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Frequency-dependent photothermal measurement of thermal diffusivity for
opaque and non-opaque materials: Application to crystals of TIPS-pentacene

Maryam Shahi and J. W. Brill
Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506-0055, USA

(Received 27 July 2018; accepted 23 September 2018; published online 17 October 2018)

We propose the use of a frequency-dependent photothermal measurement as a complement to light-
flash, i.e., time-dependent, measurements to determine the through-plane thermal diffusivity of
small, thin samples, e.g., semiconducting polymers and small organic molecule crystals. The analy-
sis is extended from its previous use with some opaque conducting polymers to materials with finite
absorption coefficients, such as crystals of 6,13-bis(triisopropylsilylethynyl)pentacene. Taking into
account the finite absorption coefficients of the latter gives a value of diffusivity, D≈ 0.10 mm2/s,
much smaller than previously estimated and more consistent with its expected value. We also briefly
discuss the effects of coating samples for the measurement to improve their optical
properties. Published by AIP Publishing. https://doi.org/10.1063/1.5050189

I. INTRODUCTION

As the variety of applications of organic semiconductors
grows, it becomes increasingly important to determine values
of their room temperature thermal conductivities. Because it
is often difficult to apply contacts to the sample with suffi-
ciently small interface thermal resistances, photothermal
techniques, in which the sample is heated with light and the
resulting thermal radiation is used to determine the tempera-
ture change, are popular.1,2 In particular, commercial light-
flash apparatuses, in which an intense light pulse is used and
the time dependence of the thermal radiation is measured, are
common; the characteristic time of the sample is proportional
to d2/D, where d is the thickness of the sample and the
thermal diffusivity D = κ/cρ, where κ is the (through-plane)
thermal conductivity, c the specific heat, and ρ the mass
density.1,3 However, because of the time resolution of the
instrument (typically >0.1 ms), it is difficult to measure
samples thinner than d∼ 100 μm, often a problem for new
semiconducting polymers. In addition, light-flash techniques
typically require samples with areas >20 mm2, difficult to
achieve for single crystals of small molecule semiconductors
such as “TIPS-pentacene” [6,13-bis(triisopropylsilylethynyl)
pentacene].4,5

We recently reported a simplified photothermal tech-
nique,6 derived from Ref. 2, in which the frequency depen-
dence of the thermal radiation, when the incident light is
chopped at a variable frequency, is measured. Working in
the frequency domain allows the use of much less intense
(and less expensive) light sources and also allows one to
measure samples at least one order of magnitude thinner
and smaller area than light-flash techniques. In this paper,
we include a more detailed description of the technique
and analysis, which we also extend for use on materials
which are not optically opaque. As an example, we
show how our previous analysis for TIPS-pentacene,6 which
ignored the semi-transparency of the material in the infrared,
led to a huge over-estimate of its interlayer thermal
diffusivity.

II. EXPERIMENTAL TECHNIQUE AND ANALYSIS FOR
OPAQUE SAMPLES

The inset in Fig. 1(b) shows a schematic of the appara-
tus.6 The sample is glued to an aperture which is placed inside
the dewar of a liquid nitrogen cooled mercury-cadmium-
telluride (MCT) photoconducting detector (with net sensitivity
∼0.4 V/μW), <1 cm away from the detector. For a light
source, we used either a mechanically chopped (f = 0.5 Hz–
2 kHz) quartz-halogen lamp, whose light was fed to the
window of the dewar through a fiber-optic bundle, or a
447 nm, 1W diode laser, whose light could either be mechani-
cally or electronically (maximum f = 500 Hz) chopped; when
using the laser, a ground glass diffusing plate is placed in
front of the sample. When needed to attenuate incident light
(that either passes through or around the sample), a 10 μm
long-wave pass filter (LPF) is placed between the sample and
detector. (Although the MCT responsivity peaks for mid-
infrared wavelengths, it does have a finite response for near IR
and even visible wavelengths.) Silvered glass tubes are placed
between the filter and detector and between the window and
sample to maximize the detected and incident light intensities.
The oscillating detector signal at the chopping frequency is
measured with a 2-phase lock-in amplifier and normalized to
the frequency dependence of the detector preamplifier. Our
setup has a simplifying advantage over those of other reported
ac-photothermal setups2,7 in that the sample is in the same
vacuum as the detector, eliminating the need for focusing
mirrors and a window between the sample and detector.

If the sample is opaque to both the incident and thermal
radiation, so that light is absorbed wholly on the front
surface and the emitted light comes only from the back
surface, the expected complex signal Vac is given by2

fVac ¼ f(VX þ iVY) ¼ �A χ=Ψ, (1a)

Ψ ¼ (1þ i)[sinh χ cos χþ i (cosh χ sinχ)], (1b)

χ ; (4:743 f=f2)
1=2 ; d (πf=D)1=2: (1c)
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The characteristic frequency f2≡ 1/(2πτ2), where τ2 is the
conventional ac-calorimetric “internal” thermal time constant
describing heat flow through the sample.8 The magnitude A
is proportional to the absorbed light intensity and inversely
proportional to the sample’s heat capacity;2 the negative sign
reflects the fact that we set the lock-in so that the phase of
the incident light = 180°. This choice of phase conveniently
makes the in-phase (VX) and quadrature (VY) signals positive
at the lowest measured frequencies, as shown by the solid
curves in the inset to Fig. 1(a), in which the in-phase and
quadrature signals (times f) are plotted as functions of f/f2.
The assumptions made in deriving Eq. (1) are that the lateral
dimensions of the sample are much larger than the thickness
and that the sample is uniformly illuminated so that heat flow
in the sample can be treated as one-dimensional2,8 and that
the chopping frequency f >> 1/(2πτ1), where τ1 is the “exter-
nal” thermal time constant with which the sample comes to
equilibrium with its surroundings,8 typically greater than 1 s
for our samples. | Vac |∝ 1/f for f1 << f << f2 and goes to zero
more quickly as f exceeds f2. (A typical indication of
non-one dimensional heat flow due to finite thickness would
be a reduction in fVY at low frequencies,9 while an indication
of small τ1 would be a low-frequency reduction in fVX.

8)
In Ref. 6, we reported on the measurements of opaque

films of “NFC:PEDOT,” cellulose nanofibrils coated with the
conducting polymer blend, PEDOT:PSS [poly(3,4-ethylene-
dioxythiophene):poly(styrene-sulfonate)], measured with the
quartz-halogen light source. For those measurements, we did
not yet have the long-wave pass filter; since any incident
light which leaks through or around the samples adds a (neg-
ative, with our sign convention) term proportional to fre-
quency to fVX, we only reported on the quadrature signal.
Figure 1(a) shows the measured frequency dependence of
both the in-phase and quadrature signals from one of these
samples with d = 62 μm and area <10 mm2, with fits to
Eq. (1) with a negative “leaked light” signal added to the
in-phase component. The fit has four parameters, the magni-
tude of the thermal signal, the magnitude of the leaked light,

f2, and a small phase error (typically a few degrees) in setting
the phase of the lock-in, since the phase shift depends on the
alignment of the optical system. Also shown are results on a
second sample, of the same thickness, measured with the
long-wave pass filter in-place and zero leaked-light assumed
in the fit. The values of f2 (119 Hz) for both samples are
equal within their uncertainties (2%) and correspond to a dif-
fusivity value D = 0.30 mm2/s.

The utility of the technique for very thin samples is
shown in Fig. 1(b), for which we show the experimental
results for a d = (10 ± 1) μm free-standing (also opaque)
sample of PEDOT:PSS,10 again measured with the quartz-
halogen light source and assuming zero leaked-light. The
fitted value of f2 = (2.61 ± 0.09) kHz, corresponding to
D = (0.17 ± 0.04) mm2/s, where most of the uncertainty
comes from that of the thickness. While our present apparatus
is limited to frequencies below 2 kHz, this is not an intrinsic
limitation, and even thinner samples could be measured, e.g.,
with a higher frequency electronically chopped laser.

A common practice in light flash analysis is to coat a
sample which has “non-ideal” optical properties with opaque
films, such as colloidal graphite.11 Non-ideal properties
include having low emissivity or low absorbance for thermal
radiation and/or high reflectance or low absorbance for inci-
dent light. We will discuss the extension of our technique for
low-absorbance samples in Sec. III. To investigate the effect
of coating a sample with high reflectivity and low emissivity,
we investigated a copper sample with d = (353 ± 8) μm using
the diode laser, with the results shown in Fig. 2. For the
uncoated sample, the data were well fit with f2 = (1277 ± 16)
Hz, corresponding to D = (105 ± 6) mm2/s, consistent with
published results (111 mm2/s).11,12 Evaporating a ∼100 nm
PbS film on the front (incident) surface to decrease the reflec-
tivity and increase the magnitude of the absorbed light
approximately doubled the signal but did not change f2, as
shown in the figure. We then removed the PbS and deposited
a graphite film (between 5 and 10 μm) on the front surface.
As shown in the figure, the characteristic frequency decreased

FIG. 1. Frequency dependence of the
frequency times in-phase (VX) and
quadrature (VY) signals for (a) 62 μm
thick samples of NFC:PEDOT and (b)
10 μm thick sample of PEDOT:PSS
(from Ref. 10). The data have been
normalized to the quadrature signal at
low-frequency. Solid curves show fits
of the data to Eq. (1). For NFC:
PEDOT, results both with and without
a long-wave pass filter are shown. Inset
(a) shows the theoretical frequency
dependence [Eq. (1)]. Inset (b) shows a
schematic of the apparatus. M: MCT
detector, L = LPF, S: sample, V:
vacuum space, and W: glass vacuum
window. Reprinted from Ref. 6.
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by almost an order magnitude. We also investigated covering
the back surface with a similar graphite film (removing the
film from the front surface); in this case, as shown in the
figure, the signal increased by an order of magnitude and the
response time was faster than for the front film, as expected,
but still a few times slower than that of the uncoated sample.

These results illustrate that common graphite films can
have time constants on the order of a millisecond and are
generally not practical for the thin organic samples for
which our technique is designed. (Light-flash techniques
generally apply films for samples with characteristic times
greater than several ms.11) Appropriate evaporated films
can be chosen to enhance the signal, but for front-surface
films, care should be taken that the film is uniform and
sticks well to the surface.

III. ANALYSIS FOR NON-OPAQUE SAMPLES:
TIPS-PENTACENE

TIPS-pentacene4,5 is a model small molecule organic
semiconductor with a layered, brick-work structure; some of
the recent work on the electronic and structural properties of
this material are listed in Ref. 13. In Ref. 6, we reported on
photothermal measurements of its through-plane thermal dif-
fusivity. In that work, we used the incandescent quartz-
halogen light source, concentrated on the quadrature signal
because there was a large amount of leaked light (which we
assumed leaked around the irregularly shaped crystals), but
assumed that the sample was sufficiently opaque. This
assumption led us to a very large value of the interlayer dif-
fusivity and thermal conductivity, values an order of magni-
tude larger than generally found in organic materials, which

we tentatively associated with interactions between rotations
of the TIPS side-groups which extend between the layers of
the crystal. However, subsequent measurements on sublimed
thin films of TIPS-pentacene deposited on substrates14 gave a
value for the interlayer thermal conductivity two orders of
magnitude smaller than the value we calculated for crystals
in Ref. 6. While the thin films are not fully ordered, it
seemed unlikely that the disorder could account for the two
order of magnitude reduction in thermal conductivity, further
motivating us to reconsider our previous analysis.

While fairly opaque for visible light, TIPS-pn is in fact
quite transmitting throughout the infrared, as shown in
Fig. 3. If the absorption length for incoming light (1/α) is
not much smaller than the sample thickness, then incident
light will also heat the center of the sample, speeding up the
thermal response on the back surface. Similarly, if the
absorption length of thermal radiation (1/β) is not much less
than d, radiation from the interior can reach the detector, so
heat does not need to diffuse through the whole thickness to
contribute to the signal.

Consequently, Eq. (1a) must be generalized2

fVac ¼ �A
ð
dz β e�β(d�z) χ [� e�αz χ=(αd)

þ ϑ(z)=Ψ =� ½1–2i (χ=αd)2], (2a)

ϑ(z) ; {[cosh χdzcos χdz þ i sinh χdzsin χdz]

� e�αd[coshχz cosχz þ i sinhχz sinχz]}, (2b)

where

χz ; (z=d)χ and χdz ; χ� χz: (2c)

(Equation (2) neglects the effects of internal reflections in the
sample.) The integral can be evaluated explicitly and the

FIG. 2. Frequency dependence of signals of a 353 μm thick copper sample,
with and without coatings, as indicated. The curves show fits to Eq. (1), with
the fitted values of f2 indicated. The (non-normalized) absolute values of the
detector signals are given to show the effects of coating. (Note that the verti-
cal scales for the in-phase and quadrature responses are different and that the
signal for the sample with graphite on back is 10 times larger than shown.)

FIG. 3. Infrared transmission spectra of a d = 190 μm thick crystal of
TIPS-pentacene and a d = 127 μm sample of Teflon. The vertical arrows
show the approximate peak energies for black body emission of the room
temperature (RT) sample and the quartz-halogen lamp, and the horizontal
arrows show the cutoff energy of the long-wave pass filter and an average
value for the transmission of Teflon, as described in the text. The dashed
lines qualitatively indicate how two values of absorption coefficient can be
used to approximate the absorption spectrum of thermal radiation.
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resulting expression is unchanged if α and β are exchanged.
(α, β exchange equivalence was previously found for the
ratio of signals when light illuminated the front and back sur-
faces.2) The calculated in-phase and quadrature responses
for a few choices of αd and βd are shown in Fig. 4 (with α
= β =∞ result of Eq. (1) also shown for comparison). Note
that the fitted value of f2, e.g., corresponding to the peak in
fVX and the step in fVY, is not very sensitive to the values of
α and β, varying only by ∼25% between large and small
values of the absorption coefficients.

Most importantly, for small αd and/or βd, fVY does not
go to zero for frequencies above f2, but there is a shelf in the
quadrature response extending to high frequencies. In Ref. 6,
we mistook this shelf for the low frequency (f < f2) quadra-
ture response that occurs for large absorption coefficients
(see Fig. 1). There was also a very large in-phase signal from
leaked light, so that we could not fit the in-phase signal, and,
consequently, a small error in setting the lock-in phase
created a drop in quadrature signal at a high frequency,
which we mistook for f2. [Similarly, in earlier work, we mea-
sured the oscillating temperature (Tac) on the back surface
with a thermocouple glued to the surface. The shelf in fTac
caused by small αd was mistaken for the response expected
for f < f2, and in that case the signal dropped at high fre-
quency because of the thermal resistance of the glue holding
the thermometer.5]

If either α or β is infinite (in practice, larger than 10/d),
Eq. (2) can be simplified to2

fVac¼ f(VXþ iVY) ¼�A χ[(BXþ CXþ DX)

þ i(BYþ CYþ DY)]=[1 þ 4(χ=γd)4],

(3a)

BX ¼ {� [1 þ 2(χ=γd)2] sinhχ cosχ

þ [1–2(χ=γd)2]cosh χ sinχ}=jΨj2, (3b)

BY ¼ {[1–2(χ=γd)2] sinhχ cosχ

þ [1 þ 2(χ=γd)2] coshχ sinχ}=jΨ2,
(3c)

CX ¼ exp(� γd) {[1þ 2(χ=γd)2] coshχ sinhχ

� [1–2(χ=γd)2] sinχ cosχ}=jΨj2,
(3d)

CY ¼ �exp(�γd){[1–2(χ=γd)2]coshχ sinhχ

þ [1þ 2(χ=γd)2] sinχ cosχ}=jΨj2,
(3e)

DX ¼ (χ=γd) exp(� γd), DY ¼ 2(χ=γd)3exp(� γd): (3f)

Here, γ is whichever of α or β is finite. [Also, if both α and β
are finite, one can approximately replace them, for frequen-
cies within a few times f2, with a single effective γ, and use
Eq. (3).]

We have checked these expressions by measuring the
photothermal response of a 127 μm thick piece of Teflon
(polytetrafluoroethylene), the infrared transmission spectrum
of which is shown in Fig. 3. Measurements were made with
the diode laser and with a ∼200 nm (visibly opaque) PbS
film evaporated on the front surface to increase the absorp-
tion (making αd >> 10 and γ≈β). The data and fits are shown
in Fig. 4. For the fit, we assumed two values of β; the result-
ing fit had f2 = (12 ± 1) Hz, with fitted β values of ∞ (i.e.,
>> 10, corresponding to the opaque regions of the spectrum
for ν < 1000 cm−1) and ≈0.8, i.e., corresponding to the
average transmission value shown by the horizontal arrow in
Fig. 3. From the value of f2, we find D = (0.13 ± 0.01) mm2/s,
consistent with the measured value near room temperature.15

We have remeasured the photothermal response for crys-
tals of TIPS-pentacene with thicknesses ranging from 50 μm
to 270 μm. Crystals with areas >3 mm2 generally do not have
uniform thicknesses but may be wedge shaped or have
stepped surfaces, and the resulting uncertainties in the

FIG. 4. Theoretical frequency depen-
dences of the in-phase (fVX) and quad-
rature (fVY) thermal emission signals
from a sample for different choices of
absorption coefficients α and β, calcu-
lated from Eq. (2). Each curve is nor-
malized to the quadrature signal at low
frequency. Also shown is the experi-
mental results for the Teflon sample,
with f2 = 12.3 Hz, and the fit to the
Teflon data (with two values of β, as
discussed in the text).
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sample thicknesses for the crystals we measured range from
±10 to ±20 μm. To avoid having a large range of incident
absorption coefficients that would result from the incandes-
cent source, we used the blue laser as the light source
(making α >> β). The data and their fits to Eq. (3) are shown
in Fig. 5. We included two values of γ (≈β, corresponding to
the dashed lines shown in Fig. 4) as fitting parameters. [The
fits tend to overestimate the in-phase response at low frequen-
cies, presumably because the frequency is beginning to
approach 1/(2πτ1).]

The variation of the fitted values of τ2 = 1/(2πf2) with d2

is shown in Fig. 6. From the slope, we find that the interlayer
(c axis) diffusivity D = (0.10 ± 0.01) mm2/s. This value is

two orders of magnitude smaller than estimated in Ref. 6
and corresponds to an interlayer thermal conductivity
κc = 0.17W/m,·K≈κab/10, where κab is the thermal conduc-
tivity in the in-plane, needle-axis, high electronic mobility
direction.5 This value of κc is 65% larger than the value
found for sublimed films,14 and the difference can be readily
associated with disorder in the films: From the analysis of
Ref. 14, if one assumes that the heat is carried by acoustic
phonons only, the value of κc implies a phonon mean-free
path of 3–4c (the interlayer spacing) in the crystal and ∼2c in
the film. The value of κc in the crystal is also about twice
than that found for crystals of rubrene,9 another layered small
molecule organic semiconductor.

IV. CONCLUSION

The ac-photothermal technique described above repre-
sents a relatively inexpensive technique to measure the
through-plane thermal diffusivities of thin samples, e.g.,
d < 0.5 mm, using readily available equipment. It is espe-
cially useful for new materials for which available samples
are either too thin (e.g., conducting polymers) or have too
small a surface area (e.g., organic crystals) for measurements
with a light-flash apparatus. The analysis is very straight-
forward for opaque materials [i.e., Eq. (1)] but can be
extended to non-opaque samples using Eq. (3). In either
case, we have typically found excellent agreement with the
theoretical equations for frequencies within a decade of the
characteristic frequency, f2.

The use of Eqs. (2) and (3) requires some care. If the
sample is not opaque (e.g., αd < 10) to incident radiation,
one should use a monochromatic light source and not
an incandescent light source, for which there will presumably
be a wide distribution of α-values. This is typically not a
problem for the emitted thermal radiation, since β can gener-
ally be approximated by one or a few “average” values (as
we did for TIPS-pentacene), especially if an LPF is used to
limit the spectral range of detected radiation. In this case, one
can use Eq. (3) in the calculation (and, if needed, fitting to
an effective value of γ that combines the effects of finite α
and β). Uniform evaporated or sputtered films can also be
used to improve the optical properties of samples, but one
should be sure that they stick well and have small interface
thermal resistances.

While our present experiments were limited to frequen-
cies below 2 kHz, this is not a fundamental limitation. Use of
a higher frequency chopper or high bandwidth modulated
laser would allow measurements of thinner samples. For
example, measurements at 200 kHz would allow measure-
ments of PEDOT:PSS samples as thin as 1 μm.

As an example of a non-opaque material, we restudied
crystals of TIPS-pentacene, for crystals varying in thickness
from 50 to 270 μm. The resulting value of the interlayer
thermal diffusivity, D≈0.10 mm2/s, is much smaller than that
we previously reported when we overlooked the effects
of finite absorption length6 and is consistent with thin film
measurements14 and values expected for a layered organic
crystal; for example, this value is much smaller than the
needle-axis diffusivity,5 as expected.

FIG. 5. In-phase and quadrature responses for TIPS-pentacene crystals of
different thicknesses, as indicated; the solid curves show the fits to Eq. (3)
with two values of γ. The signals were (approximately) normalized to the
quadrature response of each at low frequency. Subsequent in-phase graphs
are vertically offset by 0.05 and the dashed lines show the zero-lines for each
graph. (Note that the in-phase and quadrature responses are plotted with dif-
ferent vertical scales.)

FIG. 6. The thickness dependence of fitted values of τ2 = 1/(2πf2) for crys-
tals of TIPS-pentacene. The slope a = (1040 ± 100) ms/mm2 determines the
interlayer diffusivity D = 0.105/a = (0.10 ± 0.01) mm2/s.
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Note added in proof. After this paper was submitted, we
learned of a commercial apparatus by Bethel, Ltd. (https://
hrd-thermal.jp/en/res/pdf/unique/apparatus/apparatus-ta.pdf )
that uses a related frequency dependent photothermal mea-
surement for opaque or coated samples.
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