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Novel evidence that the mannan-binding lectin pathway of
complement activation plays a pivotal role in triggering
mobilization of hematopoietic stem/progenitor cells by
activation of both the complement and coagulation cascades
Leukemia (2017) 31, 262–265; doi:10.1038/leu.2016.278

Hematopoietic stem progenitor cells (HSPCs) circulate at
low levels in peripheral blood (PB) and follow changes in
circadian rhythm.1 Evidence has accumulated that their egress
from stem cell niches is significantly augmented in a complement
cascade (ComC)-dependent manner.2 The number of HSPCs
circulating in PB increases during infection, tissue or organ injuries
and particularly after administration of pharmacological drugs,
such as granulocyte-colony stimulating factor (G-CSF) or the
CXCR4 receptor antagonist AMD3100, and pharmacological
mobilization is a means to obtaining HSPCs for hematopoietic
transplants.3 However, the mobilization process is still not well
understood.
The ComC is activated by the classical, mannan-binding lectin

(MBL) and alternative pathways.4 Activation of the ComC and
generation of cleavage fragments of the fifth component of the
ComC (C5), such as C5a, desArgC5a and C5b, by classical C5
convertase initiates events that are required for egress of HSPCs
from bone marrow (BM) into PB.5 Recent results indicate that the
coagulation cascade (CoaC) is activated in parallel with activation
of the ComC during the mobilization process and plays a
supportive role, because thrombin has ‘C5-like’ convertase
activity.6 Although a requirement for ComC activation and the
pivotal roles of the distal part of complement activation and the
generation of C5 cleavage fragments in executing mobilization
have been previously demonstrated,5 mice with mutations in

components that initiate the classical pathway (C1q–/– mice) do
not show impairment in mobilization of HSPCs.7

Therefore, we became interested in the potential role of the
MBL pathway of ComC activation in triggering the mobilization of
HSPCs after administration of G-CSF or AMD3100. MBL is a soluble
pattern-recognition receptor circulating in PB that is involved in
the first line of defense of innate immunity and, as mentioned
above, activates the ComC by engaging the so-called MBL-
associated serine proteases (MASP-1 and -2). The MBL–MASP
pathway also activates the CoaC, which, as also recently
demonstrated, plays a role in the mobilization process.6,8 On the
basis of these findings, we hypothesized that the MBL-initiated
ComC and CoaC activation pathways are involved in triggering
mobilization of HSPCs and that MBL–MASP deficiency results in
poor mobilization efficiency.
In our experiments, we employed 2-month-old, MBL-deficient

(MBL–/–) and MASP-1-deficient (MASP-1–/–) mice as well as their
normal wild type (WT) littermates, and animals were mobilized
with G-CSF (100 μg/kg daily for 3 or 6 days) or AMD3100 (5 mg/
kg). Following mobilization, we measured (i) the total number of
white blood cells, (ii) the number of circulating clonogenic colony-
forming unit granulocyte/macrophage (CFU-GM) progenitors and
(iii) the number of Sca-1+c-kit+lineage– (SKL) cells in PB. In parallel,
we evaluated activation of the ComC after administration of G-CSF
or AMD3100 in experimental animals by employing C5a ELISA.
Furthermore, to address the role of the CoaC in MBL–MASP-1-
and MBL–MASP-2-induced mobilization, MBL–/– mice were treated
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in some of the experiments with an inhibitor of the CoaC
(refludan).
We found that MBL-KO (Figure 1a) and MASP-1-KO (Figure 1b)

mice are poor mobilizers in response to mobilizing agents
compared with WT littermates. Moreover, to exclude defects in
hematopoiesis in animals employed in this study that could be
responsible for the observed mobilization defects, we found that
under steady-state conditions MBL-deficient (Supplementary
Figure 1) and MASP-1-deficient (Supplementary Figure 2) mice
have normal PB cell counts (Panels A), red blood cell parameters
(Panels B), numbers of bone marrow-residing HSPCs (Panels C)
and numbers of clonogenic progenitors (Panels D) compared with
WT animals.
Since, as mentioned above, the MBL–MASP-1 complex has been

reported to also activate the CoaC, and thrombin provides C5-like
convertase activity to activate/cleave C5,6 which is pivotal for
egress of HSPCs from BM into PB, we performed mobilization
studies in MBL–/– and WT mice in the presence or absence of the
CoaC inhibitor refludan. Figure 1c shows that, as expected, control
mice exposed to refludan have impaired G-CSF-induced mobiliza-
tion. However, administration of refludan did not augment the
mobilization defect in MBL–/– mice, which indicates that the

MBL–MASP pathway is most likely the crucial pathway in
activation of the CoaC following G-CSF administration.
Overall, the salient observation of our work is that MBL and its

downstream effector MASP-1 play a pivotal role in activation of
the ComC during G-CSF- and AMD3100-mediated mobilization of
HSPCs. For example, Figure 2a demonstrates defective generation
of C5a in MBL–/– and MASP-1–/– animals, which explains our
previous results in which mice that have a defect in activation of
the classical pathway (C1q–/–) mobilize HSPCs into PB normally,7

because distal ComC pathway and C5 in C1q–/– mice is properly
activated in MBM–MASP-dependent manner. We also demon-
strate that, in addition to the ComC, the CoaC, which augments
mobilization of HSPCs by providing thrombin-mediated C5-like
convertase activity is also activated during mobilization in an
MBL–MASP-dependent manner. On the basis of these and other
published results, we propose the mechanistic scenario depicted
in Figure 2b, which portrays mobilization of HSPCs in response to
pharmacological agents (G-CSF or AMD3100).
Specifically, the first step during mobilization is activation of Gr-

1+ granulocytes and monocytes in the BM microenvironment,
which are a source of several proteolytic9,10 and, as recently
demonstrated, also lipolytic enzymes11 that together cooperate to
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Figure 1. MBL–/– and MASP-1–/– mice are poor mobilizers in response to G-CSF and AMD3100. (a) MNCs were isolated from WT and MBL–/–

mice after a short G-CSF mobilization (3 days, upper panel), long G-CSF mobilization (6 days, middle panel) or AMD3100 mobilization (lower
panel). Mice were killed 6 h after the last G-CSF injection or 1 h after AMD3100 mobilization, and the numbers of white blood cells, SKL (Sca-1+

c-kit+ Lin−) cells, HSCs (Sca-1+ CD45+ Lin−) and CFU-GM clonogenic progenitors in PB were evaluated. Results from two separate experiments
with five mice per group are pooled together, *P⩽ 0.05. (b) WT and MASP-1–/– mice were mobilized for 3 days with G-CSF (short mobilization,
upper panel), 6 days with G-CSF (long mobilization, middle panel) or AMD3100 mobilization (lower panel). Mice were killed 6 h after the last
G-CSF or 1 h after AMD3100 injection, the mononuclear cells were isolated, and the numbers of white blood cells, SKL (Sca-1+ c-kit+ Lin−) cells,
HSCs (Sca-1+ CD45+ Lin−) and CFU-GM clonogenic progenitors in PB were evaluated. Results from two separate experiments with five mice per
group are pooled together, *P⩽ 0.05. (c) The effect of inhibition of the CoaC on mobilization of HSPCs in MBL-deficient mice. MBL–/– mice were
mobilized for 3 days with G-CSF (100 μg/kg per day, s.c.) in the presence or absence of refludan (administered daily for 3 days, 5 mg/kg, i.p.).
The numbers of circulating leukocytes, SKL cells, HSCs and CFU-GM progenitors per microliter of PB are shown. Control mice were injected
with PBS. Results from two separate experiments with five mice per group are pooled together, *P⩽ 0.05.
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impair retention signals for HSPCs in BM niches as well as disturb
membrane lipid raft integrity. The fact that experiments with
mouse mutants for several proteolytic enzymes that are released
from activated Gr-1+ cells in BM have failed so far to identify a
crucial enzyme3,12 suggests redundancy among enzymes and the
involvement of several other proteases, such as cathepsin K.
Moreover, it is widely acknowledged that proteolytic enzymes
digest proteins involved in retention of HSPCs in BM niches, such
as stromal-derived factor 1 and vascular cell adhesion molecule 1,
expressed in the BM microenvironment, with the corresponding
receptors, chemokine receptor CXCR4 and α4β1 integrin receptor
VLA-4, expressed on the surface of HSPCs.3,14 Interestingly, in
contrast to proteolytic enzymes, the lipolytic enzyme PLC-β2 has
already been demonstrated to play an important role in
mobilization, as it perturbs lipid raft integrity, which is necessary
for proper signaling from CXCR4 and VLA-4.11 At the same time,
we cannot exclude the involvement of other lipolytic enzymes
that could directly affect sphingosine-1-phosphate or ceramide-1-
phosphate gradients.
Besides releasing proteolytic and lipolytic enzymes that create a

proteolytic and lipolytic BM microenvironment, Gr-1+ cells also
secrete several other mediators that promote mobilization, such
as (i) reactive oxygen species (ROS), which induce expression of
neoepitopes in the BM microenvironment that bind naturally
occurring IgM antibodies,13 and (ii) danger-associated molecular
pattern molecules (DAMPs), such as heat shock proteins, ATP and
high-mobility group box 1. The role of these pathways in the
mobilization of HSPCs is supported by the fact that Gr-1+ cell-

deficient mice,3,12 ROS deficiency14 or a lack of naturally occurring
IgM antibodies13 results in poor mobilizer status. What is
important for this report, both neoepitope–IgM complexes and
DAMPs, which are exposed or released at the initial phase of
mobilization, are recognized by circulating MBL, which, in
cooperation with MASP, triggers activation of both the ComC
and the CoaC.15

Taking into consideration the pivotal role of the MBL pathway in
the mobilization process, our studies have potential clinical
implications for identifying so-called poor mobilizers. It is known
that ~ 10% of normal healthy donors respond poorly to currently
available mobilizing drugs. On the other hand, human MBL (MBL2)
deficiency is the most common form of complement deficiency
and is seen in ~ 10% of humans.15 These numbers of poor
mobilizers and MBL-deficient patients appear to match up, and it
would be useful to evaluate activation of the MBL pathway in poor
and good mobilizers. In human, MBL is produced in liver, and
structural mutations in exon 1 of the human MBL2 gene at codon
52 (Arg→Cys, allele D), codon 54 (Gly→Asp, allele B) and codon
57 (Gly→Glu, allele C) also independently reduce the level of
functional serum MBL by disrupting the collagenous structure of
the protein. Furthermore, several nucleotide substitutions in the
promoter region of the human MBL2 gene at positions − 550 (H/L
polymorphism), − 221 (X/Y polymorphism), − 427, − 349, − 336, del
(−324 to − 329), − 70 and +4 (P/Q polymorphisms) affect the MBL2
serum concentration.15 Thus, further clinical studies are justified to
see whether it is possible that the MBL2 state can predict poor
mobilizers.
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In conclusion, we have identified a previously unrecognized
role for the MBL–MASP-1 pathway in triggering both ComC and
CoaC activation during the HSPC mobilization process. This finding
explains the pivotal role of the MBL pathway in triggering
activation of the proximal part of the ComC and explains why,
with a deficiency in activation of classical pathway components
(C1q), mobilization of HSPCs proceeds normally as long as the
MBL pathway remains intact.7 Taking into consideration that
~ 10% of normal people are poor activators of the MBL pathway15

and that this percentage may correspond with the ~ 10% of
the normal healthy population that are poor mobilizers, we
are currently investigating whether MBL deficiency correlates
with poor mobilization status in patients. If our hypothesis is
correct, the MBL level could become an important predictive
parameter for identifying poor mobilizers. Finally, our results again
confirm a pivotal role of the ComC and other elements of innate
immunity as well as involvement of the CoaC in the mobilization
process.
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