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Application of Cross-Linked Polyborosiloxanes and Organically
Modified Boron Silicate Binders in Silicon-Containing Anodes for
Lithium-Ion Batteries
Darius A. Shariaty,1 Dali Qian,2 Yang-Tse Cheng, 3 and Susan A. Odom 1,∗,z

1Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, USA
2Electron Microscopy Center, University of Kentucky, Lexington, Kentucky 40506, USA
3Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, USA

To determine the effect of cross-linking in polymer binders on gravimetric capacity and retention in charge/discharge cycling of
lithium-ion batteries containing silicon anodes, polymers with a varied chemiophysical characters have been studied as electrode
binders. Here we report the utilization of cross-linked polyborosiloxanes and a boron-modified organosilicate as binders for nanopar-
ticulate silicon-containing anodes for lithium-ion batteries. We show that highly cross-linked binders enable a large degree of capacity
to be accessed and that capacity retention is greater when the electrodes are cycled in half cells. More extensive analysis of the
boron-modified organosilicate is further explored.
© The Author(s) 2018. Published by ECS. This is an open access article distributed under the terms of the Creative Commons
Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/),
which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any
way and is properly cited. For permission for commercial reuse, please email: oa@electrochem.org. [DOI: 10.1149/2.0801803jes]

Manuscript submitted November 29, 2017; revised manuscript received February 19, 2018. Published March 14, 2018.

An increase in demand for energy storage devices with high en-
ergy and power densities has motivated researchers to investigate new
electrode materials for rechargeable battery technologies. Lithium-ion
batteries (LIBs) are preferred for many portable applications due to
their high operating voltages, high energy densities, and long cycle
lifetimes compared to more traditional battery chemistries such as
lead-acid and nickel metal hydride.1 In efforts to increase the energy
density of LIBs, new electrode materials have been sought to replace
the graphitic anodes utilized in commercial cells.2 One of the most
widely studied candidates to date is silicon (Si), which possesses a
theoretical specific capacity (3579 mAh/g for Li15Si4), approximately
10x higher than that of graphite (372 mAh/g for LiC6).1 However,
tailored strategies must be designed to accommodate the inherent
300% volume expansion of Si upon full lithiation, which causes Si to
disintegrate.3–5

A variety of tactics have been employed to prevent the severe ca-
pacity loss of Si-based anodes during cycling, which include lowering
particle sizes and/or varying the shapes of Si-containing materials to
minimize pulverization and/or excessive solid-electrolyte interphase
(SEI) formation. Among particulates, Si nanoparticles (SiNPs) below
∼150 nm in diameter tend to survive the alloying process, whereas
those above this critical limit tend to fracture.5 For example, Cui and
co-workers have reported a variety of Si architectures that lead to
enhanced capacity retention in Li half cells.6 By limiting the particle
size and weight percent, researchers at Argonne National Labora-
tory demonstrated improvements in capacity retention when SiNP-
containing electrodes were cycled in full cells.7–9

Another approach to extending the cycling lifetimes of Si-
containing anodes is to modify the chemiophysical characteristics
of the polymer binder to encourage stronger interactions with the
polar and functionalizable SiO2 and Si-OH surfaces of SiNPs.10–13

Compared to the more traditionally utilized binder poly(vinylidene
difluoride), which contains no labile functional groups, the sodium
salts of Nafion,14 polyacrylic acid,15 and carboxymethyl cellulose,16

as well as combinations of polymers,17,18 have been utilized in an-
odes with greater success. Additionally, surface-functionalization,19

entrapping in situ polymerization, and cross-linking polymers have
proved efficacious in improving capacity retention.20–24

In considering new polymer binders for evaluation in silicon an-
odes, we sought a polymer with components that would favorably
interact with the silicon particle surface, whether elemental silicon or

∗Electrochemical Society Member.
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a silicon oxide. Furthermore, we preferred a tailorable polymer that
could be prepared in ambient conditions. Finally, we required that
any binder be low cost and scalable. Siloxane-containing polymers
seem to satisfy many of these requirements. Polyborosiloxane (PBS)
binders have the potential for favorable interactions with SiO or SiO2

surfaces through dipole-dipole interactions, which could serve as a
route to adhere the binder to the surface of Si particles.25,26 In 2016
a polysiloxane was cross-linked in an in situ reaction post polymer-
ization, which was conducted under nitrogen atmosphere; resultant
electrodes containing this binder displayed greater capacity retention
than the linear binders to which it was compared.27 Seeking to conduct
polymer binder synthesis in ambient atmosphere, rather than using an
air-sensive radical polymerization, we chose to investigate conden-
sation polymerizations – the same reaction typically utilized in PBS
synthesis.

In addition to the potential for greater interactions between the
surface and binder, the diversity of cross-linking and functionaliza-
tion in this class of polymers allows for additional handles that could
be used to modify polymer properties. Depending on the degree of
cross-linking, which can be modified with cross-linking agents, the
mechanical properties of these polymers range from viscoelastic to
rigid,28–30 offering the potential to conduct studies on the relation-
ship of mechanical properties and cycling performance. PBSs present
additional characteristics consistent with requirements for effective
binders in LIB electrodes. While electrically insulating as neat ma-
terials, silicone rubbers can be made electronically conductive when
blended with materials such as carbon black (CB).31 Furthermore, the
modification of silicones with neutral boron-containing compounds
enables high lithium-ion conductivity in solid systems.32,33 Addition-
ally, PBS binders are attractive due to the self-healing properties.30,34,35

Here, we report the utilization of cross-linked PBSs as binders
in a nanoparticulate silicon anode, where the polymers are partially
cross-linked in their initial synthesis and further cross-linked during
curing of the electrode slurry. We show that highly cross-linked PBS
and boron-modified organosilicate binders allow for a large degree
of capacity to be accessed in the anode and that capacity retention
is greater when cycled in half cells. A more thorough analysis of the
boron-modified organosilicate, or ormosil, binder is presented.

Experimental

Materials.—Dichlorodimethylsilane (99%), boric acid (B(OH)3,
99.99%), and triethoxyphenylsilane (TEPS, 98%) were purchased
from Alfa Aesar. Diglyme (>99.0%, no inhibitor) was purchased
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from TCI. Ethanol (EtOH) and dichloromethane (DCM, ACS grade)
were purchased from Macron. Tetrahydrofuran (THF, 99.5%) was
purchased from Acros Organics. Silicon nanoparticles of 30–50 nm
average particle size were purchased from Nanoamor. Super65 car-
bon black was purchased from Timical. Battery grade LiPF6, ethylene
carbonate (EC), ethyl methylcarbonate (EMC), and fluoroethylene
carbonate (FEC) were purchased from BASF.

Preparation of polysiloxane binder (Polymer 1).—
Dichlorodimethylsilane (95 mL) was combined with DCM
(180 mL) in a 500 mL round-bottomed flask, which was immersed
in an ice bath. To the flask, ultrapure Millipore water (180 mL) was
added dropwise over 30 min. Concentrated aqueous sodium carbonate
(100 mL) was then added dropwise to partially neutralize the solution.
The resulting two-phase solution was separated, reserving the organic
layer. Extractions with DCM (3 × 20 mL) were performed to gather
the siloxane condensates. The extracts were combined with the
previously reserved organic phase. The organic materials were then
combined in a separatory funnel, and the organic layer was washed
with concentrated sodium carbonate (2 × 50 mL), followed by
washing with water (2 × 50 mL). The organic layer was isolated and
filtered through a medium fritted funnel, then concentrated by rotary
evaporation. The isolated oil was dried in a vacuum oven at 60◦C
overnight.

Preparation of cross-linked polyborosiloxane binders (Polymers
2–4).—Polymer 1, B(OH)3, and TEPS were added to a 50 mL conical
flask containing a large stir bar, and the flask was immersed in a sand
bath that was brought to 190◦C over 1 h, then held at that temperature
for 14 h, all conducted open to air. The resulting solid was dissolved in
hexanes, filtered, and concentrated by rotary evaporation, then dried
in a vacuum oven at 70◦C overnight.

Polymer 2. 2.858 g Polymer 1, 0.157 g B(OH)3, 0.171 g TEPS.

Yield : 1.812 g (56.8%).

Polymer 3. 2.086 g Polymer 1, 0.261 g B(OH)3, 0.267 g TEPS.

Yield : 1.446 g (55.3%).

Polymer 4. 1.363 g Polymer 1, 0.544 g B(OH)3, 0.814 g TEPS.

Yield : 1.619 g (59.5%).

Preparation of ormosil binder (Polymer 5).—B(OH)3 (0.894 g,
14.5 mmol) was combined with TEPS (3.48 g, 14.5 mmol) in a 50 mL
conical flask. EtOH (4 mL) was added, and the reaction flask was
immersed in a sand bath, which was raised to 150◦C over the course
of 2 h, then held at this temperature for an additional 24 h. Dissolution
of B(OH)3 was noted at 120◦C, followed by solidification at 130◦C.
After removing the reaction flask from the oil bath, the solid product
was stored in the reaction flask for one day at ambient temperature
after which THF (50 mL) was added. The solvent penetrated the
solid resin as the temperature was slowly brought to 150◦C by again
immersing the flask in the sand bath during which time the solvent
evaporated, over ∼2 h. The temperature was raised to 190◦C over 4 h.
The final material was dissolved in THF (∼50 mL), and solids were
removed by filtration through a coarse fritted funnel. The product, a
white solid, was stored as a 7.14 wt% solution in THF.

Electrode preparation.—Slurries were composed of a 3:1:1 mass
ratio of SiNPs:carbon black:binder, where diglyme was used as the
dispersive solvent. Homogenous suspensions of the above were pre-
pared in scintillation vials where the suspension was magnetically
stirred for 5 h in conjunction with periodic sonication (3 × 5 min).
This suspension was cast onto copper foil and was spread with a doc-
tor blade set at 50 μm, then was allowed to dry for 24 h in ambient
conditions, after which it was cured in vacuum oven at 135◦C for 24 h.

Electrodes were punched by 14 mm die-cut lever press and immedi-
ately transferred to an argon-filled glove box. This material was brittle
and did not allow stable casting thicknesses above ∼100 μm.

Half-cell construction.—2032 coin cells were constructed in an
argon-filled glove box (H2O and O2 levels below 1.5 ppm) using
9/16′′ inch discs of lithium (Sigma-Aldrich), 10/16′′ inch PP/PE/PP tri-
layer Celgard separators, and stainless steel coin cell parts. Electrolyte
(65 μL of 1 M LiPF6 in EMC/EC/FEC, 5:4:1 mass ratio) was used in
each half cell.

Constant-Rate cycling protocol.—Following construction, the
electrolyte was allowed to wet the half cells over 2 h prior to cy-
cling. These were then cycled using a Landt CT2001A cycler, voltage
window of 0.01 V to 1.5 V, with a rest time of 5 min allowed between
charge and discharge. A current range of 167–169 μA was used, deter-
mined based on the capacity of the cell using only the mass of silicon
(assumed to be 60% of final electrode mass) at a theoretical capacity of
3000 mAh/g.

Variable-Rate cycling protocol.—After an initial 2 h wet-
ting/resting period, half cells were initially cycled at C/20 rates for
five cycles prior to performing a rate-step experiment. Following these
first 5 cycles, cycling was conducted for 3 cycles each at the following
rates: C/10, C/5, C/2, C, 2C, and finally back to C/10.

Characterization.—Optical microscope images were recorded on
a Nikon ECLIPSE 55i microscope. Samples were prepared after let-
ting the polymer dry in ambient conditions on a glass slide. While
not shown, images of polymers dried at room temperature in a vac-
uum oven between two glass slides were essentially equivalent. SEM
images were obtained using a Hitachi S-4300 field-emission instru-
ment using an accelerating voltage of 10 kV in secondary mode.
Samples were obtained by disassembling the coin cells, washing elec-
trodes with DCM, and then storing them in a glove bag under ar-
gon. The samples were exposed to air for < 20 s in their transfer
from the glove bag into the SEM chamber. IR spectra were obtained
from a Thermo-Scientific Nicolet 6700 FT-IR equipped with a smart
iTR diamond-attenuated total reflectance sampling accessory, using
25 scans.

Results and Discussion

Polysiloxane (Figure 1) was prepared in house by reaction of
dichlorodimethylsilane with water in dichloromethane, with concen-
trated aqueous sodium carbonate added to partially neutralize the
solution. The resultant polymer was used to create cross-linked PBSs
using both B(OH)3 and TEPS (Figure 1) as cross-linkers (Table I,
entries 2–4). A variety of chemical reactions could lead to crosslink-
ing: (1) the condensation of Si-OH groups end-capping the linear
polysiloxanes with B-OH groups, forming B-O-Si bridges and re-
leasing water, (2) the condensation of Si-OH groups end-capping the
linear polysiloxanes with Si-OEt groups, forming Si-O-Si bridges
and releasing ethanol, and (3) the condensation of Si-OH groups
end-capping the linear polysiloxanes with Si-OH groups formed by

Figure 1. Representations of the chemical structures of linear polysiloxane
and the cross-linkers triethoxyphenylsilane (TEPS) and boric acid (B(OH)3).
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Table I. Composition of polymer binders examined in this study.

Polymer polysiloxane (wt%) B(OH)3 (wt%) TEPS (wt%)

1 100 - -
2 90 5 5
3 80 10 10
4 50 20 30
5 - 80 20

hydrolyzed Si-OEt groups in TEPS/B(OH)3, forming Si-O-Si bridges
and releasing water. In one case, the linear polymer was not utilized:
Only B(OH)3 and TEPS were combined (Table I, entry 5). In this latter
case, the material is better described as a boron-modified ormosil – an
organically modified silicate. Note that in this case, the weight ratio
was equivalent to a 1:1 molar ratio of B(OH)3:TEPS.

In all cases, the prepared polymers were combined with SiNPs and
carbon black in a 1:3:1 weight ratio and dispersed into diglyme before
casting onto copper foils to prepare electrode films. Electrodes were
cured in a vacuum oven at 130 to 140◦C for 16 to 24 h. Half cells were
prepared by pairing 9/16” lithium discs with 10/16” punched SiNP
electrode films in 2320 coin cells containing a 1 M solution of LiPF6 in
EMC/EC/FEC (5:4:1) as the electrolyte. Prior to cycling, all cells were
given a 2 h rest period. Cycling was performed at a rate of C/10, which
was calculated assuming that the final mass of the electrodes contained
the original 1:3:1 mass ratio of polymer:SiNPs:carbon black.

Charge capacities and columbic efficiencies for the first hundred
cycles are shown in Figure 2. For the linear polysiloxane (1) and
the least cross-linked PBSs (2 and 3), the initial capacities were the
lowest. The capacity of the electrode containing the linear polymer
1 faded rapidly, and after fewer than 10 cycles, the capacities of
the electrodes containing cross-linked polymers 2 and 3 fell below

Figure 2. Charge capacities (a) and coulombic efficiencies (b) of Li half cells
with a Si-containing electrodes comprised of 1:3:1 ratio of binder:SiNP:carbon
black, cycled at a rate of C/10.

Figure 3. An optical microscope image of a film of polymer 5 after allowing
it to dry following casting from a solution in tetrahydrofuran.

1000 mAh g−1. The more highly cross-linked PBS (4) showed the
highest capacity initially, which dropped to just under 3000 mAh g−1

at one hundred cycles. Intriguingly, the cross-linked ormosil binder
(5) showed little capacity fade, which started at around cycle 20.
Additionally, its coulombic efficiency continued to rise as cycling
progressed. These results motivated us to pursue further analysis of
polymer 5.

Again, polymer 5 is simply a combination of B(OH)3 and TEPS
in a 1:1 molar ratio, which is prepared by heating the two reactants
in ethanol. Unlike the PBSs, which are transparent or translucent col-
orless resins, the ormosil is a white solid with no apparent flowable
characteristics. As prepared, we presume polymer 5 to be a collec-
tion of oligomers and polymers with a wide distribution of molecular
weights, where solid-state synthesis prevents complete condensation
of Si-OH and B-OH groups. A high degree of cross-linking is con-
sidered to retard the viscoelastic flow normally associated with this
class of materials, which was evidenced by a lack of apparent macro-
scopic flow over several days. Under optical microscope, thin films
of PBS-11 deposited on microscope slides demonstrated crack-filling
over day-long time scales (Figure 3), but complete homogenization of
the material was never achieved.

IR spectroscopy of polymer 5 was performed to determine if ex-
pected bonds were present. The peaks in the IR spectrum (Figure 4)
are consistent with the positions of expected functional groups. The
intense peaks spanning ca. 1000–1150 cm−1 are consistent with Si-
O-Si and B-O-H in-plane bending, expected at 1130–1000 cm−1 and
1150 cm−1. A strong peak spanning ca. 1300 to 1500 cm−1 with

Figure 4. Infrared spectrum of polymer 5, resulting from the reaction of
B(OH)3 and TEPS in a 1:1 molar ratio.
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Figure 5. (a) Charge and discharge capacity of a Li half cell containing SiNP
electrodes with a 1:3:1 ratio of carbon black:SiNP:polymer in which the poly-
mer is polymer 5, and coulombic efficiency for each cycle. (b) Voltage vs.
capacity plots for the cell from plot (a). (c) Rate study for an equivalent elec-
trode in a Li half cells with five cycles at C/20, then three cycles each at C/10,
C/5, C/2, C, and 2C, then ten cycles at C/10.

maximum intensity at 1375 cm−1 may contain Si-O-B and B-O-B
moieties, expected at 1340 cm−1 and 1380 cm−1, respectively. The
less intense peak at 1740 cm−1 is consistent with the position of
C=C bending in an aromatic ring, and the sharp peaks between 3000
and 3100 cm−1 are consistent with the position of aromatic C-H
stretches, both of which are expected if phenyl rings are present. The
small peaks just below 3000 cm−1 could arise from sp3-hybridized
C-H stretches from residual ethoxy groups. Finally, the intense broad
peak centered at ca. 3200 cm−1 is consistent with O-H stretches that
would arise from a B-O-H arrangement; other peaks at 3200 cm−1

and may arise from O-H stretches such as that from Si-O-H and H2O.
Further cycling of polymer 5 in lithium half cells showed some

variability in the initial capacity of the Si-based electrode. A repre-
sentative example of cycling performance of electrodes containing
polymer 5 at a rate of C/10 is shown in Figure 5a. Cycling data show

Figure 6. SEM images of the final electrode material prior to cycling (a,b).
SEM images of a post-cycled electrode taken from the C/20 rate study, follow-
ing 35 charge/discharge cycles (c,d). SEM images of an electrode of the same
composition cycled at a rate of C/10 for over 300 cycles (e,f).

the achievement of 99% coulombic efficiency after ∼10 cycles fol-
lowing rapid initial capacity loss. This initial irreversible capacity loss
is likely associated with the consumption of residual hydroxyl groups
present in the binder, as well as loss of contact with a portion of the
active material, and the high capacity retention observed is associated
with three-dimensional network that encases CB and SiNPs, keep-
ing them in close contact. In the voltage vs. time profiles shown in
Figure 5b, a striking preservation of capacity is observed. Results
from multiple coin cells show similar capacity values and trends in
fade. A rate study was performed as shown in Figure 5c. First, half
cells were cycled at a rate of C/20 for five cycles to allow for the
stable SEI formation. Following these first five cycles, the cells were
charged and discharged for three cycles each at rates C/10, C/5, C/2,
C, and 2C, after which ten C/10 cycles were completed. After a de-
cline in capacity for the faster charge/discharge cycles, cell capacity
rises when returned to the C/10 rate.

SEM images (Figure 6) of the pre-cycled electrode also agree with
polymer 5 having an oligomeric three-dimensional structure, which is
supported by features observed at magnification imaging, including
the electrode’s high porosity and the presence of a thin coating on
the particles. Following cycling, disassociation of carbon particles
from SiNPs is evident, which increased with further cycling. Cracking
was observed under all post-cycling circumstances. Intriguing, too, is
the gradual ‘flattening’ of the bulk electrode material, as seen in the
differences among the electrodes with no cycling, 35 cycles, and 300+
cycles. The electrode is in fact smoother after cycling, which may be
due to loss of active materials from the high-porosity electrode surface.
These morphological changes, coupled with deposition of material on
the side of the separator facing SiNPs, elucidate electrode material
separation as a potential mechanism for the initial capacity loss seen
in Figure 5.

Conclusions

In this study, highly cross-linked PBSs and an ormosil binder
employed in a 60 wt% SiNP anode allowed for excellent capacity
retention. Further analysis of the ormosil binder shows evidence of
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cross-linking reactions and robust capacity retention in lithium half
cells. The cyclability of this electrode is attributed to the functional
groups employed, which may be considered not only a logical, but
necessary, property for the stable function of an electrode with signif-
icant volume expansion and contraction. To address initial capacity
loss and electrode viability, future studies will involve cycling in full
cells as well as further analysis of the effect of the degree of cross-
linking and functional group identity on binder mechanical properties
and cycling performance.
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