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ABSTRACT OF DISSERTATION 

 

 
Understanding the Contributions of Alzheimer’s Disease & Cardiovascular Risks to 

Cerebral Small Vessel Disease Manifest as White Matter Hyperintensities on Magnetic 
Resonance Imaging (MRI) 

Introduction: Alzheimer’s Diseases (AD) & cerebral small vessel disease associated with 
cardiovascular risk factors (cSVD) frequently coexist, differentially affecting both imaging 
and clinical features associated with aging and dementia. We hypothesized that Magnetic 
Resonance Imaging (MRI) can be used in novel ways to identify relative contributions of 
AD & cardiovascular risks to cSVD and brain atrophy, generating new biomarkers & 
insights into mixed disease states associated with cognitive decline and dementia.  
Methods: Three experiments were conducted to address the overarching hypothesis. First, 
we visually rated the clinical MRI of 325 participants from a community-based cross-
sectional sample to elucidate the relative association of age, AD (visualized as hippocampal 
atrophy) and cSVD (visualized as white matter hyperintensities; WMH) with global brain 
atrophy in experiment 1. In experiment 2, we analyzed cross-sectional MRI scans from 62 
participants from the University of Kentucky Alzheimer’s Disease Center (UKADC) with 
available clinical data on cardiovascular risk and cerebrospinal fluid (CSF) beta-amyloid 
levels as a marker of AD. Voxel wise regression was used to examine the association of 
white matter hyperintensities with AD and/or cardiovascular risk (hypertension). 
Experiment 3, examined longitudinal MRI changes in WMH volumes in 377 participants 
from the Alzheimer’s Disease Neuroimaging Initiative 2 (ADNI 2). Subjects were 
categorized into three groups based on WMH volume change, including those that 
demonstrated regression (n=96; 25.5%), stability (n=72; 19.1%), and progression (n=209; 
55.4%) of WMH volume over time. Differences in brain atrophy measures and cognitive 
testing among the three group were conducted. 
Results: In the first experiment, logistic regression analysis demonstrated that a 1-year 
increase in age was associated with global brain atrophy (OR = 1.04; p = .04), medial 
temporal lobe atrophy (MTA; a surrogate of AD) (OR = 3.7; p < .001), and WMH as 
surrogate of cSVD (OR = 8.80; p < .001). Both MTA and WMH were strongly associated 
with global brain atrophy in our study population, with WMH showing the strongest 
relationship after adjusting for age. In the second experiment, linear regression as well as 
mediation and moderation analyses demonstrated significant main effects of hypertension 



     
 

(HTN; the strongest risk factor associated with cSVD) and CSF Aβ 1-42 (a surrogate of 
AD) on WMH volume, but no significant HTN×CSF Aβ 1-42 interaction. Further 
exploration of the independence of HTN and Aβ using a voxelwise analysis approach, 
demonstrated unique patterns of WM alteration associated with either hypertension or CSF 
Aβ 1-42, confirming that both independently contribute to WMH previously classified as 
cSVD. Extending this work into a longitudinal model rather than focusing on purely cross-
sectional associations, we demonstrated that spontaneous WMH regression is common, 
and that such regression is associated with a reduced rate of global brain atrophy (p = 
0.012), and improvement in memory function over time (p = 0.003).  
Conclusion: These data demonstrate that both AD and cSVD frequently coexist in the 
same brain, contributing differentially to alterations in brain structure, subcortical white 
matter injury, and cognitive function.  These effects can be disentangled using MRI, and 
while we currently lack therapeutic interventions to halt or reverse AD, the dynamic WMH 
change evident in our data clearly suggests that the ability to reverse cSVD exists today. 
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Resonance Imaging, White Matter Hyperintensity, Brain Atrophy 

 
 
 
 

 

Omar M. Al-Janabi 
(Name of Student) 

 
02-18-2019 

            Date 



 
 

 
 

 
 
 
 
 
 
 
 

Understanding the Contributions of Alzheimer’s Disease & Cardiovascular Risks to 
Cerebral Small Vessel Disease Manifest as White Matter Hyperintensities on Magnetic 

Resonance Imaging (MRI) 

By 
Omar M. Al-Janabi 

 
 

 

 

 

 

 

 

Gregory A. Jicha 
Co-Director of Dissertation 

 
Charles D. Smith 

Co-Director of Dissertation 
 

Hannah Knudsen 
Director of Graduate Studies 

 
02-18-2019 

               Date  
 
 

 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

DEDICATION 

 
 This work is dedicated to all patients who fight Alzheimer’s Disease and vascular 

dementia and for their outstanding families. Also, to those who participate in research to 

help us finding a cure for these devastating conditions. 

 



iii 
 

 

ACKNOWLEDGMENTS 

 

 I would like to express my sincere gratitude to my great mentor Dr. Gregory A. 

Jicha. I am thankful for having the opportunity to work with such a brilliant physician 

scientist who pave the road to me to start my career as a clinical and translational scientist. 

His unique approach in mentoring his trainees including myself, together with his 

generosity in sharing his years of experience as a successful physician scientist has 

shaped my mind as a future clinical and translational scientist and a critical thinker in the 

field of vascular and behavioral neurology.  

 I would also like to thank Dr. Charles D. Smith, my co-advisor, for his help. His 

guidance had a significant impact in enriching my background in the sophisticated 

neuroimaging analysis techniques. Thank you so much to my DGS Dr. Hannah Knudsen 

for your kind help and support throughout my PhD journey. In addition, I wanted to thank 

my committee members for being true mentors. Thanks Dr. Peter Nelson, Dr. Donna 

Wilcock and Dr. Yang Jiang, whom without your tremendous help and professional 

feedback this work was not possible. 

 Also, I would like to thank Dr. Brian Gold and his lab members especially 

Christopher Brown and Christopher Bauer for their tremendous help. Thanks to the 

medical illustration office at the College of Medicine especially Thomas Dolan and 

Mathew Hazzard for their professional help with Figure 5.1 and 5.2. 

 Furthermore, I would like to thank my parents especially my father Dr. Muhsin 

Al-Janabi for being always there when I need him. You are my role model. 



iv 
 

 Last but not least, I would like to thank my lovely wife Yamama from the bottom 

of my heart. You are a real example of “Behind every successful man is a great woman”. 

Many thanks to my son Abdul Aziz, my daughter Rose, and my son Ahmed for making 

my life meaningful.



v 
 

 

TABLE OF CONTENTS 

 
ACKNOWLEDGMENTS .................................................................................................................................... iii 

TABLE OF CONTENTS ....................................................................................................................................... v 

LIST OF TABLES .............................................................................................................................................. vii 

LIST OF FIGURES ............................................................................................................................................. ix 

List of Abbreviations ........................................................................................................................................ x 

CHAPTER 1. Introduction ...................................................................................................................... 1 

1.1 Introduction .......................................................................................................................................... 1 

1.2 Definition of Terms: .............................................................................................................................. 1 

1.3 The Role of Imaging in the Diagnosis of AD & cSVD: ............................................................................ 9 

1.4 CSF biomarkers of AD and cSVD ......................................................................................................... 22 

1.5 Hypotheses and Specific Aims: ............................................................................................................ 23 

CHAPTER 2. Brain Atrophy Detected by Routine Imaging: Relationship with Age, Hippocampal 
Atrophy, and White Matter Hyperintensities ...................................................................................... 25 

2.1 Introduction: ....................................................................................................................................... 26 

2.2 Methods: ............................................................................................................................................. 28 
2.1.1 Subjects: ................................................................................................................................ 28 
2.1.2 Visual rating of brain images: ............................................................................................... 28 
2.1.3 Statistical Analysis: ............................................................................................................... 30 

2.3 Results:................................................................................................................................................ 32 

2.4 Discussion: .......................................................................................................................................... 36 

CHAPTER 3. Distinct White Matter Changes Associated with CSF Amyloid β 1-42 & Hypertension
 40 

3.1 Introduction: ....................................................................................................................................... 41 

3.2 Methods: ......................................................................................................................................... 42 
3.2.1 Participants: ................................................................................................................................ 42 
3.2.2 MRI Protocol and Analysis: .................................................................................................. 43 
3.2.3 CSF Collection and Analysis: ................................................................................................ 45 
3.2.4 Statistical Analysis: ............................................................................................................... 45 

3.3 Results:................................................................................................................................................ 47 

3.4 Discussion: .......................................................................................................................................... 56 



vi 
 

CHAPTER 4. White Matter Hyperintensity Regression is Associated with Decreased Brain 
Atrophy and Improvement in Memory Performance .......................................................................... 62 

4.1 Introduction: ....................................................................................................................................... 63 

4.2 Methods: ......................................................................................................................................... 66 
4.2.1 Participants: ................................................................................................................................ 66 
4.2.2 MRI acquisition ..................................................................................................................... 67 
4.2.3 Statistical Analysis: ............................................................................................................... 70 

4.3 Results:................................................................................................................................................ 71 

4.4 Discussion: .......................................................................................................................................... 79 

CHAPTER 5. Conclusion ....................................................................................................................... 84 

5.1 Overview: ............................................................................................................................................ 84 

5.2 HTN as the Major CVR Associated with cSVD: .................................................................................... 85 

5.3 AD Conventional Biomarkers: ........................................................................................................... 88 
5.3.1 Imaging Markers: ........................................................................................................................ 88 
5.3.2 CSF Aβ: ...................................................................................................................................... 89 

5.4 Imaging Markers Used in the Current Study: ...................................................................................... 90 

5.5 cSVD is a Greater Contributor to GCA than AD: .................................................................................. 91 

5.6 AD and HTN are Associated with Spatially Distinct WMH: ................................................................. 91 

5.7 WMH are Dynamic with AD Participants Being More Likely to Progress: .......................................... 91 

5.8 Overall Conclusion: ............................................................................................................................. 95 

5.9 Future Planned Studies: ...................................................................................................................... 95 

REFERENCES: .......................................................................................................................................... 98 

VITA ..................................................................................................................................................... 114 

 

 
 

 

 

 

 

 



vii 
 

LIST OF TABLES 

Table 1.1 Specific cognitive domain involvement associated with aging and/or 

cerebrovascular risk factors across cohort studies. ........................................................... 10 

Table 1.2 Neuroimaging biomarker modalities and protocols that are commonly used for 

the diagnosis and tracking of Alzheimer’s and cerebrovascular disease. ......................... 13 

Table 2.1  Participant demographic, clinical, and imaging characteristics. ...................... 33 

Table 2.2  Correlations among age (in years), white matter hyperintensity burden (WMH, 

rated 1-4), medial temporal lobe (MTA, rated 0-4) and global cerebral atrophy (GCA, rated 

0-3). ................................................................................................................................... 34 

Table 2.3 Odds ratios (95% CI) for moderate-to-severe global cerebral atrophy (GCA) 

based on participant age, white matter hyperintensity (WMH), and medial temporal lobe 

atrophy (MTA). Models 1-3 are simple binary logistic regression, and Model 4 is 

multivariable binary logistic regression. Model 5 is ordinal logistic regression. ............. 36 

Table 3.1  Demographics, clinical, imaging and laboratory characteristics of the study 

cohort. ............................................................................................................................... 49 

Table 3.2  Partial Correlation of hypertension, CSF amyloid β1-42levels and imaging 

measures of micro and macrostructural white matter alteration in study subjects. .......... 51 

Table 3.3 Linear regression models to examine the effects of hypertension and 

Cerebrospinal fluid amyloid beta 1-42 levels on white matter hyperintensity burden. .... 53 

Table 4.1 Possible etiologies for cerebrovascular-related white matter hyperintensities that 

regress over time and the expected associations with cerebral atrophy and cognitive 

performance. ..................................................................................................................... 65 



viii 
 

Table 4.2  Demographic, clinical, imaging, and change scores for subjects demonstrating 

progression, stability, and regression in white matter hyperintensity volumes. ............... 73 

Table 4.3 ANCOVA results examining brain volume composite, memory change, and EF 

change in all three groups.  Age and gender were used as covariates. ............................. 75 

Table 4.4 Partial correlation between WMH change and brain volume composite, memory 

change, and EF change in regression, progression, and stable groups separately. The 

variables controlled for are age and gender. ..................................................................... 77 

Table 4.5 Partial correlation between WMH change and Tau/Aβ, Amyloid Total (whole 

brain), and regional analysis in regression, progression, and stable groups separately. ... 78 

 



ix 
 

 

LIST OF FIGURES 

Figure 1.1 Diagnosis of Mild Cognitive Impairment. ......................................................... 8 

Figure 1.2 Mild Cognitive Impairment subtypes. ............................................................... 9 

Figure 1.3 Descriptive structural imaging findings in Alzheimer’s (AD) and vascular 

(VaD) or mixed dementia. ................................................................................................ 15 

Figure 1.4 Sophisticated WMH volume quantification. ................................................... 17 

Figure 1.5 A representative brain MRI of 80 years old female showing DTI and ASL. .. 18 

Figure 2.1 Descriptive figure showing representative magnetic resonance imaging images.

........................................................................................................................................... 29 

Figure 2.2 Descriptive figure showing the contribution of vascular damage (represented as 

white matter hyperintensity; WMH) and Alzheimer’s Disease (represented as medial 

temporal lobe atrophy; MTA) to global cerebral atrophy (GCA). .................................... 31 

Figure 3.1 Distinct spatial distribution of white matter hyperintensities related to 

hypertension and CSF amyloid β1-42 levels. ................................................................... 55 

Figure 4.1 White matter hyperintensity distribution in the sample studied. ..................... 69 

Figure 5.1 Descriptive figure showing the dynamic nature of the white matter 

hyperintensity changes overtime and the associated change in brain volume and cognitive 

performance. ..................................................................................................................... 93 

Figure 5.2 Decsriptive figure showing the possible mechanisms that lead to white matter 

hyperintensity regression overtime and their associated effect on the brain volume and the 

cognitive performance. ..................................................................................................... 94 



x 
 

List of Abbreviations 

           
Aβ     …………………………………………………………      Amyloid Beta protein 

AD     …………………………………………………………     Alzheimer’s disease  

AF      ………………………………………………………...     Atrial Fibrillation 

BBB   …………………………………………………………     Blood Brain Barrier 

CDR   …………………………………………………………     Clinical Dementia Rating 

CVD   ………………………………………………………        Cerebrovascular Disease 

cSVD ………………………………………………          Cerebral Small Vessel Disease 

DM    …………………………………………………………      Diabetes Mellitus 

FRS    ………………………………………...……………           Framingham Risk Score 

HLD ...…………………………………………………….           Hyperlipidemia 

HTN   …………………………….………………………            Hypertension 

MCI   …………………………………………………….           Mild Cognitive Impairment 

MMSE ……………………………………………………           Mini Mental State Exam 

VaD   …………………………………………………….           Vascular Dementia 

WMH ……………………………………………………        White Matter Hyperintensity 

WML ………………………………………………...….            White Matter Lesion 

 



1 
 

CHAPTER 1. INTRODUCTION 

1.1 Introduction 

 Alzheimer’s Disease (AD) and  Cerebral Small Vessel Disease (cSVD), are the two 

major pathologies associated with cognitive decline dementia in the aging population 

today.[1-4] They are often found to coexist in the same individual.[5, 6]  

 Recent data from several large-scale, community-based, autopsy cohorts have 

demonstrated that mixed AD and vascular dementia (VaD) caused by cSVD is the norm 

rather than the exception, especially as one ages. Trends for mixed pathology increase with 

advancing age, reaching as high as 90% by the tenth decade of life.[7-10] It remains unclear 

if the association of AD and VaD is mediated purely by age or if synergistic or additive 

effects exist between these pathological mechanisms of degeneration allowing each disease 

process to feed into the other.[9, 11, 12] Despite a high level of current interest in 

elucidating mechanisms of synergistic interplay between AD and VaD, the field recognizes 

that “pure” AD and “pure” VaD exist, suggesting that despite potential shared risk factors 

and mechanisms, neither AD nor VaD are necessary or sufficient to cause the other.  

 1.2 Definition of Terms: 

 In this dissertation I am going to discuss several terms including cSVD, white 

matter hyperintensity (WMH), cerebrovascular risk factors (CVR), AD and VaD. 

 Understanding the meaning attributed to each of these terms is critical for an in-

depth understanding of the work I will present. 

cSVD is a term that is being used to define a syndrome of neuropathological, and 

neuroimaging findings that are thought to be secondary to the effect of uncontrolled CVR 
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(i.e. hypertension, hyperlipidemia, diabetes, smoking and atrial fibrillation) on perforating 

cerebral arterioles and capillaries. These arterioles are essential to maintain a healthy brain 

perfusion in the white matter in particular, which is enriched in small arterioles affected 

most prominently by cSVD.[13]  

 cSVD can be visualized using structural magnetic resonance imaging (MRI). 

Damage to the cerebral white matter that occur secondary to the cSVD can be seen using 

both T2 and fluid attenuated inversion recovery (FLAIR) sequences on MRI, and appear 

as areas of hyperintensities referred to as WMH. In addition, cSVD can be seen on T2, 

FLAIR, and gradient echo sequences of the MRI as lacunar infarcts and cerebral 

microbleeds that represent overt small vessel stroke and microhemorrhage, often related to 

cerebral amyloid angiopathy (CAA) seen in conjunction with or independent of AD.[14, 

15] 

 Late-life WMH  largely represent cerebrovascular injury resulting from cSVD.[16] 

In addition, WMH also occur in the pre-dementia stage of familial AD, including in those 

with no appreciable CVR.[17, 18] It remains unclear whether these imaging findings 

should be attributed to AD, cSVD, or to a combination of these pathological processes. 

This question will be fully addressed in chapter 3. 

There are five common mechanisms that lead to WMH: 
 

I. Ischemia:  

A. Chronic ischemia: reduction in cerebral blood flow due to narrowing or 

obstruction of small arteries and arterioles in subcortical and deep white matter 

regions results in ischemia especially if those arterioles have only a single source 

of blood.[19] Chronic ischemia leads to the death of oligodendrocytes contributing 
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to myelinolysis.[13, 20, 21] This chronic ischemic injury will lead to the formation 

of incomplete lacunar infarcts.[13] Incomplete lacunae are defined as areas of 

selective neuronal or axonal necrosis. These lesions spare the vascular tissue and 

the glial components of the affected areas.[22]   

B. Acute ischemia: this will result from acute obstruction of cerebral small arteries 

and arterioles. Acute ischemia results in the formation of complete lacunar 

infarcts.[13] Deep white matter lacunes can occur in regions of WMH. 

II. Disruption of Blood-Brain Barriers (BBB):  The most accepted non-ischemic 

theory explaining WMH focuses on damage to the BBB. BBB breakdown results 

in white matter damage caused by the toxic effect of extravasated proteins such as 

fibrinogen, albumin and IgG and resultant inflammatory changes. Ischemic 

changes may occur simultaneously with BBB damage, but the relative causality is 

poorly understood.[13, 20, 21] 

III. Endothelial Damage:  Both ischemia due to hypoperfusion and BBB disruption 

can lead to the loss of endothelial integrity.[20] Also, toxic effects of homocysteine 

on endothelial cells may contribute to endothelial damage.[23] As a result of 

endothelial damage, nitric oxide is reduced, which negatively affects cerebral blood 

flow through interference with autoregulatory mechanisms of cerebral white matter 

small vessels.[24-26] Supporting evidence for this mechanism include observed 

elevated levels of endothelial dysfunction markers such as intercellular adhesion 

molecule 1 (ICAM1), thrombomodulin (TM), tissue factor (TF) and tissue factor 

pathway inhibitor (TFPI).[27] 
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IV. Amyloid β: The Aβ deposition and level correlates with the severity of 

arteriosclerotic disease.[20] Cerebral Amyloid Angiopathy (CAA) is characterized 

by the accumulation of Aβ protein in the walls of small to medium sized blood 

vessels and capillaries. In severe CAA, blood vessels’ walls may be damaged 

causing leakage of blood into the surrounding brain tissue.[13] CAA was found to 

be associated with intracerebral hemorrhage, and subcortical white matter injury, 

and can be commonly seen in elderly subjects with Alzheimer’s disease, Down’s 

syndrome and cSVD.[28, 29]  

V. Genetics: Many genetic risk factors may play a role in cSVD such as cerebral 

autosomal dominant arteriopathy with subcortical infarcts and 

leukoencephalopathy (CADASIL).[21] Many other hereditary diseases lead to 

cerebral small vessel disease, including cerebral autosomal recessive arteriopathy 

with subcortical infarct and leukoencephalopathy (CARASIL), Fabry’s disease, 

hereditary extensive vascular leukoencephalopathy (HEVL), and mitochondrial 

encephalopathy with lactic acidosis and stroke-like episodes (MELAS).[13] 

Furthermore, ABCC9 Hippocampal Sclerosis-Aging risk genotype has been found 

to be associated with a reduction in the cerebral blood flow.[30] Finally, APOE ԑ4 

was found to have a role in the microvascular changes of the brain that ultimately 

lead to arteriolosclerosis.[31] There is a strong association between the APO E ԑ4 

genotype and atherosclerosis in addition to cerebral blood vessel structural changes 

such as amyloid angiopathy (due to increased Aβ deposition). The latter is found to 

be associated with increased risk of white matter injury. The ultimate associated 
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effect of APO E ԑ4 is decreased cerebral blood flow which results in ischemic 

damage to vulnerable areas and cognitive decline.[32] 

 It is important to note that WMH can be seen in several other neurological diseases 

such as multiple sclerosis,[33] posterior reversible encephalopathy syndrome,[34] 

dysmyelinating diseases such as metachromatic leaukodystrophy,[35] and epilepsy,[36] as 

well as in a variety of other infectious, inflammatory or neoplastic disease states. However, 

such diseases are rare in the aging population in contrast to AD and cSVD which are quite 

common. As such, WMH resulting from both AD and cSVD are  the focus of our 

dissertation.[17, 37] 

 AD is a widely used abbreviation for Alzheimer’s disease, which is a clinical 

syndrome of progressive cognitive impairment and functional decline over a period of 8-

10 years.[38, 39] In this dissertation, “AD pathology” will be defined using different 

imaging and cerebrospinal fluid (CSF) markers. Medial temporal lobe atrophy (MTA) is 

one of the most commonly used surrogate imaging markers for AD that can be visualized 

best on coronal T1-weightedMRI images.[40] Recently, young patients with familial AD 

were found to have more WMH on the posterior part of the brain, which may prove useful 

as an additional imaging marker for AD.[17, 18] In addition, CSF amyloid beta (Aβ) levels 

and Aβ-PET imaging can be also used as biomarkers for AD.[41]  

 Finally, it is important to explain the stages or progression of cognitive decline for 

both AD and VaD in their “pure forms”, while recognizing that conclusions arising from 

the existing literature may in many cases be derived from “mixed” rather than “pure” 

pathologic disease states. 
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 VaD refers to an impairment of memory resulting in functional decline secondary 

to cerebrovascular disease including cSVD.[42, 43] Clinical VaD can be divided into three 

stages: 1) the preclinical stage has been described by Hachinski V.C. et al.,[44] as the stage 

wherebrain damage occurs but without significantcognitive impairment, 2) the mild 

cognitive impairment stage (MCI) is characterized by cognitive impairment with intact 

Activities of Daily Living (ADL), 3) A Major Neurocognitive Impairment stage (defined 

in the DSM-V), also recognized as the stage of dementia with decline in ADL.[45] 

 It is widely recognized that at the stage of advanced dementia, the brain has suffered 

significant irreversible injury. As such, the field has moved towards earlier detection of 

disease. Targeting, diagnosis and secondary prevention in the preclinical and MCI stages 

is reasonably believed to be the best way to impact the disease process. In addition, 

focusing on these early predementia stages of VaD allows planning for future needs for 

both the patient and potential caregiver.[46] As such the focus of this dissertation and the 

patient population studied largely focus on the preclinical and MCI stages of VaD. 

 Preclinical VaD is a term used to describe a state of normal cognition characterized 

by early pathological changes of the cardiovascular system that are likely to lead to future 

cSVD and clinical cognitive decline if allowed to continue to progress.[47] 

 The Framingham Risk Score (FRS) is used as a primary risk assessment tool for 

cerebrovascular disease in asymptomatic healthy persons, as well as risk for cognitive 

decline in those that are already symptomatic. Traditional CVR included in the FRS are 

patient age, history of smoking and HTN, total serum cholesterol and high density 

lipoprotein (HDL).  Ten-year risk scores are expressed as a percentage stroke risk. A 
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percentage between 0-10% is considered low risk, moderate risk falls between 11-20%, 

and a high risk occurs when the ten-year risk is greater than 20%.[48]  

 MCI was developed as a concept to identify individuals at risk for the future 

development of dementia. While initially developed as a construct to identify prodromal 

Alzheimer’s disease dementia, the concept was broadened in 2004 to include 

categorization based on cognitive domain involvement in order to predict the underlying 

pathologic event responsible for the cognitive decline which may include pathologic 

disease states disparate from Alzheimer’s alone, such as VaD.[49] These criteria are as 

follows: 

I. Global cognition should be preserved; 

II. A cognitive deficit that is reported by self or caregiver with an evidence of such 

complaint; (typically set at > 1.5 s.d. below age and education adjusted means) 

III. Not demented by DSM-IV criteria; 

IV. No, or minimal functional impairment. 

 This schema includes diagnosis of MCI into four major subtypes based on presence 

vs. absence of memory involvement and further on the presence of involvement of a single 

vs. multiple cognitive domains as described below in Figure 1.1. 

 The schema in Figure 1.1 has been developed to allow clinical determination of the 

potential causes for the cognitive impairment noted. Practical application of the schema for 

predicting underlying cause of cognitive decline is illustrated in Figure 1.2. It should be 

noted that this diagnostic schema has not been fully validated and ongoing work is needed 

to fully delineate the specific features of MCI due to specific underlying or mixed  
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Figure 1.1 Diagnosis of Mild Cognitive Impairment. 
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Figure 1.2 Mild Cognitive Impairment subtypes. 

 
 

pathologies. This is a practical working clinical and conceptual classification at the present 

time. 

1.3 The Role of Imaging in the Diagnosis of AD & cSVD: 

 Much work has gone into describing the unique cognitive sequelae associated with 

both prototypical AD and VaD secondary to cSVD (Table 1.1). Descriptions however are 

often contradictory or overlapping given the extent of shared pathology in each of these 

disease states. Prototypical early changes in AD include deficits in episodic memory 

followed by later decline in language, executive, and visuospatial function.[50]  

 Descriptions of prototypical changes in VaD have been more complex as a result 

of the pathologic and neuroanatomic heterogeneity inherent in this disease state. Cognitive  
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Table 1.1 Specific cognitive domain involvement associated with aging and/or 

cerebrovascular risk factors across cohort studies. 

 
Study CVD risk 

factor studied 
Design  Affected cognitive 

domain  

Type 2 diabetes mellitus, 
hypertension, dyslipidemia and 

obesity [51].  

Type-2 DM, 
HTN, HLD 
and Obesity 

Systematic 
Review 

memory, 
processing speed 

and cognitive 
flexibility 

The cognitive correlates of white 
matter abnormalities in normal 

aging [52] 

Aging Quantitative 
review 

Executive functions 
(explained by 

reduced volume of 
prefrontal cortex), 
processing speed 

and working 
memory. 

The Aging Brain [53] Aging Review Delay recall of 
verbal memory 

Cognitive impairment in heart 
failure [54] 

Heart Failure Systematic 
review 

Memory, 
processing speed 

and attention 

Cognitive outcomes after acute 
coronary syndrome [55] 

Myocardial 
infarction 

Prospective 
population 

based cohort 
study 

Mostly memory 
and language. 

Executive function 
was affected to a 

lesser extent 

Atrial Fibrillation Is an 
Independent Determinant of Low 

Cognitive Function [56] 

Atrial 
Fibrillation  

Cross-
Sectional 

study 

Memory, 
processing speed 

and possibly 
executive function 

Homocysteine and the brain in 
midadult life: Evidence for an 

increased risk of leukoaraiosis in 
men [57] 

Homocysteine Cross-
Sectional 

study 

Verbal memory  
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domain involvement can vary due to the primary vascular insult contributing to VaD, such 

as multi-infarct dementia, isolated strategic infarcts, and cSVD. Of these varied causes, the 

latter may have a more uniform pattern of cognitive impairment given the more uniform 

distribution of vascular lesions between cases that conform largely to end arterial 

watershed zones in the subcortical white matter. In VaD related to cSVD, a decline in 

executive function may be the earliest clinical sign of disease although memory can 

frequently be affected again creating confusion in distinguishing AD from VaD or mixed 

dementia on the basis of clinical presentation alone.[50]  

 In general, many believe that VaD patients tend to have relatively preserved verbal 

long term memory in the setting of markedly impaired executive function compared to the 

reverse seen for AD patients in the early stages of disease.[58] We do note however that as 

the disease progresses to the moderate to severe stages a distinction based on clinical 

presentation becomes less clear.[59] 

 Given the difficulty in distinguishing AD from cSVD or mixed dementia clinically, 

the field has largely relied on imaging evidence for either AD or cSVD changes to diagnose 

specific or mixed disease states. Advances in neuroimaging techniques that can guide the 

diagnosis of dementia has revolutionized the field. Such techniques include structural, 

functional, and molecular neuroimaging.  

 Structural neuroimaging, such as routine MRI and CT-scan, can delineate 

anatomical structure of the brain due to the high spatial resolution of these biomarkers, 

allowing and evaluation of specific tissue injury as well as patterns of cerebral atrophy that 

are specific for distinct disease states. Functional neuroimaging including Fluoro-

Deoxyglucose Positron Emission Tomography (FDG-PET), functional MRI (fMRI) and 
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Single Positron Emission Computed Tomography (SPECT), can delineate metabolic 

activity in specific brain regions that are affected in distinct disease states.[60, 61] 

Molecular imaging techniques such as Amyloid-PET, tau-PET, DaTscan (Dopamine 

Transporter (DAT) used with SPECT), and many other techniques and development can 

actually visualize the cellular, molecular, and pathologic changes that are distinct between 

subtypes of dementia. The following section focuses on these imaging advances and their 

role in accurately diagnosing and tracking disease progression in AD, VaD, and mixed 

dementia. An overview of currently used imaging modalities and specific findings in AD 

and VaD is presented in Table 1.2. 

 The current American Academy of Neurology practice parameter on the diagnosis 

of dementia requires the use of structural neuroimaging to evaluate non-neurodegenerative 

contributors to dementia such as vascular injury, intrinsic brain abnormalities, neoplasm, 

normal pressure hydrocephalus, brain contusions and other structural lesions that may be 

causative of cognitive decline and dementia.[62] The practice parameter does not 

specifically recommend one type of structural neuroimaging over another and yet each vary 

in practical application and extent of data derived in order to facilitate identification of 

underlying pathologic mechanisms responsible for any clinical cognitive decline seen in 

AD. The most recent iteration of diagnostic criteria for AD, includes structural imaging as 

a supportive biomarker that can demonstrate disease state specific neuronal injury, and 

molecular imaging techniques such as amyloid-PET, as ancillary criteria for the diagnosis 

of AD irrespective of the presence of comorbid CVD.[63] 

  CT-scans are primarily used to exclude other pathologies such as tumors and 

strokes. In addition, measuring hippocampal atrophy is also possible using CT-scans by  
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Table 1.2 Neuroimaging biomarker modalities and protocols that are commonly used for 

the diagnosis and tracking of Alzheimer’s and cerebrovascular disease. 

 

 

Technique Protocol Pathology studied Characteristics 

MRI 

MPRAGE Size and shape of brain 
regions, tumors, atrophy 

Demonstrates specific 
structural abnormalities  

FLAIR WMH, hemorrage, CSF Demonstrates evidence for 
vascular injury 

ASL Blood perfusion Identifies reduced perfusion in 
both AD & cSVD 

BOLD (fMRI) Oxygen concentration 
Identifies coactivated brain 

regions establishing functional 
connectivity 

DTI 

FA 
Longitudinal water 
molecule movement 

inside the fibers 
Identifies disruted  

Myelination of fiber tracts DM 
average of water 
diffusion in all 

directions 

ADC The axial diffusion of 
water 

PET 

11C-PiB-PET Presence of cerebral Aβ 

Ligand binds Aβ, 11C isotope 
requires cyclotron near 

facility, limiting broad use of 
this agent 

18F-amyloid tracers Presence of cerebral Aβ 
Ligand binds Aβ, 18F isotope 

stability allows more 
widespread use of this agent 

18F-FDG Glucose metabolism Ligand is substrate for TCA 
cycle glucose utilization 

SPECT 99mTc-ECD Blood perfusion Identifies reduced perfusion in 
both AD & cSVD 
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specialists, however these techniques are inferior to the analysis afforded by MRI given its 

ability to visualize the brain in multiple planes that are devoid of bony artifact.[64] CT-

scans can also identify overt areas of ischemic injury and provide evidence for subcortical 

small vessel disease that could be responsible for cSVD or mixed disease. 

 Brain MRI is being used in most centers to guide the diagnosis of AD, with the 

exception of use in patients with implanted or injury associated ferrous metal that would 

preclude the use of a high field magnet.[65] MRI is essentially contraindicated in any 

patient with an implanted metallic device such as pacemaker, brain or spinal cord 

stimulator, or implanted infusion pump. In addition, while the availability of MRI scanners 

has increased dramatically over the last several decades there are still many smaller and 

rural medical centers that do not have access to MRI for routine diagnostic purposes.  

 Brain MRI is the most widely used tool for the diagnosis of cSVD as recommended 

by the STandard for ReportIng Vascular changes on nEuroimaging (STRIVE).[15] cSVD 

is to some extent ubiquitous in VaD, irrespective of overt large vessel ischemic or 

hemorrhagic stroke and is characterized by imaging findings including increased T2 signal 

abnormalities in the subcortical white matter (WMH), lacunar infarcts, small subcortical 

infarcts, and cerebral microbleeds). There is a general consensus that such T2 signal 

abnormalities affecting more than 25% of the white matter are indicative of cSVD.[66] 

Figure 1.3 illustrates MRI characteristics that can discriminate between AD and cSVD. 

 T1-weighted Magnetization Prepared Rapid Acquisition Gradient Echo 

(MPRAGE) imaging sequence has high special resolution, affording 3-dimensional 

reconstructions of the brain that can be visualized in any plane, that can evaluate changes 

in cortical sulci and atrophy in hippocampus, parahippocampal gyrus, entorhinal cortex,  
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Figure 1.3 Descriptive structural imaging findings in Alzheimer’s (AD) and vascular 

(VaD) or mixed dementia.  

Panel A demonstrates typical medial temporal lobe atrophy seen in AD (red arrows). Panel 

B illustrates typical white matter hyperintensities (red arrow head), lacunar infarcts (blue 

arrow head), and cerebral atrophy (green arrow head) associated with VaD or mixed 

dementia. Note: global cerebral atrophy may be seen in both AD and VaD and does not 

distinguish these disease states. 

 

posterior cortex, subcortical nuclei and amygdala, which are affected earliest in the course 

of disease for AD patients.[67, 68]  T1-weighted sequences in particular, can aid the 

clinician and researcher in estimating Medial Temporal lobe Atrophy (MTA) as an early 

neuroimaging marker of AD.[69] Semi-quantitative visual rating scale such as the 

Scheltens’ scale, can be easily taught and assessed with routine clinical imaging in either 

two-dimensional or 3-dimensional sequences.[70] Evaluation of medial temporal lobe 

atrophy is best performed in the coronal plane which allows more accurate visualization of 
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medial temporal lobe volumes that are not affected by tangential slicing of these structures 

as can occur with axial and/or sagittal acquisitions. In addition, there are a number of 

automated and semi-automated post acquisition processing software programs that can 

provide voxel by voxel volumes allowing quantitative assessment of these and other 

discrete structures within the brain. Several of these software programs, such as FreeSurfer, 

are open access and represent the state-of-the-art tools for researchers in the field. Such 

automated segmentation software can provide accurate volumetric measurements that can 

be used to estimate diagnostic probabilities for the presence of AD pathology in the 

antemortem state.  

 T2-weighted imaging is highly sensitive to tissue water content changes that are a 

marker for ischemic cerebrovascular disease injury. FLAIR imaging sequences null the 

signal derived from pure fluid compartments such as the ventricular system, allowing 

accurate evaluation of periventricular and cortical surface hyperintensities that would not 

be seen in routine T2 imaging sequences.[71, 72] These developments have dramatically 

improved our ability to assess contributions of vascular injury in relation to the clinical 

presentation of each unique patient imaged. There are many sophisticated methods to 

quantify the volume of WMH using FLAIR sequence of the brain MRI (Figure 1.4). 

However, simple visual rating such as Fazekas’ scale [14] can be used by clinicians and 

researchers to estimate the WMH burden and guide the diagnosis of cSVD in routine 

clinical practice. 

 Diffusion Tensor Imaging (DTI) sequence can evaluate the integrity of axonal 

pathways forming large fiber tracts that connect often remote brain structures and regions.  



17 
 

Figure 1.4 Sophisticated WMH volume quantification. 

Upper row: Segmentation steps to classify brain grey matter (GM), white matter (WM), 

and CSF. A. GM segment, B. first WM segment, C. second WM segment, D. CSF segment, 

E. total WM (C2+C3). Lower row: Extraction of white matter (WM) hyperintensities for 

quantitation. F. FLAIR image, G. extracted FLAIR WM image, H. result of thresholding 

FLAIR WM image (F), I. Gaussian smoothed extracted WM hyperintensities. WM 

hyperintensity volume is volume sum of voxels in I. 

 

 

  

DTI can detect the microstructural changes in AD in the early stage before these changes 

appear anatomically.[73, 74] DTI parameters that are typically measured include Fractional 

Anisotropy (FA), Axial Diffusion Coefficient (ADC) and Mean Diffusivity (MD) (Figure 

1.5 A and B). These parameters are based on our understanding of water movement in 

relation to myelinated parallel fiber pathways. Typically, water molecules move (diffuse) 

more rapidly in the fiber tracts longitudinally parallel to the axonal wall compared to  more 
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slowly diffusing water molecules perpendicular to the wall. FA tracks the water molecule 

movement inside and parallel to the fibers.[75]  

Figure 1.5 A representative brain MRI of 80 years old female showing DTI and ASL. 

A. DTI-FA (highest FA is brightest), B. DTI-MD and C. PASL-Perfusion images (pseudo 

color, blue lowest and red highest perfusion). 

 

 

 

For AD patients FA decreases throughout many pathways in the superior-inferior part of 

the brain.[76, 77] MD reflects the average of molecule diffusion in all directions per voxel 

depending on the membrane or barrier permeability of the axon and is elevated in AD 

patients. ADC demonstrates the diffusion of molecules in the axial direction of the 

fiber.[78] ADC reductions are associated with axonal damage and increases in AD 

subjects.[79] These changes appear quite distinct in both neuroanatomic specificity as well 

as extent in AD vs. cSVD subjects. Compared to the WMH quantification, DTI measures 

are less vulnerable to error attributed to using one’s judgment and manual editing when 

using automated and semi-automated quantitative methods.[80] Haller et al. reported that 

DTI and more specifically the MD measures represent the most accurate imaging 
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biomarker for cSVD, even in the presence of AD.[80] Similarly, another study found that 

DTI measures were effective in distinguishing between early stage AD and cSVD.[81] It 

remains uncertain if overlap in DTI measures between AD and cSVD can reliably detect 

mixed disease states. 

 MRI can also be quite useful in detecting Cerebral Microbleeds (CMB), which are 

frequently related to the presence of cerebral amyloid angiopathy. CMBs can be visualized 

using MRI T-2 echo gradient, and are visualized as small hypointensities range in size from 

2-10 mm. CMB can be seen in up to two thirds of AD and cSVD patients and so may be 

less useful in distinguishing between AD, cSVD, and mixed dementia than other 

modalities.[66, 82] In extreme cases however brain injury secondary to cerebral amyloid 

angiopathy and widespread CMBs can be a major contributor to cognitive decline that can 

involve both AD as well as cerebrovascular tissue injury. 

 Amyloid Positron Emission Tomography (Amyloid-PET) is the only imaging 

technique that can visualize amyloid deposition in the living brain. Multiple amyloid-PET 

tracers have been developed for research purposes and have eventually garnered FDA 

approval including Pittsburg Compound B (PiB), Florbetapir, Florbetaben, and 

Flumetamol. The former made the availability of the amyloid PET difficult due to its C-11 

component’s short half-life. This issue was resolved using other longer half-life 

compounds such as 18F (for example Florbetapir, Florbetaben, and Flumetamol), which 

made amyloid-PET widely available.[66]  

 Amyloid PET scans are approved by the FDA for the detection of cerebral amyloid 

deposition and are not specific to any individual disease state. They can be useful in 

differentiating dementia such as AD from other forms of dementia that do not include 
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amyloid deposition asa pathologic feature such as Frontotemporal Dementia (FTD).[83, 

84] The specificity of amyloid PET scans for Alzheimer’s disease is low and positive scans 

are also frequently seen in cases of Dementia with Lewy Bodies (DLB).[85, 86] Similarly, 

cases with mixed dementia were found to have a positive amyloid PET scan although this 

is related to the comorbid Alzheimer pathology rather than direct visualization of vascular 

amyloid.[87] While the PET ligands do bind vascular amyloid, this is found in much lower 

abundance in the brain than plaque associated amyloid and it is unclear how the presence 

or absence of cerebral amyloid angiopathy may influence the PET scan results. It should 

also be noted that amyloid PET scans are positive in about 20-30% of people with normal 

cognition,[88] and are used to detect the pre-clinical stage of AD.[89] This has opened up 

new possibilities for secondary prevention trials in the area of AD. 

 Functional MRI (fMRI) can detect oxygen consumption in specific brain regions 

during rest and activity dependent stimulation by measuring the ratio of oxy- to deoxy-

hemoglobin. Blood-Oxygen-Level Dependent contrast imaging (BOLD) can demonstrate 

abnormalities in the hippocampus, inferior parietal lobe, medial temporal lobe and 

cingulate cortex in AD that may provide clues to a pure and/or mixed state.[90, 91] Work 

investigating BOLD signal changes in subjects with cerebrovascular disease can produce 

heterogeneous results again secondary to the heterogeneity of pathologic cause and neuro 

anatomic involvement seen in cSVD. 

 Metabolic activity in the brain can also be visualized using Fluoro-Deoxyglucose 

Positron Emission Tomography (FDG-PET). Radiolabeled glucoses up taken in 

metabolically active tissues (mainly synapses in the brain), leading to increased signal in 

such regions. In AD patients, FDG-PET typically shows a decrease in glucose metabolism 
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localized to the superior and posterior temporal lobe in addition to the parietal lobe with 

the medial portion of it being affected earlier in AD.[89, 92] FDG-PET results can be 

variable again in cSVD, and lack specificity for this disease entity. 

 Single-photon emission computed tomography (SPECT) is sensitive to blood 

perfusion (hypoperfusion) and chemical changes in the brain [93] and it could 

prognosticate the change of MCI to AD early. [73] 99mTc-ethylcysteinate dimer (99mTc-

ECD) is commonly used with SPECT for cerebral blood perfusion imaging.[94] Patients 

with early stages of AD usually have hypoperfusion or hypometabolism in the posterior 

cingulate and precuneus,[66, 95] which then extended to the temporoparietal region 

bilaterally that could be either symmetrical or asymmetrical. In general, SPECT is less 

sensitive but more specific than FDG-PET for AD changes.[96, 97] While changes in 

cerebral blood flow can be greatly influenced by cerebrovascular disease, specific patterns 

of SPECT abnormalities cannot be predicted in subjects with cSVD. 

 Arterial Spin Labeling (ASL) is a noninvasive MRI sequence that allows evaluation 

of tissue perfusion using magnetized protons within water molecules in the brain 

circulatory system (Figure 1.5 C). AD patients’ ASL showed areas of hypoperfusion as 

bilateral temporoparietal lobe similar to that seen in FDG-PET and SPECT. More 

specifically inferior parietal, bilateral posterior cingulate and middle frontal gyrus showed 

reduced perfusion in AD patients.[98, 99] ASL can be used to quantify the reduction of 

cerebral blood perfusion in brain regions affected by microvascular disease.[100] ASL 

consistently demonstrates a decrease in CBF in brain regions that have been affected by 

microvascular change, apparent as increased T2 signal hyperintensities on FLAIR imaging 

sequences.  in contrast to AD, cSVD is associated with decreased perfusion and metabolism 



22 
 

of the sensorimotor cortex and subcortical white matter with preservation of the association 

cortices.[66] 

 Each neuroimaging technique can contribute information in unique ways that can 

be used to support the clinical diagnoses of AD, VaD, or other forms of dementia not 

addressed in this thesis (see Table 1.1). Combining more than one technique may provide 

more details about the future progression or prediction of the underlying disease state than 

can be afforded through the use of a single imaging modality or fluid biomarker alone. For 

instance, CSF results combined with other imaging techniques such as MRI, PET, SPECT 

can provide a combination of structural, functional, and molecular information, which can 

greatly enhance the specificity of clinical diagnoses and can be useful for differentiating 

AD from other causes of dementia such as cSVD.[68, 73, 101]  

1.4 CSF biomarkers of AD and cSVD 

 One of the most widely used biomarkers to diagnose AD is CSF, in which reduced 

levels of Aβ have been found to be strongly associated with the accumulation of 

parenchymal amyloid plaques. CSF Aβ levels have been found to be low even at the pre 

AD stage of disease. However, absolute change in CSF Aβ levels are not correlated with 

the rate of change in cognitive decline and/or the progression of dementia but instead 

appear to represent a static state once the disease process is initiated.[102-104]  

 CSF can also be used to examine elevated levels of tau, total tau protein levels 

and/or specific phosphorylated protein levels, which have a 79% specificity of identifying 

subjects with AD. Combining CSF Aβ1-42 and tau levels increases the specificity for 

identification of AD subjects to approximately 86%, and has proven to be  
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the measurement of choice for diagnostic accuracy in determining an underlying pathologic 

disease state of AD.[104] 

 There is still no consensus on whether specific CSF biomarkers may help identify 

cSVD in either clinical or preclinical disease states.[105] Some studies showed have 

demonstrated elevations in neurofilament light chain proteins, which presumably reflect 

the extent of axonal damage secondary to cSVD.[105, 106] Other studies have shown that 

cSVD subjects may have an elevated albumin CSF/serum ratio due to disruption of the 

BBB.[105, 107] Both neurofilament light chain protein and the elevated albumin ratio 

represent nonspecific, although potentially highly sensitive markers of cSVD, even in 

normal control subjects.[108] 

1.5 Hypotheses and Specific Aims: 

Three experiments were developed as the core of this dissertation to address these 

hypotheses: 

1. Hypothesis 1: cSVD visualized as WMH on FLAIR imaging are related to global 

cortical atrophy (GCA). (Increased WMH-> increased atrophy) 

Specific Aim 1: Examine the relationship of cSVD, visualized as WMH on 

FLAIR imaging, with GCA. 

2. Hypothesis 2: AD is related to WMH seen on FLAIR imaging 

Specific Aim 2: Investigate the association of the CSF Aβ (a surrogate of AD) 

with WMH seen on FLAIR imaging. Further determine if the WMH associated 

with AD vs. cSVD represent independent or dependent (additive or synergistic) 

processes. 
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3. Hypothesis 3: WMH are subject to dynamic change that may be related to 

modulation by CVR and or to progressive AD changes.  

Specific Aim 3: Determine the extent of dynamic WMH change overtime and 

examine the association of WMH progression or regression with CSF Aβ 

(surrogate for AD), and specific CVR. 
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CHAPTER 2. BRAIN ATROPHY DETECTED BY ROUTINE IMAGING: RELATIONSHIP WITH 

AGE, HIPPOCAMPAL ATROPHY, AND WHITE MATTER HYPERINTENSITIES 

 
Summary: 

Background and Purpose: Interpreting the clinical significance of moderate to severe global 

cortical atrophy (GCA) is a conundrum for many clinicians, who visually interpret brain 

imaging studies in routine clinical practice. In the absence of clinical signs of specific 

neurological conditions, GCA may be attributed to normal aging, Alzheimer’s disease 

(AD), or cerebral small vessel disease (cSVD). Understanding the relationships of GCA 

with aging, AD, and cSVD is important for accurate diagnosis and treatment decisions for 

cognitive complaints. 

Methods: To elucidate the relative associations of age, white matter hyperintensities 

(WMH), and medial temporal lobe atrophy (MTA), with GCA, we visually rated clinical 

brain imaging studies of 325 participants from a community based sample. Logistic 

regression analysis was conducted to assess the relations of moderate-to-severe GCA with 

age, WMH, and MTA.  

Results: The mean age was 76.2 (± 9.6) years, 40.6% were male, and the mean educational 

attainment was 15.1 (± 3.7) years. Logistic regression results demonstrated that while a 1-

year increase in age was associated with GCA (OR=1.04; p=0.04), the effects of moderate-

to-severe MTA (OR=3.38; p<0.001) and moderate-to-severe WMH (OR=9.79; p<0.001) 

showed much stronger associations with moderate-to-severe GCA in our study population. 

Conclusions: Moderate-to-severe GCA should not be solely attributed to age when 

evaluating clinical imaging findings in the workup of cognitive complaints. Moderate to 

severe GCA is likely occur in the presence of AD or cSVD. Developing optimal diagnostic 
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and treatment strategies for cognitive decline in the setting of moderate to severe GCA 

requires an understanding of the contributors to moderate-to-severe GCA in the aging 

population. 

2.1 Introduction: 

 Interpreting the diagnostic significance of moderate to severe global cerebral 

atrophy (GCA) is a conundrum for many clinicians, who visually interpret structural brain 

magnetic resonance imaging (MRI) in routine clinical practice. Many clinicians attribute 

GCA to the normal aging process.[109] Others may invoke degenerative processes such as 

Alzheimer’s disease (AD), and yet others may relate these changes to cerebrovascular 

insults and disease (CVD).[110, 111] Understanding the relationship of GCA with aging, 

AD, and CVD would help inform accurate diagnosis and selection of appropriate 

interventions to maintain brain volume, cognition, and function. 

Irrespective of the cause of GCA, strong associations across multiple studies argue 

that it is a reliable marker of cognitive and functional impairment seen in the aging 

population.[112, 113] GCA can be readily identified using conventional imaging 

techniques, such as MRI and computed tomography (CT) scans, and so is evaluated by 

examining clinicians in virtually every case presenting with cognitive impairment.[114]  

GCA can be reliably scaled on a semi-quantitative basis using standardized protocols [115] 

and further quantified using volumetric analysis techniques. In routine clinical practice, 

however, it is uncommon to use sophisticated volumetric techniques and instead qualitative 

assessment prevails. Similarly, vascular changes—such as white matter hyperintensities 

(WMH)[14, 116]—and medial temporal lobe atrophy (MTA) can be graded semi-

quantitatively using visual rating scales.[40] These features may also be analyzed using 
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more sophisticated quantitative volumetric measures, which again are not commonly relied 

on by clinicians for making diagnostic or therapeutic decisions in routine clinical practice.  

Potential contributors to GCA include age,[117] WMH associated with CVD,[110] 

and AD.[111] Many studies have shown that the severity of GCA is associated with 

increased age.[109, 117-121] Resnick et al. showed no detectable GCA over one year, but 

reported 1.5 cubic centimeter increase in ventricular volume over the same period 

longitudinal data analyses.[122]  A subsequent analysis of two and four year follow-up data 

from the cohort later revealed a significant association between GCA and age.[114] In 

summary, although the literature is ambiguous, the hypothesis that GCA is associated with 

age per se has become strongly fortified for many practicing clinicians and radiologists 

MTA can be associated with both AD and to a lesser extent with normal aging.[119, 

123] A recent report from Alzheimer’s Disease Neuroimaging Initiative (ADNI) showed 

that absolute MTA two years after the baseline MRI scan ranges from a 1-7% loss of medial 

temporal lobe volume in addition to a 10% increase in ventricular size.[124] While 

ventricular changes may be readily discernable to the naked eye, MTA at a rate of only 1-

7% per / year is difficult to detect in routine qualitative clinical evaluation of patient scans.  

GCA has also been shown to be associated with CVD, and both share many 

common risk factors.[110] Prior studies examining healthy participants found that 

subcortical T2 signal changes in the white matter (i.e. WMH) were strongly associated with 

GCA.[125-129] These studies suggested that the magnitude of the association between 

WMH and GCA in cognitively intact subjects may be double that associated with aging in 

the absence of WMH.[112] However, these findings have been disputed in several other 

studies that reported no association between GCA and WMH.[130, 131]  
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In order to further elucidate the relative associations of age, WMH (as a surrogate 

for CVD), and MTA (as a surrogate for AD), with GCA, we examined MRI and CT with 

semi-quantitative metrics of each from 325 participants in a community-based longitudinal 

study of aging and cognition. Participants in the current study span the cognitive 

continuum. 

2.2 Methods: 

2.1.1 Subjects: 

 Both MRI and CT scans were acquired during routine clinical evaluation of study 

participants in the University of Kentucky Alzheimer Disease Center Cohort (n=325). 65% 

of scans were MRI. Details of the recruitment and longitudinal evaluation of these 

participants have been published previously.[132] This study was approved by the 

University of Kentucky Institutional Review Board. 

2.1.2 Visual rating of brain images: 

 Visual rating of clinical brain images was performed independently by three 

physicians including a general neurologist (PP), neuroimaging specialist (CDS), and a 

behavioral neurologist (GAJ) using the standardized visual rating scales described below. 

Discrepant rating scores were adjudicated in a consensus conference including all three 

raters. 

 Representative images from a young normal and elderly normal subjects with and 

without imaging findings of WMH, MTA, and GCA are presented in Figure 2.1. 

 Global cerebral atrophy: GCA was visually rated on scale of (0-3) using T1 MRI 

or CT structural images based on the semi-quantitative rating scale due to Pasquier and 

colleagues.[115] The raw data were then dichotomized with scores of 0 and 1 considered  
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Figure 2.1 Descriptive figure showing representative magnetic resonance imaging images.  

From (A-C) a young normal, (D-F) an elderly subject without significant white matter 

hyperintensity (WMH), medial temporal lobe atrophy (MTA), or global cerebral atrophy 

(GCA), (G-I) an elderly subject with significant MTA and GCA without WMH, and (J-L) 

an elderly subject with significant WMH and GCA without significant MTA. 

 
 

(A), (D), (G), and (J) are axial fluid-attenuated inversion recovery images. (B), (E), (H), 

and (K) are coronal T1 images. (C), (F), (I), and (L) are sagittal T1 images. 
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as negative for significant atrophy (see figure 2.2 panel C and D), and scores of 2 and 3 

considered as positive for moderate to severe atrophy (see figure 2.2 panel G, H, K and L). 

Medial temporal lobe atrophy (MTA): MTA was rated based on the 5-point semi-

quantitative scale developed by Scheltens and colleagues [40] using T1 MRI or CT 

structural images. The raw data were dichotomized as follows: scores of 0, 1 and 2 were 

considered negative for significant atrophy, demonstrating only no or mild atrophy (see 

figure 2.2 panel B), while scores of 3 and 4 were considered positive for moderate to severe 

atrophy (see figure 2.2 panel F and J). 

 White Matter Lesions: We visually rated WMH using a modified Longstreth scale 

[116] using CT scan or fluid attenuated inversion recovery (FLAIR) sequence of the MRI. 

The Longstreth scale was compressed by mapping the 0-9 Longstreth score into a 1-4 scale, 

using the mapping 1 = 0-2, 2 = 3-4, 3 = 5-6 and 4 = 7-8. The ends of the Longstreth scale, 

0 and 9 are extreme values to account for extraordinary, rarely encountered instances of 

either no periventricular hyperintensity rim at all (0) or extremely severe global white 

matter hyperintensity exceeding even the severe 8 Longstreth rating (9). These extreme 

ratings were incorporated for completeness into our 1 and 4 ratings respectively, but were 

not in fact encountered in our images. The raw data were then dichotomized with scores of 

1 and 2 considered as negative for significant WMH volume (see figure 2.2 panel A), and 

scores of 3 and 4 considered as positive for moderate to severe WMH volume (see figure 

2.2 panel E and I). 

2.1.3 Statistical Analysis: 

 Descriptive statistics were used to summarize the study sample. A Spearman 

analysis was conducted prior to multivariable analysis to assess the degree of correlation  
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Figure 2.2 Descriptive figure showing the contribution of vascular damage (represented as 

white matter hyperintensity; WMH) and Alzheimer’s Disease (represented as medial 

temporal lobe atrophy; MTA) to global cerebral atrophy (GCA). 

 

The upper row is an example of a subject with no-mild WMH on the fluid attenuated 

inversion recovery (FLAIR) image (A) and MTA on the coronal T1 image (B). Note that 

the subject with no-mild WMH and MTA has no-mild GCA as shown in the transverse and 

sagittal T-1 image in the upper row (C and D respectively). The middle row is an example 

of a subject with moderate-severe WMH on the FLAIR image (E) and MTA on the coronal 

T1 image (F), which is associated with moderate-severe GCA seen on the transverse and 

sagittal T-1 image (G and H respectively). The lower row represents a second example of 

moderate-severe WMH on the FLAIR image (I) and MTA on the coronal T-1 image (J). 

Note that this subject also has moderate-severe GCA as shown in the transverse and sagittal 

T-1 image in the lower row (K, and L respectively). 
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among the study measures. Simple and multivariate logistic regression models using 

dichotomous measures for GCA (as described above) were performed to examine the 

association with age, WMH, and MTA. A separate ordinal logistic regression model was 

run using an ordinal measure of GCA (0-1 = no or mild GCA, 2 = moderate GCA and 3 = 

severe GCA). The proportional odds assumption was checked with the Score test. Potential 

two-way interaction between WMH and MTA in relation to GCA was included in the 

adjusted models. Statistical analyses were performed using Stata 14. 

2.3 Results: 

 Demographic and clinical features of the research participants are presented in 

Table 2.1   The mean participant age was 76.2 years (± 9.6 years, range 41-96 years), 40.6% 

were male, and the mean number of years of formal education was 15.1 years (± 3.7 years). 

Spearman correlation analysis showed that age, WMH and MTA were all positively and 

significantly correlated with GCA, with the strongest correlation between WMH and GCA 

(rho=0.54) (table 2.2). In addition, WMH, MTA, and GCA severity were found to be 

positively and significantly correlated with age in the Spearman correlation analysis (table 

2.2). 

 Simple logistic regression models using the dichotomized GCA variable (GCA of 

moderate-to-severe atrophy vs. no or mild atrophy) showed that the odds of having 

moderate-to-severe GCA increased 7.5% with each one-year increase in age (Model 1, 

table 2.3). Participants with moderate-to-severe MTA had 5.3 times the odds of moderate-

to-severe GCA than those with no or mild MTA (Model 2, table 2.3). Similarly, the odds 

of having moderate-to-severe GCA were 13.6 times higher in participants with moderate-

to-severe WMH than those with no or mild WMH (Model 3, table 2.3).  
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Table 2.1  Participant demographic, clinical, and imaging characteristics. 

 

SD = standard deviation; n = number of subjects; GCA = global cerebral atrophy; MTA = 

medial temporal lobe atrophy; WMH = white matter hyperintensity burden. 

 
  

Participant Characteristics Total 

Age (mean ± SD) 76.2 ± 9.6 

Sex (male n [%]) 132 (40.6)  

Education (mean ± SD) 15.1 ± 3.7 

Cognitive Diagnosis  

   Normal n (%) 87(26.8) 

   Mild Cognitive Impairment n (%) 129 (39.7) 

   Dementia n (%) 109 (33.5) 

Imaging Results  

   GCA (n [% of subjects with moderate-to-severe ]) 198 (60.9)  

   MTA (n [% of subjects with moderate-to-severe]) 115 (35.4)  

   WMH (n [% of subjects with moderate-to-severe]) 155 (47.7)  
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Table 2.2  Correlations among age (in years), white matter hyperintensity burden (WMH, 

rated 1-4), medial temporal lobe (MTA, rated 0-4) and global cerebral atrophy (GCA, rated 

0-3). 

 Age MTA WMH GCA 

  rs P rs P rs P 

Age -- 0.23 0.0000* 0.41 0.0000* 0.32 0.0000* 

MTA -- --  0.29 0.0000* 0.34 0.0000* 

WMH -- --  --  0.54 0.0000* 

 

GCA = global cerebral atrophy; MTA = medial temporal lobe atrophy; WMH = white 

matter hyperintensity burden; rs = Spearman correlation coefficient. 

*P <0.0001 

 In the multivariable logistic regression model, age remained significantly 

associated with the risk of having moderate-to-severe GCA and showed that the odds of 

having moderate-to-severe GCA increased 3.5% with each one-year increase in age, after 

adjustment for WMH and MTA scores (Model 4, table 2.3). Furthermore, participants with 

moderate-to-severe WMH had 9.76 times the odds of having moderate-to-severe GCA than 

those with no or mild WMH. Additionally, subjects with MTA scores in the moderate-to-

severe range had 3.47 the odds of moderate-to-severe GCA than those with no or mild 

MTA (Model 4, table 2.3). The interaction of WMH and MTA was not significant in the 

adjusted model and was not retained (p=0.79). 

 The ordinal logistic regression model showed that with each one-year increase in 

age the odds of more severe GCA increased by 3.5% (Model 5, table 2.3), similar to the 



35 
 

results obtained in the binary logistic regression model. However, the effect of WMH was 

attenuated in the ordinal model, where participants with moderate-to-severe WMH scores 

had 6.7 times the odds of more severe GCA compared to participants with no or mild WMH 

(Model 5, table 2.3). On the other hand, participants with MTA scores indicating moderate-

to-severe ratings had 4.1 times the odds of more severe GCA compared to participants with 

no or mild MTA (Model 5, table 2.3), which was comparable to the effect observed in the 

binary models (Models 2 and 4, table 2.3). The interaction term between WMH and MTA 

was not significant in this model and was not retained (p=0.64). 

 

 

 

 

 

 

 

 

 

 

 



36 
 

Table 2.3 Odds ratios (95% CI) for moderate-to-severe global cerebral atrophy (GCA) 

based on participant age, white matter hyperintensity (WMH), and medial temporal lobe 

atrophy (MTA). Models 1-3 are simple binary logistic regression, and Model 4 is 

multivariable binary logistic regression. Model 5 is ordinal logistic regression.   

 

 GCA = global cerebral atrophy; MTA = medial temporal lobe atrophy; WMH = white 

matter hyperintensity burden. 

2.4 Discussion: 

 These data argue that moderate to severe GCA seen on brain imaging studies should 

not be solely attributed to normal aging. Instead, CVD, and to a lesser extent AD, should 

be considered as the proximate cause of moderate-to-severe GCA in the majority of cases 

Comparison Model 1 Model 2 Model 3 Model 4 Model 5 

Age (1 year) 1.075 

 (1.05-

1.10) 

-- -- 1.03  

(1.00-1.07) 

1.03  

(1.00-1.06) 

MTA (moderate-

to-severe vs. no 

or mild) 

-- 5.35  

(3.05-

9.38) 

-- 3.47  

(1.83-6.60) 

4.05 

(2.48-6.60) 

WMH 

(moderate-to-

severe vs. no or 

mild) 

-- -- 13.60  

(7.60-

24.36) 

9.76  

(5.17-18.45) 

6.66  

(3.97-

11.17) 
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(where the prior probability of other causes of atrophy is assumed to be relatively low). 

 Such understanding may help direct appropriate diagnosis and treatment strategies 

for those undergoing evaluation of memory complaints or more significant cognitive 

decline that have had structural imaging performed as part of the diagnostic workup. 

 In the context of potential neuropathologic injury to the brain, age appears to be 

only a minor contributor to the development of moderate to severe GCA, in line with the 

results from prior studies in the field. Fjell et al. reported that the rate of GCA progression 

due to normal aging is 0.5% annually.[133] Similarly, Hua et al. and Scahill et al. also 

found a small but significant decrease in regional and whole brain volumes and a 

concomitant small increase in ventricular volume with increasing age.[109, 134] The 

present findings suggest that more advanced GCA in the moderate to severe range should 

not be solely attributed to normal age-related processes, but rather suggest that more 

advanced GCA is most likely to be associated with specific disease states such as 

subcortical cerebrovascular injuries or neurodegenerative processes, such as AD, that may 

be more prevalent with advancing age, but are distinct from the normal aging process.  

 In AD, based on quantitative studies, the rate of GCA is accelerated compared to 

that seen in normal aging (1.25% compared to 0.5% annually), with the fastest rate of 

atrophy affecting the medial temporal lobe (2.5% annually).[133] Moreover, the rate of 

GCA and ventricular enlargement is accelerated even in young subjects (60-70 years) with 

MCI, reflecting the aggressiveness of neurodegenerative disease processes in young 

compared to old adults in even the earliest stages of cognitive decline.[134] The pattern of 

brain atrophy in AD also differs from that seen in normal aging. In AD, the medial temporal 

lobe is involved early in the disease course. Subsequently, the lateral temporal and frontal 
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lobes are affected, with eventual involvement of the sensorimotor and visual cortices. Such 

progression eventually leads to the development of moderate-to-severe GCA that is not a 

part of the normal aging process.[135] 

 Another important factor to consider as a contributor to the development of 

moderate-to-severe GCA is CVD. CVD may be present without evidence for GCA, but if 

progressive, can eventually result in moderate to severe GCA secondary to subcortical 

vascular damage that can lead to severe white matter atrophy.[136] In addition, progressive 

ischemic injury can lead to widespread neuronal atrophy and attrition in the grey matter 

that can be visualized on structural imaging as cortical thinning which can further 

contribute to the picture of moderate to severe GCA.[137] The STandard for ReportIng 

Vascular changes on nEuroimaging working group (STRIVE) has proposed terms and 

definitions to describe neuroimaging features of small vessel disease that include using 

GCA as an imaging correlate of CVD.[137] Few studies have failed to report an association 

between WMH and GCA, and those that have not found such an association have not been 

able to control for confounding factors such as small sample sizes or inclusion of 

participants with minimal to no CVD risks.[130, 131] 

 There are several limitations to the present study, including its cross-sectional 

design. While we have identified associations between age, MTA, WMH and the presence 

or absence of GCA, our data does not assess the temporal sequence of findings, limiting 

our ability to draw inferences on potential causality. We have also relied on a convenience 

sample drawn from a community-based cohort, enriched in highly educated Caucasian 

subjects that may limit the generalizability of the present findings. However, a major 

strength of our study also lies in our study sample, which is derived from a well 
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characterized community-based cohort, spanning the cognitive continuum from intact 

cognition to dementia. Furthermore, the wide age range (41-96 years) increases the 

generalizability of the findings at least in regards to lifespan. The use of visual rating scales 

derived from standard clinical images is also a major strength, allowing us to examine 

structural imaging findings that are part of the normal clinical workup for memory 

complaints. These assessments are directly applicable to imaging review procedures used 

in routine clinical practice rather than relying on advanced volumetric analysis techniques 

that are seldom available to the practicing clinician. 

 In conclusion, our study demonstrates that qualitative appraisals of structural 

imaging findings that are used routinely in clinical settings are an appropriate means of 

evaluating the differences between imaging correlates of normal aging and those related to 

specific disease processes. Such information may help direct accurate diagnoses and 

treatment strategies designed to maximally address cognitive and functional impairments 

that may be seen in mild forms as part of the normal aging process, or in more moderate to 

severe forms as the sequelae of AD or CVD. Further studies exploring other imaging 

features with an eye to practical clinical utility in diagnosis and care are much needed in 

the field.  
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CHAPTER 3. DISTINCT WHITE MATTER CHANGES ASSOCIATED WITH CSF AMYLOID Β 1-

42 & HYPERTENSION 

Summary: 
Background: Alzheimer’s disease (AD) pathology and hypertension (HTN) are risk factors 

for development of white matter (WM) alterations and might be independently associated 

with these alterations in older adults. 

Objective: To evaluate the independent and synergistic effects of HTN and AD pathology 

on WM alterations. 

Methods: Clinical measures of CVD risk were collected from 62 participants in University 

of Kentucky Alzheimer’s Disease Center studies who also had CSF sampling and MRI 

brain scans. CSF Aβ1-42 levels were measured as a marker of AD, and fluid-attenuated 

inversion recovery imaging and diffusion tensor imaging were obtained to assess WM 

macro and microstructural properties. Linear regression analyses were used to assess the 

relationships among WM alterations, CVD risk and AD pathology. Voxelwise analyses 

were performed to examine spatial patterns of WM alteration associated with each 

pathology. 

Results: HTN and CSF Aβ1-42 levels were each associated with white matter hyper-

intensities (WMH).  Also, CSF Aβ1-42 levels were associated with alterations in normal 

appearing white matter fractional anisotropy (NAWM-FA), whereas HTN was marginally 

associated with alterations in NAWM-FA. Linear regression analyses demonstrated 

significant main effects of HTN and CSF Aβ1-42 on WMH volume, but no significant HTN 

× CSF Aβ1-42 interaction. Furthermore, voxelwise analyses showed unique patterns of WM 

alteration. associated with hypertension and CSF Aβ1-42.   
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Conclusion: Associations of HTN and lower CSF Aβ1-42 with WM alteration were 

statistically and spatially distinct, suggesting independent rather than synergistic effects. 

Considering such spatial distributions may improve diagnostic accuracy to address each 

underlying pathology. 

Keywords: Hypertension, Alzheimer’s Disease, Aβ1-42 and white matter alteration. 

3.1 Introduction: 

 Over 50% of individuals who develop dementia have mixed pathologies at 

autopsy.[138-140] The two most prevalent contributors to mixed pathology are 

Alzheimer’s disease (AD) and cerebrovascular disease (CVD), and intense efforts are 

being made to develop in vivo tests for early diagnosis.[138, 140] Antemortem 

identification of AD pathology has become easier since the development of in vivo markers 

of amyloid and tau using cerebrospinal fluid (CSF) or positron emission tomography (PET) 

scans.[41, 141-143] Accurate identification and classification of CVD in vivo, however, 

remains challenging. Markers of CVD include areas of hyper-intense signal in white matter 

(white matter hyper-intensities, WMH) on T2-weighted MRI of the brain, and more 

recently, alterations in microstructural properties of WM such as fractional anisotropy (FA) 

detected using diffusion tensor imaging (DTI).[144-146] 

 WMH also occur in the pre-dementia stage of familial AD, including in those with 

no appreciable CVD risks.[17, 18] It remains unclear whether these WM alterations should 

be attributed to AD, CVD, or both pathological processes. Further, it is unknown whether 

the effects of AD and CVD are independent or synergistic. The present study examined 

relationships between CSF beta-amyloid (Aβ1-42) and CVD risk factors with both WMH 

volumes and FA values within regions of normal appearing WM. The central analysis of 
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the study utilized multiple linear regression to determine whether AD pathology and CVD 

risk are independently or synergistically associated with WM alterations. An interaction 

term was used to explore potential synergistic effects, while main effects explored potential 

independent effects of AD pathology and CVD risk. Voxelwise analyses were then used to 

determine the spatial distribution of WMH changes associated with CSF Aβ1-42 levels 

and/or CVD risk factors. 

3.2 Methods: 

3.2.1 Participants: 

 Participants enrolled in the University of Kentucky Alzheimer’s Disease Center 

(UK-ADC) cohort and affiliated clinical trials were included in the present study. All 

studies used identical imaging and cerebrospinal fluid collection protocols, and all research 

protocols were approved by the University of Kentucky Institutional Review Board. All 

participants gave written informed consent. 

 Inclusion criteria for the current study included a classification of cognitively 

normal (CN) or mild cognitive impairment (MCI), which was based on Clinical Dementia 

Rating (CDR)[147] global scores: CN (CDR = 0) and MCI (CDR = 0.5). Additionally, all 

participants were required to have MRI data that met quality control standards for motion 

and artifacts, available CSF Aβ1-42 data, and clinical data regarding current or previous 

diagnosis of hypertension (HTN: 1=yes, 0=no), hyperlipidemia (HLD: 1=yes, 0=no), and 

diabetes mellitus (DM: 1=yes, 0=no). In addition, data on antihypertensive medication use, 

history of cardiovascular disease, atrial fibrillation, cigarette smoking, blood pressure, and 

lipid levels were used to calculate a modified Framingham 10-year Stroke Risk Score 
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(mFRS) for each participant (FRS was modified because data on left ventricular 

hypertrophy were not available).[148] 

3.2.2 MRI Protocol and Analysis: 

 Data were collected on a Siemens 3 Tesla TIM TRIO scanner using a 32-channel 

head coil at the University of Kentucky Magnetic Resonance Imaging and Spectroscopy 

Center. Two high-resolution 3D T1-weighted images were obtained using a magnetization-

prepared rapid acquisition gradient echo (MP-RAGE) sequence [repetition time (TR) = 

2530 ms, inversion time (TI) = 1100 ms, echo time (TE) = 2.56 ms, Flip angle = 7 degrees, 

1 mm isotropic voxels]. Fluid-attenuated inversion recovery (FLAIR) images were 

acquired using a 3D sequence [TR = 6000ms, TI = 2200ms, TE = 338ms, 1mm isotropic 

voxels]. DTI used an axial, double-refocused spin-echo, echo planar imaging sequence [TR 

= 8000ms, TE = 96ms, FOV = 224mm2, 52 contiguous slices, 2mm isotropic voxels] with 

60 non-collinear encoding directions (b = 1000 s/mm2) and 8 images without diffusion 

weighting (b0, b = 0 s/mm2). 

3.2.2.1 FLAIR Sequence Analysis and WMH Mask Generation: 

 FLAIR image processing was performed using a previously described 

protocol.[149] Briefly, MP-RAGE and FLAIR images were radiofrequency 

inhomogeneity-corrected using the N3-correction algorithm provided in MIPAV 

(http://mipav.cit.nih.gov). The two MP-RAGE images were registered to each other using 

SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12) and then averaged. The 

averaged MP-RAGE image was then registered to FLAIR image using SPM12. Next, the 

FSL (v5.0.9) brain extraction tool[150] was used to remove non-brain tissue from the 

average MP-RAGE image to create a binary mask of brain tissue. This mask was then 

http://mipav.cit.nih.gov/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12
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applied to the FLAIR image to remove non-brain tissue. Multimodal segmentation was 

performed with SPM12 using the average MP-RAGE and FLAIR image. The brain was 

segmented into gray matter, two separate white matter segments, CSF, and other tissues 

segments using a previously validated segmentation method.[151] The two WM segments 

were combined to form a single WM mask, which was dilated and then multiplied with the 

FLAIR image to form a FLAIR WM mask. Matlab 2015b was then used to determine the 

mean and standard deviation (SD) of the FLAIR WM in each participant by fitting a 

Gaussian model curve to the histogram of WM voxels intensity. The FLAIR WM images 

were then thresholded at 3 SDs above each participant’s mean value to identify areas of 

WMH in that participant. The resulting WMH mask were then manually edited to remove 

artifacts around the interventricular septum and inferior slices.[151] The summed volume 

of remaining voxels in each participant was used as a measure of WMH volume. 

3.2.2.2 DTI Sequence Analysis: 

 The goal of the DTI analyses was to compute mean FA values within regions of 

normal-appearing WM (NAWM) in each participant’s FLAIR image. DTI image 

processing was performed using a previously described protocol.[152] Briefly, FSL 

(v5.0.9) was used to perform pre-processing for motion and eddy-current correction with 

outlier detection and replacement.[153, 154] Following brain extraction, the FMRIB 

Diffusion Toolbox (FDT v3.0) was used to fit a voxelwise diffusion tensor model, 

determine the eigenvalues, and calculate FA.[155] FA images were registered into FMRIB 

FA 1mm space, averaged to form a mean FA image to then generate a common WM 

skeleton, and finally project each participants FA image onto the group skeleton using 

tract-based spatial statistics (TBSS).[155] 
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 The same registration parameters were then used to project the FA image to 

standard (MNI152 T1 1mm3) space. The common track skeleton was used together with 

the WMH images in the TBSS non-FA pipeline.[155] These WMH images were then 

subtracted from the TBSS skeleton in order to create a NAWM image for each participant 

that comprised only WM outside of WMH. The mean global FA was then extracted from 

each participant’s NAWM image using fslstats FSL statistical tool. 

3.2.2.3. Cerebral Microbleed Analysis: 

 Measures of cerebral microbleeds (CMBs) were collected from 62 participants who 

had CSF sampling. Gradient recalled echo (GRE) MRI sequence was obtained to assess 

CMBs. CMBs were visually rated using Microbleeds Anatomical Rating Scale (MARS). 

[156] 

3.2.3 CSF Collection and Analysis: 

 CSF collection and analysis was performed as previously described.[157] In brief, 

participants underwent lumbar puncture the same day as MRI scanning. CSF was collected 

in the morning after fasting since midnight and stored in a − 80 °C freezer prior to shipment 

on dry ice to the Alzheimer's Disease Neuroimaging Initiative (ADNI) Biomarker Core 

laboratory at the University of Pennsylvania Medical Center. CSF levels of Aβ1-42 were 

measured using the multiplex xMAP Luminex Platform (Luminex Corp, Austin, TX) with 

Innogenetics (INNO-BIA, AlzBio3; Ghent, Belgium) immunoassay kit as previously 

described.[158] 

3.2.4 Statistical Analysis: 

A. Statistical Analysis: 
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 Independent samples t-tests and chi-square tests were used to assess differences 

between CN and MCI groups in demographic and clinical measures, CSF Aβ1-42, and 

measures of WM alteration. Bivariate relationships between CSF Aβ1-42, mFRS, HTN 

status, HLD status, DM status, smoking status and quantitative measures of WMH volume 

and DTI-based FA measures were investigated using partial correlations controlling for 

age and sex.  

 As HTN was the only CVD risk factors associated with WMH volume, HTN was 

used as a marker of CVD risk in further analyses. Next, separate linear regression models 

were used to explore the association of HTN and CSF Aβ1-42 with WMH volume and 

NAWM-FA. Each model included main effects of HTN and CSF Aβ1-42, a HTN × CSF 

Aβ1-42 interaction, and age, sex, and cognitive status as covariates. The interaction term 

was included to explore any synergistic effects of HTN and CSF Aβ1-42 on WM alterations. 

If the interaction term was not significant, it was removed from the model and the model 

was refit to the data in order to explore the independent effects of HTN and CSF Aβ1-42. 

Finally, the above models were repeated with the mFRS included as additional covariate.  

 In order to assess potential contributions from cerebral amyloid angiopathy (CAA), 

bivariate relationships of CSF Aβ1-42 with CMBs in the frontal, parietal, temporal, occipital 

lobes and the basal ganglia were investigated using partial correlations controlling for age 

and sex. Next, linear regression was performed to explore whether WMH and significant 

CMBs predicted CSF Aβ1-42 independently after controlling for age, sex, and cognitive 

status. SPSS 23 (IBM, Chicago, IL) was used for all statistical analyses, and significance 

was set at 0.05. 

B. Voxelwise Regression Analysis: 
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 FSL’s Randomise tool was used to perform exploratory voxelwise regression 

analyses to examine the spatial location of WM alteration associated with CSF Aβ1-42 and 

HTN. CSF Aβ1-42 (measured in pg/ml) was treated as a continuous variable, whereas the 

clinical diagnosis of HTN, systolic BP >139, or diastolic BP > 89 were used as criteria 

indicating presence of HTN. Each analysis included either CSF Aβ1-42 or HTN as the 

predictor of interest and age, sex, and education as covariates. These models were then 

used to identify voxels where the presence of WMH were associated with CSF Aβ1-42 or 

HTN. Correction for multiple comparisons across all voxels was performed using the false-

discovery rate (FDR) tool provided with FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDR), 

which uses the distribution of p-values from every voxel in order to determine an 

appropriate threshold to reduce false-positives.[159] Results were then compared to the 

ICBM-DTI-81 WM labels atlas to identify the tracts that included significant voxels. 

3.3 Results: 

 A total of 62 participants met all criteria for inclusion, including 26 CN (CDR=0) 

and 36 MCI (CDR=0.5). Demographic and clinical features of the participants are 

presented in Table 3.1 The MCI group had higher percentages of participants with HTN 

and HLD than the CN group (p < .001). In addition, CSF Aβ1-42 was significantly lower in 

the MCI group than the CN group (p = .005). There was no difference between CN and 

MCI groups in other clinical measures or in measures of WM alterations. Results of 

bivariate partial correlations controlling for age, sex, and cognitive status are shown in 

Table 3.2. The mFRS, HLD and DM were not associated with either WMH volume or FA 

in NAWM. HTN and lower CSF Aβ1-42 (which is associated with higher amyloid plaque 

burden), however, were both correlated with higher WMH volume (r = 0.30, df = 57, p = 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDR
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0.021 and r = - 0.30, df = 57, p = 0.021, respectively). CSF Aβ1-42 but not HTN was 

associated with lower FA in NAWM (r = 0.40, df = 57, p = 0.002 and r = -0.23, df = 57, p 

= 0.08, respectively). 
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Table 3.1  Demographics, clinical, imaging and laboratory characteristics of the study cohort. 

 
Variables CN (N=26) MCI (N=36) Total (N=62) Differences CN vs. MCI (p-value) 

Age mean ± sd 76.81 ± 6.14 73.47 ± 7.98  74.87 ± 7.40 0.080 

Male sex n (%) 9 (34.6) 19 (52.8) 28 (45.2) 0.156 

Education mean ± sd 17.08 ± 2.18 16.83 ± 3.67 16.94 ± 3.12 0.764 

mFRS mean ± sd 17.58 ± 2.8 16.56 ± 3.1 17 ± 3 0.189 

Hypertension n (%) 7 (26.9) 27 (75.0) 34 (54.8) 0.001‡ 

SBP mean ± sd 135.77 ± 10.77 138.47 ± 16.47 137.34 ± 14.32 0.468 

DBP mean ± sd 74.19 ± 9.70 73.89 ± 11.42 74.02 ± 10.65 0.913 

Hyperlipidemia n (%) 2 (7.7) 25 (73.5) 27 (43.5) 0.000‡ 

Diabetes n (%) 4 (15.4) 10 (27.8) 14 (22.6) 0.247 
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Smoking n (%) 2 (7.7) 1 (2.7) 3 (4.8) 0.567 

NAWM-FA mean ± sd 0.59 ± 0.41 0.59 ± 0.55 0.59 ± 0.05 0.987 

Aβ1-42 mean ± sd 320 ± 93.14 251.03 ± 90.82 279.95 ± 97.29 0.005¥ 

WMH volume cc mean ± sd 8.22 ± 9.98 13.30 ± 20.03 11.17 ± 16.65 0.238 

 

CN = cognitively normal; MCI = mild cognitive impairment; mFRS = modified Framingham stroke risk score; SBP = systolic blood 

pressure; DBP = diastolic blood pressure; HLD = hyperlipidemia; NAWM-FA = fractional anisotropy values of the normally appearing 

white matter; Aβ1-42 = Cerebrospinal fluid amyloid beta 1-42 levels; WMH = white matter hyperintensities. 

‡ Pearson Chi-square                                                                   ¥ T test (2 sided)
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Table 3.2  Partial Correlation of hypertension, CSF amyloid β1-42levels and imaging 

measures of micro and macrostructural white matter alteration in study subjects. 

 

 HT

N 

Aβ1-

42 

HLD DM mFR

S 

WMH 

volume 

NAWM

-FA 

HTN -- -0.01 0.308

* 

0.207 0.026 0.298* -0.233 

Aβ1-42 -- -- 0.036 0.188 -

0.057 

-0.300* 0.400** 

HLD -- -- -- 0.083 0.078 0.056 -0.036 

DM -- -- -- -- -

0.001 

-0.100 0.019 

mFRS -- -- -- -- -- -0.041 -0.007 

WMH 

volume 

-- -- -- -- -- -- -0.481‡ 

 

Values are partial correlation coefficients adjusted for age, gender and cognitive status; 

HTN = hypertension; Aβ1-42 = Cerebrospinal fluid amyloid beta 1-42 levels; HLD = 

hyperlipidemia; DM = diabetes mellitus; mFRS = modified Framingham stroke risk score; 

WMH = white matter hyperintensity; NAWM-FA = fractional anisotropy values of the 

normally appearing white matter. 

* P ≤ 0.05, ** P ≤ 0.01, ‡ P ≤ 0.001 
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 Results of linear regression analysis examining the effects of CSF Aβ1-42, HTN, the 

CSF Aβ1-42 × HTN interaction on WMH volume, controlling for age, sex, and cognitive 

status are shown in Table 3.3 (Model 1). Results after removing the non-significant 

interaction term are also shown (Model 2). Models 1 and 2 were repeated with the inclusion 

of mFRS as an additional covariate (Table 3.3; Models 3 and 4, respectively). Results of 

linear regression analysis examining the effects of CSF Aβ1-42, HTN, the CSF Aβ1-42 × 

HTN interaction on NAWM-FA controlling for age, sex, and cognitive status are shown in 

Table 3.4 (Model 1). Results after removing the non-significant interaction term are also 

shown (Model 2). Models 1 and 2 were repeated with the inclusion of mFRS as an 

additional covariate (Table 3.4; Models 3 and 4, respectively).  

 Results from the voxelwise regression analyses demonstrated both HTN and CSF 

Aβ1-42 were primarily associated with WMH in different areas, with 95% of HTN-related 

WMH voxels and 90% of CSF Aβ1-42 -related WMH voxels being unique (i.e., non-

overlapping) (Figure 3.1). WMH associated with HTN were primarily located in the right 

inferior fronto-occipital fasciculus, right superior longitudinal fasciculus, and bilateral 

periventricular WM along the body of the lateral ventricles. In contrast, WMH associated 

with CSF Aβ1-42 were primarily located at the posterior corona radiata bilaterally and 

periventricular regions near the anterior horns of the lateral ventricles. The primary area of 

overlap was in the posterior portion of the right cingulum (Figure 3.1). 
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Table 3.3 Linear regression models to examine the effects of hypertension and 

Cerebrospinal fluid amyloid beta 1-42 levels on white matter hyperintensity burden. 

 

Linear regression models using white matter hyperintensity (WMH) volume as the 

dependent variable. Values shown are standardized β-coefficients with p-values in 

parentheses. Predictors of interest were CSF levels of Aβ1-42, HTN, and Aβ1-42 × HTN 

interaction (Models 1, 3). The analyses were repeated without the non-significant 

interaction term (Models 2, 4). aCovariates included in models 1 & 2 were age, sex, and 

cognitive status. bCovariates included in models 3 & 4 were age, sex, cognitive status, and 

mFRS. 

 

 

 Aβ1-42 HTN Aβ1-42 × 

HTN 

Model 1a (F5,56 = 7.7, R2 = 0.409, p < 

0.001) 

Β = -0.28 

(.026) 

Β = 0.30 

(.017) 

Β = 0.03 

(.829) 

Model 2a (F6,55 = 6.3, R2 = 0.408, p < 

0.001) 

Β = -0.28 

(.016) 

Β = 0.30 

(.016) 

-- 

Model 3b (F7,54 = 5.8, R2 = 0.432, p < 

0.001) 

Β = -0.28 

(.024) 

Β = 0.32 

(.012) 

Β = 0.04 

(.728) 

Model 4b (F6,55 = 6.9, R2 = 0.431, p < 

0.001) 

Β = -0.29 

(.013) 

Β = 0.32 

(.011) 

-- 
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Table 3.4 Linear regression models to examine the effects of hypertension and 

Cerebrospinal fluid amyloid beta 1-42 levels on white matter microstructural alterations. 

 

Linear regression models using the fractional anisotropy values of the normally appearing 

white matter (NAWM-FA) as the dependent variable. Values shown are standardized β-

coefficients with p-values in parentheses. Predictors of interest were CSF levels of Aβ1-42, 

HTN, and Aβ1-42 × HTN interaction (Models 1, 3). The analyses were repeated without the 

non-significant interaction term (Models 2, 4). aCovariates included in models 1 & 2 were 

age, gender, and cognitive status. bCovariates included in models 3 & 4 were age, gender, 

cognitive status, and mFRS. 

 Aβ1-42 HTN Aβ1-42 × HTN 

Model 1a (F6,55 = 7.0, R2 = 0.432, p < 

0.001) 

Β = 0.016 

(.007) 

Β = -0.01 

(.065) 

Β = -0.01 

(.143) 

Model 2a (F5,56 = 7.8, R2 = 0.409, p < 

0.001) 

Β = 0.018 

(.001) 

Β = -0.011 

(.067) 

-- 

Model 3b (F7,54 = 5.9, R2 = 0.434, p < 

0.001) 

Β = 0.016 

(.007) 

Β = -.0011 

(.063) 

Β = -0.008 

(.138) 

Model 4b (F6,55 = 6.4, R2 = 0.410, p < 

0.001) 

Β = 0.018 

(.001) 

Β = -0.011 

(.067) 

-- 
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Figure 3.1 Distinct spatial distribution of white matter hyperintensities related to 

hypertension and CSF amyloid β1-42 levels.   

 

The spatial distribution of white matter hyperintensities (WMH) related to hypertension 

(HTN) (red) and Cerebrospinal fluid amyloid beta 1-42 levels (Aβ1-42) (green) shows 

primarily distinct distributions with minimal overlapping areas (blue). WMH associated 

with HTN occur primarily in deep cortical white matter and along the body of the lateral 

ventricles. WMH associated with Aβ1-42 occur primarily near the ventricular horns and the 

posterior corona radiata. Areas of WMH are displayed on the FMRIB58 FA 1mm3 brain. 

Contiguous 1mm slices are shown starting from MNI z = 0 at the top left and MNI z = 48 

at the bottom right. All images are shown in radiological orientation (anatomical right is 

on the left side of the image).  
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 In order to assess the impact of CMBs on the relationships observed between CSF 

Aβ1-42 and WM alterations, partial correlations were performed to examine the 

relationships of Aβ1-42 with basal ganglia and lobar CMBs (in frontal, parietal, temporal, 

and occipital lobes separately). Results of the analyses demonstrated that Aβ1-42 was 

associated with parietal CMBs (r = -0.28, p = .037) but not with any other CMBs (p > 

0.05). A linear regression analysis was then performed to examine whether parietal CMBs 

and WMH independently predicted CSF Aβ1-42. Results demonstrated that Aβ1-42 was 

significantly predicted by WMH volume (β = -0.32, p =.025) and only marginally predicted 

by parietal CMBs (β = -0.25, p = .06) while controlling for age, sex, and cognitive status. 

3.4 Discussion: 

 Results from this study demonstrate that CSF levels of Aβ1-42 and HTN are each 

associated with WM damage, manifesting as both overt areas of WMH and microstructural 

alterations in NAWM. Importantly, these processes appear to independently contribute to 

WM changes and affect spatially distinct areas of WM. These data demonstrate that 

pathologies underlying or caused by CSF Aβ1-42 and HTN exert additive rather than 

synergistic effects on WM alteration. Our work also raises the question of whether the 

nature of white matter alteration associated with HTN is the same as that associated with 

CSF Aβ1-42. Since the spatial distributions of WM changes were distinguishable (HTN vs 

CSF Aβ1-42), equivalent underlying mechanisms should not be assumed, despite some 

similarities in their appearances on MRI. Assuming that both types of WM alteration are 

deleterious, it follows that treatment of mixed disease states may require interventions 

aimed at both processes to achieve maximal clinical efficacy. 
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 Initial analyses sought to determine whether CVD risk factors and/or CSF Aβ1-42 

levels were associated with WM alteration as assessed by overt WMH or subtler 

microstructural changes within NAWM that are not detectable at the macrostructural level. 

The modified Framingham CVD risk score was not associated with either marker of WM 

alteration. Previous studies examining the relationship between the mFRS and WM 

alterations have been equivocal with one study finding a relationship[160] and another 

failing to find such a relationship in older adults.[161] These discordant findings may be 

due to differences in the cohorts, including clinical, environmental, and cultural 

characteristics. In addition, the Framingham CVD risk score is intended to predict future 

CVD, which may account for the lack of cross-sectional relationship between mFRS and 

WM alterations. Of note, a recent study failed to find a relationship between mFRS and 

WM but did find that mFRS predicted future cognitive decline.[161]  

 HTN was associated with both WMH volume and FA in NAWM, which is 

consistent with previous reports.[162, 163] The potential mechanisms underlying the 

association between HTN and WM alteration are unclear, but several explanations have 

been proposed. It is possible that that reduced cerebral blood flow could contribute to 

transient ischemic injury or that HTN-induced endothelial damage could result in 

extravasation of blood products into WM tissue resulting in injury.[37, 164, 165] WMH 

may represent areas of reduced vascular integrity,[166] whereas alteration in NAWM may 

include decreased myelin organization, lower axonal coherence, or decrease in axonal 

numbers otherwise related to reduced vascular integrity.[167] 

 Lower CSF Aβ1-42 levels were also associated with both higher WMH volume and 

lower FA in NAWM. These findings are consistent with previous studies, which found that 
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WMH volume is higher[17, 18] and FA is lower[168, 169] in AD brain compared to 

healthy controls. The exact mechanism underlying these relationships also remains unclear, 

but several possibilities exist. First, we noted that soluble Aβ1-42 oligomers were present in 

WM and were associated with loss of axons as well as breakdown in myelin content.[170, 

171] Further, soluble Aβ1-42 is toxic to oligodendrocytes and inhibits formation of new 

myelin sheaths in vitro.[172, 173] It is also possible that Aβ1-42 may indirectly influence 

WM through increased inflammation,[174] decreased cerebral blood flow secondary to a 

hypocholinergic state,[175] or damage to blood vessels secondary to cerebral amyloid 

angiopathy.[18, 176] 

 The most important finding of the present study is that a history of HTN and CSF 

Aβ1-42 levels are independently associated with WM alterations and have additive effects. 

Of note, AD and HTN often coexist in older adults.[177] However, linear regression 

analyses demonstrated that there was no significant interaction between CSF Aβ1-42 levels 

and HTN on WM changes. Further, the main effect of CSF Aβ1-42 and HTN were both 

significant when assessed simultaneously, indicating that these measures constitute 

independent predictors of WM changes. Several studies suggest that Aβ amyloidosis and 

HTN are independent predictors of cognitive outcomes,[178, 179] but this is the first 

evidence that CSF Aβ1-42 levels and HTN are independently associated with WM 

alterations in older adults. These findings suggest that WM alterations could be viewed as 

the sum of effects from both AD and CVD pathology, rather than thought of as either AD 

or CVD modifying the effect of the other on WMH burden. This has important implications 

for therapeutic interventions, since treating one pathology will only address WM alteration 
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from that disease mechanism but may have no significant impact on WM changes related 

to the other condition. 

 After identifying statistically independent relationships of CSF Aβ1-42 levels and 

HTN with WM alteration, we sought to determine if this independence was due to spatially 

distinct patterns of WM alteration associated with each pathology. We found minimal 

overlap between areas of WM alterations associated with CSF Aβ1-42 and HTN; 95% of 

HTN-associated WMH and 90% of Aβ-associated WMH were unique. Consistent with 

previous studies in familial AD, CSF Aβ1-42 was primarily associated with WM alteration 

in posterior regions.[17, 18, 176]  Although much of the evidence for the relationship 

between Aβ1-42 and posterior WM alteration comes from studies of dominantly-inherited 

AD, the present study provides support for a similar relationship in sporadic late-onset AD. 

In contrast to Aβ1-42-associated WM alterations, HTN-associated WM change was 

primarily observed in deep WM. Many of these areas are near watershed regions between 

the middle cerebral artery and posterior cerebral artery distributions. These findings are 

consistent with previous studies that found CVD risk is associated with greater WM 

alteration in the watershed regions and deep WM.[164, 165] 

 An important possibility that must be considered is that the association between the 

Aβ1-42 and WM alterations in these posterior regions is mediated by cerebral amyloid 

angiopathy (CAA), which has a predilection for parietal-occipital cortex. [180] In our 

study, we found a relationship between CSF Aβ1-42 and CMBs in the parietal lobe, which 

is consistent with extensive previous work. [181, 182] However, regression analyses 

demonstrated that these amyloid-associated CMBs did not account for the significant 

relationship between amyloid and WMHs. These results suggest that CAA is likely one of 
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multiple mechanisms that contribute to WM alterations associated with increasing amyloid 

in the brain. 

 There are several limitations to the present study. The cross-sectional design 

allowed for measurement of correlations among HTN, CSF Aβ1-42 levels and WMH/FA in 

NAWM, but we did not assess the temporal sequence of these changes, precluding causal 

inferences. In addition, the sample size may have led to insufficient power to detect small 

effects. Further, cardiovascular risk measures were assessed using dichotomous variables 

(either present or absent) and did not account for medication control or adherence, disease 

duration, and/or severity. This may mask potential relationships that exist between these 

cardiovascular risk measures and WM alterations. Additionally, our sample included only 

those without dementia. It is unclear whether these relationships are present in individuals 

with severe disease(s).  Also, the present study did not examine relationships with 

cognition. Despite independent effects on WM, CVD risk and AD pathology may have a 

different relationship with cognition as demonstrated by a recent study reporting 

synergistic effects of CVD risk and AD pathology on cognitive decline. [26] Finally, 

amyloid PET scans were not collected as part of this study. Previous work has 

demonstrated spatial overlap between CAA and PET amyloid binding. [183, 184] 

Therefore, future studies should seek to include PET imaging to examine whether these 

areas of WM alteration found in the present study share overlap with these same regions 

of increased amyloid-PET binding in CAA.  

 In conclusion, the present study demonstrates that the effects of HTN and CSF Aβ1-

42 levels on WM alteration may be additive rather than synergistic, with each associated 

with distinct spatial distributions of WM alteration. Considering such spatial distributions 
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may improve diagnostic accuracy and optimal development of treatment paradigms that 

address CVD and AD, either separately or in combination. It is unclear whether the 

underlying pathophysiology and injurious mechanisms of these alterations are the same in 

the different brain regions. Further studies are needed to explore whether these distinct 

spatial patterns of WM alteration are associated with different cognitive processes and/or 

clinical outcomes. 
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CHAPTER 4. WHITE MATTER HYPERINTENSITY REGRESSION IS ASSOCIATED WITH 

DECREASED BRAIN ATROPHY AND IMPROVEMENT IN MEMORY PERFORMANCE 

Summary: 

Background: Subcortical white matter hyperintensities (WMH) in the aging population 

frequently represent vascular injury that may lead to the cognitive sequelae.  The dynamic 

nature of WMH have been well described in the literature, although the factors underlying 

WMH regression remain poorly understood.  

Methods: A sample of 377 participants from the Alzheimer’s Disease Neuroimaging 

Initiative 2 (ADNI2) were included in the analysis. Inclusion criteria required available 

data regarding WMH volumetric quantification, structural brain measures (i.e., brain 

volume), cognitive composite measures (memory and executive function), CSF tau and 

Aβ, and Amyloid PET data at baseline and after approximately 2 years, allowing changes 

in these measures (Δ) to be calculated.  Subjects were categorized into three groups based 

on WMH change over time, including those that demonstrated regression (n=96; 25.5%), 

stability (n=72; 19.1%), and progression (n=209; 55.4%). 

Results: There were no significant differences in age, education, sex, or cognitive status 

between the regression, stable, and progression groups. Analysis of variance demonstrated 

significant differences in changes in brain volume between the progression and regression 

(p = 0.004) and the progression and stable groups (p = 0.012).  Memory assessments 

improved over time in the regression and stable groups compared to those in the 

progression group in whom these measures declined (p = 0.003; p = 0.018).  Finally, 

within-groups, it was determined that Δ WMH was positively correlated with tau/Aβ in the 

progression, but not regression group (p = 0.036; p = 0.219). 
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Conclusions: WMH regression is associated with decreased brain atrophy and 

improvement in memory performance over two years compared to those with WMH 

progression. These data suggest that WMH are dynamic and directly reflect both declines 

and improvements in cognitive performance depending on volumetric change over time. 

In addition, while we currently lack therapeutic interventions to halt or reverse AD, the 

dynamic WMH change evident in our data clearly suggests that the ability to reverse cSVD 

exists today. Further work elucidating the factors associated with WMH regression, 

stability, and or progression may help identify targets for therapeutic intervention for cSVD 

related cognitive decline and dementia in the aging population. 

4.1 Introduction: 

 Cerebral white matter hyperintensities (WMH) are non-specific, subcortical, high 

intensity signals found on T2 magnetic resonance imaging (MRI).  Late-life WMH are 

thought to largely represent cerebrovascular injury resulting from cerebral small vessel 

disease (cSVD).[16] Such injury may lead to neuronal circuit dysfunction in affected areas 

that can be associated with vascular cognitive impairment and dementia.  A number of 

previous studies have demonstrated an association between longitudinal progression of 

WMH lesion volume and worsening cognitive impairment.[185-188] In contrast, the 

cognitive sequelae of WMH volume regression has not been studied systematically, 

although several studies have reported cases of WMH regression without examining the 

relationship of such findings with cognitive outcomes. The authors of these previous 

reports have described the phenomena of WMH regression as both poorly understood and 

in need of further study.[189, 190]  

 



 

64 
 

 It is possible that WMH regression may simply reflect imaging or methodological 

confounders as opposed to representing a true biological phenomenon.[191] The use of 

standardized imaging sequences, scanners, and head coils across longitudinal visits, along 

with regular scanner calibration and identical processing techniques with uniform intensity 

corrections, such as that used in the ADNI study, are required to overcome imaging and 

methodological confounders that may be related to WMH regression. ADNI was launched 

in 2003 as a public/private partnership designed to assess biological and clinical markers 

to assess AD progression, and up to date information can be found at www.afni-info.org. 

 As a biological phenomenon, it is possible that regression of WMH volume 

represents simple gliotic contraction and/or resultant microvascular encephalomalacia 

resulting from static ischemic injury.  If WMH regression represents such a biological 

phenomenon, it should be associated with greater global brain atrophy and stable, or 

possibly improved, cognitive function as seen in many individuals post-stroke.  

Alternatively, WMH regression could potentially reflect a longitudinal reduction in 

inflammatory changes and focal edema associated with cSVD, and if so, such changes 

should be associated with improved cognition despite greater apparent brain atrophy 

associated with resolution of focal edema. Lastly, it remains possible that WMH regression 

represents a potentially healing or regenerative process, that would be associated with 

reduced brain atrophy and improvement in cognitive performance. A theoretical 

framework to assist with interpreting such longitudinal changes is provided in Table 4.1.  

The present study explored these potential hypotheses responsible for WMH regression by 

examining the differences in cognitive and structural brain changes (i.e. brain atrophy) that 

occur in the setting of WMH volume regression through the analysis of existing  

http://www.afni-info.org/


 

65 
 

Table 4.1 Possible etiologies for cerebrovascular-related white matter hyperintensities that 

regress over time and the expected associations with cerebral atrophy and cognitive 

performance. 

 
Possible 

etiology for 

WMH 

Potential cause 

of regression 

Expected 

association with 

cerebral atrophy 

Expected association 

with cognitive 

performance 

Irreversible 

ischemic injury 

Gliotic 

contraction and 

microscopic 

encephalomalacia 

Increased atrophy No change in cognitive 

performance 

Inflammation 

associated with 

irreversible 

ischemic injury 

Resolution of 

inflammation and 

edema with 

restoration of 

normal function 

in the penumbra 

Increased atrophy 

secondary to reduced 

inflammatory edema 

Improvement in 

cognitive performance 

Reversible 

ischemic injury 

Healing process Decreased atrophy Improvement in 

cognitive performance 

 

longitudinal data collected as part of the Alzheimer’s Disease Neuroimaging Initiative 2 

(ADNI 2). Also, given that previous work has demonstrated that both AD and cSVD 
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contribute to WMH. We hypothesize that WMH progression would more likely be 

associated with greater AD pathology. 

4.2 Methods: 

4.2.1 Participants: 

 The study cohort was comprised of 377 ADNI 2 participants who had WMH 

quantification both at baseline and at 2-years +/- 3 months (UC Davis; DeCarli et al., 2013).  

Inclusion criteria required complete demographic information, diagnostic information 

within 1-year of the T2 fluid-attenuated inversion recovery (FLAIR) scan used for WMH 

quantification at baseline, a T1-weighted (MPRAGE) image and FreeSurfer structural 

segmentation[192, 193] within 1-year of the baseline FLAIR images, as well as appropriate 

neurocognitive metrics for assessments of memory,[194] executive function (EF)[195] and 

atrophy composite scores within 1-year of the baseline FLAIR images.  The memory 

composite included the Rey Auditory Verbal Learning Test (RAVLT), the cognitive 

component of the Alzheimer’s Disease Assessment Scale (ADAS-Cog), the Folstein Mini-

Mental State Examination (MMSE), and Wechsler Logical Memory Scale scores, while 

the executive function composite included the Clock Drawing test, Trail Making test, 

Category Fluency (animal and vegetable), Wechsler Adult Intelligence Scale-Revised 

(WAIS-R) Digit Span and Digit Symbol tests.  Participants who did not have FreeSurfer 

structural information or neurocognitive composite scores at follow-up were excluded from 

the analyses. No other subjects were excluded. Details of ADNI clinical and methodology 

have been published.[196, 197] 
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4.2.2 MRI acquisition 

 Due to the multi-center design of the ADNI study, the exact scanner manufacturer 

and model, and scanner-specific imaging protocol varied between, but not within, 

participants.  Across participants, all FLAIR images were 2-dimensionally acquired in the 

axial plane with 0.9 by 0.9-millimeter voxels and 5 millimeter thickness.  All scans were 

approximately 4-minutes in duration.  Scans contained 36-42 slices with minimum matrix 

size of 220 by 220 millimeters (256 by 237 maximum), and a 9-11 second TR.  Scanning 

parameters were identical within participants between the two-time points.  As a result, the 

reported WMH progression, stability, and regression measures fulfill the criteria needed to 

control for radiological and methodological confounders.[191] Further information on the 

ADNI2 scanner protocol can be accessed on the ADNI website at www.afni-info.org. 

White Matter Hyperintensity Calculations 

 WMH volumes were calculated using the 4-tissue segmentation method.[198] 

Briefly, FLAIR images were co-registered to the T1 image, inhomogeneity-corrected and 

non-linearly aligned to a minimal deformation template (MDT) using the T1 

transformation and the FSL toolbox.[199, 200] WMHs were estimated in MDT space using 

Bayesian probability and prior probability maps.  Binary WMH masks were created using 

a threshold of 3.5 SD above the mean. Volume from WMH were then calculated after back-

transformation into native space. Gray, white, and CSF measurement are segmented using 

an expectation-maximization algorithm.  WMH were ultimately subtracted from normal 

white matter volume and reported in cubic centimeters.  

 

http://www.afni-info.org/
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Longitudinal Change Calculations 

 Changes in the various measures (Δ) were calculated by subtracting the baseline 

value from the value at the 2-year follow-up.  Positive values indicate increases whereas 

negative values indicate decreases between the two time points.  For WMH volume change, 

a negative value indicates regression (i.e., less WMH volume at follow-up) whereas a 

positive value indicates progression (i.e., more WMH volume at follow-up). 

WMH Categorization 

 WMH net volume change between the baseline and the follow up visit was used to 

calculate Δ WMH.  Participants were initially grouped based on Δ WMH volume 

(Regression, Stable, and Progression) using a percentile-based approach in which the 

percentile for no change was first identified (the 35th percentile).  Although definitions 

based on standard deviations were initially considered, the notable leptokurtic distribution 

(Figure 4.1) of the data pre-empted such classification as only the most extreme values 

would be defined outside of the Stable group.  Ultimately, we defined Stable the stable 

group as representing the 25th- 45th percentile of the study participant distribution.  This 

corresponded to +/-  Δ of 150 mm3 of WMH lesion volume. Subjects classified in the 

regression group showed reductions in WMH volume greater than 150 mm3 and those 

classified in the progression group showed increase in WMH volume greater than 150 

mm3.  

Atrophy Composite Calculation  

 In addition, we sought to measure changes in brain and ventricular volume to 

estimate changes in global brain atrophy that may be related to WMH changes.  Gray and 

white matter segmentation[198] from the four-tissue ADNI classification  were combined  
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Figure 4.1 White matter hyperintensity distribution in the sample studied.  

A) The true distribution of the data, showing notable leptokurtosis. Black arrows indicate 

standard deviation, demonstrating why standard deviation was not deemed an appropriate 

criterion for separating groups.  B) Divisions of the three WMH groups. Visualization only.  

 

 
to produce a total brain volume (cm3), but this measure alone does not specifically account 

for the volumetric changes in the ventricles, which is associated with both WMH 

changes[201] and AD-related neurodegenerative processes.[202] Therefore, the volume of 
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the lateral ventricles (cm3) were estimated using FreeSurfer.  Although these measures 

were examined individually (Tables 1, 2, and 3), the final measure was a composite that 

used the z-scores of brain volume subtracted from the z-scores from the lateral ventricles 

(higher value means less brain volume and larger ventricles), which accounts for both 

periventricular and subcortical atrophy (ventricular volume) as well as more cortical-based 

whole brain atrophy (brain volume).  

Cerebrospinal Fluid Amyloid beta and Amyloid PET Difference Among WMH Growth 

Category: 

 We further explore the differences in the cerebrospinal fluid (CSF) Amyloid beta 

(Aβ) and tau among the three WMH growth categories. In addition, we looked at the whole 

brain and regional Aβ deposition relationship with the WMH progression and regression. 

4.2.3 Statistical Analysis: 

 ANOVAs were used to compare age, education, Δ WMH, Δ Memory, Δ EF, and Δ 

Brain Composite in WMH progression, regression, and stable groups.  Chi Square was 

used to compare sex, marital status, cognitively normal, MCI, and AD differences. Within-

groups, partial-correlation coefficients controlling for age and sex were used to examine 

WMH volume (as a continuous variable), Δ brain volume composite, Δ memory, and Δ 

EF.  Between-group differences in Δ brain volume composite, Δ memory, and Δ EF 

between the 3 groups was examined using ANCOVA with both age and sex as covariates.  

In this exploratory study, we did not include correction for multiple comparisons, and so 

the value for statistical significance was set as an uncorrected two-tailed p< 0.05. 
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4.3 Results: 

 Participants were 72 ± 7.2 years old, 48.3% female, had 16.5 ± 2.6 of education 

with 55.7% having MCI, 37.4% being cognitively normal, and 6.9% having AD (Table 

4.2).  There were no significant differences between regression, stable, and progression 

groups in age, education, sex, marital status, diagnosis, or Δ EF.  

 25.5% of the participants were classified in the WMH regression group, 19.1% 

were classified as stable. and 55.4% were classified in the WMH progression group.  

ANCOVA revealed that there were differences in Δ atrophy composite between 

progression and regression (p = 0.004) and progression and stable groups (p = 0.012, Table 

3).  Longitudinally, memory improved in the regression and stable groups compared to 

progression (p = 0.003; p = 0.018 respectively, Table 4.3). There were no differences 

between any groups in Δ EF (p = 0.306, Table 4.3). 

 For all participants, Δ WMH was negatively correlated with Δ atrophy composite 

(r = - 0.175, p< 0.001), Δ EF (r = -0.121, p < 0.021), and Δ memory (r = -0.165, p = 0.002). 

Within-group analyses revealed that Δ WMH was not correlated with Δ atrophy composite 

or Δ memory in the WMH regression group (Table 4.4).  There was a statistically 

significant negative correlation in the WMH regression group with Δ EF (p = 0.041), 

indicating that increased WMH regression (more negative value) was associated with 

increased EF performance. Δ WMH was not correlated with Δ EF in the WMH progression 

group but was positively associated with both the Δ atrophy composite (p = 0.025) and 

negatively associated with Δ memory (p = 0.049). There was no association between Δ 

WMH and Δ atrophy composite, Δ memory, or Δ EF in the stable group (Table 4.4). 
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 Finally, within-groups, it was determined that Δ WMH was positively correlated 

with tau/Aβ in the progression, but not regression group (Table 4.5; p = 0.036; p = 0.219). 

The amyloid PET scans showed that Δ WMH was not positively correlated with the whole 

brain amyloid concentrations (p = 0.097), but was in the temporal region (p = 0.049) in the 

progression group.  There were no significant differences found in the regression group 

(Table 4.5). 
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Table 4.2  Demographic, clinical, imaging, and change scores for subjects demonstrating progression, stability, and regression in white 

matter hyperintensity volumes. 

Criteria Progressors (n=209) Regressors (n=96) Stable (n=72) Significance N (P, R, S) 

Age (mean, SD) 72.6 (7.1) 72.1 (7.2) 70.3 (7.2) 0.063 # 209, 96, 72 

Education (mean, SD) 16.4 (2.6) 16.6 (2.5) 16.7 (2.4) 0.661 # 209, 96, 72 

Female (n, %) 106 (50.7) 41 (42.7) 35 (48.6) 0.429 ^ 209, 96, 72 

Currently Married (n, %) 157 (75.1) 74 (77.1) 54 (75.0) 0.926 ^ 209, 96, 72 

Cognitively Normal (n, %) 71 (34.0) 38 (40.0) 32 (44.4) 0.250 ^ 209, 96, 72 

MCI (n, %) 119 (56.9) 55 (57.3) 36 (50.0) 0.555 ^ 209, 96, 72 

AD (n, %) 19 (9.1) 3 (3.1) 4 (5.6) 0.143 ^ 209, 96, 72 

Baseline WMH (mean, SD) 7.177 (10.3) 8.025 (10.5) 1.932 (1.9) <0.001#* 209, 96, 72 

Follow Up WMH (mean, SD) 9.145 (11.6) 6.737 (9.4) 1.944 (1.9) <0.001#* 209, 96, 72 

ΔWMH (mean, SD) 1.97 (2.5) -1.29 (1.8) 0.012 (0.079) <0.001 #* 209, 96, 72 

Δ Memory (mean, SD) -0.112 (0.38) 0.023 (0.36) 0.018 (0.35) 0.003 #* 203, 93, 69 

Δ EF (mean, SD) -0.094 (0.65) 0.011 (0.65) -0.003 (0.58) 0.335 # 202, 94, 69 
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Δ Atrophy Comp (mean, SD) 0.273 (1.6) -0.293 (1.68) -0.335 (1.34) 0.002 #* 202, 95, 67 

Δ Brain Volume (mean, SD) -6.071 (21.1) -0.511 (22.1) -2.181 (19.5) 0.076 # 209, 96, 72 

Δ Ventricular Vol (mean, SD) 4.160 (3.961) 3.033 (3.745) 2.619 (2.681) 0.003 #* 202, 95, 67 

 

# indicates the p-value from ANOVA (uncorrected); ^ indicates the p-value from Pearson’s Chi Square test; * indicates statistically 

significant 

Abbreviations: SD, standard deviation; MCI, mild cognitive impairment; AD, Alzheimer’s disease; WMH, white matter 

hyperintensities; EF, executive function composite. 
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Table 4.3 ANCOVA results examining brain volume composite, memory change, and EF change in all three groups.  Age and gender 

were used as covariates. 

ANCOVA     

Dependent Variable Post-hoc Comparisons n Mean Difference p-value 

Δ Atrophy Composite  364  0.004* 

 Progression/Regression 196/94 0.564 0.004* 

 Progression/Stable 196/66 0.564 0.012* 

 Regression/Stable 94/66 0.000 0.999 

Δ Brain Volume  377  0.069 

 Progression/Regression 209/96 5.684 0.030* 

 Progression/Stable 209/72 4.010 0.169 

 Regression/Stable 96/72 1.678 0.612 

Δ Ventricular Volume  364  0.008* 

 Progression/Regression 202/95 1095 0.017* 
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* indicates significant at p < 0.05. 

Abbreviations: WMH, white matter hyperintensities; EF, executive function composite.

 Progression/Stable 202/67 1369 0.009* 

 Regression/Stable 95/67 274 0.640 

Δ Memory  365  0.004* 

 Progression/Regression 203/93 0.136 0.003* 

 Progression/Stable 203/69 0.123 0.018* 

 Regression/Stable 93/69 0.014 0.815 

Δ EF  365  0.306 

 Progression/Regression 202/94 0.113 0.155 

 Progression/Stable 202/69 0.087 0.330 

 Regression/Stable 94/69 0.026 0.795 
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Table 4.4 Partial correlation between WMH change and brain volume composite, memory 

change, and EF change in regression, progression, and stable groups separately. The 

variables controlled for are age and gender. 

 

* indicates significant at p < 0.05; & indicates marginally significant/trend. 

Abbreviations: WMH, white matter hyperintensities; EF, executive function composite. 

 

Partial 

Correlations  

      

Regression N=96 Δ Atrophy  Δ Brain 

Volume  

Δ  

Ventricular  

Δ  

Memory 

Δ  EF 

Δ WMH r 0.121 -0.001 0.202 0.033 -0.213 

 P 

n 

0.248 

95 

0.991 

96 

0.052 & 

95 

0.759 

93 

0.041 * 

94 

Progression N=209      

Δ WMH r 0.158 -0.125 0.122 -0.139 -0.049 

 P 

n 

0.025 * 

202 

0.072 & 

209 

0.085 & 

202 

0.049 * 

202 

0.491 

201 

Stable N=72      

Δ WMH r 0.131 -0.073 0.111 -0.063 -0.044 

 P 

n 

0.298 

67 

0.549 

72 

0.380 

67 

0.610 

69 

0.726 

69 
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Table 4.5 Partial correlation between WMH change and Tau/Aβ, Amyloid Total (whole 

brain), and regional analysis in regression, progression, and stable groups separately.  

 

 

The variables controlled for are age and sex. * indicates significant at p < 0.05, ^ indicates 

statistical trend. 

 

Partial 

Correlations  

       

Regression  Tau/Aβ Amyloid 

Total 

Frontal Cingulate Parietal Temporal 

Delta WMH r 0.136 -0.046 -0.53 -0.040 -0.059 -0.027 

 p 0.219 0.660 0.611 0.701 0.572 0.729 

 n 85 96 96 96 96 96 

Progression        

Delta WMH r 0.151 0.116 0.126 0.096 0.096 0.137 

 p 0.036* 0.097 0.070^ 0.171 0.167 0.049* 

 n 197 209 209 209 209 209 

Stable        

Delta WMH r -0.041 0.074 0.098 0.111 0.061 0.011 

 p 0.750 0.542 0.418 0.359 0.616 0.926 

 n 64 72 72 72 72 72 
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4.4 Discussion: 

 Our results demonstrate that WMH regression is associated with decreased brain 

atrophy and improvement in memory performance over a period of 2-years compared to 

participants with progressive WMH changes (Table 4.3).  Additionally, participants with 

progressive WMH changes had increased atrophy and poorer memory performance as a 

function of Δ WMH (Table 4.4). Consistent with prior reports, our data also show that 

WMH progression is associated with worsening memory[203-205] and that larger WMH 

volumes are associated with greater brain atrophy.[126]  

 Furthermore, our data showed that participants with progressive WMH changes had 

a strong correlation with Tau/Aβ and the amyloid deposition in the temporal lobe detected 

by the Amyloid PET scan.[17] 

 WMH progression and regression have been reported in smaller cohorts,[189, 190, 

202, 206] and a stable group has also been identified in other studies.[190, 202] Several 

studies have reported that WMH progression is associated with greater cognitive 

decline,[187, 188] however, previous studies have not reported on the potential 

associations between WMH regression and changes in global atrophy or cognitive test 

performance over time. 

 We used the conventional net change in the WMH between the baseline and the 

follow up visits together with the percentile approach to categorize the dynamic changes 

into three groups (progression, stable and regression).  We found that about 25.5% of study 

participants showed WMH regression, which is similar to the 21.5% reported by 

others.[207] In addition, 19.1% of the cohort remained stable and 55.4% showed WMH 
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progression over 2-years.  These data add to the existing literature suggesting that WMH 

volume is a dynamic feature of aging and age-related neurologic disease. 

 There are several possible explanations for the observed WMH regression seen in 

this and other studies.  WMH regression could be due to imaging acquisition or 

methodological confounders such as the use of different scanners across visits, lack of 

scanner calibration, lack of standardized acquisition parameters, differences in post-

acquisition processing techniques such as registration or segmentation pipelines, which 

may all affect the accuracy of the WMH volume change calculation.[191] Use of the ADNI 

cohort and WMH volumes from the validated UCD 4-tissue segmentation method for this 

study minimized such effects, suggesting instead that the observed dynamic nature of 

longitudinal WMH volumes reflects meaningful biological change. 

 Biological causes for WMH regression could include gliotic scarring and 

microstructural encephalomalacia due to irreversible ischemic parenchymal injury, 

resolution of secondary inflammatory processes as a result of irreversible ischemic 

damage, or could instead reflect resolution or healing of reversible ischemic injury.  The 

associations of WMH regression with measures of global cerebral atrophy and cognitive 

change over time would be expected to differ between these possibilities as highlighted in 

Table 4.1.   

 If WMH regression were the result of gliotic scarring and microstructural 

encephalomalacia, it would be expected that such change would be associated with 

increased cerebral atrophy and stable cognition.  In such a scenario, acute small subcortical 

strokes and lacunar infarcts, which mimic WMH, could account for WMH regression 

through the natural course of temporal evolution.  Such permanent lesions eventually 
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reduce in diameter over time, which could in part account for the observed WMH 

regression seen in this and other studies.[202, 208] The current data, however, argue 

against this possibility as retraction and temporal evolution of ischemic lesions would be 

expected to result in increased Δ brain volume which is contrary to the present findings in 

which WMH regression was associated with decreased Δ brain volume .  

 It is also possible that WMH regression may be due to resolution of inflammatory 

processes and focal edema related to irreversible ischemic injury.  This hypothesis is 

supported by prior work demonstrating that parenchymal edema develops early during the 

WM vascular injury process.[209] Several studies supporting the concept of resolving 

edema as an explanation for WMH regression are based on observations in both CADASIL 

and stroke patients.[210] If this possibility were responsible WMH regression, one would 

expect that measures of atrophy would increase in the setting of WMH regression as 

inflammatory edema resolved, and that cognitive function would improve.  Although this 

is a possibility for some WMH lesions, the overall lack of increased atrophy argues against 

this mechanism as a primary determinant of WMH regression. 

 Lastly, it is possible that WMH regression is most closely related to resolution of 

reversible ischemic changes or to healing or regenerative processes after such injury.  In 

such a scenario, WMH regression would be associated with either no change or increased 

brain volume, and would also be associated with improvement in cognitive test 

performance.  This pattern of association is exactly what is seen in the present study, 

supporting this hypothesis.  

 Our data highlight the importance of considering WMH change over time as a 

dynamic process which can be related to both positive and negative structural and cognitive 
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outcomes.  The clinical implications of our findings could have a significant impact as we 

begin to explore the many demographic, risk and treatment variables that may have 

influenced longitudinal WMH change in our cohort of subjects.  Much work is needed to 

identify associations that may serve as fertile ground for exploration of disease modifying 

strategies in vascular cognitive impairment and dementia. 

 This study does have limitations.  The ADNI cohort has unique characteristics 

based on its inclusion/exclusion criteria which include an emphasis on earlier staged 

disease including normal and MCI subjects as well as criteria that excludes those with 

significant cerebrovascular disease and/or CVD risk factors.  As such, the cohort may not 

be generalizable to epidemiologic and community-based cohorts that may have higher 

proportions of cognitively impaired individuals and/or those with increased 

cerebrovascular risk factors and/or WMH burden.  Further, we used global net change in 

the WMH between the baseline and the follow up visits, limiting our ability to detect 

regional change in WMH progression, stability or regression compared to more detailed 

spatial location analyses used by others previously.[202]  

 Despite these limitations, the present study allowed an exploration of cognitive and 

brain volume changes that are associated with dynamic WMH change in a straightforward, 

easily-interpretable fashion. The present data demonstrate that WMH regression is not a 

mere imaging artifact or artifact due to methodologic procedures, but rather represents an 

actual biological phenomenon that may, at least in part, reflect recovery from and 

resolution of reversible cerebrovascular injury.  The present findings demonstrating that 

WMH and cSVD are potentially reversible processes is not only intriguing, but also lays 
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the foundation for future interventional studies for subcortical vascular dementia as a 

highly prevalent cause of cognitive decline and dementia in the aging population. 
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CHAPTER 5. CONCLUSION 

5.1 Overview: 

 This purpose of these studies was to examine novel ways in which conventional 

MRI scans can identify the relative contributions of AD & cSVD to GCA and WMH in 

order to generate new biomarkers & insights that might prove useful in the detection of 

both “pure” and mixed disease states.  

 To do so, we first examined the relationship of cSVD visualized as WMH on 

FLAIR imaging in relation to GCA. Our data clearly demonstrate that WMH are more 

strongly associated with GCA, than CSF Aβ levels. The clinical importance of this finding 

should not be understated. Frequently when clinicians see extensive GCA, AD moves to 

the top of the differential diagnosis. This often leads to an under diagnosis of cSVD, and 

potentially the development of therapeutic interventions which may miss the target in 

regards to either reducing the rate of cognitive and functional decline or potentially halting 

the progression of clinical disease. In other words, when a clinician encounters a patient 

with significant GCA on MRI imaging, they should carefully examine for the presence of 

WMH, which if found, should direct them to begin to target CVD risks rather than simply 

attribute the GCA to AD pathology. 

 Second, we sought to investigate the association of the CSF Aβ (a surrogate 

biomarker of AD) with the WMH seen on FLAIR imaging. Specifically, we sought to 

determine if the WMH associated with AD vs. cSVD were spatially distinct. The findings 

from this 2nd study clearly demonstrate that WMH reflect contributions of both AD and 

cSVD processes that represent distinct, additive pathologic processes rather than a 

synergistic interplay between these disease entities that contribute to the eventual 
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development of dementia. Specifically, our data demonstrates that WMH located in the 

parietal and occipital periventricular region are strongly associated with CSF Aβ 1-42 

levels. On the other hand, WMH in the deep frontal regions were more likely to be 

associated with HTN, suggesting cSVD as the underlying pathology for such findings. 

Finally, we sought to determine if WMH change overtime was static, progressive and/or 

potentially reversible in regards to pathologic etiology through an examination of the 

association of WMH progression or regression with the CSF Aβ, Tau and Amyloid PET 

(surrogates of AD). Our data clearly demonstrate that WMH are highly dynamic with many 

cases demonstrating regression of the WMH that appear to be largely driven by control of 

CVR (specifically HTN in our cohort) rather than AD, which consistently appears to lead 

to WMH progression rather than regression. 

 These findings suggest that MRI may represent a low cost non-invasive marker for 

both AD and cSVD that could prove useful in teasing out the relative contributions of these 

specific etiologies in cases representing mixed pathological disease states. These findings 

have broad implications for the development of effective therapeutic interventions for 

individuals in regards to primary prevention for asymptomatic individuals, secondary 

prevention for those in the earliest of clinical stages of cognitive decline, and further for 

halting and/or possibly reversing dementia progression, at least in those with a strong 

component of cSVD pathology. 

5.2 HTN as the Major CVR Associated with cSVD: 

 The effect of HTN on the brain are mediated by many factors including patient 

specific characteristics, time at which the diagnosis of HTN was made, duration of disease, 

the degree of blood pressure elevation and severity of the disease. Chronic, uncontrolled 
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HTN has been shown to lead to thickening of cerebral blood vessels’ basement membranes, 

reducing cerebral blood flow,[211] which may greatly accelerate the pathophysiological 

development of both AD and VaD.[212] In addition, uncontrolled HTN almost universally 

leads to cSVD, manifest as white matter rarefaction, widening of perivascular spaces, 

cerebral microbleeds, and overt ischemic infarcts.[213] cSVD can occur in conjunction 

with comorbid AD or can be the sole cause of cognitive decline and dementia in many 

cases. 

 Uncontrolled midlife HTN has been found to increase dementia risk in older adults, 

Suggesting that targeting HTN earlier in midlife may help reduce the incidence and 

prevalence of late the life cognitive dysfunction and dementia.[214] In addition, the 

Honolulu Asia Aging study (n = 7878), reported that 27% of patients with midlife HTN 

and 17% of patients with pre HTN, go on to develop late life cognitive decline.[215] The 

influence of uncontrolled HTN on the development of dementia of both the AD and cSVD 

type appears clear from the current literature and yet the fact that many cases of both AD 

and cSVD exist suggest that HTN is neither necessary nor sufficient to explain all cases of 

dementia and the interplay between these complex pathologic disorders. 

 Treatment of HTN represents an additional confound in our understanding of the 

complexity of the relationship between vascular pathology and AD.[212] It is clear from 

many studies that appropriate management of HTN can reduce the risk of late life cognitive 

decline and dementia. Results from the Honolulu Asia Aging Study suggest that 

antihypertensive treatment with a beta blocker is superior to the use of any other 

antihypertensive medicine in decreasing the risk of incidental cognitive impairment.[216] 

Yet other studies have suggested that dementia risk reduction related to the management 
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of HTN is not specific to the type of antihypertensive used, and that benefits can be seen 

with any anti-hypertensive therapy including diuretics, calcium channel antagonists, 

angiotensin receptor blockers and angiotensin-converting enzyme inhibitors, in addition to 

beta blockers.[217] 

 In contrast to midlife HTN, late-life HTN has not been found to be associated with 

 cognitive decline. In fact, the opposite may be true, with some studies demonstrating an 

association between the late life low systolic blood pressure and cognitive decline in 

elderly.[218] The Rotterdam and the Gothenburg studies reported that lower diastolic 

blood pressure in late-life was associated with increased risk of both cSVD and AD, 

especially among the users of antihypertensive medications.[219] In contrast, the Bronx 

Aging Study found that low diastolic blood pressure was associated with AD whereas the 

effect of low systolic blood pressure was inconsequential.[220] Yet other studies have 

suggested that the association of late-life hypotension and dementia risk exists for both 

systolic and diastolic hypotension.[221] Still others have reported that both mid and late 

life blood pressure may act in conjunction to increase the risk of dementia with lower late-

life diastolic pressure and midlife HTN acting in conjunction in the development of late 

life dementia.[222] 

 The data presented demonstrates that a history of hypertension is strongly 

associated with baseline WMH volumes. In addition, the Δ change in SBP over a period of 

one year is significantly associated with the Δ change in WMH volumes. These results are 

in line with findings from the existing, published literature, supporting our hypothesis that 

lowering SBP may lead to regression of WMH lesion volumes and an overall decrease in 

WMH burden overtime.[223] 
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5.3 AD Conventional Biomarkers: 

5.3.1 Imaging Markers: 

 T1-weighted MPRAGE imaging sequences can evaluate changes in cortical sulci 

volume (cross-sectionally) and atrophy (longitudinally) in hippocampus, parahippocampal 

gyrus, entorhinal cortex, posterior cortex, subcortical nuclei and amygdala, which are 

affected early in the course of disease for AD patients.[67, 68]  T1-weighted sequences in 

particular, can aid the clinician and researcher in estimating MTA as an early neuroimaging 

marker of AD.[69] Semi-quantitative visual rating scales such as the Scheltens’ scale, can 

be easily taught and assessed with routine clinical imaging in either two-dimensional or 3-

dimensional sequences.[70] Evaluation of MTA is best performed in the coronal plane 

which allows more accurate visualization of medial temporal lobe volumes that are not 

affected by tangential slicing of these structures as can occur with axial and/or sagittal 

acquisitions in addition there are a number of automated and semi-automated post 

acquisition processing software packages that can provide voxel by voxel volumes 

allowing quantitative assessment of these and other discrete structures within the brain. 

Using T1-weighted sequences in the diagnosis of AD is practical as it is non-invasive, 

relatively inexpensive, recommended currently as part of the practice parameter for a 

valuation of memory loss and dementia, and is almost universally covered by all insurance 

and other third-party payers compared to the other imaging modalities. 

 Amyloid PET can be useful in differentiating dementia such as AD from other 

forms of dementia that do not include amyloid deposition as a pathologic feature such as 

Frontotemporal Dementia (FTD).[83, 84] The specificity of amyloid PET scans for 

Alzheimer’s disease is low and positive scans are also frequently seen in cases of Dementia 
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with Lewy Bodies (DLB).[85, 86] Despite its limitations, Amyloid PET has been widely 

used to detect the pre-clinical stage of AD,[89] which has opened up new possibilities for 

secondary prevention trials in the area of AD. In addition, it is important to note that unlike 

CSF Aβ, Amyloid PET scans can detect the neuroanatomic extent and distribution of 

amyloid deposition.[224] However, it should be noted that amyloid PET scans are 

expensive and often not covered by insurance and other third-party payers. 

 fMRI is another imaging modality that being used for the diagnosis of early stages 

of AD. BOLD can demonstrate abnormalities in the hippocampus, inferior parietal lobe, 

medial temporal lobe and cingulate cortex in AD that may provide clues to a pure and/or 

mixed state.[90, 91] Exploration of fMRI is led to many contradictory findings however 

and was not included as a methodology examined in the current set of experiments. 

5.3.2 CSF Aβ:   

 Parenchymal and vascular deposition of Aβ occurs very early in the course of 

AD.[225] Aβ deposition can result in an increased thickening of blood vessels’ wall, 

vascular tone, vasoconstriction, and reduced cerebral blood flow,[226] eventually resulting 

in cerebral ischemia and the development of WMH. Cerebral Amyloid Angiopathy (CAA), 

characterized by the accumulation of Aβ protein in the walls of small-medium sized blood 

vessels and capillaries may be an important contributor to deficits in nutrient and oxygen 

exchange as well as to resultant tissue injury occurring at the microvascular level.[13] CAA 

can also be associated with intracerebral hemorrhage, WMH, and cSVD, in addition to 

Alzheimer’s disease.[28, 29] 
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 It is important to note that CSF Aβ is being widely used for the diagnosis of AD, 

however, this procedure carries a more than minimal risk to the patients as it is considered 

an invasive procedure. In this thesis, we chose to examine whether or not noninvasive MRI 

could prove useful for the diagnosis of AD in regards to WMH volume and distribution 

that could in many cases supplant or be used as an alternative diagnostic modality for AD. 

5.4 Imaging Markers Used in the Current Study: 

 As discussed in detail in this dissertation, many imaging markers can be reliably 

used to diagnose AD, cSVD or both. We used well validated MRI structural and injury-

associated imaging markers, including T1-weighted and FLAIR sequences. Both 

sequences were analyzed using simple visual rating scales such as the Scheltens scale for 

the MTA, Fazekas scale for the WMH and the Pasquier scale for the GCA. In addition, we 

performed more sophisticated volumetric measures using the T1-weighted and the FLAIR 

images to quantify the WMH and further determine the differences in the spatial 

distribution of the WMH associated with AD vs. cSVD.  

 Using these MRI biomarkers in novel ways to address our hypotheses prove their 

utility in diagnosis and differentiation of underlying AD and cSVD pathology. Using MRI 

in this fashion overcomes many of the impediments to routine biomarker diagnosis of AD 

and mixed pathologic disease states as it is considered relatively cheap and non-invasive 

when compared to the more expensive imaging modalities such as Amyloid PET and Tau 

PET scans and to more invasive procedures such as a spinal tap to collect CSF biomarkers. 
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5.5 cSVD is a Greater Contributor to GCA than AD: 

 Our data demonstrates that moderate to severe GCA seen on brain imaging studies 

should not be solely attributed to normal aging or AD. Instead, cSVD should be considered 

as the proximate cause of moderate-to-severe GCA in the majority of cases. Such 

understanding may help direct appropriate diagnosis and treatment strategies for those 

undergoing evaluation of memory complaints or more significant cognitive decline that 

have had structural imaging performed as part of the diagnostic workup. 

5.6 AD and HTN are Associated with Spatially Distinct WMH: 

 Our study demonstrates that the effects of HTN and CSF Aβ1-42 levels on WM 

injury may be additive rather than synergistic, with each associated with distinct spatial 

distributions of WMH. Considering such spatial distributions during routine diagnostic 

evaluation may improve diagnostic accuracy and further contribute to optimal development 

of treatment paradigms that address cSVD and AD, either separately or in combination. 

The present studies remain largely empiric and on the basis of our data it remains unclear 

as to whether the underlying pathophysiology and mechanisms of cerebral injury manifest 

as WMH are the same in the different brain regions identified as being independently 

associated with either AD or cSVD.  

5.7 WMH are Dynamic with AD Participants Being More Likely to Progress: 

 Results from the third experiment in this thesis demonstrate that WMH regression 

is associated with decreased brain atrophy and improvement in memory performance over 

a period of 2-years compared to participants with progressive WMH changes (Figure 5.1).  
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 There are several potential explanations for the WMH regression seen in this 

cohort. First, ischemic non reversible injury, may regress due to the process of gliotic 

contraction and micro- and or macroscopic encephalomalacia. In this setting one would 

expect increasing brain atrophy (due to encephalomalacia) in the follow up scan, but as the 

injury is static, one would expect no change in cognitive performance (Figure 5.2). Second, 

inflammation that is associated with irreversible ischemic injury, leading to WMH 

regression as a result of resolution of the inflammation and edema with restoration of 

normal function in the resolved inflammatory penumbra. If such an explanation were true, 

one would expect to see an increase in brain atrophy secondary to reduced inflammatory 

edema in such cases. However, we would expect some improvement in cognitive 

performance as a result of resolution of the inflammatory penumbra (Figure 5.2). Finally, 

it is possible that WMH regression could be the result of a healing or reparative process of 

ischemic injury. If such were true, one would expect to see reduced brain atrophy (no 

gliotic contraction or encephalomalacia in restored tissue) and improvement in the 

cognitive performance as a result of this healing process (Figure 5.2). The latter explanation 

may in part explain the characteristics associated with WMH regression seen in experiment 

#3 using the ADNI II cohort. 

 It is important to note that WMH regression was not associated with the CSF Aβ or 

Amyloid PET measures, suggesting that WMH regression may be primarily driven by CVR 

rather than AD processes. This observation suggests that aggressive management of SBP 

may be a possible target for future clinical trials to reduce the WMH burden and dementia 

that may exist independent of AD processes. In contrast, our data suggest that WMH  
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Figure 5.1 Descriptive figure showing the dynamic nature of the white matter 

hyperintensity changes overtime and the associated change in brain volume and cognitive 

performance.  

 

 

The battery represents the memory performance. The upper row is showing a 

representation of how the white matter hyperintensity (WMH) remains stable in the follow 

up visit. Similarly, brain volume and memory remained stable in the follow up visit as 

shown in A2 and A3. The middle row is showing the progression of WMH over time. In 

B3 note how the WMH lesion is growing, the brain volume is remarkably reduced and the 

memory is getting worse compared to B2. Finally, the lower row is showing a 

representation of a WMH regression over time. In C3 note how the WMH lesion is 

shrinking, the brain volume is maintained or even minimally increase, and the memory is 

improving when compared to C2.  
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Figure 5.2 Decsriptive figure showing the possible mechanisms that lead to white matter 

hyperintensity regression overtime and their associated effect on the brain volume and the 

cognitive performance. 

 

The battery represents the memory performance. The upper row is showing the first 

potential mechanism of white matter hyperintensity (WMH) regression, which is the 

ischemic non reversible injury. In A3 note how the WMH lesion contract (black arrows) 

and the brain volume is reducing when compared to A2. However, the memory 

performance did not change when compared to A2. The middle row is showing how 

inflammation as a potential cause of WMH regression. In B3 note that the lesion is 

shrinking, the brain volume is reducing and the memory is improving a little bit when 

compared to B2. Note that the difference between A3 and B3 is in memory performance. 

Finally, the lower row represents the third possible explanation of WMH regression, which 

is the most likely cause in our study. In C3 note that the WMH lesion is regressing, the 

brain volume and memory performance is increasing when compared to C2. Note that the 

difference between C3 and B3 is in the brain atrophy in which the latter showed more 

atrophy. 
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associated with AD processes are irreversible at present and almost universally will 

progress until such time as effective disease modifying therapies for AD are developed. 

 In support of this contention, participants with progressive WMH changes 

demonstrated increased atrophy, poorer memory performance, higher tau/Aβ and more 

temporal lobe amyloid deposition again attesting to an unrelenting AD pathologic 

progression (Figure 5.1). Irrespective of whether WMH progression is due to AD processes 

or to uncontrolled SBP, our data clearly demonstrate that WMH progression is associated 

with worsening memory [203-205] and greater brain atrophy.[126]  

5.8 Overall Conclusion: 

 These data demonstrate that both AD and cSVD frequently coexist in the same 

brain, contributing differentially to alterations in brain structure, subcortical white matter 

injury, and cognitive function.  These effects can be disentangled using MRI, and while we 

currently lack therapeutic interventions to halt or reverse AD, the dynamic WMH change 

evident in our data clearly suggests that the ability to reverse cSVD exists today. 

5.9 Future Planned Studies: 

 Ongoing studies in these cohorts include an assessment of CVR and the relationship 

of specific CVD risks with the development and/or progression of WMH. In addition, our 

lab is actively exploring WMH change over time at the voxel level “WMH penumbra.” 

This work is being done in collaboration with Ahmed Bahrani (a PhD candidate in 

biomedical engineering at the University of Kentucky). In brief, WMH penumbra 

represents areas of dynamic WMH changes over time. The penumbra surrounding the 

WMH core can be identified using FLAIR, diffusion tensor imaging (DTI) and arterial spin 
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labeling ASL sequences on MRI. While several groups have postulated the existence of a 

penumbra and we were able to demonstrate abnormalities in DTI and ASL in a proximal 

tissue sphere around WMH, we are the first to develop a precise WMH penumbra detection 

protocol using FLAIR images. This experiment is in its final phases and may potentially 

change our fundamental understanding of the WMH Penumbra phenomenon. 

 Further studies are needed to explore whether the distinct spatial patterns of WM 

alteration seen as a result of AD and or cSVD are associated with impairment of different 

cognitive processes, longitudinal clinical progression, and/or clinical outcomes. These data 

are also being used to further explore the development of an algorithmic, novel, non-

invasive, neuroimaging marker for AD that includes previously identified structural 

determinations of medial temporal lobe and discrete cortical regional atrophy in 

conjunction with or novel WMH distribution patterns that are linked to Alzheimer’s disease 

derived from experiment #2. The potential validation of such a biomarker algorithm may 

not only prove extremely useful for clinicians that currently lack inexpensive and 

noninvasive biomarkers for use in the routine clinical setting, but may also prove extremely 

cost-effective in identifying amyloid positive participants, irrespective of cognitive status, 

for participation in the burgeoning number of clinical trials for AD that are currently 

limited universally by an inability to reliably and cheaply identify those at risk.  

 Cumulative data from the experiments that comprise this thesis are also being used 

to help design early interventional trials in the area of cSVD. Such trials are focused on 

modulation of hypertension and exploration of biological change in WMH volume and 

distribution that will lead to more efficient clinical trials requiring fewer subjects, and less 
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invasive and costly means of determining pharmacodynamic effects of intervention than 

those currently available. 
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