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Abstract

Polycystic ovary syndrome (PCOS) is a disorder characterized by hyperandrogenism, ovu-

latory dysfunction and polycystic ovarian morphology. Affected women frequently have met-

abolic disturbances including insulin resistance and dysregulation of glucose homeostasis.

PCOS is diagnosed with two different sets of diagnostic criteria, resulting in a phenotypic

spectrum of PCOS cases. The genetic similarities between cases diagnosed based on the

two criteria have been largely unknown. Previous studies in Chinese and European subjects

have identified 16 loci associated with risk of PCOS. We report a fixed-effect, inverse-

weighted-variance meta-analysis from 10,074 PCOS cases and 103,164 controls of Euro-

pean ancestry and characterisation of PCOS related traits. We identified 3 novel loci (near

PLGRKT, ZBTB16 and MAPRE1), and provide replication of 11 previously reported loci.

Only one locus differed significantly in its association by diagnostic criteria; otherwise the

genetic architecture was similar between PCOS diagnosed by self-report and PCOS diag-

nosed by NIH or non-NIH Rotterdam criteria across common variants at 13 loci. Identified

variants were associated with hyperandrogenism, gonadotropin regulation and testosterone

levels in affected women. Linkage disequilibrium score regression analysis revealed genetic

correlations with obesity, fasting insulin, type 2 diabetes, lipid levels and coronary artery dis-

ease, indicating shared genetic architecture between metabolic traits and PCOS. Mendelian

randomization analyses suggested variants associated with body mass index, fasting insu-

lin, menopause timing, depression and male-pattern balding play a causal role in PCOS.

The data thus demonstrate 3 novel loci associated with PCOS and similar genetic architec-

ture for all diagnostic criteria. The data also provide the first genetic evidence for a male phe-

notype for PCOS and a causal link to depression, a previously hypothesized comorbid

PCOS genetics meta-analysis
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disease. Thus, the genetics provide a comprehensive view of PCOS that encompasses mul-

tiple diagnostic criteria, gender, reproductive potential and mental health.

Author summary

We performed an international meta-analysis of genome-wide association studies com-

bining over 10,000,000 genetic markers in more than 10,000 European women with poly-

cystic ovary syndrome (PCOS) and 100,000 controls. We found three new risk variants

associated with PCOS. Our data demonstrate that the genetic architecture does not differ

based on the diagnostic criteria used for PCOS. We also demonstrate a genetic pathway

shared with male pattern baldness, representing the first evidence for shared disease biol-

ogy in men, and shared genetics with depression, previously postulated based only on

observational studies.

Introduction

Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in reproductive

aged women, with a complex pattern of inheritance [1–5]. Two different diagnostic criteria

based on expert opinion have been utilized: The National Institutes of Health (NIH) criteria

require hyperandrogenism (HA) and ovulatory dysfunction (OD) [6] while the Rotterdam cri-

teria include the presence of polycystic ovarian morphology (PCOM) and requires at least two

of three traits to be present, resulting in four phenotypes (S1 Fig) [6,7]. PCOS by NIH criteria

has a prevalence of ~7% in reproductive age women worldwide [8]; the use of the broader Rot-

terdam criteria increases this to 15–20% across different populations [9–11].

PCOS is commonly associated with insulin resistance, pancreatic beta cell dysfunction, obe-

sity and type 2 diabetes (T2D). These metabolic abnormalities are most pronounced in women

with the NIH phenotype [12]. In addition, the odds for moderate or severe depression and

anxiety disorders are higher in women with PCOS [13]. However, the mechanisms behind the

association between the reproductive, metabolic and psychiatric features of the syndrome

remain largely unknown.

Genome-wide association studies (GWAS) in women of Han Chinese and European ances-

try have reproducibly identified 16 loci [14–17]. The observed susceptibility loci in PCOS

appeared to be shared between NIH criteria and self-reported diagnosis [17], which is particu-

larly intriguing. Genetic analyses of causality (by Mendelian Randomization analysis) among

women of European ancestry with self-reported PCOS suggested that body mass index (BMI),

insulin resistance, age at menopause and sex hormone binding globulin contribute to disease

pathogenesis [17].

We performed the largest GWAS meta-analysis of PCOS to date, in 10,074 cases and

103,164 controls of European ancestry diagnosed with PCOS according to the NIH (2,540

cases and 15,020 controls) or Rotterdam criteria (2,669 cases and 17,035 controls), or by self-

reported diagnosis (5,184 cases and 82,759 controls) (Tables 1 and S1). We investigated

whether there were differences in the genetic architecture across the diagnostic criteria, and

whether there were distinctive susceptibility loci associated with the cardinal features of PCOS;

HA, OD and PCOM. Further, we explored the genetic architecture with a range of phenotypes

related to the biology of PCOS, including male-pattern balding [18–21].

PCOS genetics meta-analysis
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Results

We identified 14 genetic susceptibility loci associated with PCOS, adjusting for age, at the

genome-wide significance level (P < 5.0 x 10−8) bringing the total number of PCOS associated

loci to nineteen (Tables 2 and S2 and Fig 1). Three of these loci were novel associations (near

PLGRKT, ZBTB16 and MAPRE1, respectively; shown in bold in Table 2). Six of the 11 reported

associations were previously observed in Han Chinese PCOS women [14,15]. Eight loci have

been reported in European PCOS cohorts [16,17]. Obesity is commonly associated with PCOS

and in most of the cohorts, cases were heavier than controls (Table 1). However, adjusting for

both age and BMI did not identify any novel loci; and the 14 loci remained genome-wide sig-

nificant. All variants demonstrated the same direction of effect across all phenotypes including

NIH, non-NIH Rotterdam, and self-report (Fig 2 and S2 Table). Only one SNP near GATA4/
NEIL2 showed significant evidence of heterogeneity across the different diagnostic groups

(rs804279, Het P = 2.6x10-5; Fig 2 and S3 Table). For this SNP, the largest effect was seen in

NIH cases and the smallest in self-reported cases. Credible set analysis, which prioritises vari-

ants in a given locus with regards to being potentially causal, was able to reduce the plausible

interval for the causal variant(s) at many loci (S4 Table). Of note, 95% of the signal at the

THADA locus came from two SNPs. Examination of previously published genome-wide sig-

nificant loci from Han Chinese PCOS [14,15] demonstrated that index variants from the

Table 1. Characteristics of PCOS cases and controls from each cohort included in the meta-analysis.

Cohort Subject Type Number Age (years) BMI (kg/m2) PCOS Definition HA(1) n(%) OD n(%) PCOM n(%)

Rotterdam Cases�� 1184 28.8 (4.8) 26.1 (6.3) NIH (41%) & Rotterdam (100%)(2) 439 (37.0) 946

(79.8)

661 (55.8)

Controls 5799 60.5 (7.9) 27.6 (4.7) Population Based Rotterdam Study NA NA NA

UK (London/

Oxford)

Cases�� 670 32.1 (6.8) 28.2 (7.9) NIH (33%) & Rotterdam (100%)(2) 455 (67.9) 537

(80.1)

383 (57.2)

Controls 1379 45 (0)§ 26.8 (5.5) 1958 British Birth Cohort NA NA NA

EGCUT Cases�� 157 30.7 (8.2) 26.2 (6.7) Rotterdam(2) NA NA NA

Controls 2807 31.5 (7.3) 23.1 (5.5) Population Based NA NA NA

deCODE Cases�� 658 41.3 (8.7) 30.1 (7.8) NIH (56%) & Rotterdam (100%)(2) 644 (97.9) 380

(57.7)

507 (77.1)

Controls 6774 49.0 (9.9) 25.1 (4.9) Population Based NA NA NA

Chicago Cases� 984 28.6 (5.5) 35.9 (8.5) NIH 984 (100) 984 (100) NA

Controls 2963 46.8 (15.2) 27.0 (7.4) Population Based NUgene NA NA NA

Boston Cases� 485 28.4 (6.7) 30.8 (8.7) NIH 485 (100) 485 (100) 441 (90.9)

Controls 407 27.2 (6.5) 23.8 (4.1) Screened controls(3) 0 0 177 (43.4)

23andMe Cases��� 5,184 45.1 (13.6) 29.2 (8.2) Self report (defined by questionnaire) NA NA NA

Controls 82,759 51.1 (15.7) 26.1 (6.1) No PCOS by self report (defined by

questionnaire)

NA NA NA

(1) Clinical or Biochemical.

(2) Rotterdam diagnostic criteria include the NIH criteria. All subjects from the indicated cohorts were used in the Rotterdam analysis.

(3) Controls were screened for regular menses and no hyperandrogenism.

� PCOS diagnosis was based on NIH criteria,

�� Rotterdam criteria, or

��� self report.

Results are reported as mean (SD) or a number (%).

Abbreviations: BMI: body mass index, NA: not available, HA: hyperandrogenism, OD: ovulatory dysfunction (<10 menses per year), PCOM: polycystic ovarian

morphology.
§All subjects are from the British Birth Cohort (born in 1958).

https://doi.org/10.1371/journal.pgen.1007813.t001
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Table 2. The 14 genome-wide significant variants associated with PCOS in the meta-analysis.

Chr:Position1 rsID Alleles2 EAF3 Beta Odds Ratio (95% CI)4 Std. Error Nearest Gene P-value Effective N5 Ref6

2:43561780 rs7563201 A/[G] 0.4507 -0.1081 0.90 (0.87–0.93) 0.0172 THADA 3.678e-10 17192

2:213391766 rs2178575 G/[A] 0.1512 0.1663 1.18 (1.13–1.23) 0.0219 ERBB4 3.344e-14 17192 17

5:131813204 rs13164856 [T]/C 0.7291 0.1235 1.13 (1.09–1.18) 0.0193 IRF1/RAD50 1.453e-10 17192 17

8:11623889 rs804279 A/[T] 0.2616 0.1276 1.14 (1.10–1.18) 0.0184 GATA4/NEIL2 3.761e-12 16895 16

9:5440589 rs10739076 C/[A] 0.3078 0.1097 1.12 (1.07–1.16) 0.0197 PLGRKT 2.510e-08 17192

9:97723266 rs7864171 G/[A] 0.4284 -0.0933 0.91 (0.88–0.94) 0.0168 FANCC 2.946e-08 17192 16

9:126619233 rs9696009 G/[A] 0.0679 0.202 1.22 (1.15–1.30) 0.0311 DENND1A 7.958e-11 17192

11:30226356 rs11031005 [T]/C 0.8537 -0.1593 0.85 (0.82–0.89) 0.0223 ARL14EP/FSHB 8.664e-13 17192 16,17

11:102043240 rs11225154 G/[A] 0.0941 0.1787 1.20 (1.13–1.26) 0.0272 YAP1 5.438e-11 17192 17

11:113949232 rs1784692 [A]/G 0.8237 0.1438 1.15 (1.10–1.14) 0.0226 ZBTB16 1.876e-10 17192

12:56477694 rs2271194 A/[T] 0.416 0.0971 1.10 (1.07–1.14) 0.0166 ERBB3/RAB5B 4.568e-09 17192 17

12:75941042 rs1795379 C/[T] 0.2398 -0.1174 0.89 (0.86–0.92 0.0195 KRR1 1.808e-09 17192 17

16:52375777 rs8043701 [A]/T 0.815 -0.1273 0.88 (0.85–0.92) 0.0208 TOX3 9.610e-10 17192

20:31420757 rs853854 A/[T] .4989 -.0975 0.91 (0.88–0.94) 0.0163 MAPRE1 2.358e-09 17192

1Chr—Chromosome:Position (bp) in hg19;
2Alleles are shown as Major/Minor by allele frequency in 1000G EUR cohort, with the effect allele shown within [];
3Effect allele frequency;
495% Confidence Interval of the Odds Ratio;
5Effective N—effective sample size;
6Ref = Reference.

Loci previously identified in GWAS studies of European ancestry are referenced. Novel associations with PCOS not previously reported are shown in bold. EAF = Effect

Allele Frequency.

https://doi.org/10.1371/journal.pgen.1007813.t002

Fig 1. Manhattan plot showing results of meta-analysis for PCOS status, adjusting for age. The inverse log10 of the p value (-log10(p)) is

plotted on the Y axis. The green dashed line designates the minimum p value for genome-wide significance (<5.0 x 10−8). Genome wide

significant loci are denoted with a label showing the nearest gene to the index SNP at each locus. SNPs with p values�1.0x10-2 are not depicted.

https://doi.org/10.1371/journal.pgen.1007813.g001
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THADA, FSHR, C9orf3, YAP1 and RAB5B loci were significantly associated with PCOS after

Bonferroni correction for multiple testing in our European ancestry subjects (S5 Table).

We assessed the association of the PCOS susceptibility variants identified in the GWAS

meta-analysis with the PCOS related traits: HA, OD, PCOM, testosterone, FSH and LH levels,

and ovarian volume in PCOS cases (Tables 3 and S6 and S2 Fig). We found four variants asso-

ciated with HA, eight variants associated with PCOM and nine variants associated with OD.

Of the eight loci associated with PCOM, seven were also associated with OD. Three of the four

loci associated with HA were also associated with OD and PCOM. Two additional loci were

associated with OD alone, one of which was the locus near FSHB (S6 Table). This locus was

also associated with LH and FSH levels. There was a single PCOS locus near IRF1/RAD50 asso-

ciated with testosterone levels (S6 Table). We repeated this analysis with susceptibility variants

reported previously in Han Chinese PCOS cohorts [14,15]. In this analysis, there was one asso-

ciation with HA (near DENND1A), three with PCOM and three with OD (S2 Fig and S5

Table). A limitation of these analyses is the variable sample size across the phenotypes ana-

lysed. Additionally, the known referral bias for the more severely affected NIH phenotype

(patients having both OD and HA) may result in more PCOS diagnoses than the other criteria

[22], and may have contributed to the number of associations between the identified PCOS

risk loci and these phenotypes.

In the analyses looking at the weighted genetic risk score in the Rotterdam cohort, we

observed an increase in the risk for PCOS (S3 Fig). Compared to individuals in the third quintile

(reference group), individuals in the top 5th quintile of risk score have an OR of 1.9 (1.4–2.5;

95% CI) for PCOS based on NIH criteria and an OR of 2.1 (1.7–2.5; 95% CI) for Rotterdam crite-

ria based PCOS. Of the associations, only the effect estimate for the Rotterdam criteria was signif-

icant, possibly due to the smaller size available with cases diagnosed according to the NIH

criteria. When looking at the area under the ROC curves at SNPs with different P-value thresh-

olds, we found a maximum AUC of 0.54 using SNPs with a P-value< 5x10-6 for both diagnostic

criteria. While this is significantly better than chance, it is unlikely that a risk score generated

from the variants discovered to date would represent a clinically relevant tool.

LD score regression analysis revealed genetic correlations with childhood obesity, fasting

insulin, T2D, HDL, menarche timing, triglyceride levels, cardiovascular diseases and depres-

sion (Table 4) suggesting that there is shared genetic architecture and biology between these

phenotypes and PCOS. There were no genetic correlations with menopause timing or male

pattern balding. Mendelian randomization suggested that there was a causal role for BMI, fast-

ing insulin and depression pathways (Table 5). Interestingly, while there was no genetic corre-

lation detected for male pattern balding or menopause timing with PCOS, the Mendelian

randomization analyses were significant. The difference in the genetic correlation compared

to the Mendelian randomization result suggests that there may be a small number of key bio-

logical process that are common between the phenotypes, and that the common genetic causal

variants are limited only to the variants shared by the subset of key biological processes. The

importance of BMI pathways on reproductive phenotypes was further demonstrated by the

attenuation of significance of Mendelian randomization analysis for age-at-menarche when

BMI-associated variants were excluded from the analysis.

Fig 2. Odds ratio of polycystic ovary syndrome (PCOS) as a function of diagnostic criteria applied. The Y-axis specifies the diagnostic criteria and the X-

axis indicates the odds ratio (OR) and 95% confidence intervals (CI) for PCOS (black circle and horizontal error bars). Data derived as follows: NIH = groups

recruiting only NIH diagnostic criteria; NonNIH_Rotterdam = Rotterdam diagnostic criteria excluding the subset fulfilling NIH diagnostic criteria; Rotterdam

+NIH = all groups except self-reported; self-reported = 23andMe; and combined = all groups. Specific OR’s [95% CI, 5% CI] are indicated on the right.

rs804279 in the GATA4/NEIL2 locus demonstrates significant heterogeneity (Het P = 2.6x10-5). The � indicates statistically significant association for PCOS

and the variant in that specific stratum.

https://doi.org/10.1371/journal.pgen.1007813.g002
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Discussion

We found 14 independent loci significantly associated with the risk for PCOS, including three

novel loci. The 11 previously reported loci implicated neuroendocrine and metabolic pathways

that may contribute to PCOS (1.1 Note in S1 Data). Two of the novel loci contain potential

endocrine related candidate genes. The locus harbouring rs10739076 contains several interest-

ing candidate genes; PLGRKT, a plasminogen receptor and several genes in the insulin super-

family; INSL6, INSL4 and RLN1, RLN2 which are endocrine hormones secreted by the ovary

and testis and are suspected to impact follicle growth and ovulation [23]. ZBTB16 (also known

as PLZF) has been marked as an androgen-responsive gene with anti-proliferative activity in

prostate cancer cells [24]. PLZF activates GATA4 gene transcription and mediates cardiac

hypertrophic signalling from the angiotensin II receptor 2 [25]. Furthermore, PLZF is

Table 3. Association of PCOS GWAS meta-analysis susceptibility variants and PCOS related traits.

Chr:Position rsID Gene Ref. allele Other allele Hyperandrogenism PCOM OD

EAF Beta P-value Beta P-value Beta P-value

2:213391766 rs2178575 ERBB4� G A 0.83 -0.126 4.3E-03 -0.24 1.4E-05 -0.23 1.2E-11

2:43561780 rs7563201 THADA�† G A 0.56 0.061 8.0E-02 0.16 3.7E-04 0.08 1.5E-03

5:131813204 rs13164856 IRF1/RAD50� T C 0.73 0.092 1.8E-02 0.16 1.4E-03 0.08 5.6E-03

8:11623889 rs804279 GATA4/NEIL2� A T 0.27 0.126 8.7E-04 0.22 1.5E-06 0.16 9.9E-09

9:126619233 rs9696009 DENND1A† G A 0.94 -0.330 2.9E-07 -0.32 4.0E-05 -0.36 4.4E-15

9:5440589 rs10739076 PLGRKT A C 0.30 0.026 5.3E-01 0.10 5.9E-02 0.00 8.9E-01

9:97723266 rs7864171 C9orf3�† G A 0.60 0.124 3.8E-04 0.19 1.3E-05 0.10 2.3E-04

11:30226356 rs11031005 ARL14EP/FSHB� T C 0.85 -0.079 8.2E-02 -0.18 1.3E-03 -0.13 2.8E-04

11:102043240 rs11225154 YAP1�† G A 0.91 -0.144 1.4E-02 -0.24 3.5E-04 -0.23 5.7E-08

11:113949232 rs1784692 ZBTB16 T C 0.85 0.146 4.6E-03 0.30 2.8E-06 0.21 6.6E-09

12:75941042 rs1795379 KRR1� T C 0.24 -0.104 8.0E-02 -0.16 1.5E-03 -0.11 1.8E-04

12:56477694 rs2271194 ERBB3/RAB5B† A T 0.42 0.126 2.7E-04 0.17 7.9E-05 0.13 1.4E-06

16:52375777 rs8043701 TOX3† A T 0.82 -0.166 1.4E-04 -0.17 1.5E-03 -0.08 9.2E-03

20:31420757 rs853854 MAPRE1 T A 0.50 0.111 9.8E-04 0.10 2.1E-02 0.05 3.8E-02

Significant associations are highlighted in bold. Variant previously reported as a PCOS risk variant in

�European or
†Han Chinese populations.

https://doi.org/10.1371/journal.pgen.1007813.t003

Table 4. LD Score regression results using the LDSC method.

Phenotype Genetic Correlation SE Z P-value

Body mass index 0.34 0.039 8.60 8.21×10−18

Childhood obesity 0.34 0.066 5.17 2.40×10−7

Fasting insulin levels 0.44 0.087 5.01 5.33×10−7

Type 2 diabetes 0.31 0.068 4.47 7.84×10−6

High-density lipoprotein levels -0.23 0.059 -3.96 7.40×10−5

Menarche -0.16 0.042 -3.76 1.71×10−4

Triglyceride levels 0.19 0.052 3.61 3.05×10−4

Coronary artery disease 0.23 0.069 3.32 8.86×10−4

Depression 0.205 0.0582 3.5203 0.0004

Menopause -0.014 0.0183 -0.762 0.4461

Male pattern balding 0.0149 0.0168 0.8861 0.3756

https://doi.org/10.1371/journal.pgen.1007813.t004
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upregulated during adipocyte differentiation in vitro [26] and is involved in control of early

stages of spermatogenesis [27] and endometrial stromal cell decidualization [28]. The third

novel locus harbours a metabolic candidate gene; MAPRE1 (interacts with the low-density

lipoprotein receptor related protein 1 (LRP1), which controls adipogenesis [29] and may addi-

tionally mediate ovarian angiogenesis and follicle development [30] (1.2 Note in S1 Data).

Thus, all the new loci contain genes plausibly linked to both the metabolic and reproductive

features of PCOS.

We found that there was no significant difference in the association with case status for the

majority of the PCOS-susceptibility loci by diagnostic criteria. All susceptibility variants dem-

onstrated the same direction of effect for the NIH phenotype, non-NIH Rotterdam phenotype

and self-report, with only one variant demonstrating significant heterogeneity among the

groups. It is of considerable interest that the cohort of research participants from the personal

genetics company 23andMe, Inc., identified by self-report, had similar risks to the other

cohorts where the diagnosis was clinically confirmed. Our findings suggest that the genetic

architecture of these PCOS definitions does not differ for common susceptibility variants.

Only one locus, GATA4/NEIL2 (rs804279), was significantly different across diagnostic crite-

ria: most strongly associated in NIH compared to the Rotterdam phenotype and self-reported

cases. Deletion of GATA4 results in abnormal responses to exogenous gonadotropins and

impaired fertility in mice [31]. The locus also encompasses the promoter region of FDFT1, the

first enzyme in the cholesterol biosynthesis pathway [32], which is the substrate for testoster-

one synthesis, and is associated with non-alcoholic fatty liver disease [33]. The major differ-

ence between the NIH phenotype and the additional Rotterdam phenotypes is metabolic risk;

the NIH phenotype is associated with more severe insulin resistance [34]. rs804279 does not

show association with any of the metabolic phenotypes in the T2D diabetes knowledge portal

{Type 2 Diabetes Knowledge Portal. type2diabetesgenetics.org. 2015 Feb 1; http://www.

type2diabetesgenetics.org/variantInfo/variantInfo/rs804279} so it may represent a PCOS-spe-

cific susceptibility locus.

The significant association of PCOS GWAS meta-analysis susceptibility variants with the

cardinal PCOS related traits OD, HA and PCOM further strengthened the hypothesis that spe-

cific variants may confer risk for PCOS through distinct mechanisms. Three variants at the

C9orf3, DENND1A, and RAB5B were associated with all PCOS related traits. The findings

were consistent with the Han Chinese DENND1A variant association with HA, as suggested

previously [35]. Thus, these loci, along with GATA4/NEIL2 (as discussed above) may help

identify pathways that link specific PCOS related traits with greater metabolic risk. In contrast,

the variants at the ERBB4, YAP1, and ZBTB16 loci were strongly associated with OD and

Table 5. Mendelian randomization using an inverse weighted variant method.

Potential Risk factor IVW method1 MR-EGGER intercept p-value2

Beta SE P-value

Body mass index 0.72 0.072 1.56 x 10−23 0.13

Fasting insulin levels� 0.03 0.007 1.73 x 10−5 0.06

Male pattern balding 0.05 0.017 0.0034 0.93

Menopause 0.1 0.022 1.31 x 10−5 0.39

Depression 0.77 0.213 0.00029 0.64

�Loci used were initially reported in an analysis of fasting insulin adjusted for BMI.
1IVW = inverse weighted variant,
2Mendelian Randomization (MR)-Egger intercept p values were not significant. Therefore, MR-Egger results are not presented.

https://doi.org/10.1371/journal.pgen.1007813.t005
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PCOM, and therefore, might be more important for links to menstrual cycle regularity and fer-

tility. In addition, the FSHB variant was associated with the levels of FSH and LH [16,17], sug-

gesting that it may act by affecting gonadotropin levels. This variant maps 2kb upstream from

open chromatin (identified by DNase-Seq) and an enhancer (identified by peaks for both

H3K27Ac and H3K4me1) in a lymphoblastoid cell line from ENCODE, indicating a potential

role for a regulatory element ~25kb upstream from the FSHB promoter. Furthermore, the

association between the IRF1/RAD50 variant and testosterone levels may indicate a regulatory

role in testosterone production.

Of note, results of the follow-up analysis show a high level of shared biology between PCOS

and a range of metabolic outcomes consistent with the previous findings [17]. In particular,

there is genetic evidence for increased BMI as a risk factor for PCOS. There is also genetic evi-

dence that fasting insulin might be an independent risk factor. This study also confirmed a

causal association with the pathways that underlie menopause [17], suggesting that PCOS has

shared aetiology with both classic metabolic and reproductive phenotypes. Furthermore, there

was an apparent effect of depression-associated variants on the likelihood of PCOS, suggesting

a role for psychological factors on hormonally related diseases. However, the links between

PCOS and depression might be complicated by pathways that are also related to BMI, as BMI

pathways are causal in both PCOS and depression [36]. In addition, male-pattern balding-

associated variants showed strong effects on PCOS, suggesting that this might be a male mani-

festation of PCOS pathways, as has been previously suggested [18,20,21,37]. This observation

may reflect the biology of hair follicle sensitivity to androgens, seen in androgenetic alopecia, a

well-recognised feature of HA and PCOS [38,39]. The Mendelian randomization results for

male-pattern balding and menopause are significant despite non-significant genetic correla-

tion results, suggesting that the shared aetiology may be specific to only a few key pathways.

In conclusion, the genetic underpinnings of PCOS implicate neuroendocrine, metabolic

and reproductive pathways in the pathogenesis of disease. Although specific phenotype strati-

fied analyses are needed, genetic findings were consistent across the diagnostic criteria for all

but one susceptibility locus, suggesting a common genetic architecture underlying the different

phenotypes. There was genetic evidence for shared biologic pathways between PCOS and a

number of metabolic disorders, menopause, depression and male-pattern balding, a putative

male phenotype. Our findings demonstrate the extensive power of genetic and genomic

approaches to elucidate the pathophysiology of PCOS.

Methods

Ethics statement

All research involving human participants has been approved by the authors’ Institutional

Review Board (IRB) or an equivalent committee, and all clinical investigation was conducted

according to the principles expressed in the Declaration of Helsinki. Written informed consent

was obtained from all participants. The Boston cohort was approved by the Partners IRB (#

2002P001924) and the University of Utah IRB (IRB_00076659). The deCODE cohort was

approved by the National Bioethics Committee of Iceland (VSN 03–007), which was con-

ducted in agreement with conditions issued by the Data Protection Authority of Iceland. Per-

sonal identities of the participants’ data and biological samples were encrypted by a third-party

system (Identity Protection System), approved and monitored by the Data Protection Author-

ity. The UK cohort was approved by the Parkside Health Authority (Now—NHS Health

Research Authority, NRES Committee—West London & GTAC, UK, London, UK) under

EC2359 "The Molecular Genetics of Polycystic Ovaries." The Rotterdam PCOS cohort, the

COLA study, was approved by institutional review board (Medical Ethics Committee) of the
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Erasmus Medical Center (04–263). Controls from the Rotterdam Study were approved by the

Medical Ethics Committee of the Erasmus MC (registration number MEC 02.1015) and by the

Dutch Ministry of Health, Welfare and Sport (Population Screening Act WBO, license number

1071272-159521-PG). The Rotterdam Study Personal Registration Data collection is filed with

the Erasmus MC Data Protection Officer under registration number EMC1712001. The Rot-

terdam Study has been entered into the Netherlands National Trial Register (NTR; www.

trialregister.nl) and into the WHO International Clinical Trials Registry Platform (ICTRP;

www.who.int/ictrp/network/primary/en/) under shared catalogue number NTR6831. The

Chicago PCOS cohort was approved by the Northwestern IRB (#STU00008096). The control

subjects from the NUgene study were approved by the Northwestern IRB (# STU00010003).

The Estonia cohort was approved by the Research Ethics Committee of the University of Tartu

approved the study (198T-18). The Twins UK study was approved by the St Thomas’ Hospital

Research Ethics Committee (EC04/015). The Nurses’ Health Study (NHS I and II) was

approved by the Partners Human Research Committee (#1999-P-011114).

Subjects

The meta-analysis included 10,074 cases and 103,164 controls from seven cohorts of European

descent. For the analysis of PCOS related traits three additional cohorts, the Northern Finnish

Birth Cohort (NFB66) [40], Twins UK [41] and the Nurses’ Health Study (NHS) [42] were

included. Cases were diagnosed with PCOS based on NIH or Rotterdam Criteria or by self-

report. The NIH criteria require the presence of both OD and clinical and/or biochemical HA

for a diagnosis of PCOS [6]. The Rotterdam criteria require two out of three features 1) OD

defined by oligo- or amenorrhea (chronic menstrual cycle interval>35 days in all cohorts), 2)

clinical and/or biochemical hyperandrogenism (HA) and/or 3) PCOM for a diagnosis of

PCOS [7]. Non-NIH Rotterdam was defined by OD and PCOM or clinical and/or biochemical

hyperandrogenism (HA) and PCOM. Self-reported female cases from research participants in

the 23andMe, Inc. (Mountain View, CA, USA) cohort either responded “yes” to the question

“Have you ever been diagnosed with polycystic ovary syndrome?” or indicated a diagnosis of

PCOS when asked about fertility (“Have you ever been diagnosed with PCOS?” or “What was

your diagnosis? Please check all that apply.” Answer = PCOS), hair loss in men or women

(“Have you been diagnosed with any of the following? Please check all that apply.”

Answer = PCOS) or research question (“Have you ever been diagnosed with PCOS?”) [17].

23andMe controls were female, only.

HA was defined as hirsutism and quantified by the Ferriman-Gallwey (FG) score. The FG

score assesses terminal hair growth in a male pattern in females, and a score above the upper

limit of normal controls (>8) is considered hirsutism [43]. Hyperandrogenemia was defined

as testosterone, androstenedione or DHEAS greater than the 95% confidence limits in control

subjects in the individual population. OD was defined as cycle interval <21 or>35 days [44].

PCOM was defined as 12 or more follicles of 2–9 mm in at least one ovary or an ovarian vol-

ume>10 mL [7]. The quantitative PCOS traits included levels of total testosterone (T), folli-

cle-stimulating hormone (FSH), and luteinizing hormone (LH) and ovarian volume (S1

Table). An overview of the cohorts, diagnostic criteria and number of subjects included in

each subphenotype or trait analysis are summarized in Tables 1 and S1.

Data collection and quality control

Each study provided summary results of genetic per-variant estimates produced in either case-

control or trait association analyses. Adjustment for principle components was performed at

the study level. The collected files underwent quality control (QC) by two independent analysts
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using the EasyQC pipeline [45]. Variants were excluded based on minor allele frequency

(MAF) < 1%, imputation quality (R2)< 0.3 or info < 0.4 for MACH and IMPUTE2 respec-

tively [46,47]. Per-cohort QC results from EasyQC are shown (S7 Table), and allele frequency

spectrum for each cohort, and the combined cohort after meta-analysis is shown (S4 Fig).

Meta-analysis of PCOS status and PCOS related traits

The per-variant estimates collected from the summary statistics of contributing studies were

meta-analysed using a fixed-effect, inverse-weighted-variance meta-analysis that employed

either GWAMA [48] or METAL [49]. In addition to the overall meta-analysis, we performed

meta-analyses for studies with available data for the separate PCOS diagnostic criteria: NIH,

non-NIH Rotterdam [7] and self-report [17], as well as for the PCOS related traits of HA, OD

and PCOM. The meta-analysis of PCOS status was performed using two models; (1) age-

adjusted, (2) age and BMI-adjusted, given the high prevalence of obesity in affected women

that resulted in cases being significantly heavier than controls in most cohorts (Table 1).

We removed any variants that were not present in more than 50% of the effective sample

size prior to combining with 23andMe as this was the largest cohort in the meta-analysis, pro-

viding approximately 51% of the PCOS cases and 80% of controls. We also removed any vari-

ants only present in one study. The meta-analysis of PCOS related traits was performed

adjusting for age and BMI. Identified variants were annotated for insight into their biological

function using ANNOVAR [50] to assign refGene gene information, SIFT score [51], Poly-

Phen2 scores [52], CADD scores [53], GERP scores [54] and SiPhy log odds [55].

Comparison of PCOS diagnostic criteria

In order to compare different PCOS diagnostic criteria [(1) NIH, (2) non-NIH Rotterdam and

(3) self-reported] included in the PCOS meta-analysis, an additional meta-analysis was per-

formed to test for heterogeneity across these independent PCOS case groups. These three

PCOS case groups were combined in an inverse variance weighted fixed meta-analysis and the

heterogeneity statistics (Cochran’s Q and I2) were obtained using GWAMA [48]. Any variant

with a statistically significant Cochran’s Q p-value (P<0.05/14 = 0.0036 corrected for multiple

testing) and I2>70% were considered exhibiting heterogeneity across the PCOS case groups.

Further analysis of the heterogeneity included comparison of the 95% confidence intervals for

the direction of effect and overlaps.

Identifying associations between PCOS Loci and PCOS related traits

In order to understand biology relevant to identified PCOS susceptibility, we assessed the asso-

ciation between index SNPs at each genome-wide-significant locus and the PCOS related traits

HA, OD, PCOM as well as the quantitative traits testosterone, LH and FSH levels and ovarian

volume. The threshold for significance in this analysis was p<4.5×10−4 (Bonferroni correction

[0.05/(14 independent loci x 8 traits)].

Identifying shared risk loci between European ancestry and Han Chinese

PCOS

In order to identify shared risk loci between the previously reported GWAS in Han Chinese

PCOS cases and our European ancestry cohort, 13 independent signals (represented by 15

SNPs) at 11 genome-wide significant loci reported by Chen et al. [14] and Shi et al. [15] were

investigated for association in our meta-analyses of PCOS and PCOS related traits. The
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adjusted P-value for this analysis was <0.00048 (Bonferroni correction [0.05/(13 independent

signals x 8 traits)]).

Biologic function of genes in associated loci

Information on the biological function of the nearest gene (or genes, if variants were equidis-

tant from more than one coding transcript and annotated as such by ANNOVAR [49] to the

index SNP of each identified risk locus) was collected by performing a search of the Entrez

Gene Database [56], and collecting the co-ordinates of the gene (genome build 37; hg19) as

well as the cytogenetic location and the summary of the gene function. In addition to the

EntrezGene Database queries, the gene symbol was used as a search term in the PubMed data-

base [57], either alone or combined with the additional search term “PCOS” to identify rele-

vant published literature in order to obtain information on putative biological function and

involvement in the pathogenesis of PCOS (summarized in 1.1 Note in S1 Data).

Weighted genetic risk score and prediction

One potential use of genetic risk scores is prediction of disease. The ability of genetic risk

scores calculated from loci discovered in analysis of the different diagnostic criteria to discrim-

inate cases from alternative criteria was measured. We constructed a weighted genetic risk

score based on a meta-analysis excluding the Rotterdam Study subjects. The weighted genetic

risk score was divided into quintiles and tested for association with PCOS in the Rotterdam

cohort. The middle quintile was used as the reference and the odds for having PCOS based on

both Rotterdam and NIH criteria was then calculated.

Additionally, the 23andMe results were used to select independent SNPs with cut-offs of

p<5×10−4 to p<5×10−8. The Rotterdam cohort was then used to calculate risk scores and the

area-under-the curve (AUC) for both NIH and Rotterdam diagnostic criteria. Analyses were

performed using PLINK v1.9 and SPSS v21 (IBM Corp, Armonk, NY) [58].

Linkage disequilibrium (LD) score regression

To assess the level of shared etiology between PCOS and related traits, we performed genetic

correlation analysis using LD-score regression [59]. Publicly available genome-wide summary

statistics for body mass index (BMI) [60], childhood obesity [61], fasting insulin levels

(adjusted for BMI) [62], type 2 diabetes [63], high-density lipoprotein (HDL) levels [64], men-

arche timing [65], triglyceride levels [64], coronary artery disease [66], depression [36], meno-

pause [17] and male pattern balding [67] were used to estimate the genome-wide genetic

correlation with PCOS. The adjusted P-value for this analysis was p<0.0045 after a Bonferroni

correction (0.05/11 traits).

Mendelian randomization

Phenotypes of interest, both where there was evidence of shared genetic architecture and

where there was previous evidence for genetic links, were assessed using Mendelian randomi-

zation methods. Mendelian randomization differs from LD score regression in that one phe-

notype is analysed as a potential causal factor for another. Mendelian randomization was

performed using both inverse weighted variance and Egger’s regression methods [68], with

inverse weighted methods being more powerful, but Egger’s methods being resistant to direc-

tional pleiotropy (where there are a set of SNPs that appear to have an alternative pathway of

effect). We report here the results of the IVW methods as none of the analysis suggested that

the MR-EGGERs results were more appropriate given that none of the EGGERs intercepts

PCOS genetics meta-analysis
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were significant (Table 5). In addition to the phenotypes implicated by the LD-score regression

measures, male pattern balding has a strong biological rationale and was therefore included.

The genetic score for childhood obesity substantially overlaps with the score for adult BMI

(such that the INSIDE violation—where the effect of SNPs on a confounding factor scales with

that on the trait of interest—of Mendelian randomization would likely occur [69], so only a

score for BMI was used, with the proviso that this represents BMI across the whole of the life

course after very early infancy. The SNPs for depression were drawn from the results of a more

recent analysis, for which there was not, at time of analysis, publicly available genome-wide

data.

Credible sets

We defined a locus as mapping within 500kb of the lead SNP. For each locus, we first calcu-

lated the posterior probability, πCj, that the jth variant is driving the association, given by:

pcj ¼
Λj

ΣkΛk

where the summation is over all retained variants in the locus. In this expression, Λj is the

approximate Bayes’ factor [70] for the jth variant, given by

Λj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vj þ o

Vj

s

exp �
ob

2 j

2VjðVj þ oÞ

" #

where βj and Vj denote the estimated allelic effect (log-OR) and corresponding variance from

the meta-analysis. The parameter ω denotes the prior variance in allelic effects, taken here to

be 0.04 [70]. The 99% credible set [71] for each signal was then constructed by: (i) ranking all

variants according to their Bayes’ factor, Λj; and (ii) including ranked variants until their

cumulative posterior probability of driving the association attained or exceeded 0.99.
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