The system can generate 

central hemodynamic parameters: systolic and diastolic pressure, average aortic 

hemodynamic pressure, aortic pulse pressure, augmentation index (AIx) [60]. 

 

Central pulse pressure 

Central pulse pressure is the difference between systolic pressure and 

diastolic pressure which is an important marker of arterial stiffness. Central pulse 

pressure has two determinants: 1) ventricular ejection interacting with the 

viscoelastic properties of the aorta; and 2) wave reflection, or return wave from 

the distal site to heart [32, 61, 62]. Thus, increased arterial stiffness is associated 

with increased central pulse pressure. Increased pulse pressure is also a 

predictor of CV risk in subjects with myocardial infarction and congestive heart 

failure [63-65]. In addition, using pulse pressure to predict the risk of coronary 

heart disease is better than using systolic or diastolic pressure in middle-aged 

and elderly adults [66]. These findings demonstrate the central pulse pressure 

could be an important pathological index in clinical settings. 

 

Augmentation index (AIx) 

AIx is calculated as the difference in height between the first and second 

systolic peaks (augmentation pressure [AP]) in the aortic waveform which is 

expressed as a percentage of aortic pulse pressure: AP/PP *100% [67]. The 
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determinants of AIx is wave reflection during each cardiac cycle. Wave reflection 

is influenced by three major factors: 1) the distance to the reflecting site; 2) the 

speed of wave transmission, and 3) the magnitude of the reflection coefficient 

[68]. With increased PWV, the reflected wave arrives back to left ventricle earlier 

during diastole. Then the reflection wave leads to a secondary systolic pressure 

peak and increases central pulse pressure [68]. Previous research indicated that 

AIx is correlated with PWV in middle-aged men and women [69]. Thus, AIx could 

potentially serve as a predictor of CV events. As such, AIx is an independent risk 

factor for premature coronary artery disease in young subjects [70]. However, 

previous Framingham Heart Study showed that AIx increased in middle-aged 

individuals and then plateaued (in men) or declined (in women) beyond 60 years 

of age while aPWV continued to increase [71]. Furthermore, AIx was not 

associated with increased aPWV in patients with diabetes and during beta-

adrenergic stimulation [72-74]. Therefore, additional consideration should be 

taken when using AIx as an assessment of arterial stiffness in special population 

groups. 

 

Ex vivo mechanical testing 

Although arteries share the same three layers which are the tunica intima, 

tunica media and tunica external (adventitial), the histological structure and 

composition of the arterial wall differs as does the function. [75]. In human 

beings, vessels more than 10 mm in diameter are typically considered elastic 

arteries. As such, the aorta is a large elastic artery that contains a high 
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percentage of elastic fibers in three layers. The elastic fibers allow the aorta to 

expand or recoil to maintain stable blood pressure and deliver blood to distal 

sites. Arteries with diameters between 0.1mm to 10mm are typically considered 

muscular arteries. Muscular arteries have fewer elastic fibers, which results in 

less ability to expand or recoil, and their major function is to distribute the blood 

to capillaries. Arteries with diameters less than 0.1mm are typically arterioles and 

function to provide resistance. Arterial stiffness assessed by PWV is quite 

different between these different arteries due to differences in wall structural 

components. The human coronary arteries are muscular arteries with an average 

diameter about 4mm, about 10-13 cm in length of the left anterior descending 

artery and 12-14 cm in length of the right coronary artery [76]. Because the 

length of the coronary artery is shorter, errors in assessing distance 

measurement will result in a larger mistake in calculating PWV. Therefore, PWV 

is not an ideal method to assess coronary artery stiffness in vivo. 

The most common and easiest ex vivo mechanical test used to quantify 

arterial stiffness in the laboratory is the uniaxial tensile testing [77]. In this 

procedure an arterial segments are stretched in the horizontal plane at a 

constant displacement rate, while the force generated by artery is recorded. 

Testing is terminated at a yield point when tissue fails to generate force in 

response to increased stretch. The recorded displacement-force data are 

converted to a stress-strain curve. According to Young’s Modulus, stiffness is 

quantified as the slope of the linear part of the stress-strain curve [77]. The toe 

part of the stress-strain curve represents elastin protein effects, which 
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responsible for expansion and recoil of the artery. While the heel part of the 

curve represents the collagen protein effects, which produces force against 

higher pressures. In summary, the most two common arterial stiffness 

assessments are PWV and ex vivo mechanical testing. The advantages of PWV 

are 1) non-invasive, 2) gold standard in clinical settings and 3) predictor of CV 

events. However, it cannot explain the arterial wall structural alterations. The 

advantages of mechanical testing are 1) application to all arteries and 2) 

explanation of the vascular wall component changes, but requires acquisition of 

arterial samples.  

In this research project, the coronary artery stiffness was assessed by ex 

vivo mechanical testing with a Myograph (DMT 620, Denmark). The simplified 

description of the Stress-Strain curve is shown as Figure 2-1. 
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Figure. 2- 1 Ex vivo mechanical testing 

 

 

 

 

 

 

 

 

 

 

 

 

 

Importance of arterial stiffness 

Arterial stiffness is a strong predictor of not only CVD-related mortality, but 

also all-cause mortality. Particularly, increased aPWV has been shown as an 

independent predictor of coronary artery disease and stroke over a 10 year 

follow-up [78]. More studies have elucidated the importance of arterial stiffness. 

The estimation of myocardial infarction, unstable angina, heart failure or stroke is 

approximately twice in subjects with higher aPWV compared to subjects with a 

lower aPWV [79]. Another study conducted in well-functioning elders showed that 

higher aortic PWV was associated with CVD mortality and other disease mortality 
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[28]. A population-based study also showed that arterial stiffness is strongly 

associated with lipid plaques at various arterial tree sites [80]. An investigation on 

end-stage renal disease patients demonstrated that elevated aortic elastic 

modulus was associated with an increased hazard ratio of cardiovascular and all-

cause mortality [81]. Importantly, angiotensin-converting enzyme inhibitor 

treatment on renal dysfunction patients increased survival rate associated with 

reduced arterial stiffness independent of blood pressure changes [82]. This study 

may suggest that, compared to blood pressure alone, arterial stiffness is more 

tightly related to survival in renal dysfunction patients.  

In general, healthy arteries expand and recoil during systole and diastole. 

The elastic properties of large arteries tends to decrease with aging and disease. 

Prevention strategies and treatments of arterial stiffness are critical to reduce 

CVD-related events and all-cause mortality. Thus, to understand the 

mechanisms of arterial stiffness is essential to support prevention and 

therapeutic strategies to lower CVD risk.  

 

Contributors to arterial stiffness 

Stiff arteries lose the elastic properties which is associated with vascular 

wall remodeling. Arterial stiffness is involved with complicated reactions at the 

cellular and molecular levels. These vasculature alterations are affected by blood 

flow shear force and extrinsic factors such as advanced glycation end products 

(AGE), oxidative stress, inflammatory response and metabolic dysfunctions of 

glucose and lipid. 
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Collagen and Elastin 

Collagen and elastin are the two major scaffolding proteins which provide 

compliance, elasticity, and stability to the vascular wall [83]. Collagen is the most 

abundant protein in humans and is the main component of connective tissue [84]. 

The most abundant collagen subtypes in the normal human artery are type I (70-

75%), type III (20-25%) and type V (1-2%) [85]. Type I and type III collagens are 

the major components of the three vessel layers, while type IV (comprise more 

than 90% of the total protein of the basal lamina) and type V collagens are in the 

basement membrane of smooth muscle cells of the intima and medial layers [86, 

87]. Elastin is the other major extracellular matrix (ECM) protein of large arteries 

with characteristics of extensibility and elasticity [88]. Elastin formation is limited 

to the embryo stage and infancy [89]. Therefore, elastin content is greatest at 

birth and progressively decreases with aging. Accelerated elastin degradation 

and fragmentation due to some disease conditions will result in premature arterial 

stiffening [90]. 

The production and degradation of collagen and elastin are in balance in 

healthy conditions. Dysregulation of the balance caused by overexpression of 

abnormal collagen and degradation of normal elastin promotes vascular stiffness 

[6]. Increased collagen type I is associated with myocardial fibrosis in 

hypertensive heart disease patients. Another report shows that collagen type I 

overproduction is associated with increased aPWV in diabetes with coronary 

artery disease [91]. Moreover, in atherosclerotic lesions, type I and III collagens 
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are the major structural component while type IV and type V collagens are not 

[86].  Heart failure induced by hypertension and diabetes has been shown to 

stimulate excessive collagen production [92, 93]. Histological analyses of 

stiffened vessels indicate that the ratio of collagen to elastin was increased [94].  

 

Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs  

Collagen and elastin comprise a large portion of ECM and are regulated 

by matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) [95]. 

MMP are responsible for extracellular matrix degradation. Different MMPs 

subunits have different functions [96]. MMP-1 degrades types I, II, and III 

collagen; MMP-2 degrades type IV collagen and elastin; MMP-3 degrades 

laminin, fibronectin, elastin, gelatin, and proteoglycans, and MMP-9 degrades 

type IV collagen and elastin. A recent publication reported that increased MMP-2 

and 9 levels were greater in hypertensive subjects and positively related to PWV 

[97]. Another study showed that deficiency of MMP-9 and MMP-12 protected 

ApoE -/- mice from atherosclerosis [98]. Moreover, MMP-1 was positively 

correlated with aPWV in both normotensive and hypertensive subjects [99].  

The TIMP family is comprised of four MMP inhibitors: TIMP-1, 2, 3 and 4 

[100]. A human study indicated that plasma TIMP-1 level was increased in 

hypertensive subjects [101]. An animal study demonstrated that hypertension 

induced by angiotensin II was prevented in TIMP 3-/- mice that had reduced 

collagen and elastin content in both the carotid and mesenteric arteries [102]. 

This finding shows that TIMP 3-/- has a preventative effect in hypertension but 
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with an adverse remodeling in the extracellular matrix. MMPs expression is also 

regulated by other cellular factors like, increased pro-inflammatory, cytokines, 

and oxidative stress which promote MMPs to induce less effective collagen and 

fragment elastin which in turn promotes vascular stiffness [103-105]. 

 

Advanced glycation end products (AGE) 

Advanced glycation end products (AGE) are complex and heterogeneous 

groups of molecules which are associated with diabetes, cardiovascular disease, 

Alzheimer’s disease and end stage renal disease [7]. 

 

AGE formation  

Reducing sugars react with proteins, lipids, and nucleic acids following 

glycation, oxidation and/or carboxylation to produce AGE [7, 106]. In general, the 

highly reactive glucose aldehyde group with the amino group of proteins produce 

a Schiff’s base, which spontaneously rearranges itself into an Amadori’s product. 

After continued modifications Amadori’s product becomes AGE. In addition, 

some highly reactive carbonyl agents like glyoxal and methyl-glyoxal can be 

produced by oxidized glucose, Schiff’s base and then Amadori’s product will 

react with free amino groups to form N-q-carboxy-methyl-lysine (CML). The slow 

extracellular glycoxidation reaction which produces CML [107] ranges from 

weeks to months, thus long-lived proteins, such as collagen are primary targets 

[108]. The major AGE chemical structures are: 2-(2-furoyl)-4(5)-furanyl-1H-
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imidazole (FFI), 1-alkyl-2-formyl-3,4-diglycosyl pyrroles (AFGPs), N-ε-carboxy-

methyl-lysine (CML), pyrraline and pentosidine [109].  

Greater AGE concentrations are usually associated with increased plasma 

glucose and renal dysfunction [7]. AGE concentration was increased after a few 

weeks when animals had increased plasma glucose [110]. Compared to the 

normal conditions, circulating AGE increased approximately two fold in diabetic 

animals [111]. Since small soluble AGE peptides are cleared in the kidney, renal 

dysfunction contributes to AGE accumulation and leads to vascular disease 

[112]. Further, diabetic patients with end stage renal disease (ESRD) had up to 

100 fold circulating AGE compared to diabetics with normal renal function 

patients [113, 114].  

Lipids are involved in the glycation process as well. Quick lipid 

peroxidation with reactive oxygen species (ROS) produces free AGE or protein 

bound AGE in both intracellular and extracellular spaces [115, 116]. AGE 

reduces  paraoxonase activity by 40% in type II diabetes and coronary artery 

disease patients [117] which in turn induces oxidized low-density lipoprotein 

(LDL) accumulation. In our previous study, we found AGE accumulated in the 

aorta with elevated plasma LDL [8]. In addition to the endogenous formation, 

AGE could also be accumulated in blood by food absorption [118, 119]. Plasma 

AGE level is related to aortic stiffness independent of age and blood pressure 

[120]. This finding indicates that adipose tissue is a potential source of AGE.  

AGE effects in cellular and molecular levels 
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The pathogenic influence of AGE are via two different pathways. First, 

AGE form cross-links with proteins that results in an irreversible process which 

alters protein structures and functions [112]. Specifically, AGE cross-linking with 

type I collagen changes the protein structure [121]. AGE can form cross-links 

with collagen IV on the basement membrane to prevent normal network-like 

structures as well [122]. Increased stiffness in the vasculature and other tissues 

due to pathological alterations by AGE-collagen cross-link formation is common 

in diabetic and aging conditions [123]. 

AGE can also form cross-links with LDL through three-dimensional 

structural changes, which in turn, prevented recognition by cellular LDL receptor 

[124]. In addition, excessive AGE increases LDL susceptibility to oxidative 

modifications to promote oxidized LDL formation [125]. The oxidized LDL can 

react with free amino groups of proteins to form AGE products, including CML, 

CEL and others [126, 127].  

In older mice, the increased aortic stiffness has been shown to be 

associated with less elastin per mm2 of the vascular wall by AGE-elastin 

formation [128]. In addition, exogenous AGE administered to rodents promotes 

elastin disruption and fragmentation that is associated with arterial stiffness [129]. 

Previous research has indicated that cross-linking collagen promotes myocardial 

stiffness and cardiac chamber remodeling in hypertensive heart disease. In 

detail, spontaneously hypertensive rats had a decrease in soluble myocardial 

collagen concomitant with an increases in cross-linked myocardial collagen 

which in turn promoted the myocardial stiffness [130]. A histological study 
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conducted on human aorta illustrated a correlation between AGE accumulation 

and aortic stiffness, which is assessed by ex vivo mechanical testing [131-133]. 

Currently, adequate evidence supports the notion that collagen cross-linking is 

an important mechanism of decreased vascular and cardiac compliance.  

Second, AGE binds to a cell membrane receptor to stimulate AGE related 

signaling. AGE have several receptors, the receptor for AGE (RAGE) is the most 

well characterized AGE receptor [134]. RAGE expression is increased in the 

blood and kidneys in those with diabetics compared to control [135]. RAGE has 

also been found on endothelial cells, specifically in the area of atherosclerosis 

[135]. In vitro investigations demonstrated that increased oxidative stress and 

activation of the Nuclear factor-kappa B (NF-κB) signaling was associated with 

AGE-RAGE binding on macrophage cells [136, 137]. We recently reported that 

the greater AGE accumulation in the vascular wall was associated with increased 

oxidative stress and NF-kB p65 subunit expression through RAGE expression 

was unchanged with HF [5].  

AGE has been shown to increase intracellular oxidative stress. A previous 

study indicated that endothelial cells cultured with AGE increased thiobarbituric 

acid reactive substances, a byproduct of lipid peroxidation, and heme oxygenase 

mRNA expression [136]. Moreover, human endothelial cells cultured with AGE 

prompted intracellular generation of hydrogen peroxide and was prevented by 

soluble AGE,  which blocks the RAGE receptor [138]. Further, AGE have been 

shown anti-oxidant properties resulting in a reduction of glutathione, vitamin C 

and nitric oxide leading to reduced vasodilation [139]. AGE accumulate in pro- 
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inflammatory sites and promote atherosclerotic lesions in non-diabetes as well 

[140]. A previous study showed that activated NF-kB induced by AGE released 

interleukin-1 (IL-1), IL-6 and TNF-a [141], in which IL-6 has been shown as a 

contributing factor to aortic stiffness [8]. Moreover, the AGE–RAGE mediated 

cellular signaling includes multiple intracellular signal transduction pathways like 

p21ras, mitogen-activated protein (MAP) kinases, Phosphoinositide 3 (PI3) 

kinase, cdc42/rac, Jak/STAT, NAD(P)H oxidase [138, 139, 142-146] 

In summary, excessive AGE accumulation increases oxidative stress and 

inflammatory response leading to arterial stiffness, while the pathological 

changes are accelerated in diabetic and aging conditions [147]. 

 

Treatment targeting AGE 

Therapeutic interventions focused on AGE formation, AGE cross-linking 

and AGE–RAGE interaction have been investigated. Aminoguanidine (AMG) is 

the first AGE inhibitor which functioned as nucleophilic hydrazine compound to 

prevent Amadori's products that react with proteins to form AGE [148]. AMG 

prevented albumin to form AGE with glucose and AGE cross-linking of collagen 

[148]. Evidence also demonstrated that AMG preserved arterial elasticity through 

inhibition of collagen cross-linking [149]. Further, AMG is the most promising 

agent which reduces the heart AGE levels, RAGE levels and collagen expression 

[150]. In addition, AMG reduces AGE accumulation absorbed from food [151]. 

 Another agent was developed to remove the irreversibly bound AGE from 

connective tissues and matrix components [152]. Alagebrium chloride (ALT-711) 
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is a cross-link breaker compound which has been shown to decrease pulse 

pressure in elderly adults with vascular stiffening [153]. ALT-711 decreased large 

artery stiffness that was associated with reduced collagen deposition and 

attenuates left ventricle stiffness in diabetic and aging animal models [154, 155]. 

The development of AGE cross-link breakers may be a potential target for future 

therapy of isolated systolic hypertension and diastolic heart failure [123]. 

As mentioned above, AGE-RAGE mediated downstream cellular signaling 

promotes oxidative stress and inflammatory responses. This may suggest that 

interference with the AGE-RAGE interaction would interrupt or stop related 

cellular activation, and consequently ameliorate various chronic disorders [156, 

157]. RAGE mRNA has two major truncated forms: N-terminal and C-terminal 

[158] which are named soluble RAGE. Soluble RAGE has been reported to 

dramatically reduce AGE accumulation and improve vascular function [159]. In 

addition, the administration of soluble RAGE to diabetic mice showed that 

inflammatory cells, mRNA levels of glomerular cytokines and extracellular matrix 

were decreased, which in turn reduced vascular lesion area and complexity [160, 

161].  

Insulin has also been proposed to contribute in AGE elimination through 

PI3-kinase pathway associated with nitric oxide production and resulting in 

vascular protective effects [162, 163]. This finding suggests activation of PI3-

kinase not only promotes glucose metabolism but also AGE metabolism. In 

addition, the anti-oxidant agents Vitamin C, has been reported to prevent the 

oxidative conversion during AGE formation [164].   
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In summary AGE and AGE-mediated cellular signaling promote 

vasculature dysfunction and wall remodeling through cross-linking formation, 

oxidative stress, and inflammation. Comprehensive understanding of the 

mechanisms of AGE formation and regulated activity is critical to control or 

prevent cardiovascular disease.  

 

Oxidative stress 

Oxidative stress source 

Oxidative stress is an imbalance between the overproduction of reactive 

oxygen species (ROS) and reduced antioxidant defenses [165, 166]. ROS are 

reactive chemicals with oxygen such as peroxides, superoxide, hydroxyl radical 

and single oxygen [167]. The major source of ROS comes from mitochondria 

where oxygen leaks during oxidative phosphorylation [168]. Mitochondrial DNA 

damage is greater in atherosclerotic human arteries compared to normal human 

arteries, in part, due to oxidative stress [169]. Mitochondrial DNA encodes 

portions of the electron transport chain [170], thus damage on mitochondrial DNA 

may cause more ROS leaking from mitochondria associated with structural 

damage. Mitochondria ROS are also regulated by mitochondria membrane 

potential, O2 concentration, nuclear transcription factors, and cytokines [171].  

Peroxynitrite is another ROS compound resulting from the reaction of 

superoxide and nitric oxide along with increased oxidative stress [172]. 

Peroxynitrite oxidizes lipoproteins and nitrate tyrosine residues in many proteins 

[173]. Since the production of peroxynitrite is difficult to assess, nitrosylation of 
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proteins have been considered as an indirect biological marker of oxidative 

stress [174]. Though nitrotyrosine is not detectable in the plasma of normal 

healthy subjects [175], the circulating nitrotyrosine concentrations are detectable 

and associated with cardiovascular disease [176].  

 

Oxidative stress influences on cellular dysfunction 

Increased ROS stimulates a pro-inflammation response and activates NF-

κB related signaling [171, 177]. One previous study indicated that cells treated 

with agents that restored ROS prevents protein kinase C, AGE accumulation and 

NF-kB activation [178]. Activation of NACHT, LRR and PYD domains-containing 

protein 3 (NALP3) will trigger an inflammatory response, which is positively 

regulated by ROS [179, 180]. Recent studies showed that excessive ROS had an 

adverse effects on vascular function associated with cellular protein damage and 

an overall reduction in bioavailable endothelium-derived nitric oxide [181]. 

Moreover, reduced ROS accumulation decreased IL-6 production induced by 

endotoxin lipopolysaccharide [177]. Reduced IL-8 expression is associated with 

ROS inhibition in human aortic endothelial cells in vitro [182]. Several studies 

showed that excessive ROS accelerates atherosclerosis lesion formation. 

Deficiency of SOD2, a mitochondria-specific antioxidant enzyme, in 

apolipoprotein E-/- mice contributes to atherogenesis at arterial branching points 

[169]. Also, oxidative stress has been shown to dramatically increase in aortic-

banded guinea pigs and is reduced by Vitamin E therapy [183]. However, clinical 

use of Vitamin E to prevent oxidative stress has not shown beneficial effects on 
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mortality compared to the control group [184]. Another long-term study showed 

that neither vitamin E nor vitamin C supplementation reduced risk of major 

cardiovascular events [185].  

Oxidative stress has been shown to mediate collagen and collagen-related 

signaling. One study indicated that oxidative stress mediated the collagen type I 

expression and activation of NF-kB in vitro [186]. Another experiment showed 

that exposure to oxidative stress stimulated MMP expression and influenced the 

vascular remodeling [187].  

Oxidative stress could influence vascular function by endothelial cells. 

Substantial evidence suggests that atherosclerotic lesion formation is associated 

with oxidative stress [188]. Another study shows that high blood glucose 

increases ROS, NF-κB activation, upregulation of endothelial cell adhesion 

molecules intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion 

molecule-1 (VCAM-1), trans-endothelial migration of monocytes, and monocyte-

endothelial adhesion in human coronary artery endothelial cells (140). In 

addition, over expression of thioredoxin-2 (Trx2), a mitochondrial antioxidant 

enzyme, attenuated endothelial function and prevented atherosclerotic lesions in 

ApoE-/- mice, which was associated with decreased oxidative stress and elevated 

NO bioavailability [189]. The above evidence suggests that attenuated oxidative 

stress protects the vasculature.  

In summary, oxidative stress has been recognized as a crucial factor to 

vascular diseases and atherosclerosis development. Long-term studies have 

indicated that oxidative stress is a strong predictor of cardiovascular events in 
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coronary artery disease patients [190] and is strongly associated with arterial 

stiffness measured by PWV [191]. Thus, it is of importance to investigate the 

oxidative stress-related mechanisms of arterial stiffness in order to develop 

effective therapeutics. 

 

Inflammation 

Inflammation is part of biological responses to local injury [192]. The 

stimulated inflammatory response produces cytokines such as IL-1β, IL-6, tumor 

necrosis factor-α (TNF-α) [193, 194], and activates the NF-κB pathway [195]. C-

reactive protein (CRP), an inflammation marker, has a direct role in promoting 

inflammatory response on human aortic endothelial cells which is associated with 

reduced antioxidant defense [196, 197]. Previous studies have shown that 

reduction of inflammation (CRP) reduced aPWV [198]. It suggests that CRP 

inhibition may decrease PWV. Moreover, arterial stiffness measured by aPWV is 

associated with inflammation-related signaling such as IL-6, TNF-α and CRP 

[199]. Another in vitro study indicated that inflammation promoted arterial 

stiffness associated with vascular wall remodeling through activated mitogen-

activated protein kinases (MAPK) p38 controlled gene [200]. As mentioned in the 

“Oxidative Stress” section, angiotensin II increase ROS production and 

stimulates MMP expression through the expression of active transforming growth 

factor-β (TGF-β) [201] leading to vascular wall remodeling [202]. Another study 

suggested that macrophage, CD68, angiotensin II related proteins and enzymes 

activity were increased in older human thoracic aorta compared to young adults. 
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The pathological alterations with inflammation increased vascular wall thickness 

[203]. Also, monocyte chemoattractant protein-1/C-C chemokine receptor type 2 

(MCP-1/CCR2) pathway has an important role in arterial inflammation to induce 

IL-1 and IL-6 expression [204] which resulted in vascular remodeling and left 

ventricular hypertrophy [205]. MCP-1 induces vascular smooth muscle cell 

proliferation and activates NF-kB signaling [206]. In summary, substantial 

evidence demonstrates that inflammation influences arterial stiffness, suggesting 

treatments targeting reductions in the inflammatory response will prevent arterial 

stiffness. 

 

Perivascular adipose tissue (PVAT) 

PVAT characteristics 

In the past decade, much interest has been focused on adipose tissue, 

which surrounds the blood vessels. Recent investigations have demonstrated 

that PVAT is an endocrine tissue and can transfer signals to adjacent blood 

vessels [207]. There is no fascial layer or elastic lamina between PVAT and the 

vasculature, where PVAT interlaces with the adventitial layer [208, 209]. In 

addition, the vasa vasorum within PVAT proliferates when inflammation and 

injury occurrs [210-212], resulting in the release of mediators from PVAT to the 

vascular system. The vasa vasorum are tiny blood vessels which supply blood to 

the outer layers of the artery [213]. Secretomes from PVAT are different from 

visceral and subcutaneous adipose tissue [214]. Thus, these characteristics 
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suggest that PVAT may have a unique role in influencing the vasculature [215, 

216].  

 

PVAT and cytokines 

One of the key features of PVAT is regulation of inflammation. Cytokines 

like IL-6, IL-8, leptin, MCP-1, and resistin released from PVAT induces 

endothelial cell dysfunction, increases oxidative stress, and causes smooth 

muscle cell proliferation and migration [217-219]. One recent study demonstrated 

that inflammatory cells were increased in PVAT surrounding the atherosclerotic 

aorta compared to the normal aorta [220]. Other similar studies revealed that 

mRNA and protein concentrations of IL-1β, IL-6, MCP-1, and TNF-α were 

elevated and adiponectin protein level was lower in PVAT diseased coronary 

arteries [221, 222]. Wild type mouse aorta cultured with LDL receptor-/-  PVAT 

which secreted greater IL-6, promoted aortic stiffness [8]. Another animal study 

indicated that IL-8, IL-6 and MCP-1 mRNA level and protein expressions were 

higher in PVAT compared to peri-renal and subcutaneous adipose tissue [208], 

thus confirming PVAT’s specific role in inflammatory responses. Another 

research investigation reported that adrenomedullin which was a vasodilator and 

anti-oxidative peptide was expressed in epicardial adipose tissue [223]. Thus, 

PVAT released pro-inflammatory cytokines may serve as a protective mediator.  

Recent studies reported that epicardial adipose tissue size was positively 

related to coronary artery disease, which was associated with insulin resistance 

and inflammation [224-227]. However, the influence of PVAT on the vasculature 
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is not completely understood. Yudkin et al. proposed a “vasocrine” model in that 

cytokines were directly released from PVAT to the vasculature, and thereby 

regulated vascular function [228]. The above studies proposed that mediators 

from PVAT were directly released into adjacent blood vessels. PVAT has been 

shown to affect smooth muscle cells as well. Animal studies have showed that 

PVAT releases cytokines which stimulated smooth muscle cell proliferation [218]. 

Conditioned media from cultured PVAT of aging and obese rats promotes human 

aortic smooth muscle cell proliferation [229]. In summary, cytokines released 

from PVAT contributes to vasculature modifications, but the mechanism is still 

not understood. 

 

PVAT and oxidative stress 

Another feature of PVAT is promoting oxidative stress. Animal study 

showed that mice with characteristics of metabolic syndrome had mesenteric 

artery remodeling associated with increased superoxide production and NADPH 

oxidase activity in PVAT [230]. A similar study concluded that diet induced obese 

mice had vascular endothelial dysfunction and an increased pro-inflammatory 

response associated with increased oxidative stress in PVAT [231]. To confirm 

that oxidative stress promotes aortic stiffness, PVAT from old mice was 

transplanted into healthy young mice which increased PWV and decreased 

elastic modulus. In addition, the increased stiffness was abolished by 4-Hydroxy-

2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPOL), a superoxide scavenger [232]. In 

summary, substantial published research supports the role for PVAT as an 
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important regulator of inflammatory responses and oxidative stress. Thus, PVAT 

may be potential novel therapeutic target for improving coronary artery stiffness. 

 

Hypertension and arterial stiffness  

Blood pressure is an important physiological and pathological predictor of 

cardiovascular events [32]. Previous studies have shown that patients with 

isolated hypertension have higher aPWV [233]. In addition, a large population 

study indicated that higher aortic stiffness was associated with an increased risk 

of incident hypertension [234]. These findings revealed the connection between 

arterial stiffness and hypertension. However, it is controversial which comes first: 

arterial stiffness or hypertension [235]. One theory is that vascular wall stiffness 

precedes elevated blood pressure resulting in hypertension. Obese mice fed a 

diet of high fat and high sucrose showed increased aPWV within 1 to 2 months 

which preceded development of hypertension at 5 months [236]. An alternative 

theory is that elevated blood pressure precedes vascular wall alterations: 

hypertension deteriorates vascular wall pathology changes leading to stiffer 

arteries [237]. This long-term study revealed that hypertension exacerbated 

aortic stiffness. Moreover, individuals with well-controlled blood pressure had 

less progression of arterial stiffening assessed by aPWV than individuals poorly 

controlled blood pressure [238]. Recently, numerous studies investigated the 

cellular and molecular mechanisms of arterial stiffening and its relationship with 

the development of hypertension. The elastin knockout (Eln−/−) mouse model has 

greater arterial stiffening than wild- type mice. Until postnatal day 1, the blood 
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pressure in Eln−/− mouse was about twice that of wild-type, and the aortic 

stiffness was further increased. Eln+/- mouse had increased arterial stiffness by 

postnatal day 7, whereas systolic blood pressure increased until postnatal day 14 

[239].  

Treatments for hypertension have been shown to work for attenuation of 

arterial stiffness. Anti-hypertension drugs targeting the renin-angiotensin system 

and aldosterone have been shown to prevent arterial stiffness associated with 

decreased collagen accumulation [240]. However, isoflavones, compounds with 

antioxidant properties, [241] reduced arterial stiffness associated with 

suppressed vascular cell adhesion molecule-1 level but did not affect blood 

pressure [242]. In summary, it is important to better understand the association of 

arterial stiffness and hypertension. 

 

Aging and arterial stiffness 

Aging is defined as the age-related reduction in physiological functions 

essential for survival and fertility [243]. It is well established that aging is 

associated with increased aortic stiffness [244]. Moreover, age-related changes 

in vascular structure and function increase the risk of CVD [245]. 

 

Age-related metabolic syndrome promotes arterial stiffness 

The risk of acquiring metabolic syndrome components, such as obesity, 

dyslipidemia, insulin resistance, and hyperglycemia, increases with aging. 

Substantial evidence indicates that aging related metabolic syndrome promotes 
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arterial stiffness and accelerates the development of hypertension [246-249]. In 

particular, diabetes and dyslipidemia leads to endothelial dysfunction, increased 

oxidative stress and inflammation leading to arterial stiffening [243]. Metabolic 

syndrome also interacts with inflammatory responses [250, 251]. Therefore, 

aging promotes activation of inflammatory responses resulting in increased pro-

inflammatory cytokines, which in turn produces more cytokines, resulting in 

endothelial dysfunction and increased oxidative stress [252]. The increased 

oxidative stress and inflammatory responses collectively contribute to arterial 

stiffening.  

 

Aging increases MMPs expression 

Aging is also associated with over expression of MMPs to promote elastin 

degradation and collagen accumulation [253]. MMP-2 is associated with the 

aging process. Over expression of MMP-2 changes the collagen and elastin 

ratio, and activates TGF-β signaling. Increased MMP-2 expression promotes 

arterial stiffness which was associated with vascular wall remodeling and calcium 

content [254]. Inhibition of MMPs prevented age-related arterial inflammation, 

which was associated with preservation of elastin, reduction of collagen leading 

to prevent high blood pressure [253]. Interestingly, it appears that carotid artery 

properties improve with lessening metabolic syndrome severity which suggest 

that arterial stiffness may be reversible with metabolic syndrome [248].  

 

Oxidative stress and other factors in aging 
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It is evident that oxidative stress occurs with aging. An animal study 

showed that superoxide production was increased in the mesenteric artery in 

aging rats [255] and NO bioavailability was decreased in aging-related 

hypertensive rats [256]. Moreover, recent studies confirmed that aging-related 

endothelial dysfunction and oxidative stress promotes vascular wall remodeling 

and stiffness [257-259]. Therefore, aging-related oxidative stress promotes 

endothelial dysfunction and activation of inflammatory response leading to 

vascular remodeling [260-263]. 

Aging has been shown to induce aldosterone dysregulation, which 

contributes to aging-related inflammatory response [264]. Thus, these findings 

suggest age-related salt sensitivity may be regulated by inflammation and 

contributes to arterial stiffness. It is well known the nervous system is important 

in regulating peripheral artery resistance and blood pressure. A recent study 

showed increased sympathetic nerve activity in older women contributes to the 

development of hypertension but not in young women [265]. Another paper 

demonstrated that reduced sympathetic baroreflex sensitivity promotes arterial 

stiffness and hypertension in elderly adults [266]. The above findings may 

suggest arterial stiffness in aging may be influenced by the nervous system as 

well.  

 

Aging genetic influences in CV events 

Recent interests have been focused on age-related gene changes in 

vascular function and hypertension. Klotho gene is an anti-aging gene which 
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extended life span [267]. In mice where the klotho gene is overexpressed, 

oxidative stress and insulin resistance were attenuated [267]. Greater expression 

of klotho gene also reduced blood pressure and restored kidney damage in 

spontaneously hypertensive rats [268]. However, the klotho gene expression 

prevented IL-10 production and superoxide production [268]. To confirm the 

influence of klotho on blood pressure, another research group showed that klotho 

gene deficiency caused salt-sensitive hypertension via CCR2 and MCP-1 [269]. 

Since arterial stiffness and hypertension are influenced by oxidative stress and 

inflammation, it would be logical to predict that anti-aging genes have an 

important role in modulating age-related vascular structural and functional 

alterations. 

 

Genetic base of arterial stiffness 

Arterial stiffness is an independent predictor of cardiovascular mortality 

after adjustment for traditional risk factors like age, sex, and mean blood 

pressure [44, 45, 270]. Moreover, carotid artery stiffness was greater in 

teenagers with a parental history of myocardial infarction or diabetes compared 

to the teenager without such parental history [271]. A similar study showed that 

offspring had increased AIx in families which had a history of hypertension [272]. 

Thus, these findings suggest that genetic factors are a potential factor related to 

arterial stiffness.  

 

Genetic mutation of elastin and collagen 
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Gene mutations in elastin and collagen also contributes to arterial 

stiffness. Genetic research on elastin indicated A allele of the Ser422Gly 

polymorphism, which is A-to-G nucleotide change, was positively associated with 

carotid stiffness [273]. Another study showed genetic mutation of fibrillin-1 is 

associated with large artery stiffening and increased pulse pressure in coronary 

artery disease patients [274]. In addition, MMP-3 genotyping promoted aging-

related aortic stiffness associated with vascular remodeling [275]. Though some 

investigations demonstrated phenotype of some genes promoting arterial 

stiffness, the underlying signaling pathway is not well understood. 

 

Genetic mutation of renin-angiotensin system  

Genotype-phenotype studies focused on the renin-angiotensin system 

showed that angiotensin II type 1 receptor gene polymorphism was correlated 

with aortic stiffness [276]. Another large population research concluded that 

angiotensin II type 1 receptor genotype could influence arterial stiffness in aging 

hypertensive patients [277]. A similar study performed in hypertensive patients 

and genotyped mice showed that angiotensinogen gene is a genetic marker for 

arterial stiffness, whereas in genotyped mice with high concentration of 

angiotensinogen had increased arterial stiffening [278]. These data reinforce that 

renin-angiotensin system is another key factor in arterial stiffness. 

 

Heart failure and coronary artery disease 
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Heart failure (HF) is a life-threatening disease [279] affecting about 5.7 

million adults in the United States [280]. The risk of death is about 35% in the first 

year after diagnosis with HF [281]. The most common risk factor of HF is 

coronary artery disease (CAD) [279]. Maintenance of coronary artery function is 

critical because the coronary arteries are responsible in the transport of blood 

and nutrition to heart. From the 2016 American Heart Association annual report, 

more than half of all cardiovascular events in both men and women is due to 

CAD [282]. Moreover, the prevalence of CAD will increase about 18% by 2030 

based on projections [282]. CAD due to HF has been well established. However, 

the influence of HF on coronary artery stiffness is largely unknown  [283]. 

 

Heart failure 

HF is a syndrome which includes symptoms such as: shortness of breath 

at rest and exercise, fatigue, pulmonary congestion and abnormal heart structural 

and functional changes [284]. By 2030 more than 8 million adults will be 

expected to have HF in the United States [280]. HF is the underlying cause of 1 

in 9 deaths [285]. Patients with HF have lower stroke volume and cardiac output, 

which results in overstimulation of the sympathetic nerve system and renin-

angiotensin aldosterone system leading to vasoconstriction, and sodium and fluid 

retention. Elevation of blood pressure and increased afterload cause ventricular 

wall remodeling [286]. A long-term study involving with 5143 subjects concluded 

that hypertensive subjects had a greater risk of HF compared to normotensive 

subjects [287]. Thus, the above evidence suggests that hypertension is the most 
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common risk factor of HF. Given the lack of effective therapies [3], research 

about exercise interventions to treat HF has been popular in recent years.  

 

Coronary artery disease 

Pathology of coronary artery disease (CAD) is an imbalance between 

myocardial oxygen demand and supply due to the narrow or blockage in 

coronary arteries [288]. One possible mechanism is lipid deposits on coronary 

artery which results in artery stiffening or atherosclerosis [289]. CAD contributes 

to more than half of all cardiovascular events in individuals less than 75 years old 

[290]. Additionally, CAD is the underlying cause of one in seven deaths [280]. 

However, the effects of HF induced by increased central pressure, on coronary 

artery stiffness has not been examined. 

 

Physical activity/exercise influences on cardiovascular disease 

Definition 

Physical activity is defined as any bodily movement produced by skeletal 

muscles that results in energy expenditure [291]. Exercise is a subset of physical 

activity that is planned, structured, and repetitive and has as a final or an 

intermediate objective the improvement or maintenance of physical fitness [291].  

 

Physical activity/exercise benefits 

Physical activity is a non-invasive prevention and treatment strategy for 

obesity, diabetes, hyperlipidemia and CVD [292-294]. Physical activity has been 
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shown to effectively control body weight, lower cholesterol, decrease blood 

pressure and improve cardiovascular fitness, reduce collagen accumulation [295] 

and suppress inflammatory response [296-300]. It is generally accepted that 

physical activity decreases the risk of cardiovascular disease, diabetes, colon 

and breast cancers [301]. Evidence suggests that physically active individuals 

have lower coronary heart disease risk compared to less physically active 

individuals [302-307]. Physical activity has been reported to reduce and treat 

many atherosclerotic risk factors, such as high blood pressure, insulin resistance, 

high triglyceride concentration and low high-density lipoprotein (HDL) 

concentration [308]. Atherosclerotic lesions progression can be prevented or 

slowed and O2 uptake increased during one year treadmill exercise [309]. A 

meta-analysis report showed that after 12 weeks of exercise subjects had 

increased HDL and decreased LDL [310]. A large population study indicated 

moderate intensity exercise help reduces systolic and diastolic blood pressure 

3.4 and 2.4mmHg respectively [311]. In addition, mean systolic and diastolic 

blood pressure reduction in hypertensive subjects were 7.4 and 5.8mmHg 

respectively and in normotensive subjects were 2.6 and 1.8mmHg respectively. 

These results suggest that moderate intensity exercise decreases high blood 

pressure and serves as an effective therapy for hypertensive patients. Chronic 

moderate exercise has also  been reported to attenuate blood glucose 

concentrations in type II diabetics [312].  

 

Influence of exercise on arterial stiffness 
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It has been shown that 30 minutes of moderate cycling causes acute 

reductions in arterial stiffness [313] and 60 minutes of maximal treadmill exercise 

decreases lower-limb vascular stiffness [314]. Investigators proposed that 

reduction in arterial stiffness was due to exercise-related incremental increases 

of NO production from the vascular endothelium. Twelve weeks of exercise 

training increased superoxide dismutase activity, plasma nitrite and nitrate levels 

leading to decrease oxidative stress with increased vasodilation [315]. However 

another experiment concluded that low intensity cycling which reduced PWV was 

not associated with NO production [316]. Animal microarray results showed that 

aorta prostaglandin receptor, C-type natriuretic peptide and endothelial nitric 

oxide synthase genes were overexpressed with reduced aPWV  after 4 weeks 

treadmill running in rats [317]. These findings suggest that exercise-related 

attenuations of arterial stiffness may be associated with improved endothelial 

function with decreased oxidative stress.  

Furthermore, 3-week moderate exercise reduced carotid and femoral 

artery stiffness in type 2 diabetics with improved insulin resistance [318]. Another 

study indicated nutrition and exercise interventions improved radial artery 

elasticity index with decreased blood glucose, cholesterol and C-reactive protein 

[319]. In summary, it is reasonable to conclude that exercise attenuates arterial 

stiffness with decreased oxidative stress. However, the exercise effects on 

arterial stiffness via reductions in inflammation need further investigation. 

 

Exercise treatment in coronary artery disease 
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Exercise is a treatment for patients with coronary heart disease. Low 

intensity exercise improves endothelial function and is associated with increased 

phosphorylation of endothelial nitric oxide (NO) synthase in coronary artery 

disease patients [320]. Exercise rehabilitation after myocardial infarction helps 

reduce cardiovascular mortality, sudden death and fatal or nonfatal re-infarction 

[321]. Clinical meta-analysis suggests cardiovascular death was lower in 

exercise rehabilitation patients [322]. A large population study shows old (~63 y) 

CAD patients had lower risk of all-cause mortality after 5 years light or moderate-

intensity activity compared to the sedentary control group [323]. Another study 

examining exercise training effects on old or young CAD patients indicates that 

12 weeks moderate-intensity exercise improved both groups’ plasma lipid level, 

indices of obesity and exercise capacity [324]. 

 

Exercise treatment in heart failure 

Exercise is also helpful to treat patients with heart failure. Exercise used to 

be restricted in HF patients due to the fear of sudden cardiac death during 

exercise. Until the past few decades, numerous studies have revealed exercise 

testing and training are safe for heart failure patients [325]. Exercise is beneficial 

for heart failure in several ways. First, exercise helps increase peak oxygen 

uptake between 12% and 31% [326]. Second, exercise improves cardiac output 

[327], increases skeletal muscle mitochondrial size and density [328], and 

attenuates endothelial dysfunction [329]. Third, exercise increases NO synthase 

activity and expression and prevents endothelial dysfunction [329]. Recent 
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research indicates that long term moderate-intensity exercise training improves 

chronic HF patients’ quality of life and longevity [330]. Notably, Wisløff et al. 

compared the cardiovascular effects of continuous and interval exercise training 

in heart failure patients [331]. After 12 weeks of training, 3 times per week, 

interval exercise trained subjects had greater aerobic capacity that was 

associated with attenuation of LV remodeling compared to continuous exercise 

trained subjects. Moreover, LV end-diastolic and end-systolic volumes decreased 

with interval 

Training, which was associated with preservation of LV ejection fraction and 

reduced of pro-brain natriuretic peptide. This study suggests interval exercise 

training may have greater beneficial effects compared to continuous exercise 

training in patients with HF. 

 

Mechanisms of exercise effects on arterial stiffness in physiological 

settings 

Low intensity chronic exercise reduces blood pressure and increases 

survivability in HF rats induced by hypertension [332]. In addition, moderate-

intensity exercise reduces myocardial stiffness with reduced cross-linking of 

collagen in older rats [333]. Other animal studies showed that exercise 

interventions reduce carotid artery stiffness [334], attenuate myocardial oxygen 

balance and diastolic function in swine [335] and improve survival rats with HF 

[336]. The underlying mechanisms of exercise on physiological adaption has 

been, in part, related to reducing oxidative stress. Moreover, an animal study 
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showed that exercise increased mouse circulating endothelial progenitor cells 

and reduced endothelial progenitor cell apoptosis dependent on NO synthesis 

[337]. Another animal research showed 8 weeks moderate treadmill walking 

increased anti-oxidant enzyme activity and prevented lipid oxidation in multiple 

organs [338].  

Exercise has also been shown to prevent inflammatory responses in CVD-

related conditions. Exercise had protective effects in the development of 

atherosclerosis or regression of atherosclerotic lesions [339]. Another study 

indicated that hypertensive women had improvements in immune function, 

reduction of IL-1α, TNF-α and elevation of athero-protective cytokines IL-4 and 

IL-10 after 6 months moderate exercise [19].   

This emerging evidence indicates that exercise is beneficial for apparently 

healthy and patient populations. However, no direct evidence demonstrates the 

influence of exercise on AGE in HF conditions. An animal study conducted in an 

obesity rat showed that exercise prevented AGE accumulation [340], but the 

mechanisms were not examined. 

 

High intensity exercise  

In addition to the beneficial effects of exercise, there are potential risks 

such as injury when performing physical activity and exercise. Risk of injury 

increases with greater volume of exercise [341] and intensity [342]. High intensity 

exercise dramatically increased the risk of sudden cardiac death [343, 344] and 

myocardial infarction [345, 346] among individuals with cardiovascular events. 
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Previous research has reported that improvements of peak oxygen uptake, left 

ventricle remodeling, left ventricle function and endothelial function were greater 

with high intensity exercise than moderate intensity exercise [347]. But the 

underlying mechanisms remain unknown.  

 

Summary 

In summary, arterial stiffness is an independent risk factor and predictor of 

cardiovascular events and all-cause mortality. Thus, investigating the 

mechanisms of arterial stiffness to establish effective therapeutic interventions is 

clinically significant. AGE and PVAT related oxidative stress, and inflammation 

are potential risk factors for arterial stiffness. However, the influence of PVAT-

derived AGE on arterial stiffness has not been explored. While numerous studies 

focused on arterial stiffness with hypertension, few have assessed arterial 

stiffness in HF model. Moreover, no evidence is available to reveal the 

mechanisms of AGE accumulation with coronary artery dysfunction in non-

diabetic conditions. Regular moderate-intensity physical activity has been 

determined as a useful strategy to attenuate HF and coronary heart disease. 

However, the mechanisms of exercise on AGE and its related signaling in non-

diabetic model are poorly understood. Therefore, it is of great importance to 

verify the efficacy of chronic exercise effects on coronary artery stiffness with 

heart failure via PVAT-related AGE secretion.  
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CHAPTER Ⅲ 

Method 
 
 

Aortic Banding and Exercise Training Protocols 

The animals in the present study are the same animals used in recently 

published work from our laboratory in the Journal of the American Heart 

Association [334] and the Journal of Applied Physiology [348, 349].  Left 

ventricular hypertrophy/heart failure was induced by aortic banding for a period of 

24 weeks using methods previously published by our laboratory [334, 335, 350-

352].  Moreover, the animal model showed key characteristics of HFpEF with an 

increased end-diastolic P-V slope, increased lung weight, increased LV 

natriuretic peptide levels, and normal resting ejection fraction [334, 348, 349].  

Male Yucatan mininature swine (29-32 kg; 8 months old) were assigned 

into 4 groups (n=7 for all groups): sedentary control (CON), aortic-banded 

sedentary (HF), aortic-banded chronic continuous exercise trained (HF+CONT) 

and aortic-banded chronic interval exercise trained (HF+IT). Aortic bands were 

placed around the ascending aorta (proximal to the brachiocephalic artery), and 

a systolic transstenotic gradient of ~70 mmHg was established (74±2 , 74±2, and 

72±1 mmHg for HF, HF+IT, and HF+CONT, respectively, P= not significant [NS]) 

under anesthesia using phenylephrine (I.V. 1-3 ug/kg/min) to maintain a distal 

peripheral vascular mean aortic pressure (MAP) of approximately 90 mm Hg (90 

± 1, 91 ± 2, and  89 ± 1 for HF, HF+IT and HF+CONT, respectively, P=NS) at a 

heart rate of 100 beats/min (104 ± 5, 99 ± 8, and  106 ± 5 for HF, HF+IT and 

HF+CONT, respectively, P=NS) as previously reported [348, 349, 353]. 
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Transverse aortic constriction (TAC) is the most commonly used approach to 

develop pressure overload induced HF in mice [354]. However, cardiac 

hypertrophy is induced within 48 hours after TAC in mice [355]. This acute 

pathological alteration in the heart induced by pressure overload does not mimic 

the gradual changes of myocardial remodeling. [356]. While the mini-swine 

model of pressure overload-induced HF in this study better represents the human 

HF condition. Moreover, HF mice induced by TAC cannot finish the 17 weeks 

exercise training regimen since the 8 week survival rate is less than 50% [357].  

Animals began chronic exercise training consisting of treadmill running 55 

min/day, 3 days/week, for 17 weeks with gradually increases in intensity using 

the following previously published protocols: continuous exercise 1) a 5 min 

warm up at 1.5 mph; 2) 45 min at 2.5 mph; and 3) a 5 min cool down at 1.5 mph 

[349, 353]; interval exercise 1) a 5-min warm up at 2 mph, 2) six 5-min sessions 

at 3 mph with five 3-min intervals at 4 mph in between, and 3) a 5-min cool down 

at 2 mph [335, 348, 358, 359]. This protocol is based off previous findings in 

young, healthy miniswine that underwent a VO2max test. The VO2max of young 

healthy miniswine is about 60ml/kg/min which is similar to a young, physically fit 

adult male [360]. Due to the aortic banding, the intensity used in the current study 

was set at ~30%-40% of VO2max for the healthy miniswine. These exercise 

training protocols have been used in both healthy and HF miniswine, which has 

shown to preserve left ventricular function and improve coronary micro-circulation 

function [361-364]. A table with summarized animal characteristics is attached for 

reference (Table 3-1). Animals were fed a standard diet averaging 15–20 g/kg 
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once daily, and water was provided ad libitum. All animal protocols were in 

accordance with the “Principles for the Utilization and Care of Vertebrate Animals 

Used in Testing Research and Training” and approved by the University of 

Missouri Animal Care and Use Committee. 
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Table 3- 1. Animal Physiological Characteristics 

 CON HF HF+CONT HF+IT 

BW, kg 46±3 48±2 48±1 49±3 

SBP, mmHg 82±7 103±8* 83±7 82±6 

DBP, mmHg 61±8 80±5 68±4 67±5 

LV SV, ml 66±6 67±4 72±3 74±5 

LV EF, % 64±3 66±3 65±3 65±4 

 

Table 3-1. Animal Physiological Characteristics. Values are Mean±S.E. 

n=7 for each group. CON, sedentary control; HF, aortic-banded heart failure 

sedentary; HF+CONT, aortic-banded heart failure continuous exercise trained; 

HF+IT, aortic-banded heart failure interval exercise trained. BW-body weight; 

SBP-systolic blood pressure; DBP-diastolic BP; LV SV-left ventricular stroke 

volume; LV EF-LV ejection fraction. *vs. all, P<0.05. 
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Mechanical Stiffness Testing 

Arterial stiffness was assessed as previously described [5, 8, 20, 365]. 

The left circumflex (LCX) and right coronary artery (RCA) were cleaned of the 

surrounding adipose tissue and cut into ~1.5mm segments. The coronary arterial 

ring was placed in a preheated 37C Ca2+ and Mg2+ free phosphate buffered 

saline (PBS) solution in Myograph (DMT 620). The artery segment was stretched 

1mm every 3 minutes until mechanical failure. The elastic modulus was 

calculated from the stress-strain curve as previously described [5, 8, 20, 365]. In 

brief, one-dimensional stress (t) was calculated as: t = λL/2HD, and strain (λ) 

defined as: λ = Δd/d(i), where L = one-dimensional load applied, H = wall 

thickness, D = length of vessel, Δd = change in diameter, and d(i) = initial 

diameter. Coronary diameter and wall thickness were assessed in histological 

sections, and length was measured under a dissecting microscope using 

calipers. The elastic modulus was determined as the greatest r2 value from the 

stress-strain curve as described previously [5]. The elastin region, coinciding with 

the elastin elastic modulus (EEM), was determined as the transition point 

between the toe and heel regions of the stress-strain curve, and collagen region, 

coinciding with the collagen elastic modulus (CEM), was the determined greatest 

r2 value prior to mechanical failure (Figure. 3-1) [5].  
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Figure 3- 1. Representative of Stress-Strain curve. 

Figure 3-1. Representative of Stress-Strain curve. True stress is plotted on the y-

axis and true strain on the x-axis. Transition point (εT) is determined between the 

toe and heel regions. The elastin elastic modulus (EEM) is the slope of the four 

points prior to εT and the collagen elastic modulus (CEM) is the slope of the last 

four points before the yield point.  

 

 

 

 

 

 



 

48 
 

Coronary Perivascular Adipose Conditioned Media Experiments   

The conditioned media study was performed as described previously by 

our lab [5, 8, 366]. Briefly, adipose tissue surrounding the coronary artery was 

removed and cultured for 24 hours in Dulbecco's modified Eagle's medium 

(DMEM) containing antibiotics (20mg fat/100μl DMEM) at 37° C and 5% CO2. 

The coronary adipose conditioned media (10% of total volume) was heat 

inactivated by placing in a heat block for 30 minutes at 56° C. Aortas (without the 

surrounding adipose tissue) from young (4-6 month old), wild-type C57BL/6 mice 

(The Jackson Laboratory) were cultured in the coronary conditioned media with 

or without 1 mM AGE inhibitor (aminoguanidine, AMG) for 72 hours at 37° C and 

5% CO2. The conditioned media was changed daily. After treatment, aortic 

stiffness testing was performed. 

 

Immunohistochemistry (IHC)  

IHC was performed by standard procedures as previously described [5, 8]. 

Segments of LCX, RCA and mouse aortas were embedded with optimal cutting 

temperature (O.C.T.) and frozen. Arteries were cross-sectioned (8m) , fixed on 

glass slides with acetone and stained using Dako Envison+ system HRP-DAB kit 

(Agilent). The following primary antibodies were used: collagen (abcam), elastin 

(abcam), AGE (abcam), receptor of AGE (RAGE, abcam), nitrotyrosine (EMD), 

NF-κB p65 (abcam) and scavenger receptor A (SRA, TransGenic) were applied 

on slides separately and incubated at 4C overnight with pre-optimized dilutions 

(Table. 3-1). The secondary HRP conjugated labeled polymer was applied for 30 
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minutes at room temperature followed diaminobenzidine (DAB) application for 

approximately 2 minutes until appropriate darkness achieved. Coronary PVAT 

was fixed in 4% paraformaldehyde, embedded in paraffin, sectioned in 5m 

thickness. Slides were deparaffinized with xylene and proteinase K was used for 

antigen retrieval. Slides were stained with pre-optimized diluted primary 

antibodies (Table. 3-1). Images were acquired using a Nikon 80i microscope 

using a 4x, 10x and 20x objectives for the swine coronary artery, mouse aorta 

and adipose tissue, respectively. Densitometry analysis was performed by 

ImageJ (NIH) on the medial layer of the artery, and the data are presented as 

relative density in arbitrary units (AU).  

Table 3- 2. Immunohistochemistry Primary Antibody Concentration 

 

 

Adipose Morphology 

PVAT surrounding coronary arteries was fixed in 4% paraformaldehyde, 

embedded in paraffin, and cross-sectioned (5μm). After deparaffinized, adipose 
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tissue was stained with hematoxylin and eosin using standard procedures [5, 8, 

367]. Digital images were acquired with a Nikon 80i microscope with 20x 

objective lens in an uncompressed tiff format. Adipocyte area (μm2) and diameter 

(μm) were averaged from at least 100 cells from 3 tissue sections for each 

sample using ImageJ (NIH). The data for each sample was averaged, and used 

to calculate the mean for each group. 

 

Enzyme-linked Immunosorbent Assay (ELISA)   

Peri-coronary adipose tissue was removed and cultured in serum-free 

DMEM for 24 h at 37°C and 5% CO2 at a concentration of 20mg fat/100μl. AGE 

concentration in swine coronary perivascular adipose conditioned media was 

assessed by ELISA kit per the manufacturer's protocol (Cell Biolabs).  

 

Cytokine Array 

Cytokines in the peri-coronary adipose conditioned media were assessed 

by Porcine Cytokine Antibody Array Kit (Abcam, ab197479).  Ten cytokines 

targets (IL-1β, IL-4, IL-6, IL-8, IL-10, IL-12, GM-CSF, IFNγ, TGFβ1, TNFα) were 

assessed. However, only IL-6 and IL-8 were detectable. Measurement was 

performed per product’s manual. Array fluorescence signals were scanned by a 

laser scanner equipped with Cy3 wavelength (Typhoon 9500, GE, USA). Dots 

densitometry were analyzed by ImageJ (NIH). The quantitative of cytokines were 

calculated based on standard curves. 
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Statistical Analysis 

All data analyses were performed with Graphpad Prism 7.0. Group mean 

comparisons for coronary stiffness, IHC analyses, the AGE ELISA and cytokines 

array were analyzed by one-way ANOVA. Coronary PVAT culture studies were 

analyzed by two-way ANOVA. Fisher’s LSD post-hoc analyses were performed 

when appropriate. All data were presented as Mean±S.E. Statistical significance 

was reported as P<0.05.  
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Chapter Ⅳ 

Result 
 

LV Remodeling and Function 

A thorough investigation of myocardial remodeling and LV function was 

provided for the same animals used in the current study in recently published 

work from our laboratory in the Journal of Applied Physiology [334, 348, 349].  In 

brief summary, these studies demonstrated the therapeutic efficacy of chronic 

exercise training on coronary vascular, isolated cardiomyocyte, and cognitive 

function in a translational pressure-overload model of heart failure with potential 

relevance to human HF.  Aortic banding caused symptoms of heart failure in the 

HF group including increased lung weight and left ventricular natriuretic peptide 

levels, global concentric hypertrophic remodeling at the gross and cellular level, 

and diastolic dysfunction (increased slope of the end diastolic pressure-volume 

relationship).  Echocardiography and pressure-volume analysis indicated ejection 

fraction, fractional shortening, and stroke volume at rest were normal in HF 

compared with CON animals.  Chronic exercise training had a positive impact at 

both the organ and molecular level in a number of different functional systems 

including isolated cardiomyocyte calcium handling and contractile function, large 

conductance Ca2+-activated K+ (BKCa) channel-mediated coronary vascular 

function, and peripheral arterial stiffness and cognition, and we refer the reader 

to these published studies for specifics [334, 348, 349]. 
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Exercise Prevents Coronary Artery Stiffness, ECM Remodeling, Oxidative 

stress and Inflammation 

Compared to CON, the combined EEM of the LCX and RCA was lower in 

HF group (284±28 vs. 444±38 kPa, P<0.05; Figure 4-1A), which was associated 

with reduced medial elastin protein content (P<0.05; Figure 4-1B). No differences 

were observed between the CON and HF groups for either the CEM (9324±1319 

vs. 10563±1272 kPa, P>0.05; Figure 4-1C) or collagen content (P>0.05; Figure 

4-1D). The 16-week HF+CONT and HF+IT exercise training regimens prevented 

the decrease in coronary EEM (474±38 and 511±56 kPa, respectively, P<0.05; 

Figure 4-1A) and elastin content (P<0.05; Figure 1B), without influencing CEM or 

collagen content (P>0.05; Figure 1C, 1D). 
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Figure 4- 1. Coronary artery stiffness and arterial elastin and collagen 
content 

A.                                                                   B. 

 

 

 

 

 

 

C.                                                        D. 
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Figure 4-1. Coronary artery stiffness and arterial elastin and collagen content. 

Reduced elastin elastic modulus (EEM) (A) and elastin content (B) in HF swine 

coronary was prevented by exercise training. Collagen elastic modulus (CEM) 

(C) and collagen deposition (D) were not different between groups. (Data are 

Mean  S.E., * vs. all, P<0.05). Representative immunohistochemistry images of 

coronary artery showing medial elastin and collagen. Abbreviation: control 

(CON), heart failure (HF), HF continuous exercise trained (HF+CONT), HF 

interval exercise trained (HF+IT). 
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Increased coronary stiffness with HF was associated with greater arterial 

AGE abundance, and increased nitrotyrosine, NF-κB p65 and SRA relative to 

CON (P<0.05; Figure 4-2A, 4-2C-E). Arterial RAGE was lower in HF group 

compared to CON group (P<0.05; Figure 2B). Both HF+CONT and HF+IT 

prevented the increase of AGE, nitrotyrosine, NF-κB p65 and SRA (P<0.05; 

Figure 4-2A, 4-2C-E), and the decrease in RAGE (Figure 4-2B; P<0.05). These 

findings demonstrate that a chronic continuous or interval exercise training 

regimen prevents coronary artery stiffness and vascular wall ECM remodeling in 

a pre-clinical mini-swine model of pressure overload-induced HF. 
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Figure 4- 2. Immunohistochemistry analysis of AGE, RAGE, oxidative 
stress and inflammation level in coronary artery 

A.  
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C.  
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E. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-2. Immunohistochemistry analysis of AGE, RAGE, oxidative stress and 

inflammation level in coronary artery. Greater AGE (A), nitrotyrosine (C), NF-κB 

p65 (D) and scavenger receptor A (SRA) (E) in HF compared with CON, which 

was attenuated by continuous and interval exercise training. (B) Receptor of 

AGE (RAGE) was lower in HF compared to control, HF+CONT and HF+IT. (Data 

are Mean  S.E., * vs. all, P<0.05. The nitrotyrosine abundance in HF+IT showed 

decreased trending compared to HF, P+0.06). Representative 

immunohistochemistry images of coronary artery showing AGE, RAGE 

nitrotyrosine, NF-κB p65 and SRA alterations. Abbreviation: control (CON), heart 
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failure (HF), HF continuous exercise trained (HF+CONT), HF interval exercise 

trained (HF+IT). 
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PVAT-related AGE Secretion, Arterial Stiffening and ECM Remodeling are 

Prevented by Exercise Training 

Compared with CON, HF had greater PVAT AGE abundance (P<0.05; 

Figure 4-3A) and concentrations of AGE in PVAT-conditioned media (1.404±0.44 

vs. 0.39±0.07μg/mL, P<0.05; Figure. 4-3B). To determine the influence of PVAT-

derived AGE on arterial stiffness, mouse aortas were cultured with the 

conditioned media and stiffness testing was performed. The EEM was reduced 

after exposure to HF compared with CON PVAT-conditioned media (368±20 vs. 

582±29 kPa, P<0.05; Figure 4-3C). Both HF+CONT and HF+IT exercise 

attenuated or prevented the HF-related AGE accumulation in PVAT (P<0.05; 

figure 4-3A), AGE secretion from PVAT (0.27±0.06 and 0.23±0.04 μg/mL, 

respectively, P<0.05; Figure. 4-3B) and the PVAT-induced reduction in EEM 

(542±58 and 518±22 kPa, respectively, P<0.05; Figure 4-3C). The AGE inhibitor, 

AMG, prevented the PVAT-related reduction in EEM with HF (643±35 kPa, 

P<0.05; Figure 4-3C). AMG also increased the EEM in HF+CONT aortic 

segments (772±101 kPa, P<0.05; Figure 4-3C).  
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Figure 4- 3. AGE secretion from peri-coronary adipose tissue and PVAT 
derived AGE effects on aortic stiffness 
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C. 

 

 

 

 

 

 

 

Figure 4-3. AGE secretion from peri-coronary adipose tissue and PVAT derived 

AGE effects on aortic stiffness. Greater peri-coronary adipose tissue AGE (A) 

accumulation in HF compared with CON, HF+CONT and HF+IT. (B) AGE 

concentration in HF swine coronary PVAT conditioned media was higher 

compared to control and exercise training groups. (C) Exposure to HF swine 

coronary conditioned media increased mouse aortic stiffness and AGE inhibitor, 

AMG prevented the increased aortic stiffness. (Data are Mean  S.E., * vs. all, 

P<0.05; $ vs. same group -AMG, P<0.05.) Abbreviation: control (CON), heart 

failure (HF), HF continuous exercise trained (HF+CONT), HF interval exercise 

trained (HF+IT), aminoguanidine(AMG). 
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Effects of peri-coronary adipose conditioned media on aortic 

extracellular matrix, oxidative stress and inflammatory. 

To determine if coronary PVAT-derived AGE contributes to reductions in 

arterial elastin and AGE accumulation, mouse aortas treated with PVAT 

conditioned media were analyzed. Elastin content was decreased (P<0.05; 

Figure 4-4A) and AGE was increased (P<0.05; Figure 4-4B) after culture in HF-

conditioned media. HF+CONT and HF+IT exercise training regimens preserved 

elastin content and prevented AGE accumulation in arteries cultured in HF 

PVAT-conditioned media (Figure 4-4A, 4-4B; P<0.05). AMG prevented the HF-

induced reductions in arterial elastin (P<0.05; Figure 4-4A) and vascular AGE 

accumulation (P<0.05; Figure 4-4B). Arterial segments treated with AMG had 

lower nitrotyrosine and NF-κB p65 subunit expressions compared with segments 

not treated (P<0.05, main effect of drug; Figure 4-4C, D). Collectively, these data 

indicate AGE associated with PVAT promotes arterial stiffness via reductions in 

elastin functionality and content, which is prevented by exercise training of two 

different intensities. 
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Figure 4- 4. Influence of coronary adipose conditioned media on aortic 
extracellular matrix proteins 
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Figure 4-4. Influence of coronary adipose conditioned media on aortic 

extracellular matrix proteins, oxidative stress and inflammation. The HF coronary 

adipose conditioned media decreased mouse aorta elastin content (A) and 

increased AGE (B) compared to other groups while AMG prevented AGE 

accumulation. (Data are MeanS.E., * vs. all, P<0.05; $ vs. same group -AMG, 

P<0.05). Nitrotyrosine (C) and NF-κB p65 (D) were unchanged after cultured in 

coronary adipose conditioned media, but the AGE inhibitor AMG decreased 

nitrotyrosine and NF-κB p65 level. (Data are MeanS.E., * vs. all, P<0.05; $ vs. 

same group -AMG, P<0.05, two-way ANOVA-Interaction effects). Representative 

immunohistochemistry images of mouse aorta showing medial elastin, AGE 

alterations, nitrotyrosine and NF-κB p65 level. Abbreviation: control (CON), heart 

failure (HF), HF continuous exercise trained (HF+CONT), HF interval exercise 

trained (HF+IT), aminoguanidine(AMG). 
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Exercise Prevents Coronary PVAT Oxidative Stress, Inflammation and 

Cytokines 

Coronary PVAT nitrotyrosine and NF-κB p65 subunit were increased in 

the HF compared with CON (P<0.05; Figure 4-5A, 5B). No differences were 

observed for coronary PVAT SRA (P>0.05,Figure 4-5C) or RAGE (P>0.05, 

Figure 4-5D) between the CON and HF groups. Both exercise regimens 

prevented the increase in nitrotyrosine (P<0.05; Figure 4-5A). Further, HF+CONT 

prevented NF-κB p65 subunit expression (P<0.05; Figure 4-5B) while reductions 

with HF+IT approached significance (P=0.06; Figure 4-5B). Peri-coronary 

adipose secreted more Interleukin-6 (IL-6) and IL-8 in HF conditioned media 

compared to CON (265.88±30.85 vs. 146.02±30.68 pg/mL; 720.93±212.26 vs. 

297.08±25.60 pg/mL, respectively, P<0.05; Figure 4-5E, F). In addition, both 

continuous and interval exercise training prevented IL-6 (167.74±31.97 and 

180.44±24.11 pg/mL, respectively; P<0.05; Figure 4-5E)  and IL-8 (347.02±59.15 

and 296.95±24.10 pg/mL, respectively; P<0.05; Figure 4-5F) secretions in 
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conditioned media. Other cytokines are not detectable. PVAT cell area or 

diameter were not influenced by HF or exercise training (Table 4-1).  
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Figure 4- 5. Immunohistochemistry analysis of oxidative stress and 
inflammation in peri-coronary adipose tissue and cytokines 
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Figure 4-5. Immunohistochemistry analysis of oxidative stress and 

inflammation in peri-coronary adipose tissue. Greater nitrotyrosine (A) and NF-κB 

p65 (B) in HF was attenuated by exercise training. RAGE (C) and SRA (D) level 

were unchanged in all groups. Excessive Interleukin-6 (IL-6) (E) and IL-8 (F) 
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secretion in HF conditioned media were prevented by HF+CONT and HF+IT. 

(Data are Mean±S.E., * vs. all, P<0.05; $ vs. same group -AMG, P<0.05). (Data 

are MeanS.E., * vs. all, P<0.05). Representative immunohistochemistry images 

of coronary artery showing peri-coronary adipose tissue nitrotyrosine, NF-κB p65, 

SRA and RAGE alterations. Abbreviation: control (CON), heart failure (HF), HF 

continuous exercise trained (HF+CONT), HF interval exercise trained (HF+IT). 

 

Table 4- 1. Peri-coronary Adipose Morphology 
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Chapter Ⅴ 

Discussion 
 

 In this study, we examined the efficacy of, and identified a mechanism by 

which, a 16-week continuous or interval exercise training regimen prevents 

coronary artery stiffness in a clinically relevant, pressure overload model of HF. 

The primary findings from this study include: 1) both continuous and interval 

exercise training prevent coronary artery stiffness, which is associated with 

preservation of arterial elastin content, and prevention of arterial AGE 

accumulation; 2) PVAT-related AGE secretion promotes arterial stiffness, which 

was prevented by both exercise interventions; and 3) PVAT is a source of AGE 

secretion contributing to decrements in arterial elastin and AGE accumulation. 

These findings provide preliminary evidence for the efficacy for two unique 

exercise regimens to prevent coronary vascular stiffening with HF, and identify 

PVAT-derived AGE secretion as a novel target to prevent arterial stiffening.  

 

Exercise Training Prevents Coronary Stiffening 

A thorough investigation of cardiac function and coronary micro-circulation 

in the animal model used in current study was demonstrated and published in 

Journal of American Heart Association and Journal of Applied Physiology by our 

team [334, 348, 349]. Briefly, both continuous and interval exercise training 

attenuated HF with decreased lung weight and LV brain natriuretic peptide 

mRNA level. Moreover, both exercise training interventions improved coronary 

blood flow and vasodilatory response [334, 348, 349]. 



 

76 
 

A primary finding of the present study is that both chronic continuous and 

interval exercise training prevents coronary artery stiffness associated with 

pressure overload-induced HF. To our knowledge this is the first study 

demonstrating an effect of exercise to prevent coronary artery stiffness and the 

associated ECM remodeling. These findings complement recently published 

work from our group in these same animals that demonstrated chronic exercise 

training also preserved coronary microvascular vasodilatory function via a BKCa 

channel-mediated mechanism [348] and prevented stiffening of the carotid artery 

[334], suggesting exercise can prevent pathological adaptations not only to the 

peripheral vasculature but also to the coronaries all along the vascular tree (i.e. 

both macro- and microvessels) in the presence of chronic pressure overload. 

Aerobic exercise training has been shown to reduce both central (aortic) and 

peripheral conduit artery stiffness in older and diseased adults [368-370], which 

are supported by animal models providing insight to the structural changes by 

which exercise attenuates arterial stiffening [16-18]. Moreover, 12 months Tai Chi 

prevents AGE accumulation in healthy subjects [371] and 12 weeks moderate-

intensity exercise training prevents AGE accumulation in healthy women [372]. 

Similar to these prior studies, our findings demonstrate an effect of exercise to 

preserve elastin content, and prevent AGE accumulation [17, 18, 340, 373]. 

Notably, we extend these findings to demonstrate similar effects for both chronic 

continuous and interval exercise to prevent coronary stiffness and ECM 

remodeling. Our findings are supported by previous investigations demonstrating 

that continuous and interval exercise training prevent arterial stiffness in healthy 
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and hypertensive subjects [12, 374]. Due to a lack of effective treatment 

strategies for HF patients [3], our findings lend support for exercise training to 

lower coronary artery stiffness, which in combination with previous observations 

of improved coronary vascular conductance in these same animals [348] implies 

an overall effect of exercise to prevent increases in vascular resistance 

throughout the coronary arterial tree. Importantly, these data also show the 

efficacy of chronic exercise training as a therapeutic option for treating coronary 

vascular dysfunction in a setting of pressure overload-induced heart failure, using 

an intensity tolerable to HF patients.  

 

Prevention of Coronary Artery Stiffness due to Preservation of ECM  

The ECM proteins elastin and collagen are primarily responsible for 

contributing to mechanical stiffness of arteries [83]. Our data indicate HF 

promotes coronary artery stiffness by reducing arterial elastin content, without 

influencing collagen. Prior studies demonstrate other pathological conditions, 

such as obesity and hyperlipidemia, as well as the elastin deficient mouse 

promote arterial stiffness by reducing elastin content and/or function [8, 365, 

375]. As such, the elastin elastic modulus was decreased with HF suggesting 

that in addition to lower elastin content, elastin function is also diminished. This is 

the first time to our knowledge it has been shown chronic continuous and interval 

exercise training programs of an intensity tolerable to HF patients prevents 

decrements in elastin content and function in the coronary vasculature of a pre-

clinical model of pressure overload-induced HF. Previous investigations in rats 
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have indicated the potential for this effect in the aorta following exercise training, 

although these protocols used a higher training intensity and frequency 

compared to the current study [17, 18]. 

Coronary artery stiffness mediated by AGE 

In addition to changes in the ECM, we observed greater AGE 

accumulation in the coronary artery of HF animals. Chronically increased plasma 

glucose concentrations is a well-recognized factor contributing to AGE formation. 

It is interesting to note the increase in coronary vascular AGE levels in the 

current study was observed in an experimental setting absent metabolic 

comorbidities. This finding recapitulates recently published observations from our 

laboratory in the same swine model, which we previously attributed to increased 

oxidative stress related to chronic pressure overload [5]. AGE cross-links 

proteins within the arterial wall, which includes elastin and collagen, to promote 

arterial stiffness [123, 376]. Further, exogenous AGE administered to rodents has 

shown to promote elastin disruption and fragmentation that is associated with 

arterial stiffness [129]. Thus, the increased coronary AGE may contribute to the 

reductions in elastin content and impaired functionality observed with HF. Elastin 

content and function were preserved with both continuous and interval exercise 

programs in this study, consistent with prior work related to aortic stiffness in 

aged Fisher 344 rats exercised daily at relatively low intensity [373, 377]. 

Collectively, these data indicate exercise training prevents coronary AGE 

accumulation thereby preserving elastin content and function in a translational 

swine model of heart failure. 
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An important downstream effect of AGE is to signal via RAGE that, in turn, 

contributes to arterial oxidative stress and inflammation. As such, we observed 

an increase in nitrotyrosine abundance, and NF-κB p65 and SRA protein in the 

coronary arteries of HF swine. Oxidative stress and inflammation are important 

signaling mechanisms contributing to aortic stiffness both in animal models of 

aging and disease [20, 365] as well as in older adults [370, 378]. More 

specifically, oxidative stress activates a pro-inflammation response via the NF-κB 

signaling pathway [171, 177] which in turn influences the ECM leading to arterial 

stiffness [379]. Our data suggests AGE accumulation with HF increases 

nitrotyrosine, NF-κB and SRA reducing elastin content and function leading to 

arterial stiffness. In support of the beneficial therapeutic effects of exercise, both 

chronic continuous and interval training prevented pressure overload-induced 

increases in nitrotyrosine, NF-κB and SRA in the coronary arteries, suggesting 

the prevention of AGE accumulation by exercise also precludes the arterial 

oxidative stress and inflammatory response induced by HF.  

 

Coronary PVAT and Arterial Stiffness 

PVAT promotes age- and disease-related arterial stiffening and coronary 

PVAT has been shown to predict cardiac mortality, yet the identification of factors 

secreted from this fat depot still need to be elucidated [10, 380]. Consistent with 

our previous findings, perivascular AGE accumulation was increased in PVAT 

from HF animals [5, 20]. We also demonstrate PVAT from HF swine secretes 

increased AGE that promotes impaired elastin function in vitro in isolated aortas 
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from healthy mice similar to what was observed with the coronary artery. To our 

knowledge, this is the first evidence to demonstrate AGE secretion from coronary 

PVAT in a pre-clinical swine model of pressure overload-induced heart failure, 

revealing a novel source of AGE production. Notably, the current study extends 

our previous observations by demonstrating the mechanistic involvement of 

PVAT-derived AGE in the reduced arterial elastin content and increased AGE 

accumulation in the mouse aorta experiments, providing evidence for this fat 

depot to promote ECM remodeling consistent with what was observed in the 

coronary artery of HF animals. Continuous and interval exercise prevented PVAT 

AGE expression and secretion, as well as the impairments to mouse aortas 

exposed to PVAT-conditioned media from HF animals under our in vitro 

experimental conditions including decreased elastin content, function, and 

increased AGE accumulation. Use of the AGE inhibitor AMG also prevented the 

detrimental impact of PVAT-conditioned media from the HF group on mouse 

aortic stiffness and ECM remodeling, suggesting a mechanistic flux point by 

which chronic exercise training exerts its protective effect on pressure overload-

induced coronary arterial stiffness is by reducing PVAT-related AGE secretion 

and associated inflammation. These findings imply further interrogation of AGE 

inhibition is warranted regarding its potential as a useful therapeutic strategy to 

combat coronary arterial stiffness and dysfunction in heart failure. 

 

Exercise Training Effects Comparable to AGE Inhibitor 
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While AMG severed as prevention of AGE formation, it will probably not 

be effective in patients with a long history of disease that already resulted in 

extensive tissue AGE accumulation. Combined with previous findings that AMG 

has been shown to prevent age-related arterial stiffness and cardiac hypertrophy 

in the absence of changes in collagen and elastin content [381]. This may 

suggest that the effect of AMG is related to a decrease in the AGE-induced 

cross-linking of the extracellular matrix. Our PVAT study indicates that AMG 

cannot preserve elastin content in CON, HF+CONT and HF+IT groups compared 

to no AMG groups which is similar to previous finding. It would be logical to 

predict that the chronic continuous and interval exercise training prevent the 

arterial stiffness through inhibition of AGE cross-linking ECM. We may conclude 

that arteria collagen is not formed cross-linking with AGE.  

 

Effects of Oxidative Stress and Inflammation on Coronary Artery Stiffness 

In the present study, we observed increased coronary PVAT nitrotyrosine 

and NF-κB in the HF group which is consistent with the hypothesis that AGE 

formed in adipose tissue are a result of increased oxidative stress and 

inflammation [7, 127, 382, 383]. Moreover, the cytokine array results indicated 

that HF promoted coronary PVAT IL-6 and IL-8 secretions. The increased IL-6 

level in conditioned media was similar to our previous findings that in pathological 

conditions PVAT secreted excessive IL-6 which plays a key role in regulation of 

arterial stiffness [6]. Oxidative stress has been shown as a regulator of IL-8 

expression [51] and oxidized lipid induces greater IL-8 accumulation [52]. Thus, 
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the PVAT with nitrotyrosine abundance could be a source of IL-8 expression. 

Further NF-kappa B and IL-6 family has been shown to interact with 

transcriptional activation of the IL-8 gene [53]. It would be reasonable to conclude 

that increased oxidative stress and NF-κB in PVAT promoted the cytokines 

secretion which finally result in arterial stiffness. Exercise training prevented the 

HF-related increase in PVAT nitrotyrosine abundance, NF-κB p65 subunit 

expression and cytokines secretions, suggesting these processes may indeed 

promote AGE production in PVAT. It is noteworthy, however, that PVAT-

conditioned media from the HF group did not promote arterial oxidative stress 

and inflammation in the mouse aorta, yet inhibition of AGE did lower normal 

levels of these endpoints on a global fashion across all experimental groups 

suggesting other factors such as IL-6 and IL-8 may promote vascular oxidative 

stress and inflammation. However additional research is needed to verify the 

effects of IL-6 and IL-8 on vascular oxidative stress and inflammation.  

In addition, AGE mediated cellular signaling via oxidative stress and 

inflammation is another factor to contribute arterial stiffness. In the present study 

we observe that increased oxidative stress and inflammation in coronary and 

PVAT which is similar to our previous data in the same animal model [5]. 

Considering that AGE formation in adipose tissue are a result of increased 

oxidative stress and inflammation [5, 51-53]. It would be logical to predict that the 

interaction between AGE and oxidative stress and inflammation are, at least, 

partial key features to promote coronary artery stiffness in HF. We observed that 

both chronic continuous and interval exercise prevent the oxidative stress and 
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inflammation in coronary artery and PVAT which may explain that exercise 

prevent AGE accumulation through inhibition of oxidative stress and 

inflammation.  

 

Limitations and Future Directions 

There are several limitations of the current study. 1) As mentioned above, 

arterial stiffness could be influenced by total elastin and collagen content. AGE 

formed cross-linking could also contribute to stiffening arteries. It is noteworthy to 

discriminate that how the elastin, collagen and cross-link affect the stiffness; 2) in 

the current study we investigated AGE accumulation in coronary arteries and 

PVAT as well as AGE secretion from PVAT. Further we added AGE inhibitor into 

PVAT conditioned media and found that with AGE inhibition the stiffness was 

prevented. With these results we conclude that PVAT secreted AGE is a key 

factor in arterial stiffness. However, it is unknown if we will observe the similar 

results when culturing the healthy artery and fat depot directly with AGE. It is 

noteworthy to run these experiments to elucidate whether HF has the similar 

effects as AGE influences on coronary artery stiffness. In addition, we discussed 

the association between oxidative stress and AGE formation. But we still need 

further investigation to determine the PVAT secreted AGE is formed from 

oxidized lipids; 3) this study has 4 groups: CON, HF, HF+CONT and HF+IT. Due 

to the funding and experiment limitations, CON+CONT and CON+IT are not 

included. Though we do not observe any differences between HF+CONT and 
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HF+IT, whether there is any differences or changes between CON, CON+CONT 

and CON+IT is unclear;  

and 4) women have lower risk rate of cardiovascular diseases at all ages 

compared to men, however the low estrogen level due to post-menopausal will 

dramatically increase the risk of CV events [384, 385]. It is noteworthy to 

consider the sex difference influences on coronary artery stiffness with heart 

failure. Thus, the future study design is focused on aortic-banding and 

ovariectomy effects on female mini-swine to mimic the HF- and aging-related 

women. Previous findings indicated that 8 weeks exercise preserved endothelial 

function and nitric oxide to reduce arterial calcification in ovariectomized rats 

[386]. This provides support that exercise potentially is a therapeutic strategy for 

after menopause women in cardiovascular diseases.  

 

Perspectives 

The prevalence of HF is expected to increase 46% by 2030 and given the 

lack of effective therapies, our findings suggest that chronic continuous and 

interval exercise training could be a therapeutic strategy for reducing arterial 

stiffness in HF patients [3, 387]. Recently we reported chronic exercise training 

preserved coronary microvascular vasodilatory function [348] and prevented 

carotid artery stiffness [334] in this swine model of pressure overload-induced 

heart failure. Our current data extend these findings demonstrating the efficacy of 

chronic continuous and interval exercise to prevent conduit coronary artery 

stiffness. The therapeutic benefits of both modes of chronic exercise were 



 

85 
 

through the preservation of elastin function in the coronary artery, which was due 

to reduced PVAT-derived AGE. Thus, our study provides support for chronic 

continuous and interval exercise training as a therapeutic option for HF patients 

at an intensity that is tolerable for this population.  

In summary, we provide novel evidence for chronic continuous and 

interval exercise to preserve normal coronary arterial stiffness associated with 

ECM remodeling in a pre-clinical mini-swine model of pressure overload-induced 

HF. We elucidate that PVAT derived AGE plays a key role in coronary artery 

stiffness associated with vascular wall remodeling, oxidative stress and 

inflammation, which is prevented by chronic continuous and interval exercise. 

Previous findings (Table 5-1) are summarized to demonstrate that continuous 

and interval exercise training improves cardiac and coronary artery function and 

prevents carotid artery stiffness [334, 348, 349].The primary findings (Table 5-2) 

and proposed mechanisms (Figure 5-1) are summarized demonstrating the 

effects of chronic low intensity continuous and interval exercise training to 

prevent coronary artery stiffness with HF via inhibition of PVAT derived AGE. 

Collectively, our data lend support that the therapeutic potential of exercise 

intervention to prevent coronary artery stiffness with tolerable intensity to HF 

patients, and suggest the beneficial effects via PVAT AGE inhibition. 
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Table 5- 1. Continuous and interval exercise training improves cardiac and 
coronary artery functions and prevents carotid artery stiffness in HF 
miniswine induced by aortic-banding 

 CON HF HF+CONT HF+IT 

LV BNP mRNA Normal Increased Attenuated Attenuated 

LV fibrosis area and density Normal Increased Attenuated Attenuated 

LV collagen area Normal Increased Attenuated Attenuated 

Carotid Artery PEM Normal Increased Attenuated Attenuated 

Carotid Stiffness Index Normal Increased Attenuated Attenuated 

CBF Normal Decreased Preserved Preserved 

CVC Normal Decreased Preserved Preserved 

 

Table 5-1. CON, sedentary control; HF, aortic-banded heart failure 

sedentary; HF+CONT, aortic-banded heart failure continuous exercise trained; 

HF+IT, aortic-banded heart failure interval exercise trained; LV BNP-left 

ventricular brain natriuretic peptide; PEM-Peterson elastic modulus; CBF-

coronary blood flow; CVC-coronary vascular conductance. 
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Table 5- 2. Continuous and interval exercise training prevents coronary 
artery stiffness with the reduction of PVAT derived AGE 

 CON HF HF+CONT HF+IT 

Coronary EEM, kPa 284±28 444±38* 474±38 511±56 
Coronary CEM 9324±1319 10563±1272 10958±1582 10684±1623 

Coronary Elastin‡  1 0.67 1.057 0.97 
Coronary Collagen‡  1 0.9 1.008 0.95 

Coronary AGE‡ 1 1.66 1.173 1.17 
Coronary 

Nitrotyrosine‡  
1 1.31 1.03 1.09 

Coronary NFkB‡  1 1.33 0.98 1.03 
Coronary PVAT AGE‡  1 1.70 1.29 1.32 
PVAT secreted AGE, 

μg/mL 
0.39±0.07 1.404±0.44* 0.27±0.06 0.23±0.04 

 
Table 5-2. CON, sedentary control; HF, aortic-banded heart failure 

sedentary; HF+CONT, aortic-banded heart failure continuous exercise trained; 

HF+IT, aortic-banded heart failure interval exercise trained; EEM-elastin elastic 

modulus; CEM-collagen elastic modulus; PVAT-perivascular adipose tissue; 

AGE-advanced glycation end products. ‡-fold change relative to CON. *vs. all, 

P<0.05. 
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Figure 5- 1. Proposed mechanisms by which HF and exercise training 
influence coronary artery stiffness 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-1. CONT-continuous exercise training; IT-interval exercise 

training; PVAT-perivascular adipose tissue; AGE-advanced glycation end 

products. 
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