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ABSTRACT OF DISSERTATION 
 

THE ROLE OF NRF2 SIGNALLING IN CELL PROLIFERATION AND 

TUMORIGENESIS OF CHROMIUM TRANSFORMED HUMAN BRONCHIAL 

EPITHELIAL CELLS 

Hexavalent Chromium (Cr(VI) induces malignant cell transformation in 

normal bronchial epithelial (BEAS-2B) cells. Cr(VI)-transformed cells exhibit 

increased level of antioxidants, are resistant to apoptosis, and are tumorigenic. 

RNAseq analysis in Cr(VI)-transformed cells showed that expression of 

transcripts associated with mitochondrial oxidative phosphorylation is reduced, 

and the expression of transcripts associated with pentose phosphate pathway, 

glycolysis, and glutaminolysis are increased. Sirtuin-3 (SIRT3) regulates 

mitochondrial adaptive response to stress, such as metabolic reprogramming 

and antioxidant defense mechanisms. SIRT3 was upregulated and it positively 

regulated mitochondrial oxidative phosphorylation in Cr(VI)-transformed cells. 

Our results suggests that SIRT3 plays an important role in mitophagy deficiency 

of Cr(VI)-transformed cells. Furthermore, SIRT3 knockdown suppressed cell 

proliferation and tumorigenesis of Cr(VI)-transformed cells. Nrf2 is a transcription 

factor that regulates oxidative stress response. This study investigated the role of 

Nrf2 in regulating metabolic reprogramming in Cr(VI)-transformed cells. We 

observed that in Cr(VI)-transformed cells p-AMPKthr172 was increased, when 

compared to normal BEAS-2B cells. Additionally, Nrf2 knockdown reduced p-

AMPKthr172. Our results suggest that Nrf2 regulated glycolytic shift via AMPK 

regulation of PFK1/PFK2 pathway. Furthermore, our results showed that Nrf2 

constitutive activation in Cr(VI-transformed cells increased cell proliferation and 

tumorigenesis. Overall this dissertation demonstrated that Cr(VI)-transformed 

cells undergo metabolic reprogramming. We demonstrated that Nrf2 constitutive 

activation plays decisive role on metabolic reprogramming induction, and SIRT3 

activation contributing to increased cancer cell proliferation and tumorigenesis. 

 
KEYWORDS: Metabolic Reprogramming, Hexavalent Chromium, SIRT3, Nrf2, 

AMPK.  
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1 

CHAPTER 1. OXIDATIVE STRESS AND METABOLIC REPROGRAMMING IN CR(VI) 

CARCINOGENESIS 

1.1 Abstract 

Cr(VI)-containing compounds are well-established lung carcinogens. 

Chronic exposure of human bronchial epithelial cells (BEAS-2B) to Cr(VI) is able 

to induce malignant cell transformation, the first stage of metal carcinogenesis. 

These Cr(VI)-transformed cells exhibit increased levels of antioxidants, reduced 

capacity of generating reactive oxygen species (ROS), and increased apoptosis 

resistance, which together promote tumorigenesis of Cr(VI)-transformed cells, 

the second stage of Cr(VI)-carcinogenesis. The mechanism of Cr(VI)-induced 

carcinogenesis is still under investigation. Recent studies indicated that 

increased ROS generation causes malignant cell transformation, the first stage of 

Cr(VI) carcinogenesis. Reduced ROS generation causes development of 

apoptosis resistance of Cr(VI)-transformed cells, the second stage of Cr(VI)-

carcinogenesis. Malignant transformed cells adapt metabolism to support tumor 

initiation and progression. Altered metabolic activities directly participate in the 

process of cell transformation or support a large requirement for nucleotides, 

amino acids, and lipids for tumor growth. In Cr(VI)-transformed cells, 

mitochondrial oxidative phosphorylation is defective, and pentose phosphate 

pathway, glycolysis, and glutaminolysis are upregulated. These metabolic 

reprogramming supports rapid cell proliferation and contributes to tumorigenesis 

of Cr(VI)-transformed cells. This chapter summarizes the current progress in the 

studies of metabolic reprogramming and Cr(VI) carcinogenesis with emphasis on 

the metabolic enzymes and oxidative stress related major oncogenic pathways. 

1.2 Introduction 

When normal cells are converted to malignantly transformed cells and 

progress to cancer, their metabolism is altered. In contrast to the normal 
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differentiated cells which rely mainly on mitochondrial oxidative phosphorylation 

(OXPHOS) for generation of needed energy, cancer cells depend on anaerobic 

glycolysis, a phenomenon called “the Warburg effect” for energy. This altered 

cellular metabolism, also called metabolic reprogramming, is recognized as one 

of the cancer phenotypes. Accumulative evidence reveals that various oncogenic 

pathways are involved in the metabolic regulation. Expression of glucose 

transporters and glycolytic enzymes are increased in numerous cancers and may 

contribute to tumor progression (Majumder et al. 2004; Shackelford et al. 2009). 

It has been reported that oncogenes and tumor suppressor genes, such as 

hypoxia inducible factor 1 (HIF-1) (Stohs et al. 2000), c-Myc (Wang et al. 2011; 

Yao et al. 2008; Ye et al. 1995), p53 (Barchowsky et al. 1999; Liu et al. 2001), 

and PI3K/Akt (Harris and Shi 2003), directly promote metabolism of glucose and 

glutamine.  

Chromate (Cr(VI)) compounds, widely used in industry, have been shown 

to be toxic and carcinogenic on humans (Langard 1990; 1993; Machle and 

Gregorius 1948; Wilbur et al. 2012). Cr(VI) is structurally similar to sulfate and 

phosphate anions; therefore, it readily enters into the cells via non-specific anion 

transporters (Zhitkovich 2011). Once inside the cells, Cr(VI) undergoes a series 

of metabolic reductions and forms intermediate Cr species, including Cr(V) and 

Cr(IV), and is finally reduced to Cr(III) (Zhitkovich 2005; 2011). In the Cr(VI) 

reduction process, reactive oxygen species (ROS) are produced, resulting in 

oxidative DNA damage. The intermediates Cr(V) and Cr(IV) and the final product 

Cr(III) are very reactive, causing Cr-DNA adducts and genomic alterations. 

Epidemiological studies have shown that occupational exposure to Cr(VI) is 

associated with a high rate of lung cancer in workers employed in these 

industries (Langard 1990; 1993; Machle and Gregorius 1948; Wilbur et al. 2012). 

Environmental Cr(VI) exposure is also a public health concern and is associated 

with long-term carcinogenic effects of the lung (Langard 1993; Woodruff et al. 

1998). Though the mechanisms of Cr(VI) carcinogenesis have not yet been fully 

understood, is generally believed that ROS are important in inducing malignant 

cell transformation, the first stage of metal carcinogenesis (Shi and Dalal 1989; 
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Wang et al. 2011; Yao et al. 2008; Ye et al. 1995). ROS can be involved in 

various carcinogenic processes (Shi and Dalal 1989). Recent studies from our 

laboratory has shown that once cells are malignantly transformed, the capacity of 

those transformed cells to generate ROS is sharply reduced, leading to the 

development of apoptosis resistant and subsequent tumorigenesis (Zhang et al. 

2015b). Thus, the decreased ROS generation in Cr(VI)-transformed cells is 

oncogenic in promoting tumorigenesis, the second stage of metal 

carcinogenesis. The oncogenic role of ROS in the first stage of Cr(VI) 

carcinogenesis (malignant cell transformation) and anti-oncogenic role in the 

second stage (tumorigenesis) reflects the metabolic reprogramming during the 

change from normal cells to malignantly transformed cells. Although this 

reprogramming may play an important role in the mechanism of metal 

carcinogenesis in general and Cr(VI) carcinogenesis in particular, its underlying 

mechanism remains to be investigated. This chapter provides an outline on 

progress and future perspectives in oxidative stress and metabolic 

reprogramming in Cr(VI) carcinogenesis. 

1.3 Glycolysis  

Glucose homeostasis is controlled by glycolysis/oxidative phosphorylation 

(OXPHOS) and gluconeogenesis pathway. Glycolysis is the enzymatic 

conversion of glucose into lactate, which produces 2 ATP per glucose molecule. 

In the presence of oxygen, normal cells primarily adopt mitochondrial OXPHOS 

to produce 36 ATP per glucose molecule. Cancer cells favor aerobic glycolysis 

over OXPHOS to meet their energy demand, suggesting that cancer cells are 

adapted to survive and proliferate in the absence of mitochondrial ATP 

production. The mitochondria play a major role in supplying energy and 

regulating ROS. Although various mechanisms of carcinogenesis induced by 

Cr(VI) have been demonstrated, it is generally believed that Cr(VI)-induced 

oxidative stress is important in converting normal cells to malignantly transformed 

cells. It has been reported that Cr(VI) suppressed all five mitochondrial 

complexes involved in OXPHOS in a variety of model systems with more potency 
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of complexes I, II, and V than complexes III and IV. Our study showed that in 

Cr(VI)-transformed cells, mitochondrial ATP production was reduced and non-

mitochondrial oxygen consumption was increased, indicating a defect in 

mitochondrial ATP production (Dai et al. 2017). The results from RNA 

sequencing analysis showed in Cr(VI)-transformed cells compared to passage 

matched cells, the levels of various enzymes involved in all five complexes was 

reduced (Table 2), demonstrating that Cr(VI)-transformed cells are defective in 

mitochondrial ATP generation.  

Aerobic glycolysis, maximizing ATP production, does not require an 

increase in mitochondrial capacity (Fan et al. 2013). Cr(VI)-transformed cells 

generated more lactate without significant changes in glucose uptake and ATP 

production, indicating a switch from mitochondrial respiration to glycolysis (Dai et 

al. 2017). The results from Table 1 show that several glycolysis enzymes 

including ADP-specific glucokinase (ADPGK), enolase 1 (ENO1), hexokinase 

(HK2), phosphoglycerate kinase (PGK1), dihydrolipoamide S-acetyltransferase 

(DLAT), pyruvate dehydrogenase E1 (PDHA1), glucose-6-phosphatase 3 

(G6PC3), pyruvate kinase (PKM), aldolase A (ALDOA), phosphofructokinase 

(PFKM) were upregulated in Cr(VI)-transformed cells, indicating that Cr(VI)-

transformed cells utilize glycolysis for energy for survival under defective 

mitochondrial function. It should be noted that many metabolic enzymes are 

regulated through allostery and/or post-translation. For example, pyruvate 

dehydrogenase, a complex with multiple subunits and cofactors, whose activity is 

regulated by phosphorylation/dephosphorylation. Thus characterization of 

metabolic flux together with transcriptomics is a more appropriate way to 

evaluate the metabolic changes upon Cr(VI) exposure. Cancer stem cells (CSCs) 

or cancer-initiating cells, a small subset of malignant cells that exhibit high 

capacity of self-renewal and differentiation, have been reported to utilize aerobic 

glycolysis for biosynthesis and energy requirement (Dong et al. 2013). About 1% 

of Cr(VI)-transformed cells have been identified as CSCs and these CSCs are 

metabolically inactive as evidenced by dramatic reductions of glucose uptake, 

lactate production, and ATP content (Dai et al. 2017). These small population of 
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CSCs may be the driving force for the increased glycolysis of Cr(VI)-transformed 

cells. 

Energy metabolism is a balanced mechanism controlled by catabolic 

(glycolysis and oxidative phosphorylation) and anabolic (gluconeogenesis) 

reactions. Fructose-1, 6-bisphosphatase (FBP1), a rate limiting enzyme in 

gluconeogenesis, catalyzes the hydrolysis of fructose-1, 6-bisphosphate to 

fructose 6-phosphate and inorganic phosphate. It has been reported that loss of 

FBP1 is correlated with advanced stage and poor prognosis of cancer (Chen et 

al. 2011; Zhang et al. 2016a). Inhibition of FBP1 increased glucose uptake and 

lactate secretion in HK-2 human renal cells and in consistent, forced expression 

of FBP1 reduced glucose uptake, lactate secretion, and glucose-derived TCA 

cycle intermediates in renal carcinoma RCC10 cells (Li et al. 2014). In CSCs low 

level of FBP1 is beneficial due to (a) induction of glycolysis and increased 

glucose uptake, facilitating the production of glycolysis intermediates and the 

energy supply during hypoxia and (b) inhibition of ROS generation induced by 

mitochondrial complex 1, protecting cells from oxidative stress (Dong et al. 

2017). In Cr(VI)-transformed cells FBP1 level is low compared to that in passage-

matched normal cells and FBP1 is lost in CSCs (Dai et al. 2017). Ectopic 

expression of FBP1 in CSCs reduced glucose uptake, lactate production, and 

glycolysis (Dai et al. 2017), indicating that FBP1 plays an important role in 

glucose metabolism. 

HIF-1α is important in angiogenesis and in cancer development (Dong et al. 

2017; Maxwell et al. 1997; Ryan et al. 1998; Vaupel 2004). Its level is elevated in 

more than half of human cancers and their metastases (Birner et al. 2000; 

Blancher et al. 2000; Giatromanolaki et al. 2001; Huss et al. 2001; Kallio et al. 

1999; Zhong et al. 1999). The occurrence of Warburg effect indicates the 

activation of oncogenic signaling, such as hypoxia inducible factor (HIF)-1α, 

resulting in promotion of glucose uptake and anabolic metabolism (Fan et al. 

2013). This transcription factor upregulates many glycolytic enzymes, in which 

their gene promoters contain consensus binding motif 5’-(C/G/T)ACGTGC(G/T)-
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3’ of HIF-1α. HIF-1α protein is rapidly degraded at normoxia via pVHL-mediated 

ubiquitin-proteasome pathway, whereas hypoxia blocks degradation of HIF-1α 

protein, leading to its accumulation (Huang et al. 1996). Stabilization of HIF-1α 

modulates metabolic adaptation to low molecular oxygen levels through increase 

of cellular glycolysis (Bertout et al. 2008). HIF-1α upregulates glucose 

transporters and glycolytic enzymes (Semenza 2010). HIF1α also upregulates 

pyruvate dehydrogenase kinases (PDKs), the enzymes control entry of glucose-

derived pyruvate into tricarboxylic acid (TCA) cycle (Kim et al. 2006; Papandreou 

et al. 2006). HIF-1α was activated in Cr(VI)-repeatedly exposed cells (Kim et al. 

2016) or in Cr(VI)-transformed cells (Kaczmarek et al. 2007). HIF-1α is able to 

bind to five glycolytic enzymes including phosphofructokinase (PFK), aldolase 

(ALDA), phosphoglycerate kinase 1 (PGK1), enolase 1 (ENO1), pyruvate kinase 

(PKM), and lactate dehydrogenase (LDHA) (Dang et al. 2008). The results from 

Table 1 show that these five enzymes were upregulated in Cr(VI)-transformed 

cells. It is very likely that HIF-1α directly binds to the promoters of these glycolytic 

enzymes. FBP1 binds to HIF-1α inhibitory domain, blocking its induction of 

glycolysis (Li et al. 2014). Thus, reduced FBP1 level in Cr(VI)-transformed cells 

may induce glycolysis through decreased binding to HIF1α.  

Phosphorylation on metabolic enzymes also contributes to aerobic 

glycolysis (Bensinger and Christofk 2012). PI3K/Akt phosphorylates hexokinase 

and PFK-2 (Elstrom et al. 2004) and promotes GLUT expression and plasma 

membrane localization (Robey and Hay 2009), suggesting that activation of 

PI3K/Akt pathway promotes the Warburg effect by stimulating glucose uptake 

and further catabolism by glycolysis. It has been demonstrated that PI3K/Akt/p38 

MAPK is responsible for HIF-1α activation in Cr(VI)-transformed cells (Kim et al. 

2016), indicating involvement of PI3K/Akt/p38 in the upregulation of glycolysis of 

Cr(VI)-transformed cells.  
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1.4 Pentose phosphate pathway (PPP)  

Pentose phosphate pathway (PPP), a classic metabolic pathway, consists 

of oxidative and non-oxidative branches. The oxidative PPP converts glucose-6-

phosphate (G6P), a glycolytic intermediate, into ribulose-5-phosphate and 

generates NADPH, which is used for glutathione production, detoxification, and 

biosynthesis of lipids. The non-oxidative branch involves reversible carbon-

exchanging reactions with the final products as fructose-6-phosphate and 

glyceraldehyde-3-phosphate, which participate in glycolysis and downstream 

metabolic pathways (Riganti et al. 2012). PPP is upregulated in many types of 

tumors (Deberardinis et al. 2008; Riganti et al. 2012). The activities of glucose-6-

phosphate dehydrogenase (G6PD) and transketolase (TKT), key PPP enzymes, 

were increased in cancer cells (Hartmannsberger et al. 2011; Jonas et al. 1992). 

An early study indicated that short-term exposure of human erythrocytes to 

Cr(VI) did not exhibit effect on any of the three PPP enzymes, glucose-6-

phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase 

(PGD), or transsketolase (TKT) (Koutras et al. 1964). Our transcriptomic analysis 

show that in Cr(VI)-transformed cells expressions of several PPP enzymes 

including phosphorybosyl pyrophosphate synthase 1 & 2 (PRPS1/2), G6PD, 

ribulose 5-phosphate 3-epimerase (RPE), transaldolase (TALDO1), PGD, ribose 

5-phosphate isomerase (RPIA), aldolase A (ALDOA), and TKT were elevated 

compared to passage-matched normal cells (Table 1). 

Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a key transcription factor 

that regulates antioxidant proteins to neutralize ROS and to restore cellular redox 

balance (Chan et al. 2001; Kobayashi and Yamamoto 2006). This transcription 

factor plays dual roles in carcinogenesis. Activation of inducible Nrf2 decreases 

malignant cell transformation carcinogenesis via decrease of oxidative stress 

(Hayes et al. 2010; Hu et al. 2010; Sporn and Liby 2012). Conversely, 

constitutively activated Nrf2 exerts oncogenic effects by protecting cancer cells 

from oxidative stress and chemotherapeutics (Kansanen et al. 2013b; Wang et 

al. 2008). Constitutive activation of Nrf2 has been identified in several types of 
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human cancer cell lines and tumors (Lau et al. 2013; Ohta et al. 2008; Sporn and 

Liby 2012; Tong et al. 2006). Cancers with high Nrf2 level are associated with 

poor prognosis (Shibata et al. 2008; Solis et al. 2010), resistance to therapeutics, 

and rapid proliferation (Singh et al. 2008; Zhang et al. 2010). In addition to its role 

in regulation of oxidative stress, Nrf2 is also involved in the anabolic metabolism 

(Mitsuishi et al. 2012; Singh et al. 2008). Nrf2 directly activates six genes 

involved in the PPP and nicotinamide adenine dinucleotide phosphate (NADPH) 

production pathway, including G6PD, PGD, TKT, TALDO1, and malicenzyme1 

(ME1), through binding of Nrf2 to antioxidant response elements (AREs) of these 

gene promoters (Mitsuishi et al. 2012). Using [U-13C6] tracer assay, it has been 

demonstrated that Nrf2 is required for purine nucleotide synthesis (Mitsuishi et al. 

2012). During metabolic reprogramming Nrf2 redirects glucose and glutamine 

into anabolic pathways, protecting cancer cells from oxidative damage (Mitsuishi 

et al. 2012). Activation of Nrf2 increases glucose uptake through the PPP, 

subsequently producing NADPH (Hawkins et al. 2016; Heiss et al. 2013; 

Mitsuishi et al. 2012). Our studies have showed that Nrf2 is constitutively 

activated in Cr(VI)-transformed cells and inhibition of Nrf2 suppresses 

tumorigenesis of Cr(VI)-transformed cells . Whether Nrf2 regulates PPP remains 

to be investigated in Cr(VI)-transformed cells, our preliminary results indicate that 

Nrf2 positively regulates G6PD, PGD, TKT, and TALDO1, resulting in 

upregulation of PPP. 

1.5 Glutaminolysis  

Along with increased aerobic glycolysis, increased glutaminolysis is 

recognized as a key feature of the metabolic profile of cancer cells (Daye and 

Wellen 2012). In addition to glycolysis, many tumors also depend on 

glutaminolysis to fuel their cellular bioenergetics and metabolism. Glutaminolysis 

catabolizes glutamine to downstream metabolites such as glutamate and α-

ketoglutarate, important intermediates to fuel TCA cycle of tumors. Similar to 

glycolysis, glutaminolysis supplies cancer cells with both ATP and crucial 

precursors for continuous biosynthesis and accelerated proliferation (Dang 2010; 
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DeBerardinis and Cheng 2010). Table 1 shows that levels of three glutaminolytic 

enzymes including glutaminase (GLS), aspartate aminotransferase 2 (GOT2), 

and glutamine fructose-6-phosphate transaminase 1 (GFPT1) were elevated in 

Cr(VI)-transformed cells, suggesting upregulation of glutaminolysis. 

Nrf2 increases glutamine consumption through enhancing glutaminolysis 

and glutathione synthesis. Nrf2 indirectly activates transcription factor 4 (ATF4), 

which regulates serine/glycine biosynthesis enzymes, supplying the substrates 

for glutathione and nucleotide production (DeNicola et al. 2015). Nrf2 promotes 

glutathione synthesis from glutamine (Mitsuishi et al. 2012). Nrf2 induces 

glutamate cysteine ligase (GCL), a key enzyme for glutathione synthesis, by 

directly activating the GCL encoding genes (Sekhar et al. 2003). Nrf2 also 

increases the supply of cysteine by direct activation of the gene encoding 

cysteine transporter SLC7A11 (Sasaki et al. 2002). Nrf2 is constitutively activated 

in Cr(VI)-transformed cells, the mechanism of Nrf2 in regulation of glutaminolysis 

in Cr(VI)-transformed cells has not yet been reported. In consideration the 

findings from Table 1, it is very possible that Nrf2 targets GLS, which metabolizes 

glutamine to glutamate, providing a key nitrogen donor and carbon supply for the 

TCA cycle of Cr(VI)-transformed cells. 

1.6 Conclusions 

Metabolic reprogramming, a major hallmark of cancer, is characterized by 

upregulations of glycolysis, glutaminolysis, lipid metabolism and pentose 

phosphate pathway. The metabolic program provides energy and metabolites to 

support rapid growth and proliferation of cancer cells. Chronic exposure of the 

cells to Cr(VI) causes malignant transformation. Similar to other cancer cells, 

these Cr(VI)-transformed cells have increased need for nutrients, energy, and 

biosynthetic activities to produce all macromolecular components during each 

passage through cell cycle. Cr(VI)-induced tumorigenesis is a chronic process. 

Among all studies related to bioenergetic phenotype induced by Cr(VI), most of 

studies focused on the short-term exposure, only a few studies investigated the 
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metabolic activities after long-term exposure to Cr(VI). For several decades, 

there has been a concentrated effort to identify the mechanisms of Cr(VI) 

carcinogenesis. However, little has been done to determine how changes of 

genes involved in glucose and glutamine metabolism contribute to Cr(VI) 

carcinogenesis. Cr(VI) exposure interferes with metabolic transduction pathways 

through different levels, including gene expression, intracellular protein levels, 

and protein function. We speculate that oxidative stress plays an important role in 

these processes. Chronic exposure of the cells to Cr(VI) causes ROS generation, 

leading to malignant cell transformation. Cr(VI)-transformed cells exhibit reduced 

capacity to generate ROS and elevated levels of antioxidant enzymes, leading to 

development of apoptosis resistance. In Cr(VI)-transformed cells, constitutive 

activation of Nrf2 enhances the PPP and NADPH generation, promoting cell 

proliferation. A representative scheme of possible mechanisms of metabolic 

reprogramming in Cr(VI) carcinogenesis is summarized in Figure 1.  
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Table 1.1 Relative level of metabolic enzymes in Cr(VI)-transformed cells 

and passage matched normal cells 

 

Gene Symbol Target pathway BEAS-2B BEAS-2B-Cr(VI) 

ADPGK Glycolysis 0.4 ± 0.5 6.7 ± 3.2 * 

ALDOA Glycolysis/PPP 6.8 ± 4.3 254.9 ± 57.0 * 

DLAT Glycolysis 14.7 ± 1.0 21.6 ± 2.6 * 

ENO1 Glycolysis 1.5 ± 0.6 71.6 ± 0.9 * 

G6PC3 Glycolysis 50.7 ± 3.4  97.3 ± 14.9 * 

GPI Glycolysis 19.1 ± 4.0  73.8 ± 8.9 * 

HK2 Glycolysis 21.2 ± 3.8 32.1 ± 2.8 * 

PDHA1 Glycolysis 48.9 ± 4.5  158.5 ± 11.7 * 

PFKM Glycolysis 29.5 ± 4.7 83.9 ± 3.6 * 

PGK1 Glycolysis 107.5 ± 36.4 221.7 ± 68.5 

PKM Glycolysis 112.5 ± 70.6 261 ± 73.9 

G6PD PPP 29.2 ± 5.3 142.3 ± 50.2 * 

PGD PPP 6.8 ± 3.1 31.4 ± 5.9 * 

PRPS1 PPP 59.4 ± 1.9 135.2 ± 8.1 * 

PRPS2 PPP 27.2 ± 0.1 53.6 ± 5.9 * 

RPE PPP 28.1 ± 1.7 39.0 ± 4.7 * 

RPIA PPP 20.1 ± 2.5 324.3 ± 85.5 * 

TALDO1 PPP 28.8 ± 6.6 55.8 ± 7.7  * 

TKT PPP 151.9 ± 32.4 324.3 ± 85.5 * 

GFPT1 Glutaminolysis 14.4 ± 1.4 26.8 ± 6.7 * 

GLS Glutaminolysis 19.3 ± 3.7 30.3 ± 10.4 * 

 

Table 1.1 Relative level of metabolic enzymes involved in glycolysis, PPP, and 

glutaminolysis. Normal BEAS-2B cells (BEAS-2B) and Cr(VI)-transformed cells (BEAS-
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2B-Cr) were subjected for extraction and purification of RNA using RNAeasy mini kit. 

Whole transcriptome sequencing analysis was performed using HiSeq 2500 Rapid Run. 

Differentially expressed genes involved in glycolysis, PPP, and glutaminolysis were 

detected using EBseq. A false detection rate analysis with 0.05 threshold was performed 

and considered as biostatistics difference (*, p < 0.05). Data represent mean ± SD (n=3). 
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Table 1.2 Relative level of enzymes involved in oxidative phosphorylation 

in Cr(VI)-transformed cells and passage-matched normal cells 

 

Gene Symbol Mitochondrial complex BEAS-2B BEAS-2B-Cr(VI) 

NDUFA13 Complex I 58.1 ± 5.1 34.9 ± 12.2 * 

NDUFA11 Complex I 10.0 ± 0.2 6.4 ± 1.0 * 

NDUFC2 Complex I 154.6 ± 8.8 81.3 ± 23.5 * 

NDUFS8 Complex I 182.5 ± 2.0 99.2 ± 26.7 * 

NDUFS7 Complex I 71.7 ± 3.1 46.4 ± 13.4 * 

NDUFS5 Complex I 544.2 ± 63.1 271.8 ± 21.4 * 

NDUFB7 Complex I 254.3 ± 16.4 153.6 ± 29.6 * 

NDUFV1 Complex I 12.5 ± 3.2 5.8 ± 1.2 * 

NDUFA6 Complex I 105.5 ± 2.8 0.5 ± 0.8 * 

NDUFA2 Complex I 152.4 ± 21.6 72.6 ± 20.1 * 

SDHA Complex II 246.5 ± 37.5 105.6 ± 20.1 * 

UQCRC1 Complex III 108.1 ± 6.8 84.5 ± 18.0 

UQCR11 Complex III 160.3 ± 15.1 101.5 ± 4.1 * 

UQCR10 Complex III 103.6 ± 9.3 61.4 ± 9.1 * 

UQCRH Complex III 42.0 ± 3.1 26.0 ± 2.1 * 

COX4I1 Complex IV 8.3 ± 1.2 3.4 ± 1.3 * 

COX6A1 Complex IV 1.4 ± 0.5 0.7 ± 0.1 * 

COX6B1 Complex IV 4.7 ± 1.1 1.8 ± 0.7 * 

ATP5H Complex V 631.8 ± 32.6 362.8 ± 11.1 * 

ATP5L Complex V 119.5 ± 9.5 87.3 ± 19.9 * 

ATP5C1 Complex V 76.2 ± 15.7 1.6 ± 0.6 * 

 

Table 1.2 Relative level of enzymes involved in mitochondrial oxidative 

phosphorylation. The method used is the same as that in Table 1. Genes involved in 

mitochondrial oxidative phosphorylation were detected using EBseq. A false detection 
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rate analysis with 0.05 threshold was performed and considered as biostatistics 

difference (*, p < 0.05). Data represent mean ± SD (n=3).  
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Figure 1.1 Representative scheme of metabolic reprogramming in Cr(VI) 

carcinogenesis. Chronic exposure of cells to Cr(VI) causes ROS generation which is 

responsible for malignant cell transformation. Once the cells are malignant transformed, 

those cells exhibit activated PI3K/Akt, reduced ROS generation, elevated antioxidant 

expressions and HIF-1α, resulting in reduction of mitochondrial oxidative 

phosphorylation and upregulations of pentose phosphate pathway, glycolysis and 

glutaminolysis, leading to tumorigenesis. 
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CHAPTER 2. CONSTITUTIVE ACTIVATION OF NAD-DEPENDENT SIRTUIN 3 PLAYS AN 

IMPORTANT ROLE IN TUMORIGENESIS OF CHROMIUM(VI)-TRANSFORMED CELLS 

2.1 Abstract 

Chronic exposure of human bronchial epithelial BEAS-2B cells to 

hexavalent chromium (Cr(VI)) causes malignant cell transformation. NAD-

dependent Sirtuin-3 (SIRT3) regulates mitochondrial adaptive response to stress, 

such as metabolic reprogramming and antioxidant defense mechanisms. In 

Cr(VI)-transformed cells, SIRT3 was upregulated and mitochondrial ATP 

production and proton leak were reduced. Inhibition of SIRT3 by its shRNA 

further decreased mitochondrial ATP production, proton leak and mitochondrial 

mass and induced mitochondrial membrane depolarization, indicating that SIRT3 

positively regulates mitochondrial oxidative phosphorylation and maintenance of 

mitochondrial integrity. Mitophagy is critical to maintain proper cellular functions. 

In Cr(VI)-transformed cells expressions of Pink 1 and Parkin, two mitophagy 

proteins, were elevated, mitophagy remained similar as that in passage-matched 

normal BEAS-2B cells, indicating that Cr(VI)-transformed cells are mitophagy 

deficient. Knockdown of SIRT3 induced mitophagy, suggesting that SIRT3 plays 

an important role in mitophagy deficiency of Cr(VI)-transformed cells. In Cr(VI)-

transformed cells, nuclear factor-(erythroid-derived 2)-like 2 (Nrf2) was 

constitutively activated, and protein levels of p62 and p-p62Ser349 were elevated. 

Inhibition of SIRT3 or treatment with carbonyl cyanide m-chloro phenyl hydrazine 

(cccp) decreased the binding of p-p62Ser349 to Keap1, resulting in increased 

binding of Keap1 to Nrf2 and consequently reduced Nrf2 activation. The results 

from CHIP assay showed that in Cr(VI)-transformed cells binding of Nrf2 to 

antioxidant response element (ARE) of SIRT3 gene promoter was dramatically 

increased. Inhibition of SIRT3 suppressed cell proliferation and tumorigenesis of 

Cr(VI)-transformed cells. Forced expression of SIRT3 in normal BEAS-2B cells 

exhibited mitophagy deficient phenotype and increases in cell proliferation and 

tumorigenesis. The present study demonstrated that upregulation of SIRT3 
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causes mitophagy deficiency, playing an important role in cell survival and 

tumorigenesis of Cr(VI)-transformed cells. 
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2.2 Introduction  

Hexavalent chromium (Cr(VI)) has been classified as Group 1 human 

carcinogen by the International Agency for Research in Cancer (IARC). 

Environmental exposure to Cr(VI) has increased in the past decades due to 

usage of this metal in industry, agriculture, and technology endeavors (He et al. 

2005; Shallari et al. 1998; Tchounwou et al. 2012). Our previous study showed 

that chronic exposure of bronchial epithelial (BEAS-2B) cells to Cr(VI) caused 

malignant cell transformation (Kim et al. 2015a). These transformed cells 

exhibited reduced capacity of generating ROS, development of apoptosis 

resistance, and increased angiogenesis, leading to cell survival and 

tumorigenesis (Kim et al. 2015a; Kim et al. 2016; Pratheeshkumar et al. 2016; 

Wang et al. 2011). 

Mitochondria regulate energy homeostasis and cell death. Mitophagy, a 

selective form of autophagy for elimination of damaged mitochondria, is essential 

for the reduction of insufficient supply of ATP and excessive production of ROS. 

Defective mitophagy contributes to various diseases, including cancer 

(Bernardini et al. 2017; Chourasia et al. 2015; Kulikov et al. 2017). Mitophagy is 

regulated by two key mediators, the E3 ubiquitin ligase (Parkin, encoded by 

Park2 gene) and the Pten-induced putative kinase 1 (Pink1) (Durcan and Fon 

2015; Eiyama and Okamoto 2015; Wei et al. 2015). Depolarization of 

mitochondrial membrane potential (MMP) causes translocation of Pink1 to the 

outer membrane, where it phosphorylates Parkin. Phosphorylated Parkin then 

ubiquitinates outer mitochondrial membrane proteins, targeting the organelle to 

undergo lysosomal autophagical degradation (Wei et al. 2015).  

SIRT3, a major mitochondrial deacetylation enzyme, regulates metabolic 

homeostasis via mitochondria protein deacetylation (Finley and Haigis 2012; 

Giralt and Villarroya 2012). It was reported that SIRT3-deficient mice are below 

basal metabolic condition concomitant with increased mitochondrial hyper-

acetylation (Lombard et al. 2007). SIRT3 was found to be associated with 
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antioxidant response (Bell and Guarente 2011; Park et al. 2011), regulation of 

oxidative metabolism, glycolytic pathway (Finley and Haigis 2012), and 

suppression of mitophagy (Liang et al. 2013; Pi et al. 2015).  

In cancer cells energy production relies on glycolysis, instead of 

mitochondria oxidative phosphorylation. It has been reported that mitochondrial 

function is essential for the production of key biosynthetic intermediates instead 

of ATP, directly contributing to cancer cell survival and tumorigenesis (Finley and 

Haigis 2012). This study investigated the role of SIRT3 in suppressing 

mitophagy, contributing to cell survival and tumorigenesis of Cr(VI)-transformed 

cells. 
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2.3 Material and Methods  

2.3.1 Chemicals and reagents 

Sodium dichromate dehydrate (Na2Cr2O7) and carbonyl cyanide m-chloro 

phenyl hydrazine (cccp) were obtained from Sigma (St Louis, MO). Dulbecco’s 

modified Eagle’s medium (DMEM), fetal bovine serum (FBS), and pen-strep-

glutamine solution were obtained from Gibco (Grand Island, NY). shRNAs and 

overexpressing vectors of SIRT3 and Nrf2 and primers for Real Time PCR were 

obtained from Origene (Rockville, MD). mKeima-Red-Mito-7 plasmid and PCD 

FL0X luciferase reporter were from Addgene. RNAeasy mini kit and plasmid prep 

kit were obtained from Qiagen (Valencia, CA). M-MLV reverse transcriptase and 

luciferase assay reagents were obtained from Promega (Madison, WI). 

AccuPrime TaqDNA polymerase high fidelity, antibodies against Alexa Fluor 488 

goat anti-mouse IgG1 and Alexa Fluor 649 goat anti-rabbit IgG1, Lipofectamine 

2000, and 10-N-Acridine Orange (NAO) were from Invitrogen (Carlsbad, CA). iQ 

SyBr green supermix was obtained from Bio-Rad (Hercules, CA). Antibodies 

against SIRT3, p62, p-p62Ser349, Parkin, Pink1, and cytochrome c were obtained 

from Cell Signaling (Danvers, MA). Antibodies against Nrf2, GAPDH, and Keap-1 

were obtained from Santa Cruz Biotechnology (Dallas, TX). Mitochondrial 

isolation kit and Pierce agarose chip kit were obtained from Thermo Scientific 

(Waltham, MA). JC-1 mitochondrial membrane potential assay kit was obtained 

from Cayman Chemical Company (Ann Arbor, MI). Matrigel was obtained from 

BD Biosciences (San Jose, CA). Chemiluminescence reagent was obtained from 

Amershan Biosciences ( Little Chalfont, United Kingdom).  

2.3.2 Cell culture and generation of Cr(VI)-transformed cells 

Human bronchial epithelial cells (BEAS-2B) were purchased from the 

American Type Culture Collection (Rockville, MD). Malignantly transformed cells 

induced by chronic exposure to Cr(VI) were generated as previously described 
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(Kim et al. 2015a). Passage-matched BEAS-2B and Cr(VI)-transformed cells 

were maintained in DMEM supplemented with 10% FBS and 1% pen-strep-

glutamine solution at 37 ˚C and 5% CO2.  

2.3.3 Detection of mitochondria ATP production and proton leak 

Cells were seeded in 96-well plates for overnight. Mitochondrial ATP 

production and proton leak were detected using Seahorse FX mitochondria 

stress test. 

2.3.4 Immunoblotting assay 

 Cells were harvested, and pellets were lysed in RIPA buffer. Protein 

concentration was measured using Bradford assay. 30 µg of protein was 

separated by SDS-PAGE and incubated with primary and secondary antibodies. 

Chemiluminescence reagent was used to detect protein levels.  

2.3.5 Plasmid transfection and establishment of stable knockdown or 

expressing cells 

Transfection was performed using Lipofectamine 2000 as described by 

the manufacturer’s protocol. Briefly, 1.5 x 106 cells were seeded and grown 

overnight.  The cells were transfected with 4 µg of plasmid and selected using 

DMEM medium containing 2 µg/ml of puromycin for two months. Expression 

levels of those proteins were detected using immunoblotting analysis. 

2.3.6  Real Time PCR 

 RNeasy mini kit was used to extract and to purify RNA from cultured cells. 

0.5 µg of purified RNA was reversed transcribed using qScript cDNA synthesis 

kit. Following primers were used: SIRT3, 5’-ACCCAGTGGCATTCCAGAC-3’ and 

5’-GGCTTGGGGTTGTGAAAGAA-3’; NQO1, 5’-TGGAAGTCGTCCCAAGAGA-3’ 

and 5’-TGTCTCCCCAGGACTCTCTCAG-3’; and GAPDH, 5’-
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GAGTCAACGGATTTGGTCGT-3’ and 5’-GACAAGCTTCCCGTTCTCAG-3’. 

qPCR was performed using Sybr Green mixture in CFX96 Real-time PCR 

Detection System (Bio-Rad) and data was analyzed using CFX manager 

software (Bio-Rad).  

2.3.7 Mitochondrial isolation 

 Passage-matched normal BEAS-2B cells and Cr(VI)-transformed cells 

were grown in cell culture medium. Mitochondrial and cytosolic isolation was 

performed using the mitochondrial isolation kit following the manufacturers 

protocol. Mitochondria lysis was performed using 2% CHAPS in tris-buffered 

saline. 30 µg of protein from cytosolic and mitochondrial fraction were used for 

immunoblotting analysis. 

2.3.8 Detection of mitochondria membrane potential 

 Mitochondria membrane potential was detected using JC-1 mitochondrial 

membrane potential assay kit as described by the manufacturer’s protocol. 

Briefly, 104 cells were seeded overnight in CO2 in incubator. The cells were 

treated with 5 µM of cccp for 4 h. J-aggregates fluorescent intensity was 

measured using Gemini XPS fluorescence microplate spectrophotometer 

(Molecular Devices).  

2.3.9 Mitochondria mass analysis 

 Mitochondria mass was measured by staining the cells with 5 µM of 10-N-

Acridine Orange (NAO) for 10 min. NAO is a fluorescent probe that stains 

mitochondria independently of its energetic state (Ferlini and Scambia 2007; Lee 

et al. 2000; Maftah et al. 1989). Cells were seeded for overnight and treated with 

5 µM of cccp for 4 h followed by incubation with 5 µM of NAO for 10 min. NAO 

fluorescence intensity was measured using Gemini XPS fluorescence microplate 

spectrophotometer (Molecular Devices).  
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2.3.10 Mito-keima mitophagy assay 

 Mito-keima-Red-Mito-7 plasmid was transfected to the cells as described 

in previous section. Cells were seeded overnight. Lysosomal mKeima 

fluorescence intensity was measured using dual-excitation radiometric pH 

measurements at 488 nm (pH 7) and 561 nm (pH 4) lasers with emission filters 

set for 620 nm and 614 nm, respectively (Lazarou et al. 2015), using Gemini XPS 

fluorescence microplate spectrophotometer (Molecular Devices).  

2.3.11 Immunoprecipitation analysis  

 Cell lysates were incubated with pre-cleaned beads and centrifuged. 

Supernatants were collected and incubated with 5 µg of primary antibody for 

overnight. After incubation with pre-cleaned beads, the samples were washed 

with PBS and centrifuged followed by adding Laemmli sample buffer. The 

samples were centrifuged, and supernatant was collected for immunoblotting 

analysis.  

2.3.12 Fluorescence immunocytochemistry analysis 

 Cells were seeded on the chamber slides for overnight, washed with PBS, 

and fixed with 4% formaldehyde followed by incubation with 1% Triton-X100. The 

cells were then incubated with 10% horse serum. Primary antibodies were added 

and incubated for overnight followed by incubation with secondary antibodies. 

The slides were mounted with Vectashield mounting medium and visualized 

using Olympus BX53 fluorescence microscope (Center Valley, PA). Relative 

colocalization was measured using CellSens Dimension software (Olympus 

corporation).  
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2.3.13 Chromatin immunoprecipitation (ChIP) assay 

ChIP assay was performed using PierceTM agarose chip kit. DNA and 

protein were cross-linked using 1% formaldehyde. The cells were lysed and 

nuclei was digested with micrococcal nuclease. Chromatin was diluted and 

immunoprecipitated with 2 µg of Nrf2 antibody or IgG antibody. DNA-protein 

complexes were eluted from the protein A/G-agarose beads. Binding of Nrf2 to 

ARE of SIRT3 promoter was analyzed by Real Time PCR. Amplified DNA were 

separated on 2% agarose gel with Gel Red® followed by band visualization under 

ultraviolet transillumination. 

2.3.14 Luciferase assay 

 Cells were transfected with 4 μg of SIRT3 luciferase reporter for 48 h. 

Luciferase activities were measured using Glomax luminometer (Promega). Data 

were normalized to total cell count. 

2.3.15 Tumorigenesis assay 

 Female athymic nude mice (6-8 weeks old) were purchased from The 

Jackson Laboratories (Bar Harbor, ME) and housed in sterilized filter-topped 

cages in a pathogen free animal facility at the Chandler Medical Center, 

University of Kentucky. Animals were handled according to the Institutional 

Animal Care and Use Committee (IACUC) guidelines. Cells in 100 µL mixture of 

DMEM and Matrigel (BD Biosciences) were subcutaneously (s.c.) injected on the 

flank of each mouse. After 3 weeks, mice were euthanized using CO2 and the 

tumors were isolated. Tumor weight was measured, and volume was calculated 

using the formula: (length x width2)/2.  
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2.4 Results 

2.4.1 SIRT3 positively regulates mitochondrial oxidative phosphorylation 

pathway in Cr(VI)-transformed cells  

In Cr(VI)-transformed cells both protein and mRNA levels of SIRT3 were 

elevated (Figures 2.1A and 2.1B). Our recent study using RNA sequencing 

transcriptome analysis demonstrated that all five mitochondrial oxidative 

phosphorylation complexes were reduced in Cr(VI)-transformed cells compared 

to passage-matched normal BEAS-2B cells (Clementino et al. 2018). These 

results are consistent with the results from mitochondrial stress test confirming 

that mitochondrial ATP production and proton leak were reduced in Cr(VI)-

transformed cells (Figures 2.1C and 2.1D). These results suggest that 

mitochondrial ATP production is inhibited and mitochondrial oxidative 

phosphorylation pathway is defective in Cr(VI)-transformed cells. To investigate 

whether SIRT3 is involved in reduced mitochondrial ATP production in Cr(VI)-

transformed cells, SIRT3 was inhibited using its shRNA (Figure 2.1E). The 

results showed that depletion of SIRT3 decreased both mitochondrial ATP 

production and proton leak in Cr(VI)-transformed cells (Figures 2.1F and 2.1G), 

indicating that SIRT3 positively regulates mitochondrial oxidative phosphorylation 

pathway in Cr(VI)-transformed cells.  

2.4.2 SIRT3 is a negative regulator of mitophagy in Cr(VI)-transformed cells         

Mitochondria mass was reduced in Cr(VI)-transformed cells compared to 

that in passage-matched normal BEAS-2B cells (Figure 2.2A). There was no 

observable difference in mitochondria membrane potential (MMP) between 

passage-matched normal BEAS-2B cells and Cr(VI)-transformed cells (Figure 

2.2B), leading to hypothesize that in Cr(VI)-transformed cells mitophagy is 

suppressed and that upregulation of SIRT3 is responsible for the mitophagy 

suppression. Our results showed that SIRT3 knockdown decreased 
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mitochondrial membrane potential (MMP) (Figure 2.2E) and further reduced 

mitochondrial mass (Figure 2.2D). Carbonyl cyanide m-chloro phenyl hydrazine 

(cccp), a mitochondrial depolarizing agent known to induce mitophagy (Ni et al. 

2015; Wei et al. 2015), was used as a positive control. These results suggest that 

in Cr(VI)-transformed cells, upregulation of SIRT3 prevents mitochondria 

membrane potential from reduction. 

 In Cr(VI)-transformed cells, both Pink1 and Parkin were upregulated 

(Figure 2.2E). SIRT3 was localized in the mitochondria and Parkin was in the 

cytosol (Figure 2.2G), which ascertains that mitophagy was suppressed in Cr(VI)-

transformed cells. Additionally, we observed that SIRT3 knockdown reduced 

protein levels of Parkin and Pink1 (Figure 2.2G) and translocated Parkin to the 

mitochondria (Figure 2.2H). The results from Mito-keima analysis showed no 

difference in mitophagy between Cr(VI)-transformed cells and their passage-

matched normal BEAS-2B, whereas knockdown of SIRT3 induced mitophagy in 

Cr(VI)-transformed cells (Figure 2.2I). Not surprising, treatment with cccp 

induced mitophagy in both normal BEAS-2B and Cr(VI)-transformed cells. Next, 

mitophagy was measured under starvation condition. The results showed that 

under starvation mitophagy was induced in passage-matched normal BEAS-2B 

cells, but not in Cr(VI)-transformed cells (Figure 2.2J). These results indicate that 

SIRT3 suppresses mitophagy in Cr(VI)-transformed cells via stabilization of 

mitochondrial membrane potential. 

2.4.3 Upregulation of SIRT3 elevates p62 and Nrf2, leading to increased cell 

proliferation and tumorigenesis of Cr(VI)-transformed cells 

Nrf2, p62 and p-p62ser349 levels were all increased in Cr(VI)-transformed 

cells (Figure 2.3A). SIRT3 knockdown decreased levels of Nrf2, p62, and p-

p62ser349 (Figure 2.3B) and caused translocation of p62 from cytosol to 

mitochondria (Figure 2.3C). The results from Figure 2.2I showed that SIRT3 

knockdown increased mitophagy in Cr(VI)-transformed cells. These results 

suggest that upregulation of SIRT3 prevents p62 from mitophagic degradation 
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through stabilization of mitochondrial membrane potential. Keap1 binds and 

ubiquitinates Nrf2, targeting to proteasomal degradation of Nrf2 (Suzuki et al. 

2016). Keap1 has higher affinity to bind to p-p62ser349 than Nrf2 (Ichimura et al. ; 

Katsuragi et al. 2016a). SIRT3 knockdown or treatment with cccp caused a 

reduced binding between Keap1 and p-p62ser349 and an increased binding 

between Keap1 and Nrf2, resulting in decreased level of Nrf2 in Cr(VI)-

transformed cells (Figure 2.3D), demonstrating that SIRT3 regulates Nrf2 through 

increased binding of p62 to Keap-1. 

 We investigated whether upregulation of SIRT3 is essential for increased 

cell proliferation and tumorigenesis of Cr(VI)-transformed cells. The results 

showed that inhibition of SIRT3 reduced cell proliferation of Cr(VI)-transformed 

cells (Figure 2.3E). The results from in vivo xenograft tumor growth assay 

showed that in Cr(VI)-transformed cells 4 out 4 animals (100%) grew tumors and 

in SIRT3 knockdown cells 1 out of 4 animals (25%) grew tumor (Figure 2.3F). 

Moreover, tumors isolated from Cr(VI)-transformed cells were heavier (Figure 

2.3G) and bigger (Figure 2.3H) than those isolated from SIRT3 knockdown cells. 

The results from immunoblotting analysis showed the protein levels of Nrf2, p62, 

and SIRT3 were all markedly reduced in the tumor tissues from SIRT3 

knockdown cells compared to those from Cr(VI)-transformed cells (Figure 2.3I). 

These results demonstrated that SIRT3 plays an important role in the cell 

proliferation and tumorigenesis of Cr(VI)-transformed cells. 

2.4.4 Nrf2 regulates SIRT3 through direct binding to the ARE of SIRT3 gene 

promoter 

Nrf2 knockdown decreased levels of SIRT3, p62 and Parkin in Cr(VI)-

transformed cells (Figure 2.4A). SIRT3 overexpression prevented these 

reductions by Nrf2 knockdown, indicating that Nrf2 is an upstream regulator of 

SIRT3. Inhibition of Nrf2 also reduced MMP (Figure 2.4B) and mitochondrial 

mass (Figure 2.4C). SIRT3 overexpression was able to partially restore MMP 

and mitochondrial mass reduced by Nrf2 inhibition (Figures 2.4B and 2.4C). 
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Stably expressing Nrf2 in normal BEAS-2B cells was established and the results 

showed that SIRT3 level was elevated in these Nrf2-expressing BEAS-2B cells 

(Figure 2.4D), suggesting that regulation of Nrf2 on SIRT3 is not specific for 

Cr(VI)-transformed cells. Next, we explored the mechanism of regulation of Nrf2 

on SIRT3. Both SIRT3 mRNA level and promoter activities were elevated in Nrf2-

expressing normal BEAS-2B cells and Cr(VI)-transformed cells compared to 

those in normal BEAS-2B cells (Figures 2.4E and 2.4F). Nrf2 overexpression in 

normal BEAS-2B cells increased SIRT3 in both cytosol and nucleus and 

knockdown of Nrf2 by its shRNA in Cr(VI)-transformed cells reduced SIRT3 in 

nucleus (Figure 2.4G), suggesting that regulation of Nrf2 on SIRT3 maybe 

through transcription level. We analyzed human promoter sequence of SIRT3 

gene using the transcriptional regulatory element database and identified the 

antioxidant response element (ARE) of SIRT3 gene promoter (Figure 2.4H). 

Next, we conducted DNA ChIP assay. The results showed that in normal BEAS-

2B cells with Nrf2 overexpression, the binding of Nrf2 to ARE of SIRT3 promoter 

was markedly increased (Figures 2.4I and 2.4K). In Cr(VI)-transformed cells, 

knockdown of Nrf2 by its shRNA dramatically reduced the binding of Nrf2 to ARE 

of SIRT3 gene promoter (Figures 2.4J and 2.4K), demonstrating that Nrf2 

regulates SIRT3 through direct binding to the ARE of SIRT3 promoter. 

2.4.5 Constitutive activation of SIRT3 is tumorigenic 

From the above results we postulated that constitutive activation of SIRT3 

is tumorigenic. To begin, we stably expressing SIRT3 in normal BEAS-2B cells. 

Two clones from these cells were selected and grown. Overexpression of SIRT3 

in normal BEAS-2B cells increased protein levels of Nrf2, p62, p-p62ser349, and 

Parkin (Figure 2.5A). Additionally, SIRT3 was mainly located in mitochondria and 

Parkin was in the cytosol (Figure 2.5B). As expected, overexpression of SIRT3 

suppressed mitophagy (Figure 2.5C). Similar to those in Cr(VI)-transformed cells, 

forced expression of SIRT3 in normal BEAS-2B cells reduced both mitochondrial 

ATP production and proton leak (Figures 2.5D and 2.5E). Moreover, 

overexpression of SIRT3 in normal BEAS-2B cells promoted cell growth, similar 
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as that in Cr(VI)-transformed cells (Figure 2.5F). The results from in vivo tumor 

growth showed that the animals injected with normal BEAS-2B cells with SIRT3 

overexpression grew tumors (3 out of 4 animals in one clone of SIRT3 cells and 

4 out 4 animals in another clone of SIRT3 cells) (Figures 2.5G, 2.5H, and 2.5I). 

The results from immunoblotting analysis showed that these tumor tissues have 

high levels of Nrf2, p62, p-p62ser349, and Parkin (Figure 2.5J), which are similar as 

those in Cr(VI)-transformed cells. The above observations demonstrated that 

constitutive activation of SIRT3 is tumorigenic. 
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2.5 Discussion  

Mitochondrial quality control is required for the maintenance of proper 

functioning mitochondrial network and cellular metabolism, and for the prevention 

of accumulation of ROS. Given the pivotal role of mitochondria in cellular 

homeostasis, defective mitophagy is known to contribute to various diseases. 

Our previous study has demonstrated that Cr(VI)-transformed cells undergo 

metabolic reprogramming (Clementino et al. 2018). Cancer cells shift ATP 

synthesis from oxidative phosphorylation to glycolysis to produce key 

biosynthetic intermediates in the mitochondria instead of ATP (Finley and Haigis 

2012). Therefore, mitochondrial function is essential for cancer cell proliferation 

and survival. We observed that in Cr(VI)-transformed cells both mitochondrial 

ATP production and proton leak were markedly reduced. The extent of these 

reductions may depend on the malignancy or aggressiveness of these 

transformed cells. We noted that mitochondrial function may be moderately or 

not affected in Cr(VI)-transformed cells with less malignancy or aggressiveness. 

The Cr(VI)-transformed cells used in the present study are considered as 

aggressive ones as evidenced by (1) high resistance to apoptosis; (2) rapid cell 

proliferation; (3) rapid tumor growth (reaching maximum tumor volume within 3 

weeks post injection of 106 cells in the nude mice). In addition, we used 

adenocarcinomic human alveolar basal epithelial A549 cells to detect the 

mitochondrial function. Similar results were obtained as those in Cr(VI)-

transformed cells. SIRT3 regulates metabolic homeostasis via deacetylation of 

mitochondrial proteins (Finley and Haigis 2012; Giralt and Villarroya 2012). In 

human cancer cells, mutant SIRT3 reduces mitochondrial membrane potential 

and mitochondrial ATP generation (Liu et al. 2015). SIRT3 regulates oxidative 

phosphorylation (OXPHOS) at different levels. SIRT3 regulates activities of 

complexes I and III via deacetylation of these complexes’ subunits (Ahn et al. 

2008; Cimen et al. 2010). Once complexes I and III are deacetylated by SIRT3 

they produce less ROS, therefore working more efficiently (Ahn et al. 2008; 

Cimen et al. 2010; Finley and Haigis 2012). Additionally, SIRT3 regulates 



31 
 

enzymes involved in The Citric Acid (TCA) cycle. It has been reported that SIRT3 

deacetylates succinate dehydrogenase (SDH) (Finley et al. 2011) and isocytrate 

dehydrogenase 2 (IDH2) (Someya et al. 2010). SDH participates in both the TCA 

cycle and electron transport chain, therefore it is well situated to coordinate flux 

through both pathways (Finley et al. 2011). IDH2 provides reducing equivalents 

to combat oxidative stress or to promote anabolic reactions by reducing NADP to 

NADPH (Someya et al. 2010). Deacetylation of SDH and IDH2 by SIRT3 could 

potentially stimulate mitochondria oxidative capacity and protect cells against 

oxidative stress. Thus, SIRT3 is expected to play decisive role in cell survival and 

cell response to stress.  Tumors harboring mutant SIRT3 exhibit inhibited tumor 

growth and increased sensitivity to local radiation in vivo (Liu et al. 2015). The 

present study we observed that SIRT3 is constitutively activated in Cr(VI)-

transformed cells; that this constitutively activated SIRT3 is essential in the 

maintenance of mitochondrial function; contributes to cell survival and 

tumorigenesis of Cr(VI)-transformed cells. In summary these results show that 

constitutive activation of SIRT3 is tumorigenic. 

 Mitochondrial membrane potential and mitochondria mass are two 

indicators of mitochondrial integrity. PINK1 accumulates in damaged 

mitochondria, which in turn recruits Parkin, resulting in ubiquitination of 

mitochondrial proteins (Ivankovic et al. 2016). Previous studies have shown that 

upregulation of SIRT3 stabilizes MMP and maintains mitochondrial mass 

(Pellegrini et al. 2012; Yang et al. 2016; Zhang et al. 2016b). Our results showed 

that in Cr(VI)-transformed cells SIRT3 was constitutively activated, MMP 

remained unchanged, and mitochondrial mass was reduced compared to those 

in passage-matched normal BEAS-2B cells. Knockdown of SIRT3 by its shRNA 

decreased MMP and further reduced mitochondria mass. Thus we speculated 

that constitutive activation of SIRT3 is essential to maintain MMP and 

mitochondrial function in Cr(VI)-transformed cells. Under normal condition, 

mitophagy remained similar between normal BEAS-2B cells and Cr(VI)-

transformed cells. However, starvation was able to induce mitophagy in normal 

BEAS-2B cells, but not in Cr(VI)-transformed cells, indicating that mitophagy is 
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defective in Cr(VI)-transformed cells. Mitochondria membrane depolarization is 

the first step to induce mitophagy. Once MMP is reduced, Pink1 recruits Parkin to 

the mitochondria. Under the conditions which mitochondria are undamaged, 

Pink1 is imported into the mitochondrial inner membrane, where Pink1 is 

cleaved. Aberration in mitochondrial membrane potential impairs import of Pink1 

to the mitochondrial inner membrane, leading to the stabilization of Pink1 on the 

mitochondrial outer membrane (Bernardini et al. 2017). Parkin is responsible to 

target this organelle to autophagosomal destruction (Durcan and Fon 2015; 

Eiyama and Okamoto 2015; Lazarou et al. 2015; Ni et al. 2015). We have 

observed that both Pink1 and Parkin levels were elevated in Cr(I)-transformed 

cells and Parkin was mainly located in the cytoplasm, providing the explanation 

of defective mitophagy in Cr(VI)-transformed cells. 

It has been reported that SIRT3 regulates mitophagy machinery proteins 

Parkin and Pink1 (Das et al. 2014; Liang et al. 2013; Pi et al. 2015; Qiao et al. 

2016; Yu et al. 2016). We speculated that constitutively activated SIRT3 

contributes to the defective mitophagy in Cr(VI)-transformed cells. The results 

showed that in Cr(VI)-transformed cells inhibition of SIRT3 induced mitochondria 

membrane depolarization, translocated Parkin from cytosol to the mitochondria, 

and restored mitophagy. Thus we conclude that constitutively activated SIRT3 

may contribute to mitophagy deficiency of Cr(VI)-transformed cells.  

It has been reported that recruitment of autophagic adaptor p62/SQSTM1 

to the mitochondrial clusters is essential for the clearance of mitochondria 

(Geisler et al. 2010).  p62 interacts with the autophagosome membrane to target 

the mitochondria to undergo autophagosomal destruction (Chourasia et al. 2015; 

Ding and Yin 2012; Kulikov et al. 2017; Ni et al. 2015; Wei et al. 2015). We 

observed that p62 was upregulated in Cr(VI)-transformed cells. p62 was mainly 

located in the surrounding area of mitochondria, thus blocking the degradation of 

damaged mitochondria in Cr(VI)-transformed cells. Inhibition of SIRT3 caused 

translocation of p62 to the mitochondria, promoting mitochondrial degradation 

through autophagosome and mitophagy induction. 
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Nrf2 is a key transcription factor that regulates antioxidant proteins to 

neutralize ROS and to restore cellular redox balance (Lee et al. 2012; Niture et 

al. 2010; Zhang et al. 2015a). ROS play a major role in metal-induced 

carcinogenesis (Kim et al. 2015a; Kim et al. 2016; Lee and Yu 2016; Lee et al. 

2012; Pratheeshkumar et al. 2016; Son et al. 2014; Zhang et al. 2015b). 

Inducible Nrf2 decreases carcinogenesis in the early stage via decrease of 

oxidative stress (Sporn and Liby 2012), constitutively activated Nrf2 exerts 

oncogenic effects by protecting cancer cells from oxidative stress and 

chemotherapeutics (Kansanen et al. 2013a; Wang et al. 2008). Recent studies 

have highlighted its role in mitochondrial function, including regulation of 

mitophagy via interaction with p62 and Keap1 (Dinkova-Kostova and Abramov 

2015; Holmström et al. 2017). Our results showed that Nrf2 is constitutive 

activated in Cr(VI)-transformed cells. Knockdown of Nrf2 reduced SIRT3 protein 

level, mitochondria mass, and MMP. However, overexpression of SIRT3 partially 

prevents reduction of both mitochondria mass and MMP by Nrf2 knockdown. 

These results demonstrate that SIRT3 is downstream target of Nrf2 signaling in 

regulation of mitophagy in Cr(VI)-transformed cells. Previous study showed that 

Nrf2 induced SIRT3 expression in 293T cells (Satterstrom et al. 2015). The 

present study has demonstrated that Nrf2 positively regulates SIRT3 in Cr(VI)-

transformed cells via directly binding to the ARE of SIRT3 gene promoter. Cr(VI) 

induces ROS generation, activating a cellular response to prevent the generation 

of ROS or detoxify ROS.  The activation of Nrf2 pathway is considered to be the 

most important for cell survival during oxidative stress (Niture et al. 2010). Nrf2 

activates the expression of several antioxidant enzymes by directly biding to the 

ARE of their gene promoters (Niture et al. 2010). Our results showed that in 

Cr(VI)-transformed cells activation of Nrf2 causes upregulation of SIRT3, SIRT3 

upregulation acts to promote cancer cell survival and tumorigenesis. It has been 

reported that Nrf2 regulates p62 via direct its binding to the ARE of p62 gene 

promoter (Katsuragi et al. 2016b). p62 feedbacks to Nrf2 via competitive binding 

to the Keap1 (Jain et al. 2010). In the agreement of these findings, the present 

study has demonstrated that upregulation of p-p62Ser349 in Cr(VI)-transformed 
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cells competitively binds to Keap1 with Nrf2, resulting in reduced binding of 

Keap1 to Nrf2 and subsequently elevated Nrf2. Inhibition of SIRT3 decreased p-

p62Ser349, leading to increased binding of Keap1 to Nrf2, subsequently decreased 

Nrf2. Human adenocarcinomic epithelial A549 cells were also used to examine 

the effects of SIRT3 on Nrf2/p62, Pink1/Parkin, and mitochondrial functions. The 

similar results as those in Cr(VI)-transformed cells were obtained (Suppl figure 

1). In summary, these results suggest that in Cr(VI)-transformed cells (1) Nrf2 

positively regulates SIRT3  via its direct binding to ARE of SIRT3 promoter; (2) 

p62Ser349 binds to Keap1, resulting in upregulation of Nrf2; and (3) SIRT3 

feedbacks to Nrf2 via interacting with Keap1-Nrf2/p62 pathway. 

 In Cr(VI)-transformed cells SIRT3 is upregulated. Inhibition of SIRT3 

reduced cell proliferation and tumorigenesis of Cr(VI)-transformed cells, 

suggesting that SIRT3 maybe tumorigenic. Previous studies reported that SIRT3 

had oncogenic properties (Chen et al. 2014; Giralt and Villarroya 2012; Morris et 

al. 2011; Pillai et al. 2010). Our results showed that forced SIRT3 expression in 

passage-matched normal BEAS-2B cells increased levels of Nrf2, p62, p-

p62Ser349, and Parkin. Our result also showed that forced expression of SIRT3 

expression reduced mitochondrial ATP production and proton leak and 

suppressed mitophagy, which are similar as those in Cr(VI)-transformed cells. 

Importantly, forced SIRT3 expression in passage-matched normal BEAS-2B cells 

increased cell proliferation in vitro and caused tumor growth in vivo. 

 In summary, the present study demonstrated that SIRT3 is essential to 

maintain mitochondrial basal oxidative phosphorylation of Cr(VI)-transformed 

cells. Cr(VI)-transformed cells are mitophagy defective. Inhibition of SIRT3 

induces mitophagy and decreases proliferation and tumorigenesis of Cr(VI)-

transformed cells. Constitutively activated Nrf2 upregulates SIRT3 via its direct 

binding to ARE of SIRT3 promoter. SIRT3 feedbacks to Nrf2 via interacting 

Keap1/Nrf2 axis. High level of SIRT3 in normal cells is sufficient to induce tumor 

growth in xenograft animal model, indicating that SIRT3 is tumorigenic. The 
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mechanism of SIRT3 in mitophagy and tumorigenesis of Cr(VI)-transformed cells 

is summarized in Figure 6.  
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Figure 2.1 SIRT3 is a positive regulator of mitochondrial oxidative phosphorylation 

pathway in Cr(VI)-transformed cells. (A) Whole protein lysates from Cr(VI)-

transformed cells and passage-matched normal BEAS-2B were used for immunoblotting 

analysis. (B) RNA was isolated from BEAS-2B and Cr(VI)-transformed cells and 

subjected to RT-PCR analysis. (C) and (D) BEAS-2B and Cr(VI)-transformed cells were 

seeded in 96-well plates for overnight. Mitochondrial stress test was conducted using 

Seahorse analysis. Data are expressed as mean ± SD (n=8). *, p < 0.05 compared to 

those in passage-matched BEAS-2B cells. (E) Cr(VI)-transformed cells were transfected 

with or without shSIRT3. Whole protein lysate were subjected to immunoblotting 

analysis. (F) and (G) Cr(VI)-transformed cells transfected with or without shSIRT3 were 

seeded in 96-well plates for overnight followed by mitochondria stress test using 

Seahorse analysis. Data are expressed as mean ± SD (n=8). *, p < 0.05 compared to 

Cr(VI)-transformed cells without SIRT3 knockdown.  
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Figure 2.2 SIRT3 is a negative regulator of mitophagy in Cr(VI)-transformed cells. 

(A) and (B) BEAS-2B and Cr(VI)-transformed cells were seeded in 96-well plate for 

overnight. (A) Mitochondrial mass was measured via NAO fluorescence intensity and (B) 

JC-1 fluorescence intensity was measured. Data are expressed as mean ± SD (n=8). *, 

p < 0.05 compared to that in BEAS-2B cells. (C) and (D) Cr(VI)-transformed cells 

transfected with or without shSIRT3, or treated with 5µM of cccp for 4h were seeded in 
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96-well plate for overnight. (C) Mitochondrial mass was measured via NAO fluorescence 

intensity and (D) JC-1 fluorescence intensity was measured. Data are expressed as 

mean ± SD (n=8). *, p < 0.05 compared to that in Cr(VI)-transformed cells. (E) Whole 

protein lysates from Cr(VI)-transformed cells and BEAS-2B were subjected to 

immunoblotting analysis. (F) Mitochondrial and cytosolic fraction from Cr(VI)-transformed 

cells were isolated and subjected to immunoblotting analysis. (G) Whole protein lysates 

from Cr(VI)-transformed cells transfected with or without shSIRT3, or treated with 5µM of 

cccp for 4h were subjected to immunoblotting analysis. (H) Mitochondrial and cytosolic 

fraction from Cr(VI)-transformed cells transfected with or without shSIRT3, or treated 

with 5 µM of cccp for 4h were subjected to immunoblotting analysis. (I) Cr(VI)-

transformed cells transfected with or without shSIRT3, or treated with 5 µM of cccp for 

4h were seeded in 96-well plate for overnight. mKeima fluorescence intensity in dual-

excitation was measured. Data are expressed as mean ± SD (n=8). * and #, p < 0.05 

compared to that in BEAS-2B cells without cccp treatment or Cr(VI)-transformed cells, 

respectively. (J) Cr(VI)-transformed cells transfected with or without shSIRT3 were 

seeded in 96-well plate for overnight. Cells were exposed to starvation condition for 24h. 

mKeima fluorescence intensity in dual-excitation was measured. Data are expressed as 

mean ± SD (n=8). *p < 0.05 compared to control. 
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Figure 2.3 Upregulation of SIRT3 elevates p62 and Nrf2, leading to increased cell 

proliferation and tumorigenesis of Cr(VI)-transformed cells. (A) and (B) Whole 

protein lysates from BEAS-2B and Cr(VI)-transformed cells transfected with or without 
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shSIRT3 were subjected to immunoblotting analysis. (C) Cr(VI)-transformed cells 

transfected with or without shSIRT3 were subjected to fluorescence 

immunohistochemistry analysis. Relative Co-localization was measured using CellSens 

Dimension software. Images were represented one sample in each treatment group 

(Left). Fluorescence intensities were quantitated (Right). Data are expressed as mean ± 

SD (n=3). *, p < 0.05, compared to that in Cr(VI)-transformed cells-scramble. (D) Whole 

protein lysates from Cr(VI)-transformed cells transfected with or without shSIRT3, or 

treated with 5 µM of cccp for 4h were subjected to co-immunoprecipitation analysis. (E) 

BEAS-2B and Cr(VI)-transformed cells were seeded in 6-well plates for 2, 4 and 8 days 

and total cell number was counted. Data are expressed as mean ± SD (n=3). * and #, p 

< 0.05, compared to that in BEAS-2B cells or Cr(VI)-transformed cells, respectively. (F), 

(G), and (H) 6-8 week old, female immune-deficient mice were subcutaneously injected 

with Cr(VI)-transformed cells transfected with or without shSIRT3. After 8 weeks, tumor 

volumes (Length x Width2/2) were measured (H). Tumor tissues were isolated. Tumors 

were pictured (F) and weighted (G). Protein lysates were extracted from tumor tissues 

for immunoblotting analysis (I). (G) and (H), data are expressed as mean ± SD (n=4). *, 

p < 0.05 compared to that in Cr(VI)-transformed cells.  
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Figure 2.4 Nrf2 regulates SIRT3 through direct binding to the ARE of SIRT3 gene 

promoter. (A), (B), and (C) Cr(VI)-transformed cells transfected with or without shNrf2, 

or in combination with SIRT3 expression were submitted for immunoblotting analysis (A). 

(B) JC-1 analysis was performed; (C) Mitochondria mass was measured. (B) and (C) 

Data are expressed as mean ± SD (n=8). * and #, p < 0.05, compared to those in Cr(VI)-

transformed cells and Cr(VI)-transformed cells Nrf2 knockdown, respectively. (D) Whole 

lysates from BEAS-2B with or without stable Nrf2 expression were subjected to 

immunoblotting analysis. (E) RNA was isolated from BEAS-2B with or without stable 

Nrf2 expression.  mRNA level was measured using RT-PCR analysis. Data are 

expressed as mean ± SD (n=8). *, p < 0.05, compared to that in BEAS-2B Scramble 

cells. (F) BEAS-2B with or without stable Nrf2 expression and Cr(VI)-transformed cells 

with or without Nrf2 knockdown  were transfected with SIRT3 luciferase reporter. After 
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48h of transfection, the cells were seeded in 96-well plates for overnight, followed by 

luciferase measurement. Data are expressed as mean ± SD (n=8). * and #, p < 0.05, 

compared to that in BEAS-2B Scramble cells and Cr(VI)-transformed cells scramble 

cells, respectively. (G) Nuclear and cytosolic fractions from BEAS-2B with or without 

stable Nrf2 expression and Cr(VI)-transformed cells with or without Nrf2 knockdown 

were isolated and subjected to immunoblotting analysis. (H) Consensus of ARE of 

human SIRT3 gene promoter. (I)-(K) BEAS-2B with or without stable Nrf2 expression 

and Cr(VI)-transformed cells with or without Nrf2 knockdown were submitted to 

chromatin immunoprecipitation with anti-Nrf2 antibody or control rabbit IgG. Binding of 

Nrf2 to SIRT3 promoters was analyzed by PCR using specific primers. GAPDH was 

used as a control.  (I) and (J) ChIP and quantitative (q) RT-PCR. The amounts of 

immunoprecipitated DNA were normalized to the inputs and plotted. Data are mean ± 

SD (n=3). *, p < 0.05, compared to Scramble cells. (K) Amplified DNA were separated 

on agarose gel followed by band visualization under ultraviolet transillumination. 
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Figure 2.5 Constitutive activation of SIRT3 is tumorigenic. (A) BEAS-2B cells were 

transfected with SIRT3 expression vector. Whole lysates were harvested for 

immunoblotting analysis. (B) BEAS-2B cells with or without stable expression of SIRT3 

were treated with 5 µM of cccp for 4h. Mitochondrial and cytosolic fractions were isolated 

for immunoblotting analysis. (C) BEAS-2B cells with or without stable expression of 
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SIRT3 were seeded in 96-well plate for overnight. Cells were exposed to starvation 

condition for 24h. mKeima fluorescence intensity in dual-excitation was measured. Data 

are expressed as mean ± SD (n=8). *, p < 0.05, compared to control. (D) and (E) BEAS-

2B cells with or without stable expression of SIRT3 were seeded in 96-well plates for 

overnight. Mitochondrial stress test was conducted using Seahorse analysis. Data are 

expressed as mean ± SD (n=8). *, p < 0.05, compared to those in BEAS-2B cells. (F) 

BEAS-2B cells with or without stable expression of SIRT3 were seeded in 6-well plates 

for 2, 4 and 8 days and total cell number was counted. Data are expressed as mean ± 

SD (n=3). *, p < 0.05, compared to that in BEAS-2B cells. (G), (H), and (I) 6-8 week old, 

female immune-deficient mice were subcutaneously injected with BEAS-2B cells with or 

without SIRT3 stable expression. After 8 weeks, tumor volumes were measured (I). 

Tumor tissues were isolated. Tumors were pictured (G) and weighted (H). Protein 

lysates were extracted from tumor tissues for immunoblotting analysis (J).  
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Figure 2.6 The scheme of mechanism of SIRT3 in mitophagy and tumorigenesis of 

Cr(VI)-transformed cells. Chronic exposure of the cells to Cr(VI) at low dose causes 

malignant cell transformation. The malignantly transformed cells exhibit constitutive 

activated Nrf2 and SIRT3, leading to mitophagy deficiency, contributing to cell survival 

and tumorigenesis of Cr(VI)-transformed cells. 
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CHAPTER 3. CONSTITUTIVE ACTIVATION OF NRF2 INDUCES GLYCOLYTIC SHIFT IN 

CR(VI)-TRANSFORMED CELLS                    

3.1 Abstract 

 Hexavalent chromium (Cr(VI)) chronic exposure to normal BEAS-2B cells 

induces cell transformation. Cr(VI)-transformed cells are tumorigenic. Nuclear 

factor erythroid-(derived 2)-like 2 (Nrf2) is a transcription factor that regulates 

oxidative stress response. The present study investigated how Nrf2 regulates 

metabolic reprogramming in Cr(VI)-transformed cells. The results from glycolytic 

stress test showed that glycolytic ATP production was increased in Cr(VI)-

transformed cells compared to that in passage-matched normal BEAS-2B cells. 

Nrf2 overexpression in normal BEAS-2B cells increased glycolytic ATP 

production. The results from RNAseq analysis showed that Nrf2 overexpression 

in normal BEAS-2B cells activated AMPK signaling pathway. The results from 

immunoblotting analysis confirmed that in Cr(VI)-transformed cells p-AMPKThr172 

was elevated. Nrf2 knockdown in Cr(VI)-transformed cells reduced the 

phosphorylation of AMPK. Nrf2 overexpression in normal BEAS-2B cells 

increased p-AMPKThr172. In Cr(VI)-transformed cells AMPK inhibition by its 

shRNA or treatment with dorsomorphin (5 µM) reduced PFK1 and PFKFB3 

protein levels and glycolytic ATP generation. Overall, our results suggested that 

Nrf2 regulated glycolysis via activation of AMPK pathway. Furthermore, our 

results showed that forced expression of Nrf2 in BEAS-2B cells increased cell 

proliferation and tumorigenesis. Knockdown of Nrf2 reduced cell proliferation and 

tumorigenesis of Cr(VI)-transformed cells. In conclusion, the present study 

demonstrated that constitutive activation of Nrf2 in Cr(VI)-transformed cells: (1) 

increased glycolytic ATP generation; (2) activated AMPK signaling pathway; and 

(3) increased cell proliferation and tumorigenesis.  
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3.2 Introduction 

Hexavalent chromium (Cr(VI)) is classified as a Group 1 human carcinogen 

by the International Agency for Research in Cancer (IARC). It has been reported 

that chronic exposure of Cr(VI) at low dosage induced malignant cell 

transformation of human bronchial epithelial (BEAS-2B) cells and those Cr(VI)-

transformed cells are tumorigenic (Kim et al. 2015b).  

Cancer cells accumulate distinctive capabilities in order to enable increased 

cell proliferation, tumor growth and metastatic distribution. To better understand 

the biology of cancer, ten hallmarks of cancer have been stablished (Hanahan 

and Weinberg). Previous studies demonstrated the several properties of Cr(VI)-

transformed cells, including reduced capacity of generating ROS, increased cell 

proliferation, increased angiogenesis, and resistance to cell death (Kim et al. 

2016; Kim et al. 2015b; Lee et al. 2012; Pratheeshkumar et al. 2016; Wang et al. 

2011). A recent review has highlighted the importance of metabolic 

reprogramming in Cr(VI)-transformed cells (Zhang et al. 2016a).  

Our previous study has demonstrated that expressions of genes associated 

with glycolysis, pentose-phosphate pathway (PPP), and glutaminolysis were 

elevated in Cr(VI)-transformed cells compared to these in passage-matched 

normal BEAS-2B cells. In contrast, expressions of genes associated with 

oxidative phosphorylation (OXPHOS) were downregulated in Cr(VI)-transformed 

cells (Clementino et al. 2018), suggesting that Cr(VI)-transformed cells undergo 

deregulation of their cellular energetics, in accordance with the proposed 

hallmark of cancer (Hanahan and Weinberg) and the Warburg effect (Lu et al. 

2015).   

Nuclear factor erythroid-(derived 2)-like 2 (Nrf2) is a transcription factor that 

regulates antioxidants in response to oxidative stress (Kobayashi and Yamamoto 

2006). Nrf2 plays dual roles in carcinogenesis. In normal cells inducible Nrf2 

decreases oxidative stress and malignant cell transformation (Sporn and Liby 

2012). In cancer cells constitutively activated Nrf2 protects the cells from 
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oxidative stress and chemotherapeutics, promoting cell survival (Wang et al. 

2008). Nrf2 is constitutively activated in several tumors and cancer cell lines (Lau 

et al. 2013; Ohta et al. 2008; Sporn and Liby 2012; Tong et al. 2006). High level 

of Nrf2 is associated with poor prognosis (Shibata et al. 2008; Solis et al. 2010). 

Nrf2 plays an important role in regulating anabolic metabolism and glucose 

uptake (Hawkins et al. 2016; Heiss et al. 2013; Mitsuishi et al. 2012; Singh et al. 

2008). The present study investigated the role of Nrf2 in the regulation of 

metabolic reprogramming contributing to tumorigenesis of Cr(VI)-transformed 

cells. 
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3.3 Materials and Methods 

3.3.1 Chemicals and reagents 

Sodium dichromate dehydrate (Na2Cr2O7) was obtained from Sigma (St 

Louis, MO). Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine serum 

(FBS), and pen-strep-glutamine solution were obtained from Gibco (Grand 

Island, NY). shRNAs and overexpressing vectors Nrf2 and AMPK, and primers 

for Real Time PCR were obtained from Origene (Rockville, MD). RNAeasy mini 

kit and plasmid prep kit were obtained from Qiagen (Valencia, CA). 

Lipofectamine 2000 was from Invitrogen (Carlsbad, CA) Antibodies against Nrf2, 

hexokinase 2 (HK2), 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 

(PFKFB3), AMP-activated protein kinase (AMPK), p-AMPKthr172, glyceraldehyde-

3-phosphate dehydrogenase (GAPDH) and superoxide dismutase 2 (SOD2)

were obtained from Cell Signaling (Danvers, MA). Antibodies against 

phosphofructokinase-1 (PFK1) was obtained from Santa Cruz Biotechnology 

(Dallas, TX). Matrigel was obtained from BD Biosciences (San Jose, CA). 

Chemiluminescence reagent was obtained from Amershan Biosciences (Little 

Chalfont, United Kingdom). 

3.3.2 Cell culture 

Human bronchial epithelial cells (BEAS-2B) purchased from the American 

Type Culture Collection (ATCC) were maintained as described previously (Kim et 

al. 2015b). Briefly, passage-match BEAS-2B and Cr(VI)-transformed cells were 

maintained in DMEM supplemented with 10% FBS and 1% pen-strep-glutamine 

solution at 37 ˚C and 5% CO2. Cr(VI)-transformed cells were generated as 

described previously (Kim et al. 2015b). 
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3.3.3 Plasmid transfection and stable cell lines 

Transfection was performed using Lipofectamine 2000 as described by 

the manufacturer’s protocol. Briefly, 1.5 million cells were seeded in 6 cm dishes 

and allowed to grow for overnight.  Cells were transfected with 2-4 µg of plasmid. 

To establish stable cells, after transfection cells were cultured in DMEM media 

containing 0.02 µg/ml of puromycin for the first week. Puromycin concentration 

was increased gradually up to 2 µg/ml with 50% concentration increment every 

week. After two months, single clones were picked up and expression of target 

proteins was examined using immunoblotting analysis 

3.3.4 RNA sequence analysis 

 RNAeasy mini kit was used to extract and purify RNA. Total RNA of 

normal BEAS-2B and Cr(VI)-transformed BEAS-2B cells were collected in 

triplicates. RNA quality was accessed using RNA Nano Chip Kit. Samples with 

higher than 8 in RNA integrity umber (RIN) were selected. Libraries were 

prepared following TruSeq® Standart total RNA protocol, followed by whole 

transcriptome sequencing of 100 bp paired-end reads using HiSeq 2500 Rapid 

Run at University of Kentucky Genomics Core Laboratory. 

3.3.5 RNA sequencing data analysis 

 Transcriptome of each sample was analyzed using esembl GRCh38 

Human Transcriptome as reference. Gene expression was calculated using 

RSEM (Li and Dewey 2011) and differentially expressed (DE) genes were 

detected using EBseq (Leng et al. 2015). A false detection rate (FDR) analysis 

with 0.05 threshold was performed. The lists of DE genes were submitted to 

ENRICHr for gene ontology enrichment analysis (Kuleshov et al. 2016).  
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3.3.6 Immunoblotting analysis 

 Cell pellets were lysed in RIPA buffer. Bradford Assay was used to 

measure protein concentration. 30 µg of protein was separated by SDS-PAGE 

followed by incubation with primary and secondary antibodies. 

Chemiluminescence reagent was used to detect protein bands.  

3.3.7 Glycolytic stress tests 

 Glycolytic stress test was performed in a Seahorse 96-well XF cell culture 

microplate in conjunction with an XF96 sensor cartridge. 80 µL of growth medium 

containing 40,000 cells were seeded for overnight. The plate was submitted for 

glycolysis analysis. 

3.3.8 In vivo Tumorigenesis assay 

 Female athymic nude mice (6-8 weeks old) were purchased from Jackson 

Laboratories (Bar Harbor, ME). Animals were handled according to guidelines 

provided by the Institutional Animal Care and Use Committee (IACUC). Animals 

were housed in sterilized filter-topped cages in a pathogen free animal facility 

and the Chandler Medical Center, University of Kentucky. 100 µL mixture of 

DMEM, Matrigel (BD Biosciences) and cells were subcutaneously (s.c) injected 

on the flank of each mouse. 3 weeks after injection, mice were euthanized using 

CO2. The tumors were isolated, and pictures were captured. Both tumor volume 

and weight were measured. Tumor volume was calculated using the following 

formula: (length x width2)/2. 
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3.4 Results  

3.4.1 Increased glycolysis in Cr(VI)-transformed cells 

 Our previous study using RNAseq analysis showed that levels of genes 

associated with glycolysis, pentose phosphate pathway (PPP), and 

glutaminolysis were increased in Cr(VI)-transformed cells, while levels of genes 

associated with oxidative phosphorylation (OXPHOS) were reduced compared to 

those in passage-matched normal BEAS-2B cells (Clementino et al. 2018). In the 

present study, we performed a glycolytic stress analysis. The results showed that 

glycolysis (Figure 3.1A), glycolytic capacity (Figure 3.1B), and glycolytic reserve 

(Figure 3.1C) were all elevated in Cr(VI)-transformed cells compared to those in 

passage-matched normal BEAS-2B cells. Glycolysis is to measure extracellular 

acidification rate (ECAR) after the addition of saturating amounts of glucose. 

Glycolytic capacity is to measure the maximum ECAR rate reached after 

effectively shutting down oxidative phosphorylation, which drives glycolysis to its 

maximum capacity. Glycolytic reserve is to measure the ability of a cell to 

respond to energy demands. These three parameters reflect the ability of a cell 

to convert glucose into pyruvate, which produces ATP. Thus, our results indicate 

that glycolytic ATP production was increased in Cr(VI)-transformed cells. 

 To study enzymes involved in the elevated glycolysis, levels of 

hexokinase2 (HK2), phospho-fructo kinase 1 (PFK1) and 6-fosfofruto-2-

quinase/frutose-2,6-bifosfatase 3 (PFKFB3), key glycolytic proteins, were 

examined. The results showed that all three proteins were upregulated in Cr(VI)-

transformed cells compared to those in passage-matched normal BEAS-2B cells 

(Figure 3.1D).   

3.4.2 Nrf2 overexpression increases glycolysis in normal BEAS-2B cells 

The results from RNAseq analysis showed that Nrf2 overexpression in 

normal BEAS-2B cells caused increases of expressions of genes associated with 
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glycolysis and reduced expression of genes associated with OXPHOS 

(Supplementary Tables 1 and 2), indicating that Nrf2 may play an important role 

in metabolic reprogramming. The results from glycolytic stress test showed that 

forced overexpression of Nrf2 in BEAS-2B cells increased glycolysis, glycolytic 

capacity and glycolytic reserve (Figures 3.2A, 3.2B and 3.2C). Nrf2 

overexpression also increased expression of glycolytic proteins including HK2, 

PFK1, and PFKFB3 (Figure 3.2D). Consistently, knockdown of Nrf2 by its shRNA 

reduced levels of HK2, PFK1 and PFKFB3 in Cr(VI)-transformed cells (Figure 

3.2D). These results indicate that Nrf2 positively regulates glycolytic ATP 

generation in Cr(VI)-transformed cells. 

Next, we investigated the mechanisms of increased glycolysis in Cr(VI)-

transformed cells. The results from RNAseq analysis showed that 

overexpression of Nrf2 in normal BEAS-2B cells increased the expressions of 

genes associated with AMPK signaling pathway (Table 3.1). The genes of 

AMPK regulatory subunit and activating AMPK were upregulated, while the 

genes inhibiting AMPK were downregulated in BEAS-2B cells with Nrf2 

overexpression. Similar results were observed in Cr(VI)-transformed cells. 

Furthermore, glycolysis and lipid metabolism genes associated with AMPK 

pathway were also upregulated in those Nrf2-expressing BEAS-2B cells and 

Cr(VI)-transformed cells.  

Phosphorylation of AMPK at threonine 172, a regulatory subunit of 

AMPK, is required for AMPK activation. Phosphorylation of AMPK  was 

increased in normal BEAS-2B cells with Nrf2 overexpression and in Cr(VI)-

transformed cells (Figure 3.2E). Knockdown of Nrf2 by its shRNA in Cr(VI)-

transformed cells reduced the AMPK phosphorylation (Figure 3.2E). These 

results suggest that Nrf2 is a positive regulator of AMPK activation in Cr(VI)-

transformed cells, supporting the hypothesis that constitutive Nrf2 activation 

increases glycolysis in Cr(VI)-transformed cells via activation of AMPK signaling 

pathway.  
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3.4.3 AMPK inhibition reduces glycolysis in BEAS-2B cells with Nrf2 

overexpression and Cr(VI)-transformed cells. 

Next, we knockdown AMPK by its shRNA in BEAS-2B cells with Nrf2 

overexpression. Knockdown of AMPK by its shRNA in Cr(VI)-transformed cells 

reduced protein levels of PFK1 and PFKFB3 (Figure 3.4A). Knockdown of 

AMPK also reduced glycolysis, glycolytic capacity and glycolytic reserve in 

Cr(VI)-transformed cells (Figures 3.4B-D). These results suggest that AMPK 

knockdown blocks activation of PFKFB3/PFK1 pathway, causing reduction of 

glycolytic ATP production. 

 Dorsomorphin is a potent and selective inhibitor of AMPK (Choi et al. 

2015; Zou et al. 2015). In Cr(VI)-transformed cells, treatment with dorsomorphin 

for 24h at concentrations of 1, 2, and 5 µM reduced protein levels of p-

AMPKThr172, PFK1, and PFKFB3 (Figure 3.5A). The results from glycolytic 

stress test showed that treatment with 5µM dorsomorphin significantly reduced 

glycolysis (Figure 3.5B), glycolytic capacity (Figure 3.5C) and glycolytic reserve 

(Figure 3.5D). These results suggest that activation of AMPK regulates the 

glycolytic shift in Cr(VI)-transformed cells. 

3.4.4 Constitutive Nrf2 activation leads to increased cell proliferation and 

tumorigenesis in Cr(VI)-transformed cells 

 We investigated whether constitutive Nrf2 activation is important for 

increased cell proliferation and tumorigenesis of Cr(VI)-transformed cells. Our 

results showed that knockdown of Nrf2 by its shRNA in Cr(VI)-transformed cells 

reduced cell proliferation on the days of 6 and 9, but not on the day 2 (Figure 

3.6A). Nrf2 overexpression in normal BEAS-2B cells increased cell proliferation 

on days 6 and 9 (Figure 3.6A). The results from in vivo xenograft tumor growth 

assay showed in that 5 of 6 animals injected with Cr(VI)-transformed cells grew 

tumors (83%), and none of 6 animals injected with Cr(VI)-transformed cells with 

Nrf2 knockdown grew tumors (0%) (Figure 3.6B). None of the animals (out of 6) 
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injected with normal BEAS-2B cells grew tumors (0%), However, 4 out of 6 

animals injected with BEAS-2B cells overexpressing Nrf2 grew tumors (67%) 

(Figure 3.6B). Both the tumor volume and weight in Cr(VI)-transformed cells are 

similar as those BEAS-2B cells with Nrf2 overexpression (Figures 3.6C and 

3.6D). The results from immunoblotting analysis showed that in these tumor 

tissues levels of Nrf2, p-AMPKThr172, AMPK, HK2, PFK1, and PFKFB3 were 

detectable (Figures 3.6E and 3.6F). These results demonstrated that constitutive 

Nrf2 activation plays an important role in increased cell proliferation and 

tumorigenesis in Cr(VI)-transformed cells.  
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3.5 Discussion 

In order to adapt to biological demands of increased proliferation, cancer 

cells change their metabolism by increasing glycolysis, PPP, and glutaminolysis 

(Hanahan and Weinberg). This metabolic shift was first described by Otto 

Warburg, known as the Warburg effect (Warburg 1956a; 1956b). Metabolic 

reprogramming is currently known as one of the hallmarks of cancer (Ward and 

Thompson 2012). Our previous (Clementino et al. 2018) and current studies 

showed that in Cr(VI)-transformed cells OXPHOS was downregulated and 

glycolysis, PPP and glutaminolysis pathways were upregulated, leading to 

reduced ATP production from OXPHOS and increased ATP from glycolysis. We 

observed that in Cr(VI)-transformed cells glycolysis was elevated. The extent of 

the increase in glycolysis may depend on the malignancy or aggressiveness of 

these transformed cells. Glycolysis might not change in Cr(VI)-transformed cells 

with  less malignancy or aggressiveness. The Cr(VI)-transformed cells used in 

the present study are considered as aggressive ones as discussed in the 

Chapter 2. Our results demonstrated that Cr(VI)-transformed cells undergo 

metabolic reprogramming. 

Nrf2 plays an important role in metabolic reprogramming by inhibiting 

lipogenesis, facilitating flux through PPP, inducing purine biosynthesis, regulating 

key metabolic proteins, and by cross-talking with several oncogenes 

(Chartoumpekis et al. 2015; Costa et al. 2014; Menegon et al. 2016; Panieri and 

Santoro 2016; Wende et al. 2016). Our results showed that in Cr(VI)-transformed 

cells, constitutive Nrf2 activation induces metabolic reprogramming, leading to 

increased cell proliferation and tumorigenesis of Cr(VI)-transformed cells. The 

present study has also demonstrated that overexpression of Nrf2 in normal 

BEAS-2B cells is tumorigenic. 

HK2, PFK1, and PFKB3 are key proteins in regulation of glycolysis. These 

proteins regulate the first rate-limiting reactions of glycolysis. HK2 catabolizes the 

phosphorylation of glucose to glucose-6-phosphate (G6P) and PFK1 catabolizes 

the phosphorylation of fructose-6-phosphate (F6P). PFK1 is considered the 
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primary control point of glycolysis and it is often upregulated in cancer cells (Li et 

al. 2015). PFK1 activity is increased by fructose-2,6-biphosphate (F2,6BP), which 

is generated by phosphorylation of F6P through PFK2. In cancer cells, increased 

glucose uptake and high hexokinase activity increase F6P generation, thus 

yielding more F2,6BP, which in turn increases PFK1 activity (Alfarouk et al. 2014; 

Li et al. 2015). In Cr(VI)-transformed cells and normal BEAS-2B cells with Nrf2 

overexpression, HK2, PFK1, and PFKB3 were all upregulated. Nrf2 knockdown 

in Cr(VI)-transformed cells reduced HK2, PFK1, and PFKB3 protein levels. The 

present study has demonstrated that glycolytic shift regulated by Nrf2 is through 

HK2, PFk1, and PFKB3 in Cr(VI)-transformed cells. 

 It has been reported that Nrf2 induced glycolytic shift in cancer is 

mediated by AMPK activation (Wang et al. 2018). Our results showed that 

constitutive Nrf2 activation induces phosphorylation of AMPK at threonine 172, 

a regulatory subunit of AMPK. This phosphorylation is required for AMPK 

activation (Stein et al. 2000). Our results also showed that forced Nrf2 expression 

in normal cells increased p-AMPKThr172 level, while Nrf2 inhibition in Cr(VI)-

transformed cells reduced it, suggesting that Nrf2 is a positive regulator of 

AMPK. The results from RNAseq analysis showed that in cells with 

constitutively activated Nrf2 (normal BEA-2B cells with Nrf2 overexpression and 

Cr(VI)-transformed cells), expressions of genes associated with AMPK subunits 

and AMPK activation were increased, however, expressions of genes 

associated with AMPK inhibition were decreased. Our results also showed that 

expression of genes associated with glucose and lipid metabolism which are 

downstream of the AMPK signaling pathway were increased, demonstrating that 

AMPK is activated in Cr(VI)-transformed cells. Rab, an oncogene, is known to 

induce glucose transporter type 4 (Glut4) translocation, which leads to increased 

glucose uptake. The increase in glucose uptake elevated hexokinases activity, 

resulting in the glycolytic shift through PFK1-PFK2 pathway (Brewer et al. 2016; 

Sano et al. 2007; Sano et al. 2008). Our results showed that expression of 

Rab10, a downstream target of AMPK signaling pathway, was increased in 
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Cr(VI)-transformed cells, indicating that the role of AMPK/Rab10 signal pathway 

in glycolytic shift of Cr(VI)-transformed cells.  

 In summary, our results demonstrated that constitutive Nrf2 activation 

activates AMPK, leading to increased glycolysis, contributing to increased cell 

proliferation and tumorigenesis of Cr(VI)-transformed cells. 
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Figure 3.1 Increased glycolysis in Cr(VI)-transformed cells. (A), (B) and (C) 

Passage-matched normal BEAS-2B and Cr(VI)-transformed cells were seeded in 96-well 

plates for overnight. Glycolytic stress test was conducted using Seahorse analysis. Data 

are expressed as mean ± SD (n=8). *, p < 0.05, compared to those in passage-matched 

BEAS-2B cells. (D) Whole protein lysates from BEAS-2B cells and Cr(VI)-transformed 

cells were used for immunoblotting analysis.  
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Figure 3.2 Nrf2 overexpression in normal BEAS-2B cells increases glycolysis. (A), 

(B) and (C) Normal BEAS-2B cells transfected with or without Nrf2 plasmid were seeded 

in 96-well plates for overnight. Glycolytic stress test was conducted using Seahorse 

analysis. Data are expressed as mean ± SD (n=8). *, p < 0.05, compared to those in 

scramble passage-matched BEAS-2B cells. (D) and (E) Whole cell lysates from normal 

BEAS-2B cells transfected with or without Nrf2 plasmid, and Cr(VI)-transformed cells 

transfected with or without shNrf2 were used for immunoblotting analysis.  
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Table 3.1 Relative level of AMPK signaling pathway in Cr(VI)-transformed cells and 

passage-matched normal cells transfected with scramble or Nrf2 vector 

 

Gene Symbol Function BEAS-2B BEAS-2B-Nrf2 BEAS-2B-Cr(VI) 

PRKAG1 AMPK Subunit 9.9 ± 0.7 15.1 ± 4.4 * 18.6 ± 1.6 * 

PRKAB2 AMPK Subunit 7.3 ± 0.9 9.0 ± 1.3 * 10.0 ± 3.6 * 

PRKAA1 AMPK Subunit 29.2 ± 1.3 27.8 ± 2.4 * 21.1 ± 2.7 * 

PRKAA2 AMPK Subunit 1.3 ± 0.1 2.3 ± 0.6 * 3.4 ± 1.0 * 

EEF2K Activates AMPK 6.3 ± 0.2 7.8 ± 0.6 * # 10 ± 0.6 * 

CAMKK1 Activates AMPK 1.3 ± 1.8 8.5 ± 1.5 * 19.3 ± 2.5 * 

ADIPOR1 Activates AMPK 1.5 ± 0.3 1.6 ± 1.2 3.1 ± 1.1 * 

ADIPOR2 Activates AMPK 52.1 ± 3.8 47.9 ± 0.7 * # 41.9 ± 2.0 * 

STK11 Inhibits AMPK 24.5 ± 2.5 19.6 ± 0.5 * # 13.8 ± 0.2 * 

PPP2R5B Inhibits AMPK 19.3 ± 1.3 13 ± 0.1 * # 1.1 ± 0.1 * 

PPP2R5D Inhibits AMPK 51.7 ± 5.0 38.4 ± 2.7 * 19.5 ± 3.8 * 

PPP2CB Inhibits AMPK 86.1 ± 8.3 78.8 ± 0.4 * # 59.3 ± 3.3 * 

PPP2R3C Inhibits AMPK 19.1 ± 1.8 15.3 ± 0.8 * 4.9 ± 1.8 * 

PPP2R3B Inhibits AMPK 8.8 ± 0.9 6.4 ± 0.6 * # 3.0 ± 1.3 * 

PPP2R5E Inhibits AMPK 7.8 ± 0.5 7.2 ± 0.6 * # 4.9 ± 0.7 * 

STRADA Inhibits AMPK 18.1 ± 0.2 14.8 ± 1.6 * 6.5 ± 1.7 * 

CPT1C Fatty acid metabolism 1.0 ± 1.1 2.0 ± 0.5 * 2.7 ± 0.2 * 

MLYCD Fatty acid metabolism 0.5 ± 0.1 0.9 ± 0.1 # 1.5 ± 0.1 * 

ACACA Fatty acid metabolism 0.2 ± 0.3 4.4 ± 1.4 * # 10.8 ± 1.5 * 

SCD Lipogenesis 14.9 ± 3.0 60.6 ± 5.6 * 143.3 ± 31.5 * 

FASN Lipogenesis 6.1 ± 2.4 14.1 ± 2.5 * # 24.7 ± 3.8 

G6PC3 Glycolysis 29.0 ± 1.2 41.8 ± 3.9 * 64.0 ± 5.3 * 

PFKM Glycolysis 29.5 ± 4.7 46.3 ± 3.9 * 86.7 ± 2.9 * 

SREBF1 Glucose/lipid metabolism 22.9 ± 1.5 26.4 ± 3.2 * 35.1 ± 10.2 * 

RAB10 Oncogene 36.9 ± 3.6 55.2 ± 5.8 * 95.5 ± 24.9 * 
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Table 3.1 Relative level of AMPK signaling pathway in Cr(VI)-transformed cells and 

passage-matched normal cells with or without Nrf2 expression. Whole 

transcriptome sequencing analysis was performed using HiSeq 2500 Rapid 

Run.Differentially expressed genes involved in AMPK signalling pathway were detected 

using EBseq. Data are expressed as mean ± SD (n=3). * and #, p < 0.05, compared to 

those in scramble passage-matched BEAS-2B and Cr(VI)-transformed cells, 

respectively. 
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Figure 3.3 AMPK inhibition reduces glycolysis in normal BEAS-2B cells with Nrf2 

expression. (A) Normal BEAS-2B cells were transfected with or without Nrf2 expression 

vector or together with AMPK shRNA for 48 h. Whole protein lysates were harvested 

for immunoblotting analysis. (B), (C) and (D) Passage-matched normal BEAS-2B cells 

were transfected with or without Nrf2 expression vector, or together with AMPK shRNA 

for 48 h. The cells were seeded in 96-well plates for overnight. Glycolytic stress test was 

conducted using Seahorse analysis. Data are expressed as mean ± SD (n=8). * and #, p < 0.05, 

compared to those in BEAS-2B cells transfected with scramble or Nrf2 vector, respectively.  
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Figure 3.4 AMPK inhibition reduces glycolysis in Cr(VI)-transformed cells. (A) 

Cr(VI)-transformed cells were transfected with or without AMPK shRNA for 48 h. Whole 

protein lysates were harvested for immunoblotting analysis. (B), (C) and (D) Cr(VI)-

transformed cells transfected with or without AMPK shRNA were seeded in 96-well 

plates for overnight. Glycolytic stress test was conducted using Seahorse analysis. Data 

are expressed as mean ± SD (n=8). *, p < 0.05, compared to those in Cr(VI)-transformed 

cells.  
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Figure 3.5 Dorsomorphin treatment reduces AMPK activation and glycolysis in 

Cr(VI)-transformed cells. (A) Cr(VI)-transformed cells were treated with 0, 1, 2, and 5 

µM of Dorsomorphin for 24 h. Whole cell lysates were harvested for immunoblotting 

analysis. (B)-(D) Cr(VI)-transformed cells were treated with 0, 1, 2, and 5 µM of 

Dorsomorphin for 24 h. The cells were seeded in 96-well plates. Glycolytic stress was 

conducted using Seahorse analysis. Data are expressed as mean ± SD (n=8). *, p < 

0.05, compared to those in Cr(VI)-transformed cells without treatment. 
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Figure 3.6 Constitutive Nrf2 activation leads to increased cell proliferation and 

tumorigenesis of Cr(VI)-transformed cells. (A) Passage-matched normal BEAS-2B 

cells with or without Nrf2  and Cr(VI)-transformed cells with or without Nrf2 shRNA were 

seeded in 6-well plates. The total cell number was counted at Day 0, 2, 6, and 9. Data 

are expressed as mean ± SD (n=8). * and #, p < 0.05 compared to that in same day 

BEAS-2B cells or Cr(VI)-transformed cells, respectively. (B), (C), and (D) 6-8 week old, 
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female immune-deficient mice were subcutaneously injected with normal BEAS-2B cells 

with or without Nrf2 expression or Cr(VI)-transformed cells with or without Nrf2 shRNA. 

After 3 weeks, the animals were euthanized using CO2. The tumors were isolated and 

weighted (C) and pictures were captured (C). Tumor volumes (Length x Width2/2) were 

measured (D). (C) and (D), data are expressed as mean ± SD (n=6). (E) and (F) Protein 

lysates were extracted from tumor tissues. Immunoblotting analysis was conducted to 

determine protein levels.  
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CHAPTER 4. CONCLUSIONS 

4.1 Hexavalent Chromium in the Environment 

Chromium compounds are naturally existed in earth’s crust. Hexavalent 

chromium (Cr(VI) is a toxic form of chromium. Cr(VI) is used in electroplating, 

wood preservatives, pigments, fungicides, and  as ingredient and catalyst in 

chemical synthesis (Hausladen et al. 2018; United States. Occupational and 

Health 2009). Chromium is used to provide protective coatings to prevent 

corrosion; thus, the steel industry is a major consumer of chromium used in the 

production of stainless steel. (United States. Occupational and Health 2009). 

Workers exposed to Cr(VI) through inhalation may develop lung cancer, as well 

as irritation and/or damage to nose and lungs. Direct contact with skin and eyes 

caused irritation and/or damage to these organs (United States. Occupational 

and Health 2009). Workers inhale airborne Cr(VI) from dusts, fumes, and mists. 

Inhalation can occur while producing chromate pigments, powders and dyes; 

working near chromate electroplating; welding on stainless steel; and applying 

and removing chromate-containing paints. Skin and eyes exposure can occur 

while handling solution, coatings and cements containing Cr(VI).  

Chromium is predominantly found in nature in two oxidation states, 

chromium (Cr(III)) and hexavalent chromium (Cr(VI)). Cr(VI) typically exists as 

chromate oxyanion, HxCrO4
x-2, which is a known carcinogen when exposure 

occurs via inhalation, and potentially carcinogenic when exposure happens via 

ingestion (Costa 1997; Sun et al. 2015; Welling et al. 2015). Chromate oxyanion 

is mobile in the environment; thus, it can contaminate water beds and jeopardize 

water quality. Industrial uses of chromium will lead to acute cases of groundwater 

Cr(VI)-contamination; however, oxidation of naturally occurring chromium by 

natural processes and anthropogenic activity may affect a larger area, more 

water beds, and more people (Hausladen et al. 2018). A recent study has 

analyzed the contribution of three primary Cr(VI) sources to pollute California’s 
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ground water: Cr(VI) resulting from industrial pollution, injection of anthropogenic 

oxidants of naturally occurring Cr(III), and agricultural activities that may enhance 

oxidation of naturally occurring Cr(III) (Hausladen et al. 2018). Additionally, crops 

irrigation with untreated domestic and industrial effluents may result in 

accumulation of heavy metals in soils, leading to accumulation of Cr(VI) in the 

plant tissue (Stasinos and Zabetakis 2013).  

4.2 Hexavalent Chromium Carcinogenesis 

Metals are unique among pollutant toxicants because they are all naturally 

occurring and, in many cases, are already ubiquitous to some level within the 

human environment. Thus, regardless of how safely metals are used in industrial 

processes or consumer endpoint products, some level of human exposure is 

inevitable. Metals are neither created nor destroyed by human endeavors. 

Anthropogenic usage of metals increases the concentration of metals in the 

biosphere and alter their chemical speciation form, which thereby impact their 

toxicity potential. With a few very notable exceptions, most metals are only 

sparingly recycled once used. These factors combine altogether tend to make 

metals persistent in the human environment, often resulting in prolonged 

exposures. Cr(VI) is known to induce cancer in humans.  It is classified as a 

Group1 human carcinogen by the International Agency for Research in Cancer 

(IARC). However, the mechanism by which Cr(VI) induces cancer is unknown.  

Chronic exposure of normal bronchial epithelial (BEAS-2B) cells to low 

dose of Cr(VI)  induces malignant cell transformation (Clementino et al. 2018; Dai 

et al. 2017; Kim et al. 2015a; Kim et al. 2016; Park et al. 2015; Pratheeshkumar 

et al. 2016; Zhang et al. 2015b).  Once the cells are malignantly transformed, 

these cells exhibit reduced capacity of generating ROS, development of 

apoptosis resistance,  induced angiogenesis, increased cell proliferation and 

tumorigenesis (Kim et al. 2016; Kim et al. 2015b; Lee et al. 2012; 

Pratheeshkumar et al. 2016; Wang et al. 2011).  
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Transformed cells adapt metabolism to support tumor initiation and 

progression. Altered metabolic activities directly participate in the process of cell 

transformation or support a large requirement for nucleotides, amino acids, and 

lipids for tumor growth. In malignantly Cr(VI)-transformed cells, mitochondrial 

oxidative phosphorylation is defective, pentose phosphate pathway, glycolysis, 

and glutaminolysis are upregulated. These metabolic reprogramming supports 

rapid cell proliferation and contributes to tumorigenesis of Cr(VI)-transformed 

cells. Chapter 1 summarized the current progress in the studies of metabolic 

reprogramming and Cr(VI) carcinogenesis with emphasis on the metabolic 

enzymes and oxidative stress related major oncogenic pathways. 

The study in Chapter 2 investigated the role of NAD-dependent deacetylase 

Sirtuin-3 (SIRT3) in tumorigenesis of Cr(VI)-transformed cells. The results 

showed that In Cr(VI)-transformed cells, SIRT3 was upregulated and 

mitochondrial ATP production and proton leak were reduced. Inhibition of SIRT3 

further decreased mitochondrial ATP production, proton leak and mitochondrial 

mass and increased mitochondrial membrane depolarization, indicating that 

SIRT3 positively regulates mitochondrial oxidative phosphorylation and 

maintenance of mitochondrial integrity. Mitophagy is critical to maintain proper 

cellular functions. In Cr(VI)-transformed cells expressions of Pink 1 and Parkin, 

two mitophagy proteins, were elevated, indicating that Cr(VI)-transformed cells 

are mitophagy deficient. Knockdown of SIRT3 induced mitophagy, suggesting 

that SIRT3 plays an important role in mitophagy deficiency of Cr(VI)-transformed 

cells. Our results also showed that in Cr(VI)-transformed cells binding of Nrf2 to 

ARE of SIRT3 gene promoter was dramatically increased. Inhibition of SIRT3 

suppressed cell proliferation and tumorigenesis of Cr(VI)-transformed cells. This 

study demonstrated that upregulation of SIRT3 causes mitophagy deficiency, 

playing an important role in cell survival and tumorigenesis of Cr(VI)-transformed 

cells. 

The study in Chapter 3 investigated the role of Nrf2 in regulating metabolic 

reprogramming in Cr(VI)-transformed cells. The results showed that Nrf2 is 
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constitutive activated in Cr(VI)-transformed cells. Cr(VI)-transformed cells exhibit 

reduced mitochondrial phosphorylation and increased glycolysis. Inhibition of 

Nrf2 in Cr(VI)-transformed cells increased mitochondrial phosphorylation and 

glycolysis. AMPK is a key protein to regulate glycolysis. Our results showed that 

AMPK is activated. Inhibition of AMPK reduced glycolysis of Cr(VI)-transformed 

cells. Further study suggested that Nrf2 is a positive regulator of 

AMPK/PFK1/PFK2 pathway. In summary, this study demonstrated that 

constitutive activation of Nrf2 play an important role in metabolic reprogramming, 

leading to increased cell proliferation and tumorigenesis of Cr(VI)-transformed 

cells. 

Overall these studies demonstrated that Nrf2 is constitutively activated in 

Cr(VI)-transformed cells; that Nrf2 binds to ARE of SIRT3 promoter, causing 

upregulation of SIRT3, which in turn induced  mitophagy deficiency, indicating 

importance of SIRT3 in maintenance of mitochondria mass and further in 

increased cell proliferation and tumorigenesis of Cr(VI)-transformed cells; and 

that Nrf2 is essential for metabolic reprogramming of Cr(VI)-transformed cells. 

Cr(VI)-transformed cells exhibit decreased oxidative phosphorylation and 

increased pentose phosphate pathway (PPP), glutaminolysis, and glycolysis.  

Nrf2 activates AMPK, resulting in glycolytic shift in Cr(VI)-transformed cells. The 

role of Nrf2 in Cr(VI)-transformed cells metabolic reprogramming and 

mitochondria function is summarized in Figure 4.1. 
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Figure 4.1 The scheme of the role of Nrf2 in metabolic reprogramming and 

mitochondria function of Cr(VI)-transformed cells. Chronic exposure of 

normal BEAS-2B cells to Hexavalent Chromium (Cr(VI)) at low dose induces 

malignant cell transformation. Nrf2 is upregulated in Cr(VI)-transformed cells. 

Nrf2 induces upregulation of SIRT3. SIRT3 expression leads to mitophagy 

deficiency, maintenance of mitochondria mass, increased cell proliferation and 

tumorigenesis in Cr(VI)-transformed cells. Additionally, Nrf2 expression leads to 

decreased oxidative phosphorylation, and increased glycolysis, pentose 

phosphate pathway and glutaminolisys in Cr(VI)-transformed cells. Nrf2 leads to 

the activation of AMPK signaling pathway, which contributes to the glycolytic shift 

observed in Cr(VI)-transformed cells. Futhermore, Nrf2 constitutive activation 

contributes to  the rapid cell proliferation and tumorigenesis of Cr(VI)-transformed 

cells. 
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Appendices 

 

 

Supplemental Figure 1 In A549 cells SIRT3 inhibition reduces p62 and Nrf2 protein 

levels, mitochondria mass, and mitochondrial oxidative phosphorylation function. 

(A) Whole lysates from A549 cells were harvested for immunoblotting analysis. (B) and 

(C) A549 cells transfected with or without shSIRT3 were seeded in 96-well plates for 

overnight. Mitochondrial stress test was conducted using Seahorse analysis. (D) A549 

cells transfected with or without shSIRT3 were seeded in 96-well plate for overnight. 

Mitochondrial mass was measured via NAO fluorescence intensity. (E) A549 cells 

transfected with shSIRT3 were seeded in 96-well plates for overnight. JC-1 fluorescence 

intensity was measured. Data are expressed as mean ± SD (n=8). *, p < 0.05, compared 

to that in scramble cells. 
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Supplementary Table 1 Relative level of metabolic enzymes in Cr(VI)-transformed 

cells and passage-matched normal cells with Nrf2 overexpression 

 

Gene Symbol Target pathway BEAS-2B BEAS-2B Nrf2 BEAS-2B-Cr(VI) 

ADPGK Glycolysis 0.4 ± 0.5 7.4 ± 0.6 * 6.7 ± 3.2 * 

ALDOA Glycolysis/PPP 6.8 ± 4.3 496.3 ± 14.2 * # 254.9 ± 57.0 * 

DLAT Glycolysis 14.7 ± 1.0 28.6 ± 1.5 * # 21.6 ± 2.6 * 

ENO1 Glycolysis 1.5 ± 0.6 1.6 ± 1.2 # 71.6 ± 0.9 * 

G6PC3 Glycolysis 50.7 ± 3.4  98.8 ± 6.7 * 97.3 ± 14.9 * 

GPI Glycolysis 19.1 ± 4.0  121.1 ± 11.2 * # 73.8 ± 8.9 * 

HK2 Glycolysis 21.2 ± 3.8 36.1 ± 1.1 * # 32.1 ± 2.8 * 

PDHA1 Glycolysis 48.9 ± 4.5  210.2 ± 11.3 * # 158.5 ± 11.7 *  

PFKM Glycolysis 29.5 ± 4.7 86.7 ± 3.9 * # 83.9 ± 3.6 * 

PGK1 Glycolysis 107.5 ± 36.4 213.9 ± 26.6 * # 221.7 ± 68.5 

PKM Glycolysis 112.5 ± 70.6 65.3 ± 18.4 # 261 ± 73.9 

G6PD PPP 29.2 ± 5.3 222.0 ± 21.4 * 142.3 ± 50.2 * 

PGD PPP 6.8 ± 3.1 13.7 ± 0.8 * # 31.4 ± 5.9 * 

PRPS1 PPP 59.4 ± 1.9 125.3 ± 4.0 * # 135.2 ± 8.1* 

PRPS2 PPP 27.2 ± 0.1 74.6 ± 2.5 * # 53.6 ± 5.9  

RPE PPP 28.1 ± 1.7 42.6 ± 2.9 * # 39.0 ± 4.7 * 

RPIA PPP 20.1 ± 2.5 67.9 ± 0.4 * # 47.5 ± 2.7 * 

TALDO1 PPP 28.8 ± 6.6 76.3 ± 8.0 * # 55.8 ± 7.7  * 

TKT PPP 151.9 ± 32.4 550.9 ± 36.0 * # 324.3 ± 85.5 * 

GFPT1 Glutaminolysis 14.4 ± 1.4 20.5 ± 2.1 * # 26.8 ± 6.7 * 

GLS Glutaminolysis 19.3 ± 3.7 28.7 ± 2.8 * 30.3 ± 10.4 

 

Supplementary Table 1 Relative level of glycolysis, PPP and glutaminolysis 

transcripts in Cr(VI)-transformed cells and passage-matched normal cells 

transfected with scramble or Nrf2 vector. Whole transcriptome sequencing analysis 
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was performed using HiSeq 2500 Rapid Run. Differentially expressed genes involved in 

AMPK signaling pathway were detected using EBseq. Data are expressed as mean ± 

SD (n=3). * and #, p < 0.05, compared to those in scramble passage-matched BEAS-2B, 

and Cr(VI)-transformed cells, respectively. 
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Supplementary Table 2 Relative level of enzymes involved in oxidative 

phosphorylation in Cr(VI)-transformed cells and passage-matched normal cells 

with Nrf2 overexpression 

 

Gene Symbol Mitochondrial complex BEAS-2B BEAS-2B Nrf2 BEAS-2B-Cr(VI) 

NDUFA13 Complex I 58.1 ± 5.1 38.4 ± 1.1 *  34.9 ± 12.2 * 

NDUFA11 Complex I 10.0 ± 0.2 5.6 ± 1.1 * 6.4 ± 1.0 * 

NDUFC2 Complex I 154.6 ± 8.8 94.2 ± 5.5 * 87.3 ± 23.5 * 

NDUFS8 Complex I 182.5 ± 2.0 137.6 ± 8.9 * # 99.2 ± 26.7 * 

NDUFS7 Complex I 71.7 ± 3.1 75.8 ± 7.6 # 46.4 ± 13.4 * 

NDUFS5 Complex I 544.2 ± 63.1 263.8 ± 15.1 * 271.8 ± 21.4 * 

NDUFB7 Complex I 254.3 ± 16.4 161.1 ± 15.7 * 153.6 ± 29.6 * 

NDUFV1 Complex I 12.5 ± 3.2 6.3 ± 2.2 * 5.8 ± 1.2 * 

NDUFA6 Complex I 105.5 ± 2.8 0.0 ± 0.0 * 0.5 ± 0.8 * 

NDUFA2 Complex I 152.4 ± 21.6 67.9 ± 2.6 * 72.6 ± 11.0 * 

SDHA Complex II 246.5 ± 37.5 128.2 ± 7.7 * 105.6 ± 20.1 * 

UQCRC1 Complex III 108.1 ± 6.8 116.5 ± 9.7 # 84.5 ± 18.0 

UQCR11 Complex III 160.3 ± 15.1 91.7 ± 11.2 * 101.5 ± 4.1 * 

UQCR10 Complex III 103.6 ± 9.3 85.0 ± 7.1 * # 61.4 ± 9.1 * 

UQCRH Complex III 42.0 ± 3.1 23.1 ± 1.6 * 26.0 ± 2.1 * 

COX4I1 Complex IV 8.3 ± 1.2 8.1 ± 1.7 # 3.4 ± 1.3 * 

COX6A1 Complex IV 1.4 ± 0.5 1.4 ± 0.3 # 0.7 ± 0.1 * 

COX6B1 Complex IV 4.7 ± 1.1 4.2 ± 0.2 # 2.5 ± 0.5 * 

ATP5H Complex V 631.8 ± 32.6 364.9 ± 14.5 * 362.8 ± 11.1 * 

ATP5L Complex V 119.5 ± 9.5 108.5 ± 8.2 87.3 ± 19.9 * 

ATP5C1 Complex V 76.2 ± 15.7 2.6 ± 1.0 * 1.6 ± 0.6 * 

 

 



77 
 

Supplementary Table 2 Relative level of Oxidative Phosphorylation transcripts in 

Cr(VI)-transformed cells and passage-matched normal cells transfected with 

scramble or Nrf2 vector. Whole transcriptome sequencing analysis was performed 

using HiSeq 2500 Rapid Run. Differentially expressed genes involved in AMPK signaling 

pathway were detected using EBseq. Data are expressed as mean ± SD (n=3). * and #, 

p < 0.05, compared to those in scramble passage-matched BEAS-2B and Cr(VI)-

transformed cells, respectively. 
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