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ABSTRACT

We present MOLPOP-CEP, a universal line transfer code that allows the exact calculation of multi-level line emission from a slab
with variable physical conditions for any arbitrary atom or molecule for which atomic data exist. The code includes error control to
achieve any desired level of accuracy, providing full confidence in its results. Publicly available, MOLPOP-CEP employs our recently
developed coupled escape probability (CEP) technique, whose performance exceeds other exact methods by orders of magnitude. The
program also offers the option of an approximate solution with different variants of the familiar escape probability method. As an
illustration of the MOLPOP-CEP capabilities we present an exact calculation of the Spectral Line Energy Distribution (SLED) of the
CO molecule and compare it with escape probability results. We find that the popular large-velocity gradient (LVG) approximation
is unreliable at large CO column densities. Providing a solution of the multi-level line transfer problem at any prescribed level of
accuracy, MOLPOP-CEP is removing any doubts about the validity of its final results.

Key words. radiative transfer – line: formation – ISM: lines and bands – methods: numerical

1. Introduction

Much of the information about any astronomical source comes
from its spectral line emission. Lines are the only probe of de-
tailed kinematics, and provide the tightest constraints on density
and temperature. Determining the spectral line emission from a
multi-level system requires solution of the level population equa-
tions for all levels coupled with the radiative transfer equation
for every line connecting them. Because of the complexity and
computational demands of exact solution methods, many anal-
ysis codes bypass altogether solution of the radiative transfer
equation, employing instead the escape probability approxima-
tion. This approach requires uniform physical conditions and is
predicated on the conjecture that the effects of radiative transfer
can be lumped into a multiplicative correction to the spontaneous
decay rate. This single “escape probability” multiplicative factor
is supposed to mimic the effects of radiative transfer in the entire
source, and its functional form is posited from some plausibility
arguments. Only the level populations are considered, calculated
from rate equations augmented by these photon escape factors.

The escape probability approach amounts to an uncontrolled
approximation without internal error estimate because it is not
derived from first principles but instead is founded on a plau-
sibility assumption right from the start. The only way to assess
its error is to repeat the calculation with an exact method and
compare the results1. Nevertheless, this inherent shortcoming is
often tolerated because of the simplicity and usefulness of the
escape probability approach and the near impracticality of exact
methods. Indeed, current calculations of line emission from ac-
tive galactic nuclei, shock fronts and photo-dissociation regions

1 Dumont et al. (2003) provide a detailed discussion of the escape
probability method and comparison with ALI calculations.

(PDRs) are only performed in the escape probability approxi-
mation, which requires the underlying physical conditions to be
uniform across the emitting region. Therefore these calculations
are forced to replace in each case the variable conditions with a
single value derived from either averaging or from plausibility
arguments that attempt to pick out the most significant region.
Even under these assumptions, the final results are inexact and
there is no way of finding out how large, or how small, the errors
involved are. Virtually all model results reported in the literature
are afflicted by these problems. Furthermore, the escape proba-
bility is plainly useless in analysis of spectral line shapes—this
method predicts flat-top profiles for all optically thick quiescent
regions (without large-scale ordered motions), but such sources
can in fact produce double-peaked profiles (Elitzur et al. 2012,
and references therein). Because of this inherent shortcoming,
as long as the analysis is limited to escape probability calcu-
lations, much of the available information cannot be extracted
from spectral data. This is an especially severe handicap when
angular resolution is limited and line profiles provide the only
handle on detailed structure.

We have recently developed the coupled escape proba-
bility (CEP), a new radiative transfer method that provides
an exact solution for the multi-line problem while retaining
all the advantages of the naive escape probability approach
(Elitzur & Asensio Ramos 2006; CEP06 hereafter). In this new
technique the source is divided into zones and formal level
population equations, including interactions with the transferred
radiation, are derived rigorously from first principles. The final
formulation does not contain the radiative transfer equation ex-
plicitly, only a set of coupled non-linear level population equa-
tions. These equations are identical in form to those employed
in standard escape probability calculations, but the naive photon
escape factors are replaced by terms derived formally from the
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exact equations, including those for the radiative transfer of all
lines. These terms introduce coupling between all zones, and it
is this coupling which makes CEP an exact method. Solution of
this set of algebraic equations determines in each zone level pop-
ulations that are self-consistent with the line radiation they gen-
erate. Once the correct level populations are derived, line profiles
and fluxes are computed from straightforward summations over
zones. The numerical error is controlled by reducing the zone
sizes. Any level of accuracy can be achieved by increasing the
number of zones.

Originally formulated for the slab geometry, the CEP method
was subsequently extended to 3D, first to spherical sources
both in hydrostatic equilibrium and subject to large scale
motions (Yun et al. 2009; Yun & Park 2012). As in the slab
case, the spherical implementation of CEP yields significant
gains in accuracy and efficiency. Gersch & A’Hearn (2014) and
Debout et al. (2016) have further extended CEP to asymmet-
rical situations and employed it to model optically thick line
emission from cometary comae. The power of the CEP ap-
proach has been recognized also outside the astronomical com-
munity: Masnavi et al. (2013) employed CEP to model in detail
extreme-UV laser based lithography, an emerging technology in
high-volume semiconductor chip production. And Rezaei et al.
(2013) employed CEP in numerical calculations of the temporal
behavior of plasma emission after laser irradiation.

Since CEP brings a significant speed improvement over other
methods, exact calculations are becoming practical for most line
analysis problems. We have implemented our original method
in the code MOLPOP-CEP and it is now publicly-available (see
Sect. 3). MOLPOP-CEP is a universal line transfer code that al-
lows the exact calculation of multi-level line emission from a
slab with variable physical conditions for any arbitrary atom or
molecule for which atomic data exist. The code includes error
control to achieve any desired level of accuracy, providing full
confidence in its results.

MOLPOP-CEP has already been employed in numerous
studies, including analysis of the H2D+ resonance line emis-
sion from proto-planetary disks (Asensio Ramos et al. 2007);
double-peaked line profiles in rotating disks (Elitzur et al. 2012);
maser observations in supernova remnants (Pihlström et al.
2014; McEwen et al. 2014, 2016); far-infrared tracers of oxy-
gen chemistry in diffuse clouds (Wiesemeyer et al. 2016); and
ALMA multiple-transition molecular line observations of an Ul-
traluminous Infrared Galaxy (Imanishi et al. 2017). The code is
available from a dedicated web site2.

This paper serves to introduce MOLPOP-CEP and its ca-
pabilities. For completeness, in Sect. 2 we describe briefly the
CEP radiative transfer formalism and introduce our notations for
the key quantities. Section 3 describes the working of the pro-
gram and discusses its implementation. A specific example is
provided in Sect. 4, presenting detailed calculations of CO line
emission and comparisons of the exact results with various vari-
ants of the escape probability. The paper concludes in Sect. 5
with suggested future directions of astrophysical radiative trans-
fer modeling.

2. The line transfer problem

Consider a molecular or atomic multi-level system, with levels
k = 1, 2, . . . , L ordered by energy. Determining the spectral line
emission from this system requires the coupled solution of the
level population equations and the radiative transfer equations

2 https://github.com/aasensio/molpop-cep

for all the lines connecting them. In the CEP approach, all ra-
diative quantities are expressed in terms of the level populations
through the formal solution of the radiative transfer equation.
As a result, the complete problem is formulated purely in terms
of a set of non-linear, self-consistent level population equations.
Here we summarize briefly the CEP solution formalism in the
slab geometry; for full details, see CEP06.

2.1. CEP formalism in a slab

Consider the plane-parallel geometry, so that physical properties
vary only perpendicular to the surface. The slab is divided into
z zones, sufficiently small that all properties can be considered
constant within each zone. The population per sub-state of level
k in zone i (=1, 2, . . . , z) is ni

k, where subscripts denote levels and
superscripts zones. Then the system overall population in zone i
is

ni =

L∑
k = 1

gkni
k (1)

where gk is the level degeneracy. Denote by `i the width of the
ith zone and by Φi(ν) the absorption profile in the zone, normal-
ized through

∫
Φi(ν)dν= 1 and assumed to have the same func-

tional form for all transitions. For a transition between lower
level l and upper level u with energy separation Eul = hνul and
Doppler width ∆νi

ul = (νul/c) ∆vi, introduce the dimensionless
frequency shift from line center x = (ν − νul)/∆νi

ul; the linewidth
∆vi may reflect either thermal motions or the dispersion of a
micro-turbulent velocity field. Then the zone optical thickness
at frequency x along a ray slanted at θ= cos−1 µ from normal is
τi,i−1

ul Φi(x)/µ where

τi,i−1
ul =

hc
4π∆vi guBul

(
ni

l − ni
u

)
`i, (2)

and Bul is the coefficient of stimulated emission for the transition.
Denote by Aul the corresponding spontaneous transition rate and
by Ci

ul the collision rate in zone i. Then the CEP level population
equations are

dni
k

dt
= −

k−1∑
l = 1

Akl pi
kln

i
k + Ci

kl

(
ni

k − ni
le
−Ekl/kT i)

(3)

+

L∑
u = k+1

gu

gk

[
Auk pi

ukni
u + Ci

uk

(
ni

u − ni
ke−Euk/kT i)]

,

where d/dt = 0 in steady state. Here

pi
ul = βi

ul +
1

τi,i−1
ul

z∑
j = 1
j,i

n j
u

ni
u

ni
l − ni

u

n j
l − n j

u

Mi j
ul (4)

where

Mi j
ul = −

1
2

(αi, j
ul − α

i−1, j
ul − α

i, j−1
ul + α

i−1, j−1
ul ) (5)

and where βi
ul = β(τi,i−1

ul ) and αi, j
ul = τ

i, j
ul β(τi, j

ul ), with the function β
defined from

β(τ) =
1
τ

∫ τ

0
dt

∫ ∞

−∞

Φ(x)dx
∫ 1

0
dµ e−tΦ(x)/µ. (6)

This function was first introduced by Capriotti (1965), who
also provided numerical approximations that we found useful
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Fig. 1. Left: optical depth variation of β (Eq. (6)), plotted in green for the Doppler profile; this is the fundamental CEP function describing
the average probability for escape from a uniform slab with optical depth τ across its full width (see text). Also plotted are escape probability
approximations for a uniform, static sphere (Eq. (13)) and LVG approximations for spherical (Eq. (14)) and plane-parallel (Eq. (15)) geometries. In
the LVG cases, the appropriate velocity gradient replaces the ratio ∆v/` in the definition of optical depth. Right: the ratio of each escape probability
approximation and the fundamental slab function.

for its accurate, efficient calculation. Plotted in Fig. 1 for the
Doppler profile, Φ(x) = π−1/2 exp(−x2), the function β contains
the essence of radiative transfer in the CEP approach. It repre-
sents the probability for photon escape from a slab of optical
thickness τ, averaged over the injected photon direction, fre-
quency and position in the slab. The first term in the expression
defining pi (Eq. (4)) is thus the average probability for photon es-
cape from zone i, reproducing one of the common variants of the
escape probability method in which the whole slab is treated as
a single zone (e.g., Krolik & McKee 1978). The subsequent sum
in Eq. (4) describes the effect on the level populations in zone i of
radiation produced in all other zones. Each term in the sum has
a simple interpretation in terms of the probability that photons
generated elsewhere in the slab traverse every other zone and get
absorbed in zone i, where their effect on the level populations is
similar to that of external radiation.

When external continuum radiation exists, each term in
the sums on the right-hand-side of Eq. (3) is supplemented by
−Bul J̄i

e(ni
u − ni

l), where J̄i
e is the profile- and angle-averaged in-

tensity of the external radiation in zone i. When the external ra-
diation corresponds to the emission from dust permeating the
source, J̄i

e is simply the angle-averaged intensity of the local dust
emission in the ith zone. When the external radiation originates
from outside the slab and has an isotropic distribution with in-
tensity Ie (=Je) in contact with the τ= 0 face,

J̄i
e = 1

2 Je
1

τi,i−1
ul

(αi,0
ul − α

i−1,0
ul ). (7)

When the slab is illuminated by parallel rays with intensity Ie
(=4πJe) entering at direction (µ0, φ0) to the τ= 0 face,

J̄i
e = Je

µ0

τi,i−1
ul

[
γ(τi

ul/µ0) − γ(τi−1
ul /µ0)

]
(8)

where

γ(τ) =

∫ ∞

−∞

[
1 − e−τΦ(x)

]
dx. (9)

Equation (3) provides a set of L − 1 independent equations
for the L unknown populations in each zone, ni

k. Equation (1) for
the overall density in the zone closes the system of equations.
It is convenient to switch to the scaled quantities ni

k/n
i as the

unknown variables and introduce the overall column density

N =

z∑
i = 1

ni`i. (10)

Neither densities nor physical dimensions need then be specified
since only N enters as an independent variable, with the zone
partition done in terms of N rather than `. Apart from external
radiation, the problem is fully specified by three input properties:
temperature and density of collision partners, which together de-
termine the collision terms, and N , which sets the scale for all
optical depths.

Solution of the set of Eqs. (1) and (3) yields the full solution of
the transfer problem for all lines by considering only level popu-
lations; the computed populations are self-consistent with the ra-
diation field in the slab, including the internally generated diffuse
radiation,eventhoughtheradiativetransferequationisnothandled
at all. Once the populations are found, radiative quantities can be
calculated in a straightforward manner from summations over the
zones. For example, the contribution of the u→ l transition to the
slab cooling rate per unit area, accounting for the emission from
both faces of the slab, is determined by its surface flux Fν,ul and can
be characterized by the line cooling coefficient

jul ≡
1

4π∆νul

∫
Fν,uldν, (11)

introduced for convenience when ∆ν is constant in the slab. Once
the level populations have been determined, j can be calculated
from

jul = 1
2

z∑
i = 1

(
αi,0

ul − α
i−1,0
ul − αz,i

ul + αz,i−1
ul

)
S i

ul (12)

where S i
ul is the line source function in the ith zone.
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2.2. Solution

Solution of the overall system of z · L non-linear algebraic equa-
tions (1) and (3) in all zones determines level populations that
are consistent with the radiation field generated everywhere in-
side the slab. In actual numerical calculations, the solution of
these equations provides the exact solution of the radiative trans-
fer problem for all levels when τi,i−1

ul → 0 for every i; the only ap-
proximation is the finite size of the discretization, i.e., the finite
number of zones. Therefore to solve the problem at any desired
precision, start with some initial number of zones and keep re-
fining the divisions until the relative change in level populations
decreases everywhere below the prescribed tolerance.

Because of the non-local nature of radiative transfer, the sys-
tem of equations is highly non-linear, making it necessary to
apply suitable iterative methods. We find the multidimensional
Newton method most suitable for solution of the non-linear CEP
equations. The efficiency of the Newton method is enhanced in
the CEP approach because the Jacobian matrix can be calculated
analytically, since the functional dependence on population is
known explicitly for all terms. Because the Newton method re-
quires inversion of the Jacobian matrix, the number of opera-
tions in this process increases as the third power of the matrix
dimension and can degrade the performance in cases of very
large numbers of levels and zones. Matrix inversion is avoided
in the Bi-CGSTAB iterative scheme designed by Van der Vorst
(1992) for solution of the linear system of the Newton method.
In this scheme, geared toward sparse Jacobian matrices, only
the non-zero matrix elements are stored and used. It is partic-
ularly suitable for the CEP technique because multi-level prob-
lems tend to produce sparse matrices, as each level generally
couples to only a limited number of other levels. MOLPOP-CEP
switches automatically to this method when the matrix size ex-
ceeds 103 × 103. Matrix inversion can also be avoided by adopt-
ing a Λ-iteration approach, instead of the Newton method, to
solving the set of non-linear level population equations. As de-
scribed in CEP06 (see Sect. 5.2 in that paper), the CEP method
is well suited for acceleration schemes and this approach can
be selected in MOLPOP-CEP when the Newton method slows
down.

Whatever the iteration technique, it is always advantageous
to start from a good initial guess. To this end we have imple-
mented two variants of a simple strategy. The first is to start from
the N → 0 limit with p = 1 everywhere, then the level popula-
tion equations are linear (see Eq. (3)). The solution of this set
of linear equations serves as the initial guess for a low column
density N in which all lines are optically thin. Then N is in-
creased in small steps, with the previous solution taken as the
initial guess for the increased column. The steps are repeated
until the desired column density is reached. The complementary
approach is to start from the N → ∞ limit, which yields the
Boltzmann distribution, use that as the initial guess for a very
large column in which all lines are optically thick and decrease
N toward the target value. Going either way, this incremental
strategy aids convergence and provides the solutions for many
intermediate cases as a byproduct.

3. The computer code MOLPOP-CEP

MOLPOP-CEP is based on a code originally developed by M.
Elitzur for solving the non-LTE level populations of an arbi-
trary species in the escape probability approximation. The CEP
method has been fully implemented into the original code, which
has been further modularized and ported to Fortran 90. For a

slab with variable physical conditions, MOLPOP-CEP can cal-
culate at a prescribed level of accuracy the line emission by any
atom or molecule for which atomic data exist. We outline the
program capabilities through a brief description of its input and
output.

3.1. Basic input

The input file has a free format, text and empty lines can be en-
tered arbitrarily. All lines that start with the ‘*’ sign are copied
to the output, and can be used to print out notes and comments.
This option can also be useful when the program fails for some
mysterious reason, enabling the user to compare its output with
an exact copy of the input line as it was read in before processing
by MOLPOP-CEP.

A single MOLPOP-CEP run can process an unlimited num-
ber of models. To accomplish this, the program always calls a
master input file (molpop.inp) containing a list of the individ-
ual cases that are launched sequentially. These individual models
can reside in separate directories, with each model output pro-
duced in the corresponding directory. The information in every
input file can be roughly divided into six groups, which we now
describe.

3.1.1. Radiative transfer method

MOLPOP-CEP provides a full CEP calculation in the slab ge-
ometry. Although the CEP formalism can handle any profile Φ,
currently only the Doppler profile is implemented. This is suffi-
cient for most cases.

Through the use of keywords, MOLPOP-CEP also offers the
choice of a standard escape probability approximation, included
because it provides handling of three special situations that have
not yet been implemented in CEP:
Line overlap. Under certain circumstances, linewidths become
comparable to the separation between different lines so that pho-
tons emitted in one transition can be absorbed in another. One
commonly affected molecule is OH (e.g., Guilloteau et al. 1981),
and this effect has been shown to explain the differences be-
tween the emission patterns of OH megamasers and their Galac-
tic counterparts (Lockett & Elitzur 2008). The effect is handled
with the method of Lockett & Elitzur (1989) and can be turned
on with a proper flag when MOLPOP-CEP is run in the es-
cape probability mode. Other molecules that have line overlap
effects, due to the presence of hyperfine structure, are HCN
(Cernicharo et al. 1984; González-Alfonso & Cernicharo 1993)
and N2H+ (Daniel et al. 2006). Another instance of line over-
lap appears when lines from different species coincide in wave-
length (e.g., Cernicharo et al. 1991; Cernicharo & Bujarrabal
1992; González-Alfonso et al. 1996). Such an effect, not cur-
rently included in MOLPOP-CEP, could be implemented with
relatively minor modifications.
Dust contribution. Molecular gas is mixed with dust, there-
fore line photons can be absorbed by the dust when it is
optically thick at the same wavelength. Such absorption and
the corresponding emission affect the line transfer (see, e.g.,
Elitzur 1992, pp. 202–203). These modifications are incorpo-
rated in the code and can be turned on by setting the appropriate
flag.
Maser saturation. Transitions with inverted population (nu > nl)
produce maser radiation, which can strongly affect the popu-
lation inversion when the maser becomes saturated. The satu-
ration effect, strongly dependent on the geometry because of
maser beaming, can be described with the escape probability
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approach (Elitzur 1990). In MOLPOP-CEP, saturation can be
either neglected (the unsaturated maser domain) or handled ap-
proximately with the escape probability in a rudimentary manner
that ignores maser beaming; a proper treatment of maser satu-
ration requires a more accurate handling of the beaming effect
(e.g., Daniel & Cernicharo 2013).

When run in the escape probability mode, MOLPOP-CEP
offers four variants of this approximation. The first is a uniform,
static slab, with the escape probability β given in Eq. (6). While
this is exactly the same as performing a CEP calculation with a
single zone, the special effects just described are only available
when the escape probability option is selected. Another variant
is the escape probability from a uniform, static sphere

βsphere(τ) =
1.5
τ

[
1 −

2
τ2 +

(
2
τ

+
2
τ2

)
e−τ

]
(13)

where τ is the optical depth across the diameter (van der Tak et al.
2007; note that this is the escape probability used in their on-line
RADEX code). The two final variants involve approximate solu-
tions for large velocity gradients (LVG). MOLPOP-CEP imple-
ments theescapeprobability for radialflowsinsphericalgeometry,
with the local velocity variation ε = d ln v/d ln r an input parame-
ter in the range 0< ε ≤ 1 (see, e.g., Elitzur 1992, pp. 39–41). In
the literature, the term “LVG” invariably refers to a Hubble-type
velocity field (v ∝ r; ε = 1), which yields

βLVG(τ) =
1 − e−τ

τ
(14)

Here the optical depth τ is given by Eq. (2), with the ratio ∆v/`
replaced by the radial velocity gradient dv/dr. MOLPOP-CEP
also handles velocity gradients in plane-parallel geometry, im-
plemented with the Scoville & Solomon (1974) expression

βLVG−PP(τ) =
1 − e−3τ

3τ
, (15)

where in this case the relevant velocity gradient is taken normal
to the plane.

Figure 1 plots the various escape probabilities as functions
of optical depth and compares them with the slab fundamen-
tal function. The differences from the slab case can be large.
Even for the LVG-PP case, that uses the same geometry, the ratio
βLVG−PP/βslab is significantly different from unity at all τ > 0. Fur-
thermore, the ratio keeps decreasing as τ is increasing, as do the
ratios for other escape probabilities. The reason is that at large τ,
the various escape probability approximations vary as 1/τ while
the proper escape probability for a slab decreases more slowly as
√

ln τ/τ. The plausibility arguments employed to derive the var-
ious escape probability approximations are too crude to capture
the logarithmic dependence of radiative transfer, rendering them
increasingly unreliable as τ increases.

3.1.2. The molecule/atom

An atomic or molecular species is defined by the energy
levels, statistical weights and A-coefficient tabulated in an or-
dinary text file. Each data file is identified by its name and di-
rectory, allowing for comparison of different sets of data for the
same species. The MOLPOP-CEP distribution package provides
a set of entries from the Leiden Atomic and Molecular Database
(LAMDA)3, and it also includes a tool that downloads and up-
dates the MOLPOP-CEP input files with the latest entries from

3 http://www.strw.leidenuniv.nl/~moldata

this database. As an example of multiple databases, we include
also sample data files from the Basecol4 database. Installing ad-
ditional species requires only expansion of the MOLPOP-CEP
atomic database; the code itself remains untouched.

3.1.3. Collisions

MOLPOP-CEP allows for collisions with up to ten collisional
partners. Tabulated collision rates are invoked through their file
names. Since collisional data are generally available only for a
small set of temperatures, MOLPOP-CEP offers a number of dif-
ferent interpolation methods. Because rate coefficients are not
always available, the code offers some simple analytic approx-
imations (e.g., hard sphere collisions) that can be invoked with
keywords.

3.1.4. Physical conditions

Uniform physical conditions (density, temperature and molec-
ular abundance) can be specified in the input file. This is the
only option when MOLPOP-CEP is run in the escape probabil-
ity mode. The full CEP mode allows also variable conditions in
the slab, in which case the spatial profiles of the physical param-
eters have to be tabulated in a separate file. The number of CEP
zones must then be at least as large as the number of entries in
these profiles.

3.1.5. External radiation

The cosmic blackbody radiation at a temperature of 2.7 K is al-
ways included. Additional radiation fields can also be specified,
and in the slab case it is possible to illuminate each side with dif-
ferent radiation. The external radiation can include an arbitrary
number of diluted blackbody components, each parameterized
in terms of its temperature and dilution factor; this option covers
all cases of illumination by nearby stars. One can also specify an
arbitrary number of radiation fields of the form (1− e−τλ )Bλ(Td),
where B is the Planck function and τλ optical depth with the
spectral variation of interstellar dust. This can be used as a crude
approximation for emission by dust, characterized by its temper-
ature Td and optical depth at visual, that is mixed with the gas.
Additionally, it is possible to specify a radiation field with an
arbitrary spectral shape through a tabulation in a file. Such tab-
ulations can be generated by some other radiative transfer code
such as, e.g., DUSTY (Ivezic et al. 1999).

3.1.6. Numerics

MOLPOP-CEP offers great control over all aspects of its opera-
tion, including various accuracy parameters. In the multi-zone
case, the solution technique can be chosen between Newton
method with analytical derivatives (both matrix inversion and
non-inversion) and an accelerated Λ-iteration. Convergence is
tested with

Rc(itr) = max
∣∣∣∣∣ n(itr) − n(itr − 1)

n(itr)

∣∣∣∣∣ (16)

where n(itr) refers to a vector containing populations for all the
levels in all zones at iteration number itr. Convergence is attained
when Rc(itr) decreases below an input-specified threshold. For
safety, a maximum number of iterations is also specified to stop

4 http://basecol.obspm.fr
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execution in case of a runaway calculation. An orderly comple-
tion of a run occurs when the column density reaches the maxi-
mum/minimum column specified in the input for the scheme that
iteratively increases/decreases the column density to improve the
convergence properties (Sect. 2.2). If the CEP method is used, it
is also possible to turn on the grid convergence. The problem is
solved in grids of increasing number of zones until the maximum
relative change between two consecutive grids decreases below
the user-defined threshold.

3.2. Output and its control

A single MOLPOP-CEP run generates prodigious amounts of
data, more than might be needed in any particular application of
the code. Various on/off switches provide control over the output.
The numerous options are described in detail both in the manual
and in the sample input files provided with the MOLPOP-CEP
package. As noted above, every input line that starts with * is
echoed in the output, making is easy to incorporate notes and
comments.

4. An illustrative example

As a demonstration of the capabilities of MOLPOP-CEP we
present here a detailed analysis of CO emission, calculating what
hasbecomeknownasitsSpectralLineEnergyDistribution(SLED;
Weiß et al. 2005; Papadopoulos et al. 2012). Several transitions of
the CO rotational ladder are observable in high-redshift galaxies
(e.g., Solomon & Vanden Bout 2005). Analysis of diagrams that
plot line emission vs. rotational quantum number, i.e., CO SLED,
offersoneofthemostdirectdiagnostictechniquestostudytheexci-
tationconditionsofthemoleculargas.InLTE,thelevelpopulations
dependonlyon the local temperatureT ,while the lineemissionde-
pendsadditionallyontheCOcolumndensityperunitbandwidth.In
that case, the shape of the CO SLED normalized to the J = 1 → 0
emission uniquely determines T , and the CO column follows di-
rectly from the magnitude of the measured flux. Outside of LTE,
the level population distribution is determined through the com-
petition between collisional and radiative interactions, bringing in
also the local H2 number density and necessitating a full radiative
transfer calculation.

To our knowledge, the CO SLED has only been computed in
the LVG escape probability approximation (Eq. (14)). Inherently,
such calculations cannot be exact even when the physical con-
ditions are uniform: The strength of radiative interactions varies
with distance to the surface for optically thick lines, therefore the
population distribution of transition levels does depend on posi-
tion in the source. This effect cannot be captured by the escape
probability approach, where the entire source is described by
a single excitation temperature. Furthermore, every line on the
CO rotational ladder has a different optical depth, therefore they
are affected differently by this variation. As a result, the reliabil-
ity of studies based on SLED analysis (e.g., Papadopoulos et al.
2012; da Cunha et al. 2013) cannot be assessed because the es-
cape probability method does not contain an error estimate so
it is impossible to know whether its deviations from the correct
results fall within the observational uncertainties. An example
where the conclusions based on escape probability analysis are
in serious error is the ratio of the two 3P oxygen cooling lines at
63 and 145 µm (see CEP06). As is always the case, it is impossi-
ble to know whether the escape probability results are meaning-
ful without comparison with an exact calculation.

Here we perform such a comparison for the CO SLED. For
a meaningful comparison, one must utilize the same computed

quantity. While the CEP method provides rigorous expressions
for all radiative quantities, the escape probability approximation
can be expected to produce useful results only in some average
sense.Thismakesthelinecoolingcoefficientj(Eq. (11))especially
useful. In the case of a slab, the CEP formalism yields Eq. (12).
Since a single-zone CEP calculation is equivalent to a slab escape
probability calculation, we can read off immediately the proper
escape probability expression by inserting z = 1. This yields the
familiar escape-probability result jul = hνulAulβulNu/4π∆νul,
where Nu is the column density of the upper level (e.g., Elitzur
1992, p 28).

We have conducted an extensive set of MOLPOP-CEP cal-
culations for a uniform slab, varying the temperatures from
50 K to 150 K and the molecular hydrogen density from
102 to 106 cm−3. The slab thickness, linewidth and CO abun-
dance, [CO] = n(CO)/n(H2), enter only through the combination
γ= [CO] `/∆v; the scale of all optical depths is controlled by
the product γn (Eq. (2)). Beginning with Weiß et al. (2005), CO
SLED calculations assumed a constant value for this parameter,
and for compatibility we adopt this assumption, presenting re-
sults for γ= 10−4 and 10−5 pc (km s−1)−1; these values bracket
the likely range in local and high-z galaxies (Weiß et al. 2007).
Collision rates are from Yang et al. (2010) with ortho-to-para H2
ratio of 3. The only external radiation is the cosmic microwave
background.

4.1. Exact solutions

Figures 2 and 3 show the resulting SLEDs in terms of 4π j,
the line cooling coefficient in units of flux density, for the
two studied values of γ. Density varies among panels in each
column, temperature between the columns. The exact solu-
tions are shown with solid blues lines; we have verified that
in all cases the CEP calculations with 20 zones are fully
converged—increasing further the number of zones does not
change the results. It is interesting to note how different the
actual SLEDs are from LTE predictions. If all models were
in LTE, the SLEDs would be identical in each column and
would differ only between the columns. The actual behavior
is just the opposite: CO SLEDs vary only moderately with
temperature in the displayed range but are strongly depen-
dent on density. Also, some combinations of T and n(H2) pro-
duce inversions in low J→J−1 transitions, as noted already
by Goldreich & Kwan (1974). These cases were ignored in the
figures.

Each panel also shows CEP calculations with 10 zones
(solid red lines). Doubling the number of zones from 10 to
20 hardly affects the results, in many cases the corresponding
plots are barely distinguishable from each other. In Fig. 2, where
γ= 10−4, the largest differences from the exact solution are at
n(H2) = 104 cm−3, declining towards both smaller and larger den-
sities. Even though CO is a multi-level system, these trends can
be understood from the solution of the two-levels problem: As
shown in CEP06, the largest deviations of the slab escape proba-
bility (i.e., single zone) calculation from the exact solution of the
two-levels problem occur around τn/ncrit ∼ 1, where ncrit is the
transition critical density. When γ= 10−4, this condition is ful-
filled around the SLED peak at about n(H2) = 104 cm−3, and that
is where the largest deviations occur from the exact solutions.
Since τ ∼ γn (Eq. (2)) and γ is held fixed, τn ∝ n2 along each
column, and the deviations from the exact solution are rapidly
diminished moving away from n(H2) = 104 cm−3 in either direc-
tion. In Fig. 3, where γ= 10−5, optical depths are smaller and the
10-zone results are practically identical to the exact ones in all
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Fig. 2. MOLPOP-CEP results for the CO SLEDs of uniform slabs, computed with different methods (the line cooling coefficient j is defined in
Eq. (11)). The y-axis scale of each panel is listed at its top-left corner. Columns have the same temperature, listed at the top, rows the same H2
density, marked in each leftmost panel. Optical depths are set from [CO] `/∆v = 10−4 pc (km s−1)−1, where [CO] is the CO abundance. Full CEP
calculations using grids with 10 and 20 zones are plotted with solid lines of different colors, as marked. When the 20-zones line (blue) is missing,
it is because it coincides with the 10-zones result (red), demonstrating CEP convergence in practically all cases. Dashed lines show results for
different escape probabilities (see Fig. 1). Note that the slab escape probability calculation is the same as single-zone CEP.
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Fig. 3. Same as Fig. 2, only [CO] `/∆v = 10−5 pc (km s−1)−1.

cases. Thus the CEP calculations with only 10 zones are practi-
cally convergent in all the presented solutions.

4.2. Escape probability calculations

Solutions obtained with various escape probability approxima-
tions are shown with dashed lines. In Fig. 2, virtually all escape

probability approximations reproduce rather well the exact so-
lutions in the top two rows, where optical depths are the small-
est. The sole outlier is the slab LVG approximation (LVG-PP;
Eq. (15)). Even though this approximation purports to describe
the very same slab geometry, it fails to reproduce its proper solu-
tion even at the smallest density, and its deviations from the exact
results keep increasing continuously with density (and optical
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depths). Evidently, the plausibility arguments that yielded this
approximation (Scoville & Solomon 1974) were off; the plane-
parallel LVG escape probability is inadequate for CO radiative
transfer calculations.

The slab escape probability approximation (Eq. (6)), equiv-
alent to a single-zone CEP calculation, is doing much better,
producing reasonably good agreement with the exact solution.
Similar to the 10-zone CEP calculation, and for the same rea-
sons (Sect. 4.1), the largest deviations from the exact solution
occur around n(H2) = 104 cm−3 when γ= 10−4 (Fig. 2). Yet even
in this case the 1-zone calculation is within ∼27% of the ex-
act solution, and its deviations decrease towards both lower and
higher densities. When γ= 10−5 (Fig. 3), the slab escape proba-
bility similarly provides an adequate approximation in all cases
except for the lowest density of 102 cm−3, where the discrepancy
is more than a factor of 2. Since γ is a factor of 10 lower than in
Fig. 2, these models with n(H2) = 102 cm−3 stand out as having
the lowest optical depths of all the cases presented here, imply-
ing that large discrepancies occur only at low optical depths. All
in all, the results show that the slab escape probability provides
an excellent approximation for CO SLEDs in all uniform slabs
with n(CO)`/∆v >∼ 10−3 cm−3 pc (km s−1)−1.

The figures also show the results of calculations with
the two escape probabilities for spherical geometry offered
by MOLPOP-CEP: a uniform, static sphere (Eq. (13)) and
LVG spherical expansion (Eq. (14)). Both versions provide
excellent approximations for the exact results at densities
n(H2)≤ 104 cm−3 when γ= 10−4. Beyond that, the deviations
from the exact solution increase with density (and optical
depths), with the SLED peaks occurring at the wrong J. These
large deviations cannot be attributed to the effect of a different
geometry on radiative transfer—the two escape probabilities are
successful at n(H2) = 104 cm−3, where optical depths are already
significant. Rather, these versions of β are afflicted by the same
weakness as the LVG-PP escape probability, which produces the
same SLED peaks: all three yield β ∼ 1/τ at large τ, failing to
reproduce the additional logarithmic variation, which becomes
important when τ is sufficiently larger. The various escape prob-
ability approximations are too crude to capture the logarithmic
dependence of radiative transfer, losing their reliability at large
optical depths. As seen in Fig. 3, all escape probabilities are off
at n(H2) = 102 cm−3 when γ= 10−5. Therefore, the common LVG
escape probability, as well as the static-sphere escape probabil-
ity, provides an adequate approximation for CO radiative trans-
fer only in the range 10−3 cm−3 pc (km s−1)−1 <∼ n(CO)`/∆v <∼
10−1 cm−3 pc (km s−1)−1; the utility range of the two spherical es-
cape probabilities is limited both at small and large CO column
densities.

5. Discussion

High-resolution facilities such as ALMA enable detailed obser-
vations that can only be understood through realistic 3D mod-
eling. However, on top of complexity and heavy computational
demands, proper definitions of 3D models involve a large num-
ber of uncertainties. While such models are clearly necessary
in many cases, the widespread success of the RADEX code (as
of this writing, van der Tak et al. 2007 has received more than
700 citations) shows there remains a large demand for efficient,
if simple, radiative transfer tools. MOLPOP-CEP offers such a
tool, providing an efficient, exact and verifiable solution of ra-
diative transfer.

While species such as N2H+, HCN, HCO+, CS or NH3 are
required for probing densities higher than about 104 cm−3, the

two most common indicators of physical conditions in molec-
ular clouds and PDRs are CO, whose SLED analysis is pre-
sented here, and OI cooling lines, studied earlier in CEP06.
In both cases LVG escape probability calculations can produce
erroneous results, therefore this widespread technique is an un-
reliable analysis tool. Although the escape probability is occa-
sionally adequate in some limited regions of parameter space, it
is impossible to discern any trends or establish guidelines that
would enable reliance on it alone for calculating line intensities
for multi-level systems. The only way to get the correct result
is to perform a correct calculation; there is no viable shortcut
through the escape probability approximation. MOLPOP-CEP
eliminates the guesswork, offering a public tool for exact solu-
tion of the line transfer problem. While the current version han-
dles only slabs, this geometry suffices for accurate modeling of
both shock- and photodissociation fronts, covering the needs of
many interstellar studies.
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