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Novel Function of Phosphoinositide 3-Kinase in
T Cell Ca21 Signaling
A PHOSPHATIDYLINOSITOL 3,4,5-TRISPHOSPHATE-MEDIATED Ca21 ENTRY MECHANISM*
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Kalwant S. Authi¶, and Ching-Shih Chen‡i

From the ‡Division of Pharmaceutical Sciences, College of Pharmacy and §Department of Microbiology and Immunology,
Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky 40536 and ¶Platelet Section, Thrombosis
Research Institute, Chelsea, London SW3 6LR, United Kingdom

This study presents evidence that phosphoinositide
(PI) 3-kinase is involved in T cell Ca21 signaling via a
phosphatidylinositol 3,4,5-trisphosphate PI(3,4,5)P3-
sensitive Ca21 entry pathway. First, exogenous
PI(3,4,5)P3 at concentrations close to its physiological
levels induces Ca21 influx in T cells, whereas PI(3,4)P2,
PI(4,5)P2, and PI(3)P have no effect on [Ca21]i. This Ca21

entry mechanism is cell type-specific as B cells and a
number of cell lines examined do not respond to
PI(3,4,5)P3 stimulation. Second, inhibition of PI 3-kinase
by wortmannin and by overexpression of the dominant
negative inhibitor Dp85 suppresses anti-CD3-induced
Ca21 response, which could be reversed by subsequent
exposure to PI(3,4,5)P3. Third, PI(3,4,5)P3 is capable of
stimulating Ca21 efflux from Ca21-loaded plasma mem-
brane vesicles prepared from Jurkat T cells, suggesting
that PI(3,4,5)P3 interacts with a Ca21 entry system di-
rectly or via a membrane-bound protein. Fourth, al-
though D-myo-inositol 1,3,4,5-tetrakisphosphate
(Ins(1,3,4,5)P4) mimics PI(3,4,5)P3 in many aspects of
biochemical functions such as membrane binding and
Ca21 transport, we raise evidence that Ins(1,3,4,5)P4
does not play a role in anti-CD3- or PI(3,4,5)P3-mediated
Ca21 entry. This PI(3,4,5)P3-stimulated Ca21 influx con-
notes physiological significance, considering the pivotal
role of PI 3-kinase in the regulation of T cell function.
Given that PI 3-kinase and phospholipase C-g form mul-
tifunctional complexes downstream of many receptor
signaling pathways, we hypothesize that PI(3,4,5)P3-in-
duced Ca21 entry acts concertedly with Ins(1,4,5)P3-in-
duced Ca21 release in initiating T cell Ca21 signaling. By
using a biotinylated analog of PI(3,4,5)P3 as the affinity
probe, we have detected several putative PI(3,4,5)P3-
binding proteins in T cell plasma membranes.

Engagement of the TCR1-CD3 complex stimulates an array

of signaling cascades that culminate in the activation and
proliferation of T lymphocytes. One of the early signaling
events is a biphasic increase in intracellular Ca21 levels
([Ca21]i), which is characterized by a high transient spike of
[Ca21]i followed by a long-lasting plateau phase (1, 2). It is
believed that the initial phase of Ca21 response is attributable
to the action of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) that
releases Ca21 from the endoplasmic reticulum (ER). Next, de-
pletion of the ER Ca21 store signals an influx of Ca21 across the
plasma membrane to sustain the wave of Ca21 signaling. Three
discrete mechanisms have been proposed for the sustained
inflow of Ca21 (2). First, Ins(1,4,5)P3 receptors are present on
the plasma membranes of T lymphocytes (3–5). Thus,
Ins(1,4,5)P3 may play a dual role of releasing Ca21 from ER
stores and stimulating Ca21 influx across plasma membranes
concurrently. Second, the capacitative Ca21 entry model (6)
dictates that the emptying of the intracellular Ca21 store is
coupled, either directly through conformational coupling or
indirectly via diffusable factors, to the Ca21 release-activated
Ca21 channel (7, 8). Third, a TCR-operated Ca21 entry
(TROCE) mechanism is activated in response to TCR-CD3
stimulation (2). However, this putative pathway is less well
characterized. It is known to be independent of the depletion of
intracellular Ca21 and inhibited by SKF96365, a Ca21 channel
blocker, and phorbol esters (9).

In this paper, we present data suggesting a new function of
phosphoinositide (PI) 3-kinase in T cell Ca21 regulation via a
PI(3,4,5)P3-sensitive Ca21 entry mechanism. In response to
TCR activation, PI 3-kinase and other signaling molecules such
as PLC-g1 are recruited to the plasma membrane to form
multifunctional complexes (10–12). Activation of PI 3-kinase
results in a transient accumulation of mM levels of PI(3,4,5)P3

and phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2), both ab-
sent in quiescent T cells (13). To date, a clear consensus on the
mode of action of these lipid messengers in regulating TCR
signaling has yet to emerge. Putative downstream effectors for
PI(3,4,5)P3 and PI(3,4)P2 in receptor-stimulated signaling in-
clude Ca21-independent PKC isozymes (d, e, h, z), PLC-g, Akt,
and so forth (14). The results of this study suggest that
PI(3,4,5)P3 mediates a novel Ca21 entry mechanism on plasma
membranes. Given the intimate relationship between PI 3-ki-
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Ins(1,3,4,5)P4, D-myo-inositol 1,3,4,5-tetrakisphosphate; ER, endoplas-
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nase and PLC-g in T cell activation, these data prompt a new
hypothesis that PI(3,4,5)P3-sensitive Ca21 entry plays a con-
certed role with Ins(1,4,5)P3-induced Ca21 release and capaci-
tative Ca21 entry in TCR-mediated Ca21 signaling.

MATERIALS AND METHODS

D-myo-Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), D-myo-inositol
1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4), 1-O-(1,2-di-O-palmitoyl-
sn-glycero-3-O-phosphoryl)-D-myo-inositol 3,4,5-trisphosphate
(PI(3,4,5)P3), 1-O-(1,2-di-O-octanoyl-sn-glycero-3-O-phosphoryl)-D-myo-
inositol 3,4,5-trisphosphate (di-C8-PI(3,4,5)P3), 1-O-(1,2-di-O-palmitoyl-
sn-glycero-3-O-phosphoryl)-D-myo-inositol 3,4-bisphosphate (PI(3,4)P2),
and 1-O-(1,2-di-O-palmitoyl-sn-glycero-3-O-phosphoryl)-D-myo-inositol
3-monophosphate PI(3)P were synthesized as previously reported (15,
16). The synthesis of the biotinylated PI(3,4,5)P3, (1)-1-O-(1-O-[8-(N-
biotinoylamino)-octanoyl]-2-O-octanoyl-sn-glycero-3-phosphoryl)-myo-
inositol 3,4,5-trisphosphate (Biotin-PIP3), is described elsewhere (17).
The identity and purity of all inositol phosphates and inositol lipids
were examined by 1H and 31P NMR and high resolution mass spectrom-
etry. Phorbol 12-myristate 13-acetate, wortmannin, SKF96365, indo-1
acetoxymethyl ester (AM), fura-2 AM were purchased from Calbiochem.
Nifedipine was obtained from ICN. Leupeptin and 4-(2-aminoethyl)ben-
zenesulfonyl fluoride were products from Sigma. [3H]Ins(1,3,4,5)P4 was
purchased from NEN Life Science Products. Anti-human CD3 mAb
(21-L5) was obtained from Santa Cruz. Anti-Thy1.2 mAb-FITC and
anti-B-220 mAb-FITC were products from Pharmingen.

Flow Cytometric Cell Sorting and Analysis of Intracellular Ca21—
Mouse spleen cells (107) were treated with 5 mg of anti-Thy1.2 mAb- or
anti-B-220 mAb-fluorescein (FITC) conjugates in 200 ml of culture me-
dium consisting of a 1:1 mixture of Iscove’s modified Dulbecco’s medium
and Ham’s F-12 nutrient mixtures, 10% fetal bovine serum, 2 mM

glutamine, 50 nM 2-mercaptoethanol, 20 units/ml bovine insulin, 20 nM

progesterone, 5 mg/ml transferrin, and 1 mg/ml gentamicin for 30 min on
ice. Anti-Thy1.2 and anti-B-220 are antibodies against the cell surface
markers of T and B cells, respectively. The suspension was washed
three times and resuspended in 500 ml of the same medium. For intra-
cellular Ca21 analysis, these cells were loaded with 1 mM indo-1 AM for
30 min at 37 °C, washed twice, and suspended in 1 ml of assay buffer
consisting of 4.3 mM Na2HPO4, 24.3 mM NaH2PO4, 4.3 mM K2HPO4, 113
mM NaCl, 5 mM glucose, pH 7.4. A FACStar plus cell sorter (Becton
Dickinson) was used for cell sorting and to monitor indo-1 fluorescence.
FITC-stained cells were analyzed by monitoring the emission at 530 nm
with excitation at 488 nm. Intracellular Ca21 was measured by com-
paring the ratio of indo-1 emission at 405 nm and 520 nm with excita-
tion at 350 nm as described previously (18).

Transient Transfection—The construct expressing hemagglutinin
(HA)-tagged Dp85 was a kind gift from Professor Alex Toker (Harvard
Medical School). Dp85 is a deletion mutant that lacks a region required
for tight association with p110 but is still able to bind to appropriate
phosphotyrosine targets. Thus, Dp85 can compete with native p85 for
binding to essential signaling proteins and behaves as a dominant
negative mutant (19). Jurkat T cells were grown to a density of 5 3 105

cells/ml in RPMI 1640 medium containing 10% fetal bovine serum.
Cells were harvested, washed with serum-free Opti-MEM (Life Tech-
nologies, Inc.), and suspended in the same medium (5 3 105 cells/ml).
Transfection was carried out according to a modification of the protocol
supplied by the manufacturer. Aliquots containing 0.5 mg, 1.5 mg, and 3
mg of the HAzDp85 expression vector or 3 mg of a control pCMV/blue
plasmid in 500 ml of Opti-MEM were incubated with 30–60 ml of the
Plus reagent from the LipofectAMINE Plus reagent kit at 25 °C for 15
min, and the mixture was added to 40 ml of the LipofectAMINE reagent
in 500 ml of Opti-MEM. The mixture was incubated at 25 °C for 15 min
and added to 5 ml of the cell suspension. After 5 h at 37 °C, the
transfection media were replaced with 5 ml of the RPMI 1640–10% fetal
bovine serum medium. The transfected cells were allowed to grow for 6
days with the medium changed every other day to express foreign DNA.
The collected cells were analyzed for anti-CD3-induced Ca21 response
by fluorescence spectrometry and for HAzDp85 expression by Western
blot using anti-HA antibodies.

Preparation of Jurkat T Cell Plasma Membranes—Two different
methods were employed for the plasma membrane preparations. For
the Ins(1,3,4,5)P4 receptor binding assay, the membrane fraction was
prepared according to a method described by Khan et al. (5). For the
Ca21 release assay, the plasma membrane was purified by a modifica-
tion of the method described by Neville (20). In brief, Jurkat T cells (4 3
108 cells) were washed with phosphate-buffered saline and suspended

in 5 ml of PM buffer consisting of 20 mM Hepes, pH 7.2, 110 mM KCl, 10
mM NaCl, 2 mM MgCl2, 5 mM KH2PO4, 1 mM dithiothreitol, 1 mM EGTA,
1 mM 4-(2-aminoethyl)benzenesulfonyl fluoride, and 20 mg/ml leupep-
tin. The cell suspension was homogenized in a Dounce homogenizer
using the loose pestle with 5 strokes up and down. The homogenate was
centrifuged at 1,500 3 g for 10 min. The pellet was suspended in 3.125
ml of PM buffer and mixed with 5.5 ml of 69% (w/w) sucrose to make a
final 44% (w/w) sucrose-membrane mixture. The mixture was overlaid
with 42.3% (w/w) sucrose, and the two-phase suspension was subjected
to centrifugation at 90,000 3 g for 2 h in a swinging bucket rotor. The
membrane material at the interface of the phases contained the great-
est enrichment in plasma membranes based on the activity of (Na1-
K1)-ATPase. This fraction was collected, suspended in 5 ml of 10 mM

Hepes, pH 7.5, containing 1 mM dithiothreitol, 1 mM 4-(2-aminoethyl-
)benzenesulfonyl fluoride, and 20 mg/ml leupeptin and centrifuged at
25,000 3 g for 10 min. The pellet was suspended in 1 ml of the same
buffer.

Displacement of [3H]Ins(1,3,4,5)P4 Binding to Jurkat T Cell Plasma
Membranes by di-C8-PI(3,4,5)P3 and Inositol Polyphosphates—Since
PI(3,4,5)P3 contains Ins(1,3,4,5)P4 as its head group, it is plausible that
this inositol phospholipid shares the binding site on the plasma mem-
brane with Ins(1,3,4,5)P4. To assess this possibility, we examined the
displacement of [3H]Ins(1,3,4,5)P4 binding by di-C8-PI(3,4,5)P3, a wa-
ter-soluble derivative, Ins(1,3,4,5)P4, and Ins(1,4,5)P3. The freshly pre-
pared membrane preparation (200 mg of protein) was incubated with 2
nM [3H]Ins(1,3,4,5)P4 (30 Ci/mmol) in 10 mM Hepes, pH 7.5, containing
100 mM KCl, 20 mM NaCl, and 1 mM EDTA in the presence of various
concentrations of the competitive ligand, with a final volume of 0.3 ml.
The mixture was incubated at 4 °C for 15 min, and the reaction was
terminated by centrifugation at 16,000 3 g for 5 min. The membrane-
bound radioactivity was analyzed by liquid scintillation spectrometry.
Nonspecific binding was measured in the presence of 30 mM

Ins(1,3,4,5)P4.
Fluorescence Spectrophotometric Measurement of Intracellular

Ca21—[Ca21]i was monitored by the change in the fluorescence inten-
sity of fura-2-loaded cells. Jurkat T cells (1 3 107 cells/ml), suspended in
the aforementioned assay buffer containing 0.5% bovine serum albumin
and 2 mM probenacid, were incubated with 10 mM fura-2 AM in the dark
for 1 h at 37 °C. The cells were then pelleted by centrifugation at
1,000 3 g for 10 min, washed with assay buffer twice, and resuspended
at approximately 8 3 105 cells/ml in the same buffer containing 1 mM

Ca21. The effect of anti-CD3 mAb or various inositol lipids on [Ca21]i

was examined by fura-2 fluorescence in a Hitachi F-2000 spectrofluo-
rimeter at 37 °C with excitation and emission wavelengths at 340 and
510 nm, respectively. The maximum fura-2 fluorescence intensity
(Fmax) in Jurkat cells was determined by adding A23187 (1 mM), and the
minimum fluorescence (Fmin) was determined following depletion of
external Ca21 by 5 mM EGTA. The [Ca21]i was calculated according to
the equation [Ca21]i 5 Kd (F 2 Fmin)/(Fmax 2 F), where Kd denotes the
apparent dissociation constant (5224 nM) of the fluorescence dye-Ca21

complex (21).
[3H]Inositol Phosphate Turnover Analysis—The examination of phos-

phoinositol turnover was carried out according to a modification of the
procedure reported by Sei et al. (9). In brief, Jurkat T cells were
incubated with myo-[2-3H]inositol (10 mCi/106 cells/ml) in inositol-free
RPMI medium supplemented with 10% fetal bovine serum. The cells
were then washed with 20 mM Hepes, pH 7.4, containing 285 mM NaCl,
11 mM KCl, 1.3 mM Na2HPO4, 1 mM KH2PO4, 8.3 mM NaHCO3, 1.6 mM

MgSO4, 2.2 mM MgCl2, 2.2 mM CaCl2, and 5.6 mM glucose. Aliquots
containing 1 3 106 cells were each resuspended in 0.3 ml of the afore-
mentioned assay buffer plus 1 mM CaCl2 and 100 mM EGTA and trans-
ferred to 1.5-ml microcentrifuge tubes. Each sample was incubated with
1.5 mg of anti-CD3 mAb or 20 mM PI(3,4,5)P3 for the indicated times and
quenched by adding 0.25 ml of 6% trichloroacetic acid. The tubes were
centrifuged for 2 min at 12,000 3 g. The supernatant (200 ml) was
analyzed by high performance liquid chromatography on a 5-mm Ad-
sorbosphere Sax column (4.6 3 200 mm) equilibrated with H2O. The
[3H]inositol phosphates were eluted with a linear gradient of 0–0.9 M

NH4H2PO4 in 60 min at a flow rate of 1 ml/min. Fractions were collected
every 1 ml, and their radioactivity was measured by liquid scintillation.
Synthetic [3H]Ins(1,3,4,5)P4, [3H]Ins(1,4,5)P3, [3H]Ins(4,5)P2, Ins(4)P
were used as standards. The respective retention times were 60, 48, 43,
and 31 min.

Detection of PI(3,4,5)P3-binding Proteins in T Cell Plasma Mem-
branes—T cell plasma membranes were treated with 5% 3-[(3-cholami-
dopropyl)dimethylammonio]-1-propanesulfonic acid for 1 h on ice and
centrifuged at 40,000 3 g for 1 h. The supernatant (100 mg of protein)
was incubated with 100 mM Biotin-PIP3 for 1 h, and 200 ml of strepta-
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vidin beads (Roche Molecular Biochemicals) were added. The mixture
was incubated for an additional hour and centrifuged at 12,000 3 g for
5 min. The beads were washed with 1 ml of each of the following
solutions in tandem: 10 mM Tris, pH 7.5, containing 5 mM EDTA and
150 mM NaCl, phosphate-buffered saline, and 2 M urea. After being
dialyzed against distilled water for 12 h, proteins eluted at 2 M urea
were analyzed by SDS-polyacrylamide gel electrophoresis and visual-
ized by silver staining.

RESULTS

PI(3,4,5)P3 Induced Intracellular Ca21 Increase in Mouse
Splenic T Cells but Not in B Cells—Previously, we reported
that treatment of washed platelets with exogenous PI(3,4,5)P3

induced Ca21 influx across plasma membranes, resulting in
immediate cell aggregation (22). This finding prompted us to
study PI(3,4,5)P3-induced Ca21 response in other cell types.
Using fluorescence-activated cell sorting, we examined the ef-
fect of PI(3,4,5)P3 on indo-1-loaded mouse spleen cells stained
with FITC-conjugates of anti-Thy1.2 or anti-B-220 mAb. As
shown, 10 mM PI(3,4,5)P3 induced a significant increase in
[Ca21]i in Thy1.2-positive mouse spleen cells as soon as 15 s
after stimulation. This PI(3,4,5)P3-stimulated Ca21 increase
was also confirmed in human peripheral T cells and Jurkat T
cells by fluorescence spectrophotometry. In contrast, [Ca21]i in
the B-220-positive cell population remained unaffected even in
the presence of 20 mM PI(3,4,5)P3 after a prolonged exposure up
to several minutes (Fig. 1).

In addition, a number of cell lines, including NIH3T3 fibro-
blast cells, PC-12 pheochromocytoma cells, Hep G2 hepatocar-
cinoma cells, LNCaP prostate adenocarcinoma cells, were ex-
amined. None of these cells showed appreciable Ca21 response
following PI(3,4,5)P3 stimulation (data not shown). This cell-
type specificity underscores a fundamental difference in the
role of PI 3-kinase in Ca21 regulation in different cells.

The direct introduction of micellar PI(3,4,5)P3 to intact cells
is also worth comment. Although how PI(3,4,5)P3 permeates
cell membranes remains unclear, published data from this and
other laboratories show that exogenous PI(3,4,5)P3 can readily
fuse with cell membranes and exert cellular and biochemical
responses in different cell types including platelets, NIH3T3
cells, and adipocytes (22–24).

Fig. 2A depicts that the effect of PI(3,4,5)P3 on [Ca21]i in
splenic T cells was dose-dependent, with a threshold of about 2
mM, and was saturable. As shown, treatment with the lipid
messenger in excess of 10 mM did not further enhance the
amplitude of Ca21 response.

In line with our previous finding in platelets (22), the induc-
tion of Ca21 response displayed stringent specificity for
PI(3,4,5)P3, underlying its second messenger role. Other phos-
phoinositides examined, including PI(3,4)P2, PI(4,5)P2, PI(3)P,
failed to exert an appreciable change in [Ca21]i at 20 mM (Fig.
2B). Moreover, fura-2 fluorimetry showed that the effect of
PI(3,4,5)P3 on [Ca21]i was also demonstrated in different sub-
types of T cells, including mouse thymocytes, Jurkat T cells,
and human peripheral T cells (data not shown). Taken to-
gether, these data indicate that exogenous PI(3,4,5)P3 stimu-
lated Ca21 influx in T cells regardless the stage of cell
development.

PI(3,4,5)P3 Does Not Release Ca21 from Internal Stores—
Several lines of evidence suggest that the PI(3,4,5)P3-induced
Ca21 response was attributable to Ca21 influx from the me-
dium. First, this Ca21 increase was completely abrogated by
pretreatment with EGTA (Fig. 3A). Second, although
PI(3,4,5)P3 has been reported to activate PLC-g via distinct
mechanisms (25), the PLC inhibitor U73122 did not exhibit
appreciable inhibition on PI(3,4,5)P3-elicited Ca21 response
(Fig. 3A). Furthermore, the PI(3,4,5)P3 concentration needed to
elicit Ca21 response (,10 mM) was an order of magnitude lower
than the threshold required for PLC-g activation. Thus,
PI(3,4,5)P3-induced Ca21 response was independent of
Ins(1,4,5)P3 formation. Third, PI(3,4,5)P3 had no effect on thap-
sigargin-sensitive Ca21 pools (Fig. 3B). Jurkat T cells were
treated with 10 mM PI(3,4,5)P3 in a Ca21-depleted milieu, fol-

FIG. 1. Representative fluorescence intensity distributions
from flow cytometry. Left, indo-1 fluorescence ratio of Thy1.2-posi-
tive mouse splenic cells at 0 and 15 s following stimulation with 10 mM

PI(3,4,5)P3. Right, indo-1 fluorescence ratio of B-220-positive mouse
splenic cells at 0 and 15 s following stimulation with 10 mM PI(3,4,5)P3.
The pattern remained unaltered even 5 min after PI(3,4,5)P3 treatment
(data not shown). The experimental procedures are described under
“Materials and Methods.”

FIG. 2. A, time course and dose dependence of the effect of PI(3,4,5)P3
on [Ca21]i in Thy1.2-positive mouse splenic cells. B, phosphoinositide
specificity in eliciting a [Ca21]i increase in T cells. Concentrations used:
PI(3,4,5)P3, 10 mM; PI(3,4)P2, 20 mM; PI(4,5)P2, 20 mM; PI(3)P, 20 mM.
[Ca21]i was analyzed by flow cytometry as described in Fig. 1.
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lowed by exposure to thapsigargin (1 mM). As shown,
PI(3,4,5)P3 exposure did not affect the extent of thapsigargin-
induced Ca21 response as compared with that without
PI(3,4,5)P3 pretreatment (Fig. 3B, inset). These results indicate
that PI(3,4,5)P3-induced Ca21 increase was attributable to
Ca21 inflow from the medium.

PI(3,4,5)P3 Did Not Perturb Membrane Permeability to
Ca21—Due to the extremely high charge density, it has been
speculated that PI(3,4,5)P3 might directly affect the properties
of cellular membranes. Therefore, one might raise a concern
that PI(3,4,5)P3 facilitated Ca21 translocation across plasma
membranes by acting like a detergent. To refute this possibil-
ity, we examined the effect of PI(3,4,5)P3 on the permeability of
liposomal vesicles to Ca21. Fura-2 loaded multilamellar vesi-
cles with a lipid composition similar to that of the plasma
membrane were exposed to PI(3,4,5)P3 vis à vis A23187 and
25-hydroxycholecalciferol, a sterol known to increase mem-
brane permeability to Ca21 (26). As shown in Fig. 4, A23187 (1
mM) caused a rapid and robust increase in fura-2 fluorescence,
whereas 25(OH)D3 (7 mM) induced an immediate but more
modest rise.

In contrast, 10 mM PI(3,4,5)P3 did not elicit any appreciable
effect on fura-2 fluorescence. Taken together with the afore-
mentioned cell-type and ligand specificity data, one could con-
clude that PI(3,4,5)P3 does not perturb membrane permeability
to Ca21.

Role of PI 3-Kinase in TCR-mediated Ca21 Signaling—The
activation of Ca21 influx by PI(3,4,5)P3 suggested a potential
link between PI 3-kinase and T cell Ca21 signaling. To test this
premise, a combination of pharmacological and molecular ap-
proaches was employed to characterize the role of PI 3-kinase
in anti-CD3-mediated Ca21 response.

We first examined the effect of wortmannin, a potent PI
3-kinase inhibitor, on anti-CD3 mAb-induced Ca21 response in
fura-2-loaded Jurkat T cells. Fig. 5 shows that ligation of the
TCR-CD3 complex by anti-CD3 mAb provoked a 4-fold increase
in cytosolic Ca21 (trace a). Subsequent exposure to exogenous
PI(3,4,5)P3 (10 mM) only augmented the Ca21 response to a
small extent. The anti-CD3-induced Ca21 response largely

stemmed from Ca21 mobilization across the plasma membrane
because deprivation of external Ca21 by EGTA inhibited 70% of
the Ca21 signal (Fig. 5A, inset).

Pretreatment with wortmannin (1 mM) attenuated the am-

FIG. 3. A, PI(3,4,5)P3-induced Ca21 response is due to external Ca21

influx and is independent of PLC activation. Fura-2-loaded Jurkat T
cells were treated with 10 mM PI(3,4,5)P3 alone (control) or they were
exposed to 10 mM U73122 or 5 mM EGTA for 10 min before 10 mM

PI(3,4,5)P3 stimulation. [Ca21]i was analyzed by fluorescence spectro-
photometry as described under “Materials and Methods.” B, PI(3,4,5)P3
does not affect thapsigargin (TG)-sensitive internal Ca21 pools. In the
presence of 5 mM EGTA, fura-2-loaded Jurkat T cells were treated with,
in tandem, 10 mM PI(3,4,5)P3 and 1 mM thapsigargin. Inset, in the
presence of 5 mM EGTA, fura-2-loaded Jurkat T cells were treated with
1 mM thapsigargin alone (inset). The arrow indicates the time of addition
for individual compounds. Representative traces from three observa-
tions are shown.

FIG. 4. PI(3,4,5)P3 does not perturb the permeability of lipid
vesicles to Ca21. Fura-2-loaded multilamellar lipid vesicles were pre-
pared as follows. A mixture of 50 mol % phosphatidylcholine, 30 mol %
cholesterol, 10 mol % phosphatidylserine, and 10 mol % phosphati-
dylethanolamine was dissolved in CHCl3 and dried under a stream of
N2 followed by vacuum overnight. The lipids were dispersed in 0.1 M

Hepes, pH 7.0, containing 10 mM fura-2, warmed up to 40 °C for 5 min,
and vortexed for 30 s. The suspension was centrifuged at 12,000 3 g for
10 min, and the liposomal pellet was suspended in assay buffer (de-
scribed under “Materials and Methods”) containing 1 mM CaCl2. The
fura-2-loaded liposomes were treated with 10 mM PI(3,4,5)P3, 7 mM

25-hydroxycholecalciferol (25(OH)D3), or 1 mM A23187, and the influx of
Ca21 was monitored by fura-2 fluorescence.

FIG. 5. A, PI(3,4,5)P3 rescues the inhibitory effect of wortmannin on
anti-CD3 mAb-induced Ca21 response in Jurkat T cells. Cells were
loaded with fura-2 and incubated with wortmannin (1 mM) (trace b) or
Me2SO vehicle (trace a) for 5 min before stimulation with 10 mg/ml
anti-CD3, followed by 10 mM PI(3,4,5)P3. The arrow indicates the time
of ani-CD3 or PI(3,4,5)P3 addition. The inset depicts the effect of EGTA
on anti-CD3 mAb-induced [Ca21]i response in Jurkat T cells (trace a,
control; trace b, 1 mM EGTA). Representative traces from three obser-
vations are shown. B, effect of wortmannin and U73122, alone or in
combination, on anti-CD3-induced Ca21 response in Jurkat T cells.
Cells were loaded with fura-2 and incubated with Me2SO vehicles
(Control), wortmannin (1 mM), U73122 (10 mM), or the combination of
wortmannin (1 mM) and U73122 (10 mM) for 10 min before adding
anti-CD3 mAb (10 mg/ml). The relative anti-CD3-induced Ca21 re-
sponse was calculated based on [Ca21]i at the plateau following indi-
vidual treatments vis à vis that of control.
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plitude of the anti-CD3-stimulated Ca21 influx by nearly 60%,
which, however, could be rescued by the subsequent exposure
to 10 mM PI(3,4,5)P3 (trace b). As shown, PI(3,4,5)P3 could
restore the [Ca21]i of wortmannin-treated cells to that of the
control. Moreover, the extent of Ca21 increase greatly exceeded
that elicited by PI(3,4,5)P3 in anti-CD3-stimulated cells (trace
a), suggesting that the reversal of wortmannin inhibition by
PI(3,4,5)P3 was not simply due to an additive effect.

We hypothesized that PI 3-kinase acted in concert with
PLC-g in initiating Ca21 signaling following TCR activation.
This premise is supported by the observation that when used
alone, wortmannin and the PLC inhibitor U73122 (10 mM)
exerted 57% and 50% inhibition, respectively, on anti-CD3-
induced Ca21 increase, whereas a combination of these two
inhibitors could virtually abolish the Ca21 response (Fig. 5B).

We also took an independent nonpharmacological approach
to confirm the above results, in which Jurkat T cells were
transiently transfected with a vector expressing HA epitope-
tagged Dp85. It is well documented that the deletion of the
binding motif for the catalytic p110 subunit in Dp85 confers PI
3-kinase dominant negative activity (19). Overexpression of
this dominant negative inhibitor in T cells has been shown to
down-regulate TCR-mediated interleukin-2 gene expression
(27), Erk2 (extracellular signal-regulated protein kinase) acti-
vation (28), and NFAT (nuclear factor of activated T cells)
activation (29).

Western analysis using anti-HA antibodies verified the ex-
pression of HAzDp85 in transfected Jurkat T cells (Fig. 6A). It is
noteworthy that the level of Dp85 expression displayed a direct
correlation with the amount of cDNA used in transfection.
Accordingly, transfected Jurkat T cells expressing varying lev-
els of Dp85 were tested for Ca21 entry in response to anti-CD3
stimulation. In line with the wortmannin data, Dp85 sup-
pressed anti-CD3-induced Ca21 response in a dose-dependent
manner, ranging from 5% to 40% in accordance with the level
of Dp85 expression (Fig. 6B, traces a–d). Since both wortman-
nin and Dp85 gave consistent results in inhibiting anti-CD3-
stimulated Ca21 response, these data strongly support the
involvement of PI 3-kinase in TCR-mediated Ca21 signaling.

Characterization of PI(3,4,5)P3-induced Ca21 Entry—To

characterize the underlying mechanism, we examined the ef-
fect of various pharmacological inhibitors on PI(3,4,5)P3-in-
duced Ca21 entry. These included nifedipine (a voltage-gated
Ca21 channel blocker; 20 mM), phorbol 12-myristate 13-acetate
(an inhibitor of TCR-mediated Ca21 entry (9); 10 mg/ml),
SKF96365 (a blocker of receptor-gated Ca21 channels and
store-operated Ca21 entry (30); 10 mM), and forskolin (an inhib-
itor of store-operated Ca21 entry (9); 50 mM). Among these
inhibitors, only SKF96365 could effectively inhibit PI(3,4,5)P3-
induced Ca21 inflow (% of [Ca21] control, 25 6 3%, n 5 3). The
extent of inhibition was similar to that observed in the effect of
SKF96365 on anti-CD3-induced Ca21 response (Fig. 7). Other
inhibitors examined failed to exert significant inhibition on
PI(3,4,5)P3-exerted Ca21 influx (% of [Ca21] control, 88–97%).

Structurally, PI(3,4,5)P3 contained Ins(1,3,4,5)P4 as the
head group, which raised a possibility that PI(3,4,5)P3 might
facilitate Ca21 entry by activating the putative Ins(1,4,5)P3 or
Ins(1,3,4,5)P4 receptor in plasma membranes. To test this the-
ory, we first examined the displacement of [3H]Ins(1,3,4,5)P4

binding to the plasma membrane of Jurkat T cells by di-C8-
PI(3,4,5)P3 vis à vis Ins(1,3,4,5)P4 and Ins(1,4,5)P3 (Fig. 8).

The di-C8 analog of PI(3,4,5)P3, a water-soluble derivative,
was used in lieu of micellar di-C16-PI(3,4,5)P3 because the
latter would be readily incorporated into membranes. The dis-
placement curves for di-C8-PI(3,4,5)P3 and Ins(1,3,4,5)P4 were
in agreement with those reported for platelet membranes (22).
The potencies in displacing [3H]Ins(1,3,4,5)P4 were in the order
of di-C8-PI(3,4,5)P3 . Ins(1,3,4,5)P4 .. Ins(1,4,5)P3, with IC50

values of 15, 24, and 650 nM, respectively.
Ca21-releasing Activity of PI(3,4,5)P3, Ins(1,3,4,5)P4, and

Ins(1,4,5)P3—The inside-out plasma membrane of Jurkat T
cells displayed ATP-dependent Ca21 sequestering activity.
Thus, the plasma membrane vesicles were loaded with Ca21 by
exposing to ATP in the presence of thapsigargin (1 mM) and
oligomycin (5 mg/ml). The Ca21-loaded membrane vesicle was
washed and analyzed for agonist-induced Ca21 release that
was reflective of Ca21 influx in intact cells. Fura-2 fluorescence
indicates that addition of di-C8-PI(3,4,5)P3 (25 mM),
Ins(1,3,4,5)P4 (10 mM), or Ins(1,4,5)P3 (10 mM) caused immedi-
ate Ca21 release followed by slow re-uptake, which was, pre-
sumably, due to small quantities of residual ATP in the milieu
(Fig. 9). The potencies of these three agonists in eliciting Ca21

release were in line with the respective binding affinity shown
in Fig. 8. Other inositol metabolites examined, including
PI(3,4)P2, PI(4,5)P2, Ins(1,3,4)P3, and Ins(3,4,5)P3 could not
induce such Ca21 efflux. This finding argued against the pos-

FIG. 6. Overexpression of Dp85 inhibits anti-CD3-induced Ca21

response. A, expression levels of HAzDp85 in Jurkat T cells that had
been infected with a control pCMV/blue plasmid or with increasing
amounts of the HAzDp85-expressing plasmid (a, 0 mg; b, 0.5 mg; c, 1.5
mg; d, 3 mg) for 6 days. The Western analysis was carried out using
antibodies against the HA tag. The loading amounts of individual
samples were calibrated in reference to actin as internal standard (data
not shown). B, Dp85 inhibits anti-CD3-induced Ca21 response in a
dose-dependent manner. Cells expressing different levels of Dp85 (a–d,
as indicated above) were collected at the 6th day post-transfection and
tested for anti-CD3-stimulated Ca21 response.

FIG. 7. Effect of SKF96365 on PI(3,4,5)P3-induced Ca21 re-
sponse (A) and on anti-CD3-induced Ca21 response (B). Fura-2-
loaded Jurkat T cells were treated with 10 mM SKF96365, followed by 10
mM PI(3,4,5)P3 or 10 mg/ml anti-CD3. The arrow indicates the time of
agonist stimulation.
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sibility that the Ca21 response arose from the metabolite(s) of
PI(3,4,5)P3 or Ins(1,3,4,5)P4.

Moreover, the di-C8-PI(3,4,5)P3- or Ins(1,3,4,5)P4-stimulated
Ca21 release was inhibited by SKF96365, which is consistent
with that observed with the whole cell (Fig. 7). Also noteworthy
is that Ca21 release induced by PI(3,4,5)P3 or Ins(1,3,4,5)P4

was not augmented by subsequent challenge with either ago-
nist or Ins(1,4,5)P3 (indicated by the arrows). The lack of Ca21

response was likely due to desensitization or saturation of the
binding site instead of the depletion of Ca21 since the addition
of 1 mM A23187 following PI(3,4,5)P3 treatment triggered the
release of large amounts of Ca21 (Fig. 9, inset).

In contrast, for Ins(1,4,5)P3-stimulated Ca21 release, subse-
quent stimulation with PI(3,4,5)P3 or Ins(1,3,4,5)P4 caused
additional release of Ca21. Taken together with the binding
data, this observation suggests that the putative PI(3,4,5)P3 or
Ins(1,3,4,5)P4 receptor might be discrete from the Ins(1,4,5)P3

receptor. Furthermore, the presence of Ins(1,4,5)P3 receptors in
T cell plasma membranes was confirmed by using two specific
antibodies against the type I and type III receptors. Western
blot analysis showed significantly more labeling of the plasma
membrane with the type III receptor antibodies than with type
I receptor antibodies (Fig. 10). It is noteworthy that this
Ins(1,4,5)P3-receptor subtype distribution is similar to that
reported for platelet plasma membranes (31).

Ins(1,3,4,5)P4 Is Not a Physiological Relevant Ligand in anti-
CD3- or PI(3,4,5)P3-induced Ca21 Entry—The cross-reactivity
between Ins(1,3,4,5)P4 and PI(3,4,5)P3 raised a crucial issue,
i.e. which one was the “physiologically relevant” ligand respon-
sible for anti-CD3- and PI(3,4,5)P3-induced Ca21 influx? To
address this issue, we examined the kinetics of Ins(1,4,5)P3 and
Ins(1,3,4,5)P4 production in response to the stimulation by
anti-CD3 and PI(3,4,5)P3 and the effect of the Ins(1,4,5)P3

3-kinase inhibitor adriamycin on these Ca21 responses.
In cells, the 3-phosphorylation of Ins(1,4,5)P3 by

Ins(1,4,5)P3-specific 3-kinase accounts for a major pathway for
the formation of Ins(1,3,4,5)P4 (32). Thus, stimulated
Ins(1,4,5)P3 accumulation leads to Ins(1,3,4,5)P4 increase in T
cells (2). Fig. 11A (left panel) demonstrates that treatment of
myo-[2-3H]inositol-labeled Jurkat T cells with anti-CD3 mAb
stimulated a transient increase in [3H]Ins(1,4,5)P3, accompa-

nied by a concurrent rise in [3H]Ins(1,3,4,5)P4 over a 10-min
period. Considering the time course of anti-CD3-induced Ca21

response (Fig. 11B, control), the production of
[3H]Ins(1,3,4,5)P4 slightly lagged behind the rise in [Ca21]i in
response to anti-CD3. The Ins(1,3,4,5)P4 level peaked about 5
min post-treatment vis à vis 90 s for [Ca21]i to reach maximum.
Moreover, pretreatment of the cells with the Ins(1,4,5)P3 3-ki-
nase inhibitor adriamycin (10 mM) (33) completely blocked
Ins(1,3,4,5)P4 formation (Fig. 11B) without interfering with
Ins(1,4,5)P3 production. It is noteworthy that the inhibition of
Ins(1,3,4,5)P4 formation by adriamycin treatment had no ap-
preciable effect on anti-CD3-induced Ca21 response (Fig. 11B).
These data reaffirmed the earlier conclusion by Guse and co-
workers (33) that Ins(1,3,4,5)P4 does not play a major stimula-

FIG. 8. Inhibition of specific [3H]Ins(1,3,4,5)P4 binding to
plasma membranes of Jurkat T cells by increasing concentra-
tions of PI(3,4,5)P3, Ins(1,3,4,5)P4, and Ins(1,4,5)P3. The displace-
ment assay was carried out as described under “Materials and Meth-
ods.” Nonspecific binding was measured in the presence of 30 mM

Ins(1,3,4,5)P4. Each data point represents the mean of three
determinations.

FIG. 9. Ca21 release from plasma membrane vesicles. Jurkat T
cell plasma membranes were prepared as described under “Material
and Methods” and were treated with 30 mM Mg21-ATP, 1 mM CaCl2, 1
mM thapsigargin, and 2.5 mg/ml oligomycin on ice for 10 min. The
membrane vesicles were washed with 10 mM Hepes, pH 7.0, four times
and suspended in the same buffer. The assay medium consisted of
0.2–0.25 mg of membrane proteins and 1 mM fura-2 in 2 ml of 10 mM

Hepes, pH 7.0, and treated with 25 mM di-C8-PI(3,4,5)P3 (A), 10 mM

Ins(1,3,4,5)P4 (B), or 10 mM Ins(1,4,5)P3 (C), as indicated by the arrow.
Until the external Ca21 concentration returned to a near base level, the
membrane vesicles were stimulated with 10 mM Ins(1,3,4,5)P4 or 25 mM

di-C8-PI(3,4,5)P3 as indicated. The inset indicates the sequential addi-
tions of 25 mM PI(3,4,5)P3 and 1 mM A23187.

FIG. 10. Western blot analysis of Ins(1,4,5)P3 receptor
(IP3R)isotypes in T cell plasma membranes.
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tory role in anti-CD3-mediated Ca21 signaling.
Given the observation that PI(3,4,5)P3 stimulates PLC-g in

vitro (25), we also investigated the time course of
[3H]Ins(1,4,5)P3 and [3H]Ins(1,3,4,5)P4 production in response
to PI(3,4,5)P3 stimulation. As PI(3,4,5)P3 is not susceptible to
hydrolysis by any known PLC (34), it does not contribute to
Ins(1,3,4,5)P4 formation in vivo. As shown in Fig. 12A, exoge-
nous PI(3,4,5)P3 did not display any stimulatory effect on the
production of either inositol phosphates. In fact, PI(3,4,5)P3

suppressed the formation of [3H]Ins(1,4,5)P3, and
[3H]Ins(1,3,4,5)P4 was virtually undetectable throughout the
course of examination. In addition, adriamycin had no appre-
ciable effect on PI(3,4,5)P3-elicited Ca21 response (Fig. 12B).
These results indicate that Ins(1,3,4,5)P4 is not physiologically
relevant in either anti-CD3- or PI(3,4,5)P3-induced Ca21

response.
Affinity Probing of PI(3,4,5)P3-binding Proteins in T Cell

Plasma Membranes—We further prepared a biotinylated ana-
log of PI(3,4,5)P3, Biotin-PIP3 (Fig. 13A), to confirm the exist-
ence of PI(3,4,5)P3-binding proteins in T cell plasma mem-
branes. This affinity ligand has been successfully applied to the
purification of PI(3,4,5)P3-binding proteins even with a Kd as
high as 100 mM (17). The plasma membrane fraction was
treated with 5% CHAPS, and the solubilized proteins were
incubated with Biotin-PIP3, followed by streptavidin beads.
The adsorbed beads were spun down by centrifugation, washed
with 150 mM NaCl, and eluted with 2 M urea. SDS-polyacryl-
amide gel electrophoresis analysis of the eluted proteins, visu-
alized by silver staining, indicates two major protein bands
with apparent molecular masses of 67 kDa and 59 kDa and
several minor bands at and below 42 kDa (Fig. 13B). No protein
band with a molecular mass greater than 70 kDa was detected.

DISCUSSION

This study presents both pharmacological and molecular
genetic evidence that PI 3-kinase plays an obligatory role in
TCR-mediated Ca21 signaling via a PI(3,4,5)P3-sensitive Ca21

influx system on plasma membranes. This unique Ca21 entry
mechanism connotes physiological significance considering the
pivotal role of PI 3-kinase in the regulation of T cell function
and may serve as a potential target for the modulation of T cell
immunity.

Substantial evidence indicates that triggering of T cells
through the TCR-CD3 complex leads to membrane recruitment

FIG. 11. Evidence that Ins(1,3,4,5)P4 is not a physiologically
relevant ligand during the course of anti-CD3- induced Ca21

response. A, kinetics of [3H]Ins(1,4,5)P3 and [3H]Ins(1,3,4,5)P4 produc-
tion in [2-3H]inositol-labeled Jurkat T cells in response to 10 mg/ml
anti-CD3 mAb (left panel). In the right panel, [2-3H]inositol-labeled
Jurkat T cells were exposed to 10 mM adriamycin for 2 h before anti-CD3
stimulation. As shown, the Ins(1,4,5)P3 3-kinase inhibitor completely
suppressed the formation of [3H]Ins(1,3,4,5)P4 without affecting
Ins(1,4,5)P3 production. B, effect of adriamycin (10 mM) on anti-CD3-
induced Ca21 increase in Jurkat T cells. No appreciable difference was
noted in the Ca21 response between adriamycin-treated and adriamy-
cin-untreated cells, even though the inhibitor completely blocked
Ins(1,3,4,5)P4 synthesis.

FIG. 12. Evidence that Ins(1,3,4,5)P4 is not involved in
PI(3,4,5)P3-induced Ca21 response. A, kinetics of [3H]Ins(1,4,5)P3
and [3H]Ins(1,3,4,5)P4 production in [2-3H]inositol-labeled Jurkat T
cells in response to 10 mM PI(3,4,5)P3. As shown, [3H]Ins(1,3,4,5)P4 was
undetectable throughout the course of the examination. B, effect of
adriamycin (10 mM) on PI(3,4,5)P3-induced Ca21 response in Jurkat T
cells.

FIG. 13. Affinity identification of PI(3,4,5)P3-binding proteins
in T cell plasma membranes. A, structure of the affinity ligand
Biotin-PIP3. B, SDS-polyacrylamide gel electrophoresis analysis of sol-
ubilized proteins from T cell plasma membranes and affinity-purified
proteins, visualized by silver staining. The arrows indicated the two
major protein bands with apparent masses of 67 kDa and 59 kDa.
Molecular mass markers: myosin H-chain (228 kDa), phosphorylase b
(102 kDa), bovine serum albumin (71 kDa), and ovalbumin (46 kDa).
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of signaling proteins such as PI 3-kinase, PLC-g1, and Grb2 to
form multi-molecular signaling complexes (12). These proteins
initiate distinct signaling cascades that culminate in cell pro-
liferation and induction of effector functions like interleukin-2
secretion. However, in contrast to PLC-g1 and Grb2, the pre-
cise role of PI 3-kinase in TCR signaling remains elusive.
Recent evidence suggests that PI 3-kinase is required for Erk2
activation (28), NFAT activation (29), and interleukin-2 pro-
duction (27) in stimulated T cells. The present data demon-
strate that PI(3,4,5)P3, the primary output signal of PI 3-ki-
nase, can generate Ca21 stimuli that synergize with
Ins(1,4,5)P3-induced Ca21 release and capacitative Ca21 entry
for sustaining elevated [Ca21]i, a driving force underlying
many cellular responses.

This Ca21 entry mechanism is directly activated by
PI(3,4,5)P3. In cells, PI(3,4,5)P3 is subjected to rapid turnover
by three discrete pathways: dephosphorylation by multiple
5-phosphatases to form PI(3,4)P2 (35–37), dephosphorylation
by PTEN to form PI(4,5)P2 (38), and hydrolysis by phosphoi-
nositide-specific phospholipases to form Ins(3,4,5)P3 (39). None
of these metabolites was capable of eliciting Ca21 response in
the whole cells or plasma membrane vesicles.

This PI(3,4,5)P3-induced Ca21 influx displays several
unique features. First, among various cell types examined to
date, only T cells and platelets display Ca21 influx in re-
sponse to PI(3,4,5)P3 treatment, whereas mouse splenic B
cells, NIH3T3 cells, PC-12 cells, Hep G2 cells, and LNCaP
cells were insensitive to PI(3,4,5)P3. In the literature, based
on studies with PI 3-kinase inhibitors, PI 3-kinase has also
been implicated in antigen-stimulated Ca21 influx in mast
cells (40, 41). Taken together, these data suggest that
PI(3,4,5)P3-sensitive Ca21 entry pathway exists in specific
hematopoietic cells. This cell-type specificity warrants fur-
ther investigation because it underlines a distinct function of
PI 3-kinase in Ca21 regulation.

Second, this Ca21 entry does not require depletion of internal
Ca21 pools, indicating that the PI(3,4,5)P3-activated Ca21 in-
flow is independent of signals from empty stores (capacitative
Ca21 entry). In addition, PI(3,4,5)P3 does not disturb
Ins(1,4,5)P3-sensitive or thapsigargin-sensitive Ca21 pools.

Third, Ins(1,3,4,5)P4 mimics PI(3,4,5)P3 in many aspects of
biochemical functions such as membrane binding and Ca21

release from plasma membrane vesicles. This in vitro cross-
reactivity, due to the largely shared structural motifs, raises an
interesting question with regard to which species representing
the physiologically relevant ligand responsible for the Ca21

entry. To date, published data on the role of Ins(1,3,4,5)P4 in
Ca21 mobilization across plasma membranes remain inconclu-
sive. Although several reports implicated Ins(1,3,4,5)P4 in me-
diating Ca21 entry in certain types of electrically nonexcitable
cells such as sea urchin eggs (42), Xenopus oocytes (43), and
platelets (44), other studies indicated that Ins(1,3,4,5)P4 did
not have a significant effect, if any, on potentiating Ca21 influx
in other cells like mouse lacrimal acinar cells (45) and Jurkat T
cells (33). The data obtained in this study support the latter
view that Ins(1,3,4,5)P4 does not play a role in anti-CD3- or
PI(3,4,5)P3-elicited Ca21 influx.

Meanwhile, several research groups have isolated an
Ins(1,3,4,5)P4-binding protein, GAP1IP4BP, from platelet
plasma membranes (44, 46–48). GAP1IP4BP was found to be a
GTPase-activating protein with a molecular mass of 104 kDa.
It remains enigmatic how this GAP protein is involved in Ca21

entry. However, our affinity ligand study indicates that al-
though many PI(3,4,5)P3-binding proteins existed in the T cell
plasma membrane, none of these proteins displayed a molecu-
lar mass in line with that of GAP1IP4BP. This finding dampened

the possibility that GAP1IP4BP was involved in the PI(3,4,5)P3-
induced Ca21 influx in Jurkat T cells.

In summary, although the mechanism by which PI(3,4,5)P3

mediates Ca21 entry remains unclear, this PI(3,4,5)P3-sensi-
tive pathway not only provides molecular insights into T cell
Ca21 regulation but also represents a potential target for the
modulation of cell function in T lymphocytes. Unlike inositol
phosphates, PI(3,4,5)P3 is membrane-permanent. Thus, it is
plausible to design PI(3,4,5)P3 analogues as antagonists of the
putative receptors for therapeutic uses. However, outstanding
questions that remain are as follows. What is its relationship
with the Ins(1,4,5)P3 receptor on plasma membranes? Is there
cross-communication with other Ca21 channels (such as Ca21

release-activated Ca21 channels) on plasma membranes to reg-
ulate Ca21 entry? To address these questions, sequence anal-
ysis of the putative PI(3,4,5)P3-binding proteins is currently
under way in this laboratory.
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