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ABSTRACT OF THESIS 
 

 
 

A GIS MODEL FOR APIARY SITE SELECTION BASED ON PROXIMITY TO NECTAR SOURCES 
UTILIZED IN VARIETAL HONEY PRODUCTION ON FORMER MINE SITES IN APPALACHIA 

 
 
Beekeepers in Appalachia market varietal honeys derived from particular species of 
deciduous trees; however, finding places in a mountainous landscape to locate new beeyards 
is difficult.  Site selection is hindered by the high up-front costs of negotiating access to 
remote areas with limited knowledge of the available forage.  Remotely sensed data and 
species distribution modeling (SDM) of trees important to beekeepers could aid in locating 
apiary sites at the landscape scale.  The objectives of this study are i) using publicly available 
forest inventory data, to model the spatial distribution of three native tree species that are 
important to honey producers in eastern Kentucky: American Basswood, Sourwood and 
Tulip Poplar, and to assess the accuracy of the models, ii) to incorporate a method for 
discounting the value of a nectar resource as a function of distance based on an energetic 
model of honeybee foraging, and iii) to provide an example by ranking potential apiary 
locations around the perimeter of a mine site in the study area based on their proximity to 
probable species habitat using a GIS model. 
Logistic regression models were trained using presence-absence records from 1,059 USFS 
Forest Inventory and Analysis (FIA) sub-plots distributed throughout a 9,000 km2 portion of 
the Kentucky River watershed. The models were evaluated by applying them to a separate 
dataset, 950 forest inventory sub-plots distributed over a 40.5 km2 research forest maintained 
by the University of Kentucky. Weights derived from an energic model of honeybee foraging 
were then applied to the probabilities of tree species occurrence predicted by the SDM.  As 
an example, 24 potential apiary locations around the perimeter of a reclaimed mine site were 
selected and then ranked according to a site suitability index.  Three tributary areas 
corresponding to different honeybee flight ranges were considered: 500m, 700m, and 
1,200m.  Results confirm that rankings are dependent on the foraging range considered, 
suggesting that the number of colonies at an apiary location would be an important factor to 
consider when choosing a site. However, the methodology makes assumptions that are only 
anecdotally supported, notably i) that colonies will forage preferentially at the target species 
when it is in bloom and, ii) that foragers will exhaust resources closest to the hive first, 
regardless of patch size. Additional study of how bees deplete the nectar resources 
surrounding an apiary is needed to verify the usefulness of SDM in site selection for varietal 
honey production.  
  
KEYWORDS: precision apiculture, apiary site selection, habitat suitability modeling, species 
distribution modeling, Tilia americana, Apis melifera, forest inventory analysis. 
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 CHAPTER ONE: INTRODUCTION  

 

The locations of apiaries (yards where beehives are kept) are critically linked to the 

success of any beekeeping operation.  Among smaller scale beekeepers, it is considered 

axiomatic that setting will largely determine a hive’s productivity (Sponsler & Johnson, 

2015).  However, little is known about the site-selection process employed by smaller scale 

beekeepers.  In Appalachia, it is likely that most beekeepers do not engage in any formal site 

suitability analysis but rely instead on trial and error to assess the quality of sites (personal 

communication with Kentucky State Apiarist).  Central Appalachia is a highly dissected and 

heterogenous landscape in which empirical approach to selecting apiary sites is challenging – 

trial and error may be the only viable way to assess forage on such complicated landscapes.  

However, spatial analysis of honeybee forage in other geographical regions has shown a 

correlation between remotely sensed landcover and honey production (Kirkpatrick, 2015).  

Accurately assessing the local forage is especially critical when attempting to collect a mono-

floral or “varietal” honey (Campbell & Fearns, 2018) which is derived primarily from the 

nectar of a single species (Bryant & Jones, 2001).  Beekeepers in Appalachia have met with 

some success marketing varietal honeys derived from particular species of melliferous trees 

(Mattise, 2014); however, site selection may be hindered by the challenge of negotiating 

access to remote sites with limited knowledge of the available forage.  Modeling the spatial 

distribution of varietal honey trees can help select among potential apiary sites at the 

landscape scale.  A map would allow beekeepers to remotely evaluate the concentration of 

nectar resources at multiple locations before attempting to negotiate access and ground-

truthing the sites. 

Honeybees have a sophisticated system for allocating resources whereby scouting 

foragers search and locate areas of relatively intense nectar flow (Thenius, et al., 2006).  
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Upon returning to the hive, scouts communicate this information to other foragers via 

‘dances’ on the face of the comb, indicating the direction and distance to the nectar source 

with respect to the sun’s position (von Frisch, 1967).  The vigor and number of dances serve 

as a recruiting mechanism that concentrate or reallocate the field force based on current 

conditions (Seeley, 1986).  This allows foragers to target the most productive nectar patches 

on the landscape rather than indiscriminately consuming from the flowering plants they 

encounter close to the hive (Seeley, 1994).    

Honeybees forage in a range that varies according to nectar availability (Beekman & 

Ratnieks, 2000).  Colonies are adept at ramping up collection when conditions are favorable 

and curtailing activity to conserve energy when conditions deteriorate (Danner et al., 2016).  

Because of their ability to optimize foraging strategies (Stabentheiner & Kovac, 2016) and to 

store these resources in the form of honey, colonies in close proximity to major nectar 

sources will fully exploit them by recruiting reserve foragers (Anderson, 2001).  If present 

within flight range, colonies will invest heavily in the most energetically profitable nectar 

sources that may only be available during the relatively short anthesis of particular plant 

species.   

Commercial beekeepers take advantage of these windows of opportunity, called 

“nectar flows” in the industry (Wainselboim et al., 2002).  By placing hives in the right place 

at the right time, the beekeeper helps create the conditions whereby the colony collects nectar 

over and above its annual caloric requirements.  It is this surplus that makes up the honey 

crop.  Aside from the husbandry associated with general hive health, a beekeeper whose 

primary objective is honey production will manage colonies such that they achieve maximum 

forager population during the few weeks in the year when nectar is available in copious 

quantities (Van Engelsdorp & Meixner, 2010).  Colonies managed primarily for pollination 

contracts, queen production, or other hive products (wax, pollen, royal jelly) may employ 
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different management techniques, but for the stationary honey producer, location largely 

determines output (Pilati & Prestamburgo, 2016).  An explicit representation of how 

individual nectar sources are distributed on the landscape could help beekeepers place 

apiaries on sites that have highest potential for honey production or steer them toward the 

sites most appropriate for a specific varietal honey. 

Researchers have previously analyzed honeybee forage on the landscape using a 

Geographic Information System (GIS).  A GIS model was employed to analyze the suitability 

of floral and commercial crop resources for honey production in the Prairie Pothole Region 

of North Dakota (Kirkpatrick, 2015).  The impact of land-use change was highlighted in 

appraising the suitability of established sites used for honey production in the Northern Great 

Plains (Otto et al., 2016).  In Ohio, researchers found that honey harvest was accurately 

predicted by the landscape composition surrounding existing apiaries (Sponsler & Johnson, 

2015).   These studies were primarily concerned with accounting for the probable forage 

types encountered in a mixed agricultural setting and did not attempt to model the 

distribution of individual tree species.   

Australian researchers have created a web-based application for beekeepers that helps 

show the phenology of several species of eucalyptus (Arundel et al., 2016).  In Western 

Australia, satellite data was used to detect the flowering of the Red Gum tree (Campbell & 

Fearns, 2018).  However, no such work has been done in the Appalachians or on any forest-

based resources in North America.  The species rich ‘mixed-mesophytic’ forest (Braun, 

1951) and highly dissected landscape make the use of visual indices derived from satellites 

challenging for species level identification in Eastern Kentucky. 

Mapping the distribution of an individual tree species is often undertaken at a larger 

spatial scale.  USGS researchers have created a dataset estimating the basal area per hectare 

of all major tree species in the Eastern United States (Wilson et al., 2012); however, the 
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coarse spatial resolution and high standard errors indicate that they are not intended for small 

area estimation and would not be accurate at a scale that is useful to beekeepers. Some 

researchers have mapped species at the individual tree crown level with greater than 90% 

accuracy (Lee, et al. 2016), but there is a correlation between resolution and cost.  Work in 

the field to date has utilized hyperspectral imagery (Dalponte et al., 2011; Ghiyamat et al., 

2015; Ferreira et al., 2016) and/or Light Detection and Ranging (LIDAR) data (Engler et al., 

2013; Asner & Feret, 2012) to identify a single tree species.  These kinds of remotely sensed 

data are cost prohibitive for beekeepers and unavailable in our study area. Some research 

(Henderson et al., 2014; Gao et al., 2015) has indicated that a nominal level of accuracy can 

still be achieved with the use of moderate resolution remotely sensed data. 

Several native tree species are of interest to beekeepers in Appalachia including 

Basswood (Tilia americana), Sourwood (Oxydendrum arboretum) and the Tulip Poplar 

(Liriodendron tulipifera).  In the U.S., there is substantial variation in domestic honey pricing 

(NASS, 2017).  Wholesale prices listed in the January 2017 National Honey Report for 

domestic unprocessed honey ranged from a high of $2.50/lb for Basswood honey in New 

York State to a low of $1.55/lb for Buckwheat honey in Washington State (USDA, 2017a).  

While Basswood honey does not always fetch the highest price, in the four months it was 

available in 2017 it averaged a 54% price premium over the lowest priced honeys (USDA, 

2017b).   Varietal honeys generally command a premium in the marketplace over mixes or 

honeys made primarily from clovers. 

The need for sustainable alternatives to extractive industries in Eastern Kentucky is 

often cited (Holtkamp & Weaver, 2018).  The region has experienced a precipitous drop in 

both coal prices and employment (Klesta, 2016).  It has been estimated that from 1985 

through 2015 approximately 2,900 km2 of land have been disturbed by mining in Central 

Appalachia.  Adding in the sites known before 1985 and mining has cumulatively affected 
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around 5,900 km2 in the region (Pericak et al., 2018).  The detrimental effects of mountaintop 

removal and valley fill mining on the terrain have been dramatic (Wickham, et al., 2013).  

Native vegetation does not readily recolonize the highly compacted and unweathered 

landscape left by mining.  In addition, mining has affected the physical and chemical 

alteration of most streams in the area (Bernhardt & Palmer, 2011).  It is difficult to quantify 

the overall social and ecological damage that has resulted from surface mining, but 

ecosystem services have been broadly curtailed (Zipper, et al., 2011).  One effect of 

mountaintop removal has been the proliferation of denuded plateaus fracturing a landscape of 

otherwise mature second growth forest.  These former mine sites often include a network of 

roads designed to carry heavy loads.  As such, they present a somewhat unique opportunity 

for apiculture (Angel & Christensen, 1976).  Locations around the perimeter of former mine 

sites may be in close proximity to forest-based nectar resources while also being adjacent to 

unmown grasslands that provide diverse assemblages of herbaceous forage (Horn et al., 

2017).  Forest-based beekeeping can make some use of these sites and would work well 

alongside a developed timber industry, providing supplementary income that is both 

ecologically sustainable and sorely needed. 

The overarching objective of the thesis is to explore a methodology and develop a 

spatial modeling framework for apiary site selection based on proximity to nectar sources 

utilized in varietal honey production.  The specific objectives of the study are:  

i) Using publicly available forest inventory data, to model the spatial 

distribution of three native tree species that are important to honey producers 

in eastern Kentucky: American Basswood, Sourwood and Tulip Poplar. 

ii) To incorporate a method for discounting the value of a nectar resource as a 

function of distance based on an energetic model of honeybee foraging, and  
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iii) To provide an example by ranking potential apiary locations around the 

perimeter of a mine site in the study area based on their proximity to probable 

species habitat using a GIS model. 

The methodology presented is not meant to be a comprehensive accounting of all 

available forage on a landscape, but rather may serve as a guide to further investigation by 

attempting to quantify a single nectar resource on a particular landscape in a way that is 

reproducible and extendable. The modeling proceeds under the assumption that a diversity of 

pollen and nectar sources exist in quantities sufficient to provide for annual colony health and 

that honey production is the beekeeper’s primary goal.  It can serve as a guide for smaller 

scale beekeepers who specialize in varietal honeys and aid in providing a sustainable non-

timber forest product on lands that have been heavily impacted by surface mining in 

Appalachia.   
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CHAPTER TWO: METHODS  

 

2.1. Species Distribution Modeling of Three Tree Species 

Presence-absence records of Basswood, Sourwood and Tulip Poplar were compiled 

from two sets of forest inventory plots maintained by different entities.  One dataset was used 

to train a species distribution model which estimates the probability of occurrence at a 

location and the other was used to evaluate the model. 

Data Collection: FIAtrain and CFIeval 

The US Forest Service maintains a forest inventory and analysis program in order to 

monitor the status of forests across North America (USFS-FIA, 2017).  A portion of the 

Kentucky River watershed spanning approximately 9,000 km2 in eastern Kentucky contained 

271 FIA plots, which contain 4 subplots each (see figure 2.1.1 for layout).  Some plots lacked 

information on one or more subplots, resulting in n=1059 subplots that were used to train the 

species distribution model (hereafter, “FIAtrain dataset”). 

            

Figure 2.1.1 USFS Forest Inventory Analysis plot, showing subplot layout. 
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Figure 2.1.2 The FIA study area, a portion of the Kentucky River watershed showing the 
approximate location of Forest Inventory and Analysis plots maintained by the US Forest 
Service.  The area is approximately 9,000 km2 (2.2 million acres). 
 

The exact locations of FIA plots are not publicly available.  Figure 2.1.2 shows a map 

of approximate plot locations.  Following protocols set forth by the Forest Service, the 

investigator visited the USDA Forest Service Southern Research Station in Knoxville, TN 

and provided raster layers of all candidate variables at 10-meter resolution to the FIA officer.  

Topographic variables and vegetative indices derived from Sentinel-2 satellite data were 

extracted from a network terminal at the Southern Research Station maintained for that 

purpose.  The locations shown on maps and figures in this thesis are graphic approximations, 

but the true subplot coordinates were used to extract the FIAtrain data and train the model.  
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Nested inside the FIA study site is Robinson Forest, a research forest preserved by the 

University of Kentucky that spans approximately 4,000 ha across Knott and Breathitt 

counties in Kentucky, USA.  The University maintains 271 continuous forest inventory (CFI)  

 

Figure 2.1.3 The CFI study area, a research forest spanning parts of Breathitt and Lee 
counties in Eastern Kentucky showing the locations of forest inventory plots maintained by 
the University of Kentucky.  The area is approximately 40.5 km2 (10,000 acres). 

 

plots that were last surveyed in 2014.  Prior to modeling and in coordination with the forest 

manager, 33 sites that had been recently logged or damaged by fire were removed from 

consideration.  This left 238 plots that best represent the mature second growth forest in the 

area.  The circular area of the CFI plot as sampled in the field was 416 m2 and the location of 

trees within the plot was noted in the field.  Each presence/absence point was assigned to one 

of four 104 m2 quadrants and these were treated as subplots.  Two quadrants that crossed 

open water were discarded, leaving n=950 subplots (hereafter, the “CFIeval dataset”).  See 
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figure 2.1.3 for a map of plot locations.  The CFIeval data was used to test for general 

concordance with probabilities generated from the broader FIAtrain model.  The quadrant 

clustering and the 4 m2 discrepancy between the size of the subplot and the 10m x 10m pixel 

size of the predicted probabilities were ignored for the purposes of evaluating the model. 

Modeling and Variable Selection:  

Logistic regression is an extensively used generalized linear model that employs a link 

function to model a binary dependent variable such as the presence or absence of a species.  

Using a logit link specifies the general form of the model as: 

      ln ቀ
௉ሺ௒ሻ

ଵି௉ሺ௒ሻ
ቁ ൌ ଴ߚ	 ൅	ߚଵ ଵܺ ൅	ߚଶܺଶ ൅ ⋯൅	ߚ௞ܺ௞ ൅ 	߳    (eqn. 2.1.1) 

where ܲሺܻሻ is the probability of the occurrence of event ܻ (i.e. the presence of the tree 

species of interest at a location), ௜ܺ (i = 1, …, k) are the independent variables, ߚ௜ are the 

regression coefficients, and ߳ is an error term (Ovaskainen, et al. 2016).   

Model analyses were performed in R 3.5.1 (R Core Team, 2018); generalized linear 

models were fit using the “lme4” package (Bates et al., 2015); generalized estimating 

equations modeling utilized “geepack” (Hojsgaard et al., 2016); packages “raster” (Hijmans 

et al., 2015), “pROC” (Robin et al., 2011) and “ResourceSelection” (Solymos & Lele, 2015) 

were also used throughout the process.   

Three measures were considered during variable selection and model comparison: AIC, 

AUC and plots derived from Hosmer-Lemeshow testing.  The Akaike information criterion 

(AIC) is widely used as a measure for comparing models fit to the same dataset (Akaike, 

1974).  It is defined as 

ܥܫܣ   ൌ 2݇ െ 2ln	ሺܮ௠௔௫ሻ                                                                              (eqn. 2.1.2) 
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where k is the number of parameters, and ܮ௠௔௫ is the maximum value of the likelihood 

function of the model.  Forward stepwise variable selection using AIC was utilized to 

compare different models of the same dataset. 

Area Under the receiver operating characteristic Curve (AUC) is a measure of model 

accuracy (Fielding & Bell, 1997).  The receiver operator curve shows how the model’s true 

positive rate (sensitivity) is related to the false positive rate (1-specificity) as the probability 

threshold used to classify a species presence varies.   

Hosmer-Lemeshow testing is used alongside logistic regression to compare the 

expected presence rate predicted by the model to the presence rate observed in the data 

(Hosmer & Lemeshow, 2013).  It is used to show how well calibrated a model is with the 

data in different regions of predicted probability.  As a single statistic, it is defined as: 

ܪ ൌ ∑ ሺை௕௦௘௥௩௘ௗ	௉ିா௫௣௘௖௧௘ௗ	௉ሻమ

ሺா௫௣௘௖௧௘ௗ	௉ሻ
௚
௤ୀଵ ൅	

ሺை௕௦௘௥௩௘ௗ	஺ିா௫௣௘௖௧௘ௗ	஺ሻమ

ሺா௫௣௘௖௧௘ௗ	஺ሻ
     (eqn. 2.1.3) 

where g is the number of divisions used to segment the data, P is the number of species 

presences and A is the number of species absences.   

Initial investigation of covariates was conducted primarily on the CFIeval dataset as the 

smaller area and readily available plot coordinates allowed for more flexible investigation of 

the predictive power of multiple variables.  A comprehensive table of the candidate variables 

and their sources is included as an appendix A.  The species showed significant response to 

three topographic variables, denoted here as: Tp1, Tp2, and Tp3.  These three variables are 

used in the modeling to represent the effects of aspect, elevation, and slope respectively. 

Tp1 is a transformation of aspect and can also be described as ‘deviation from a 

bearing’ (Jenness, 2007).  For modeling, aspect was transformed and treated as a single 

directional variable with values ranging from 180 facing Southwest and diminishing equally 

in both directions to zero facing Northeast.  Tp1 was calculated iteratively in three steps 
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beginning with an aspect raster consisting of continuous clockwise degree measurements 

with 0� as facing map North:  

଴ݎ ൌ  (eqns. 2.1.4)         ݐܿ݁݌ݏܣ	

ଵݎ ൌ ሺݎ଴ െ  ሻ݃݊݅ݎܽ݁ܤ

ଶݎ ൌ ଵݎ< 0, then ሺ	ଵݎ	݂݅ ൅ 360ሻ; otherwise, ݎଵ 

ଷݎ ൌ ଶݎ	݂݅	 ൐ 180, ሺ360	݄݊݁ݐ െ ;ଶሻݎ ,݁ݏ݅ݓݎ݄݁ݐ݋  ଶݎ

where, Bearing is the desired direction for zero and r1, r2 and r3 are successive iterations of 

aspect.   

In the course of variable selection, this ‘directional’ transformation was modeled alone 

in 5  �  increments to determine which direction would best inform the model.  A criticism 

can be made that doing so runs the risk of ‘tuning’ the data and overfitting to an individual 

data sample, but the variable showed the same response in both the FIAtrain and CFIeval 

datasets.  The graph in Figure 2.1.4 shows how the AUC of a logistic regression model using 

only Tp1 varies as the transformed aspect is rotated in 5� increments from geographic North 

in a clockwise fashion.  A bearing of 45� was used in calculating the values for Tp1 for the 

modeling of all three species. 
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Figure 2.1.4 Graphs showing area under the receiver operator curve (AUC) for logistic 
regression using only Tp1 as the bearing used to transform this ‘directional’ variable is 
rotated in 5� increments through 180�.  
 

Variable Tp2 is a measure of relative topographic position.  It is often used in 

conjunction with other measures to create various forms of Topographic Position Index 

(TPI), but it is used here in the form: 

ଶ݌ܶ ൌ
ா௟௘௩೛೚೔೙೟ିெூே೙೐೔೒೓್೚ೝ೓೚೚೏

ெ஺௑೙೐೔೒೓್೚ೝ೓೚೚೏ି	ெூே೙೐೔೒೓್೚ೝ೓೚೚೏
      (eqn. 2.1.5) 

where, Elevpoint is the elevation of the point, MINneighborhood is the minimum elevation value 

present in some square focal area surrounding the point, and MAXneighborhood is the maximum 

elevation value present in that area. 

Tp2 was similarly modeled individually over varying focal ranges to gauge which 

would best inform the model in this landscape.  The graph in Figure 2.1.5 shows how the 

AUC of logistic regression modeling using only Tp2 varies as the focal range used to 

calculate TPI changes in 5-pixel increments.   A value of 25 pixels was used to calculate Tp2 

for modeling of all three species. 
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Figure 2.1.5 Graphs showing area under the receiver operator curve (AUC) for logistic 
regression using only Tp2.  The focal window used to calculate Tp2 variable used in the 
regression changes in 5-pixel increments. 
 

Variable Tp3 has no transformation and is simply topographic slope in degrees derived 

from the USGS DEM in R using SDMtools. 

 

2.2. Method of Discounting Nectar Resource 

Broadly speaking, “currencies” for determining the value of nectar resources to a 

honeybee colony fall into two categories: net energy efficiency ((benefit – cost)/cost) and the 

net rate of energy intake ((benefit – cost)/time) (Becher et al., 2013).  Models that focus on 

resource selection often settle on net energy efficiency as the appropriate currency.  These 

models are primarily concerned with navigating a complex set of information feedback 

mechanisms that affect resource selection and utilization over a range of colony dynamics 

(Schmickl, & Crailsheim, 2007).   In contrast, a varietal honey producer is less concerned 

with which resource will be utilized than how much of a given resource is available.  They are 
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seeking nectar sources which, from experience, are previously known to be preferentially 

selected over other forage in the area at that time.  Honey producers deliver hives at peak 

population to sites over the period of time that a specific resource is in bloom (Pilati & 

Prestamburgo, 2016).  For instance, in the case of Basswood, this period may be as short as 

ten to fourteen days (Anderson, 1976).  Commercial beekeepers are ultimately concerned 

with the quantity of honey stored by a colony over and above its annual energetic 

requirements as this is what makes up the honey crop.  The net rate of energy intake is what 

is used here.   

By first determining the net energy on a per-trip basis and then accounting for the 

number of possible trips given the time per trip, the net rate of energy intake as a function of 

resource distance from the colony can be estimated.  This function will then be used to 

discount the probabilities obtained from the species distribution model.  Assumptions and 

notation for the energetic based foraging equations are modified from Baveco et al, 2016. 

 

A Rate of Net Energy Intake in Joules/second (RNEI J s-1 ) at the hive can be determined by 

dividing the Net Energy Intake of a single forager trip in Joules (NEItrip  J) by the time in 

seconds that a single forager trip takes (ttrip s): 

RNEI = NEItrip / ttrip                                                                                       (eqn. 2.2.1) 

 

The Net Energy Intake of a trip can be determined by subtracting the Energy Expended from 

the Energy Intake at the hive: 

NEItrip  = Energy Intake (EItrip) - Energy Expended (EEtrip)   (eqn. 2.2.2) 

 

Energy Intake is related to the mass of the Nectar Load (Nload), the fraction of sugars in the 

nectar (Fs), and the Energy of sugar (Esugar):  

EItrip = (Nload) (Fs) (Esugar)       (eqn. 2.2.3) 
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The Energy Expended for a trip can be broken down into components: 

EEtrip = EEtransit + EEsource       (eqn. 2.2.4) 

 

Energy expended at the hive between trips is taken as zero because without flight, no energy 

above baseline metabolic rate is expended (EEhive ≈ 0). 

The Energy Expended flying to and from the nectar source is: 

EEtransit = 2 ቀ஽
௩
ቁ ē        (eqn. 2.2.5) 

where, D is the distance to source (m), v is the flight velocity of the forager (m s-1), and ē is 

the average energy expended in flight (J s-1). 

 

Average energy expended in flight is used in both the transit and source costs as the forager 

departs the hive unloaded, fills at a roughly constant rate and returns the same distance 

loaded with nectar: 

ē = 
ୣ౫ା௘೗
ଶ

         (eqn. 2.2.6) 

where eu is the energy of flight unloaded and el is the energy of flight loaded. 

 

The energy cost at the nectar resource are proportional to the Collection Rate of nectar: 

EEsource = ቀ
୒ౢ౥౗ౚ
ୈ౤

ቁ ē        (eqn. 2.2.7) 

The time per trip can also be broken down into components: 

ttrip = thive + ttransit + tsource       (eqn. 2.2.8) 

 

Time in transit is:  

ttransit = 2 ቀ஽
௩
ቁ         (eqn. 2.2.9) 

where, D is the distance to source (m), v is the flight velocity of the forager (m s-1). 

 

Time elapsed at the nectar source is: 

 tsource = 
ே೗೚ೌ೏
஼ோ೙

         (eqn. 2.2.10) 

where Nload is the nectar load (mg) and CRn is the collection rate of nectar (mg s-1). 
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Table 2.2.1: Fixed energetic coefficients for honeybee: 

  
Coefficient  Symbol  Units  Value  Source 

Nectar load (capacity)  Nload  mg  32.5 Winston (1987) 
Velocity of forager  v  m s‐1  4.17 de Vries & 

Biesmeijer (1998) 

Energetic content nectar  esugars  J mg‐1  17.2 Seeley (1985) 

Flight cost (loaded)  el  J s‐1  0.075 Seeley (1986) 

Flight cost (unloaded)  eu  J s‐1  0.037 Seeley (1986) 

Average Flight Cost  ē  J s‐1  0.056   
Time unloading in hive  thive  s  300 Seely, Camazine & 

Sneyd (1991) 
   
 

Substituting the fixed values from Table 1 into eqns. (2.2.1-10) yields: 

RNEI = 
ହହଽ∗ிೞ–	଴.଴ଶ଺ଽ∗஽	–

భ.ఴమ
಴ೃ೙

ଷ଴଴	ା	଴.ସ଼∗஽	ା	ቀ
యఱ.ఱ
಴ೃ೙

ቁ
       (eqn. 2.2.11) 

 

 

The collection rate and sugar content of different nectars are dependent on the plant species 

and Basswood is used as an example here: 

 

 

Table 2.2.2: Resource-specific coefficients for Basswood: 
 
Coefficient  Symbol  Units  Value  Source 

Fraction sugars  Fs  mg mg‐1  0.28  Anderson (1976) 

Collection rate nectar  CRn  m s‐1  0.32a  Baveco (2016) 
 

a Collection Rate of nectar is derived from the attack rate of the foragers, density of flowers and 
the amount of nectar per flower.  It is unknown for Basswood and the mean of the calculated rate 
for Oilseed Rape (0.42 mg s-1) and White Clover (0.21 mg s-1) is used as a proxy here.  The true 
collection rate is likely higher.  
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Substituting the resource specific values from Table 2.2.2 into eq. (11) for Basswood yields: 

RNEI(D) = ቀ
ଷ଺ଶ

஽ା଼ହ଺
ቁ – 0.056       (eqn. 2.2.12) 

where D is the distance between the hive and the resource in meters. 

 

This gives us the rate of net benefit to the hive in joules per forager-second of a Basswood 

tree as a function of distance (figure 2.2.1). 

 

 

Figure 2.2.1 Graph of nectar value-distance curve for Basswood, showing the Rate of Nectar 

Energy Intake as a function of Distance:  RNEI(D) 

 

Finally, the nectar value-distance function is used to assign RNEI values to the pixels 

within a given foraging range based on their distance from a point of interest (e.g., a potential 

colony location).  As distance from the hive increases, the potential value of nectar decreases.  

These values are then used as weights – that is, they are multiplied by the probabilities that 

the tree species is present generated by the SDM. 
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Figure 2.2.2 Shows the nectar value-distance weights for a 700 meter flight range as a raster 

image. 

 

2.3. Ranking Sites - an Example using Basswood 

A reclaimed former mine site adjacent to University owned property was chosen as 

an example to analyze potential apiary sites with respect to their proximity to Basswood; 

however, the same process could be applied on any of the approximately 200 mine sites 

greater than 50 hectares that are located in the watershed or to any of the three tree species 

modeled.  The requirements for consideration as potential apiary site in this project were 

threefold.  First, an area of approximately 20m x 30m (a minimum of six 10-m pixels) must 

be relatively flat, having a slope of less than 3 degrees; however, to avoid being inundated by 

storm water, flat areas must not be located in a drainage basin.  Secondly, to avoid infestation 

by an invasive pest of the honeybee called Small Hive Beetle (Aethina tumida), sites must be 
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located in the open, at least 10 m from a closed canopy tree line.  Thirdly, sites must be 

accessible by a road capable of supporting a medium size flatbed truck to deliver and 

maintain the hives (Class 3 gross weight vehicle rating, 10,000 – 14,000 lbs.).  

In this example, potential sites were identified manually; however, ArcGIS tools 

could be used to automate the process.  This required overlaying three GIS layers: data from 

the National Agricultural Imagery Program (USDA-NAIP, 2016), a low slope layer, and a 

topographic contour layer.  NAIP is relatively high resolution (60cm) imagery acquired by 

the USDA during the growing season every two years.  In this context, it allows the user to 

track the road access to potential sites.  The low slope layer identifies pixels with less than 

3� slope (identified in blue in Figure 2.3.1).  The contour layer is necessary to distinguish 

between routes that appear to be accessible roads but are in fact drainage rip-rap or terracing.  

Only areas around the perimeter of the mine site were considered.   

 

 

Figure 2.3.1 Selecting potential apiary sites manually: an on-screen process of selecting 

potential sites (numbered yellow hexagons) based on slope and road access criteria.  Blue 

pixels indicate areas with less than 3� slope and grey contour lines are every 2m. 
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Figure 2.3.2 Example mine site: locations of 24 potential apiary locations. 

 

 

 

Figure 2.3.3 Example mine site: Site Suitability Index (SSI). 
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In the example, this process identified 24 potential apiary locations around the 

perimeter of the mine site (see figure 2.3.2 for site map).  A raster of Site Suitability Index 

(SSI) was derived by multiplying the probability of a species presence by the rate of nectar 

energy intake as a function of distance at each pixel within a flight radius of 700 m and 

summing the products in that tributary area: 

ܫܵܵ ൌ ሻܦሺܫܧܴܰ∑	 ∗ ܲሺܻሻ                           (eqn. 2.3.1) 

where RNEI(D) is the Rate of Nectar Energy Intake as a function of Distance (the ‘nectar-

distance weights’) and P(Y) is the probability that one or more Basswood stems is present 

within that pixel.  Point values at potential locations were extracted and the locations ranked 

according to their SSI reflecting their weighted proximity to Basswood.  A flow-chart of the 

modeling and GIS procedures used to rank potential apiary locations is shown in Figure 

2.3.4. 

The probabilities generated by the model are based on an FIA plot which is 168 m2 

while the pixel size of the rasters used in the GIS (and the approximate size of the CFI plots) 

is 100 m2.  The probabilities were treated as a Poisson point-process and ‘scaled’ for use as 

probability over the smaller raster cells area: 

ܲሺܻሻ௥௔௦௧௘௥ ൌ 1 െ ሾ1 െ ܲሺܻሻ௠௢ௗ௘௟ሿ
ቀ
ଵ଴଴
ଵ଺଼ቁ																																																															ሺeqn. 2.3.2ሻ		 



 

23 
 

 

Figure 2.3.4   Flowchart of methods used to rank potential apiary sites. 
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CHAPTER THREE: RESULTS 

 

3.1 Species Distribution Modeling Results: 

This study models the distribution of three deciduous species using topographic 

variables that are both publicly available and easily derived.  To examine the potential effects 

of subplot clustering (see Figure 2.1.1), the FIA data was modeled separately utilizing 

Generalized Estimated Equations (GEE) using plot as a grouping factor and an exchangeable 

correlation structure.  The resulting coefficients varied somewhat but after comparing the 

AUC and Brier score (Table 3.1.1) developed from the traditional GLM, it was concluded 

that the quasi-clustering of the FIA subplots had a negligible effect on probabilities generated 

from this dataset.   

Table 3.1.1:  AUC, Prevalence and Brier scoring to compare models that considered possible 
clustering effects (GEE) and those did not (GLM). 

Model-Species 
AUC 

(FIAtrain) 
Prev 

(FIAtrain)
Brier 

(FIAtrain)   
AUC 

(CFIeval) 
Prev 

(CFIeval) 
Brier 

(CFIeval)
GLM-
Basswood 0.7753 6.2% 0.05456   0.8780 3.9% 0.03321 
GEE-Basswood 0.7749   0.05453   0.8800   0.03298 
                
GLM-
Sourwood 0.6668 22.5% 

0.16549 
  0.6269 10.5% 0.09464 

GEE-Sourwood 0.6687   0.16557   0.6220   0.09607 
                
GLM-Poplar 0.7213 36.5% 0.20023   0.7296 18.3% 0.14053 

GEE-Poplar 0.7212   0.20027   0.7300   0.14020 
 

The final model coefficients are taken from traditional GLM logistic regression with 

a binomial logit link function.  The coefficients, standard errors, and p-values for the final 

models derived using the FIAtrain dataset are given in Table 3.1.2.  Among these three 
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topographic variables, aspect and relative elevation exerted significant effects on the 

distribution of all three species, but slope was identified as a significant predictor for 

Basswood only.   

Table 3.1.2: Coefficients of logistic regression models from a sample of n=1059 subplots in 
the FIAtrain dataset.    

   

Species β0(INT) SE β0 P β0 β1Tp1 SE β1Tp1 P β1Tp1 

Basswood -3.218879 0.6495 < 0.01 -0.015648 0.003069 < 0.01 
Sourwood -2.090492 0.190064 < 0.01 0.008072 0.001585 < 0.01 

Tulip Poplar 0.177784 0.16722 0.29 -0.008556 0.001513 < 0.01 
   

Species β2Tp2 SE β2Tp2 P β2Tp2 β3Tp3 SE β3Tp3 P β3Tp3 

Basswood -0.040801 0.01594 < 0.05 0.067563 0.021245 < 0.01 
Sourwood 0.029749 0.006439 < 0.01       

Tulip Poplar -0.058913 0.007375 < 0.01   
 

  
   

 

Plots showing how the three species models predicted on the FIAtrain dataset (the 

dataset used to fit the model) as well as how it predicted on the independent CFIeval dataset 

are show in Figures 3.1.1-3.   These plots take the probability of a species presence predicted 

by the SDM and, arranging them ordinally, compares them to the actual presences and 

absences in the data.  If the model is performing well, the ratio of presences (green dots) to 

absences (red dots) should increase as the predicted probabilities increase.  Another way to 

visualize the performance of the model are plots derived from the Hosmer-Lemeshow 

statistic, shown in Figure 3.1.4-6.  These take the same ordered probabilities and divide them 

into a number of equal groups (bins) and sum the probabilities in each bin.  This is 

considered the expected number of presences in that bin which can then be plotted against the 

actual presences. 
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Figure 3.1.1 The Basswood model predicting on the FIAtrain and CFIeval datasets.  
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Figure 3.1.2 The Sourwood model predicting on the FIAtrain and CFIeval datasets.  
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Figure 3.1.2 The Tulip Poplar model predicting on the FIAtrain and CFIeval datasets.  

  



 

29 
 

           

Figure 3.1.4.  Basswood Hosmer-Lemeshow plots showing the model predicting on both 
datasets with 10 sub-divisions of the ordered plots. 

 

           

Figure 3.1.5.  Sourwood Hosmer-Lemeshow plots showing the model predicting on both 
datasets with 10 sub-divisions of the ordered plots. 
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Figure 3.1.6.  Tulip Poplar Hosmer-Lemeshow plots showing the model predicting on both 
datasets with 10 sub-divisions of the ordered plots. 

 

3.2 Value-Distance Weighting and Site Rankings: 

The probabilities derived in the Basswood species distribution model were used 

alongside distance weights based on an energetic model of honeybee foraging to specify a 

site suitability index and rank potential apiary locations at an example mine site.  The ranking 

and corresponding site index for the 24 selected sites are given in Table 3.2.1. 
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Table 3.2.1.  Example Site Rankings using 500 m, 700 m, and 1.2 km as tributary areas.  The 
top 5 sites in each tributary area are highlighted in green and the next 5 sites are highlighted 
in blue: 

 

Site No. 
500 m 

Tributary 
SSI 

500 m 
Rank 

700 m 
Tributary 

SSI 

700 m 
Rank 

1.2 km 
Tributary 

SSI 

1.2 km 
Rank 

7  1,214  1  2,255 1  5,491 1 

2  1,190  2  2,179 4  5,081 3 

5  1,189  3  1,942 5  3,763 12 

1  1,172  4  2,181 3  5,161 2 

4  1,169  5  2,229 2  4,342 9 

3  1,113  6  1,931 6  4,815 5 

23  939  7  1,879 7  4,692 6 

10  888  8  1,865 8  4,835 4 

21  886  9  1,778 9  4,557 7 

6  830  10  1,636 11  4,313 10 

13  830  11  1,490 12  3,753 13 

9  798  12  1,712 10  4,516 8 

8  771  13  1,332 14  3,052 17 

17  710  14  1,233 16  3,723 14 

11  692  15  1,353 13  3,810 11 

16  682  16  1,305 15  3,437 15 

24  512  17  1,153 17  3,186 16 

22  421  18  779 18  2,501 20 

12  356  19  641 21  2,963 18 

20  309  20  696 20  2,139 22 

15  301  21  492 23  1,564 24 

14  265  22  502 22  1,846 23 

19  264  23  719 19  2,855 19 

18  139  24  405 24  2,172 21 

 

 The rankings are dependent on the tributary area used to calculate them.  As the 

foraging range of the bees is unknown, several estimated ranges are considered.  Comparing 

sites would necessarily involve a ‘fuzzy’ comparison of the rankings over several field-

realistic foraging ranges. 
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CHAPTER FOUR: DISCUSSION AND CONCLUSION 

 

4.1 Limitations of the SDM and Quality of the training Data: 

Initial investigation of covariates included a number of spectral indexes derived from 

10-meter Sentinel-2 data (Copernicus ESA, 2017).  Also, following the procedures of 

Sadeghi et al. (2017), an optical trapezoidal model (OPTRAM) was parametrized for several 

dates to produce a wetness index. Attempts to achieve significant separation using a variety 

of modeling techniques were unsuccessful with bands and indices extracted from the Sentinel 

rasters.  This may indicate the limitations of remotely sensed data to achieve species level 

identification at 10-meter resolution in a complex and highly dissected landscape, a problem 

of co-registration with the inventory plots or a limitation of the modeler’s ability and the time 

required to investigate alternate dates.  Maximum entropy modeling (MaxEnt) was not 

explored as the true absence data was considered reliable. 

From previous work, co-registration errors were known to be problematic in the CFI 

data and only 35 of the plots had been geolocated with an accuracy +/-2.0 m.  The remaining 

plots could be as much +/-10.0 meters out, meaning that they could only reliably be attributed 

to any of (9) pixels.  In the FIA dataset, the Forest Service indicated that the range of 

horizontal control was likely +/-5 to 15 m (personal communication with USFS SRS).  

However, the researcher was unable to verify sites due to the opaque nature of the plot’s true 

coordinates.  Variables were extracted from the ‘unmasked’ coordinates at the Southern 

Research Station, but it was not possible to utilize the coordinates after that.  This proved 

problematic on several fronts and it is recommended that other researchers who make use of 

this invaluable dataset take the time necessary to arrange a research agreement with the USFS 

to allow them access to the unmasked plots coordinates at their University.   
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4.2 Assumptions and Drawbacks of the Foraging Model: 

This approach to apiary site selection, a frequentist statistical model to locate an 

individual species and a nectar-distance curve to value it, makes several assumptions that 

may not be valid.  Firstly, it assumes that colonies will forage preferentially at the target 

species when it is in bloom.  The continued existence and marketing of varietal honey 

suggest that, at least for Basswood and Sourwood, it is a reasonable assumption to make. 

Secondly, the approach implies that foragers will exhaust resources closer to the hive before 

expending the energy to forage further afield, regardless of the ‘size’ of the resource.  There 

is ample research to suggest that this is generally not the case (Couvillon et al., 2015; 

Beekman et al., 2004).  Forage selection is a complex and varying arrangement of 

opportunity and feedback that may be too complicated to model accurately at the landscape 

scale.  

The results in the example show that rankings are dependent on the foraging range 

considered, implying that each potential site should have some optimal number of colonies 

that would maximize honey production.  Field studies with apiaries of varying size could 

help determine the number of colonies that would effectively saturate a given location.  

Without knowing how many colonies the landscape can support, it leaves open the question 

of whether an unknown number of colonies would be more likely to gather nectar from a 

small patch close to the colony or a larger patch that is farther away from the colony.  It 

would likely depend not only on the number of colonies emanating from that apiary but also 

on the presence of other apiaries within flight range.   

Finally, the impact on native pollinators of introducing numerous honeybee colonies 

is unknown.  Recent work suggests that over 40% of insect species worldwide are threatened 

with extinction (Sánchez-Bayo & Wyckhuys, 2019).  Increased pressure on native bees in 
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areas that previously served as a refuge for threatened or endangered species of insect 

pollinators is a concern. 

4.3 Conclusions: 

A better understanding of nectar resources on the landscape and methods to quantify 

their value to honeybees is important to beekeepers and any step in that direction is generally 

welcomed.  With the caveats noted above, the modeling approach show here can distinguish 

in a rudimentary way between sites that are likely to be better for a particular varietal honey 

and those sites that should be avoided.  However, the plethora of equations, numbers and data 

in this thesis should not be mistaken for precision by a commercial beekeeper.  More study is 

needed before commercial application. 

The term ‘precision agriculture’ refers broadly to the integration advanced 

technologies into the practice of agriculture (Lee, et al., 2010).  Innovative uses of technology 

have lagged in apiculture.  The techniques, equipment and business models used in 

beekeeping have not changed as quickly as those used in other agricultural sectors (Zacepins, 

et al, 2014).  This study attempted to demonstrate that the use of remotely sensed data and 

computer modeling could be useful to the practice of apiculture as well.   
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APPENDIX A: CANDIDATE VARIABLES 

  

Table A.1  Candidate Variables derived from Sentinel Satellite images: 

  

Band 
Index Source Dates of Imagery 

SAVI1 https://www.sentinel‐hub.com  

6/9/2016; 3/16/2017; 10/17/2017; 
11/26/2017; 12/16/2017; 1/25/2018 

MCARI2 https://www.sentinel‐hub.com  

6/9/2016; 3/16/2017; 10/17/2017; 
11/26/2017; 12/16/2017; 1/25/2018 

EVI3 https://www.sentinel‐hub.com  

6/9/2016; 3/16/2017; 10/17/2017; 
11/26/2017; 12/16/2017; 1/25/2018 

GNDVI4 https://www.sentinel‐hub.com  

6/9/2016; 3/16/2017; 10/17/2017; 
11/26/2017; 12/16/2017; 1/25/2018 

SARVI5 https://www.sentinel‐hub.com  

6/9/2016; 3/16/2017; 10/17/2017; 
11/26/2017; 12/16/2017; 1/25/2018 

  
 

1 SAVI – Soil Adjusted Vegetation Index; 
 Sentinel Band combination: 
  [(B08 - B04) / (B08 + B04 + 0.428)] 
 
2 MCARI – Modified Chlorophyll Absorption Reflectance Index; 
 Sentinel Band combination: 
  [1.2 * (2.5 * (B08 - B04) - 1.3 * (B08 - B03))] 
 
3 EVI - Enhanced Vegetation Index; 
 Sentinel Band combination:  
  [(2.5 * (B08 - B04)) / (B08 + (6 * B04) - (7.5 * B02) + 1)] 
 
4 GNDVI - Normalized Difference Vegetation Index – Green; 
 Sentinel Band combination: 
  [B03* (B08 - B04) / (B08 + B04)] 
 
5 SARVI - Soil and Atmospherically Resistant Vegetation Index;  
 Sentinel Band combination: 
  [(1.0 + 0.487) * (B08 - (0.740 - 0.735 * (0.560 - 0.740))) / 
   (B08 + -(0.740 - 0.735 * (0.560 - 0.740)) + 0.487)] 
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Table A.2  Topo-climatic Candidate Variables: 

Variable 
Abrev. Name Derived from / Source Notes 

Tp1 Aspect transformation USGS 10M DEM (see eqns. 2.1.4) 

Tp2 
Topographic Position 
Index USGS 10M DEM (see eqn. 2.1.5) 

Tp3 Slope USGS 10M DEM   
Tp4 Solar Radiance ArcGIS 10.3 (7 month growing season) 
Tp5 Topograpic Wetness Index ArcGIS 10.3   

Tp6 Soil type 
USDA/NRCS 
SSURGO 

(inconsistent across 
counties) 

Tp7 Temp/Precipitation 
WorldClim bio-
climatic  (B1-B12) 
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