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Abstract

We present a formalism for continuum and line emission from random clumpy media together with its application
to problems of current interest, including CO spectral lines from ensembles of clouds and radio emission from H I
regions, supernovae, and star-forming regions. For line emission, we find that the effects of clump opacity on
observed line ratios can be indistinguishable from variations of intrinsic line strengths, adding to the difficulties in
determining abundances from line observations. Our formalism is applicable to arbitrary distributions of cloud
properties, provided the cloud volume filling factor is small; numerical simulations show it to hold up to filling
factors of ~10%. We show that irrespective of the complexity of the cloud ensemble, the radiative effect of
clumpiness can be parameterized at each frequency by a single multiplicative correction to the overall optical
depth; this multiplier is derived from appropriate averaging over individual cloud properties. Our main finding is
that cloud shapes have only a negligible effect on radiation propagation in clumpy media; the results of calculations
employing point-like clouds are practically indistinguishable from those for finite-sized clouds with arbitrary

https://doi.org/10.3847/1538-4357 /aadcf9
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geometrical shapes.

Key words: H1I regions — ISM: abundances — line: formation — line: profiles — radiative transfer —

supernovae: general

1. Introduction

Radiation propagation in a nonuniform clumpy medium is a
common problem in astrophysics. Example continuum applica-
tions include IR dust emission from circumnuclear tori in active
galactic nuclei (AGNs; Nenkova et al. 2002, 2008), free—free
absorption affecting supernova radio light curves and spectra
(Weiler et al. 2004), radio—millimeter wave thermal emission
from single massive stars (Ignace & Churchwell 2004), and star
formation—induced radio synchrotron emission accompanied
by free—free absorption in galaxies (Lacki 2013). Spectral line
applications include modeling the optical and UV spectra from
AGN broad-line regions (Laor et al. 2006) and interstellar
atomic and molecular lines (Martin et al. 1984; Wall 2006,
2007). A common approach to the analysis of emission from
clumpy media, pioneered by Martin et al. (1984), is to assume
some geometry for the individual clouds and proceed by
averaging over properties along the line of sight (LOS). Some
general scaling relations emerged in these works, but they
remained unexplained. In particular, Ignace & Churchwell
(2004) noted that, in their modeling based on spherical clouds,
only the distribution in individual cloud optical depths could
affect the spectral shape—the cloud radii were irrelevant.

In an entirely different approach, Natta & Panagia (1984)
modeled clumpy media absorption with point-like identical
structureless absorbers characterized by a single property, an
optical depth, and no other parameters. Noting that random
placement yields a Poisson distribution for the number of
absorbers along the LOS, Natta & Panagia derived the effective
optical depth of the medium from the mean number of
absorbers along the LOS and their common optical depth.
Nenkova et al. (2002, 2008) extended this formalism to the
expected emission from a population of such clouds and placed
the Natta & Panagia point-like absorbers concept on a more
solid footing by showing that the ratio of cloud size to the mean

free path between clouds is equal to ¢, the cloud volume filling
factor. Therefore, when ¢ < 1, each cloud appears as a point
from its nearest neighbor; thus, its geometry can be ignored.
Still, the usage of a single optical depth per absorber remained
problematic. For example, in the case of a sphere with optical
depth 7 along the diameter, the actual optical depth along an
LOS can vary from 7 for an LOS through the center to zero for
a grazing LOS. Here we address this issue, bringing the Natta
& Panagia formalism to completion.

Starting in Section 2, we generalize both clumpy absorption
and emission to an arbitrarily complex mixture of clump
properties, including variations of these properties along the
LOS. The only restrictions are that the medium is random (i.e.,
cloud positions are uncorrelated) and the propagating radiation
does not affect the cloud absorption and emission properties.
We investigate via Monte Carlo simulations the range of
volume filling factors over which our formalism applies and
show that significant departures occur only at relatively large
filling factors (¢ = 0.1; Section 2.1), introduce the concept of a
clumping factor that modulates the effective opacity of a
clumpy medium and depends on the average properties of its
clumps (Section 2.2), and extend the clump formalism to
include spectral line absorption (Section 2.3) and emission
(Section 2.4). Section 3 explores the effects of cloud shapes
and shows that they have no significant impact on radiation
propagation in a clumpy medium. In Section 4, we apply our
formalism to a couple of current problems involving clumpy
emission and absorption by continuum and spectral lines;
Appendix C provides some additional examples. Section 5
contains a summary and discussion.

2. Radiation Transfer in Clumpy Media

Consider a region where matter is concentrated within clouds
that occupy a fraction ¢ of the overall volume. The medium
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will be regarded as clumpy whenever the filling factor obeys
¢ < 1. This condition is mathematically equivalent to the
requirement that the size of individual clouds is much smaller
than the mean free path between them (Nenkova et al. 2008). In
that case, each cloud can be considered a “mega-particle”—a
point characterized by its radiative properties but whose shape
and size are irrelevant. With this assumption, and taking all
clouds to be identical, Natta & Panagia (1984) derived the
effective optical depth at frequency v along any LOS through a
clumpy medium in terms of the individual cloud optical depth,
7,, and the mean number of clouds along the LOS, N (see
Appendix A.1).

In Appendix A.2, we generalize the Natta & Panagia result
(Equation (22)) to an arbitrary mixture of cloud types and show
that radiation propagating through a clumpy medium will have
a mean transmission factor’ of exp(—Tg,), where

7, = M1 — (7)) 1)

is the effective optical depth as a function of frequency. In this
expression, (¢~™) is the mean transmission factor for radiation
passing through a single cloud, where the averaging is done
over all cloud types. This result reverts to the Nattta & Panagia
expression when all clouds are identical but otherwise
generalizes it in two fundamental aspects. (1) Even for point-
like, structureless clouds characterized only by optical depth, 7,
can still vary from cloud to cloud; Equation (1) shows that such
variations can be handled by simply averaging the transmission
factor e~ ™ over all clouds. (2) Actual clouds cannot really be
characterized by the single parameter 7,. Because real clouds
have geometrical shapes and sizes, the optical depth varies with
the impact parameter of the LOS relative to the center of a
spherical cloud, the orientation of a filamentary cloud, etc. (see
Appendix B). Geometrical shape is an additional cloud
property, easily incorporated by adding independent variables
to describe the cloud distribution. Since the average in
Equation (1) can be made over any number of parameters that
describe the cloud population, when cloud placement is
random, one can first average over all shape-related parameters
for each cloud type before averaging over the range of cloud
types in the population (for example, with each cloud type
perhaps having a different mean or peak opacity).

The above analysis for absorption is easily generalized to
that of emission from a clumpy medium. Nenkova et al.
(2002, 2008) derived the expression for a single type of cloud,
and Appendix A.3 generalizes their analysis to the case of a
cloud distribution. The emerging mean emission along an LOS
through a clumpy medium is

Ie, — f e~ (Sc, (s)) N (s)ds. )

In this expression, Sc, (s) is the source function for single-cloud
emission at position s along the LOS and (Sc, (s)) is its average
over all cloud types at s (see Equation (27)), N(s) is the mean
number of clouds per unit length at that point (see Appendix A.1),
and 73z (s) is the effective optical depth, defined as in Equation (1),
from s to the edge of the source.

> When averaging over a telescope beam containing many independent LOSs

sharing the same cloud properties, the measured value of the transmission
factor is expected to lie close to this quantity, which is formally the statistically
average transmission factor for each LOS.

Conway, Elitzur, & Parra

2.1. Effects of Volume Filling Factor

The only properties of the cloud distribution that enter into
Equations (1) and (2) are the mean number of clouds per LOS,
N, and the number of clouds per unit length, N(s). There is no
dependence on the cloud volume filling factor ¢; by assuming
¢ < 1, we ended up with results that are entirely independent
of the volume filling factor. The reason is simple: a complete
formalism, in which one would not invoke the assumption
¢ < 1 from the start, would lead to a series expansion in
powers of ¢. The expressions derived above are simply the
zeroth-order terms in that expansion; i.e., they are the ¢ — 0
limit of a more complete formalism (see also Nenkova et al.
2008).

Assuming ¢ < 1 at the outset precludes us from studying
the effects of finite volume filling factors and the limitations of
our formalism. To try to quantify the finite-¢ corrections, we
have carried out numerical Monte Carlo simulations for the
simple case of identical clouds to determine the critical volume
filling factor at which significant deviations from our theory
occur. Our simulations further assume clouds that are spherical
and uniform and hence fully characterized by a single number,
71, the optical depth across their diameters.® We investigated
several values of 73 and, for each one, varied the mean number
of clouds per LOS A and volume filling factor ¢ by filling a
cube with side 2L with N, spheres of radius R such that

R_39¢ :§(£)2
L v M= R N ®)

We carried out a large number of Monte Carlo simulations,
varying R/L and Ny (i.e., N/ and ¢) and averaging the results.
The simulation results were then compared with the ¢ — 0
theory. Figure 1 presents the comparison, showing that
Equation (1) adequately describes volume filling factors as
large as 10%, for which the mean transmission factors
exp(—7g) obtained from that expression (see Equation (35b),
Appendix B) and the Monte Carlo simulations agree to within
15% at all optical depths. For the particular case of optically
thin clouds, illustrated by the 7; = 0.1 case shown in the left
panel, the Monte Carlo simulations produce close agreement
with theory at all the tested volume filling factors. This is as
expected because, as shown below (Section 2.2), clumping is
irrelevant when individual clouds are optically thin. In this
pseudo-continuous-medium case, the effective absorption
depends only on AT, the overall mean optical depth along
the LOS. The clumpy nature of the medium becomes important
only when individual clouds are optically thick, as seen
from the figure’s two other panels. In this case, deviations from
the analytic results occur at high filling factors, where
Equation (1) overpredicts the fraction of transmitted radiation
(i.e., underpredicts the effective opacity). The reason is that
large volume filling factors involve large cloud sizes, and
keeping the clouds from interpenetrating each other produces
significant deviations from Poisson statistics, leading to
narrower probability distributions for the numbers of clouds
per LOS. The deviations from the analytic ¢ — 0 limit are
noticeable in the middle panel, which shows results for 1 = 1,

6 Since we consider only absorption at a single frequency, here and in what
follows, we drop the subscript v.
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Figure 1. Results of Monte Carlo simulations to investigate departures at large volume filling factors (¢) from the predictions of the ¢ — 0 analytic clump formalism.
Each panel shows the expectation value of the attenuation of background radiation, exp(—7g ), by a volume containing randomly placed identical spherical absorbing
clouds. The three panels show results for clouds with different optical depth 7 across the diameter, as marked. The right panel 77 = 10 simulations are representative
of all ; > 10. In each panel, horizontal lines show the ¢ — 0 analytic predictions from Equation (1) for transmission factors for differing mean numbers of clouds per
LOS, as marked (M = 0.5, 1, 2, and 4). Filled circles show the results of numerical Monte Carlo simulations for the transmission factor as a function of ¢ for each \.
The statistical error bars on these simulations are comparable to the size of the circles. Gray curved lines trace the boundaries of the simulations; the left one is the
locus of cloud radius 1% the side length of the control volume, and the right one is 20% (cf. Equation (3)). Significant departures from the ¢ = 0 analytic expression
are seen only for optically thick clouds and never exceed ~15% as long as ¢ < 0.1.

and are even more pronounced in the right panel, where
71 = 10. Still, these deviations never exceed 15% in any of the
simulated cases. Further increasing the single-cloud optical
depth has no effect on the outcome because clouds with
71 = 10 are already completely opaque; hence, the deviations
seen in the figure’s right panel apply to all 7 > 10.

These results show that Equation (1) is an excellent
approximation for practical applications. In all cases that we
have simulated, we find that, up to ¢ = 0.1, this analytic
expression correctly predicts the absorption by the cloud
ensemble to better that 15%. We expect that the critical volume
filling factor found in these simulations will also apply to
more complex cases involving a mixture of cloud types. Such
mixtures will include values of 7; that are both larger and
smaller than 10. As noted above, clouds with 77 > 10 will
induce the same deviations from the ¢ = O limit as the purely
71 = 10 case. And since such deviations are even smaller for
the mixture clouds that have 77 < 10, the model with 77 = 10
for all clouds provides the maximal deviations from the
analytic result in Equation (1).

2.2. The Clumping Correction Factor

Equation (1) gives the value of the effective optical depth
of a clumpy medium 7g,, such that exp(—7g,) is the expec-
tation or mean value of the transmission of background

radiation. In contrast, the mean of the total optical depth
through the source is

mm, = N{7). “)

This quantity would be the overall optical depth if the clouds
were dispersed into a smooth medium maintaining the same
total gas column density along the LOS. Therefore, the ratio

K, = 5)
T,
measures the factor by which the clumpy medium effective
opacity is reduced compared to its total opacity due to the
effects of clumping. From Equations (1) and (4),

Kk —1- e
(1)

The functional form of this clumping correction factor
resembles the escape probability familiar from line transfer
calculations. When 7, < 1 for every cloud, i.e., all clouds are
optically thin, K, = I: the effective optical depth equals the
total optical depth at the given frequency, and clumping is
irrelevant. Note that the only requirement for this condition to
be met is that individual clouds be optically thin; the total
optical depth, AV (7,), can still be large. If we keep 7r, fixed and

(6)
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increase the number of clouds N along the path, individual
clouds will decrease in opacity until they become optically thin
when N > 7r,, yielding K, ~ 1; that is, for fixed 7, the
absorption properties approach the smooth-density limit at
large (generally frequency-dependent) A/ even if the cloud
volume filling factor remains small. On the other hand, when
7, > 1 for every cloud, K, = 1/(r,), and the effective opacity
is less than that for a smooth medium of the same mean column
density. In this case, 7z, = N, meaning that although
individual clouds are optically thick, a photon still escapes
when it avoids all clouds along the LOS, an event whose
probability according to Poisson statistics is e~ .

Since K, is always <1, clumping can only decrease the
effective opacity, reflecting the possibility of photon escape
even when all clouds are optically thick. Significantly, K, is
determined only by the mean single-cloud optical depth,
independent of the number of clouds. Since the effective
opacity obeys 75, = K, 7,, we can use 7, and K, to
parameterize a region’s absorption properties instead of 7,
and N. Sources with the same 71, and K, will have identical
absorption properties even if their clouds have very different
shapes and distributions in properties.

2.3. Line Absorption by Clouds in Motion

The formalism developed above is applicable to the transfer
of radiation at frequency v no matter how the optical depth 7,
varies with frequency. Bulk cloud motions introduce Doppler
shifts that couple velocity and frequency distributions. This
coupling can be ignored in the case of continuum radiation,
where the variation of 7, is negligible for any of the Doppler
shifts. Lines are at the opposite limit—a spectral line has
7, = 9@ — vy), where 7 is the optical depth at the line-
center frequency v, and & is sharply peaked about that
frequency. We now show that thanks to its narrow spectral
range, the whole line can be treated as a single entity rather
than frequency by frequency.

Replacing the frequency shift from line center by the
equivalent Doppler velocity v, the line profile is ®(v), with
normalization chosen such that ®(0) = 1. The cloud velocity
width can then be defined as Av = f ®(v)dv, a quantity that
characterizes the range of internal LOS motions within the
cloud.” Note that the ensemble of clouds encountered along an
LOS can have a range of different velocity widths Av or line-
center opacities 7y.” Invariably, the observed ensemble also
contains clouds with a range of different bulk Doppler
velocities, N(u) being the number of clouds encountered on
average along the radiation path per unit LOS velocity at bulk
Doppler velocity u (see Appendix A.1). Bulk cloud motions
strongly affect the line propagation when their range is much
larger than Av. Appendix A.4 shows that the effective optical
depth is given by the convolution equation

w0 = [N = (e )du, )

where the angle brackets denote averages over all cloud
properties other than their LOS velocity. Since the optical

7 A Gaussian Doppler profile ®(v) = exp(—v2/c?2) gives Av = VT o.

8 Line-center opacities 7, can vary between different kinds of clouds within
the ensemble. Even for identical clouds, they can still vary due to encountering
a cloud with a different LOS impact parameter or orientation.

Conway, Elitzur, & Parra

depth across a spectral line profile vanishes rapidly when
|u — v| > Av, the contributions to the convolution integral are
confined mostly to a narrow interval with width ~Avy around
the LOS velocity # = v. When N(u) varies only on scales much
larger than Av, it can be taken as constant across the line
profile. Then, to a good degree of approximation, the effective
optical depth at v, the line-center Doppler shift from rest
frequency, is

EW) = NE)(W)W),
where  (W)(v) = f (1 — (e ™)) dy )

is the velocity equivalent width of the mean normalized
emission profile of single clouds averaged over all cloud types
at spectral velocity v. In this general case, a v-dependence of
(W) may occur when typical cloud peaks 7y and/or Av vary
with the cloud bulk velocity; for consistency of the derivation,
such variations must occur over velocity scales much larger
than Av. When the cloud line shapes and opacities do not
depend on the cloud velocities, the v-dependence can be
dropped, and we can consider a single value of the equivalent
width (W).

Following the definition given in Section 2.2, the total
optical depth for spectral line emission at velocity v is, on
average, fN(u)(T(u —v))du ~ N(v)f(T(u — v)du. From
our definition of Av, f(T(u —v))du = (19Av)(v), where
the averaging is made over all properties of the ensemble
clouds other than bulk velocity. Therefore,

(V) = N) (1 Av) (). €))

This would be the total optical depth if the absorbing particles
in all clouds along a given LOS were dispersed into a spatially
smooth distribution. The correction factor converting total line
opacity into effective clumpy line opacity is thus

v (W)O)
() (A W)

the line equivalent of the single-frequency clumping factor
defined by Equation (5). Line emission behaves the same as
continuum: the effect of an arbitrarily complex clumpy
distribution again is reduced to a multiplicative factor
determined from the properties of individual clouds and
independent of their number. At every spectral velocity v, the
entire line is described by the single clumping correction factor
Kiine(v). When cloud properties are independent of bulk
velocity, a single multiplicative factor links effective and total
opacities at all line velocities.

When every cloud is optically thin at line center,
(WY (v) =~ f(T(u — v))du = (1pAv)(v) (Equation (8)) so
that Kjpe =1. When 75 > 1 for every cloud, the velocity
integration that determines (W) can be approximated as
effectively truncated at u = év,, the velocity that separates
the optically thick core from the optically thin line wings. For
the Doppler profile év,, x Av/In7y, yielding the large~(m)
behavior Kjipe ~ +/1n (1) / (7). In contrast, single-frequency
clumping produces K, o< 1/(7,) at large (7,) (see Section 2.2),
a steeper decline than that of Kj;,e (see also Figure 2(b) below).
The reason for the flatter asymptotic behavior of Kj;, is that

Kiine (v) =

(10)
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Figure 2. Effect of cloud geometrical shape. The clumping correction K-factor as a function of the cloud mean optical depth (a) at a single frequency (Equation (6);
relevant to the continuum case) and (b) for a spectral line (Equation (10)), where (1) is the average optical depth at line center. Different cloud geometries are plotted

with different colors, as labeled. A “mega-particle” is a structureless absorber whose only property is optical depth 7,; the r

~2 sphere is a spherical cloud with

absorption coefficient o</ 2 (see text for details). For comparison, the dashed line in the right panel reproduces the uniform-sphere plot from the left panel. Note the
relatively weak dependence of K on geometry, especially for the slab and the uniform sphere and filament.

clumpiness has only a negligible effect in the line wings, which
are optically thin even when the cloud is optically thick at the
line center. Thus, the overall clumping correction effect is less
significant for the line than for the transfer of continuum
radiation at the line-center frequency through a clumpy
medium with the same total optical depth.

2.4. Spectral Line Emission

The emission from a population of line-emitting clouds can be
calculated following the steps outlined for the continuum case in
Section 2. The details are given in Appendix A.5, where it is
shown that Equation (2) is applicable as is, in unmodified form,
to the case of line intensity emerging from a clumpy medium.
This relation is the equivalent of the standard formal solution of
the radiative transfer equation for clumpy media, with the
appropriate attenuation term for continuum and line radiation.
The only slight complication for the lines is the two-step
averaging in Equation (32), which involves also averaging over
the spectral shape of single-cloud emission (Equation (30)) to get
the local average cloud source function. Equation (2) holds at
every frequency/velocity for line radiation whenever the
ensemble averages for the cloud emission and absorption
properties are independent of each other, i.e., when the optical
depths of individual clouds are unaffected by the propagating
line radiation. When this condition is violated, the intensity
calculation requires an iterative procedure based on the
expressions given here. Details of an iteration scheme analogous
to standard A iterations are described in Nenkova et al. 2008 (see
Section 3.2 of that paper).

When we express intensity in brightness temperature units
and use the common approximation of a constant line
excitation temperature 7y inside each cloud, the brightness
temperature 7;, of the emergent radiation assumes the simple
form of Equation (34). When the cloud velocity distribution is
much broader than the velocity width of internal cloud motions,

this becomes

Ty (v) =(T:)[1 — exp(—(W)N ()]
=(T)[1 — exp(—KineTr ()], Y

given in terms of either the mean cloud equivalent width (W)
and the number of clouds per unit velocity N(v) or the
clumping correction factor Kj,e and the total optical depth
versus velocity 71 (v).

3. Effects of Cloud Geometry

Among the many variables affecting the radiative properties of
a clumpy medium is the geometrical shape of the clouds. Our
formalism shows that the shape affects radiation attenuation only
through the clumping factor K, enabling us to study the impact of
geometry. To separate the effect of shape from all other properties,
we consider an ensemble of identical clouds. When the clouds are
additionally taken to be uniform, the required averages involve
only variation of length along the LOS through the cloud and thus
depend on geometry alone and nothing else. Since a sphere is the
ultimate isotropic shape, while an elongated filament and a semi-
infinite slab are at the other extreme end of anisotropy, these
geometries can be expected to bracket the full range of K-factor
variation that cloud shapes can induce. Note, in particular, that in
studies of AGNS, the slab geometry is invoked in all calculations
of broad-line emission (see, e.g., Laor et al. 2006) and in some
models of torus IR emission (Nenkova et al. 2008).

The averages involve integrations over the cloud projected
area for a sphere, orientation for a slab, and both of them in the
case of a filament; Appendix B gives the details. The left panel
of Figure 2 shows the variation of K, with (7,), the single-
frequency cloud mean optical depth relevant for continuum
emission, for slabs (orange) and uniform spheres (red) and
filaments (green). The three are hardly distinguishable from
each other. This weak dependence on cloud geometrical shape
is easy to understand: as noted above (Section 2.2), irrespective
of geometry, K is ~1 at small optical depths and ~1/(7) at
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large ones. The geometrical shape affects only the transition
between these two regimes, where its impact is constrained by
the limits that must be joined on either end; Appendix B
provides some further insight into this behavior.

The similarity of the results for slabs, spheres, and filaments
suggests that all uniform clouds, whatever their geometry, have
roughly the same K-factor when taken as a function of (7). To
further test this possibility, we considered the extreme limit of
“mega-particles,” structureless clouds whose only property is
optical depth 7,; then (7,) =7, and K, = (1 — e ™) /7,.
Shown in black in Figure 2, the K-factor for a mega-particle
closely resembles that for a sphere; the largest difference
between the two is less than 5% (at (1) = 2.2).

These results show that the cloud shape plays only a minor
role for uniform clouds. Internal structure within clouds adds
another degree of freedom. To gauge its potential impact, the
blue curve in Figure 2 shows K,, for spherical clouds with an
absorption coefficient proportional to r~2 in the radius range
Fin < 7 < 107,;,. While this curve is significantly outside the
narrow range covered by uniform clouds, the largest difference
between the r~2 sphere and a uniform one is still no more than
~20% (at (1) = 1.1).

The right panel of Figure 2 shows the spectral line clumping
factor Kjpe (Equation (10)). For comparison, the single-
frequency K, for a uniform sphere is reproduced with a dashed
line. At the same (7), Kji,. is significantly larger than K,. The
reason is that, whatever the optical depth at line center, the
wings of a spectral line always become optically thin at some
point, and the effect of clumping disappears there. In addition,
Kiiye exhibits a flatter decline than K, at high optical depths—as
expected, given that the large-(7) asymptotic behavior of Kijne

is y/In {7p) /<TQ>, while that of K, is 1/(7,) (see Section 2.3).
Apart from these differences, the overall behavior of Kijye
closely resembles that of K,, similarly displaying only a weak
dependence on geometry. Cloud shape is of secondary
importance to radiation propagation in clumpy media.

4. Example Applications

In this section, we illustrate our general formalism for
clumpy media by applying it to two concrete cases involving
continuum and line emission. Some additional examples are
provided in Appendix C.

4.1. Radio Continuum Emission from Clumpy
Ultracompact H Il Regions

Radio free—free emission from ultracompact H II regions
(UCHIIs) often has a power-law spectrum, I, o< v®, with
spectral index a ~ 1 over a wide range of frequencies (Ignace
& Churchwell 2004, hereafter IC04). Such spectra are too flat
to be explained by optically thick free—free emission (a =2),
too steep to be optically thin (o« = —0.1), and extend over too
wide a frequency range to be the transition between optically
thin and thick emission from a single gas phase. Although
smooth ionized outflow models can explain the observed
spectra, ICO4 argued that the wind properties become
physically implausible for a > 1. Therefore, IC04 instead
modeled such radio—millimeter spectra by a clumpy medium in
which the clumps had a wide distribution of emission measures
(EMs). Specifically, they investigated the emission from an
assembly of uniform spherical clouds. The free—free optical
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depth across the diameter of each cloud is

2.1
7 = To(ﬂ) : (12)

14

where 7 is the optical depth at some fiducial frequency v,. The
cloud number distribution as a function of 7, was taken as a
truncated power law between two limits:

N(TO) X TO*W” T0,min < T0 < T0, max- (13)

As expected, IC04 found that the cloud ensemble spectrum had
«a = 2 at very low frequencies, where all clouds were optically
thick, while at very high frequencies, where all clouds were
optically thin, the spectral index was a = —0.1. In between,
over a broad region of frequencies in which some clouds were
optically thick and some thin, there was an almost constant
intermediate spectral index, a ~ 1. Ignace & Churchwell
(2004) found that they could fit the spectra observed in UCHII
regions assuming v ~ 1.5 and a large ratio Ty max /70.min > 100.
However, their computed spectra assumed that the overall
mean number of clouds per LOS obeyed N < 1; that is, they
did not treat the effects of one cloud shadowing another.

While IC04 argued that cloud shadowing was of minor
importance for the one source they modeled in detail (W49N
B2, where N~ 0.15), it is clearly of interest to generalize their
results to all values of A. This can be readily done using
the formalism developed here. The general expression for
continuum emission from a clumpy medium is given by
Equation (2). When both the mean cloud emissivity (Sc,) and
transmission factor (e~™) are independent of position along the
LOS, it is convenient to introduce the variable ¢t = N(s) /N,
the fraction of the total number of clouds along the LOS
to position s in the source (see Appendix A.l). Then
N (s)ds = Ndt and the ¢ integration is immediate, yielding

] — e ™

ICI/ = <SC1/> m’ (14’)

where 75, is given by Equation (1). With this result, we can
calculate the emerging spectrum from an ensemble of uniform
spherical clouds similar to that investigated by IC04, but now
removing the limitation A" < 1.

We assume that each cloud emissivity is given by the Planck
function B, (T), where T is the cloud temperature, and then the
cloud contribution to the specific intensity of the ensemble is
B,(T)(1 — e~ ™), where T, is the cloud optical depth along the
impact parameter corresponding to a particular LOS. To form
(Sc,), we must average over the cloud ensemble, i.e., cloud
opacities and temperatures, as well as LOS impact parameter.
Assuming that 7 and 7, are uncorrelated and utilizing the
Rayleigh—Jeans limit for B, in the radio regime yields
(Scu) = [2k(T)v?/c*1(1 — {e™™)). In this expression, the
average for the self-absorption factor is taken over both the
cloud LOS impact parameter and the 7, distribution. Substitut-
ing in Equation (14), we get

w1y

= (1 — e ™). (15)

Ic, =
This is the same expression as for emission from a single cloud,
except that the cloud temperature is replaced by the ensemble
average (7) and its optical depth 7, is replaced by 7,
the effective optical depth of the cloud distribution at each
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Figure 3. Free—free emission from a cloud ensemble with a wide range
of optical depths in a truncated power-law distribution (Equation (13)).
(a) Emerging spectra for various values of A/, the mean number of clouds
along the LOS, as marked, and (b) the corresponding spectral index
« =dInl,/dInv. The resulting spectral indices span the range between the
optically thick (o = 2) and thin (v = —0.1) limits for single-cloud emission.
The N/ = 0.1 case (red curves), which is representative of all N'< 1, shows a
significant frequency range over which « is close to unity, but this range
narrows as N increases.

frequency. This latter quantity, in turn, is given by
Equation (1), which can be written 75 = Af(v), where
f@)=1— (e7™) is the average absorption fraction of
radiation at frequency v encountering a cloud in the distribu-
tion; this quantity is determined purely by the mean properties
of individual clouds and is independent of the number of
clouds.

Using Equation (15), we can estimate for arbitrary A the
emerging spectrum from a clump population containing a wide
range of optical depths. Taking uniform spheres for the
individual clouds, the required averaging carried out in forming
the frequency profile f(v) = 1 — (e~ ™) can first be made over
different clump LOS impact parameters (see Appendix B), and
then these spatial averages themselves are averaged over the
population of clump types with different opacities across their
diameters.”

In Figure 3, panel (a) shows the emerging spectra for
different mean numbers A of clumps per LOS, and
panel (b) shows the corresponding local spectral index o =
dlogl, /d logv versus frequency for each A/. The spectra were
calculated with the same power-law distribution of clump
opacities assumed by IC04, i.e., the 7 distribution given by

° In the example chosen below with a wide cloud opacity distribution, the

average over clump structure has a negligible effect on the final spectrum
compared to the effects of averaging over the opacity spectrum.
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Equation (13) with v = 1.5, 7y min = 0.01, and 7y max = 100."°
Given that f(v) < 1 (from its definition), it follows that when
N < 1, all frequencies obey 75, = Nf(v) < 1, in tumn
implying that Ic, ~ 2Nk (T)v?f (v)/c?; that is, the output
spectrum has a fixed shape v%f (v) scaled in intensity by A .
This low-A/ limit is illustrated by the red curve in Figure 3(a)
for the specific case A= 0.1; this is the output spectrum found
by IC04, and it includes a broad frequency range with
intermediate spectral index. This range starts at the frequency
at which every cloud in the opacity distribution is optically
thick, Vpin = Y0To.min'/ >, and ends at the frequency at which
all are optically thin, vm, = l/oT%)’/I%l'alx. The spectral index « of
the A/ < 1 output emission spectrum is therefore intermediate
between its optically thick and thin values over the fractional

frequency range
0.48
Vmax _ (7—0,max ) (16)

Vmin T0,min

which is about 100 for the ratio 7o max/70.min = 10* employed
here. It is interesting to note that this relative spectral width is
independent of the absolute values of the optical depth
boundaries; changing the lower limit of the 7, distribution while
keeping 7o max/7o.mn fixed will only slide this intermediate
region toward higher or lower frequencies without changing the
Vinax/Vmin Tatio. Although all spectral indices between 2 and
—0.1 occur in this intermediate range (see Figure 3(b)), there
exists a “plateau” region where a changes relatively slowly.
Integration over the 7 distribution (Equation (13)) shows that
within this plateau region, to leading order, f(v) varies as
v~210=1D 5o that the spectral index there is

a~2—21(y— 1. (17)

The choice of v = 1.5 therefore gives a ~ 0.95.

Universality of the spectral shape holds only so long as
N < 1. At larger cloud numbers, the spectral shape becomes
dependent on A/, with the low-frequency v behavior
approaching the high-frequency »~%! domain as N\ increases.
From Equation (15), the v? behavior occurs whenever
75, = Nf (v) > 1, which for /' > 1 is a condition that holds
up to the frequency at which f(v) > 1/N is still valid. Given
that in the intermediate domain, f(v) o< (Upin /v)" 210~ D | this
means that the lower boundary of the intermediate spectral
index range increases from iy, tO pin NV/Z10-D) e
Vnin N9 when ~ = 1.5. Consistent with this predicted
behavior, Figure 3(a) shows that as N increases to become
>1, the ensemble spectra saturate against the v asymptote at
increasingly higher frequencies, a consequence of the fact that
as N increases, the population has 7z, = 1 up to higher
frequencies. If we now consider the frequency region at which
the transition to an optically thin overall spectral index
o = —0.1 occurs, then for all the values of A/ shown in
Figure 3(a), this occurs at a frequency much larger than the one
at which 75, = 1 and hence 75, < 1 at this upper turnover. It
follows from Equation (15) that around the upper turnover, the
ensemble spectrum remains proportional to v2f (v) scaled by
N even when N >> 1. The upper frequency of the intermediate
spectral index region therefore still occurs at the upper turnover

19 The effects of varying all parameters other than N have been studied
extensively in 1C04.
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frequency of v2f (v), i.e., at the frequency in which all clouds
in the opacity distribution become optically thin at vp,x =

V9 7'5{ Iﬁalx , independent of /. As a consequence of the different

dependence on A of the lower and upper limits of the
intermediate spectral index range, the fractional frequency
range showing the intermediate spectral index shrinks with A/
when AN > 1. Specifically, when ~ = 1.5, the fractional
frequency range showing the intermediate spectral index
approximates t0 N % (7y max /To.min)**® ; this also explains
the steepening of the spectral index transition region with
increasing A/, evident in Figure 3(b).

Our results show that Ignace & Churchwell (2004) correctly
identified the unique set of conditions in which clumpy HII
regions with a power-law 7" distribution of cloud optical
depths can produce the observed o >~ 1 spectra. When A < 1,
the relative width of the intermediate spectral index region can
be substantial when the clump 7, distribution covers a large
range (Equation (16)). The observed spectral index in this
intermediate-frequency range is controlled by ~y, with v = 1.5
giving a >~ 1 (Equation (17)). Our formalism shows for the
first time how the output spectrum is affected when N > 1,
demonstrating that for such cases, the frequency range showing
an intermediate spectral index narrows significantly with
increasing V.

4.2. CO Spectral Line Profiles

Consider line emission from a population of small clouds
within a telescope beam coming from an external galaxy or a
galactic star-forming region. The resulting output spectrum is
the average of the emission over many LOSs and therefore
equals the LOS expectation value of spectral line emission (see
Section 2.4). As an example of line emission from a clumpy
medium, Figure 4 shows model CO spectra for ensembles of
identical uniform spherical clouds.'' The distribution of cloud
LOS velocities is taken as Gaussian with width Au, assumed to
be much larger than Av, the velocity width of each cloud (as
defined in Section 2.3). The expected spectrum in such a case is
given by Equation (11), which shows that it depends on the
product of the total optical depth 7(v) and the clumping factor
Kiine, determined by the mean properties of clouds in the
distribution (E(}uation (10)). Figure 4 shows predicted
2C0(1-0) and "*CO(1-0) spectra, with a '>CO(1-0) absorp-
tion coefficient that is 1/60 that of '*CO(1-0). Different
columns show spectra for different values of the total
12CO(I—O) optical depth at zero velocity, TITZ(O), as listed at
the bottom of each column. Different rows present different
values of the mean single cloud (74%), the line-center optical
depth averaged over the face of a cloud; the corresponding Kjiye
is listed to the right of each row. Since 742(0) = N (0)(74*) Av,
for each panel’s combination of 74%(0) and (7}?), there is a
corresponding value of N(0)Av, the number of clumps per
LOS with a center velocity within +=Av/2 of zero velocity, as
given in the top left corner of each panel.

To understand the displayed profiles, it helps to recall that
the brightness temperature of a smooth-density source with
constant excitation temperature is T, = T3[1 — exp(—7(v))].
Therefore, when the line-center optical depth obeys 7(0) < 1,

""" As noted in Section 3, the exact cloud shape has very little effect on the
emerging spectra from a cloud population; for identical clouds, any cloud shape
that has the same mean opacity averaged over its face at cloud central velocity
will have almost identical spectra.
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the emission is proportional to 7(v), displaying the Gaussian
velocity distribution profile. In contrast, when 7(0) > 1, the
emission develops a flat-top profile that broadens with
increasing 7(0). This same familiar behavior is expected in a
clumpy source when individual clouds are optically thin, since
clumping has no effect in that case (Section 2), with the profile
dominated by the cloud ensemble Gaussian motions, since we
assume Au > Av. That is indeed what Figure 4 shows. In all
the panels, individual clouds are optically thin in the '>*CO(1-0)
transition because of the '*CO small abundance. As a result, the
3CO(1-0) line profiles are identical within the panels of each
column, for which total optical depth is the same, and every
row shows the same familiar evolution for an optically thin line
profile—Gaussian with peak intensity proportional to the line-
center optical depth. In the bottom two rows, individual clouds
are also optically thin in *CO(1-0), so they in turn display the
same expected profile development with increasing total optical
depth to a fully saturated flat top in the rightmost panels.
However, when individual clouds become optically thick,
clumping induces profile behavior completely unexpected from
the smooth-density experience. This unique behavior stands out
when the panels are followed up the figure’s rightmost column,
where 71'2(0) = 10: the flat top gets narrower as the optical
depth per cloud increases, until finally the original Gaussian
profile emerges almost intact when the line-center optical depth
of a cloud is 75> = 10. While it is impossible in the case of a
smooth-density gas that such a high 7t could have a velocity
profile close to Gaussian, this can occur as a natural
consequence of clumpiness. Since the effective optical depth is
Tg = Kiine7r (Equation (10)), the line becomes effectively thin
when the optical depth of individual clouds is sufficiently high, a
result of the decline of Kj;,. (see Figure 2; note also the value of
Kiine listed to the right of each row). While in the top right panel of
Figure 4, the overall optical depth 7r is high, on average, it is
concentrated into only one very optically thick cloud. Since the
probability distribution of clouds per LOS is a Poisson distribution,
the fraction e~ (~40%) of all sightlines does not intercept any
cloud. With only a fraction of the surface area contributing to the
observed radiation, the source brightness temperature is less than
the cloud excitation temperature, and the line remains unsaturated
even at its center. At higher and lower velocities, the covering
factor of the optically thick clouds decreases, so the resulting
spectral profile closely follows the Gaussian profile of the number
of clouds per cloud LOS velocity width.

The richness of line spectra from clumpy media, indicated by
the systematic overview in Figure 4 of profile variation with
clump and total optical depth, has important consequences for
spectral studies of external galaxies. It is important to note that
although the calculations behind this figure assume the specific
case of identical clouds, the resulting spectral profiles are in
fact universally applicable to a medium containing any
distribution of different cloud types. Equation (11) shows that
clumpy medium emission is fully specified by 7r and the
clumping factor Kjipe, which is listed on the right of each row in
the figure. A remarkable result is that any medium containing a
mixture of nonidentical clouds with the same value of Kj,. as
one of the rows of Figure 4 will have identical spectral shapes
as a function of 71 '2(0), the total optical depth at profile center.

4.2.1. Clumping Effects on Spectral Line Ratios

Measurements of intensity ratios between spectral lines
provide a powerful tool to constrain chemical and physical
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Figure 4. Spectral line emission from an ensemble of clouds whose Gaussian LOS velocity distribution width is Au > Av, the internal velocity width of each cloud.
Shown is a sample of CO spectral profiles for different combinations of individual cloud optical depths (rows) and total optical depths (columns). Each panel shows
plots of brightness temperature vs. velocity for 2co (1-0) (solid blue lines) and 3co (1-0) (dashed red lines, multiplied by 5 to become more visible). Each x-axis is
centered on the line center, with tick marks shown at i%Au. Along each y-axis, the top tick is placed at the '2CO line-center brightness temperature of the bottom right

panel. Rows are labeled on the left side by (7'52), the single-cloud line-center '>CO optical depth averaged over the cloud face, and on the right side by the
corresponding line clumping factor Kjipe (Equation (10)). Columns are labeled at the bottom by TITZ (0), the total 2CO optical depth at line center (Equation (9)). For
732(0) to be the same for all the panels in each column, the number of clouds intercepted, on average, along the LOS within :I:%Av from line center must vary; this
value is indicated in the top left corner of every panel. For more details and interpretation, see the text (Section 4.2).

conditions in astrophysical gases. Such ratios depend on
physical parameters such as the relative abundance of
molecular species and the excitation of the two transition lines.
Often, models that fit line ratios assume uniform slabs of gas
and neglect the potential effects of clumping on small scales
within these slabs. However, if these small-scale clumps do
exist and are optically thick, then clumping can significantly
impact the observed line ratios; without accounting for such
effects, erroneous physical conditions can be deduced.
Equation (11) gives the general expression for the observed
line profile in the case of clumping, with the profile intensity
and shape depending on the brightness temperature of the line,
the total optical depth through the gas, and the clumping factor,
Kiine; the latter, in turn, depends on the optical depth of
individual clouds (see Equation (10)).

Line ratios can be calculated by employing either brightness
profiles integrated over all velocities of the two transitions or
peak brightness temperatures at the centers of the two profiles.
Whichever procedure is used, there are in general four separate
opacity-related quantities that affect an observed line ratio,

comprising the total and single-cloud optical depths for each of
the two transitions. The line profiles shown in Figure 4
illustrate a two-dimensional subspace of this general case in
which the total and single-cloud optical depths of the weaker
line (here *CO(1-0)) are set at <1, while for the stronger line
(*2CO(1-0)), these two quantities both vary from <1 to >>1.

The four panels in the bottom left corner of Figure 4 illustrate
the situation when both total and single-cloud optical depths of
2CO(1-0) are <1, in which case there are no opacity effects. In
this regime, the observed line ratio equals the intrinsic ratio of line
strengths determined by the gas physical conditions; for the
displayed pair, this is largely determined by the '*CO:'’CO
abundance ratio. The four panels in the bottom right corner have
total 7r > 1, but individual clouds have 7 < 1. In this region,
the '*CO(1-0) line profile saturates at line center, reducing the
observed line ratio. In principle, the saturation of the brighter line
can be detected from the relative line shapes of the two transitions,
so opacity effects on the line ratio can be corrected for. In practice,
though, such corrections require high signal-to-noise observations
that are often not available.
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The case of low total but high single-cloud optical depth is
shown in the four top left panels of Figure 4. In these spectra,
the high single-cloud opacity causes clumping factors
Kiine < 1, reducing the '>CO(1-0) line effective optical depth
(Equation (11)) and hence its intensity, thus reducing the line
ratio by a factor of Kj,.. Since the 12CO(l—O) line shape is
unaffected by having optically thick clouds, it is in principle
impossible to determine whether a reduction in observed line
ratio reflects clump opacity effects or an intrinsically low line
ratio. The final regime is illustrated by the figure’s four top
right panels, where both single-cloud and total optical depth are
simultaneously high. Here the effects of both the reduction of
effective opacity and the saturation of the '2CO line profile
are in operation; their joint effect can be determined from
Equation (11).

In the above, we have carefully defined and distinguished the
independent quantities of total and single-cloud optical depth.
Figure 4 illustrates that if either of these optical depths is >1 in
either one of the transitions, then the observed line ratio will be
significantly different from its intrinsic value. Since high
optical depths, either single-cloud or total, often induce only
small or imperceptible changes in line shapes, it is usually not
possible to detect their effect observationally. The best that can
be done is if a given transition is suspected (either a priori or
based on other line ratios) to have a high single-cloud or total
optical depth, then line ratios involving that transition should
not be used in fitting for gas physical conditions; such a
transition could reliably be used only to set limits on line ratios,
which could then be exploited in physical modeling.

5. Discussion

This paper brings to completion the Natta & Panagia (1984)
approach to radiative transfer in clumpy media, showing
that such media can be reliably modeled as collections of
structureless clouds (“mega-particles”) characterized by a
single property: optical depth. The actual clouds can have a
wide range of properties, including different geometrical
shapes, opacities, emissivities, spectral shapes, bulk velocities,
internal structures, and orientations, all of which can vary along
the LOS. With proper averaging, all of these properties can be
rigorously encapsulated in an ensemble of identical clouds,
and, to a good degree of approximation, the geometry of these
average clouds is irrelevant.'?

The simplicity of the formalism presented here has
enabled us to readily calculate clumpy emission spectra for a
number of current problems, including ensembles of UCHIIs
(Section 4.1), CO spectral lines (Section 4.2), and synchrotron
emission accompanied by free—free absorption from super-
novae and compact starbursts in ultraluminous IR galaxies
(Appendix C). Our results replicate and extend numerous
earlier studies. We show that Ignace & Churchwell (2004)
correctly identified the unique set of conditions in which
clumpy H1I regions with a power-law distribution of cloud
optical depths can produce o == 1 spectra (Section 4.1). And, in
the case of spectral line observations, we show that it is
impossible, even in principle, to distinguish the effect of atomic
and molecular abundances on line ratios from the clumping
effects of optically thick clouds (Section 4.2.1).

2 Itis interesting to note the similarity with approaches taken in the context of
radiation propagation in porous media (see Taine et al. 2008).
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The effective optical depth of a clumpy medium
(Equation (1)) arises from the result of our formalism
for (e”™), the first moment of the transmission factor
distribution. Higher moments can be calculated just as easily
—the mth moment, e ™%, distribution average is simply
exp[—MN(1 — (e7"%))], as directly obtained from the deriva-
tions in Appendix A.2. Such moments can yield useful
information about the cloud distribution. Tauber (1996) pointed
out that a possible route to explore clumpiness is to observe
emission lines with very high spectral resolution and signal-to-
noise ratios, analyze the fluctuations in brightness temperature
present on the line shape, and infer from them the properties of
the clumps present in the beam. Assuming identical clumps and
employing the Martin et al. (1984) model, Tauber (1996)
computed the expected fluctuations for a wide range of clump
optical depths. Other studies of the fluctuation effect, both
earlier (Tauber et al. 1991) and later (Pirogov et al. 2012), were
restricted to optically thin clumps. Based on our clump
formalism, it is straightforward to show that the transmission
factor variance obeys

(€™ = (e™)?)

=exp [N — (e72%)] — exp[-2M(1 — (e7™))]. (18)
This simple expression is completely general and encompasses
the results of all previous studies. It enables analysis of spectral
variance, as performed by Tauber et al. (1991) and Tauber
(1996), for arbitrary sources without any model restrictions.
Such analysis can directly yield A/, the total number of clouds
along the LOS. A similar utility exists for higher moments,
which can be derived just as easily.

While the formalism developed here is quite general, it does
rest on some fundamental assumptions. The clump volume
filling factor is assumed to be small enough that departures
from Poisson statistics are small. In practice, Monte Carlo
simulations (see Section 2.1) show the formalism to give good
estimates up to quite large volume filling factors (~10%).
When larger filling factors are desired, modeling would have
to rely on Monte Carlo simulations. Next, the absorption
and emission properties of single clouds are assumed to be
unaffected by the radiation generated by the clumpy medium.
Relaxing this assumption requires an iterative procedure that
starts with initial cloud properties, such as level populations or
dust temperature, determined in the absence of cloud emission.
In subsequent steps, the clump formalism is used to calculate
the expected radiation field, which is then added to the
calculation of individual cloud properties and reiterated until
convergence.

Finally, the formalism assumes random placement in space
of individual clouds, such that the presence of another cloud
nearby neither increases nor decreases the probability for a
cloud at a given position. However, there is evidence
suggesting that galactic clouds could be fractal (Falgarone
et al. 1991; Elmegreen & Scalo 2004), with small high-density
clumps embedded within larger lower-density clouds. Never-
theless, there are reasons to expect our formalism to give
approximately correct answers even in such a case. Consider a
critical size scale at which the optical depth is approximately
unity, such that smaller, denser clumps are optically thick but
larger ones are optically thin. Then the fact that the latter are
correlated in position with clumps of the critical size has little
effect. Smaller, very optically thick cores will be embedded
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within the already optically thick critical-scale clouds; thus,
their contributions to the total spectrum will be small. Applying
our formalism and considering only the clouds at the critical
size and larger should therefore produce reasonably accurate
results. In future work, we hope to quantify the formalism
accuracy when applied to fractal clouds.

We are grateful to the anonymous referee for useful
comments. ME acknowledges the help of Frank Heymann
and Robert Nikutta.

Appendix A
Analytic Results for Small Volume Filling Factors

A.1. Cloud Distributions

The fundamental function describing the distribution of
clouds with velocity vector u at position r is n(r, u), the
number of clouds per unit volumes of space and velocity
space. When interacting with continuum radiation, the cloud
velocity is irrelevant and can be integrated out to produce
n(r) = f n(r, u)d*u, the number of clouds per unit volume at
position r. For radiation propagating along some path, denote
by A the cloud area perpendicular to the path. Then the number
of clouds a photon encounters per unit length is N = nA, the
inverse of the local mean free path. As shown by Nenkova et al.
(2002, 2008), the distribution N suffices to describe the clumpy
radiative transfer problem when the volume filling factor is
small; the volume density n and the cloud area A do not enter
separately in that case. Then the overall number of clouds a
photon encounters, on average, between any points s; and s,
along the path is

Ny, s = [ Ns)s. (19)
51
Generalizing to an arbitrary mix of cloud types is as simple as
adding independent variables, one for every additional cloud
property; introducing the distribution N; and deriving the
corresponding A for each type separately.

In the case of line radiation, one needs to identify the clouds
with a particular LOS velocity u. To that end, integrate n(r, u)
over the velocity components perpendicular to the path to get
n(r, u) = f n(r, u)d*u,, the cloud number density per unit
volume and unit LOS velocity u. As before, N = nA and the
number of clouds encountered along the path between s and
s +ds with LOS velocity between u and u + du is
N (u, s)dsdu. Then the total number of clouds encountered
between s and s + ds at all velocities is N (s)ds, while the total
number encountered along the entire path with velocities
between u and u + du is N (u)du, where

NG = [Na odu,  Nw= [N sds.  Q0)
The total number of clouds along the entire path and at all LOS
velocities is

N= fN(s)ds - fN(u)du. Q1)

A.2. Absorption in Clumpy Media

Consider the absorption of background radiation by a
foreground ensemble of identical clouds. Denote by e~ ™ the
transmission through a single cloud at frequency v and assume
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that interaction with the radiation does not change 7,. Let A/ be
the mean number of clouds along a given LOS. With the
assumption that the clouds are placed randomly and their
volume filling factor is small, Natta & Panagia (1984)
employed Poisson statistics to show that the mean transmission
factor averaged over many realizations of that LOS is
(e™™) = exp(—Tg,), where

T, = N1 — ™) (22)

is the effective optical depth of the clumpy medium. Consider
now a mixture of n types of clouds with each type having
optical depth 7,; (i = 1,2 ... n) and comprising a fraction
f; = Ni/N of the average total number of clouds along the
LOS (O_f = 1). The probability of encountering any given
combination of number of clouds of each type is given by a
multivariate Poisson probability distribution. Repeating the
Natta & Panagia averaging procedure over all possible cloud
types, straightforward algebraic manipulations show that the
effective optical depth is now

7, = N1 — (e7™)) (23)
(cf. Equation (1)), where
(e7) =2 e 24)

is the mean single-cloud transmission factor at frequency v. In
the case that the cloud type varies continuously with some
parameter ¢, the discrete fractional abundance f; is replaced by
f@®dt (with f f@®dt = 1), the fraction of clouds in the
parameter interval [t, ¢ + dt], and the sum is replaced by the
integral f f (e Odt. Note that the variable ¢ can refer to any
label defining cloud type. In the simplest case, it could refer to
a single opacity characterizing each cloud, and f(f) would then
be the cloud opacity distribution. It could also, however, refer
to the impact parameter of the LOS relative to the center of,
say, spherically symmetric clouds or an angle describing
filamentary cloud orientations (see Appendix B). Furthermore,
the cloud average can be made over any number of dimensions
of continuous parameters, f, t, ..., which describe the cloud
population with the appropriate probability distribution
fl, t..0).

The above results also follow from an alternative derivation
that utilizes a radiative transfer approach.'? Start with the case
of single-type clouds and introduce 1(s) = N (s)/N; then the
number of clouds encountered in the differential segment ds
along the radiation path is N(s) = Nn(s)ds (note that
f nds = 1). Since each cloud absorbs the fractional amount
1 — e of impinging radiation, in traversing ds, the intensity
is attenuated by the amount dI, = —I, N(1 — e ™)nds.
Integrating along the full path yields the Natta & Panagia
result (Equation (22)). Extending this approach to a cloud
mixture is straightforward. Introduce 7;(s) = Ni(s)/N;, the
spatial distribution profile of type-i clouds ( f n,ds = 1); then
the number of such clouds encountered in the differential
segment ds is N;(s) = /\ﬁ‘l 7,(s)ds. Since each cloud absorbs the
fraction 1 — e~ ™ of propagating radiation, radiative transfer in

13 A somewhat similar approach has been used by Lacki (2013).
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clumpy media is controlled by

d, _ _ N = e ) n(s)ds.

25
L (25)

Integrating along the full path and summing over all cloud
types leads directly to 7, from Equations (23) and (24).

A.3. Emission from Clumpy Media

The fundamental expression for continuum emission from
single-type clouds has been given in Nenkova et al
(2002, 2008). To calculate the emission along a given LOS
in this case, denote by Sc, (s) the single-cloud source function
at position s; this is the increase in brightness of radiation
propagating along the LOS because of the emission from a
single cloud. With N(s), the expected number of clouds per unit
length, the overall number of clouds in the differential segment
ds along the path is N(s)ds, and the intensity generated in
that segment is Sc,, (s)N (s)ds. This is the input radiation to the
rest of the path, which contains N(s) = f N (s")ds’' clouds,
on average. Therefore, the mean transmsission factor for
that remaining segment is exp[—7g, (s)], where 7g, (s) =
N(s)(1 — e~™), and the emerging intensity is

Ie, = f 5 Se, ()N (s)ds. (26)

Generalizing to a cloud distribution is straightforward. There
are N,(s) clouds of type i per unit length, on average, each with
a source function Sc,,(s). Then the intensity generated per unit
length is Y, N;Scy,(s) = N (Sc,), where

(Scv) =D fiSev, @7)
1

and a similar averaging procedure when the cloud distribution
is characterized by a continuous variable. Note that the clouds
that dominate the averages in (S) and (¢~") (Equation (24)) can
be different from each other. Because the statistical variations
of the emission and foreground absorption are uncorrelated, the
mean contribution of element ds to the received intensity equals
its mean emission times the mean foreground transmission.
This leads directly to the result in Equation (2).

A.4. Spectral Line Absorption

The optical depth of a line centered on frequency vy is
T(v) = 9@ (v — 1vy), where T is the line-center optical depth
and @ is the line profile normalized to ®(0) = 1. The line width
can be defined from Av = f ®(v — vy)dv. In addition to the
potential intrinsic variation of 79 and Av from cloud to cloud,
vy can also vary because of cloud motions. The line-center
frequency of a cloud with LOS velocity u is shifted to
vo(1 — u/c), and its optical depth becomes

(v, u) = Pl — vo(l — u/c)l. (28)

Based on the approach described in Appendix A.2 above, the
effective line opacity at frequency v of an ensemble of clouds is
given by Equation (1) with the quantity (¢~™) now including an
average over different cloud-center velocities. Since we wish to
handle the cloud velocity distribution separately from all other
possible variations of cloud properties (i.e., 79 and Av), we
lump them together into a single symbolic variable ¢. Then
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(e7™) = [[f (. e ™" dudt, where the distribution f
describes the fractional number of clouds with LOS velocity
u and value t for the other cloud properties.

If the fraction of clouds of different types ¢ is independent of
velocity, then f(u, t) = g(t)N (u) /N, where N is the overall
number of clouds encountered, on average, along the path; N(u)
is the number per unit LOS bandwidth u (see Appendix A.1
above); and g(?) is the probability distribution of all other cloud
properties ( f g(®)dt = 1). Then Equation (1) for the line
effective optical depth becomes

e, = f N@)(1 — (e ™)) du, (29)

where (e T"W) = f g(®)e ™™ dt is the cloud mean transmis-
sion factor, averaged over all cloud properties other than LOS
velocity. Instead of frequency v, the equivalent Doppler
velocity v = ¢(1 — v/1y) is customarily employed. Then the
optical depth becomes 7(u, v) = 19®(u — v), and the profile
width is Av = cAv/vy, a velocity scale that characterizes the
cloud internal motions. Replacing frequency v with equivalent
Doppler velocity v in Equation (29) yields the result in
Equation (7).

A.5. Spectral Line Emission

Start with a population of identical clouds, described by the
distribution N (s, u) (Appendix A.1). Denote by Sy(s) the line-
center brightness of a cloud at rest at position s; then the cloud
emission at frequency v is Sy (v — 19). When the cloud is
optically thin, ¢ = ®, the emission profile simply has the line
(Doppler) shape. In the general case, both Sy and ) (v) are
determined only after a detailed solution of the radiative
transfer problem for single clouds. When the cloud is moving
with Doppler velocity u, its emission at frequency v becomes
So(®) Y[y — vo(1 — u/c)]; thus, the average emission at
frequency v from the cloud ensemble at position s is described
by the source function

SCI/ (S) = SO (S) ‘Ilu’

Lﬁ/}[lf — vo(1 — u/c)IN (s, u)du.

where ¥, =
N(s)
(30)

The intensity generated in segment ds at frequency v is
Sc, ()N (s)ds, and, while traveling through the rest of the path,
it is attenuated by exp[—7g, (s)], where 75, (s), the line effective
optical depth from point s, is calculated from Equation (29).
Therefore, in complete analogy with the continuum -case
(Equation (2)), the emerging line intensity is

ICI/ = feiTE’/(S)SCI/(S)N(S)dS' (31)

As before, generalizing this result to a mix of clouds is
straightforward. Adding an index i to differentiate between
cloud species and denoting by ¥, the emission profile of the ith
species as defined in Equation (30), the brightness generated
per unit length is

Z Soi($) Wi Ni(s) = N (S)Zﬁ (9)Scu, (5)(s)

= N (5)(Scu(s). (32)
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When the cloud mix is described by a continuous parameter,
the sums in this relation are trivially replaced by integrals.
From the last two relations, it follows immediately that the line
intensity emerging from a clumpy medium is

lew = [ (Sc, )N (5)ds, (33)
the same fundamental expression as for the continuum case
(Equation (2)).

Inside a cloud, the source function is B, (Ty), where B, is the
Planck function and 7 is the local line excitation temperature
(e.g., Elitzur 1992). A widely used approximation is to assume a
constant 7, neglecting its variation with position inside the cloud.
Then the emission intensity of a single cloud at rest, the source
function of the clumpy medium, is S, = B, ,(Ty)(1 — e ™).
When the velocity distribution is independent of position
along the LOS, this implies ¥, = (1 — e ™), as well as 75, =
N(s){1 — e~™). Expressing intensity in terms of equivalent
brightness temperature 7;, and assuming both 7;, and 7 to be in the
Rayleigh—Jeans domain, Equation (33) yields

Ty, = (L) (1 = (e7™)),

where we have additionally assumed that the locally averaged
excitation temperature (7;) is the same everywhere in the
clumpy region.

(34)

Appendix B
Averages for Spheres, Slabs, and Filaments

The clumping correction factor involves the averages (7) and
(e~ over all cloud orientations (Equation (6)). In the case of
uniform clouds, these averages become straight geometrical
integrations, which we now consider for spherical and
filamentary clouds. Additionally, thanks to the symmetry
properties of the planar geometry, the slab radiative transfer
problem is altogether independent of the density profile and is
considered here too. The frequency index is omitted, since only
the geometrical averaging is considered here.

A uniform spherical cloud is fully characterized by its radius
R and optical depth across the diameter 7;; the optical depth
across a chord with length £ is 7y £/2R. The path length along
impact parameter b is £(b) = 2+/R?> — b>. Averaging over all
impact parameters yields

1
(r)=2n [ 1= pdp= 2m, (352)
(e7) = 2];1 exp(—7iy1 — p?)pdp
- %[1 — (1 + e (35b)
T1

The analytic result for (¢~7) for uniform spheres was noted
previously by Ignace & Churchwell (2004).

Consider now a filament with radius R and optical depth 7y
across the diameter. The optical depth along a path displaced
by distance y and inclined by angle 6 from the axis (Figure 5) is

T(y, 0) = ——1— p?,

sin
Significantly, 7 does not depend on the filament’s length; it
depends only on radius and viewing angle, so long as the path
does not intersect either end cap. Assuming a large aspect ratio

y
where = =, 36
P= (36)
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(Iength-to-width) so that the contributions of the end caps can
be neglected, averaging over y and 6 yields

1 1 1 — P2 71.2
<7'>—Tlf0 dMJ; ‘/l—uzdp_?ﬂ’ (37a)
L 1 1 1 — p2
(e >—f0 dufo exp[—n — ]dp. (37b)

The planar geometry, with 7; the optical depth along the
normal, is handled similarly. The path length is now
independent of impact parameter while having the same
dependence on viewing angle, 7(6) = 71/ sin §, leading to

_ V' dp o
() —le; —m =2 (38a)
1
(eT) :fo exp(—n/ 1 — 12)dp. (38b)

While the integrals for (e ™) cannot be performed analytically
for slabs and filaments, the similarity with the spherical case of
these integrals explains the similarity of the K-factor as a
function of (7) for the three geometries (Figure 2).

It may be worthwhile to note a simple result for the
averaging over uniform clouds of arbitrary shape.'* With the
z-axis along the LOS and x—y the plane of the sky, the length
through the cloud at point (x, y) is £(x, y). Averaging over the
observed area yields

ff(x, v)dxdy B L (39)
[axay A

A
where V is the volume of the cloud and A, is its projected area
on the plane of the sky. With an arbitrary cloud shape, we must
further average over all cloud orientations. Denote such
averaging by (); then the desired quantity is

1
<">‘V<At>'

The results for (7) for both uniform spheres (Equation (35a))
and filaments (Equation (37a)) are readily recovered from this
general expression.

{7:

(40)

Appendix C
Synchrotron Emission with Free—free Absorption

Observations of radio emission from compact starbursts in
ultraluminous IR galaxies are commonly fitted by a model first
proposed by Condon et al. (1991) that combines the effects of
star formation—-induced synchrotron emission and free—free
absorption. This specific model belongs to a general class of
two-component mixtures of uniformly distributed emitters and
absorbers; examples include ionized gas mixed with dust (Natta
& Panagia 1984) and a uniform mixture of stars and dust
(Thronson et al. 1990). In these admixtures, radiation generated
by the emitting component (ionized gas, stars, etc.) is
selectively attenuated by the smoothly distributed (i.e., not
clumped) absorbing material, which itself does not emit
appreciably at the relevant wavelengths. Consider a slab
containing such a mixture with 7, the total optical depth for

14 This approach was first noted by Frank Heymann.
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Figure 5. Filament viewed at angle 6 along a path displaced by impact parameter y from the axis. The cut on the left is perpendicular to the axis, and the one on the

right is parallel to the axis and contains the viewing path.

the absorbing component, and denote by S, the intensity of
emission that would have emerged in the absence of the
absorbers. Assuming the emitters and absorbers to be well
mixed together, the emission is everywhere proportional to the
absorption so that the intensity generated between 7, and
T, +dr, is S,dr,/r;,. On its way out, this radiation is
attenuated by exp(—7,), emerging as dI, = S, e "dr, /T,
Integrating over the path, the emerging intensity is now
I, = S,T,, instead of S,, where

1 — _
T, = 1 e~ T, = 1 = exp(=7)
T,

v

41)
TT,

is the transmission factor for the smooth-density absorbing
component. This factor has the same functional form as the
clumping factor K, (Equation (6)), approaching the limits
T,~1 when 7, < 1 and T, ~ 1/71, when 71, > 1. In the
former case, the radiation emerges intact from the entire slab; in
the latter, it emerges only from within ~1 optical depth from
the surface, and the fractional thickness of this surface layer
is 1 / TT,-

In the Condon et al. (1991) model, synchrotron emission
S, oc v7P, typically with p ~ 0.7, is attenuated by free—free
absorbing gas well mixed together with the emitting gas.'
Emission from the free—free gas can be neglected at radio
wavelengths so that the emergent radiation is just the absorbed
synchrotron emission I, = S, 7,, where T, is the free—free
transmission factor from Equation (41). Denote by vy, the
frequency where the free—free optical depth is unity, then
71, = (19/v)*! (see Equation (12)). At frequencies higher than
vy, T, < 1 and the emergent intensity is I, oc v~7, while at
lower frequencies, 7r, > 1 and I, v21=r_ Therefore, the
spectrum peaks at vy, falling away toward both lower and
higher frequencies; this behavior is shown by the gray line in
panel (a) of Figure 6.

We propose an extension of the Condon et al. (1991) model
in which the synchrotron emission remains smoothly distrib-
uted but the free—free absorption is clumpy. This would be the

15 A factor 1/74 is missing from Equation (8) of Condon et al. (1991).
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case, for instance, if the absorption came from individual H1I
regions within a star-forming region (Lacki 2013) while the
synchrotron emission came from the interclump medium. As
shown in Section 2, in this case, the attenuation is controlled by
the effective optical depth 75 (Equation (1)). Assume that the
density of the clumps along the LOS is always proportional to
the synchrotron emission (because both are proportional to the
star formation rate), and further assume that the clumping
factor is constant along the LOS. Given these assumptions,
exactly the same derivation as above for the smooth-absorption
case is applicable, with 75 replacing 7r everywhere. The
resulting emergent intensity again is [, = S, 7,,, where now

1 —exp(—7g,)
TE ’

T, (42)

v

with 7, the overall effective optical depth (Equation (1)). The
smooth-absorption result in Equation (41) is recovered when
Tg, 1s replaced by the total optical depth r; therefore, our
extended model contains the Condon et al. (1991) model as a
limiting case. Because 75, = K, 71, (Equation (5)), clumpiness
affects the emergent radiation only at frequencies where the
clumping factor K,, deviates from unity, i.e., only at frequencies
at which individual clumps are optically thick. In that case,
K, <1, and the mean effective optical depth is reduced
because of the possibility that by chance, no optically thick
clumps are encountered by radiation propagating out of
the slab.

Now consider keeping the mean total LOS optical depth at
the fiducial v, fixed at ™, = 1, with all this absorption
concentrated into a varying number A/ of identical clouds. This
corresponds to a situation in which the mean integrated free—
free EM (in units pccm™®) per LOS is kept constant but the
EM per clump varies. The emergent spectra are shown with
solid colored lines in panel (a) of Figure 6, while panel (b)
shows the spectral index of each model. The unique properties
of clumpy absorption stand out immediately in the AV = 0.1
plot—the input synchrotron radiation emerges unperturbed at
all frequencies, even v < v, where 7p > 1. The reason is that
in crossing the entire region, the radiation can avoid all clouds
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Figure 6. Model spectra from synchrotron emission in the presence of free—free absorption. All models have the same value of mean LOS free—free emission measure
through the source but differ in their geometries and degrees of clumping. The left panels are for a geometry in which the synchrotron emission and free—free
absorption are intermixed, with panel (a) showing the resulting spectra and panel (b) the spectral indices. Panels (c) and (d) show, respectively, the spectra and spectral
indices when the free—free absorption is in a screen foreground to the synchrotron emission. For both geometries, the synchrotron emission is assumed to follow
S, = (1// v0)~ %7, with v the fiducial frequency defined such that for all models, the mean total free—free optical depth through the source is 7r(vy) = 1. In all panels,
the gray curves show the case where the free—free absorbing gas has a smooth distribution; colored lines show models in which this gas is clumpy with a varying mean
number of clouds per LOS, N, as labeled. Solid colored lines show cases with identical clumps all having the same value of optical depth at the fiducial frequency,
79 = 1/N . Dashed colored lines are for models with cloud populations containing a wide distribution of 7 (see text for details). In all panels, the N' = 0.1 curves,
which are almost identical for the solid and dashed lines, are applicable to all A" < 1 models. Note that in panels (c) and (d), the N' = 100 solid lines are virtually

indistinguishable from the smooth-density absorption case.

with a probability eV, which is ~1 when A < 1. Thus, the
N = 0.1 curve in Figure 6(a) is virtually identical to the input
power-law spectrum and is representative of all V"< 1 models.
When NV > 1, a fraction 1 — e of the radiation will interact
with the absorbing clouds, resulting in two spectral regimes
depending on the optical depth 7, of individual clouds. When
7, < 1, clumping is irrelevant, and the emergent radiation is the
same as for smooth-density absorption, while when 7, > 1,
TE, = N (Equation (1)), the overall transmission factor is
T, ~ 1/N (Equation (42)), and the emergent intensity is
S, /N . The observed radiation switches from the spectral shape
of the smooth-absorption model to that of the input
synchrotron, albeit at a reduced amplitude, at the frequency
vy that gives 7(vy) = 1 for each clump, i.e., a total optical
depth 71, = V. Since 71, = 1, it follows that

Yo

A0

This transition is evident in the displayed cases of /=10 and
100, which have vy /vy = 0.33 and 0.11, respectively—at

Un (43)
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v > vy, the solutions overlap with the smooth-density result,
while at v < vy, the output spectrum equals the input
synchrotron at reduced strength. As N is further increased,
vy is decreasing, and the deviation from the smooth-density
absorption is moving to the left. The smooth-absorption case is
fully recovered in the formal limit N'— oo, where vy — 0 and
all clouds are optically thin at all frequencies.

While the above discussion assumes that all the absorbing
clumps are identical, the formalism can readily deal with the
more realistic scenario of a wide distribution in clump
properties. The dashed colored lines in Figure 6(a) show
example spectra for such cases. As in the case of UCHIIs
(Section 4.1), the distribution of clump optical depths at
frequency vy follows Equation (13) with = 1.5 and
T0.max/T0,min = 10*. Different colored dashed lines again
correspond to different choices for A, the mean number of
clumps per LOS. In each such case, the 7y i, of the clump
opacity distribution is adjusted so that the mean total optical
depth at vy averaged over all clumps is unity; i.e., for each A/,
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the value of 7 min is adjusted so that, averaged over the 7
distribution, the mean single-clump optical depth at the fiducial
frequency vg is () = 1/N. Compared with the case of
identical clumps (solid lines), in the clump distribution case,
the frequency range over which the spectral index is flatter than
the pure synchrotron spectrum is much wider, while the peak
positive spectral index is reduced in value (see Figure 6(b));
these changes occur because the relatively sharp transition at
v = vy (Equation (43)) for identical clumps is now spread over
a range of frequencies. It is interesting to note that the flattened
spectral shape of the A/ = 10 case in Figure 6(a) (blue dashed
line) and the corresponding spectral index in Figure 6(b)
are similar to some recent low-frequency observations of
star-forming galaxies (Marvil et al. 2015; Calistro Rivera
et al. 2017; Galvin et al. 2018). Clumpy free—free absorption
with a wide range of clump opacities mixed with a
synchrotron-emitting medium is thus a possible explanation.'®

As with the original Condon et al. (1991) work, all model
spectra presented here ignore contributions from free—free
emission. For typical star formation—powered radio emission,
where clump free—free absorption only becomes significant
below 1 GHz, this is a good approximation up to 20-100 GHz.
A more complete, integrated spectrum can be calculated by
combining the model clump free—free emission spectrum from
a population of clumps with the spectra described in
Section 4.1 (and shown in Figure 3). We plan to present such
overall spectra fitted to galaxy spectral energy distributions
(SEDs) in a future publication.

C.1. Absorption by Foreground Screen

Observations of the evolving radio spectra of supernovae are
broadly explained by synchrotron emission from the supernova
shell that passes through a foreground free—free absorbing
ionized wind from the progenitor star (Weiler et al. 1986,
2002). It is now thought that mass loss from such massive
stellar progenitors is clumped (Smith 2014); indeed, observa-
tions of radio supernovae show evolving radio spectra that are
not always compatible with a smooth progenitor wind (van
Dyk et al. 1994; Weiler et al. 2002).

In calculating the intensity I, of background radiation that
passes through foreground absorption, the only difference from
the internal absorption discussed above is that the functional
form of the transmission factor 7, is replaced by an exponential
with the same argument: 7r, when the absorbing material is
distributed smoothly (cf. Equation (41)), and 75, when it is
clumpy (cf. Equation (42)). Therefore, in the case of smooth-
density absorption, the emerging spectra differ in the two
scenarios only at v < 1, where the foreground screen yields
I, = S, exp(—mr) instead of I, = S, /7r, for internal obscuration
and large 77 . In the case of clumpy absorption with A/ < 1, the
input radiation passes through almost unmodified irrespective of
the geometry, thanks to the high probability to avoid all clouds.
And when A/ > 1, clumpy absorption deviates from its smooth-
density counterpart only at v < vy (Equation (43)), where the
foreground screen yields I, = S,eN instead of S, /N for
internal obscuration and large A/. Foreground screens can thus
produce, for both smooth and clumpy absorption, much steeper
spectral falloffs at low frequency than internal obscuration.

16 Alternative explanations include low-frequency modifications in the energy
power-law index of lower-energy synchrotron-emitting electrons or spatially
separated source components, which are free—free absorbed at different
frequencies.

16

Conway, Elitzur, & Parra

Panel (c) of Figure 6 shows synchrotron spectra attenuated
by free—free absorbing foreground screens with both smooth
and clumpy density distributions, repeating all the parameter
combinations of the previous section; panel (d) shows the
spectral index of each model. The above analysis is borne out
by the numerical calculations. In particular, the synchrotron
radiation emerges almost unmodified when N = 0.1; this
happens in all A/ < 1 models, whatever the geometrical
configuration. And compared with the corresponding internal-
absorption results, the spectral declines are much steeper for
both smooth absorption at v < vy and N > 1 clumpy
absorption at v < vy. With the dynamic range covered in the
figure, clumpy foreground screens with A/ > 10 (such as the
displayed ' = 100) are indistinguishable from smooth ones.
As is evident from panels (b) and (d), a foreground screen can
produce extreme cases of spectral index in comparison with
internal obscuration.

The problem of synchrotron emission with free—free
absorption contains two elements that combine into four
possible configurations: the absorbing material can be internal
or external to the emission region, and its distribution can be
either smooth or clumpy. The literature on fitting the spectra
and light curves of radio supernovae (e.g., Weiler et al. 2002)
is not always clear on the distinctions between the different
combinations and the origins of the factors accounting for the
various types of absorption. As shown here, smooth-density
absorption is described by the transmission factor 7 (7r,)
(Equation (41)) when it is internal and exp(—7r,) when it is
external. When the absorbing material is clumped, the overall
optical depth 7r, is simply replaced in either case by the
effective optical depth 75, (Equation (1)). And since 75, =
K,rr, (Equation (5)), the only effect of clumpiness is to
modify the optical depth by a clumping correction factor K,
(Equation (6)), whether or not the extinction is internal or
external.
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