University of Kentucky UKnowledge Kentucky Geological Survey Information Circular Kentucky Geological Survey 1980 # High-Carbonate and Low-Silica Stone in the High Bridge Group (Middle Ordovician), Fayette County, Central Kentucky Garland R. Dever Jr. University of Kentucky Right click to open a feedback form in a new tab to let us know how this document benefits you. Follow this and additional works at: https://uknowledge.uky.edu/kgs ic Part of the Geology Commons #### **Repository Citation** Dever, Garland R. Jr., "High-Carbonate and Low-Silica Stone in the High Bridge Group (Middle Ordovician), Fayette County, Central Kentucky" (1980). Kentucky Geological Survey Information Circular. 32. https://uknowledge.uky.edu/kgs_ic/32 This Report is brought to you for free and open access by the Kentucky Geological Survey at UKnowledge. It has been accepted for inclusion in Kentucky Geological Survey Information Circular by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu. # KENTUCKY GEOLOGICAL SURVEY UNIVERSITY OF KENTUCKY, LEXINGTON SERIES XI, 1980 Donald C. Haney, Director and State Geologist HIGH-CARBONATE AND LOW-SILICA STONE IN THE HIGH BRIDGE GROUP (MIDDLE ORDOVICIAN), FAYETTE COUNTY, CENTRAL KENTUCKY Garland R. Dever, Jr. # KENTUCKY GEOLOGICAL SURVEY UNIVERSITY OF KENTUCKY, LEXINGTON SERIES XI, 1980 Donald C. Haney, Director and State Geologist HIGH-CARBONATE AND LOW-SILICA STONE IN THE HIGH BRIDGE GROUP (MIDDLE ORDOVICIAN), FAYETTE COUNTY, CENTRAL KENTUCKY Garland R. Dever, Jr. #### UNIVERSITY OF KENTUCKY Otis A. Singletary, President Lewis W. Cochran, Vice President for Academic Affairs Wimberly C. Royster, Dean of Graduate School and Coordinator of Research James Y. McDonald, Executive Director, University of Kentucky Research ## KENTUCKY GEOLOGICAL SURVEY ADVISORY BOARD Ralph N. Thomas, Chairman, Owensboro David E. Bayer, Lexington John G. Donan, Sr., Madisonville Wallace W. Hagan, Lexington Nicholas C. Kieffer, Jr., Louisville Harold G. Mays, Frankfort Phil Miles, Lexington J. Edward Parker, Lexington W. J. Reynolds, Allen Henry A. Spalding, Hazard George H. Warren, Jr., Owensboro David A. Zegeer, Lexington #### KENTUCKY GEOLOGICAL SURVEY Donald C. Haney, Director and State Geologist Preston McGrain, Assistant State Geologist, Water, Minerals, and Maps Norman C. Hester, Assistant State Geologist, Energy #### ADMINISTRATIVE DIVISION #### Personnel and Finance Section: James Hamilton, Administrative Staff Officer II Jo M. McGurk, Administrative Accounts Clerk #### Clerical Section: Deborah Elam, Administrative Secretary Brenda L. Hayden, Administrative Secretary Anna L. Hopkins, Administrative Secretary Norma J. Reynolds, Administrative Secretary Helen P. Sensabaugh, Administrative Secretary Jean Cotton, Secretary Juanita G. Smith, Secretary, Henderson Office ## **Publications Section:** Donald W. Hutcheson, Head Margaret K. Luther, Assistant Editor Roger B Potts, Chief Cartographic Illustrator Janet K. Appleby, Drafting Technician Gary Creighton, Drafting Technician William A. Briscoe, III, Sales Supervisor Jonathan M. Prasse, Clerical Assistant II Lemuel W. Waite, Stores Worker Patrick H. McHaffie, Geologist/Geographer II ## GEOLOGICAL DIVISION ## Coal Section: # Lexington Office Russell A. Brant, Head James C. Cobb, Geologist IV J. Hiram Smith, Geologist III James C. Currens, Geologist III Richard E. Sergeant, Geologist III Elisabeth F. Portig, Geologist I Ernie R. Slucher, Geologist I #### Henderson Office Allen D. Williamson, Geologist IV David A. Williams, Geologist III. ## Morehead Office Gary W. Casper, Geologist III Donald R. Chesnut, Jr., Geologist II Kenneth L. Gill, Geologist II Wayne T. Frankie, Geologist I Joseph P. Hamilton, Geologist I Jerry R. McCleese, Geologist I #### Industrial and Metallic Minerals Section: Preston McGrain, Head and Assistant State Geologist Garland R. Dever, Jr., Geologist IV Warren H. Anderson, Geologist II Jack R. Moody, Geologist II Robert D. Trace, Geologist III, Princeton Office Mary E. Barron, Senior Laboratory Assistant #### Oil and Gas Section: Louis R. Ponsetto, Head Martin C. Noger, Geologist IV Frank H. Walker, Geologist IV John G. Beard, Geologist IV, Henderson Office Patrick J. Gooding, Geologist II Brandon Nuttall, Geologist I Lorene Teater, Records Librarian Richard W. Taulbee, Senior Laboratory Assistant Robert R. Daniel, Laboratory Assistant #### Water Section: John D. Kiefer, Head Steven Cordiviola, Geologist III Fred Lawrence, Geologist III James Kipp, Geologist II Margaret A. Townsend, Geologist II Thomas E. Dugan, Geologist I Mary K. Gilmore, Geologist I Julian Duffy, Geologist II, Henderson Office #### SPECIAL PROJECTS DIVISION Norman C. Hester, Assistant State Geologist and Coordinator of Project Proposals #### Projects # Kentucky Department for Natural Resources and Environmental Protection - Aquifer Characterization Steven Cordiviola, Geologist III and Principal Investigator Thomas E. Dugan, Geologist I Mary K. Gilmore, Geologist I. Robert C. Holladay, Drafting Technician Kentucky Institute for Mining and Minerals Research - Coal Reserves, Eastern Kentucky Lexington Office Russell A. Brant, Geologist V and Principal Investigator J. Hiram Smith, Geologist III Elisabeth R. Portig, Geologist I Ernie R. Slucher, Geologist I #### Morehead Office Gary W. Casper, Geologist III Donald R. Chesnut, Jr., Geologist II Kenneth L. Gill, Geologist II Wayne T. Frankie, Geologist I Joseph P. Hamilton, Geologist I Jerry R. McCleese, Geologist I. Kentucky Institute for Mining and Minerals Research - Limestone Investigations Garland R. Dever, Jr., Geologist IV and Principal Investigator Jack R. Moody, Geologist II Nuclear Regulatory Commission - New Madrid Earthquake Project Howard R. Schwalb, Principal Investigator U.S. Geological Survey - Coal Hydrology, #### Eastern Kentucky Steven Cordiviola, Geologist III and Principal Investigator Fred Lawrence, Geologist III James Kipp, Geologist II Margaret A. Townsend, Geologist II U.S. Geological Survey-Coal Sampling, Eastern Kentucky James C. Currens, Geologist III and Principal Investigator U.S. Geological Survey - Development of Earth Science Information for Planners Richard E. Sergeant, Geologist III and Principal Investigator Roxanne Bingemer, Geologist I, Henderson Office # CONTENTS | Abstract | | | | | | | | | | | | | | | | | | | 1 | |-------------------------|----|----|-----|---|---|---|---|---|---|---|---|---------|---|--|--|---|---|---|----| | Introduction | | | | | | | | | | | | | | | | | | | 1 | | Geographic and geologic | | | | | | | | | | | | | | | | | | | 2 | | High Bridge Group | | • | | | | • | • | | | | • | | | | | , | • | | 4 | | General | | | | | | | | | ٠ | ٠ | | | | | | | • | ٠ | 4 | | Potential industrial | us | es | · . | • | , | | ٠ | | ٠ | | | | | | | • | | • | 7 | | Conclusions | | | | | | • | | • | • | | | | • | | | | • | | 13 | | References cited | | | | | | | | | | - | | Total I | | | | | | | 14 | # ILLUSTRATIONS | rigui | re | | Page | |-------|----|---|------| | | 1. | Map of part of central Kentucky showing location of | | | | | ASARCO core hole, active mines producing construction | | | | | and agricultural stone from the High Bridge, and | | | | | transportation network | 3 | | | 2. | Map showing main outcrop area of High Bridge rocks | 5 | | | 3. | Zones of high-carbonate and high-calcium stone, and | | | | | stratigraphy of analyzed sections in cores from | | | | | Fayette and Boone Counties | 6 | | | 4. | Zones of high-carbonate and low-silica stone in High | | | | | Bridge section from ASARCO core, Fayette County | 9 | | | | TABLES | | | | | | Page | | | 1. | Average values for foot-by-foot analyses of zones of | | | | | high-carbonate and low-silica stone in High Bridge | | | | | from ASARCO core, Fayette County | 10 | | | 2. | Chemical analyses of American Smelting and Refining | | | | | Company core | 16 | # HIGH-CARBONATE AND LOW-SILICA STONE IN THE HIGH BRIDGE GROUP (MIDDLE ORDOVICIAN), FAYETTE COUNTY, CENTRAL KENTUCKY Garland R. Dever, Jr. #### **ABSTRACT** The High Bridge Group (Middle Ordovician) of central Kentucky, a major source of limestone and dolomite for construction and agricultural stone, is also a potential source of stone for industrial uses requiring carbonate rocks of high chemical purity. Chemical analyses of foot-by-foot samples from a Fayette County core show that several thick zones of high-carbonate and low-silica stone are present in the High Bridge at a minable depth. #### INTRODUCTION The High Bridge Group (Middle Ordovician) is a thick (430 to 570 feet), widespread body of limestone and dolomite which is at a minable depth beneath a large area of central and north-central Kentucky. It is being mined for construction and agricultural stone, and for the production of lime for flux, flue-gas desulfurization, and chemical industries. The Kentucky Geological Survey is conducting a regional study of the High Bridge to determine its chemical characteristics and to outline the occurrence of deposits suitable for industrial uses requiring carbonate rocks of high chemical purity. The purpose of this report is to present the chemical analyses of footby-foot samples of the High Bridge section from a core taken in Fayette County. The core contained several thick zones of high-carbonate and low-silica stone. This is the second publication in a proposed series of reports on the chemical characteristics of High Bridge carbonate rocks; analyses of foot-by-foot samples from a Boone County core were published in the first report (Dever, 1974). The Fayette County core was given to the Kentucky Geological Survey by the American Smelting and Refining Company (ASARCO). It is on file and available for inspection at the Survey's Sample and Core Library in the Reynolds Building, 670 South Broadway, Lexington. The interval from 185 to 823 feet was split and sampled
for analysis. Laboratory analyses were performed by Lucille Cantor and Nelda N. Mitchell of the Survey staff, under the supervision of Thomas A. Kendall, at the Analytical Laboratory, Office of Research and Engineering Services, College of Engineering, University of Kentucky. # GEOGRAPHIC AND GEOLOGIC SETTING The ASARCO core was taken at a site in southern Fayette County, 13 miles south of Lexington (Fayette County Courthouse) and 1.4 (airline) miles north of the Kentucky River (river mile 160) (Fig. 1). The core hole is on the west side of Kentucky Highway 1975 (Jacks Creek Road), 3.7 miles south of its junction with U. S. Highways 25 and 421. The immediate area is covered by the Coletown topographic quadrangle map and by the geologic map of the Coletown quadrangle (Black, 1967), both at the scale of 1:24,000. The Kentucky River is maintained as a navigable waterway from its mouth in Carroll County (Ohio River mile 545.9) upstream to Beattyville, Lee County (river mile 254.8). It has 14 locks and dams. Lock dimensions range from 145 by 38 feet to 148 by 52 feet. Access to the Kentucky River from the core hole site is available via several state roads. The site is 3.9 miles from the river (mile 158) via Kentucky Highways 1975 and 169 (Spears Road and Tates Creek Road); it is 4.6 miles from the river (mile 164) via Kentucky Highways 1975 and 1976 (Jacks Creek Road). Kentucky Highway 1975 furnishes access to the network of interstate, federal, and state highways in Fayette County. The county is served by main Figure 1. Map of part of central Kentucky showing location of ASARCO core hole, active mines producing construction and agricultural stone from the High Bridge, and transportation network. Mines in Anderson and Franklin Counties, west of map area, are shown in Figure 2. lines of the Southern Railway, Louisville and Nashville Railroad, and Chessie System (Chesapeake and Ohio Railway). The core hole is in the Inner Blue Grass region, on the upland surface of the Lexington Plain and near the narrow, commonly steep-walled valley of the entrenched Kentucky River. Maximum relief between the upland and the river in the vicinity is about 500 feet. The site is near the axis of the Cincinnati arch (Fig. 2). It is on the north (upthrown) side of the Kentucky River fault system which crosses southern Fayette County. Displacement across the fault system is about 250 feet. Surface rocks in the immediate area are principally limestone and shale of the Middle and Upper Ordovician Lexington Limestone and Clays Ferry Formation (Black, 1967). To the east and south of the site, High Bridge limestone and dolomite are exposed along parts of the valleys of the Kentucky River and its tributaries, mainly where their courses are on the upthrown side of the fault system. #### HIGH BRIDGE GROUP #### General The High Bridge Group consists of three formations, which are, in ascending order, the Camp Nelson Limestone, Oregon Formation, and Tyrone Limestone (Fig. 3). Total thickness of the High Bridge in the Fayette County core is 572 feet: Camp Nelson, 442 feet; Oregon, 36½ feet; and Tyrone, 93½ feet. The three formations are composed principally of limestone and dolomite; detrital shale is a relatively minor constituent. The Tyrone and Camp Nelson mainly consist of micrograined limestone which is partly mottled with small irregular bodies and thin zones of very finely crystalline dolomite. The Oregon consists of very finely crystalline dolomite and dolomitic limestone, partly interbedded with micrograined limestone. Interpretation of Figure 2. Map showing main outcrop area of High Bridge rocks, principal fault systems, location of ASARCO core hole, and active mines. (Modified from Cressman and Noger, 1976, Fig. 1.). the depositional environments of the Tyrone, Oregon, and upper Camp Nelson has been presented by Cressman and Noger (1976). Several thin bentonites which serve as useful markers for local and regional correlation are present in the High Bridge. The two most promi- Figure 3. Zones of high-carbonate and high-calcium stone, and stratigraphy of analyzed sections in cores from Fayette and Boone Counties. nent bentonites occur in the upper Tyrone: (1) the "Mud Cave," present locally at or near the top of the formation; and (2) the "Pencil Cave," present across the region, 15 to 30 feet below the top (Wolcott and others, 1972). In the Fayette County core, a third bentonite is present about 10 feet above the base of the Tyrone. The Tyrone is overlain by the Lexington Limestone; the Camp Nelson is underlain in turn by the Wells Creek Dolomite and, where present, St. Peter Sandstone. The Wells Creek or St. Peter rests unconformably upon the Knox Group. The contact between the micrograined limestone of the Tyrone and the bioclastic limestone of the basal Lexington is distinct, but the contact between the Camp Nelson and Wells Creek appears gradational. The lower Camp Nelson in the Fayette County core is mainly dolomite (in part slightly silty and sandy) with zones and lenses of micrograined limestone; the Wells Creek is silty and sandy dolomite. In this study, the contact between the Camp Nelson and Wells Creek has been placed below the lowest occurrence of micrograined limestone, a characteristic High Bridge lithology. The Tyrone, Oregon, and up to 320 feet of Camp Nelson (Wolcott, 1969) are exposed discontinuously along the Kentucky River from river mile 175.5, Boonesborough, Madison County, downstream to river mile 56.5 at 0'Nan Bend, central Franklin County, 8 miles downstream from Frankfort (Fig. 2). Elsewhere in the State, the High Bridge and its correlatives are in the subsurface. #### Potential Industrial Uses Carbonate rocks of high chemical purity are present in the High Bridge of Fayette County. Chemically pure limestone and dolomite have a variety of industrial uses, for example: raw material for the production of lime, portland cement, and chemical products; flux for steel and other metallurgical industries; fillers; rock dust for underground coal mines; and a reactive agent for flue-gas desulfurization. Specifications for many of these industrial uses require that the stone be essentially free of noncarbonate con- stituents such as silicon dioxide (SiO_2) , aluminum oxide (Al_2O_3) , iron oxide (Fe_2O_3) , sulfur (S), and phosphorus (P). For certain industrial uses, magnesium carbonate $(MgCO_3)$ is a deleterious constituent. In this report, <u>high-carbonate</u> <u>stone</u> designates carbonate rocks composed of 95 percent or more total carbonates, calcium carbonate plus magnesium carbonate ($CaCO_3 + MgCO_3$). <u>Low-silica</u> <u>stone</u> designates carbonate rocks with a total (free and combined) silicon dioxide (SiO_2) content of 4 percent or less. <u>High-calcium</u> <u>limestone</u> designates carbonate rocks composed of 95 percent or more calcium carbonate ($CaCO_3$). Three zones of high-carbonate stone, 16 to 55½ feet thick, are present in the Fayette County core (Figs. 3 and 4; Tables 1 and 2). The zones are in the Camp Nelson and show a close correlation with the stratigraphic position of the high-carbonate zones of the Camp Nelson in the Boone County core, 70 miles to the north (Fig. 3). The high-carbonate stone in Fayette County will meet the chemical specifications cited for stone used for blast-furnace flux, the production of low-magnesium lime, and rock dust for underground coal mines (Boynton, 1966; Lamar, 1961; Federal Register Office, 1970). The intervals of low-silica stone, which mainly coincide with the high-carbonate zones, meet the silica specifications for rock dust cited in Public Law 91-173, the Federal Coal Mine Health and Safety Act of 1969 (Federal Register Office, 1970) (Fig. 4; Tables 1 and 2). Zones of high-calcium limestone in the core are only 1 to 2 feet thick. The High Bridge is being mined at two sites on the Ohio River in north-central Kentucky for the production of lime. The Dravo Lime Company is producing a low-magnesium lime, containing 5 to 7 percent magnesium oxide (MgO), in Mason County for stack-gas scrubbing (Mining Engineering, 1977). A limestone deposit in the Camp Nelson is being mined by the Black River Figure 4. Zones of high-carbonate and low-silica stone in High Bridge section from ASARCO core, Fayette County. Mining Company in Pendleton County for the production of high-calcium quicklime for steel-furnace flux and chemical industries, and the production of hydrated lime for chemical industries and water treatment. Limestone from the Pendleton County mine also is marketed for the production of rock dust for coal mines. In central Kentucky, the High Bridge is a major source of construction and agricultural stone for the area's mixture of agricultural and expanding urban markets, centered on Lexington and Fayette County (Fig. 1). The lower Tyrone and Oregon are mined together at five sites in four counties: Anderson (Kentucky Stone Co.); Fayette (Central Rock Co. and Vulcan Materials Co.); Franklin (Harrod-Carter, Inc.); and Jessamine (Lexington Quarry Co.). The Table 1.--Average Values for Foot-by-Foot Analyses of Zones of High-Carbonate and Low-Silica Stone in High Bridge from ASARCO Core, Fayette County. | | Interval
(Feet) | Total
Carbonate
(%) | CaCO3
(%) | MgC03
(%) | \$10 ₂
(%) | Fe ₂ 0 ₃ (%) | A1203
(%) | s
(%) | P
(%) | |-------|--------------------|---------------------------|--------------|--------------|--------------------------|------------------------------------|--------------|----------|----------| | 63 | 350-366 | 96.73 | 84.58 | 12.15 | 2.06 | 0.24 | 0.77 | 0.073 | 0.006 | | HIGH | 406-434 | 97.78 | 93.85 | 3.93 | 1.36 | 0.12 | 0.53 | 0.065 | 0.005 | | CARBO | 572-627½ | 97.79 | 80.78 | 17.01 | 1.27 | 0.18 | 0.50 | 0.066 | 0.008 | | | 290-314 | 95.83* | 77.84 | 17.99 | 2.84 | 0.27 | 0.48 | ** | ** | | | 348-369 | 96.58* | 85.35 | 11.23 | 2.12 | 0.23 | 0.85 | 0.079 | 0.007 | | LOW | 371-388 | 95.70* | 85.14 |
10.56 | 2.47 | 0.24 | 1.19 | ** | ** | | SLo | 406-439 | 97.27* | 92.58 | 4.69 | 1.67 | 0.13 | 0.63 | 0.071 | 0.006 | | | 572-627½ | 97.79 | 80.78 | 17.01 | 1.27 | 0.18 | 0.50 | 0.066 | 0.008 | | | | | | | | | | | | ^{*}Interval includes samples with total carbonate content of less than 95 percent (see Table 2). ^{**}Sulfur (S) and phosphorus (P) analyses not run on all samples in intervals. Oregon is mined in Garrard County (Camp Nelson Stone Co.); the upper Camp Nelson is mined in Madison County (Boonesboro Quarries). The Camp Nelson interval being mined in Madison County is composed of low-silica stone; rock dust for coal mines formerly was produced from the deposit. Dimension stone has been quarried from the Tyrone and Oregon in the central Kentucky outcrop belt, but no operations are active at the present time. Mining operations in central Kentucky commonly encounter a zone of argillaceous limestone and shale immediately below the Oregon in the uppermost Camp Nelson (correlative with the interval, $332\frac{1}{2}$ to 343 feet, in the ASARCO core, Table 2). Rock in this zone will not meet specifications for construction stone, but the major part of the Camp Nelson underlying the zone appears to be suitable for aggregate and other construction uses. A market that should prove increasingly important for stone producers is the use of carbonate rocks and lime as the reactive agents in processes being employed to meet federal and state standards for sulfur oxide emissions from coal-burning plants. Flue-gas desulfurization systems employing lime and limestone wet-scrubbing processes are in operation at a number of coalburning plants and will be used for a majority of the flue-gas desulfurization units which are committed or under construction by electric utilities for coal-fired boilers (Dasti, 1977). As noted above, High Bridge stone currently is mined in Mason County for the production of lime for stack-gas scrubbing. Fluidized-bed combustion systems, in which coal is burned in a fluidized bed of carbonate-rock particles, are undergoing testing and development. With an increased reliance on the use of coal to meet the energy requirements of the United States, greater quantitites of stone will be needed for flue-gas desulfurization, as well as for rock dust, spoil-bank reclamation, and aciddrainage neutralization. A sharp increase in the demand for stone would result from the utilization of fluidized-bed systems for power generation and industrial boilers. Results of tests conducted by the Argonne National Laboratory to evaluate carbonate rocks for fluidized-bed systems indicate that dolomite and dolomitic limestone have higher sulfur-sorption values than limestone (Snyder and Wilson, 1977). Preliminary testing of the sulfur-sorption capacity of dolomitic stone from the High Bridge has been commenced. Two samples of Oregon dolomite, taken from stockpiles at the Central Rock Co. mine, Fayette County, were tested by the Process Development Division, Institute for Mining and Minerals Research, University of Kentucky. Average values of 0.20 and 0.22 mg. S03 adsorbed mg. uncalcined stone were obtained from test runs on the two samples in a thermogravimetric analyzer (D. P. Wesley, written communication, 1980). All present High Bridge production is from underground mines, both drift and slope mines. With the outcrop belt being restricted to the narrow, entrenched valleys of the Kentucky River and its tributaries, it is expected that future large-scale operations in central Kentucky also will involve underground mining. In selecting a mine site in or near that part of the outcrop belt where the Kentucky River crosses back and forth over the Kentucky River fault system (Fig. 2), it should be noted that individual High Bridge exposures along the course of the river may represent a large, operable deposit or only a small isolated, fault-bounded block on the tip of a meander bend (McGrain and Dever, 1968). The bentonitic clays of the upper High Bridge, where not breached, may form an effective barrier against the downward percolation of ground water, reducing the potential for water problems in underground mining. Underground operations close to urban markets offer the advantages of requiring less high-cost urban land and producing less surface noise and dust than open-pit operations. Underground mining also offers the potential for year-round operation and avoids high costs for overburden removal and reclamation. Coring will be required to determine the presence, thickness, and extent of a potential deposit of chemically pure carbonate rock or construction stone in the High Bridge. Cores will provide samples for chemical analysis and physical testing, and furnish information on factors such as roof rock. Dever and others (1978) have outlined areas along the valleys of the Kentucky River and Ohio River where the depth to the top of the High Bridge is less than 1,000 feet below the level of the valley floor. Structure contours of the top of the Tyrone (top of High Bridge) have been compiled by Black and others (1977a, 1977b, 1977c, 1977d) on maps covering a large area of central Kentucky. Thickness trends in the High Bridge of central and north-central Kentucky are described by Wolcott and others (1972). ## CONCLUSIONS The High Bridge Group in both central and north-central Kentucky contains thick deposits of chemically pure carbonate rock. The general stratigraphic correlation between deposits across the region suggests that they are widespread and represent large reserves of stone for industrial use. In the current pattern of exploitation, which reflects the geographic distribution of industries, available means of transport, and local markets, the High Bridge of central Kentucky is being mined for construction and agricultural stone while the High Bridge of north-central Kentucky along the Ohio River is mined principally for the production of lime for various industrial uses. The presence of deposits of high-carbonate and low-silica stone in the ASARCO core from Fayette County indicates that the High Bridge of central Kentucky can serve as a source of stone for uses requiring stone of high chemical purity, as well as being a source of construction and agricultural stone. These carbonate rocks also may be suitable for flue-gas desulfuri- zation and fluidized-bed combustion systems employed in the future by coalburning plants in central Kentucky. ## REFERENCES CITED - Black, D. F. B., 1967, Geologic map of the Coletown quadrangle, east-central Kentucky: U. S. Geological Survey Geologic Quadrangle Map GQ-644. - Black, D. F. B., Keller, G. R., and Johnson, R. W., Jr., 1977a, Map showing structural geology, Bouguer gravity, and aeromagnetic intensity for a portion of central Kentucky, northeast sheet: Kentucky Geological Survey, ser. 10, scale 1:48,000. - Black, D. F. B., Keller, G. R., and Johnson, R. W., Jr., 1977b, Map showing structural geology, Bouguer gravity, and aeromagnetic intensity for a portion of central Kentucky, southeast sheet: Kentucky Geological Survey, ser. 10, scale 1:48,000. - Black, D. F. B., Keller, G. R., and Johnson, R. W., Jr., 1977c, Map showing structural geology, Bouguer gravity, and aeromagnetic intensity for a portion of central Kentucky, southwest sheet: Kentucky Geological Survey, ser. 10, scale 1:48,000. - Black, D. F. B., Keller, G. R., and Johnson, R. W., Jr., 1977d, Map showing structural geology, Bouguer gravity, and aeromagnetic intensity for a portion of central Kentucky, northwest sheet: Kentucky Geological Survey, ser. 10, scale 1:48,000. - Boynton, R. S., 1966, Chemistry and technology of lime and limestone: New York, John Wiley, 520 p. - Cressman, E. R., and Noger, M. C., 1976, Tidal-flat carbonate environments in the High Bridge Group (Middle Ordovician) of central Kentucky: Kentucky Geological Survey, ser. 10, Report of Investigations 18, 15 p. - Dasti, A. Q., 1977, Electric utility's use of flue gas desulfurization technology in the United States, in Fourth symposium on coal utilization: Washington, National Coal Association, p. 299-323. - Dever, G. R., Jr., 1974, High-carbonate rock in the High Bridge Group (Middle Ordovician), Boone County, Kentucky: Kentucky Geological Survey, ser. 10, Information Circular 22, 35 p. - Dever, G. R., Jr., McGrain, Preston, and Ellsworth, G. W., Jr., 1978, Industrial limestone resources along the Ohio River valley of Kentucky: Mining Engineering, v. 30, no. 4, p. 396-401. - Federal Register Office, 1970, Public Law 91-173, in United States statutes at large: Washington, U. S. Government Printing Office, v. 83, p. 742-804. - Lamar, J. E., 1961, Uses of limestone and dolomite: Illinois State Geological Survey Circular 321, 41 p. - McGrain, Preston, and Dever, G. R., Jr., 1968, The geometry of limestone aggregate sources in Kentucky's Appalachian region, in Erwin, R. B., ed., Proceedings of the 19th annual Highway Geology Symposium: West Virginia Geological and Economic Survey Circular 10, p. 91-102. - Mining Engineering, 1977, Dravo Corp. stakes a claim in the SO₂ scrubber market: Mining Engineering, v. 29, no. 4, p. 56-57. - Snyder, R., and Wilson, I., 1977, Limestone characterization, in Jonke, A., and others, Supportive studies in fluidized-bed combustion: U. S. Environmental Protection Agency, EPA-600/7-77-138, p. 97-110. - Wolcott, D. E., 1969, Geologic map of the Little Hickman quadrangle, central Kentucky: U. S. Geological Survey Geologic Quadrangle Map GQ-792. - Wolcott, D. E., Cressman, E. R., and Connor, J. J., 1972, Trend-surface analysis of the thickness of the High Bridge Group (Middle Ordovician) of central Kentucky and its bearing on the nature of the post-Knox unconformity: U. S. Geological Survey Professional Paper 800-B, p. B25-B33. Table 2.—Chemical Analyses of American Smelting and Refining Company Core. County: Fayette American Smelting and Refining Co. Core No. CK-2 Operator: Property Owner: K. R. Hayden Core No. CK-2
Location: West side of Ky. Highway 1975, 3.7 miles south of junction with U. S. Highway 25 Carter Coordinate Location: 2800'FNL and 1180'FEL, sec. 10-Q-61 (Coletown quadrangle) | | | CHEMICAL ANALYSIS | | | | | | | | | | | |---|--------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|---|--------|--------|--|--|--|--|--| | %
CaCO₃ | %
MgCO₃ | %
SiO ₂ | %
Iron
Oxide | %
Alumina | %
Total | %
S | %
P | 34.18 | 3.87 | 9.12 | 0.50 | 2.28 | 99.95 | NOT AN | ALYZED | | | | | | | 70.81 | 2.53 | 23.15 | 1.43 | 2.05 | 99.97 | | 1 | | | | | | | 37.09 | 3.58 | 7.18 | 0.53 | 1.45 | 99.93 | | | | | | | | | 71.50 | 5.16 | 18.07 | 0.78 | 3.44 | 98.95 | | | | | | | | | 9.00 | 3.14 | 22.60 | 4.21 | 1.08 | 98.95 | | | | | | | | | 37.27 | 2.90 | 7.66 | 0.48 | 1.68 | 99.99 | | | | | | | | | 37.46 | 2.22 | 7.39 | 0.45 | 2.02 | 99.54 | | | | | | | | | 35.27 | 2.38 | 8.48 | 0.40 | 2.86 | 99.39 | | | | | | | | | 74.61 | 3.52 | 17.00 | 0.63 | 4.21 | 99.97 | | | | | | | | | 32.72 | 3.04 | 10.71 | 0.60 | 2.89 | 99.96 | | | | | | | | | 37.09 | 1.60 | 8.59 | 0.30 | 1.95 | 99.53 | | | | | | | | | 90.46 | 1.53 | 6.69 | 0.30 | 0.86 | 99.84 | | | | | | | | | 34.72 | 2.54 | 9.03 | 0.35 | 2.05 | 98.69 | | | | | | | | | 33.45 | 2.06 | 11.92 | 0.37 | 1.42 | 99.22 | | | | | | | | | 92.19 | 1.34 | 4.87 | 0.44 | 1.03 | 99.87 | | | | | | | | | 831
95.11
88.00
87.27
88.55 | 1.67
1.93
4.93
2.81
2.57 | 10.52
2.26
4.56
7.10
6.02 | 0.49
0.20
0.32
0.43
0.37 | 3.63
0.47
1.45
1.69
0.62 | 98.62
99.97
99.26
99.30
99.13 | | | | | | | | | | | ď | | | | | | | | | | | | 90.37 | 2.33 | 4.60 | 0.37 | 1.50 | 99.17 | | | | | | | | | 87.46 | 2.59 | 7.04 | 0.57 | 1.93 | 99.59 | | | | | | | | | 69.24 | 5.94 | 16.70 | 1.22 | 5.26 | 98.36 | | | | | | | | | 64.13 | 6.50 | 20.00 | 1.53 | 5.95 | 98.11 | | | | | | | | | 62.84 | 8.28 | 19.58 | 1.42 | 5.73 | 97.85 | | | | | | | | | 61.31 | 6.52 | 22.50 | 1.49 | 5.96 | 97.78 | | | | | | | | | 83.45 | 3.02 | 9.70 | 0.63 | 2.62 | 99.42 | 82.90 | 2.95 | 10.47 | 0.60 | 2.31 | 99.23 | | | | | | | | | 83.27 | 2.71 | 10.06 | 0.54 | 2.19 | 98.77 | | | | | | | | | 84.78 | 2.15 | 9.97 | 0.48 | 2.14 | 99.52 | | | | | | | | | 76.34 | 2.59 | 18.16 | 0.58 | 2.31 | 99.98 | | | | | | | | | 84.36 | 1.39 | 10.18 | 0.25 | 2.47 | 98.65 | | 1 | | | | | | Elevation: 1025 feet Sompled by: Garland R. Dever, Jr. Analyzed by: Analytical Laboratory, College of Engineering, University of Kentucky Date Sampled: 1972 and 1973 | | | | DESCRIPTION | | |---|--------------|--------------------------|--|---------------------| | Sample
Level
(Feet) | Ledge
No. | Thick-
ness
(Feet) | Lithology | Formation | | | | | TOP OF SAMPLED INTERVAL IN CORE | | | 185-186
186-187
187-188
188-189
189-190
190-191
191-192
192-193
193-194
194-195
195-196
196-197
197-198
198-199
199-200 | 1 | 15 | Limestone, medium-light- to light-olive-gray and very light-gray, fine- to very coarse-grained, bioclastic; thin zones of very fine-grained calcarenite; scattered fossil fragments; very light-to light-olive-gray chert (in part with bioclastic texture) common; intercalated dark-greenish-gray shale. | LEXINGTON LIMESTONE | | 200-201
201-202
202-203
203-204
204-205 | 2 | 5 | Limestone, pale-yellowish-brown to light-olive-gray, micrograined, in part finely laminated, with scattered veinlets and birdseyes of crystalline calcite; small bodies of pinkish- and very light-gray chert in upper 2 feet; traces of pyrite in intervals 202-203 and 204-205 feet; stylolites; few very thin shales and argillaceous seams. "Mud Cave" bentonite at 200½ feet: 3/4-inch clay, light-bluish-gray, translucent, with waxy luster; few small flakes of brownish mica; scattered pyrite. | | | 205-206
206-207
207-208
208-209
209-210
210-211
211-212 | 3 | 7 | Limestone, light-olive-gray, very fine-grained to micrograined, in part finely laminated, with birdseyes of crystalline calcite; in part fine-to coarse-grained calcarenite, with few brachio-pod fragments, in upper 2 feet; interlaminated with greenish- to dark-greenish-gray, very argil-laceous limestone; quartz silt common in interval 207-212 feet; traces of pyrite in intervals 206-207 and 210-212 feet; intercalated greenish-gray, silty shale. Gradational with overlying and underlying ledges. | TYRONE LIMESTONE | | 212-213
213-214
214-215
215-216
216-217 | 4 | 5 | Limestone, light-olive-gray, micrograined, with some veinlets and birdseyes of crystalline calcite; in part fine- to medium-grained calcarenite in lower 3 feet; fragments of colonial coral, Tetradium, sparse to abundant; very small bodies of very light-gray chert in lower 3 feet; traces of pyrite in lower 2 feet; few very thin, silty shales and argillaceous seams in upper 3 feet. | | Table 2.—Continued. County: Fayette Property Owner: K. R. Hayden Locotion: Operator: American Smelting and Refining Co. Core No. CK-2 | CHEMICAL ANALYSIS | | | | | | | | | | | | |-------------------|----------------|-----------------------|--------------------|--------------|----------------|---------|--------|--|--|--|--| | %
C₀CO₃ | %
MgCO₃ | %
SiO ₂ | %
Iron
Oxide | %
Alumina | %
Total | %
S | %
P | | | | | | | | | NO S | SAMPLES | | | | | | | | | | 420.24 | | 2.727 | 12 92 | 22.72 | | | | | | | | 50.29 | 0.54 | 46.88 | 0.53 | 1.67 | 99.91 | NOT ANA | LYZED | | | | | | 91.28 | 1.59
3.57 | 4.32
5.00 | 0.20 | 1.23
0.52 | 98.62
99.93 | | | | | | | | 93.83 | 3.67 | 1.85 | 0.23 | 0.16 | 99.84 | 0.088 | 0.00 | | | | | | 91.60 | 5.10 | 1.70 | 0.29 | 0.41 | 99.10 | 0.110 | 0.01 | | | | | | 91.83 | 6.34 | 1.21 | 0.24 | 0.38 | 100.00 | 0.090 | 0.00 | | | | | | 92.38 | 5.81 | 1.19 | 0.27 | 0.33 | 99.98 | 0.100 | 0.00 | | | | | | 90.19 | 6.58 | 2.29 | 0.28 | 0.59 | 99.93 | 0.116 | 0.01 | | | | | | 92.56 | 2.22 | 3.24 | 0.15 | 1.32 | 99.49 | 0.152 | 0.00 | | | | | | | | | | | | | | | | | | | 93.29 | 4.76 | 1.30 | 0.15 | 0.45 | 99.95 | 0.050 | 0.00 | | | | | | 92.92 | 4.48 | 1.73 | 0.20 | 0.64 | 99.97 | 0.052 | 0.00 | | | | | | 90.37 | 6.96 | 1.46 | 0.25 | 0.54 | 99.58 | 0.184 | 0.01 | | | | | | 79.89 | 15.28 | 2.54 | 0.45 | 1.22 | 99.38 | 0.134 | 0.01 | | | | | | 95.11 | 1.14 | 2.19 | 0.18 | 0.90 | 99.52 | 0.056 | 0.01 | | | | | | 92.65 | 2.59 | 2.24 | 0.17 | 1.06 | 98.71 | 0.056 | 0.00 | | | | | | 85.66 | 9.47 | 3.44 | 0.35 | 1.03 | 99.95 | 0.088 | 0.01 | | | | | | 70.60 | 21 10 | 5 20 | 0.50 | 1.86 | 99.62 | 0.150 | 0.02 | | | | | | 70.69 | 21.18
19.66 | 5.30
3.92 | 0.59 | 1.24 | 99.70 | 0.106 | 0.00 | | | | | | 74.34
84.54 | 9.48 | 3.91 | 0.42 | 1.38 | 99.73 | 0.078 | 0.00 | | | | | | 76.25 | 17.06 | 4.15 | 0.55 | 1.30 | 99.31 | 0.086 | 0.01 | | | | | | 12.75 | -,,,,, | | | | | | | | | | | | 83.54 | 14.33 | 1.43 | 0.40 | 0.26 | 99.96 | 0.026 | 0.00 | | | | | | 89.00 | 8.71 | 1.61 | 0.33 | 0.18 | 99.83 | 0.038 | 0.00 | | | | | | 93.01 | 5.40 | 1.15 | 0.20 | 0.22 | 99.98 | 0.026 | 0.00 | | | | | | 91.64 | 4.83 | 2.25 | 0.25 | 0.82 | 99.79 | 0.080 | 0.00 | | | | | | | 52.55 | 3541 | 2.20 | | | AGE VON | | | | | | | 68.42 | 15.07 | 10.51 | 0.63 | 4.31 | 98.94 | NOT ANA | LYZED | | | | | | 74.61 | 8.54 | 11.27 | 0.95 | 4.17 | 99.54
99.29 | | | | | | | | 67.96 | 14.32 | 11.78 | 0.98 | 4.25 | | | | | | | | | 69.14 | 14.36
12.95 | 10.84 | 0.90
1.03 | 3.90
5.11 | 99.14 | | 2 | | | | | | 75.98 | 8.94 | 9.39 | 0.78 | 3.94 | 99.03 | | | | | | | | 68.73 | 11.55 | 12.45 | 0.70 | 5.72 | 98.65 | | | | | | | | 60.40 | 19.14 | 12.65 | 0.20 | 5.74 | 98.13 | 86.00 | 5.25 | 5.30 | 0.20 | 2.75 | 99.50 | | | | | | | | 81.40 | 6.49 | 7.42 | 0.23 | 3.26 | 98.80 | | | | | | | | 84.30 | 6.27 | 5.94 | 0.25 | 2.44 | 99.20 | | | | | | | | 78.96 | 8.12 | 7.36 | 0.38 | 3.30 | 98.12 | | | | | | | | 75.34 | 10.09 | 9.08 | 0.20 | 3.91 | 98.62 | | | | | | | | 72.62 | 15.76 | 7.25 | 0.33 | 3.03 | 98.99 | | | | | | | | 90.19 | 5.26 | 3.14 | 0.38 | 0.85 | 99.82
99.06 | | | | | | | | 86.93 | 7.12 | 3.17 | 0.34 | 1.50 | 99.06 | | | | | | | | 84.12 | 10.27 | 3.34 | 0.39 | 1.40 | 39.32 | | | | | | | Sampled by: Analyzed by: Date Sampled: | | | | DESCRIPTION | | |---|--------------|--------------------------|--|------------------| | Sample
Level
(Feet) | Ledge
No. | Thick-
ness
(Feet) | Lithology | Formation | | 217-219 | 5 | 2 | "Pencil Cave" bentonite. Clay, grayish-yellow-
to pale-yellowish-green, translucent, with waxy
luster; scattered small flakes of brownish mica. |
 | 219-220
220-221
221-222
222-223
223-224
224-225
225-226
226-227
227-228 | 6 | 9 | Limestone, yellowish- to pale-yellowish-brown, micrograined; few zones of very fine- to fine-grained calcarenite; mottled with small irregular bodies of very finely crystalline dolomite; layer of light-olive-gray to yellowish-brown chert at top of ledge; small body of very light-gray, chalk-like, siliceous(?) material in interval 226-227 feet; stylolites; thin greenish-gray shale in interval 220-221 feet. | | | 228-229
229-230
230-231
231-232
232-233
233-234
234-235 | 7 | 7 | Limestone, very pale-yellowish- to yellowish-
brown, with some dark-gray mottling, micro-
grained, with scattered birdseyes and veinlets
of crystalline calcite (principally in upper 2
feet); thin zones of very fine-grained calcare-
nite; thin zones of very finely crystalline do-
lomite. | | | 235-236
236-237
237-238
238-239 | 8 | 4 | Dolomitic limestone, intricately mottled yel-
lowish-brown and medium-dark-gray, very finely
crystalline; in part with zones of micrograined
limestone; stylolites. | TYRONE LIMESTONE | | 239-240
240-241
241-242
242-243 | 9 | 4 | Limestone, very light-olive- to light-olive-gray, micrograined to very finely crystalline, in part dolomitic; few veinlets of crystalline calcite; trace of pyrite in basal foot. | TYRO | | 243-244
244-245
245-246
246-247
247-248
248-249
249-250
250-251 | 10 | 8 | Dolomitic limestone, light-olive- to olive-gray, very fine- to fine-grained, argillaceous; zones of micrograined limestone with birdseyes and veinlets of crystalline calcite; intercalated dark-greenish-gray shale and greenish-gray argillaceous seams. | | | 251-252
252-253
253-254
254-255
255-256
256-257
257-258
258-259
259-260 | 11 | 9 | Limestone, yellowish- to very pale-yellowish-
brown and light-olive-gray, micrograined to
microcrystalline, with birdseyes and veinlets of
crystalline calcite, in part argillaceous; thin
zones of dark-yellowish-brown, very finely crys-
talline dolomite; scattered stylolites. | | Table 2.—Continued. County: Fayette Property Owner: K. R. Hayden Location: Operator: American Smelting and Refining Co. Core No. CK-2 | | | | CHEMICAL | ANALYSIS | | | | |------------------------|--------------|-----------------------|-----------|--------------|----------------|---------|---------| | %
CoCO ₃ | %
MgCO₃ | %
SiO ₂ | %
Iron | %
Alumina | %
Total | %
S | %
P | | | | | Oxide | | | | | | | | 201 (80) | 96 - 108D | 8 55 | 20.27 | Wes 454 | -11200 | | 75.61 | 18.05 | 4.04 | 0.55 | 1.58 | 99.83 | NOT ANA | LYZED | | 77.51 | 17.74 | 2.90 | 0.51 | 1.27 | 99.93 | | | | 73.80 | 21.23 | 2.92 | 0.58 | 1.27 | 99.80 | | | | 72.17 | 19.43 | 4.73 | 0.58 | 2.23 | 99.14 | | | | 77.33 | 14.45 | 5.54 | 0.49 | 2.17 | 99.98 | | | | 00 02 | 6.10 | 3.27 | 0.25 | 1.25 | 99.79 | | | | 88.92 | 3.25 | 9.22 | 0.28 | 2.38 | 98.71 | | | | 83.58
93.62 | 4.28 | 1.59 | 0.23 | 0.21 | 99.93 | | | | | | 3.54 | 0.28 | 1.21 | 99.97 | | | | 91.27 | 3.67 | | | | 99.61 | | | | 84.36 | 10.64 | 3.75 | 0.28 | 0.58 | 99.01 | | | | 74.61 | 20.40 | 3.62 | 0.47 | 0.84 | 99.94 | | | | 70.35 | 24.25 | 3.78 | 0.49 | 1.12 | 99.99 | | | | 55.60 | 34.34 | 7.18 | 0.83 | 2.05 | 100.00 | | | | 69.54 | 18.52 | 7.48 | 0.68 | 2.31 | 98.53 | | | | 78.05 | 14.05 | 5.07 | 0.43 | 1.59 | 99.19 | | | | 83.76 | 8.32 | 5.15 | 0.30 | 1.55 | 99.08 | | | | | | | | | | | | | 84.75 | 5.44 | 5.26 | 0.30 | 1.96 | 97.71 | | | | 84.21 | 6.64 | 5.89 | 0.33 | 1.83 | 98.90 | | | | 84.75 | 8.13 | 5.14 | 0.33 | 1.57 | 99.92 | | | | 82.13 | 11.64 | 3.88 | 0.40 | 1.46 | 99.51 | | | | 84.12 | 6.70 | 5.24 | 0.34 | 2.08
4.45 | 98.48 | | | | 75.07 | 1.53 | 15.12 | 0.23 | 5.84 | 96.40
96.17 | | | | 66.92 | 1.38 | 21.78 | | 1.47 | 98.91 | | | | 78.42 | 11.55 | 7.04
3.30 | 0.43 | 0.80 | 98.63 | | | | 80.05 | 14.18 | | | 1.19 | 99.35 | | St. 100 | | 85,66 | 8.42
2.74 | 3.84
2.76 | 0.24 | 0.76 | 99.89 | 0.024 | 0.00 | | 93.45 | 5.90 | 3.50 | 0.18 | 0.76 | 100.00 | 0.024 | 0.00 | | 89.46
85.57 | 8.10 | 3.38 | 0.20 | 1.59 | 98.84 | 0.022 | 0.0 | | 86.75 | 6.76 | 4.00 | 0.25 | 1.24 | 98.60 | 0.032 | 0.0 | | 87.83 | 8.01 | 3.00 | 0.23 | 0.69 | 99.76 | 0.028 | 0.00 | | 85.48 | 10.80 | 2.60 | 0.28 | 0.66 | 99.82 | 0.028 | 0.00 | | 84.39 | 10.43 | 3.24 | 0.30 | 0.92 | 99.48 | 0.184 | 0.00 | | | 05.00 | 0 00 | | | 00.55 | 0.050 | | | 71.04 | 25.20 | 2.96 | 0.35 | 0.10 | 99.65 | 0.050 | 0.0 | | 72.35 | 24.00 | 3.07 | 0.30 | 0.10 | 99.82 | 0.062 | 0.0 | | 74.61 | 22.14 | 2.48 | 0.28 | 0.10 | 99.61 | 0.034 | 0.0 | | 72.53 | 24.12 | 2.49 | 0.28 | 0.06 | 99.48 | 0.048 | 0.0 | | 69.00 | 26.95 | 2.93 | 0.32 | 0.25 | 99.45 | 0.076 | 0.0 | | 73.89 | 21.59 | 2.95 | 0.40 | 0.11 | 98.94 | 0.126 | 0.0 | | 81.40 | 14.34 | 3.03 | 0.23 | 0.10 | 99.20 | 0.068 | 0.0 | | 83.22 | 13.45 | 2.47 | 0.25 | 0.10 | 99.49 | 0.084 | 0.0 | | 76.97 | 18.24 | 2.93 | 0.24 | 0.59 | 98.97 | 0.084 | 0.0 | | 71.35 | 22.86 | 3.68 | 0.32 | 1.08 | 99.29 | 0.108 | 0.0 | | 68.27 | 26.45 | 3.67 | 0.33 | 0.71 | 99.43 | 0.094 | 0.0 | | 75.34 | 19.33 | 2.98 | 0.28 | 0.43 | 98.36 | 0.082 | 0.0 | | 86.75 | 9.28 | 2.42 | 0.20 | 0.71 | 99.36 | 0.062 | 0.0 | Sampled by: Analyzed by: Date Sampled: | | | | DESCRIPTION | | |--|--------------|--------------------------|---|------------------| | Sample
Level
(Feet) | Ledge
No. | Thick-
ness
(Feet) | Lithology | Formation | | 260 -261
261 -262
262 -263
263 -264
264 -265 | 12 | 5 | Dolomitic limestone, very pale-yellowish- to yellowish-brown, microcrystalline to very finely crystalline; in part micrograined limestone in lower 2 feet; scattered stylolites. | | | 265 -266
266 -267
267 -268
268 -269
269 -270 | 13 | 5 | Limestone, yellowish- to very pale-yellowish-
brown and light-olive-gray, micrograined to
microcrystalline, with birdseyes and veinlets of
crystalline calcite; thin zones of very finely
crystalline dolomite; scattered stylolites. | | | 270 -271
271 -272
272 -273
273 -274
274 -275
275 -276 | 14 | 6 | Dolomitic limestone and dolomite, yellowish-brown, with dark-gray mottling, very finely crystalline, in part argillaceous; in part micrograined limestone (more common and partly brecciated in lower 2 feet); scattered stylolites. | TYRONE LIMESTONE | | 276 -277
277 -278
278 -279
279 -280
280 -281
281 -282
282 -283
283 -284
284 -285
285 -286
285 -286
287 -288
288 -289
290 -291
291 -292
292 -293 ½ | 15 | $17\frac{1}{2}$ | Limestone, yellowish- to very pale-yellowish-brown and light-olive-gray, with dark-gray mottling in upper part of ledge, micrograined; in part with zones of very fine- to medium-grained calcarenite; interlayers and, in interval 283-286 feet, irregular bodies of very finely crystalline dolomite; small body of very light-olive-gray chert at 283½ feet; scattered stylolites; very thin argillaceous seams in interval 280-283 feet. Bentonite at 283 feet: 2-inch clay, yellowishto light-olive-gray, translucent, with slightly waxy luster; scattered small flakes of brownish mica. | TYRON | | 293½-295
295 -296
296 -297
297 -298
298 -299
299 -300
300 -301
301 -302
302 -303
303 -304
304 -305
305 -306 | 16 | 30½ | Dolomitic limestone and dolomite, yellowish- to very pale-yellowish-brown, with some medium-dark-to dark-gray mottling, very finely crystalline; interlayers and thin zones of micrograined lime-stone throughout ledge, dominant in intervals 306-309 and 322-323 feet; very thin vertical veinlets of crystalline calcite in interval 314-317 feet; scattered stylolites. | OREGON FORMATION | Table 2.—Continued. County: Fayette Property Owner: K. R. Hayden Location: Operator: American Smelting and Refining Co. Core No. CK-2 | | | | CHEMICAL | ANALYSIS | | | | |------------------------|------------|-----------------------|--------------------|--------------|------------|---------|--------| | %
CaCO ₃ | %
MgCO₃ | %
SiO ₂ | %
Iron
Oxide | %
Alumina | %
Total | %
S | %
P | | | | | | | | | | | 90.87 | 6.17 | 1.84 | 0.15 | 0.40 | 99.43 | 0.048 | 0.003 | | 89.19 | 7.99 | 2.10 | 0.15 | 0.54 | 99.97 | 0.072 | 0.003 | | 82.58 | 13.94 | 2.90 | 0.20 | 0.37 | 99.99 | 0.052 | 0.012 | | 76.70 | 19.02 | 3.01 | 0.25 | 0.73 | 99.71 | 0.030 | 0.004 | | 75.24 | 21.15 | 2.67 | 0.25 | 0.69 | 100.00 | 0.098 | 0.006 | | 76.48 | 19.81 | 2.38 | 0.28 | 0.62 | 99.57 | 0.106 | 0.005 | | 65.11 | 28.77 | 3.43 | 0.38 | 1.01 | 98.70 | NOT ANA | LYZED | | 60.58 | 32.86 | 4.16 | 0.47 | 1.25 | 99.32 | | | | 64.29 | 27.94 | 4.97 | 0.40 | 1.47 | 99.07 | | | | 70.63 | 23.93 | 3.87 | 0.35 | 1.02 | 99.80 | | | | 59.82 | 32.48 | 4.83 | 0.55 | 1.56 | 99.24 | | | | 60.67 | 32.97 | 4.29 | 0.50 | 1.26 | 99.69 | | 12 | | 67.03 | 26.80 | 4.53 | 0.38 | 1.22 | 99.96 | | | | 76.51 | 13.94 | 6.13 | 0.38 | 1.60 | 98.56 | | | | 76.97 | 15.78 | 3.95 | 0.25 | 1.48 | 98.43 | | | | 84.12 | 9.85 | 3.51 | 0.28 | 0.91 | 98.67 | | | | 75.88 | 18.83 | 3.57 | 0.29 | 0.94 | 99.51 | | | | ,3,00 | 10.00 | | 2.50 | | | | | | 72.62 | 17.90 | 5.39 | 0.44 | 1.63 | 97.98 | | | | 65.47
 16.80 | 10.48 | 0.68 | 3.94 | 97.37 | | | | 62.66 | 16.30 | 11.79 | 0.85 | 4.82 | 96.42 | | | | 59.31 | 19.67 | 12.00 | 0.85 | 4.33 | 96.16 | | | | 64.65 | 27.79 | 4.73 | 0.53 | 1.51 | 99.21 | | | | 68.82 | 24.10 | 4.17 | 0.48 | 1.46 | 99.03 | | | | | | | | | | | | | 84.39 | 10.08 | 2.97 | 0.27 | 0.99 | 99.70 | | | | 86.18 | 7.92 | 3.84 | 0.25 | 1.51 | 99.70 | | | | 55.57 | 23.69 | 13.75 | 0.87 | 4.91 | 98.79 | | | | 89.46 | 5.30 | 2.78 | 0.30 | 1.30 | 99.08 | | | | 88.18 | 3.45 | 4.05 | 0.35 | 1.88 | 97.91 | | | | 90.28 | 2.14 | 4.65 | 0.33 | 2.45 | 99.85 | 64.03 | 10.68 | 15.82 | 1.28 | 6.40 | 98.21 | | | | 57.85 | 14.13 | 17.08 | 1.30 | 7.58 | 97.94 | | | | 59.40 | 14.92 | 15.08 | 1.19 | 6.50 | 97.09 | | | | 59.12 | 15.76 | 16.17 | 1.13 | 5.88 | 98.06 | | | | 57.85 | 18.70 | 14.42 | 1.09 | 5.71 | 97.77 | | | | 58.49 | 19.82 | 13.15 | 0.98 | 5.09 | 97.53 | | | | 87.09 | 7.53 | 3.24 | 0.34 | 0.92 | 99.12 | | | | 90.74 | 6.52 | 2.05 | 0.24 | 0.43 | 99.98 | | | | 83.99 | 8.97 | 4.24 | 0.44 | 1.37 | 99.01 | | | | 84.54 | 7.74 | 4.74 | 0.32 | 1.61 | 98.95 | | | | 87.27 | 6.76 | 4.02 | 0.25 | 1.24 | 99.54 | 0.000 | 0.02 | | 96.01 | 1.94 | 1.13 | 0.15 | 0.74 | 99.97 | 0.060 | | | 88.46 | 6.34 | 3.54 | 0.20 | 1.40 | 99.94 | 0.174 | 0.016 | Sampled by: Analyzed by: Date Sampled: | | | | DESCRIPTION | | |--|--------------|--------------------------|--|-----------------------| | Sample
Level
(Feet) | Ledge
No. | Thick-
ness
(Feet) | Lithology | Formation | | 307 -308
308 -309
309 -310
310 -311
311 -312
312 -313
313 -314
314 -315
315 -316
316 -317
317 -318
318 -319
319 -320
320 -321
321 -322
322 -323
323 -324 | 16-Co | ntinued | | OREGON FORMATION | | 324 -325
325 -326
326 -327
327 -328
328 -329
329 -330 | 17 | 6 | Dolomitic limestone and dolomite, yellowish-brown, with intricate medium-dark- to dark-gray mottling, very finely crystalline to microcrystalline; one stylolite; very thin argillaceous seams. | | | 330 -331
331 -332½
332½-334
334 -335
335 -336
336 -337 | 18 | 7 | Limestone, yellowish- to dark-yellowish-brown and light-olive-gray, micrograined to microcrystalline, with scattered veinlets and birdseyes of crystalline calcite, in part dolomitic; mottled with small bodies and thin zones of very finely crystalline dolomite in lower 3 feet; very thin nodular beds of very finely crystalline dolomitic limestone with intercalated shale in interval 332½-334 feet; few stylolites in upper 2½ feet; very thin argillaceous seams, mainly in lower 2 feet. | CONE | | 337 -338
338 -339
339 -340
340 -341
341 -342
342 -343 | 19 | 6 | Dolomitic limestone, olive- to light-olive-gray, with some medium- to medium-dark-gray mottling, interlaminated very finely crystalline and micro-crystalline, argillaceous; in part micrograined limestone in basal foot; traces of pyrite in intervals 337-338 and 340-342 feet; thin argillaceous seams in basal foot. | CAMP NELSON LIMESTONE | | 343 -344
344 -345
345 -346
346 -347
347 -348
348 -349
349 -350 | 20 | 7 | Limestone, very dark-yellowish- to dark-yellow-
ish-brown, micrograined, with scattered birdseyes
and veinlets of crystalline calcite; mottled with
irregular bodies and thin irregular zones of very
finely crystalline dolomite; few brachiopods. | | # Table 2.—Continued. County: Fayette Property Owner: K. R. Hayden Location: Operator: American Smelting and Refining Co. Core No. CK-2 | | | | CHEMICAL | ANALYSIS | | | | |------------|------------------------|-----------------------|--------------------|--------------|------------|---------|--------| | %
C₀CO₃ | %
MgCO ₃ | %
SiO ₂ | %
Iron
Oxide | %
Alumina | %
Total | %
S | %
P | | | | | | | | | | | 00.00 | 2.11 | 2.06 | 0.25 | 1.23 | 99.83 | 0.094 | 0.00 | | 88.28 | 7.11 | 2.96 | 0.25 | | | | 0.01 | | 87.82 | 9.49 | 1.70 | 0.25 | 0.68 | 99.94 | 0.072 | | | 86.00 | 10.20 | 2.41 | 0.25 | 1.11 | 99.97 | 0.090 | 0.00 | | 89.82 | 7.20 | 1.86 | 0.18 | 0.94 | 100.00 | 0.070 | 0.00 | | 84.54 | 10.80 | 2.95 | 0.28 | 1.30 | 99.87 | 0.102 | 0.00 | | 85.73 | 10.01 | 2.05 | 0.23 | 0.89 | 98.91 | 0.038 | 0.01 | | 86,72 | 11.45 | 1.31 | 0.20 | 0.28 | 99.96 | 0.056 | 0.00 | | 88.00 | 9.19 | 1.87 | 0.23 | 0.66 | 99.95 | 0.07B | 0.00 | | 86.09 | 10.25 | 2.43 | 0.25 | 0.95 | 99.97 | 0.090 | 0.00 | | 88.18 | 9.50 | 1.43 | 0.20 | 0.60 | 99.91 | 0.060 | 0.00 | | | | 3.52 | 0.23 | 0.68 | 99.94 | 0.086 | 0.00 | | 82.45 | 13.06 | | 0.25 | 1.03 | 99.95 | 0.072 | 0.00 | | 80.81 | 15.76 | 2.10 | | 0.25 | 99.70 | 0.022 | 0.00 | | 81.23 | 16.51 | 1.46 | 0.25 | | | 0.068 | 0.00 | | 75.84 | 22.32 | 1.02 | 0.30 | 0.49 | 99.97 | | | | 83.36 | 13.97 | 1.80 | 0.23 | 0.49 | 99.85 | 0.098 | 0.00 | | 78.53 | 17.69 | 2.14 | 0.30 | 0.76 | 99.42 | 0.078 | 0.00 | | 82.49 | 12.23 | 2.83 | 0.30 | 1.48 | 99.33 | 0.122 | 0.00 | | 83.81 | 12,22 | 2.30 | 0.25 | 1.38 | 99.96 | 0.084 | 0.00 | | 88.18 | 8.71 | 1.74 | 0.18 | 0.67 | 99.48 | 0.058 | 0.00 | | 81.44 | 11.64 | 4.34 | 0.33 | 2.18 | 99.93 | 0.118 | 0.00 | | | 12.32 | 4.02 | 0.35 | 2.23 | 99.45 | 0.138 | 0.00 | | 80.53 | 11.55 | 2.03 | 0.20 | 0.53 | 99.94 | 0.046 | 0.00 | | 85.63 | | | 0.28 | 0.82 | 99.81 | 0.090 | 0.00 | | 84.36 | 11.82 | 2.53 | | | 99.66 | 0.088 | 0.00 | | 86.64 | 9.36 | 2.47 | 0.23 | 0.96 | | 0.092 | 0.00 | | 85.36 | 11.22 | 2.06 | 0.25 | 0.94 | 99.83 | | | | 80.71 | 14.77 | 2.77 | 0.25 | 1.17 | 99.67 | 0.094 | 0.01 | | 82.04 | 13.05 | 2.96 | 0.28 | 1.27 | 99.60 | 0.106 | 0.00 | | 82.99 | 11.78 | 3.02 | 0.30 | 1.38 | 99.47 | 0.100 | 0.00 | | 81.08 | 12.66 | 3.49 | 0.35 | 1.68 | 99.26 | 0.132 | 0.00 | | 89.00 | 8.39 | 0.91 | 0.15 | 1.19 | 99.64 | 0.152 | 0.00 | | 89.10 | 8.66 | 1.16 | 0.15 | 0.81 | 99.88 | 0.056 | 0.0 | | 87.73 | 8.56 | 2.32 | 0.28 | 1.04 | 99.93 | 0.102 | 0.0 | | 83.56 | 9.10 | 3.53 | 0.33 | 2.04 | 98.56 | 0.128 | 0.00 | | | | 1.54 | 0.18 | 1.04 | 99.87 | 0.038 | 0.0 | | 89.46 | 7.65 | | | 1.09 | 99.80 | 0.078 | 0.0 | | 88.18 | 8.37 | 1.96 | 0.20 | | 99.97 | 0.068 | 0.0 | | 88.00 | 9.00 | 1.97 | 0.15 | 0.85 | | NOT ANA | | | 80.35 | 13.12 | 3.86 | 0.35 | 1.88 | 99.56 | NOT AND | LLIZED | | 83.27 | 10.58 | 3.55 | 0.30 | 1.70 | 99.40 | | | | 73.70 | 14.95 | 6.26 | 0.45 | 2.97 | 98.33 | | | | 74.98 | 13.31 | 6.02 | 0.48 | 3.04 | 97.83 | | | | | 13.85 | 4.46 | 0.35 | 2.14 | 97.96 | | | | 77.16 | | 4.33 | 0.35 | 1.55 | 98.72 | | | | 76.52 | 15.97 | | 0.40 | 2.13 | 98.86 | | | | 72.24 | 19.22 | 4.87 | | 2.13 | 99.05 | | 1 | | 73.24 | 18.57 | 4.53 | 0.40 | | | | | | 68.69 | 21.42 | 5.33 | 0.45 | 2.87 | 98.76 | | | | 69.78 | 21.86 | 4.34 | 0.45 | 2.30 | 98.73 | | | | 73.15 | 20.89 | 3.57 | 0.30 | 1.61 | 99.52 | | | | 80.17 | 15.50 | 2.58 | 0.30 | 1.29 | 99.84 | | | | 74.16 | 15.79 | 5.49 | 0.45 | 3.18 | 99.07 | | | | 80.62 | 12.01 | 3.54 | 0.34 | 1.90 | 98.41 | | | | 81.26 | 11.54 | 4.58 | 0.35 | 1.58 | 99.31 | | | | | | | | | | | | Sampled by: Analyzed by: Date Sampled: | | | | DESCRIPTION | | | | | |--|--------------|------------------------------------|--|-----------------------|--|--|--| | Sample
Level
(Feet) | Ledge
No. | Thick-
ness Lithology
(Feet) | | | | | | | 350-351
351-352
352-353
353-354
354-355
355-356
356-357
357-358
358-359
359-360
361-362
362-363
363-364
364-365
365-366
366-367
367-368
368-369
369-370
370-371
371-372
372-373
373-374
374-375
375-376
376-377
377-378
378-379
379-380
380-381
381-382
382-383
383-384
384-385
385-386
386-387
387-388
388-389 | 21 | 39 | Limestone, yellowish- to pale-yellowish-brown and light-olive-gray, micrograined, with scattered birdseyes and veinlets of crystalline calcite; some thin zones of very fine- to medium-grained calcarenite; mottled with irregular bodies and thin irregular zones of very finely crystalline dolomite; scattered fossil fragments and bioclastic grains (brachiopods and crinoids); very thin vertical veinlets of calcite in interval 378-379 feet; small bodies of light-colored, chalk-like chert in interval 360-361 feet; small bodies of light-colored, chalk-like, siliceous(?) material in
interval 364-366 feet; stylolites; some very thin argillaceous seams in lower part. | CAMP NELSON LIMESTONE | | | | | 389-390
390-391
391-392
392-393
393-394
394-395
395-396 | 22 | 7 | Limestone, medium-gray and yellowish-brown to
olive-gray, micrograined; mottled with irregular
bodies and thin zones of very finely crystalline
dolomite; one stylolite; some very thin argilla-
ceous seams, mainly in upper part. | | | | | | 396-397
397-398
398-399
399-400
400-401 | 23 | 10 | Limestone, yellowish-brown, micrograined, with
few birdseyes of crystalline calcite; mottled
with irregular bodies of very finely crystalline
dolomite; stylolites; few very thin argillaceous
seams. | | | | | Table 2.—Continued. County: Fayette Property Owner: K. R. Hayden Location: Operator: American Smelting and Refining Co. Core No. CK-2 | | | | CHEMICAL | ANALYSIS | | | | |------------------------|----------------|-----------------------|--------------------|--------------|------------|---------|--------| | %
CaCO ₃ | %
MgCO₃ | %
SiO ₂ | %
Iron
Oxide | %
Alumina | %
Total | %
S | %
P | | | | | | | | | | | ** ** | 17. 20 | F 70 | 0.40 | 2.24 | 99.44 | NOT ANA | IVZED | | 76.62 | 14.39
11.34 | 5.79
4.75 | 0.40 | 1.86 | 99.44 | NOI ANA | LIZED | | 31.08 | 8.79 | 3.65 | 0.25 | 1.07 | 99.94 | | | | 86.18 | | 5.14 | 0.34 | 2.12 | 99.33 | | | | 83.08 | 8.65 | | 9.3. (7.12) | 1.45 | 99.68 | | | | 87.64 | 6.03 | 4.18 | 0.38 | 1.43 | 99.00 | | | | 96.01 | 1.87 | 1.51 | 0.15 | 0.43 | 99.97 | 0,100 | 0.00 | | 94.74 | 2.95 | 1.46 | 0.15 | 0.70 | 100.00 | 0.106 | 0.00 | | 94.83 | 3.37 | 1.07 | 0.18 | 0.51 | 99.96 | 0.072 | 0.00 | | 94.74 | 3.72 | 1.28 | 0.15 | 0.10 | 99.99 | 0.054 | 0.00 | | 95.66 | 3.10 | 0.74 | 0.12 | 0.21 | 99.83 | 0.030 | 0.00 | | 94.65 | 2.07 | 2.86 | 0.15 | 0.26 | 99.99 | 0.046 | 0.00 | | 93.65 | 2.27 | 3.07 | 0.15 | 0.53 | 99.67 | 0.048 | 0.00 | | 95.38 | 2.15 | 2.08 | 0.13 | 0.24 | 99.98 | 0.066 | 0.00 | | 94.43 | 3.65 | 1.20 | 0.10 | 0.48 | 99.86 | 0.054 | 0.00 | | | | | | 15.15 | 32.34 | | 0.00 | | 93.29 | 4.04 | 1.25 | 0.15 | 0.45 | 99.18 | 0.068 | 0.00 | | 93.29 | 4.50 | 0.64 | 0.10 | 0.36 | 98.89 | 0.066 | 0.0 | | 95.47 | 1.78 | 0.96 | 0.10 | 0.39 | 98.70 | 0.060 | 0.00 | | 94.20 | 3.70 | 0.77 | 0.13 | 0.32 | 99.12 | 0.030 | 0.00 | | 96.02 | 1.09 | 0.81 | 0.10 | 0.71 | 98.73 | 0.038 | 0.00 | | 95.84 | 1.34 | 1.04 | 0.10 | 0.51 | 98.83 | 0.052 | 0.00 | | | | | | | | | | | 94.29 | 3.98 | 0.92 | 0.06 | 0.73 | . 99.98 | 0.026 | 0.00 | | 92.92 | 5.53 | 0.80 | 0.10 | 0.59 | 99.43 | 0.036 | 0.00 | | 83.36 | 13.00 | 1.66 | 0.18 | 0.89 | 99.09 | 0.108 | 0.00 | | 90.01 | 8.53 | 0.48 | 0.10 | 0.38 | 99.50 | 0.048 | 0.00 | | 87.55 | 10.27 | 0.92 | 0.15 | 0.36 | 99.25 | 0.064 | 0.00 | | 94.47 | 3.75 | 1.02 | 0.10 | 0.54 | 99.88 | 0.056 | 0.00 | | | | | | | | | | | 94.47 | 2.84 | 0.86 | 0.15 | 0.72 | 99.04 | 0.062 | 0.0 | | 94.20 | 3.40 | 1.23 | 0.10 | 0.87 | 99.80 | 0.086 | 0.0 | | 93.65 | 2.95 | 1.31 | 0.13 | 0.89 | 98.93 | 0.084 | 0.00 | | 92.74 | 3.84 | 2.04 | 0.10 | 0.75 | 99.47 | 0.080 | 0.00 | | 94.29 | 3.08 | 1.79 | 0.13 | 0.36 | 99.65 | 0.052 | 0.00 | | 92.98 | 3.40 | 1.59 | 0.14 | 0.57 | 98.68 | 0.092 | 0.00 | | 90.92 | 4.11 | 2.93 | 0.19 | 1.09 | 99.24 | 0.142 | 0.00 | | | | | DESCRIPTION | | |---------------------------|--------------|--------------------------|-------------|-----------| | Sample
Level
(Feet) | Ledge
No. | Thick-
ness
(Feet) | Lithology | Formation | | 401-402
402-403
403-404
404-405
405-406 | 23-Cor | ntinued | | |---|--------|---------|--| | 406-407
407-408
408-409
409-410
410-411
411-412
412-413
413-414
414-415 | 24 | 9 | Limestone, yellowish-brown, micrograined; in part fine- to coarse-grained calcarenite in interval 411-414 feet; minor mottling with small bodies and thin seams of very finely crystalline dolomite; few brachiopods; stylolites. Gradational with underlying ledge. | | 415-416
416-417
417-418
418-419
419-420
420-421 | 25 | 6 | Limestone, yellowish- to very dark-yellowish-
brown, micrograined, with scattered veinlets and
birdseyes of crystalline calcite; in part very
fine- to fine-grained calcarenite in interval
418-419 feet; some mottling with irregular bodies
and very thin zones of very finely crystalline
dolomite; few brachiopods; stylolites. Grada-
tional with overlying ledge. | | 421-422
422-423
423-424
424-425
425-426
426-427 | 26 | 6 | Limestone, very light- to light-olive-gray, with minor medium-gray mottling, micrograined to microcrystalline, with some scattered birdseyes and veinlets of crystalline calcite; some thin zones and small irregular bodies of yellowish-brown, very finely crystalline dolomite; few brachiopods; traces of pyrite in lower 3 feet; few stylolites. | | 427-428
428-429
429-430
430-431
431-432
432-433
433-434 | 27 | 7 | Limestone, very dark-yellowish- to dark-yellow-ish-brown, micrograined, with scattered birdseyes and veinlets of crystalline calcite; in part very fine- to coarse-grained calcarenite (dominant lithology in lower 3 feet); few very thin zones of very finely crystalline dolomite; some brachiopods in interval 429-434 feet; few very thin argillaceous seams. | Table 2.—Continued. County: Fayette Property Owner: K. R. Hayden Location: Operator: American Smelting and Refining Co. Core No. CK-2 | CHEMICAL ANALYSIS | | | | | | | | |------------------------|------------------------|-----------------------|--------------------|--------------|------------|---------|--------| | %
CaCO ₃ | %
MgCO ₃ | %
SiO ₂ | %
Iron
Oxide | %
Alumina | %
Total | %
S | %
P | | | | | | | | | | | 86.64 | 7.73 | 3.12 | 0.18 | 1.28 | 98.95 | 0.116 | 0.00 | | 85.45 | 8.60 | 3.26 | 0.18 | 1.17 | 98.66 | 0.128 | 0.00 | | 84.27 | 9.92 | 3.39 | 0.18 | 1.18 | 98.94 | 0.118 | 0.00 | | 84.54 | 9.77 | 3.94 | 0.20 | 1.33 | 99.78 | 0.074 | 0.00 | | 86.45 | 8.47 | 3.28 | 0.20 | 1.00 | 99.40 | 0.108 | 0.00 | | 87.09 | 6.35 | 4.02 | 0.18 | 1.12 | 98.76 | 0.126 | 0.00 | | 89.73 | 3.68 | 3.45 | 0.18 | 1.34 | 98.38 | 0.132 | 0.00 | | 91.46 | 5.08 | 2.14 | 0.15 | 1.13 | 99.96 | 0.078 | 0.00 | | 92.56 | 3.52 | 2.44 | 0.15 | 1.17 | 99.84 | 0.068 | 0.00 | | 90.92 | 5.45 | 2.33 | 0.15 | 0.97 | 99.82 | 0.092 | 0.00 | | 84.81 | 10.03 | 3.72 | 0.20 | 1.14 | 99.40 | 0.044 | 0.00 | | 87.82 | 8.50 | 2.45 | 0.18 | 0.78 | 99.73 | 0.076 | 0.01 | | 92.38 | 4.28 | 2.29 | 0.15 | 0.86 | 99.96 | 0.078 | 0.00 | | 89.46 | 6.31 | 2.61 | 0.15 | 0.91 | 99.44 | 0.090 | 0.01 | | 83.27 | 7.35 | 5.48 | 0.33 | 2.33 | 98.76 | NOT ANA | | | | | | | | 99.91 | NOT HIM | LIGED | | 83.63 | 7.03 | 5.83 | 0.35 | 3.07 | 99.78 | | | | 87.73 | 6.34 | 3.77 | 0.27 | 1.67 | | | | | 92.01 | 3.07 | 4.21 | 0.19 | 0.51 | 99.99 | | 1. | | 86.09 | 2.09 | 10.30 | 0.53 | 0.61 | 99.62 | | 1 | | 93.47 | 5.01 | 0.81 | 0.18 | 0.23 | 99.70 | | | | 89.10 | 5.72 | 4.20 | 0.25 | 0.37 | 99.64 | | | | 89.82 | 8.20 | 1.22 | 0.25 | 0.27 | 99.76 | | | | 88.00 | 7.89 | 2.53 | 0.20 | 1.24 | 99.86 | | | | 84.54 | 9.75 | 3.33 | 0.30 | 1.50 | 99.42 | | | | 83.81 | 9.42 | 3.98 | 0.28 | 2.04 | 99.53 | | | | 81.72 | 10.80 | 4.14 | 0.27 | 1.99 | 98.92 | | | | 74.34 | 9.70 | 9.20 | 0.37 | 3.99 | 97.60 | | | | 84.18 | 7.71 | 4.23 | 0.33 | 1.98 | 98.43 | | 1 | | 88.55 | 7.95 | 1.97 | 0.20 | 0.82 | 99.49 | | AP. | | 89.10 | 8.00 | 1.63 | 0.20 | 0.64 | 99.57 | | | | 89.64 | 5.94 | 2.34 | 0.20 | 1.32 | 99.44 | | 1 | | 85.45 | 7.88 | 3.48 | 0.30 | 1.85 | 98.86 | | | | 82.08 | 7.46 | 5.80 | 0.38 | 2.34 | 98.06 | | | | 76.71 | 9.00 | 8.47 | 0.50 | 3.35 | 98.03 | | | | 80.62 | 8.06 | 6.50 | 0.40 | 2.58 | 98.16 | | 1 | | 85.82 | 6.43 | 4.27 | 0.33 | 1.92 | 98.77 | | | | 92.38 | 2.66 | 2.08 | 0.20 | 0.62 | 97.94 | | 1 | | 93.29 | 1.66 | 2.18 | 0.18 | 0.80 | 98.11 | | | | 92.74 | 1.45 | 2.09 | 0.18 | 0.76 | 97.22 | | | | 89.46 | 4.63 | 2.80 | 0.23 | 1.43 | 98.55 | | | | 88.73 | 5.41 | 3.75 | 0.20 | 1.29 | 99.38 | | | | 87.09 | 5.23 | 4.66 | 0.28 | 1.70 | 98.96 | | | | 87.64 | 5.50 | 4.39 | 0.28 | 1.94 | 99.75 | | | | 92.19 | 2.86 | 2.68 | 0.20 | 1.16 | 99.09 | | | | 84.72 | 5.69 | 5.51 | 0.33 | 2.19 | 98.44 | | | | 91.46 | 3.86 | 2.93 | 0.23 | 0.94 | 99.42 | | | | 86.36 | 5.03 | 5.46 | 0.30 | 2.10 | 99.25 | | | | 91.92 | 2.31 | 3.50 | 0.23 | 1.46 | 99.42 | | | | 92.83 | 2.28 | 3.16 | 0.18 | 1.20 | 99.65 | | | | 90.55 | 3.40 | 3.57 | 0.30 | 1.60 | 99.42 | | | | 10133 | 2,40 | 3.46 | 0.00 | **** | | | | Sampled by: Analyzed by: Date Sampled: | | | | DESCRIPTION | | |--|--------------|--------------------------
--|-----------------------| | Sample
Level
(Feet) | Ledge
No. | Thick-
ness
(Feet) | Lithology | Formation | | 434-435
435-436
436-437
437-438
438-439
439-440
440-441
441-442
442-443
443-444
445-446
445-446
447-448
449-450
450-451
451-452
452-453
453-454
454-455
456-457
457-458
458-460
461-462
462-463
463-464
464-465
466-467
467-468
468-469
469-470 | 28 | 36 | Limestone, yellowish- to dark-yellowish-brown and olive- to light-olive-gray, micrograined, with few scattered veinlets and birdseyes of crystalline calcite; some very fine- to coarse-grained, bioclastic calcarenite; mottled with irregular bodies and thin zones of very finely crystalline dolomite; scattered fossil fragments (mainly brachiopods); small bodies and thin zones of very light-olive- to very light-gray chert, in part chalk-like, in intervals 451-453 and 454-455 feet; scattered stylolites; some very thin, dark-greenish-gray argillaceous seams, mainly in lower part. | CAMP NELSON LIMESTONE | | 470-471
471-472
472-473
473-474
474-475
475-476
476-477
477-478
478-479
479-480
480-481
481-482
482-483
483-484
484-485 | 29 | 24 | Limestone, yellowish- to dark-yellowish-brown and olive- to light-olive-gray, micrograined, with few scattered veinlets and birdseyes of crystalline calcite; few zones of very fine- to coarse-grained, bioclastic calcarenite; some to minor mottling with irregular bodies and thin zones of very finely crystalline dolomite; micrograined limestone grades downward into very finely crystalline to microcrystalline, silty, dolomitic limestone in lower 2 feet; scattered fossil fragments (mainly brachiopods; locally, colonial coral, Tetradium); traces of pyrite in intervals 471-472 and 493-494 feet; scattered stylolites; few very thin, dark-greenish-gray argillaceous seams. Gradational with underlying ledge. | | Table 2.—Continued. County: Fayette Property Owner: K. R. Hayden Location: Operator: American Smelting and Refining Co. Core No. CK-2 | CHEMICAL ANALYSIS | | | | | | | | | |------------------------|---------------|-----------------------|--------------------|--------------|----------------|--------|--------|--| | %
CaCO ₃ | %
MgCO₃ | %
SiO ₂ | %
Iron
Oxide | %
Alumina | %
Total | %
S | %
P | | | | | | | | | | | | | 92.56 | 2.77 | 2.67 | 0.20 | 1.35 | 99.55 | NOT AN | ALYZED | | | 93.92 | 3.32 | 1.82 | 0.18 | 0.73 | 99.97 | | 1 | | | 94.56 | 2.39 | 1.62 | 0.15 | 1.12 | 99.84 | | 4 | | | 94.17 | 1.90 | 2.69 | 0.10 | 0.92 | 99.78 | | 1 | | | 94.19 | 2.56 | 2.43 | 0.15 | 0.55 | 99.88 | | | | | 91.10 | 4.08 | 3.03 | 0.15 | 1.61 | 99.97 | | | | | 85.36 | 6.48 | 4.79 | 0.25 | 1.68 | 98.56 | | | | | 86.36 | 5.81 | 5.35 | 0.20 | 1.81 | 99.53 | | | | | 70.78 | 15.28 | 9.95 | 0.33 | 2.66 | 99.00 | | ł | | | | | NO. 028 | 000 9000 | 4 44 | 20.12 | | 1 | | | 62.31 | 21.32 | 11.99 | 0.48 | 3.37 | 99.47 | | | | | 62,59 | 21.35 | 12.24 | 0.48 | 3.25 | 99.91 | | | | | 62,31 | 21.24 | 11.10 | 0.48 | 3.66 | 98.79 | | | | | 62.68 | 16.26 | 13.59 | 0.45 | 4.35 | 97.33 | | | | | 63.99 | 18.11 | 13.94 | 0.50 | 2.53 | 99.07
99.26 | | | | | 67.67 | 17.12 | 12.21 | 0.40 | 1.86 | 99.96 | | | | | 82.06 | 8.06 | 8.16 | 0.25 | 2.07 | 98.27 | | | | | 69.15 | 12.43 | 14.22 | 0.40 | 2.07 | 30.27 | | | | | 80.40 | 6.83 | 9.01 | 0.25 | 2.13 | 98.62 | | | | | 83.72 | 5.47 | 7.66 | 0.25 | 2.06 | 99.16 | | 1 | | | 87.22 | 4.44 | 6.08 | 0.15 | 1.63 | 99.52 | | | | | 86.69 | 4.48 | 6.51 | 0.20 | 2.08 | 99.96 | | | | | 87.41 | 6.06 | 5.28 | 0.25 | 0.99 | 99.99 | | | | | 86.39 | 5.82 | 6.10 | 0.25 | 1.38 | 99.94 | | | | | 84.64 | 4.60 | 7.60 | 0.25 | 2.10 | 99.19 | | | | | 85.28 | 6.24 | 6.96 | 0.25 | 1.21 | 99.94 | | 1// | | | 92.56 | 3.57 | 2,97 | 0.15 | 0.55 | 99.80 | | | | | 92.92 | 3.30 | 2.88 | 0.15 | 0.75 | 100.00 | | | | | 74.59 | 5.73 | 13.86 | 0.35 | 4.57 | 99.10 | | | | | 85.93 | 2.95 | 8.04 | 0.20 | 2.41 | 99.53 | | 100 | | | 86.85 | 3.62 | 6.98 | 0.18 | 1.91 | 99.54 | | | | | 90.45 | 4.16 | 4.07 | 0.18 | 0.94 | 99.80 | | 1 | | | 89.80 | 5.68 | 3.35 | 0.18 | 0.93 | 99.94 | | | | | 90.73 | 6.09 | 2.37 | 0.18 | 0.57 | 99.94
99.14 | | | | | 77.50 | 10.63 | 8.04 | 0.35 | 1.26 | 99.14 | | 1 | | | 88.14 | 6.97 | 3.32 | 0.23 | 2.04 | 99.92 | | | | | 76.62 | 14.42 | 6.56 | 0.35 | 0.33 | 99.97 | | | | | 94.21 | 3.73 | 1.55 | 0.15 | 0.34 | 99.95 | | | | | 95.54 | 2.66 | 1.28 | 0.13 | 1.40 | 98.87 | | M | | | 75.52 | 16.87 | 4.73
3.71 | 0.33 | 0.78 | 99.66 | | | | | 82.72 | 12.17
9.12 | 2.46 | 0.23 | 0.50 | 99.93 | | | | | 87.62
90.64 | 6.12 | 2.39 | 0.23 | 0.56 | 99.94 | | | | | 86.06 | 9.68 | 3.14 | 0.20 | 0.91 | 99.99 | | | | | 88.18 | 7.56 | 3.00 | 0.20 | 0.84 | 99.78 | | | | | 88.74 | 6.34 | 3.57 | 0.20 | 0.95 | 99.80 | | | | | 84.73 | 8.27 | 4.06 | 0.23 | 1.53 | 98.82 | | | | | 87.69 | 8.10 | 2.67 | 0.23 | 1.05 | 99.74 | | | | | 83.99 | 10.54 | 3.11 | 0.25 | 1.53 | 99.42 | | | | | 86.99 | 6.16 | 3.02 | 0.18 | 1.65 | 98.00 | | | | | 84.87 | 6.81 | 5.63 | 0.20 | 1.95 | 99.46 | | | | | | | | DESCRIPTION | | |---|--------------|--------------------------|--|-----------------------| | Sample
Level
(Feet) | Ledge
No. | Thick-
ness
(Feet) | Lithology | Formation | | 485-486
486-487
487-488
488-489
489-490
490-491
491-492
492-493
493-494 | 29-Co | ntinued | | | | 494-495
495-496
496-497
497-498
498-499
499-500
500-501
501-502 | 30 | 8 | Dolomitic limestone, olive- to light-olive-gray and yellowish-brown, with some medium-dark-gray mottling, very finely crystalline, silty; in part micrograined limestone in lower 2 feet; some very thin greenish- to dark-greenish-gray shales and argillaceous seams in upper 4 feet. Gradational with overlying ledge. | | | 502-503
503-504
504-505
505-506
506-507
507-508
508-509
509-510
510-511
511-512
512-513
513-514
514-515
515-516
516-517
517-518
518-519
519-520
520-521
521-522
522-523
523-524
524-525
525-526
526-527
527-528
528-529
529-530
530-531
531-532
532-533
533-534
534-535 | 31 | 42 | Limestone, yellowish- to very dark-yellowish-
brown and light-olive-gray, with minor medium-
dark-gray mottling, micrograined to microcrystal-
line, with some birdseyes and veinlets of crys-
talline calcite; few zones of very fine- to medi-
um-grained calcarenite; mottled with irregular
bodies and thin zones of very finely crystalline
dolomite; scattered fossil fragments, mainly in
upper part; some quartz silt, mainly in upper
part; traces of pyrite in interval 512-514 feet;
few very thin, greenish-gray argillaceous seams. | CAMP NELSON LIMESTONE | Table 2.—Continued. | CHEMICAL ANALYSIS | | | | | | | | | |-------------------|-------------------|------------------|-------|---------|-------|----------|-------------|--| | % | % | % | % | % | % | % | % | | | CaCO ₃ | MgCO ₃ | SiO ₂ | Iron | Alumina | Total | S | P | | | | | | Oxide | | | | | | | | | | | | | | | | | 3.22 | 6.42 | 6.69 | 0.23 | 2.40 | 98.96 | NOT ANAI | YZED | | | 6.80 | 9.19 | 8.58 | 0.33 | 3.06 | 97.96 | | | | | 5.41 | 1.59 | 1.82 | 0.10 | 1.05 | 99.97 | | | | | 39.63 | 2.03 | 4.76 | 0.15 | 2.07 | 98.64 | | | | | 00.00 | 3.14 | 4.41 | 0.20 | 1.70 | 99.45 | | | | | 31.39 | 8.72 | 6.49 | 0.28 | 2.64 | 99.52 | | | | | 35.97 | 7.45 | 3.38 | 0.25 | 1.23 | 98.28 | 1 | | | | | 5.18 | 2.86 | 0.25 | 0.97 | 97.98 | | | | | 38.72 | | 1.56 | 0.20 | 0.67 | 99.99 | | | | | 93.30 | 4.26 | 1.50 | 0.20 | 0.07 | ,,,,, | | | | | 20.66 | 2. 20 | 1.93 | 0.20 | 0.89 | 98.96 | | | | | 2.66 | 3.28 | | 0.18 | 1.34 | 98.76 | - 10 | | | | 39.27 | 5.21 | 2.76 | | 2.10 | 97.50 | | | | | 33.40 | 7.82 | 3.93 | 0.25 | 1.43 | 99.17 | | | | | 38.90 | 5.54 | 3.12 | 0.18 | 0.85 | 99.69 | | | | | 91,28 | 5.65 | 1.68 | 0.23 | 0.51 | 99.98 | | | | | 89.07 | 8.21 | 1.96 | 0.23 | | 99.87 | | | | | 88.46 | 8.33 | 2.03 | 0.25 | 0.80 | | | | | | 91,28 | 6.03 | 1.96 | 0.25 | 0.41 | 99.93 | | | | | 88,18 | 6.43 | 3.23 | 0.20 | 1.56 | 99.60 | | | | | | | | | | | | | | | 78.98 | 11.93 | 6.46 | 0.30 | 2.28 | 99.95 | | | | | 74.52 | 10.78 | 8.44 | 0.35 | 3.35 | 97.44 | | | | | 77.98 | 8.38 | 8.38 | 0.33 | 3.08 | 98.15 | | | | | 77.98 | 10.16 | 7.18 | 0.40 | 2.79 | 98.51 | | 11 | | | |
| | | | | | | | | 87.73 | 5.96 | 3.61 | 0.20 | 1.41 | 98.91 | | | | | 81.53 | 10.15 | 5.27 | 0.33 | 1.75 | 99.03 | | | | | 87.09 | 7.24 | 3.38 | 0.20 | 1.06 | 98.97 | | | | | 88.46 | 6.23 | 2.99 | 0.20 | 1.03 | 98.91 | | | | | 83.45 | 9.03 | 4.09 | 0.15 | 0.68 | 98.40 | | N. A. S. 12 | | | 91.65 | 4.35 | 2.31 | 0.12 | 0.76 | 99.19 | 0.130 | 0.0 | | | 91.19 | 5.17 | 2.25 | 0.13 | 0.73 | 99.47 | 0.058 | 0.0 | | | 92.32 | 4.43 | 2.01 | 0.14 | 0.88 | 99.78 | 0.092 | 0.0 | | | n) c) | 0.71 | 2 60 | 0.19 | 1.51 | 98.65 | 0.140 | 0.0 | | | 84.64 | 9.71 | 2.60 | 0.19 | 1.29 | 99.16 | 0.228 | 0.0 | | | 86.77 | 8.45 | 2.50 | | 1.34 | 99.54 | 0.158 | 0.0 | | | 87.69 | 8.60 | 1.78 | 0.13 | 1.34 | 77.74 | 0,150 | | | | 92.41 | 5.15 | 0.79 | 0.13 | 0.81 | 99.29 | 0,060 | 0.0 | | | 88.89 | 9.16 | 0.76 | 0.14 | 0.90 | 99.85 | 0.070 | 0.0 | | | 82.23 | 12.36 | 2.98 | 0.19 | 1.45 | 99.21 | 0.078 | 0.0 | | | 79.27 | 13.73 | 4.18 | 0.20 | 2.01 | 99.39 | 0.164 | 0.0 | | | 92.13 | 6.53 | 0.67 | 0.10 | 0.48 | 99.91 | 0.118 | 0.0 | | | 89.54 | 8.41 | 1.05 | 0.18 | 0.57 | 99.75 | 0.090 | 0.0 | | | | 9.59 | 1.09 | 0.12 | 0.35 | 99.95 | 0.050 | 0.0 | | | 88.80 | | | | | 99.87 | 0.116 | 0.0 | | | | | | DESCRIPTION | | |---|--------------|--------------------------|---|-----------------------| | Sample
Level
(Feet) | Ledge
No. | Thick-
ness
(Feet) | Lithology | Formation | | 535-536
536-537
537-538
538-539
539-540
540-541
541-542
542-543
543-544 | 31-0 | ontinued | | | | 544-545
545-546
546-547
547-548
548-549
549-550
550-551
551-552
552-553 | 32 | 9 | Limestone, light-olive- to very light-olive-gray and yellowish-brown, with minor medium-dark-gray mottling, micrograined, with scattered birdseyes and veinlets of crystalline calcite; some very fine- to medium-grained calcarenite; some thin zones of yellowish- to dark-yellowish-brown, very finely crystalline dolomite; traces of pyrite in intervals 545-546 and 552-553 feet; very thin, greenish-gray argillaceous seam in basal foot. | | | 553-554
554-555
555-556
556-557 | 33 | 4. | Dolomitic limestone, light-olive- to greenish-gray, microcrystalline to very finely crystalline, slightly argillaceous; in part micrograined limestone; some fine- to medium-grained calcarenite; traces of pyrite in interval 554-556 feet; few very thin argillaceous seams in interval 554-555 feet. | CAMP NELSON LIMESTONE | | 557-558
558-559
559-560
560-561
561-562
562-563
563-564
564-565 | 34 | 8 | Limestone, light-olive-gray to dark-yellowish-
brown, with minor medium-dark-gray mottling, mi-
crograined, in part finely laminated, with scat-
tered birdseyes and veinlets of crystalline cal-
cite; thin zones of very finely crystalline dolo-
mite, mainly in upper 5 feet; traces of pyrite in
interval 559-562 feet. | CAMP N | | 565-566
566-567
567-568 | 35 | 3 | Limestone, dark-yellowish- to yellowish-brown, with minor medium-dark-gray mottling, micrograined, with scattered birdseyes and veinlets of crystalline calcite; mottled with irregular bodies of very finely crystalline dolomite. | | | 568-569
569-570
570-571
571-572
572-573
573-574
574-575
575-576 | 36 | 8 | Limestone, very light-olive- to light-olive-gray and dark-yellowish- to pale-yellowish-brown, micrograined, in part finely laminated, with some birdseyes and veinlets of crystalline calcite; zones of very finely crystalline dolomite; traces of pyrite in interval 573-574 feet; few stylolites. Gradational with underlying ledge. | | Table 2.—Continued. | CHEMICAL ANALYSIS | | | | | | | | | | |------------------------|------------------------|-----------------------|--------------------|--------------|------------|--------|--------|--|--| | %
CaCO ₃ | %
MgCO ₃ | %
SiO ₂ | %
Iron
Oxide | %
Alumina | %
Total | %
S | %
P | | | | | | | | | | | | | | | 86.27 | 11.69 | 1.35 | 0.17 | 0.48 | 99.96 | 0.042 | 0.00 | | | | 81.03 | 16.04 | 1.77 | 0.20 | 0.79 | 99.83 | 0.092 | 0.00 | | | | 79.74 | 17.98 | 1.58 | 0.20 | 0.38 | 99.88 | 0.078 | 0.00 | | | | 77.97 | | | | | 99.98 | 0.118 | 0.00 | | | | 10.000.000.000 | 20.03 | 1.36 | 0.18 | 0.44 | | 0.094 | | | | | 81.67 | 17.04 | 0.80 | 0.20 | 0.21 | 99.92 | | 0.00 | | | | 79.18 | 19.25 | 1.00 | 0.23 | 0.34 | 100.00 | 0.080 | 0.00 | | | | 78.81 | 19.34 | 1.18 | 0.21 | 0.25 | 99.79 | 0.068 | 0.00 | | | | 77.89 | 20.05 | 1.31 | 0.18 | 0.53 | 99.96 | 0.080 | 0.00 | | | | 74.65 | 22.74 | 1.96 | 0.20 | 0.43 | 99.98 | 0.080 | 0.00 | | | | 75.30 | 22.53 | 1.52 | 0.20 | 0.36 | 99.91 | 0.084 | 0.00 | | | | 83.62 | 14.95 | 0.41 | 0.18 | 0.46 | 99.62 | 0.170 | 0.00 | | | | 76.87 | 21.62 | 0.86 | 0.17 | 0.44 | 99.96 | 0.060 | 0.01 | | | | 72.34 | 25.22 | 1.43 | 0.24 | 0.63 | 99.86 | 0.066 | 0.00 | | | | 74.46 | 22.55 | 1.97 | 0.25 | 0.62 | 99.85 | 0.098 | 0.01 | | | | 80.38 | 17.08 | 1.51 | 0.18 | 0.44 | 99.59 | 0.080 | 0.00 | | | | 85.75 | 13.03 | 0.66 | 0.18 | 0.26 | 99.88 | 0.068 | 0.00 | | | | 92.13 | 3.20 | 3.30 | 0.16 | 0.99 | 99.78 | 0.116 | 0.00 | | | | 80.48 | 15.30 | 2.77 | 0.23 | 1.09 | 99.87 | 0.090 | 0.01 | | | | 73.08 | 24.39 | 1.36 | 0.26 | 0.55 | 99.64 | 0.052 | 0.00 | | | | | 22.22 | | 0.21 | 0.40 | 99.73 | 0.018 | 0.00 | | | | 76.31 | | 0.59 | | | | 0.020 | 0.00 | | | | 75.02 | 23.07 | 0.78 | 0.24 | 0.54 | 99.65 | | | | | | 74.65 | 22.46 | 1.36 | 0.23 | 0.46 | 99.16 | 0.040 | 0.01 | | | | 75.11 | 21.85 | 1.86 | 0.20 | 0.93 | 99.95 | 0.052 | 0.00 | | | | 76.50 | 19.26 | 1.86 | 0.23 | 1,09 | 98.94 | 0.056 | 0.00 | | | | 84.73 | 10.73 | 2.28 | 0.18 | 1.27 | 99.19 | 0.072 | 0.00 | | | | 91.39 | 5.96 | 1.34 | 0.14 | 0.76 | 99.59 | 0.054 | 0.00 | | | | 92.32 | 5.08 | 1.43 | 0.17 | 0.33 | 99.33 | 0.082 | 0.00 | | | | 86.77 | 11.39 | 1.44 | 0.17 | 0.20 | 99.97 | 0.056 | 0.01 | | | | 86.54 | 12.13 | 0.91 | 0.19 | 0.16 | 99.93 | 0.034 | 0.00 | | | | 85.47 | 12.58 | 1.35 | 0.18 | 0.40 | 99.98 | 0.082 | 0.01 | | | | 89.36 | 9.33 | 0.66 | 0.15 | 0.49 | 99.99 | 0.068 | 0.01 | | | | 87.69 | 9.51 | 1.40 | 0.13 | 0.74 | 99.47 | 0.074 | 0.01 | | | | 88.47 | 9.19 | 1.42 | 0.13 | 0.49 | 99.70 | 0.054 | 0.00 | | | | 86.03 | 11.87 | 1.31 | 0.18 | 0.55 | 99.94 | 0.074 | 0.00 | | | | 85.47 | 13.31 | 0.89 | 0.13 | 0.19 | 99.99 | 0.050 | 0.00 | | | | 79.24 | 18.64 | 1.26 | 0.17 | 0.27 | 99.58 | 0.066 | 0.00 | | | | 77.98 | 19.94 | 1.50 | 0.14 | 0.35 | 99.91 | 0.056 | 0.00 | | | | 75.30 | 21.39 | 1.95 | 0.18 | 0.66 | 99.48 | 0.044 | 0.01 | | | | 80.57 | 18.31 | 0.87 | 0.15 | 0.09 | 99.99 | 0.046 | 0.00 | | | | 78.35 | 20.62 | 0.70 | 0.20 | 0.09 | 99.96 | 0.036 | 0.01 | | | | | | | 0.20 | 0.25 | 99.99 | 0.040 | 0.00 | | | | 72.05 | 26.01 | 1.46 | | | | | 0.00 | | | | 70.30 | 27.73 | 1.63 | 0.20 | 0.12 | 99.98 | 0.054 | 0.00 | | | | 79.92 | 18.50 | 0.68 | 0.22 | 0.44 | 99.76 | 0.034 | | | | | 74.93 | 23.60 | 0.72 | 0.20 | 0.50 | 99.95 | 0.018 | 0.01 | | | | 78.07 | 20.72 | 0.74 | 0.18 | 0.45 | 99.98 | 0.044 | 0.00 | | | | 76.76 | 21.43 | 0.60 | 0.24 | 0.39 | 99.42 | 0.066 | 0.01 | | | | 78.53 | 19.91 | 0.47 | 0.18 | 0.81 | 99.90 | 0.056 | 0.01 | | | | 73.63 | 23.25 | 1.22 | 0.23 | 1.02 | 99.35 | 0.062 | 0.01 | | | | 74.74 | 22.08 | 1.39 | 0.20 | 0.86 | 99.27 | 0.050 | 0.01 | | | | 80.85 | 16.78 | 0.99 | 0.17 | 0.84 | 99.63 | 0.034 | 0.01 | | | | 79.18 | 18.96 | 1.30 | 0.21 | 0.27 | 99.92 | 0.054 | 0.01 | | | | | | | DESCRIPTION | | |--|--------------|--------------------------|---|-----------------------| | Sample
Level
(Feet) | Ledge
No. | Thick-
ness
(Feet) | Lithology | Formation | | 576-577
577-578
578-579
579-580
580-581
581-582
582-583
583-584
584-585
585-586
586-587
587-588
588-589
589-590
590-591 | 37 | 16 | Limestone, light-olive-gray and very pale yellow-ish-brown, micrograined to microcrystalline; some very fine- to fine-grained calcarenite; mottled with small irregular bodies and, in upper 2 feet, thin zones of very finely crystalline dolomite (in part dark-yellowish-brown and olive-gray); scattered fossil fragments (locally, colonial coral, Tetradium); stylolites. Gradational with overlying and underlying ledges. | | | 592-593
593-594
594-595
595-596
596-597
597-598
598-599
599-600
600-601
601-602
602-603
603-604
604-605
605-606
606-607 | 38 | 15 | Dolomitic limestone, very light-olive-gray to dark-yellowish-brown, microcrystalline to very finely crystalline; interlayers of micrograined limestone (in part gradational with the dolomitic limestone), with some birdseyes and veinlets of crystalline calcite; some thin zones of very finely crystalline dolomite (in part yellowish-brown) in the micrograined limestone; traces of pyrite in intervals 599-600 and 604-605 feet; some stylolites.
Gradational with overlying ledge. | CAMP NELSON LIMESTONE | | 607-608
608-609
609-610
610-611
611-612
612-613
613-614
614-615
615-616
616-617
617-618
618-619
619-620
620-621
621-622
622-623
623-624
624-625
625-626
626-627 ½ | 39 | 20월 | Limestone, very pale-yellowish- to yellowish-
brown, micrograined, with few birdseyes and vein-
lets of crystalline calcite; with earthy appear-
ance in interval 614-627½ feet; thin zones of
bioclastic calcarenite in interval 614-622 feet;
mottled with irregular bodies and thin zones of
very finely crystalline dolomite (in part olive-
gray and yellowish-brown); some brachiopods in
interval 609-611 feet; some stylolites. | | Table 2.—Continued. | CHEMICAL ANALYSIS | | | | | | | | | | |------------------------|------------------------|-----------------------|--------------------|--------------|------------|--------|--------|--|--| | %
CaCO ₃ | %
MgCO ₃ | %
SiO ₂ | %
Iron
Oxide | %
Alumina | %
Total | %
S | %
P | | | | | | | | | | | | | | | (2.00 | 10 11 | 12 46 | 0.39 | 3.36 | 98.32 | NOT AN | AIVZED | | | | 63.00 | 19.11 | 12.46
9.77 | 0.37 | 3.02 | 98.16 | NOI AM | I | | | | 63.00 | 22.00 | | 0.37 | 1.21 | 98.86 | | | | | | 70.49 | 22.68 | 4.17
9.40 | 0.31 | 2.83 | 97.57 | | | | | | 69.84 | 15.21 | | 0.33 | 3.13 | 97.54 | | | | | | 68.22 | 16.78 | 9.08 | 0.27 | 2.13 | 98.35 | | | | | | 64.80 | 24.13 | 7.02 | | 3.35 | 96.72 | | | | | | 68.40 | 13.30 | 11.36 | 0.41 | | 98.17 | | | | | | 69.75 | 20.08 | 5.68 | 0.31 | 2.35
3.11 | 98.09 | | 11/ | | | | 65.68 | 18.33 | 10.64 | 0.33 | 3.11 | 90.09 | | | | | | 84.92 | 7.15 | 4.79 | 0.23 | 1.88 | 98.97 | | | | | | 87.14 | 6.56 | 3.92 | 0.18 | 1.58 | 99.38 | | | | | | 87.32 | 9.12 | 2.20 | 0.18 | 0.70 | 99.52 | | | | | | 89.36 | 7.67 | 1.94 | 0.18 | 0.70 | 99.85 | | | | | | 89.73 | 6.49 | 2.55 | 0.14 | 0.99 | 99.90 | | | | | | 93.61 | 3.86 | 1.72 | 0.12 | 0.66 | 99.97 | | | | | | 92.16 | 4.78 | 1.87 | 0.15 | 0.65 | 99.61 | | | | | | 87.30 | 5.84 | 3.12 | 0.17 | 1.12 | 97.55 | | | | | | 80.01 | 10.23 | 5.87 | 0.24 | 2.05 | 98.40 | | | | | | 73.26 | 12.65 | 8.12 | 0.41 | 2.66 | 97.10 | | 4 | | | | 85.14 | 10.19 | 3.37 | 0.28 | 0.98 | 99.96 | | | | | | 81.54 | 12.09 | 3.66 | 0.35 | 1.45 | 99.09 | | 1 | | | | 87.84 | 7.56 | 3.07 | 0.28 | 1.18 | 99.93 | | | | | | 88.92 | 5.78 | 3.25 | 0.24 | 1.24 | 99.43 | | 4 | | | | 86.04 | 9.74 | 1.89 | 0.26 | 0.97 | 98.90 | | | | | | 85.68 | 7.42 | 4.21 | 0.23 | 1.62 | 99.16 | | | | | | 83.88 | 11.31 | 2.55 | 0.23 | 1.15 | 99.12 | | | | | | 88.92 | 5.85 | 2.29 | 0.21 | 0.69 | 97.96 | | | | | | 79.20 | 11.58 | 4.86 | 0.32 | 1.79 | 97.75 | | | | | | 81.99 | 8.86 | 4.54 | 0.30 | 2.68 | 98.37 | | | | | | 73.98 | 13.05 | 7.20 | 0.24 | 3.26 | 97.73 | | | | | | 72.81 | 13.34 | 8.65 | 0.30 | 3.58 | 98.68 | | | | | | 66.87 | 14.91 | 10.59 | 0.28 | 4.30 | 97.95 | | | | | | 76.50 | 12.17 | 5.75 | 0.23 | 2.61 | 97.26 | | | | | | | | | | | | | | | | | 64.98 | 23.30 | 7.38 | 0.34 | 2.51 | 98.51 | | | | | | 62.10 | 25.43 | 8.46 | 0.38 | 2.68 | 99.05 | | | | | | 56.52 | 27.13 | 11.13 | 0.43 | 3.37 | 98.58 | | | | | | 55.80 | 31.80 | 8.81 | 0.50 | 2.27 | 99.18 | | 1 | | | | 57.06 | 31.36 | 7.67 | 0.45 | 2.04 | 98.58 | | | | | | 66.69 | 22.94 | 6.93 | 0.35 | 1.90 | 98.81 | | | | | | Dote Sampled | • | | DECEMPTIAL! | | |--|--------------|--------------------------|---|-----------------------| | | | | DESCRIPTION | | | Sample
Level
(Feet) | Ledge
No. | Thick-
ness
(Feet) | Lithology | Formatio | | | | | | | | 627½-629
629 -630
630 -631
631 -632
632 -633
633 -634
634 -635
635 -636
636 -637 | 40 | 9½ | Dolomitic limestone, medium-dark- to medium-gray, in part light-olive-gray and dark-greenish-gray, very finely crystalline, slightly argillaceous and silty; few zones of micrograined to microcrystalline limestone; some brachiopods in interval 631-632 feet; stylolites in lower 3 feet. | | | 637 -638
638 -639
639 -640
640 -641
641 -642
642 -643
643 -644
644 -645
645 -646
646 -647
647 -648
648 -649
649 -650
650 -651
651 -652
652 -653
653 -654
654 -655
655 -656
656 -657
657 -658
658 -659
659 -660
660 -661 | 41 | 24 | Limestone, olive-gray and yellowish- to dark-yel-
lowish-brown, micrograined to microcrystalline,
with some birdseyes of crystalline calcite; some
thin zones of fine- to medium-grained calcare-
nite; mottled with small irregular bodies and
thin zones of very finely crystalline dolomite;
slightly argillaceous and silty, mainly in lower
part; scattered fossils (ostracodes and brachio-
pods) in lower part; some stylolites. | CAMP NELSON LIMESTONE | | 661 -662
662 -663
663 -664
664 -665
665 -666
666 -667 | 42 | 6 | Dolomite and dolomitic limestone, light-olive-
gray to yellowish-brown, with medium-dark- to
medium-gray laminations and mottling, very finely
crystalline; very thin, vertical veinlet of crys-
talline calcite in interval 663-664 feet;
3/4-inch silty shale in interval 663-664 feet.
Gradational with underlying ledge. | | Table 2.—Continued. | CHEMICAL ANALYSIS | | | | | | | | | |-------------------|-------------------|------------------|---------------|------------|----------------|---------|-------|--| | % | % | % | % | % | % | % | % | | | CaCO ₃ | MgCO ₃ | SiO ₂ | Iron
Oxide | Alumina | Total | S | P | | | 8.48 | 17.72 | 2.61 | 0.28 | 0.83 | 99.92 | NOT ANA | LYZED | | | 74.16 | 22.44 | 2.29 | 0.30 | 0.73 | 99.92 | NOT THE | 1 | | | 68.94 | 27.46 | 2.47 | 0.33 | 0.77 | 99.97 | | | | | | | 4.26 | 0.28 | 1.51 | 99.86 | | | | | 73.62 | 20.19 | 2.04 | | 0.75 | 99.16 | | | | | 78.39 | 17.68 | | 0.30 | | | | | | | 88.83 | 9.53 | 1.01 | 0.23 | 0.33 | 99.93
99.98 | | | | | 88.83 | 8.72 | 1.64 | 0.25 | 0.54 | | | | | | 79.83 | 12.51 | 4.93 | 0.20 | 1.89 | 99.36 | | | | | 84.69 | 12.02 | 2.24 | 0.25 | 0.79 | 99.99 | | | | | 91.26 | 7.15 | 1.04 | 0.18 | 0.35 | 99.98 | | | | | 79.38 | 12.04 | 4.76 | 0.25 | 2.28 | 98.71 | | | | | 69.30 | 13.57 | 10.65 | 0,33 | 3.90 | 97.75 | | b | | | 90.54 | 5.84 | 2.69 | 0.15 | 0.69 | 99.91 | | | | | 87.03 | 8.42 | 2.92 | 0.15 | 0.91 | 99.43 | | | | | 82.89 | 11.03 | 3.19 | 0.15 | 1.24 | 98.50 | | | | | 84.42 | 10.93 | 3,01 | 0.20 | 1.11 | 99.67 | | | | | 71.82 | 19.65 | 5.13 | 0.25 | 1.79 | 98.64 | | | | | 78.39 | 17.07 | 3.03 | 0.24 | 1.20 | 99.93 | | | | | 79.29 | 16.13 | 3,13 | 0.25 | 1.14 | 99.94 | | | | | 78.48 | 16.48 | 3.53 | 0.23 | 1.23 | 99.95 | | i . | | | | | 4.4 | | | | | | | | 05.00 | 2 60 | 1,45 | 0.15 | 0.56 | 99,98 | | | | | 95.22 | 2.60 | 0.84 | 0.15 | 0.52 | 99.96 | | | | | 95.04 | 3.41 | | | | 99.63 | | 1 | | | 94.77 | 3.33 | 0.95 | 0.15 | 0.43 | | | l. | | | 86.22 | 8.75 | 3.08 | 0.15 | 1.42 | 99.62 | | | | | 69.84 | 15.53 | 8.44 | 0.43 | 3.05 | 97.29 | | 1 | | | 66.78 | 13,76 | 9.77 | 0.53 | 4.23 | 95.07 | | | | | FO 01 | 0/ 00 | 11 (0 | 0.60 | 5.06 | 95.28 | | | | | 53.91 | 24.03 | 11.68 | 0.60 | 5.06 | | | | | | 55.26 | 30.00 | 8.46 | 0.47 | 3.18 | 97.37 | | | | | 49.50 | 33.69 | 9.76 | 0.53 | 3.83 | 97.31 | | | | | 51.48 | 35.99 | 8.60 | 0.50 | 2.21 | 98.78 | | 1 | | | 55.26 | 35.00 | 7.02 | 0.60 | 1.72 | 99.60 | | | | | 56.52 | 35.40 | 5.66 | 0.43 | 1.76 | 99.77 | | | | | 56.70 | 37.75 | 3.92 | 0.43 | 1.07 | 99.87 | | | | | 57.24 | 38.34 | 2.76 | 0,53 | 0.79 | 99.66 | | | | | 58.14 | 37.00 | 2.96 | 0.43 | 0.94 | 99.47 | | | | | 51,66 | 35.83 | 8.64 | 0.38 | 2.61 | 99.12 | | | | | 57.96 | 37.45 | 3.14 | 0.40 | 0.94 | 99.89 | | | | | 54.90 | 39.24 | 4,12 | 0.48 | 1.00 | 99.74 | | | | | 54.05 | 38.86 | 4.89 | 0.36 | 1.47 | 99.63 | | | | | 52.38 | 35.41 | 6.61 | 0.35 | 2.29 | 97.04 | | | | | 53.82 | 38.63 | 5.42 | 0.33 | 1.74 | 99.94 | | | | | 53.64 | 39.64 | 4.37 | 0.33 | 1.85 | 99.83 | | | | | 54.36 | 39.95 | 3.36 | 0.51 | 1.75 | 99.93 | | | | | 54.90 | 38.02 | 3.17 | 0.33 | 1.66 | 98.08 | | 13 | | | 54.00 | 39.37 | 3.99 | 0.33 | 1.97 | 99.66 | | | | | 54.27 | 40.68 | 3.55 | 0.33 | 0.98 | 99.81 | | | | | 54.72 | 40.03 | 3.75 | 0.33 | 1.03 | 99.85 | | | | | 55.80 | 41.04 | 2.10 | 0.35 | 0.70 | 99.99 | | | | | 55.98 | 36.20 | 3.97 | 0.56 | 1.41 | 98.12 | | | | | | I | 9.00 | | 1727 CO175 | | | | | | | | | DESCRIPTION | | |---|--------------|--------------------------|---|-----------------------| | Sample
Level
(Feet) | Ledge
No. | Thick-
ness
(Feet) | Lithology | Formation | |
667-668
668-669
669-670
670-671
671-672
672-673
673-674
674-675
675-676
676-677
677-678
678-679
679-680
680-681
681-682
682-683
683-684
684-685
685-686 | 43 | 20 | Limestone, yellowish-brown, micrograined, with some birdseyes and veinlets of crystalline calcite; mottled with zones and irregular bodies of very finely crystalline dolomite (dark-yellowish-to yellowish-brown and medium-gray); in part dark-greenish-gray, silty, argillaceous dolomite in interval 677-679 feet; some stylolites. Gradational with overlying ledge. | | | 687-688
688-689
689-690
690-691
691-692
692-693 | 44 | 6 | Limestone, dark-yellowish- to yellowish-brown, micrograined, with few birdseyes and veinlets of crystalline calcite; minor mottling with small irregular bodies of very finely crystalline dolomite in upper 4 feet; micrograined limestone interlayered with silty dolomite in lower 2 feet; few ostracodes in interval 690-691 feet; very thin argillaceous seams in lower 2 feet. Gradational with underlying ledge. | CAMP NELSON LIMESTONE | | 693-694
694-695
695-696
696-697
697-698
698-699
699-700
700-701
701-702
702-703
703-704
704-705
705-706
706-707
707-708
708-709
709-710
710-711
711-712
712-713
713-714
714-715
715-716 | 45 | 24 | Dolomite, very pale-yellowish- to pale-yellowish-brown and light-olive-gray, with medium-dark-gray laminations, very finely crystalline, with earthy appearance; slightly silty in upper part; few very thin veinlets of crystalline calcite in interval 713-714 feet; few stylolites; very thin, silty, argillaceous seams and shales in intervals 693-697, 702-703, and 706-707 feet. Gradational with overlying ledge. | CAMP N | Table 2.—Continued. | CHEMICAL ANALYSIS | | | | | | | | | |--|------------------------|-----------------------|--------------------|--------------|------------|--------|--------|--| | %
CaCO₃ | %
MgCO ₃ | %
SiO ₂ | %
Iron
Oxide | %
Alumina | %
Total | %
S | %
P | | | 60.84 | 27.56 | 5.53 | 0.39 | 2.79 | 97.01 | NOT AN | ALYZED | | | | 24.73 | 4.95 | 0.32 | 1.61 | 99.38 | | 1 | | | 67.77 | 24.06 | 3.70 | 0.25 | 1.14 | 99.53 | | | | | 70.38 | 23.19 | 3.69 | 0.24 | 1.44 | 99.46 | | | | | 70.92 | 27.79 | 10.06 | 0.49 | 3.28 | 98.32 | | | | | 56.70 | 23.71 | 3.39 | 0.37 | 0.65 | 99.85 | | | | | 71.73 | 21.65 | 2.62 | 0.28 | 0.85 | 99.65 | | | | | 74.25 | 26.72 | 4.47 | 0.33 | 1.66 | 98.16 | | | | | 64.98
70.74 | 23.89 | 3.95 | 0.29 | 0.97 | 99.84 | | | | | 60.66 | 30.17 | 5.72 | 0.35 | 1.68 | 98.58 | | | | | | 27.76 | 7.25 | 0.33 | 2.64 | 99.18 | | 1 | | | 61.20
61.92 | 30,68 | 4.72 | 0.34 | 1.51 | 99.17 | | | | | 59.94 | 33.81 | 3.87 | 0.43 | 1.22 | 99.27 | | | | | 64.17 | 30.41 | 3.76 | 0.45 | 0.96 | 99.75 | | 1 | | | 63.00 | 30.78 | 4.41 | 0.48 | 1.26 | 99.93 | | | | | 100000 W 100000 | 26.20 | 3.32 | 0.46 | 1.36 | 99.83 | | | | | 68.49
71.01 | 23.01 | 4.07 | 0.31 | 1.52 | 99.92 | | | | | | 15.80 | 6.19 | 0.32 | 2.34 | 99.35 | | | | | 74.70
76.19 | 16.90 | 4.62 | 0.30 | 1.80 | 99.81 | | | | | 76.41 | 17.40 | 4.24 | 0.28 | 1.43 | 99.76 | | | | | The state of s | 17.43 | 6.63 | 0.47 | 2.48 | 99.91 | | 1 | | | 72.90
81.63 | 15.23 | 2.10 | 0.38 | 0.54 | 99.88 | | | | | | 16.82 | 2.08 | 0.41 | 0.78 | 99.92 | | | | | 79.83
78.93 | 11.82 | 5.76 | 0.33 | 2.11 | 98.95 | | | | | 66.24 | 14.56 | 12.17 | 0.38 | 4.44 | 97.79 | | | | | 76.14 | 14.51 | 6.66 | 0.28 | 2.04 | 99.63 | | | | | 84.36 | 11.63 | 3.23 | 0.26 | 0.49 | 99.97 | | | | | 77.67 | 17.13 | 2.43 | 0.33 | 0.60 | 98.16 | | | | | FO 76 | 33,26 | 4.47 | 0.47 | 1.43 | 99.39 | | | | | 59.76 | 30.77 | 5.30 | 0.53 | 2.15 | 98.78 | | | | | 60.03
57.06 | 33.19 | 6.68 | 0.50 | 1.98 | 99.41 | | | | | | | | | | | | | | | 66.69 | 20.79 | 8.44 | 0.45 | 2.66 | 99.03 | | | | | 63.36 | 18.79 | 11.43 | 0.50 | 3.79 | 97.87 | | | | | 78.30 | 13.17 | 4.29 | 0.30 | 1.54 | 97.60 | | | | | | | | | | | | | | | 57.60 | 32.48 | 6.70 | 0.58 | 2.01 | 99.37 | | | | | 56.25 | 30.47 | 8.73 | 0.70 | 2.78 | 98.93 | | 1 | | | 55.08 | 29.41 | 9.77 | 0.60 | 3.30 | 98.16 | | | | | | | | DESCRIPTION | | |--|--------------|--------------------------|---|-----------------------| | Sample
Level
(Feet) | Ledge
No. | Thick-
ness
(Feet) | Lithology | Formation | | 717-718
718-719
719-720
720-721
721-722
722-723
723-724
724-725
725-726
726-727
727-728
728-729
729-730
730-731
731-732
732-733
733-734
734-735
735-736
736-737
737-738
738-739
739-740
740-741
741-742
742-743
743-744
744-745 | 46 | 28 | Dolomite, olive- to light-olive-gray and yellowish- to very pale-yellowish-brown, with some medium- dark-gray laminations and mottling, microcrystal- line to very finely crystalline; thin zones and lenses of olive- to light-olive-gray and yellowish- brown, micrograined limestone; some stylolites; very thin, silty, argillaceous seams in intervals 717-719, 721-722, 734-735, 737-738, and 741-742 feet. | CAMP NELSON LIMESTONE | | 745-746
746-747
747-748 | 47 | 3 | Dolomite, very pale-yellowish-brown, with medium-
to medium-dark-gray laminations and mottling, very
finely crystalline, with earthy appearance; scat-
tered veinlets and small pockets of crystalline
calcite in basal foot; ½-inch dark-greenish-gray
shale in interval 746-747 feet. | 3 | | 748-749
749-750
750-751 | 48 | 3 | Dolomite, light-olive-gray to yellowish-brown, with medium-dark- to medium-gray laminations and mottling, very finely crystalline to microcrystalline, laminated; thin zones of olive- to light-olive-gray, micrograined limestone, in part laminated; very thin, silty, argillaceous seams and shales. | | | 751-752
752-753
753-754 | 49 | 3 | Dolomite, very pale-yellowish-brown, with medium-
to medium-dark-gray mottling; light-greenish-gray
in basal part; very finely crystalline, with earthy
appearance; in part faintly laminated; slightly
argillaceous; speckled with crystalline calcite. | | Table 2.—Continued. | CHEMICAL ANALYSIS | | | | | | | | | | |------------------------|------------------------|-----------------------|--------------------|--------------|------------|---------------|--------|--|--| | %
CoCO ₃ | %
MgCO ₃ | %
SiO ₂ | %
Iron
Oxide | %
Alumina | %
Total | %
S | %
P | | | | | | | | | | | | | | | 67.68 | 16.82 | 10.38 | 0.45 | 2.72 | 98.05 | NOT ANA | ALYZED | | | | 80.18 | 14.81 | 3.34 | 0.42 | 0.42 | 99.17 | 1905 31 1907. | I | | | | 65.97 | 23.52 | 7.27 | 0.59 | 1.97 | 99.32 | | | | | | | | 7.81 | 0.62 | 2.31 | 99.55 | | | | | | 62.06 | 26.75 | | 0.68 | 1.64 | 98.73 | | | | | | 61.11 | 29.11 | 6.19 | | 1.00 | 99.28 | | | | | | 66.78 | 27.26 | 3.54 | 0.70 | | 98.51 | | | | | | 68.04 | 21.99 | 6.39 | 0.68 | 1.41 | | | 4 | | | | 62.46 | 26.60 | 5.94 | 0.72 | 1.78 | 97.50 | | 1 | | | | 69.66 | 20.18 | 5.65 | 0.70 | 1.40 | 97.59 | | 1 | | | | 84.42 | 8.29 | 4.97 | 0.50 | 1.07 | 99.25 | | | | | | 76.23 | 15.28 | 4.98 | 0.57 | 1.54 | 98.60 | | | | | | 85.14 | 7.98 | 3.68 | 0.38 | 1.23 | 98.41 | | | | | | 93.24 | 3.12 | 2.44 | 0.24 | 0.52 | 99.56 | | | | | | 79.20 | 15.26 | 3.43 | 0.54
 1.28 | 99.71 | | | | | | 65.07 | 22.53 | 8.34 | 0.58 | 2.68 | 99.20 | | | | | | | | | | | | | | | | | 55.62 | 30.60 | 8.19 | 0.68 | 3.17 | 98.26 | | | | | | | 31.25 | 8.18 | 0.57 | 2.16 | 99.04 | | 1 | | | | 56.88
61.20 | 29.89 | 6.32 | 0.43 | 1.47 | 99.31 | | | | | | | | | | | | | | | | | 49.86 | 32.10 | 10.56 | 0.60 | 3.71 | 96.83 | | | | | | 47.52 | 30.63 | 13.07 | 0.70 | 4.78 | 96.70 | | | | | | 56.16 | 27.55 | 11.18 | 0.62 | 3.19 | 98.70 | | 1 | | | | 55.44 | 29.59 | 10.48 | 0.39 | 2.99 | 98.89 | | | | | | 48.92 | 32,21 | 12.25 | 0.59 | 3.89 | 97.86 | | | | | | 45.41 | 32.69 | 13.84 | 0.58 | 4.71 | 97.23 | | 1 | | | | 56.34 | 31.93 | 8.82 | 0.50 | 2.06 | 99.65 | | 1 | | | | 59.04 | 31.14 | 7.14 | 0.44 | 1.45 | 99.21 | | | | | | 47.43 | 30.74 | 14.91 | 0.54 | 5.13 | 98.75 | | | | | | 53.64 | 33.12 | 10.59 | 0.47 | 2.14 | 99.96 | | | | | | 50.85 | 34.97 | 11.16 | 0.50 | 1.87 | 99.35 | | | | | | 45.05 | 34.37 | 15.30 | 0.65 | 3.75 | 99.12 | | | | | | 43.38 | 34.41 | 13.78 | 0.78 | 4.38 | 96.73 | | | | | | 39.83 | 32.04 | 18.14 | 0.69 | 6.56 | 97.26 | | | | | | 44.28 | 34.90 | 12.99 | 0.72 | 4.39 | 97.28 | | | | | | 42.66 | 34.56 | 14.89 | 0.63 | 4.73 | 97.47 | | 1 | | | | | 34.04 | 17.79 | 0.59 | 6.12 | 98.77 | | | | | | 40.23 | | 15.08 | 0.70 | 4.55 | 97.99 | | | | | | 43.88 | 33.78 | | | 4.32 | 97.66 | | | | | | 43.38 | 34.28 | 14.96 | 0.72 | 6.30 | 97.60 | | 4 | | | | 38.61 | 32.36 | 19.70 | 0.63 | | 98.47 | | | | | | 46.17 | 33.49 | 14.55 | 0.62 | 3.64 | | | | | | | 41.76 | 32.18 | 18.60 | 0.68 | 4.82 | 98.04 | | | | | | 40.32 | 32.29 | 17.45 | 0.70 | 5.86 | 96.62 | | | | | | 32.04 | 26.05 | 27.71 | 0.70 | 8.52 | 95.02 | | | | | | 49.59 | 33.96 | 11.82 | 0.68 | 3.23 | 99.28 | | | | | | 43.11 | 33.97 | 14.44 | 0.58 | 5.47 | 97.57 | | | | | | DESCRIPTION | | | | | | | | | |---|--------|--------------------------|---|-----------------------|--|--|--|--| | Sample Ledge
Level No.
(Feet) | | Thick-
ness
(Feet) | Lithology | | | | | | | 754-755
755-756
756-757
757-758
758-759
759-760
760-761
761-762
762-763
763-764
764-765
765-766
766-767
767-768
768-769 | 50. 15 | | Dolomite, yellowish- to dark-yellowish-brown and light-olive-gray, with some medium-dark-gray laminations and mottling, very finely crystalline to microcrystalline; in part laminated; in part with relict, bioclastic, calcarenitic texture; zones and lenses of yellowish- to dark-yellowish-brown, micrograined limestone (in part fractured and brecciated; in part intraclastic), locally with birdseyes and veinlets of crystalline calcite; some brachiopods and ostracodes in interval 765-768 feet; traces of light-colored chert in intervals 758-760 and 762-763 feet; trace of pyrite in interval 760-761 feet; few stylolites; very thin argillaceous seams and shales; small amounts of quartz silt and sand locally. Gradational with underlying ledge. | | | | | | | 769-770
770-771
771-772 | 51 | 3 | Dolomite, light-olive-gray and yellowish-brown, with medium- to medium-dark-gray mottling, very finely crystalline to microcrystalline, with earthy appearance; trace of light-colored chert in interval 770-771 feet; few stylolites. Transitional ledge. | CAMP NELSON LIMESTONE | | | | | | 772-773
773-774
774-775
775-776
776-777
777-778
778-779
778-780
780-781
781-782
782-783
783-784
784-785
785-786
786-787
787-788
789-790
790-791
791-792
792-793
793-794
794-795
797-798 | 52 | 32 | Dolomite, light- to medium-light-gray and light-
olive-gray, with medium-light- to medium-gray mot-
tling, very finely crystalline, with earthy appear-
ance; locally finely crystalline; in part light-
greenish- to dark-greenish-gray, slightly argilla-
ceous in interval 780-798 feet; scattered traces of
light-colored chert; scattered traces of pyrite;
few stylolites; quarti silt and sand (small amount
to abundant) throughout ledge, in part concentrated
in laminae; some very thin argillaceous seams and
thin shales; 3-inch dark-greenish-gray shale at
base. | WELLS CREEK DOLOMITE | | | | | Table 2.—Continued. American Smelting and Refining Co. Core No. CK-2 Operator: | CHEMICAL ANALYSIS | | | | | | | | | | |------------------------|------------------------|-----------------------|--------------------|--------------|------------|---------|--------|--|--| | %
CaCO ₃ | %
MgCO ₃ | %
SiO ₂ | %
Iron
Oxide | %
Alumina | %
Total | %
S | %
P | | | | 43.56 | 34.50 | 15.20 | 0.80 | 3.78 | 97.84 | NOT ANA | LYZED | | | | 44.82 | 34.26 | 15.30 | 0.60 | 3.46 | 98.44 | 242.9 | 1 | | | | 49.68 | 36.36 | 9.80 | 0.50 | 2.21 | 98.55 | | | | | | 51.12 | 35.09 | 9.59 | 0.35 | 2.30 | 98.45 | | | | | | 43.92 | 31.57 | 14.75 | 0.33 | 5.21 | 95.78 | | | | | | 39.69 | 29.03 | 19.01 | 0.48 | 7.24 | 95.45 | | | | | | 38.70 | 28.12 | 28.00 | 0.75 | 2.56 | 98.13 | | | | | | 47.52 | 30.59 | 19.30 | 0.60 | 1.81 | 99.82 | | | | | | 46.35 | 37.21 | 12.97 | 0.30 | 1.98 | 98.81 | | | | | | 44.10 | 35.34 | 15.76 | 0.34 | 2.89 | 98.43 | | | | | | 44.19 | 36.12 | 14.52 | 0.34 | 2.56 | 97.73 | | | | | | 50.22 | 40.10 | 7.98 | 0.25 | 1.06 | 99.61 | | | | | | 51.12 | 41.23 | 6.54 | 0.25 | 0.47 | 99.61 | | | | | | 50.22 | 41.38 | 7.41 | 0.25 | 0.37 | 99.63 | | | | | | 49.50 | 40.46 | 8.65 | 0.28 | 1.05 | 99.94 | | | | | | 48.69 | 39.71 | 9.62 | 0.25 | 1.39 | 99.66 | | | | | | 48.42 | 39.66 | 9.72 | 0.23 | 1.71 | 99.74 | | | | | | 47.14 | 38.32 | 10.50 | 0.28 | 2.14 | 98.38 | | | | | | 46.27 | 36.00 | 13.82 | 0.25 | 3.27 | 99.59 | | | | | | 44.01 | 22.95 | 15.83 | 0.28 | 3.32 | 98.14 | | | | | | 45.29 | 36.75 | 12.26 | 0.28 | 2.35 | 96.93 | | | | | | 42.87 | 34.78 | 15.91 | 0.30 | 2.76 | 96.62 | | | | | | 43.06 | 35.04 | 20.11 | 0.58 | 0.68 | 99.47 | | | | | | 48.81 | 39.93 | 9.94 | 0.33 | 0.73 | 99.74 | | | | | | 43.43 | 35.42 | 19.36 | 0.32 | 1.20 | 99.73 | | | | | | | DESCRIPTION | | | | | | | | |--|--------------|--------------------------|---|----------------------|--|--|--|--| | Sample
Level
(Feet) | Ledge
No. | Thick-
ness
(Feet) | Lithology | Formation | | | | | | 798-799
799-800
800-801
801-802
802-803
803-804 | 52-Continued | | | WELLS CREEK DOLOMITE | | | | | | 804-805
805-806 | 53 | 2 | Dolomite, medium-light- to medium-gray, very finely crystalline, with earthy appearance; with sub-rounded to angular fragments of dolomite (as in upper Knox, Ledge 54) and chert (in part as in upper Knox, Ledge 54); abundant quartz silt and sand. | WELLS CRE | | | | | | 806-807
807-808
808-809
809-810
810-811
811-812
812-813
813-814
814-815
815-816
817-818
818-819
819-820
820-821
821-822
822-823 | 54 | 17 | Dolomite, light- to medium-light-gray and very light-olive-gray, very finely crystalline to microcrystalline; in part with earthy appearance and in part with saccharoidal appearance; in part vuggy; mottled with small irregular bodies of very light-gray, chalk-like, siliceous material; few small irregular bodies of very light-gray chert in basal foot; scattered traces of pyrite; few stylolites in lower part; quartz silt and sand locally, in part concentrated in laminae; light-greenish-gray shale in very thin seams (locally in vug) in interval 815-820 feet. | KNOX GROUP | | | | | BOTTOM OF SAMPLED INTERVAL