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Abstract: A series of 22 donepezil analogues were synthesized through alkylation/benzylation
and compared to donepezil and its 6-O-desmethyl adduct. All the compounds were found to be
potent inhibitors of both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), two enzymes
responsible for the hydrolysis of the neurotransmitter acetylcholine in Alzheimer’s disease patient
brains. Many of them displayed lower inhibitory concentrations of EeAChE (IC50 = 0.016 ± 0.001 µM
to 0.23 ± 0.03 µM) and Ef BChE (IC50 = 0.11 ± 0.01 µM to 1.3 ± 0.2 µM) than donepezil. One of the
better compounds was tested against HsAChE and was found to be even more active than donepezil
and inhibited HsAChE better than EeAChE. The analogues with the aromatic substituents were
generally more potent than the ones with aliphatic substituents. Five of the analogues also inhibited
the action of β-secretase (BACE1) enzyme.

Keywords: Alzheimer’s disease; acetylcholinesterase; butyrylcholinesterase; β-secretase; inhibitors

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder that is characterized by memory loss
and cognitive deficits. It is the most common form of dementia among older adults and the sixth
leading cause of death in the United States [1]. In 2018, the World Health Organization (WHO) reported
that there have been more than 2 million deaths associated to AD and other dementias in 2016, and this
number has doubled since 2000 [2]. In the United States alone, more than 5 million people are currently
living with AD, and this number is expected to triple by 2050. Unfortunately, there is currently no cure
for AD, which contributes to the deadly nature of this disease.

Despite all the research efforts invested, the specific cause(s) of AD remain(s) unclear [3]. Several
molecular mechanisms of AD have been proposed, including the β-amyloid cascade, oxidative stress,
metal imbalance, and cholinergic hypothesis [4]. The latter appears to be the most efficient therapeutic
avenue in providing temporary relief of AD symptoms. Indeed, five drugs have been approved by
the United States Food and Drug Administration (FDA) for the symptomatic treatment of AD, four of
which are acetylcholinesterase (AChE) inhibitors: rivastigmine, galantamine, donepezil, and tacrine.
These drugs prevent the action of cholinesterases (ChEs), which are responsible for the hydrolysis
of the neurotransmitter acetylcholine (ACh), thereby increasing the levels of ACh in the brain and
improving the cholinergic functions in AD patients [5,6]. In addition to AChE, another type of enzyme
involved in the hydrolysis of the neurotransmitter ACh is butyrylcholinesterase (BChE). The activity
and expression of BChE have been suggested to increase throughout the progression of AD, indicating
that BChE may play an important role in the late stage of AD [7]. Therefore, inhibition of AChE and
BChE remains a potential therapeutic target for AD treatment. However, targeting ChEs alone is
definitely not sufficient.
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Another hallmark of AD pathology is the accumulation of amyloid-β (Aβ) plaques on the brain [8].
These plaques are composed of Aβ peptides that result from the cleavage of the transmembrane
amyloid precursor protein (APP) by secretases to form Aβ monomers that will aggregate to toxic
fibrils [9]. β-secretase (BACE1) is an aspartyl protease that cleaves APP near the membrane surface,
and it has been targeted for the development of potential therapies against AD [10].

Due to the multifactorial nature of AD, the development of compounds that could target different
pathological features of the disease appears to be a viable research avenue. We previously reported
on the synthesis and biological evaluation of a number of multifunctional molecules derived from
tacrine and chalcones that are capable of targeting ChEs and Aβ [11–15]. Since donepezil is the most
commonly prescribed medication for AD [4], and several other studies have focused on this drug to
generate multifunctional compounds targeting various hallmarks of AD, including BACE1 [16–19],
we decided to generate multi-targeted analogues derived from donepezil that would inhibit ChEs and
β-secretase.

2. Results and Discussion

2.1. Chemistry

The synthetic route utilized for the synthesis of donepezil analogues is outlined in Scheme 1.
Starting from ferulic acid (1), hydrogenation in the presence of Pd/C, followed by cyclization in the
presence of methanesulfonic acid (MsOH) produced ketone 3 with 67% yield [20,21]. Attempts to react
the ketone 3 with the aldehyde 5 through aldol condensation were met with little success. To overcome
this shortcoming, the free hydroxyl group in compound 3 was protected with a TBDMS group to yield
the corresponding ketone 4 with 90% yield. This was then successfully condensed with the aldehyde 5
in the presence of KOH, to yield the α,β-unsaturated ketone 6 with 65% yield. Selective reduction of
the double bond in the presence of a ketone and a benzyl group was achieved through a controlled
poisoning of the palladium catalyst with thioanisole to give the 6-O-desmethyl donepezil adduct 7
with 94% yield. The latter bears a free hydroxyl group that was reacted with the corresponding alkyl
or benzyl halides to yield 22 donepezil analogues (8a–v) with 32–95% yields.
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2.2. Cholinesterase Inhibition

To evaluate the potential cholinesterase (ChE) inhibitory activity of donepezil, 6-O-desmethyl
donepezil 7, and the 22 newly synthesized donepezil analogues 8a–v, their IC50 values were determined
against AChE from Electrophorus electricus (EeAChE) (Table 1 and Figures S82–S83) and Ef BChE
from equine serum (Equus ferus) (Table 1 and Figures S84–S85) using the well-established Ellman
method [22].

Table 1. Inhibition (IC50 values in µM, with standard error) of the activity of EeAChE (from Electrophorus
electricus) and BChE (from Equus ferus) by donepezil and its analogues 7 and 8a–v, and the selectivity
index (SI) for each inhibitor based on IC50 values.

Cpd EeAChE EfBChE SI

Donepezil HCl 0.12 ± 0.01 2.0 ± 0.1 17

7 0.41 ± 0.05 4.3 ± 0.4 11

8a 0.054 ± 0.003 0.57 ± 0.04 11

8b 0.021 ± 0.003 0.48 ± 0.03 23

8c 0.14 ± 0.02 2.1 ± 0.3 15

8d 0.059 ± 0.004 1.3 ± 0.1 22

8e 0.044 ± 0.003 1.3 ± 0.2 30

8f 0.061 ± 0.007 1.3 ± 0.2 21

8g 0.79 ± 0.28 5.2 ± 1.6 6.6

8h 0.13 ± 0.01 0.70 ± 0.05 5.4

8i 0.23 ± 0.03 1.0 ± 0.2 4.3

8j 0.13 ± 0.01 0.67 ± 0.17 5.2

8k 0.13 ± 0.02 0.46 ± 0.06 3.5

8l 0.071 ± 0.015 0.72 ± 0.10 10

8m 0.081 ± 0.005 0.57 ± 0.10 7.0

8n 0.16 ± 0.02 0.96 ± 0.15 6.0

8o 0.12 ± 0.02 0.76 ± 0.12 6.3

8p 0.032 ± 0.010 0.25 ± 0.08 7.8

8q 0.11 ± 0.01 0.48 ± 0.08 4.4

8r 0.090 ± 0.009 0.60 ± 0.15 6.7

8s 0.016 ± 0.001 0.44 ± 0.05 28

8t 0.054 ± 0.007 0.37 ± 0.05 6.9

8u 0.027 ± 0.004 0.20 ± 0.03 7.4

8v 0.17 ± 0.02 0.11 ± 0.01 0.69

2.2.1. AChE Inhibition

When comparing the 6-O-desmethyl donepezil 7 (R = H; IC50 = 0.41 ± 0.05 µM) with donepezil
(R = Me; IC50 = 0.12 ± 0.01 µM) and its analogues 8a–f and 8h–v (R = various alkyl and benzylic
groups; IC50 = 0.016 ± 0.001 µM to 0.23 ± 0.03 µM), it becomes evident that 6-O-alkylation/benzylation
enhances EeAChE inhibition, with the only exception being 8g (IC50 = 0.79 ± 0.28 µM), which bears a
hydrophobic 1-bromododecyl group. Other analogues were equal to or even better than donepezil at
inhibiting the action of EeAChE in vitro. With similar IC50 values, compound 8c (R = n-propyl;
IC50 = 0.14 ± 0.02 µM) was as potent as donepezil (R = Me; IC50 = 0.12 ± 0.01 µM). However,
substituting the terminal methyl in the R group of compound 8c (R = n-propyl; IC50 = 0.14 ± 0.02
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µM) by a terminal amine in compound 8b (R = H2NCH2CH2; IC50 = 0.021 ± 0.003 µM) drastically
increased the potency. Indeed, a 6-fold reduction of the IC50 value of donepezil was observed.
The amine group may form hydrogen bonds with Tyr70, Asp72, and Gln74 residues near the PAS [11].
Cancellation of this hydrogen bonding by replacing the terminal amine in the R group of compound 8b
(R = H2NCH2CH2; IC50 = 0.021 ± 0.003 µM) with a chlorine atom in 8d (R = ClCH2CH2; IC50 = 0.059 ±
0.004 µM) or a bromine atom in 8e (R = BrCH2CH2; IC50 = 0.044 ± 0.003 µM) resulted in an increase in
the IC50 values, which only represented a 2- or 3-fold enhanced potency when compared to donepezil,
respectively. Elongation of the R group also appeared to worsen the IC50 values. Indeed, adding an
extra methylene to compound 8b (R = H2NCH2CH2; IC50 = 0.021 ± 0.003 µM) gives compound 8a
(R = H2NCH2CH2CH2; IC50 = 0.054 ± 0.003 µM), while the addition of two methylene groups to
compound 8e (R = BrCH2CH2; IC50 = 0.044 ± 0.003 µM) gives compound 8f (R = BrCH2CH2CH2CH2;
IC50 = 0.061 ± 0.007 µM). Nevertheless, all these analogues remained better inhibitors of EeAChE
than donepezil.

Replacing the alkyl group in donepezil (R = Me; IC50 = 0.12 ± 0.01 µM) by an aromatic group
in compound 8h (R = Bn; IC50 = 0.13 ± 0.01 µM) did not affect the IC50 value. Likewise, additional
substitutions at the para-position of the benzyl group resulted in IC50 values that were similar to
that of donepezil. Indeed, compounds 8i (R = 4-MeBn; IC50 = 0.23 ± 0.03 µM), 8j (R = 4-OMeBn;
IC50 = 0.13 ± 0.01 µM), 8k (R = 4-NO2Bn; IC50 = 0.13 ± 0.02 µM), 8l (R = 4-BrBn; IC50 = 0.071 ±
0.015 µM), and 8m (R = 4-FBn; IC50 = 0.081 ± 0.005 µM) displayed IC50 values that were still within
1- to 2-fold of that of donepezil (R = Me; IC50 = 0.12 ± 0.01 µM). Similarly, when the fluoro group
was moved from the para-position in compound 8m (R = 4-FBn; IC50 = 0.081 ± 0.005 µM) to the
meta- or ortho-positions in compounds 8n (R = 3-FBn; IC50 = 0.16 ± 0.02 µM) and 8o (R = 2-FBn;
IC50 = 0.12 ± 0.02 µM), respectively, the potency of these analogues was comparable to donepezil
(R = Me; IC50 = 0.12 ± 0.01 µM). However, replacing the fluoro group in 8o (R = 2-FBn; IC50 = 0.12 ± 0.02
µM) by a CF3 group in 8p (R = 2-CF3Bn; IC50 = 0.032 ± 0.010 µM) improved the IC50 by 4-fold. This may
suggest that enhanced electron-withdrawing effect on the aromatic ring may improve the potency of
the analogue. Attempts to spread out the electron-withdrawing effect throughout the aromatic ring led
to compounds 8q (R = 2,4-diF-Bn; IC50 = 0.11 ± 0.01 µM), 8r (R = 2,5-diF-Bn; IC50 = 0.090 ± 0.009 µM),
8s (R = 2,6-diF-Bn; IC50 = 0.016 ± 0.001 µM), and 8t (R = 4-Br-2-F-Bn; IC50 = 0.054 ± 0.007 µM),
with two electron-withdrawing groups, and compounds 8u (R = 2,4,6-triF-Bn; IC50 = 0.027 ± 0.004
µM) and 8v (R = 2,3,4,5-pentaF-Bn; IC50 = 0.17 ± 0.02 µM), with three and five electron-withdrawing
groups, respectively. It thus appears that both ortho-positions on the benzyl group are very sensitive
to the presence of electron-withdrawing groups, since 8s (R = 2,6-diF-Bn; IC50 = 0.016 ± 0.001 µM)
and 8u (R = 2,4,6-triF-Bn; IC50 = 0.027 ± 0.004 µM) were eight and five times more potent than
donepezil, respectively.

In order to confirm that the data obtained with EeAChE would also apply to HsAChE (from Homo
sapiens), we tested donepezil along with a compound that displayed better inhibition than donepezil,
8t. We found that both donepezil and compound 8t inhibited HsAChE better than the EeAChE (Table 2).
Compound 8t (R = 4-Br-2-F-Bn; IC50 = 0.0018 ± 0.0006 µM) inhibited HsAChE 18-fold better than
donepezil (R = Me; IC50 = 0.032 ± 0.011 µM). In the case of EeAChE, compound 8t (R = 4-Br-2-F-Bn;
IC50 = 0.054 ± 0.007 µM) had an IC50 value that was 2.2-fold better than donepezil (R = Me; IC50 = 0.12
± 0.01 µM). These data would suggest that our inhibitors are well suited for working with HsAChE.

Table 2. Inhibition (IC50 values in µM) of the activity of HsAChE by donepezil and its analogue 8t.

Cpd IC50 (µM) SI a

Donepezil HCl 0.032 ± 0.011 3.8

8t 0.0018 ± 0.0006 30
a Selectivity index of EeAChE versus HsAChE, based on IC50 values.
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2.2.2. Ef BChE Inhibition

As expected, donepezil analogues 8a–v were less effective against Ef BChE than EeAChE. Indeed,
donepezil is highly selective for EeAChE over Ef BChE [23], and as a result, it is expected for its
analogues to behave similarly. However, when compared to donepezil (R = Me; IC50 = 2.0 ± 0.1 µM),
all but compounds 8c (R = CH3CH2CH2; IC50 = 2.1 ± 0.3 µM) and 8g (IC50 = 5.2 ± 1.6 µM) appeared to
be more effective at inhibiting the action of BChE. The presence of a terminal amine in compounds 8a
(R = H2NCH2CH2CH2; IC50 = 0.57 ± 0.04 µM) and 8b (R = H2NCH2CH2; IC50 = 0.48 ± 0.03 µM) still
drastically increased their potency by 4-fold when compared to donepezil. Substitution of the amine
group in 8b (R = H2NCH2CH2; IC50 = 0.48 ± 0.03 µM) with a chlorine atom in 8d (R = ClCH2CH2;
IC50 = 1.3 ± 0.1 µM) or a bromine atom in 8e (R = BrCH2CH2; IC50 = 1.3 ± 0.2 µM) resulted
again in an increase in the IC50 values, which only represented a 2-fold enhanced potency when
compared to donepezil. Elongation of the R group did not have much effect, as the IC50 value of 8f
(R = BrCH2CH2CH2CH2; IC50 = 1.3 ± 0.2 µM) still remained within 2-fold that of donepezil.

A greater improvement of the IC50 values was more noticeable when the alkyl group in donepezil
(R = Me; IC50 = 2.0 ± 0.1 µM) was replaced by an aromatic group. Compound 8h (R = Bn; IC50 = 0.70 ±
0.05 µM) was 3-fold more potent than donepezil. Substitutions at the para-position of the benzyl
group also contributed to reducing the IC50 values. Indeed, compounds 8i (R = 4-Me-Bn; IC50 = 1.0
± 0.2 µM), 8j (R = 4-OMe-Bn; IC50 = 0.67 ± 0.17 µM), 8k (R = 4-NO2Bn; IC50 = 0.46 ± 0.06 µM),
8l (R = 4-Br-Bn; IC50 = 0.72 ± 0.10 µM), and 8m (R = 4-F-Bn; IC50 = 0.57 ± 0.10 µM) displayed
inhibitory efficacies of 2- to 4-fold better than donepezil (R = Me; IC50 = 2.0 ± 0.1 µM). Similarly,
when the fluoro group was moved from the para-position in compound 8m (R = 4-F-Bn; IC50 = 0.57
± 0.10 µM) to the meta- or ortho-positions in compounds 8n (R = 3-F-Bn; IC50 = 0.96 ± 0.15 µM) and
8o (R = 2-F-Bn; IC50 = 0.76 ± 0.12 µM), respectively, the potency of these analogues was reduced
by 1- to 2-fold. Replacing the fluoro group in 8o (R = 2-F-Bn; IC50 = 0.76 ± 0.12 µM) by a CF3

group in 8p (R = 2-CF3Bn; IC50 = 0.25 ± 0.08 µM) once again improved the IC50 by 8-fold. This is in
agreement with the trend observed in EeAChE inhibition. Indeed, the additional electron-withdrawing
effect on the aromatic ring still appeared to increase the potency of the analogue. Compounds 8q
(R = 2,4-diF-Bn; IC50 = 0.48 ± 0.08 µM), 8r (R = 2,5-diF-Bn; IC50 = 0.60 ± 0.15 µM), 8s (R = 2,6-diF-Bn;
IC50 = 0.44 ± 0.05 µM), and 8t (R = 4-Br-2-F-Bn; IC50 = 0.37 ± 0.05 µM), with two electron-withdrawing
groups, and compounds 8u (R = 2,4,6-triF-Bn; IC50 = 0.20 ± 0.03 µM) and 8v (R = 2,3,4,5-pentaF-Bn;
IC50 = 0.11 ± 0.01 µM), with three and five electron-withdrawing groups, respectively, were all better
Ef BChE inhibitors than donepezil (R = Me; IC50 = 2.0 ± 0.1 µM). Compound 8q (R = 2,4-diF-Bn;
IC50 = 0.48 ± 0.08 µM) was 4-fold better than donepezil, while 8r (R = 2,5-diF-Bn; IC50 = 0.60 ± 0.15
µM) and 8s (R = 2,6-diF-Bn; IC50 = 0.44 ± 0.05 µM) were 3- and 5-fold better, respectively. Replacing
the fluorine atom at the para-position in 8q (R = 2,4-diF-Bn; IC50 = 0.48 ± 0.08 µM) with a bromine
atom in 8t (R = 4-Br-2-F-Bn; IC50 = 0.37 ± 0.05 µM) did not impart a noticeable change. Compounds
8u (R = 2,4,6-triF-Bn; IC50 = 0.20 ± 0.03 µM) and 8v (R = 2,3,4,5-pentaF-Bn; IC50 = 0.11 ± 0.01 µM),
with three and five electron-withdrawing groups, respectively, were 10- and 18-fold better than
donepezil. The active site gorge of BChE is less constrained than that of AChE, allowing BChE to
better accommodate bulky inhibitors [24]. This supports our observations that additional substitution
on the aromatic ring increased the potency of the donepezil analogues against Ef BChE more than
against EeAChE.

We also calculated the selectivity index (SI) to understand the utility of the compounds. For all
but one compound, 8v, EeAChE was inhibited 3.5- to 30-fold better than Ef BChE. Interestingly,
compound 8v was 1.5-fold more selective for Ef BChE. Clearly the donepezil analogues are better
suited for inhibiting EeAChE. We also looked at the selectivity of the inhibitors for EeAChE versus
HsAChE. We observed that donepezil was 3-fold more selective for HsAChE. Perhaps more interesting,
compound 8t was 30-fold more selective for HsAChE over EeAChE.
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2.3. BACE1 Inhibition

It has previously been reported that donepezil has some BACE1 inhibitory activity [19]. Keeping
this in mind we decided to test these compounds for BACE1 inhibitory activity (Table 3). Unlike with
AChE and BChE, in general, donepezil analogues 8a–v were not better than the parent donepezil
at inhibiting the action of BACE1 in vitro, with the exception of 8c, 8e, 8f, and 8l, which were in
the low micromolar range. Indeed, 8c (R = CH3CH2CH2; IC50 = 6.1 ± 0.1 µM), 8e (R = BrCH2CH2;
IC50 = 7.9 ± 0.9 µM), 8f (R = BrCH2CH2CH2CH2; IC50 = 7.9 ± 2.4 µM), and 8l (R = 4-Br-Bn; IC50 = 3.4 ±
0.1 µM) were within 5-fold of the IC50 values of donepezil. This suggests that our analogues are more
selective in targeting the ChEs, but they do still target BACE1. As a control for the BACE1 inhibition
assays, we used BACE inhibitor IV. Our inhibitors were poorer inhibitors than BACE inhibitor IV
(IC50 = 0.63 ± 0.18 nM). While BACE inhibitor IV is better, it was designed to be very specific for
that one target. However, with an illness such as Alzheimer’s disease, which has many facets and
contributing factors, having multifunctional inhibitors that display activity against BACE1 and ChEs
is beneficial.

Table 3. Inhibition (IC50 values in µM, unless otherwise noted) of the activity of BACE1 by donepezil
and its analogues 7, and 8a–v. BACE inhibitor IV was used as a control.

Cpd IC50 (µM)

Donepezil HCl 1.5 ± 0.3

7 –

8a 95 ± 12

8b ~100

8c 6.1 ± 0.1

8d ~100

8e 7.9 ± 0.9

8f 7.9 ± 2.4

8g –

8h 58 ± 1

8i 58 ± 2

8j –

8k –

8l 3.4 ± 0.1

8m ~100

8n 12 ± 3

8o 21 ± 4

8p 34 ± 9

8q 37 ± 5

8r ~100

8s 30 ± 8

8t 169 ± 2

8u 91 ± 14

8v 29 ± 6

BACE1 inhibitor IV 0.63 ± 0.18 nM
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2.4. BACE1 Modeling

To aid in the understanding of donepezil and its analogues’ inhibitory activity of BACE1, we used
SwissDock to perform some modeling studies. Figure 1 shows the crystal structure (PDB# 4FM7 [25],
with a published inhibitor of BACE1 (published IC50 value = 0.1 µM). This inhibitor shares the
vicinyl dioxygen-substituted phenyl ring found in donepezil. Based on the results of the modeling,
the aromatic ring of donepezil aligns with that of the inhibitor originally co-crystallized with BACE1
(Figure 1A,B). When looking at the docking of donepezil (Figure 1C), it is apparent that is binds in a
similar location to the reported co-crystallized inhibitor (Figure 1B), albeit not as tightly as apparent by
the IC50 values, which are 10-fold different. When examining the docking of compound 8l (Figure 1D),
it is slightly twisted, likely due to the bulky 4-bromobenzyl substitution. This slight torsion could
explain the roughly doubled IC50 value of compound 8l when compared to that of donepezil. Based on
the modeling, there is also room for more optimization at this location, reasoning that modifications of
donepezil have the potential to yield better inhibitors than the parent compound if modified correctly.Molecules 2018, 23, x 7 of 22 
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Figure 1. Molecular docking showing the overlay of donepezil (green) and compound 8l (navy blue)
with the known BACE1 inhibitor (gray) crystallized with BACE1 (PDB# 4FM7 [25]), shown as ribbons.
Panel A shows the three compounds in the active site of BACE1. Panels B–D show the zoomed-in view
of the known inhibitor (B), donepezil (C), and compound 8l (D).

3. Materials and Methods

3.1. General Information

All chemicals were purchased from Sigma Aldrich (St. Louis, MO, USA), Alfa Aesar (Ward Hill,
MA, USA), and AK scientific (Union, CA, USA), and used without further purification. Chemical
reactions were monitored by thin layer chromatography (TLC) using Merck (Darmstadt, Germany),
Silica gel 60 F250 plates. Visualization was achieved using UV (model UVGL-58, UVP, Upland, CA,
USA) light and a ceric molybdate stain (5 g (NH4)2Ce(NO3)6, 120 g (NH4)6Mo7O24 4H2O, 80 mL
H2SO4, 720 mL H2O). 1H and 13C-NMR spectra were recorded at 400 and 100 MHz, respectively, on a
Varian 400 MHz spectrometer (Varian, Palo Alto, CA, USA), using the indicated deuterated solvents.
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Chemical shifts (δ) are given in parts per million (ppm). Coupling constants (J) are given in Hertz (Hz),
and conventional abbreviations used for signal shape are as follows: s = singlet; d = doublet; t = triplet;
m = multiplet; dd = doublet of doublets; ddd = doublet of doublet of doublets; br s = broad singlet;
dt = doublet of triplets. High-resolution mass spectra were recorded on an AB SCIEX Triple TOF 5600
System (AB SCIEX, Framingham, MA, USA). The purity of the compound was further confirmed to
be ≥95% by RP-HPLC (model 1260 Infinity, Agilent, Santa Clara, CA, USA) by using the following
method: Flow rate = 0.5 mL/min; λ = 254 nm; column = Vydac 201SPTM C18, 250 × 4.6 mm, 90A 5 µm;
eluents: A = H2O + 0.1% TFA, B = MeCN; gradient profile: starting from 5% B, increasing from 5% to
100% B over 17 min, holding at 100% for 5 min, decreasing from 100% to 5% over 3 min. Prior to each
injection, the HPLC column was equilibrated for 5 min with 5% B.

3.2. Synthesis of Compounds 2–8v

3.2.1. 3-(4-Hydroxy-3-methoxyphenyl)propanoic acid (2)

A catalytic amount of 10% Pd/C (0.43 g) was added to a solution of ferulic acid (1, 6.0 g, 30.9 mmol)
in degassed EtOAc (100 mL). The reaction flask was then sealed with a rubber septum and freed
of air. The reaction mixture was stirred at room temperature (RT) overnight under H2 atmosphere.
Upon completion, the reaction mixture was filtered through a bed of celite, and concentrated to
afford the known compound 2 [26] (6.1 g, quant.) as an off-white solid: 1H-NMR (400 MHz, CDCl3,
which matches the literature [26], Figure S1) δ 10.50 (very br s, 1H, CO2H), 6.82 (d, J = 7.6 Hz, 1H,
aromatic), 6.69 (s, 1H, aromatic), 6.68 (d, J = 7.6 Hz, 1H, aromatic), 5.60 (very br s, 1H, OH), 3.85 (s, 3H,
PhOCH3), 2.87 (t, J = 7.2 Hz, 2H, PhCH2CH2CO2H), 2.64 (t, J = 7.2 Hz, 2H, PhCH2CH2CO2H).

3.2.2. 6-Hydroxy-5-methoxy-2,3-dihydroinden-1-one (3)

A solution of compound 2 (6.3 g, 32.1 mmol) in methanesulfonic acid (50 mL) was refluxed at
120 ◦C for 1 h. After cooling to RT, the reaction mixture was poured into ice-water, stirred for 5 min,
and filtered to afford a crude dark brown solid, which was recrystallized from EtOH to afford the
known compound 3 [20] (3.8 g, 67%) as a yellow solid: 1H-NMR (400 MHz, (CD3)2SO, which matches
the lit. [20], Figure S2) δ 9.38 (s, 1H, OH), 7.03 (s, 1H, aromatic), 6.89 (s, 1H, aromatic), 3.83 (s, 3H,
OCH3), 2.92 (t, J = 5.6 Hz, 2H, CH2CH2C=O), 2.49 (t, J = 5.6 Hz, 2H, CH2CH2C=O).

3.2.3. 6-[tert-Butyl(dimethyl)silyl]oxy-5-methoxy-2,3-dihydroinden-1-one (4)

TBDMSCl (3.2 g, 21.3 mmol) was added to a solution of compound 3 (1.9 g, 10.7 mmol),
DMAP (0.5 g, 4.3 mmol) and Et3N (3.0 mL, 21.3 mmol) in freshly distilled CH2Cl2 (100 mL). The reaction
mixture was stirred at RT overnight before being quenched with H2O (100 mL). The organic layer
was separated, washed with H2O (2 × 100 mL) and brine (100 mL), dried over anhydrous Mg2SO4,
filtered, and concentrated under reduced pressure to afford a crude dark brown solid, which was
purified by flash column chromatography (SiO2 gel, pure hexanes to hexanes:EtOAc/3:1, Rf 0.44 in
Hexanes:EtOAc/3:1) to yield a brown solid, which was further triturated in hexanes to give compound
4 (2.8 g, 90%) as a white solid: 1H-NMR (400 MHz, CDCl3, Figure S3) δ 7.17 (s, 1H, aromatic), 6.84 (s, 1H,
aromatic), 3.87 (s, 3H, PhOCH3), 3.02 (app. t, J = 5.6 Hz, 2H, CH2CH2C=O), 2.64 (app. t, J = 5.6 Hz, 2H,
CH2CH2C=O), 0.98 (s, 9H, SiC(CH3)3), 0.14 (s, 6H, Si(CH3)2); 13C-NMR (100 MHz, CDCl3, Figure S4)
δ 205.7 (C=O), 157.5 (C), 150.9 (C), 145.2 (C), 130.0 (C), 114.1 (CH), 107.8 (CH), 55.6 (CH3), 36.6 (CH2),
25.62 (CH3, three carbons), 25.56 (CH2), 18.4 (C), −4.7 (CH3, two carbons); m/z calcd. for C16H25O3Si+

[M + H]+ 293.1567; found 293.1563.

3.2.4. (E)-2-[(1-Benzylpiperidin-4-yl)methylene]-6-hydroxy-5-methoxy-2,3-dihydroinden-1-one (6)

To a solution of compound 4 (1.00 g, 3.42 mmol) and N-benzylpiperidine-4-carboxaldehyde (5,
0.68 mL, 3.42 mmol) in EtOH (10 mL) was added KOH (0.5 g), and the mixture was refluxed at 65 ◦C.
After 1 h, the reaction was analyzed by TLC (CH2Cl2:MeOH/19:1, Rf 0.30 in CH2Cl2:MeOH/19:1).
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The reaction mixture was concentrated under reduced pressure to give a crude yellow solid, which was
re-dissolved in H2O (10 mL). 1 N aqueous HCl was then slowly added until pH 5 to yield a yellow
precipitate, which was recrystallized in MeCN to afford compound 6 (0.81 g, 65%) as a yellow solid:
1H-NMR (400 MHz, CDCl3, Figure S5) δ 7.32–7.24 (m, 6H, aromatic), 6.87 (s, 1H, aromatic), 6.63 (d,
J = 10.0 Hz, 1H, C=CH), 5.70 (br s, 1H, OH), 3.98 (s, 3H, OCH3), 3.56 (s, 2H), 3.51 (s, 2H), 2.91 (d,
J = 11.6 Hz, 2H), 2.30 (m, 1H), 2.04 (t, J = 11.6 Hz, 2H), 1.70–1.60 (m, 4H); 13C-NMR (100 MHz, CDCl3,
Figure S6) δ 192.6 (C=O), 152.6 (C), 145.8 (C), 143.4 (C), 139.9 (C), 138.2 (C), 135.5 (CH), 132.5 (CH),
129.2 (CH, two carbons), 128.2 (CH, two carbons), 127.0 (C), 108.7 (CH), 106.8 (CH), 63.5 (CH2),
56.2 (CH3), 53.1 (CH2, two carbons), 37.2 (CH2), 31.2 (CH2, two carbons), 29.5 (CH); m/z calcd. for
C23H26NO3

+ [M + H]+ 364.1907; found 364.1909.

3.2.5. 2-[(1-Benzylpiperidin-4-yl)methyl]-6-hydroxy-5-methoxy-2,3-dihydroinden-1-one (7)

To a solution of compound 6 (101 mg, 0.28 mmol) in degassed THF (2.5 mL), 10% Pd/C was added
(wet support, Sigma 520829-10G, 10 mg). The reaction flask was then sealed with a rubber septum
and freed of air. Thioanisole (14.2 × 10−7 mL, obtained using 5 µL of a stock solution comprising
14.2 µL of thioanisole in 50 mL of anhydrous THF) was added, and the reaction mixture was stirred
at RT overnight under H2 atmosphere. Upon completion, the reaction mixture was filtered through
a bed of celite, and concentrated to yield the known compound 7 (96 mg, 94%) as a yellow solid:
1H-NMR (400 MHz, CDCl3, Figure S7) δ 7.30–7.20 (m, 6H, aromatic), 6.82 (s, 1H, aromatic), 3.96 (s,
3H, OCH3), 3.49 (s, 2H, NCH2Ph), 3.20 (dd, J1 = 18.0 Hz, J2 = 7.6 Hz, 1H), 2.87 (m, 2H), 2.66 (dt,
J1 = 13.6 Hz, J2 = 3.6 Hz, 2H), 1.98–1.82 (m, 3H), 1.72–1.63 (m, 2H), 1.48 (m, 1H), 1.39–1.24 (m, 3H);
13C-NMR (100 MHz, CDCl3, Figure S8) δ 207.8 (C=O), 152.9 (C), 147.6 (C), 145.8 (C), 138.3 (C), 130.0 (C),
129.3 (CH, two carbons), 128.1 (CH, two carbons), 126.9 (CH), 108.1 (CH), 106.9 (CH), 63.4 (CH2),
56.2 (CH3), 53.7 (CH2, two carbons), 45.3 (CH), 38.7 (CH2), 34.4 (CH2), 33.4 (CH2), 32.9 (CH2), 31.7 (CH);
m/z calcd. for C23H28NO3

+ [M + H]+ 366.2064; found 366.2065. The purity of the compound was
further confirmed by RP-HPLC: Rt = 17.17 min (96%; Figure S9).

3.2.6. tert-Butyl N-(3-chloropropyl)carbamate (Boc-protected 3-chloropropylamine).

A solution of NaHCO3 (5.9 g, 70.8 mmol) in H2O (15 mL) was slowly added to a mixture of
3-chloropropylamine hydrochloride (1.0 g, 7.69 mmol), Boc2O (3.0 g, 13.8 mmol) and 1,4-dioxane
(10 mL). The resulting mixture was stirred at 60 ◦C for 3 h. The reaction mixture was then diluted with
H2O, and extracted with EtOAc (3×). The combined organic layers were washed with H2O (3×) and
brine (3×), dried over anhydrous MgSO4, filtered, and concentrated under reduced pressure. The crude
product obtained was purified by column chromatography (SiO2 gel, hexanes:EtOAc/5:1; Rf 0.31 in
hexanes:EtOAc/5:1) to yield the known compound tert-butyl N-(3-chloropropyl)carbamate [27] (0.55 g,
36%) as a colorless oil: 1H-NMR (400 MHz, CDCl3, which matches the lit. [27], Figure S10) δ 4.65
(br s, 1H, NH), 3.56 (t, J = 6.4 Hz, 2H, ClCH2CH2), 3.26 (q, J = 6.4 Hz, 2H, CH2CH2NHBoc), 1.94 (p,
J = 6.4 Hz, 2H, CH2CH2CH2), 1.42 (s, 9H, C(CH3)3).

3.2.7. 2-[(1-Benzylpiperidin-4-yl)methyl]-6-[(3-tert-butyl-N-propylcarbamate)oxy]-5-methoxy-2,3-
dihydroinden-1-one (Boc-protected compound 8a)

A solution of compound 7 (215 mg, 0.59 mmol), tert-butyl N-(3-chloropropyl)carbamate (228 mg,
1.18 mmol), Cs2CO3 (575 mg, 1.76 mmol), and TBAI (109 mg, 0.29 mmol) in anhydrous DMF (5 mL) was
stirred at RT overnight. The reaction mixture was then diluted with H2O, and extracted with EtOAc (3×).
The combined organic layers were washed with H2O (3×) and brine (3×), dried over anhydrous MgSO4,
filtered, and concentrated under reduced pressure. The crude product obtained was purified by column
chromatography (SiO2 gel, pure CH2Cl2 to CH2Cl2:MeOH/19:1; Rf 0.55 in CH2Cl2:MeOH/9:1) to yield
2-[(1-benzylpiperidin-4-yl)methyl]-6-[(3-tert-butyl-N-propylcarbamate)oxy]-5-methoxy-2,3-dihydroinden-
1-one (276 mg, 90%) as a white foam: 1H-NMR (400 MHz, CDCl3, Figure S11) δ 7.30–7.20 (m, 5H, aromatic),
7.11 (s, 1H, aromatic), 6.82 (s, 1H, aromatic), 5.52 (very br t, 1H, NH), 4.08 (t, J = 5.6 Hz, 2H, OCH2CH2),
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3.93 (s, 3H, OCH3), 3.49 (s, 2H, NCH2Ph), 3.34 (q, J = 5.2 Hz, 2H, CH2CH2NHBoc), 3.20 (dd, J1 = 17.6 Hz,
J2 = 8.0 Hz, 1H), 2.88 (m, 2H), 2.67 (m, 2H), 2.02–1.85 (m, 5H), 1.72–1.62 (m, 2H), 1.44 (s, 9H, C(CH3)3),
1.36–1.02 (m, 4H); 13C-NMR (100 MHz, CDCl3, Figure S12) δ 207.7 (C=O), 156.0 (CH), 155.6 (C=O),
148.9 (C), 148.4 (C), 138.3 (C), 129.2 (CH, two carbons), 128.1 (CH, three carbons), 126.9 (C), 107.4 (CH),
105.3 (CH), 78.9 (C), 68.3 (CH2), 63.4 (CH2), 56.0 (CH3), 53.74 (CH2), 53.72 (CH2), 45.4 (CH), 39.1 (CH2),
38.7 (CH2), 34.4 (CH2), 33.4 (CH2), 33.0 (CH2), 31.7 (CH), 29.0 (CH2), 28.5 (CH3, three carbons); m/z calcd.
for C31H43N2O5

+ [M + H]+ 523.3166; found 523.3131.

3.2.8. 6-[(3-Aminopropyl)oxy]-2-[(1-benzylpiperidin-4-yl)methyl]-5-methoxy-2,3-dihydroinden-1-
one (8a)

A solution of the 2-[(1-benzylpiperidin-4-yl)methyl]-6-[(3-tert-butyl-N-propylcarbamate)oxy]-5-
methoxy-2,3-dihydroinden-1-one (100 mg, 0.19 mmol) in CH2Cl2 (2 mL) was treated with TFA (1 mL)
and allowed to stir at RT for 5 min. The reaction was then quenched by addition of saturated aqueous
NaHCO3 and the resulting mixture was extracted with CH2Cl2 (3×). The combined organic layers
were washed with brine, dried over anhydrous MgSO4, filtered, and concentrated under reduced
pressure. The crude product obtained was purified by column chromatography (SiO2 gel, pure CH2Cl2
to CH2Cl2:MeOH/19:1; Rf 0.12 in CH2Cl2:MeOH/9:1) to yield compound 8a (53 mg, 65%) as a white
solid: 1H-NMR (400 MHz, CDCl3, Figure S13) δ 7.28–7.18 (m, 5H, aromatic), 7.13 (s, 1H, aromatic),
6.81 (s, 1H, aromatic), 4.09 (t, J = 6.4 Hz, 2H, OCH2CH2), 3.90 (s, 3H, OCH3), 3.47 (s, 2H, NCH2Ph),
3.19 (dd, J1 = 17.6 Hz, J2 = 8.0 Hz, 1H), 2.84–2.90 (m, 4H), 2.67 (m, 2H), 1.99–1.84 (m, 7H), 1.72–1.58
(m, 2H), 1.45 (m, 1H), 1.38–1.23 (m, 3H); 13C-NMR (100 MHz, CDCl3, Figure S14) δ 207.8 (C=O),
155.7 (C), 148.73 (C), 148.66 (C), 138.4 (C), 129.2 (CH, three carbons), 128.1 (CH, two carbons), 126.9 (C),
107.5 (CH), 105.6 (CH), 67.4 (CH2), 63.4 (CH2), 56.2 (CH3), 53.76 (CH2), 53.74 (CH2), 45.4 (CH),
39.4 (CH2), 38.7 (CH2), 34.4 (CH2), 33.3 (CH2), 33.0 (CH2), 32.5 (CH2), 31.8 (CH); m/z calcd. for
C26H35N2O3

+ [M + H]+ 423.2642; found 423.2656. The purity of the compound was further confirmed
by RP-HPLC: Rt = 15.86 min (96%; Figure S15).

3.2.9. tert-Butyl N-(2-chloroethyl)carbamate.

A solution of NaHCO3 (6.7 g, 79.3 mmol) in H2O (15 mL) was slowly added to a mixture
of 2-chloroethylamine hydrochloride (1.0 g, 8.6 mmol), Boc2O (3.4 g, 15.5 mmol) and 1,4-dioxane
(10 mL) at 0 ◦C. The resulting mixture was allowed to warm to RT and was stirred overnight.
The reaction mixture was then diluted with H2O, and extracted with CH2Cl2 (3×). The combined
organic layers were washed with H2O (3×) and brine (3×), dried over anhydrous MgSO4, filtered,
and concentrated under reduced pressure. The crude product obtained was purified by column
chromatography (SiO2 gel, Hexanes:EtOAc/9:1; Rf 0.55 in hexanes:EtOAc/4:1) to yield the known
compound tert-butyl N-(2-chloroethyl)carbamate [28] (1.25 g, 83%) as a colorless oil: 1H-NMR
(400 MHz, CDCl3, which matches the lit. [28], Figure S16) δ 4.94 (br s, 1H, NH), 3.57 (t, J = 6.0
Hz, 2H, ClCH2CH2), 3.44 (q, J = 6.0 Hz, 2H, CH2CH2NHBoc), 1.47 (s, 9H, C(CH3)3).

3.2.10. 2-[(1-Benzylpiperidin-4-yl)methyl]-6-[(3-tert-butyl-N-ethylcarbamate)oxy]-5-methoxy-2,3-
dihydroinden-1-one (Boc-protected compound 8b).

A solution of compound 7 (216 mg, 1.20 mmol), Cs2CO3 (196 mg, 0.60 mmol), and TBAI
(56 mg, 0.15 mmol) in anhydrous DMF (5 mL) was stirred at RT overnight. The reaction mixture
was then diluted with H2O, and extracted with EtOAc (3×). The combined organic layers were
washed with H2O (3×) and brine (3×), dried over anhydrous MgSO4, filtered, and concentrated under
reduced pressure. The crude product obtained was purified by column chromatography (SiO2 gel,
pure CH2Cl2 to CH2Cl2:MeOH/19:1; Rf 0.48 in CH2Cl2:MeOH/9:1) to yield 2-[(1-benzylpiperidin-
4-yl)methyl]-6-[(3-tert-butyl-N-ethylcarbamate)oxy]-5-methoxy-2,3-dihydroinden-1-one (93 mg, 61%) as
a pale yellow solid: 1H-NMR (400 MHz, CDCl3, Figure S17) δ 7.34–7.20 (m, 5H, aromatic), 7.14 (s, 1H,
aromatic), 6.83 (s, 1H, aromatic), 5.05 (m, 1H, NH), 4.05 (br t, 2H, OCH2CH2), 3.92 (s, 3H, OCH3), 3.53 (m,
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4H, NCH2Ph, CH2CH2NHBoc), 3.21 (dd, J1 = 17.2 Hz, J2 = 8.4 Hz, 1H), 2.90 (m, 2H), 2.67 (m, 2H), 1.99 (m,
2H), 1.88 (m, 1H), 1.69 (m, 2H), 1.43 (m, 10H), 1.37–1.23 (m, 3H); 13C-NMR (100 MHz, CDCl3, Figure S18)
δ 207.6 (C=O), 155.8 (C and C=O), 149.2 (C), 148.3 (C), 138.3 (C), 129.3 (CH, two carbons), 128.1 (CH,
three carbons), 126.9 (C), 107.7 (CH), 106.7 (CH), 79.5 (C), 68.8 (CH2), 63.4 (CH2), 56.1 (CH3), 53.7 (CH2,
two carbons), 45.4 (CH), 39.9 (CH2), 38.7 (CH2), 34.4 (CH2), 33.3 (CH2), 32.9 (CH2), 31.7 (CH), 28.4 (CH3,
three carbons); m/z calcd. for C30H41N2O5

+ [M + H]+ 509.3010; found 509.3025.

3.2.11. 6-[(3-Aminoethyl)oxy]-2-[(1-benzylpiperidin-4-yl)methyl]-5-methoxy-2,3-dihydroinden-1-
one (8b)

A solution of 2-[(1-benzylpiperidin-4-yl)methyl]-6-[(3-tert-butyl-N-ethylcarbamate)oxy]-5-
methoxy-2,3-dihydroinden-1-one (83 mg, 0.16 mmol) in CH2Cl2 (1 mL) was treated with TFA (1 mL)
and allowed to stir at RT. After 1 h, the reaction was analyzed by TLC (CH2Cl2:MeOH/9:1, Rf
0.19 in CH2Cl2:MeOH/9:1). The reaction was then quenched by addition of saturated aqueous
NaHCO3 and the resulting mixture was extracted with CH2Cl2 (3×). The combined organic layers
were washed with brine, dried over anhydrous MgSO4, filtered, and concentrated under reduced
pressure to yield compound 8b (62 mg, 93%) as a white solid: 1H-NMR (400 MHz, CDCl3, Figure
S19) δ 7.32–7.20 (m, 5H, aromatic), 7.15 (s, 1H, aromatic), 6.83 (s, 1H, aromatic), 4.03 (t, J = 5.2 Hz,
2H, OCH2CH2), 3.92 (s, 3H, OCH3), 3.57 (s, 2H, NCH2Ph), 3.21 (dd, J1 = 17.6 Hz, J2 = 8.0 Hz, 1H),
3.11 (t, J = 5.2 Hz, 2H, OCH2CH2), 2.95 (m, 2H), 2.67 (m, 2H), 2.03 (m, 2H), 1.89 (m, 1H), 1.71 (m,
2H), 1.52 (m, 2H), 1.44–1.23 (m, 4H); 13C-NMR (100 MHz, CDCl3, Figure S20) δ 207.7 (C=O), 155.8 (C),
148.9 (C), 148.6 (C), 138.1 (C), 129.3 (CH, four carbons), 129.2 (CH), 128.1 (CH, two carbons), 127.0 (C),
107.6 (CH), 106.0 (CH), 71.1 (CH2), 63.3 (CH2), 56.1 (CH3), 53.68 (CH2), 53.65 (CH2), 45.4 (CH),
41.2 (CH2), 38.6 (CH2), 34.3 (CH2), 33.3 (CH2), 32.8 (CH2), 31.7 (CH); m/z calcd. for C25H33N2O3

+

[M + H]+ 409.2486; found 409.2496. The purity of the compound was further confirmed by RP-HPLC:
Rt = 15.74 min (95%; Figure S21).

3.2.12. 2-[(1-Benzylpiperidin-4-yl)methyl]-5-methoxy-6-propoxy-2,3-dihydroinden-1-one (8c).

A solution of compound 7 (50 mg, 0.14 mmol) and K2CO3 (95 mg, 0.68 mmol) in anhydrous
DMF (5 mL) was treated with 1-bromopropane (0.06 mL, 0.68 mmol), and the resulting mixture
was stirred at RT overnight. The reaction mixture was then diluted with H2O, and extracted with
EtOAc (3×). The combined organic layers were washed with H2O (3×) and brine (3×), dried over
anhydrous MgSO4, filtered, and concentrated under reduced pressure. The crude product obtained
was purified by column chromatography (SiO2 gel, pure CH2Cl2 to CH2Cl2:MeOH/19:1; Rf 0.38 in
CH2Cl2:MeOH/19:1) to yield compound 8c (53 mg, 95%) as an off-white solid: 1H-NMR (400 MHz,
CDCl3, Figure S22) δ 7.32–7.20 (m, 5H, aromatic), 7.13 (s, 1H, aromatic), 6.82 (s, 1H, aromatic), 3.98 (t,
J = 6.8 Hz, 2H, CH3CH2CH2OAr), 3.92 (s, 3H, OCH3), 3.51 (s, 2H, NCH2Ph), 3.20 (dd, J1 = 17.6 Hz,
J2 = 8.4 Hz, 1H), 2.90 (m, 2H), 2.66 (dt, J1 = 14.0 Hz, J2 = 3.6 Hz, 2H), 1.98 (m, 2H), 1.90 (m, 1H),
1.85 (sextet, J = 7.2 Hz, 2H, CH3CH2CH2OAr), 1.73–1.64 (m, 2H), 1.49 (m, 1H), 1.40–1.24 (m, 3H), 1.02 (t,
J = 7.2 Hz, 3H, CH3CH2CH2OAr); 13C-NMR (100 MHz, CDCl3, Figure S23) δ 207.8 (C=O), 155.8 (C),
148.9 (C), 148.5 (C), 129.3 (CH, two carbons), 129.2 (C), 128.2 (CH, three carbons), 127.1 (C), 107.5 (CH),
105.5 (CH), 70.5 (CH2), 63.2 (CH2), 56.2 (CH3), 53.7 (CH2), 53.6 (CH2), 45.4 (CH), 38.6 (CH2), 34.3
(CH2), 33.3 (CH2), 32.7 (CH2), 31.6 (CH), 22.2 (CH2), 10.3 (CH3); m/z calcd. for C26H34NO3

+ [M + H]+

408.2533; found 408.2524. The purity of the compound was further confirmed by RP-HPLC: Rt = 19.30
min (96%; Figure S24).

3.2.13. 2-[(1-Benzylpiperidin-4-yl)methyl]-6-[(chloroethyl)oxy]-5-methoxy-2,3-dihydroinden-1-one (8d)

A solution of compound 7 (50 mg, 0.14 mmol) and K2CO3 (189 mg, 1.37 mmol) in anhydrous
DMF (5 mL) was treated with 1,2-dichloroethane (0.11 mL, 1.37 mmol), and the resulting mixture
was stirred at RT overnight. The reaction mixture was then diluted with H2O, and extracted with
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CH2Cl2 (3×). The combined organic layers were washed with H2O (3×) and brine (3×), dried over
anhydrous MgSO4, filtered, and concentrated under reduced pressure. The crude product obtained
was purified by column chromatography (SiO2 gel, pure CH2Cl2 to CH2Cl2:MeOH/19:1; Rf 0.38 in
CH2Cl2:MeOH/19:1) to yield compound 8d (50 mg, 85%) as a brown oil: 1H-NMR (400 MHz, CDCl3,
Figure S25) δ 7.30–7.20 (m, 5H, aromatic), 7.14 (s, 1H, aromatic), 6.84 (s, 1H, aromatic), 4.25 (t, J = 6.0 Hz,
2H), 3.91 (s, 3H, OCH3), 3.82 (t, J = 6.0 Hz, 2H), 3.49 (s, 2H, NCH2Ph), 3.20 (dd, J1 = 17.6 Hz, J2 = 8.4 Hz,
1H), 2.88 (m, 2H), 2.66 (dt, J1 = 14.4 Hz, J2 = 2.8 Hz, 2H), 1.99–1.93 (m, 2H), 1.92–1.85 (m, 1H), 1.72–1.63
(m, 2H), 1.47 (m, 1H), 1.40–1.23 (m, 3H); 13C-NMR (100 MHz, CDCl3, Figure S26) δ 207.6 (C=O),
155.9 (C), 149.5 (C), 148.0 (C), 138.1 (C), 129.3 (CH, two carbons), 129.2 (CH), 128.1 (CH, two carbons),
127.0 (C), 107.9 (CH), 106.6 (CH), 69.0 (CH2), 63.3 (CH2), 56.2 (CH3), 53.68 (CH2), 53.65 (CH2), 45.4 (CH),
41.4 (CH2), 38.6 (CH2), 34.3 (CH2), 33.3 (CH2), 32.8 (CH2), 31.7 (CH); m/z calcd. for C25H31ClNO3

+

[M + H]+ 428.1987; found 428.1984. The purity of the compound was further confirmed by RP-HPLC:
Rt = 18.90 min (96%; Figure S27).

3.2.14. 2-[(1-Benzylpiperidin-4-yl)methyl]-6-[(bromoethyl)oxy]-5-methoxy-2,3-dihydroinden-1-
one (8e)

A solution of compound 7 (100 mg, 0.27 mmol) and K2CO3 (380 mg, 2.74 mmol) in anhydrous
DMF (5 mL) was treated with 1,2-dibromoethane (0.24 mL, 2.74 mmol) and the resulting mixture
was stirred at RT overnight. The reaction mixture was then diluted with H2O, and extracted with
CH2Cl2 (3×). The combined organic layers were washed with H2O (3×) and brine (3×), dried over
anhydrous MgSO4, filtered, and concentrated under reduced pressure. The crude product obtained
was purified by column chromatography (SiO2 gel, pure CH2Cl2 to CH2Cl2:MeOH/19:1; Rf 0.49 in
CH2Cl2:MeOH/19:1) to yield compound 8e (70 mg, 54%) as an off-white solid: 1H-NMR (400 MHz,
CDCl3, Figure S28) δ 7.30-7.20 (m, 5H, aromatic), 7.15 (s, 1H, aromatic), 6.85 (s, 1H, aromatic), 4.32 (t,
J = 6.4 Hz, 2H), 3.93 (s, 3H, OCH3), 3.65 (t, J = 6.4 Hz, 2H), 3.49 (s, 2H, NCH2Ph), 3.21 (dd, J1 = 17.6 Hz,
J2 = 8.0 Hz, 1H), 2.88 (m, 2H), 2.67 (dt, J1 = 14.0 Hz, J2 = 2.8 Hz, 2H), 1.98–1.86 (m, 3H), 1.72–1.62 (m,
2H), 1.47 (m, 1H), 1.40–1.24 (m, 3H); 13C-NMR (100 MHz, CDCl3, Figure S29) δ 207.6 (C=O), 155.9 (C),
149.5 (C), 147.8 (C), 138.4 (C), 129.2 (CH, 3 carbons), 128.1 (CH, 2 carbons), 126.9 (C), 108.0 (CH),
106.6 (CH), 68.8 (CH2), 63.4 (CH2), 56.3 (CH3), 53.75 (CH2), 53.72 (CH2), 45.4 (CH), 38.7 (CH2),
34.4 (CH2), 33.4 (CH2), 33.0 (CH2), 31.8 (CH), 28.4 (CH2); m/z calcd. for C25H31BrNO3

+ [M + H]+

472.1482; found 472.1477. The purity of the compound was further confirmed by RP-HPLC: Rt = 19.10
min (97%; Figure S30).

3.2.15. 2-[(1-Benzylpiperidin-4-yl)methyl]-6-[(bromobutyl)oxy]-5-methoxy-2,3-dihydroinden-1-one (8f)

A solution of compound 7 (50 mg, 0.14 mmol) and K2CO3 (189 mg, 1.37 mmol) in anhydrous
DMF (5 mL) was treated with 1,4-dibromobutane (0.16 mL, 1.37 mmol), and the resulting mixture
was stirred at RT overnight. The reaction mixture was then diluted with H2O, and extracted with
CH2Cl2 (3×). The combined organic layers were washed with H2O (3×) and brine (3×), dried over
anhydrous MgSO4, filtered, and concentrated under reduced pressure. The crude product obtained
was purified by column chromatography (SiO2 gel, pure CH2Cl2 to CH2Cl2:MeOH/19:1; Rf 0.38 in
CH2Cl2:MeOH/19:1) to yield compound 8f (63 mg, 93%) as an off-white solid: 1H-NMR (400 MHz,
CDCl3, Figure S31) δ 7.32–7.22 (m, 5H, aromatic), 7.13 (s, 1H, aromatic), 6.83 (s, 1H, aromatic), 4.04 (t,
J = 6.4 Hz, 2H), 3.92 (s, 3H, OCH3), 3.52 (s, 2H, NCH2Ph), 3.48 (t, J = 6.4 Hz, 2H), 3.20 (dd, J1 = 17.6 Hz,
J2 = 8.0 Hz, 1H), 2.90 (m, 2H), 2.67 (m, 2H), 2.10–1.93 (m, 6H), 1.92–1.85 (m, 1H), 1.73–1.64 (m, 2H),
1.48 (m, 1H), 1.40–1.23 (m, 3H); 13C-NMR (100 MHz, CDCl3, Figure S32) δ 207.8 (C=O), 155.8 (C),
148.8 (C), 148.6 (C), 129.4 (CH, two carbons), 129.2 (C), 128.2 (CH, three carbons), 127.2 (C), 107.5 (CH),
105.6 (CH), 68.0 (CH2), 63.2 (CH2), 56.2 (CH3), 53.6 (CH2, two carbons), 45.3 (CH), 38.6 (CH2),
34.2 (CH2), 33.3 (CH2, two carbons), 32.6 (CH2), 31.5 (CH), 29.4 (CH2), 27.6 (CH2); m/z calcd. for
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C27H35BrNO3
+ [M + H]+ 500.1795; found 500.1794. The purity of the compound was further confirmed

by RP-HPLC: Rt = 20.22 min (95%; Figure S33).

3.2.16. 2-[(1-Benzylpiperidin-4-yl)methyl]-6-[(bromododecyl)oxy]-5-methoxy-2,3-dihydroinden-1-
one (8g)

A solution of compound 7 (100 mg, 0.27 mmol) and K2CO3 (380 mg, 2.74 mmol) in anhydrous
DMF (5 mL) was treated with 1,12-dibromododecane (900 mg, 2.74 mmol) and the resulting mixture
was stirred at RT overnight. The reaction mixture was then diluted with H2O, and extracted with
CH2Cl2 (3×). The combined organic layers were washed with H2O (3×) and brine (3×), dried over
anhydrous MgSO4, filtered, and concentrated under reduced pressure. The crude product obtained
was purified by column chromatography (SiO2 gel, pure CH2Cl2 to CH2Cl2:MeOH/19:1; Rf 0.49 in
CH2Cl2:MeOH/19:1) to yield compound 8g (53 mg, 32%) as an off-white solid: 1H-NMR (400 MHz,
CDCl3, Figure S34) δ 7.32–7.22 (m, 5H, aromatic), 7.13 (s, 1H, aromatic), 6.82 (s, 1H, aromatic), 3.99 (t,
J = 6.8 Hz, 2H), 3.92 (s, 3H, OCH3), 3.53 (s, 2H, NCH2Ph), 3.38 (t, J = 6.8 Hz, 2H), 3.20 (dd, J1 = 17.6 Hz,
J2 = 8.0 Hz, 1H), 2.91 (m, 2H), 2.66 (dt, J1 = 14.0 Hz, J2 = 3.6 Hz, 2H), 1.99 (m, 2H), 1.92–1.78 (m, 5H),
1.78–1.62 (m, 3H), 1.44–1.38 (m, 6H), 1.36–1.22 (m, 13H); 13C-NMR (100 MHz, CDCl3, Figure S35) δ
207.8 (C=O), 155.8 (C), 148.9 (C), 148.5 (C), 129.3 (CH, two carbons), 129.2 (C), 128.2 (CH, three carbons),
127.1 (C), 107.4 (CH), 105.5 (CH), 69.1 (CH2), 63.2 (CH2), 56.2 (CH3), 53.6 (CH2, two carbons),
45.4 (CH), 38.6 (CH2), 34.3 (CH2), 34.1 (CH2), 33.3 (CH2), 32.8 (CH2), 32.6 (CH2), 31.6 (CH), 29.5 (CH2,
two carbons), 29.4 (CH2), 29.3 (CH2), 28.9 (CH2), 28.7 (CH2), 28.1 (CH2), 26.9 (CH2), 25.9 (CH2);
m/z calcd. for C35H51BrNO3

+ [M + H]+ 612.3047; found 612.3045. The purity of the compound was
further confirmed by RP-HPLC: Rt = 25.00 min (96%; Figure S36).

3.2.17. 6-[(Benzyl)oxy-2-[(1-benzylpiperidin-4-yl)methyl]-5-methoxy-2,3-dihydroinden-1-one (8h)

A solution of compound 7 (50 mg, 0.14 mmol) and K2CO3 (38 mg, 0.27 mmol) in anhydrous DMF
(5 mL) was treated with benzyl bromide (20 µL, 0.16 mmol), and the resulting mixture was stirred
at RT overnight. The reaction mixture was then diluted with H2O, and extracted with EtOAc (3×).
The combined organic layers were washed with H2O (3×) and brine (3×), dried over anhydrous
MgSO4, and filtered. After standing at RT overnight, white solids precipitated out, which were
filtered off. The filtrate was further concentrated under reduced pressure, and purified by column
chromatography (SiO2 gel, pure CH2Cl2 to CH2Cl2:MeOH/19:1; Rf 0.37 in CH2Cl2:MeOH/19:1) to
yield compound 8h (51 mg, 82%) as an off-white solid: 1H-NMR (400 MHz, CDCl3, Figure S37) δ
7.42 (d, J = 7.6 Hz, 2H, aromatic), 7.35 (t, J = 7.6 Hz, 2H, aromatic), 7.31–7.28 (m, 5H, aromatic),
7.24 (s, 1H, aromatic), 7.19 (s, 1H, aromatic), 6.85 (s, 1H, aromatic), 5.13 (s, 2H, OCH2Ph), 3.93 (s,
3H, OCH3), 3.51 (s, 2H, NCH2Ph), 3.20 (dd, J1 = 17.6 Hz, J2 = 8.4 Hz, 1H), 2.89 (m, 2H), 2.63 (dt,
J1 = 14.0 Hz, J2 = 4.0 Hz, 2H), 1.97 (m, 2H), 1.88 (m, 1H), 1.73–1.64 (m, 2H), 1.48 (m, 1H), 1.40–1.23 (m,
3H); 13C-NMR (100 MHz, CDCl3, Figure S38) δ 207.6 (C=O), 156.0 (C), 148.9 (C), 148.5 (C), 136.3 (C),
129.4 (CH, two carbons), 129.2 (C), 128.6 (CH, two carbons), 128.2 (CH, two carbons), 128.0 (CH,
two carbons), 127.4 (CH, two carbons), 127.1 (C), 107.6 (CH), 106.4 (CH), 70.8 (CH2), 63.2 (CH2),
56.2 (CH3), 53.6 (CH2, two carbons), 45.3 (CH), 38.6 (CH2), 34.3 (CH2), 33.4 (CH2), 32.7 (CH2), 31.6 (CH);
m/z calcd. for C30H34NO3

+ [M + H]+ 456.2533; found 456.2528. The purity of the compound was
further confirmed by RP-HPLC: Rt = 20.05 min (96%; Figure S39).

3.2.18. 2-[(1-Benzylpiperidin-4-yl)methyl]-5-methoxy-6-[(4-methylbenzyl)oxy-2,3-dihydroinden-1-
one (8i)

A solution of compound 7 (50 mg, 0.14 mmol) and K2CO3 (38 mg, 0.27 mmol) in anhydrous DMF
(5 mL) was treated with 4-methylbenzyl bromide (30 mg, 0.16 mmol), and the resulting mixture was
stirred at RT overnight. The reaction mixture was then diluted with H2O, and extracted with CH2Cl2
(3×). The combined organic layers were washed with H2O (3×) and brine (3×), dried over anhydrous
MgSO4, and filtered. After standing at RT overnight, the white solids precipitated out, which were
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filtered off. The filtrate was further concentrated under reduced pressure, and purified by column
chromatography (SiO2 gel, pure CH2Cl2 to CH2Cl2:MeOH/19:1; Rf 0.35 in CH2Cl2:MeOH/19:1) to
yield compound 8i (37 mg, 58%) as an off-white solid: 1H-NMR (400 MHz, CDCl3, Figure S40) δ 7.31
(d, J = 8.0 Hz, 2H, aromatic), 7.31–7.29 (m, 4H, aromatic), 7.24 (s, 1H, aromatic), 7.18 (s, 1H, aromatic),
7.15 (d, J = 8.0 Hz, 2H, aromatic), 6.83 (s, 1H, aromatic), 5.09 (s, 2H, OCH2Ph), 3.92 (s, 3H, OCH3),
3.51 (s, 2H, NCH2Ph), 3.20 (dd, J1 = 17.6 Hz, J2 = 8.4 Hz, 1H), 2.89 (m, 2H), 2.63 (dt, J1 = 13.6 Hz, J2 = 3.6
Hz, 2H), 2.32 (s, 3H, CH3Ph), 1.97 (m, 2H), 1.91–1.84 (m, 1H), 1.72–1.64 (m, 2H), 1.47 (m, 1H), 1.40–1.23
(m, 3H); 13C-NMR (100 MHz, CDCl3, Figure S41) δ 207.6 (C=O), 156.0 (C), 148.9 (C), 148.5 (C), 137.8 (C),
133.3 (C), 129.30 (CH, two carbons), 129.25 (CH, two carbons), 129.17 (C), 128.2 (CH, three carbons),
127.5 (CH, 2 carbons), 127.0 (C), 107.6 (CH), 106.4 (CH), 70.7 (CH2), 63.3 (CH2), 56.2 (CH3), 53.7 (CH2,
2 carbons), 45.4 (CH), 38.7 (CH2), 34.3 (CH2), 33.4 (CH2), 32.8 (CH2), 31.7 (CH), 21.2 (CH3); m/z calcd. for
C31H36NO3

+ [M + H]+ 470.2690; found 470.2681. The purity of the compound was further confirmed
by RP-HPLC: Rt = 20.65 min (95%; Figure S42).

3.2.19. 2-[(1-Benzylpiperidin-4-yl)methyl]-5-methoxy-6-[(4-methoxybenzyl)oxy-2,3-dihydroinden-1-
one (8j)

A solution of compound 7 (50 mg, 0.14 mmol) and K2CO3 (189 mg, 1.37 mmol) in anhydrous DMF
(5 mL) was treated with 4-methoxybenzyl chloride (0.19 mL, 1.37 mmol), and the resulting mixture
was stirred at RT overnight. The reaction mixture was then diluted with H2O, and extracted with
CH2Cl2 (3×). The combined organic layers were washed with H2O (3×) and brine (3×), dried over
anhydrous MgSO4, filtered, and concentrated under reduced pressure. The crude product obtained
was purified by column chromatography (SiO2 gel, pure CH2Cl2 to CH2Cl2:MeOH/19:1; Rf 0.30 in
CH2Cl2:MeOH/19:1) to yield compound 8j (24 mg, 36%) as an off-white solid: 1H-NMR (400 MHz,
CDCl3, Figure S43) δ 7.34 (d, J = 8.8 Hz, 2H, aromatic), 7.33–7.26 (m, 5H, aromatic), 7.19 (s, 1H,
aromatic), 6.87 (d, J = 8.8 Hz, 2H, aromatic), 6.83 (s, 1H, aromatic), 5.05 (s, 2H, OCH2Ph), 3.91 (s, 3H,
OCH3), 3.78 (s, 3H, OCH3), 3.56 (s, 2H, NCH2Ph), 3.20 (dd, J1 = 17.6 Hz, J2 = 8.4 Hz, 1H), 2.95 (m, 2H),
2.65 (dt, J1 = 13.6 Hz, J2 = 3.6 Hz, 2H), 2.08–1.98 (m, 2H), 1.92–1.82 (m, 1H), 1.76–1.64 (m, 2H), 1.53 (m,
1H), 1.40–1.23 (m, 3H); 13C-NMR (100 MHz, CDCl3, Figure S44) δ 207.6 (C=O), 159.5 (C), 156.0 (C),
148.9 (C), 148.5 (C), 137.2 (C), 129.5 (CH, two carbons), 129.2 (CH, two carbons), 129.1 (C), 128.4 (CH),
128.2 (CH, two carbons), 127.3 (C), 114.0 (CH, 2 carbons), 107.6 (CH), 106.5 (CH), 70.6 (CH2), 63.1 (CH2),
56.2 (CH3), 55.3 (CH3), 53.6 (CH2), 53.5 (CH2), 45.3 (CH), 38.6 (CH2), 34.1 (CH2), 33.4 (CH2), 32.4 (CH2),
31.4 (CH); m/z calcd. for C31H36NO4

+ [M + H]+ 486.2639; found 486.2635. The purity of the compound
was further confirmed by RP-HPLC: Rt = 19.93 min (95%; Figure S45).

3.2.20. 2-[(1-Benzylpiperidin-4-yl)methyl]-5-methoxy-6-[(4-nitrobenzyl)oxy-2,3-dihydroinden-1-
one (8k).

A solution of compound 7 (50 mg, 0.14 mmol) and K2CO3 (38 mg, 0.27 mmol) in anhydrous DMF
(5 mL) was treated with 4-nitrobenzyl bromide (35 mg, 0.16 mmol), and the resulting mixture was
stirred at RT overnight. The reaction mixture was then diluted with H2O, and extracted with EtOAc
(3×). The combined organic layers were washed with H2O (3×) and brine (3×), dried over anhydrous
MgSO4, and filtered. After standing at RT overnight, white solids precipitated out, which were
filtered off. The filtrate was further concentrated under reduced pressure and purified by column
chromatography (SiO2 gel, pure CH2Cl2 to CH2Cl2:MeOH/19:1; Rf 0.37 in CH2Cl2:MeOH/19:1)
to yield compound 8k (44 mg, 65%) as a brown foam: 1H-NMR (400 MHz, CDCl3, Figure S46) δ
8.22 (d, J = 8.4 Hz, 2H, aromatic), 7.60 (d, J = 8.4 Hz, 2H, aromatic), 7.31–7.28 (m, 4H, aromatic),
7.24 (s, 1H, aromatic), 7.14 (s, 1H, aromatic), 6.88 (s, 1H, aromatic), 5.23 (s, 2H, OCH2Ph), 3.97 (s,
3H, OCH3), 3.50 (s, 2H, NCH2Ph), 3.22 (dd, J1 = 17.6 Hz, J2 = 8.0 Hz, 1H), 2.89 (m, 2H), 2.68 (m,
2H), 1.96 (m, 2H), 1.87 (m, 1H), 1.72–1.63 (m, 2H), 1.47 (m, 1H), 1.36–1.23 (m, 3H); 13C-NMR (100
MHz, CDCl3, Figure S47) δ 207.5 (C=O), 155.9 (C), 149.5 (C), 147.8 (C), 147.6 (C), 143.8 (C), 129.3 (CH),
129.2 (CH), 128.2 (CH, two carbons), 127.5 (CH, three carbons), 127.0 (C), 123.9 (CH, two carbons +
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C), 107.9 (CH), 106.6 (CH), 69.5 (CH2), 63.3 (CH2), 56.3 (CH3), 53.7 (CH2, two carbons), 45.4 (CH),
38.6 (CH2), 34.3 (CH2), 33.4 (CH2), 32.8 (CH2), 31.6 (CH); m/z calcd. for C30H33N2O5

+ [M + H]+

501.2384; found 501.2385. The purity of the compound was further confirmed by RP-HPLC: Rt = 19.98
min (96%; Figure S48).

3.2.21. 2-[(1-Benzylpiperidin-4-yl)methyl]-6-[(4-bromobenzyl)oxy-5-methoxy-2,3-dihydroinden-1-
one (8l)

A solution of compound 7 (50 mg, 0.14 mmol) and K2CO3 (38 mg, 0.27 mmol) in anhydrous DMF
(5 mL) was treated with 4-bromobenzyl bromide (41 mg, 0.16 mmol) and the resulting mixture was
stirred at RT overnight. The reaction mixture was then diluted with H2O, and extracted with EtOAc
(3×). The combined organic layers were washed with H2O (3×) and brine (3×), dried over anhydrous
MgSO4, and filtered. After standing at RT overnight, white solids precipitated out, which were
filtered off. The filtrate was further concentrated under reduced pressure and purified by column
chromatography (SiO2 gel, pure CH2Cl2 to CH2Cl2:MeOH/19:1; Rf 0.37 in CH2Cl2:MeOH/19:1) to
yield compound 8l (61 mg, 84%) as an off-white solid: 1H-NMR (400 MHz, CDCl3, Figure S49) δ
7.47 (d, J = 8.4 Hz, 2H, aromatic), 7.30 (d, J = 8.4 Hz, 2H, aromatic), 7.31–7.28 (m, 4H, aromatic),
7.24 (s, 1H, aromatic), 7.14 (s, 1H, aromatic), 6.85 (s, 1H, aromatic), 5.07 (s, 2H, OCH2Ph), 3.94 (s,
3H, OCH3), 3.51 (s, 2H, NCH2Ph), 3.21 (dd, J1 = 17.6 Hz, J2 = 8.4 Hz, 1H), 2.89 (m, 2H), 2.67 (dt,
J1 = 14.4 Hz, J2 = 4.0 Hz, 2H), 1.96 (m, 2H), 1.87 (m, 1H), 1.72–1.63 (m, 2H), 1.47 (m, 1H), 1.40–1.23 (m,
3H); 13C-NMR (100 MHz, CDCl3, Figure S50) δ 207.6 (C=O), 155.9 (C), 149.1 (C), 148.2 (C), 135.4 (C),
131.7 (CH, two carbons + C), 129.4 (CH), 129.2 (CH), 129.0 (CH, three carbons), 128.2 (CH, two carbons),
127.1 (C), 122.0 (C), 107.7 (CH), 106.5 (CH), 70.1 (CH2), 63.2 (CH2), 56.2 (CH3), 53.6 (CH2, two carbons),
45.3 (CH), 38.6 (CH2), 34.2 (CH2), 33.4 (CH2), 32.7 (CH2), 31.6 (CH); m/z calcd. for C30H33BrNO3

+ [M
+ H]+ 534.1638; found 534.1650. The purity of the compound was further confirmed by RP-HPLC:
Rt = 21.05 min (96%; Figure S51).

3.2.22. 2-[(1-Benzylpiperidin-4-yl)methyl]-6-[(4-fluorobenzyl)oxy-5-methoxy-2,3-dihydroinden-1-
one (8m)

A solution of compound 7 (50 mg, 0.14 mmol) and K2CO3 (38 mg, 0.27 mmol) in anhydrous DMF
(5 mL) was treated with 4-fluorobenzyl bromide (20 µL, 0.16 mmol), and the resulting mixture was
stirred at RT overnight. The reaction mixture was then diluted with H2O, and extracted with EtOAc
(3×). The combined organic layers were washed with H2O (3×) and brine (3×), dried over anhydrous
MgSO4, and filtered. The filtrate was concentrated under reduced pressure and purified by column
chromatography (SiO2 gel, pure CH2Cl2 to CH2Cl2:MeOH/19:1; Rf 0.31 in CH2Cl2:MeOH/19:1) to
yield compound 8m (56 mg, 86%) as an off-white solid: 1H-NMR (400 MHz, CDCl3, Figure S52) δ 7.40
(dd, J1 = 8.8 Hz, J2 = 5.6 Hz, 2H, aromatic), 7.30 (m, 4H, aromatic), 7.24 (s, 1H, aromatic), 7.18 (s, 1H,
aromatic), 7.04 (t, J = 8.8 Hz, 2H, aromatic), 6.85 (s, 1H, aromatic), 5.08 (s, 2H, OCH2Ph), 3.93 (s, 3H,
OCH3), 3.51 (s, 2H, NCH2Ph), 3.21 (dd, J1 = 17.6 Hz, J2 = 8.4 Hz, 1H), 2.90 (m, 2H), 2.67 (dt, J1 = 14.0
Hz, J2 = 3.6 Hz, 2H), 1.98 (m, 2H), 1.88 (m, 1H), 1.69 (m, 2H), 1.49 (m, 1H), 1.36–1.23 (m, 3H); 13C-NMR
(100 MHz, CDCl3, Figure S53) δ 207.6 (C=O), 163.8–161.3 (d, 1JC-F = 245.2 Hz, C, one carbon), 155.9 (C),
149.1 (C), 148.3 (C), 138.1 (C), 132.14–132.11 (d, 4JC-F = 3.8 Hz, C, one carbon), 129.4–129.27 (d, 3JC-F =
8.4 Hz, CH, two carbons), 129.28 (CH, two carbons), 129.2 (CH), 128.2 (CH, two carbons), 127.0 (C),
115.6–115.4 (d, 2JC-F = 21.2 Hz, CH, two carbons), 107.7 (CH), 106.4 (CH), 70.1 (CH2), 63.3 (CH2),
56.2 (CH3), 53.70 (CH2), 53.68 (CH2), 45.4 (CH), 38.7 (CH2), 34.3 (CH2), 33.3 (CH2), 32.8 (CH2),
31.7 (CH); m/z calcd. C30H33FNO3

+ [M + H]+ 474.2439; found 474.2442. The purity of the compound
was further confirmed by RP-HPLC: Rt = 20.14 min (96%; Figure S54).
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3.2.23. 2-[(1-Benzylpiperidin-4-yl)methyl]-6-[(3-fluorobenzyl)oxy-5-methoxy-2,3-dihydroinden-1-
one (8n)

A solution of compound 7 (50 mg, 0.14 mmol) and K2CO3 (38 mg, 0.27 mmol) in anhydrous DMF
(5 mL) was treated with 3-fluorobenzyl bromide (20 µL, 0.16 mmol), and the resulting mixture was
stirred at RT overnight. The reaction mixture was then diluted with H2O, and extracted with EtOAc
(3×). The combined organic layers were washed with H2O (3×) and brine (3×), dried over anhydrous
MgSO4, and filtered. After standing at RT overnight, the white solids precipitated out, which were
filtered off. The filtrate was further concentrated under reduced pressure, and purified by column
chromatography (SiO2 gel, pure CH2Cl2 to CH2Cl2:MeOH/19:1; Rf 0.31 in CH2Cl2:MeOH/19:1) to
yield compound 8n (57 mg, 88%) as an off-white solid: 1H-NMR (400 MHz, CDCl3, Figure S55) δ
7.34–7.26 (m, 5H, aromatic), 7.24 (s, 1H, aromatic), 7.18–7.12 (m, 3H, aromatic), 6.98 (td, J1 = 8.4 Hz,
J2 = 2.4 Hz, 1H, aromatic), 6.86 (s, 1H, aromatic), 5.12 (s, 2H, OCH2Ph), 3.95 (s, 3H, OCH3), 3.54 (s,
2H, NCH2Ph), 3.21 (dd, J1 = 17.6 Hz, J2 = 8.0 Hz, 1H), 2.92 (m, 2H), 2.67 (dt, J1 = 14.4 Hz, J2 = 4.4 Hz,
2H), 2.0 (m, 2H), 1.87 (m, 1H), 1.73–1.66 (m, 2H), 1.50 (m, 1H), 1.40-1.26 (m, 3H); 13C-NMR (100 MHz,
CDCl3, Figure S56) δ 207.6 (C=O), 164.2–161.8 (d, 1JC-F = 245.2 Hz, C, 1 carbon), 155.9 (C), 149.2 (C),
148.2 (C), 139.0–138.9 (d, 3JC-F = 7.6 Hz, C, one carbon), 137.4 (C), 130.2–130.1 (d, 3JC-F = 7.6 Hz, CH,
one carbon), 129.4 (CH, two carbons), 129.1 (CH), 128.2 (CH, two carbons), 127.2 (C), 122.7–122.6 (d,
4JC-F = 3.1 Hz, CH, one carbon), 115.0–114.8 (d, 2JC-F = 20.5 Hz, CH, one carbon), 114.2–114.0 (d, 2JC-F =
22.0 Hz, CH, one carbon), 107.7 (CH), 106.4 (CH), 69.9 (CH2), 63.1 (CH2), 56.2 (CH3), 53.6 (CH2), 53.5
(CH2), 45.3 (CH), 38.6 (CH2), 34.2 (CH2), 33.4 (CH2), 32.5 (CH2), 31.5 (CH); m/z calcd. for C30H33FNO3

+

[M + H]+ 474.2439; found 474.2426. The purity of the compound was further confirmed by RP-HPLC:
Rt = 20.20 min (96%; Figure S57).

3.2.24. 2-[(1-Benzylpiperidin-4-yl)methyl]-6-[(2-fluorobenzyl)oxy-5-methoxy-2,3-dihydroinden-1-
one (8o)

A solution of compound 7 (50 mg, 0.14 mmol) and K2CO3 (38 mg, 0.27 mmol) in anhydrous DMF
(5 mL) was treated with 2-fluorobenzyl bromide (20 µL, 0.16 mmol), and the resulting mixture was
stirred at RT overnight. The reaction mixture was then diluted with H2O, and extracted with EtOAc
(3×). The combined organic layers were washed with H2O (3×) and brine (3×), dried over anhydrous
MgSO4, and filtered. After standing at RT overnight, white solids precipitated out, which were
filtered off. The filtrate was further concentrated under reduced pressure and purified by column
chromatography (SiO2 gel, pure CH2Cl2 to CH2Cl2:MeOH/19:1; Rf 0.31 in CH2Cl2:MeOH/19:1) to
yield compound 8o (56 mg, 86%) as an off-white solid: 1H-NMR (400 MHz, CDCl3, Figure S58) δ
7.49 (t, J = 7.6 Hz, 1H, aromatic), 7.31–7.25 (m, 5H, aromatic), 7.24 (s, 1H, aromatic), 7.23 (d, J = 7.6
Hz, 1H, aromatic), 7.12 (t, J = 7.6 Hz, 1H, aromatic), 7.06 (t, J = 8.4 Hz, 1H, aromatic), 6.85 (s, 1H,
aromatic), 5.18 (s, 2H, OCH2Ph), 3.93 (s, 3H, OCH3), 3.52 (s, 2H, NCH2Ph), 3.21 (dd, J1 = 17.6 Hz,
J2 = 8.0 Hz, 1H), 2.90 (m, 2H), 2.67 (m, 2H), 1.98 (m, 2H), 1.88 (m, 1H), 1.73–1.65 (m, 2H), 1.49 (m,
1H), 1.36–1.23 (m, 3H); 13C-NMR (100 MHz, CDCl3, Figure S59) δ 207.6 (C=O), 161.7–159.2 (d, 1JC-F

= 245.9 Hz, C, one carbon), 156.0 (C), 149.2 (C), 148.3 (C), 129.8 (CH), 129.7 (CH), 129.57-129.53 (d,
3JC-F = 3.8 Hz, CH, one carbon), 129.3 (C, two carbons), 129.2 (CH), 128.2 (CH, two carbons), 127.1 (C),
124.23–124.20 (d, 3JC-F = 3.8 Hz, CH, one carbon), 123.66–123.51 (d, 2JC-F = 14.4 Hz, CH, one carbon),
115.5–115.3 (d, 2JC-F = 20.5 Hz, CH, one carbon), 107.7 (CH), 106.6 (CH), 64.80–64.75 (d, 3JC-F = 4.5 Hz,
CH2, one carbon), 63.2 (CH2), 56.2 (CH3), 53.6 (CH2, two carbons), 45.4 (CH), 38.6 (CH2), 34.3 (CH2),
33.4 (CH2), 32.7 (CH2), 31.6 (CH); m/z calcd. for C30H33FNO3

+ [M + H]+ 474.2439; found 474.2429.
The purity of the compound was further confirmed by RP-HPLC: Rt = 20.06 min (96%; Figure S60).

3.2.25. 2-[(1-Benzylpiperidin-4-yl)methyl]-6-[(2-trifluoromethylbenzyl)oxy-5-methoxy-2,3-
dihydroinden-1-one (8p)

A solution of compound 7 (50 mg, 0.14 mmol) and K2CO3 (38 mg, 0.27 mmol) in anhydrous DMF
(5 mL) was treated with 2-trifluoromethylbenzyl bromide (25 µL, 0.16 mmol) and the resulting mixture
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was stirred at RT overnight. The reaction mixture was then diluted with H2O, and extracted with EtOAc
(3×). The combined organic layers were washed with H2O (3×) and brine (3×), dried over anhydrous
MgSO4, and filtered. The filtrate was concentrated under reduced pressure, and purified by column
chromatography (SiO2 gel, pure CH2Cl2 to CH2Cl2:MeOH/19:1; Rf 0.41 in CH2Cl2:MeOH/19:1) to
yield compound 8p (65 mg, 90%) as an off-white solid: 1H-NMR (400 MHz, CDCl3, Figure S61) δ 7.75
(d, J = 7.6 Hz, 1H, aromatic), 7.67 (d, J = 8.0 Hz, 1H, aromatic), 7.54 (t, J = 8.0 Hz, 1H, aromatic), 7.39 (t,
J = 7.6 Hz, 1H, aromatic), 7.31–7.27 (m, 4H, aromatic), 7.24 (m, 1H, aromatic), 7.18 (s, 1H, aromatic),
6.88 (s, 1H, aromatic), 5.31 (s, 2H, OCH2Ph), 3.96 (s, 3H, OCH3), 3.51 (s, 2H, NCH2Ph), 3.22 (dd,
J1 = 17.6 Hz, J2 = 8.0 Hz, 1H), 2.90 (m, 2H), 2.68 (dt, J1 = 14.4 Hz, J2 = 3.2 Hz, 2H), 1.97 (m, 2H), 1.88 (m,
1H), 1.69 (m, 2H), 1.50 (m, 1H), 1.40–1.24 (m, 3H); 13C-NMR (100 MHz, CDCl3, Figure S62) δ 207.6,
156.0, 149.4, 148.2, 138.1, 135.07, 135.06, 132.1, 129.3 (two carbons), 129.2, 128.4, 128.2 (two carbons),
127.8, 127.5, 127.2, 127.0, 126.01, 125.95, 125.90, 125.8, 125.6, 122.9, 107.8, 106.6, 67.04, 67.01, 63.3,
56.2, 53.71. 53.68, 45.4, 38.7, 34.3, 33.4, 32.8, 31.7; m/z calcd. for C31H33F3NO3

+ [M + H]+ 524.2407;
found 524.2401. The purity of the compound was further confirmed by RP-HPLC: Rt = 20.90 min (96%;
Figure S63).

3.2.26. 2-[(1-Benzylpiperidin-4-yl)methyl]-6-[(2,4-difluorobenzyl)oxy-5-methoxy-2,3-dihydroinden-1-
one (8q)

A solution of compound 7 (50 mg, 0.14 mmol) and K2CO3 (38 mg, 0.27 mmol) in anhydrous DMF
(5 mL) was treated with 2,4-difluorobenzyl bromide (21 µL, 0.16 mmol) and the resulting mixture was
stirred at RT overnight. The reaction mixture was then diluted with H2O, and extracted with EtOAc
(3×). The combined organic layers were washed with H2O (3×) and brine (3×), dried over anhydrous
MgSO4, and filtered. The filtrate was concentrated under reduced pressure, and purified by column
chromatography (SiO2 gel, pure CH2Cl2 to CH2Cl2:MeOH/19:1; Rf 0.17 in CH2Cl2:MeOH/19:1) to
yield compound 8q (57 mg, 85%) as an off-white solid: 1H-NMR (400 MHz, CDCl3, Figure S64) δ
7.46 (dd, J1 = 14.8 Hz, J2 = 8.4 Hz, 1H, aromatic), 7.31–7.27 (m, 4H, aromatic), 7.24 (s, 1H, aromatic),
7.22 (s, 1H, aromatic), 6.88–6.79 (m, 3H, aromatic), 5.12 (s, 2H, OCH2Ph), 3.93 (s, 3H, OCH3), 3.52 (s, 2H,
NCH2Ph), 3.22 (dd, J1 = 17.6 Hz, J2 = 8.0 Hz, 1H), 2.90 (m, 2H), 2.67 (dt, J1 = 14.4 Hz, J2 = 3.2 Hz, 2H),
1.98 (m, 2H), 1.89 (m, 1H), 1.69 (m, 2H), 1.49 (m, 1H), 1.40–1.26 (m, 3H); 13C-NMR (100 MHz, CDCl3,
Figure S65) δ 207.6, 164.2, 164.0, 161.9, 161.8, 161.7, 161.6, 159.4, 159.3, 156.0, 149.3, 148.2, 137.9, 130.81,
130.75, 130.72, 130.66, 129.3 (two carbons), 129.2, 128.2 (two carbons), 127.0, 119.7, 119.6, 119.54, 119.50,
111.55, 111.51, 111.34, 111.30, 107.7, 106.6, 104.2, 103.9, 103.7, 64.34, 64.30, 63.3, 56.2, 53.7, 53.6, 45.4, 38.6,
34.3, 33.4, 32.8, 31.6; m/z calcd. for C30H32F2NO3

+ [M + H]+ 492.2345; found 492.2353. The purity of
the compound was further confirmed by RP-HPLC: Rt = 20.25 min (95%; Figure S66).

3.2.27. 2-[(1-Benzylpiperidin-4-yl)methyl]-6-[(2,5-difluorobenzyl)oxy-5-methoxy-2,3-dihydroinden-1-
one (8r)

A solution of compound 7 (50 mg, 0.14 mmol) and K2CO3 (38 mg, 0.27 mmol) in anhydrous DMF
(5 mL) was treated with 2,5-difluorobenzyl bromide (21 µL, 0.16 mmol), and the resulting mixture was
stirred at RT overnight. The reaction mixture was then diluted with H2O, and extracted with EtOAc
(3×). The combined organic layers were washed with H2O (3×) and brine (3×), dried over anhydrous
MgSO4, and filtered. The filtrate was concentrated under reduced pressure and purified by column
chromatography (SiO2 gel, pure CH2Cl2 to CH2Cl2:MeOH/19:1; Rf 0.17 in CH2Cl2:MeOH/19:1) to
yield compound 8r (67 mg, 85%) as an off-white solid: 1H-NMR (400 MHz, CDCl3, Figure S67) δ
7.32–7.28 (m, 4H, aromatic), 7.24 (m, 2H, aromatic), 7.19 (s, 1H, aromatic), 7.02 (td, J1 = 8.8 Hz, J2 = 4.0
Hz, 1H, aromatic), 6.97–6.91 (m, 1H, aromatic), 6.87 (s, 1H, aromatic), 5.16 (s, 2H, OCH2Ph), 3.95 (s, 3H,
OCH3), 3.54 (s, 2H, NCH2Ph), 3.22 (dd, J1 = 17.6 Hz, J2 = 8.0 Hz, 1H), 2.92 (m, 2H), 2.68 (dt, J1 = 14.0
Hz, J2 = 3.6 Hz, 2H), 2.05 (m, 2H), 1.88 (m, 1H), 1.70 (m, 2H), 1.51 (m, 1H), 1.40–1.24 (m, 3H); 13C-NMR
(100 MHz, CDCl3, Figure S68) δ 207.5, 160.02, 160.00, 157.62, 157.60, 157.21, 157.19, 155.9, 154.79, 154.77,
149.4, 148.0, 137.7, 129.4 (two carbons), 129.2, 128.2 (two carbons), 127.1, 125.6, 125.5, 125.4, 125.3, 116.6,
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116.5, 116.3, 116.2, 116.0, 115.9, 115.8, 115.7, 115.6, 115.43, 115.38, 107.8, 106.5, 64.2, 64.1, 63.2, 56.2, 53.60,
53.57, 45.3, 38.6, 34.2, 33.4, 32.6, 31.5; m/z calcd. for C30H32F2NO3

+ [M + H]+ 492.2345; found 492.2350.
Purity of the compound was further confirmed by RP-HPLC: Rt = 20.28 min (96%; Figure S69).

3.2.28. 2-[(1-Benzylpiperidin-4-yl)methyl]-6-[(2,6-difluorobenzyl)oxy-5-methoxy-2,3-dihydroinden-1-
one (8s)

A solution of compound 7 (50 mg, 0.14 mmol) and K2CO3 (38 mg, 0.27 mmol) in anhydrous DMF
(5 mL) was treated with 2,6-difluorobenzyl bromide (34 mg, 0.16 mmol), and the resulting mixture was
stirred at RT overnight. The reaction mixture was then diluted with H2O, and extracted with EtOAc
(3×). The combined organic layers were washed with H2O (3×) and brine (3×), dried over anhydrous
MgSO4, and filtered. The filtrate was concentrated under reduced pressure and purified by column
chromatography (SiO2 gel, pure CH2Cl2 to CH2Cl2:MeOH/19:1; Rf 0.34 in CH2Cl2:MeOH/19:1) to
yield compound 8s (62 mg, 93%) as an off-white solid: 1H-NMR (400 MHz, CDCl3, Figure S70) δ
7.32–7.27 (m, 6H, aromatic), 7.24 (m, 1H, aromatic), 6.90 (t, J = 8.0 Hz, 2H, aromatic), 6.84 (s, 1H,
aromatic), 5.14 (s, 2H, OCH2Ph), 3.88 (s, 3H, OCH3), 3.53 (s, 2H, NCH2Ph), 3.22 (dd, J1 = 17.6 Hz,
J2 = 8.0 Hz, 1H), 2.91 (m, 2H), 2.68 (dt, J1 = 14.4 Hz, J2 = 4.4 Hz, 2H), 2.00 (m, 2H), 1.89 (m, 1H), 1.70 (m,
2H), 1.50 (m, 1H), 1.40–1.24 (m, 3H); 13C-NMR (100 MHz, CDCl3, Figure S71) δ 207.6, 163.3, 163.2,
160.8, 160.7, 156.2, 149.5, 148.4, 137.7, 131.0, 130.9, 130.8, 129.4 (two carbons), 129.2, 128.2 (two carbons),
127.1, 112.4, 112.2, 112.0, 111.6, 111.5, 111.4, 111.3, 107.8, 107.3, 63.2, 59.19, 59.15, 59.11, 56.2, 53.61,
53.58, 45.4, 38.6, 34.2, 33.4, 32.7, 31.6; m/z calcd. for C30H32F2NO3

+ [M + H]+ 492.2345; found 492.2352.
The purity of the compound was further confirmed by RP-HPLC: Rt = 19.99 min (96%; Figure S72).

3.2.29. 2-[(1-Benzylpiperidin-4-yl)methyl]-6-[(4-bromo-2-fluorobenzyl)oxy-5-methoxy-2,3-
dihydroinden-1-one (8t)

A solution of compound 7 (50 mg, 0.14 mmol) and K2CO3 (38 mg, 0.27 mmol) in anhydrous DMF
(5 mL) was treated with 4-bromo-2-fluorobenzyl bromide (44 mg, 0.16 mmol), and the resulting mixture
was stirred at RT overnight. The reaction mixture was then diluted with H2O, and extracted with EtOAc
(3×). The combined organic layers were washed with H2O (3×) and brine (3×), dried over anhydrous
MgSO4, and filtered. The filtrate was concentrated under reduced pressure and purified by column
chromatography (SiO2 gel, pure CH2Cl2 to CH2Cl2:MeOH/19:1; Rf 0.56 in CH2Cl2:MeOH/19:1) to
yield compound 8t (69 mg, 91%) as an off-white solid: 1H-NMR (400 MHz, CDCl3, Figure S73) δ 7.37
(t, J = 7.6 Hz, 1H, aromatic), 7.31–7.26 (m, 6H, aromatic), 7.24 (m, 1H, aromatic), 7.19 (s, 1H, aromatic),
6.86 (s, 1H, aromatic), 5.12 (s, 2H, OCH2Ph), 3.93 (s, 3H, OCH3), 3.51 (s, 2H, NCH2Ph), 3.22 (dd,
J1 = 17.6 Hz, J2 = 8.0 Hz, 1H), 2.90 (m, 2H), 2.68 (dt, J1 = 14.4 Hz, J2 = 3.2 Hz, 2H), 1.98 (m, 2H), 1.88 (m,
1H), 1.69 (m, 2H), 1.48 (m, 1H), 1.40–1.24 (m, 3H); 13C-NMR (100 MHz, CDCl3, Figure S74) δ 207.5,
161.4, 158.8, 155.9, 149.4, 148.0, 138.1, 130.63, 130.58, 129.3 (two carbons), 129.2, 128.1 (two carbons),
127.64, 127.60, 127.0, 123.0, 122.8, 122.2, 122.1, 119.2, 119.0, 107.8, 106.6, 64.3, 64.2, 63.3, 56.2, 53.70,
53.68, 45.4, 38.6, 34.3, 33.4, 32.9, 31.7; m/z calcd. for C30H32BrFNO3

+ [M + H]+ 552.1544; found 552.1546.
The purity of the compound was further confirmed by RP-HPLC: Rt = 21.25 min (96%; Figure S75).

3.2.30. 2-[(1-Benzylpiperidin-4-yl)methyl]-6-[(2,4,6-trifluorobenzyl)oxy-5-methoxy-2,3-dihydroinden-
1-one (8u)

A solution of compound 7 (50 mg, 0.14 mmol) and K2CO3 (38 mg, 0.27 mmol) in anhydrous DMF
(5 mL) was treated with 2,4,6-trifluorobenzyl bromide (22 µL, 0.16 mmol) and the resulting mixture was
stirred at RT overnight. The reaction mixture was then diluted with H2O, and extracted with EtOAc
(3×). The combined organic layers were washed with H2O (3×) and brine (3×), dried over anhydrous
MgSO4, and filtered. After standing at RT overnight, white solids precipitated out, which were
filtered off. The filtrate was further concentrated under reduced pressure and purified by column
chromatography (SiO2 gel, pure CH2Cl2 to CH2Cl2:MeOH/19:1; Rf 0.31 in CH2Cl2:MeOH/19:1) to
yield compound 8u (65 mg, 93%) as an off-white solid: 1H-NMR (400 MHz, CDCl3, Figure S76)



Molecules 2018, 23, 3252 19 of 22

δ 7.32-7.29 (m, 5H, aromatic), 7.24 (s, 1H, aromatic), 6.84 (s, 1H, aromatic), 6.68 (t, J = 8.4 Hz, 2H,
aromatic), 5.08 (s, 2H, OCH2Ph), 3.89 (s, 3H, OCH3), 3.54 (s, 2H, NCH2Ph), 3.22 (dd, J1 = 17.6 Hz,
J2 = 8.0 Hz, 1H), 2.92 (m, 2H), 2.68 (dt, J1 = 14.4 Hz, J2 = 3.2 Hz, 2H), 2.02 (m, 2H), 1.89 (m, 1H), 1.70 (m,
2H), 1.51 (m, 1H), 1.40–1.26 (m, 3H); 13C-NMR (100 MHz, CDCl3, Figure S77) δ 207.6, 164.6, 164.5,
164.3, 163.7, 163.6, 163.5, 163.4, 162.1, 162.0, 161.8, 161.1, 161.04, 161.00, 160.9, 152.2, 149.6, 148.2, 137.7,
129.4 (two carbons), 129.2, 128.2 (two carbons), 127.1, 108.92, 108.87, 108.72, 108.67, 108.53, 108.48,
107.9, 107.4, 100.69, 100.67, 100.6, 100.5, 100.44, 100.42, 100.39, 100.35, 100.2, 100.1, 63.2, 58.80, 58.76,
58.7, 56.2, 53.63. 53.59, 45.4, 38.6, 34.2, 33.4, 32.7, 31.6; m/z calcd. for C30H31F3NO3

+ [M + H]+ 510.2251;
found 510.2255. The purity of the compound was further confirmed by RP-HPLC: Rt = 20.30 min (95%;
Figure S78).

3.2.31. 2-[(1-Benzylpiperidin-4-yl)methyl]-6-[(2,3,4,5,6-pentafluorobenzyl)oxy-5-methoxy-2,3-
dihydroinden-1-one (8v)

A solution of compound 7 (50 mg, 0.14 mmol) and K2CO3 (38 mg, 0.27 mmol) in anhydrous
DMF (5 mL) was treated with 2,3,4,5-pentafluorobenzyl bromide (25 µL, 0.16 mmol), and the resulting
mixture was stirred at RT overnight. The reaction mixture was then diluted with H2O, and extracted
with EtOAc (3×). The combined organic layers were washed with H2O (3×) and brine (3×),
dried over anhydrous MgSO4, and filtered. The filtrate was concentrated under reduced pressure
and purified by column chromatography (SiO2 gel, pure CH2Cl2 to CH2Cl2:MeOH/19:1; Rf 0.34 in
CH2Cl2:MeOH/19:1) to yield compound 8v (61 mg, 81%) as an off-white solid: 1H-NMR (400 MHz,
CDCl3, Figure S79) δ 7.32–7.24 (m, 6H, aromatic), 6.86 (s, 1H, aromatic), 5.13 (s, 2H, OCH2Ph), 3.90 (s,
3H, OCH3), 3.53 (s, 2H, NCH2Ph), 3.23 (dd, J1 = 17.6 Hz, J2 = 8.0 Hz, 1H), 2.91 (m, 2H), 2.69 (dt,
J1 = 13.6 Hz, J2 = 4.0 Hz, 2H), 2.00 (m, 2H), 1.89 (m, 1H), 1.70 (m, 2H), 1.51 (m, 1H), 1.40–1.24 (m, 3H);
13C-NMR (100 MHz, CDCl3, Figure S80) δ 207.4, 156.2, 150.1, 147.8, 147.20, 147.16, 147.12, 147.08,
147.04, 147.01, 146.97, 146.93, 144.70, 144.66, 144.62, 144.58, 144.55, 144.51, 144.47, 144.43, 143.23, 143.16,
143.10, 143.05, 142.97, 140.7, 140.61, 140.56, 140.5, 140.4, 138.93, 138.90, 138.8, 138.7, 138.65, 138.60,
138.59, 137.6, 136.42, 136.38, 136.30, 136.26, 136.23, 136.13, 136.10, 129.4 (two carbons), 129.2, 128.5,
128.2 (two carbons), 127.1, 109.91, 109.87, 109.74, 109.70, 109.6, 109.5, 108.0, 107.8, 63.1, 58.7, 56.2, 53.6,
53.5, 45.3, 38.6, 34.2, 33.4, 32.6, 31.5; m/z calcd. for C30H29F5NO3

+ [M + H]+ 546.2062; found 546.2058.
The purity of the compound was further confirmed by RP-HPLC: Rt = 20.84 min (95%; Figure S81).

3.3. In Vitro Cholinesterase (ChE) Inhibition Assays

Experiments were performed as previously described [11,13]. Briefly, donepezil analogues
(102 pm to 200 µM) were dissolved in sodium phosphate buffer ((100 µL), 0.1 M, pH 8.0) (Buffer
A) and subjected to a 5-fold serial dilution. ChE (either EeAChE or Ef BChE) was added to the solution
of inhibitors (50 µL, containing 0.08 U/mL ChE (final concentration for both EeAChE and Ef BChE)
in Buffer A. The mixture of inhibitor and enzyme was incubated for 10 min before initiation with
DTNB (50 µL, 0.25 mM final concentration) and acylthiocholine (acetylthiocholine for EeAChE and
butyrylthiochholine for Ef BChE) (0.5 mM final concentration) in phosphate buffer. The reaction
was monitored at 412 nm taking measurements every 30 s for 10 min using a Spectra Max M5
plate reader (Molecular Devices, San Jose, CA, USA) at 25 ◦C. Data was corrected with the negative
control (no acylthiocholine), and normalized to the positive control (no inhibitor) using the initial
rates (first 5 min). All assays were performed in duplicate or triplicate. HsAChE was treated in
the same manner with the following exceptions: the final concentration of HsAChE was 0.16 µg/mL
(~0.16 U/mL), and reactions were performed at 37 ◦C. The data was fitted to a sigmoidal curve, and IC50

values were calculated using Sigmaplot 14.0 (Systat Software, San Jose, CA, USA). The IC50 curves for
EeAChE and Ef BChE inhibition are presented in Table 1 and Figures S82 and S83 (for EeAChE) and
Figures S84 and S85 (for Ef BChE). The IC50 curves for HsAChE inhibition are presented in Table 2 and
Figure S86.
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3.4. BACE1 Inhibition

Inhibition of BACE1 was tested using the commercial kit (cat CS0010-1KT, Millipore-Sigma,
St. Louis, MO, USA) following the directions accompanying the kit. All compounds were tested in
duplicate at a single concentration (200 µM) in order to confirm any activity. All compounds that
showed BACE1 inhibitory activity were then tested in a concentration-dependent manner. Dilutions
were originally performed in DMSO, and 2 µL added to the reaction in order to account for any
moderation of activity from the vehicle. Fluorescent measurements were taken after 2 h. The resulting
rates were normalized to the reaction without inhibitor. In order to get an appropriate sigmoidal fit,
two additional points (400 and 1000 µM) were added to the data when needed. Since the activity of
the enzyme was already negligible at 200 µM, these points aid the sigmoidal nature of the curve fit.
These data are presented in Table 3 and Figure S87.

3.5. Molecular Docking of Donepezil and Compound 8l with BACE1

To further validate the biochemical results obtained against BACE1, we modeled donepezil and
compound 8l using a known crystal structure of BACE1 with an inhibitor, sharing the vicinyl dioxygen
substitution of donepezil as a model (PDB# 4FM7 [25]). Swiss Dock [29,30] was used to identify
the potential binding sites of donepezil or compound 8l with the crystal structure. Once docking
calculations were completed, Chimera [31] was used to compare the potential binding sites with that
of the known inhibitors. The closest alignments were selected, and they are presented in Figure 1.

4. Conclusions

We have synthesized 22 new donepezil analogues, 8a–v, and evaluated their biochemical
capabilities, along with that of the parent donepezil and its 6-O-desmethyl adduct 7. Without
exception, these compounds were all able to inhibit the action of EeAChE and Ef BChE in the
low-to-sub-micromolar ranges. Compound 8t, one of the better inhibitors of EeAChE and Ef BChE
was also a very efficient inhibitor of HsAChE showing the highest preference for this medically
relevant enzyme. Attachment of an alkyl/aromatic group at the 6-O-position of the indanone ring
also seems to enhance their efficacy. While their inhibitory capabilities were greater against EeAChE
than Ef BChE, the donepezil analogues 8h–v with aromatic substituents displayed a much improved
potency when compared to donepezil against Ef BChE than EeAChE. The analogues 8a–g with alkyl
substituents showed proportional change with respect to donepezil against both EeAChE and Ef BChE.
The donepezil analogues 8c, 8e, 8f, and 8l also displayed potent BACE1 inhibitory activities, and thus
appeared to be multifunctional compounds for the treatment of Alzheimer’s disease.

Supplementary Materials: The Supplementary Materials include 1H and 13C-NMR spectra for the molecules
synthesized, as well as HPLC traces of compounds tested for activity (Figures S1–S81). The IC50 curves for
the inhibition of EeAChE, HsAChE, Ef BChE, and BACE1 are also provided (Figures S82–S87). The SwissDock
modeling is also provided (Figure S88). These materials are available free of charge via the internet.
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Abbreviations

Aβ amyloid-β
APP amyloid precursor protein
BACE β-secretase
ChE cholinesterase
EeAChE acetylcholinesterase (from Electrophorus electricus)
Ef BChE butyrylcholinesterase (from Equus ferus)
HsAChE acetylcholinesterase (from Homo sapiens)
IC50 half maximal inhibitory concentration
KOH potassium hydroxide
MsOH methanesulfonic acid
TBDMS tert-butyldimethylsilyl
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