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ABSTRACT OF DISSERTATION

Equivalence of Classical and Quantum Codes

In classical and quantum information theory there are different types of error-
correcting codes being used. We study the equivalence of codes via a classification
of their isometries. The isometries of various codes over Frobenius alphabets en-
dowed with various weights typically have a rich and predictable structure. On the
other hand, when the alphabet is not Frobenius the isometry group behaves unpre-
dictably. We use character theory to develop a duality theory of partitions over
Frobenius bimodules, which is then used to study the equivalence of codes. We also
consider instances of codes over non-Frobenius alphabets and establish their isometry
groups. Secondly, we focus on quantum stabilizer codes over local Frobenius rings.
We estimate their minimum distance and conjecture that they do not underperform
quantum stabilizer codes over fields. We introduce symplectic isometries. Isometry
groups of binary quantum stabilizer codes are established and then applied to the
LU-LC conjecture.
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Chapter 1 Introduction

1.1 Algebraic Coding Theory

Coding Theory deals with erroneously transmitted data over a noisy channel. Elim-
inating the noise is typically not an option. In fact the only efficient option is to
make the data noise-proof, and this is done by adding redundancy. Coding Theory
keeps under control the cost of the added redundancy and this is achieved by efficient
coding tools that also allow efficient decoding algorithms. Classically, a code C of
length n is an additive subgroup of Fn2 . The binary field F2 is the alphabet, and
thus, classically, C is a binary code. Elements of C are called codewords. A code is
endowed with the Hamming distance, which counts the number of coordinates in
which two codewords differ.

Algebraic Coding Theory considers codes with more structure, which in turn
enables a wide range of tools and techniques. The alphabet is typically a finite field
Fq and a code is an Fq-subspace of Fnq , called a linear code. For a linear code one
considers the Hamming weight of a codeword as the Hamming distance from the
0 codeword. In other words, the Hamming weight counts the number of nonzero
coordinates of a codeword. The main invariant of a code is the minimum distance;
it characterizes the error-correcting capabilities of the code. Therefore, the goal is
to find codes with large minimum distance while keeping the size of the code under
control. The advantage of linear codes is that the minimum distance coincides with
the minimum weight.

The work of Hammons et al. [25] in 1994 showed that exceptionally good nonlinear
binary codes can be viewed as linear codes over Z4 endowed with the Lee weight.
Ever since, ring-linear coding has gained extensive attention both from a mathemat-
ical and engineering point of view. As we will see, generalizations of classical results
led to the natural ring alphabet: Frobenius rings. One can generalize the idea even
further. The alphabet can be taken to be a finite left (or right) R-module A, where R
is a finite ring with identity. In this case a linear code is just a left submodule of An.
The typical example is the matrix module alphabet. Another interesting special case
is to consider field extensions E/F . In this context, the alphabet is FE and codes
consist of F -linear subspaces of En. In the case Fp`/Fp we get the so-called additive
codes. They not only form an important class of codes on their own, but also play a
central role in quantum computation when ` = 2. This is one out of many examples
how generalizations and algebraic approaches shed light in more complex phenom-
ena. Another way to generalize is to consider various weight functions. Typically, a
weight function is just a function ω ∶ An Ð→ R. Examples include the homogeneous
weight, symmetrized weight composition, Rosenbloom-Tsfasman weight,
and poset weight, which will be defined in Section 3.2.
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1.2 Equivalence of Codes

A notion of sameness is required for any structure. In this thesis we will consider
block codes over some finite module alphabet endowed with a weight function ω. In
principle, for a notion of sameness one would want the algebraic structure as well as
the error-correcting capabilities to be preserved. Thus two codes C, C′ are “the same”
if there exists an isomorphism between the two that also preserves the weight. We
will refer to such a map as ω-isometry and to the codes as isometric. The latter
may be decorated with adjectives that display properties of the weight. These ideas
can also be approached with a categorical language, as in [4] and references therein,
where objects are block codes and morphisms are the linear maps that don’t increase
the weight.

With a notion of sameness in place one considers the respective equivalence classes
and seeks for canonical representatives. The first step in doing so is to understand
the structure of ω-isometries, which turns out to be a highly nontrivial task. One
gains intuition by considering the (typically easy) extremal case C = An. Namely,
what is the structure of an ω-isometry f ∶ An Ð→ An? This leads to two immediate
followup questions. Is the structure of an ω-isometry f ∶ C ⊊ An Ð→ An the same as
the extremal case for any code C? And if not, how different is the structure? The
former was first asked and answered affirmatively by MacWilliams [41] for binary
linear codes with respect to the Hamming weight. Further generalizations led to
MacWilliams Extension Theorem and the Extension Property of an alphabet [69].
However, the answer is not always affirmative; see Theorem 5.3. This fact, along
with ideas discussed in [13], led Jay Wood to the notions of isometry groups [71].
Because we will make specific use of these ideas in Section 7.3 we briefly describe them
in here. The key insight is to think of a code as a set of messages M embedded
in An via a linear injective map Λ, called encoding. Then one studies isometries
of the code C ∶= Λ(M) via automorphisms of the information module M . More
specifically, given a code C along with an information module M and encoding Λ, one
defines

Isoω(C) = {f ∈ Aut(M) ∣ ω(Λ(f(m))) = ω(Λ(m)) for all m ∈M}. (1.1)

Then, inside Isoω(C) one identifies the subgroup Monω(C) of all automorphisms that
are restrictions of ω-isometries of An. Whenever MacWilliams Extension Theorem
is true the two groups are the same. Otherwise one wonders how big the gap could
be and what subgroups of Aut(M) can be realized as isometry groups. It turns out
that these considerations are related with the symmetry of the weight ω (see (3.9)
and (3.10)) and its actions on the alphabet and information module.

1.3 Thesis Outline

The overarching theme of this thesis is an algebraic and unified approach to the
equivalence of classical and quantum codes. On the classical side we focus on linear
block codes over a module alphabet, which as mentioned earlier includes several

2



types of codes. On the quantum side we focus on quantum stabilizer codes. A
unified approach might seem impossible at a first glance because quantum codes
are subspaces of a Hilbert space and thus very far from discrete. However, a discrete
error model is possible and this enables a one-to-one correspondence between quantum
stabilizer codes and self-orthogonal codes with respect to a certain symplectic bilinear
form. Secondly, most of the equivalence questions concern weights that are additively
extended from the alphabet to the ambient space; see (3.6). However, for instance,
Rosenbloom-Tsfasman and poset weight do not fall under this category. Techniques
described in this thesis can be used for many weight functions.

The main algebraic tool is character theory of finite abelian groups along with
basic notions on rings and modules. More specifically, we will widely use partitions
of the ambient space An and their character-theoretic duals. A key idea is to study
weight-partition of the ambient space and realize it as orbit partition of some matrix
group. This allows us to extract information about ω-isometries. Throughout this
thesis we focus on codes over Frobenius alphabets. The aim is to provide further
evidence on usefulness and naturality of Frobenius alphabets, especially in quantum
error-correction.

Classical algebraic coding theory over Frobenius alphabets is well-studied. In
fact, coding-theoretically motivated questions have led to ring-theoretic results such
as the characterization of finite Frobenius rings and their rich duality theory [27,68].
Unfortunately, the use of Frobenius alphabets in quantum error-correction is minor.
The interest was sparked by [43] where the authors further generalized the idea of
nonbinary quantum stabilizer codes to quantum stabilizer codes over Frobenius rings.
Although the latter cannot outperform the former [19,43], as pointed out in [43], one
could make good use of the simpler arithmetic of Frobenius rings. On the other hand,
such broader view gives new insights on previous questions. For instance, one uses
a well-established classical theory to study quantum phenomena such as the LU-LC
conjecture and Clifford equivalence of quantum codes.

This thesis is mainly an amalgamation of [19, 20, 51]. In Chapter 2 we provide a
character-theoretic description of Frobenius bimodules. The usefulness of such ap-
proach is that it does not involve quasi-Frobenius bimodules. In order to do so we
start with preliminary properties of characters as well as basic notions on rings and
modules. In Chapter 3 we discuss basic notions of linear codes over Frobenius alpha-
bets including general weights and their induced isometries. In particular, we define
the symmetry groups and discuss MacWilliams Extension Theorem with respect to
the Hamming weight. In Section 3.4 we discuss linear codes over local Frobenius
rings. Results in this section generalize the work of [48,49] on linear codes over chain
rings. We point out that everything one needs is a principal socle rather than a chain
of principal ideals. In addition, the results presented serve as a base for Section 7.2.
In Chapter 4 we build up on the work of [6] to develop a duality theory of partitions
of Frobenius bimodules, which as mentioned, plays a central role on our overall strat-
egy of describing isometries of linear codes. In Chapter 5 we prove the MacWilliams
Extension Theorem with respect to various weight. In particular, in Section 5.2 we
prove the same result for additive codes with respect to the Rosenbloom-Tsfasman
weight. Starting from Chapter 6 we focus on quantum error-correction. We describe

3



basic notions using the customary bra-ket notation as well as point out main differ-
ences with classical error-correction. We describe in details Shor’s 9-qubit code and
the stabilizer formalism introduced by Daniel Gottesman in his PhD thesis [21]. In
Chapter 7 we discuss quantum stabilizer codes over Frobenius ring. We first establish
a one-to-one correspondence with the so-called stabilizer codes, which in turn requires
a special treatment of the error model. We continue with structural and performance
results, which in turn leads us to conjecture that free stabilizer codes over Frobenius
rings are as good as those over fields. In Section 7.3 we describe symplectic isome-
tries of stabilizer codes and link this study with the LU-LC conjecture in quantum
computation. To do so we make use of the machinery developed in previous chapters.
In particular, we construct stabilizer codes with prescribed isometry groups. We end
the chapter with a brief discussion of MacWilliams Identities. In the last chapter we
list several open problems and potential future directions.

4



Chapter 2 Frobenius Rings and Modules

2.1 Characters of Finite Abelian Groups

In this section we briefly discuss characters of finite abelian groups. We will then focus
on additive groups of finite modules. Let G be a finite abelian group. Its character
group is defined as the set Ĝ ∶= Hom(G,C∗) of all group homomorphisms from G
to C∗, endowed with addition (χ1 + χ2)(g) = χ1(g)χ2(g) for all χi ∈ Ĝ and g ∈ G.
Then Ĝ is again an abelian group. Its zero element is εG ∈ Ĝ given by εG(g) = 1 for
all g ∈ G. Elements of Ĝ are called characters and εG is the principal character
of G. If ∣G∣ = n then 1 = χ(0) = χ(ng) = [χ(g)]n and therefore χ(g) is a nth root of

unity. The additive inverse of χ ∈ Ĝ is given by (−χ)(g) ∶= χ(g), where ● denotes the
complex conjugate. The most fundamental properties of characters of a finite abelian
group are the orthogonality relations

∑
χ∈Ĝ

χ(g) =
⎧⎪⎪⎨⎪⎪⎩

0, if g ≠ 0,

∣G∣, if g = 0.
and ∑

g∈G
χ(g) =

⎧⎪⎪⎨⎪⎪⎩

0, if χ ≠ εG,
∣G∣, if χ = εG.

(2.1)

Next, we list some basic properties of the character group that will be needed
later on. They are well-known and/or can easily be verified.

Remark 2.1. Let G be a finite abelian group.

(1)G is isomorphic to Ĝ (though not naturally so) and hence ∣G∣ = ∣Ĝ∣.
(2) Ĝ1 × Ĝ2 ≅ Ĝ1 ×G2 for any finite abelian groups G1 and G2. The isomorphism is

given by (χ1, χ2)(g1, g2) ∶= χ1(g1)χ2(g2).
(3)G and ̂̂G are naturally isomorphic via the map ζG ∶ g z→ evg, where evg ∶ ĜÐ→ C∗,

χz→ χ(g) denotes the evaluation map.
(4) Distinct characters of G are linearly independent in the C-vector space of maps

from G to C.
(5) Let χ1, . . . , χN and χ′1, . . . , χ

′
M be characters of G. If ∑N

i=1 χi = ∑M
i=1 χ

′
i as maps

from G to C, then the multisets {{χ1, . . . , χN}} and {{χ′1, . . . , χ′M}} coincide; see [6,
Prop. 3.1].

(6) Let H ≤ G be a subgroup and χ ∈ Ĥ. Then χ can be extended to a character of
G in ∣G∣/∣H ∣ ways.

(7) Let H ≤ G and K ≤ Ĝ be subgroups of G and Ĝ, respectively. Their dual groups
are defined as H○ ∶= {χ ∈ Ĝ ∣ H ⊆ kerχ} and K○ ∶= {g ∈ G ∣ g ∈ kerχ for all χ ∈K},
where for χ ∈ Ĝ we set kerχ = {g ∈ G ∣ χ(g) = 1}. Clearly, H○ and K○ are
subgroups of Ĝ and G, respectively. Then

(i) H○ ≅ Ĝ/H and K○ ≅ ̂̂G/K ≅ G/K. Thus ∣H○∣ = ∣G∣/∣H ∣ and ∣K○∣ = ∣Ĝ∣/∣K ∣ =
∣G∣/∣K ∣.

(ii) If H ⊆ kerχ for all χ ∈ Ĝ, then H = {0}.

(iii)(H○)○ =H and (K○)○ =K.

5



For the dual subgroups defined above, the orthogonality relations (2.1) straight-
forwardly generalize to the following.

∑
χ∈K

χ(g) =
⎧⎪⎪⎨⎪⎪⎩

∣K ∣, if g ∈K○,

0, else.
and ∑

h∈H
χ(h) =

⎧⎪⎪⎨⎪⎪⎩

∣H ∣, if χ ∈H○,

0, else.
(2.2)

Remark 2.2 (Additive version of characters). Consider the quotient group Q/Z
and let G be a finite abelian group. Denote G# ∶= Hom(G,Q/Z). Similarly as the
character group Ĝ, G# also forms a finite abelian group under point-wise addition.
One has the following commutative diagram

Q/Z C∗

G

//
exp(2πi●)

��

ψ

$$

∃!χ
(2.3)

Namely, for every ψ ∈ G# there exists a unique χ ∈ Ĝ such that for all g ∈ G one has

χ(g) = exp(2πiψ(g)),

and thus Ĝ ≅ G#. In this thesis we will mainly focus on the multiplicative versions of
characters. However, it is worth mentioning that the additive version is quite useful,
especially when dealing with induced bilinear forms.

2.1.1 The Fourier Transform

In this section we consider in more details complex valued functions of a finite abelian
group G, and show how the characters play a special role. The main goal is to
prove Poisson Summation Formula, which has massive applications in coding theory.
For details we refer the reader to [63]. Let L2(G) denote the space of all complex
valued functions on G. Then L2(G) is canonically a complex vector space with basis
{δg ∣ g ∈ G} where

δg(x) =
⎧⎪⎪⎨⎪⎪⎩

1, if x = g,
0, if x ≠ g.

In particular, L2(G) has dimension n where n = ∣G∣ is the cardinally of the group.
Then Remark 2.1(4) implies that Ĝ is also a basis of L2(G). Now that there are two
bases floating around, one naturally wonders about a change of basis matrix. To that
end, write f ∈ L2(G) as

f = ∑
g∈G

f(g)δg. (2.4)

On the other hand, the second orthogonality relation in (2.1) implies

δg(x) =
1

∣G∣ ∑
χ∈Ĝ

χ(g)χ(x).

6



Substituting in (2.4) we obtain

f(x) = ∑
g∈G

f(g)
⎛
⎝

1

∣G∣ ∑
χ∈Ĝ

χ(g)χ(x)
⎞
⎠

= ∑
χ∈Ĝ

∑
g∈G

1

∣G∣f(g)χ(g)χ(x)

= ∑
χ∈Ĝ

cχχ(x),

where

cχ =
1

∣G∣ ∑g∈G
f(g)χ(g).

Definition 2.3. The Fourier transform of f ∈ L2(G) is the function f̂ ∈ L2(Ĝ)
given by

f̂(χ) = ∑
g∈G

f(g)χ(g)

The above argument immediately implies the following.

Theorem 2.4 (Fourier Inversion Formula). For any f ∈ L2(G) we have

f(x) = 1

∣G∣ ∑
χ∈Ĝ

f̂(χ)χ(x).

Remark 2.5. Let G = G1 ×⋯×Gn and fi ∈ L2(Gi) for i = 1, . . . , n. Define f ∈ L2(G)
as f(g1, . . . , gn) ∶= f1(g1)⋯fn(gn). Then using Ĝ ≅ Ĝ1 ×⋯ × Ĝn, one has

f̂(χ1, . . . , χn) = ∑
(g1,...,gn)∈G

f(g1, . . . , gn)(χ1, . . . , χn)(g1, . . . , gn)

= ∑
g1∈G1

⋮
gn∈Gn

n

∏
i=1

fi(gi)χi(gi)

=
n

∏
i=1

∑
g∈Gi

fi(g)χi(g)

=
n

∏
i=1

f̂i(χi).

We will next present the Poisson Summation Formula, which has vast applications
in coding theory. We start with a lemma that facilitates the main result.

Lemma 2.6. Let H ≤ G and let f ∈ L2(G) be such that f(g + h) = f(g) for all g ∈ G
(that is, f is constant in the cosets of H). Write G as disjoint union of its cosets:
G = ⊍li=1(gi +H). Then

(1) f̂(χ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∣H ∣
l

∑
i=1

f(gi)χ(gi), if χ ∈H○,

0, if χ ∉H○.

7



(2)The map f̃ ∈ Ĝ/H, a +H z→ f(a) is well-defined, and for all χ ∈ Ĝ/H ≅ H○ we
have

̂̃
f(χ) = 1

∣H ∣ f̂(χ).

Proof. (1) The statement follows by (2.2) and the following computation.

f̂(χ) = ∑
g∈G

f(g)χ(g) =
l

∑
i=1

∑
h∈H

f(gi + h)χ(gi + h)

=
l

∑
i=1

f(gi)χ(gi) ∑
h∈H

χ(h).

(2) First of all, f̃ is clearly well-defined. Next, recall that H○ ≅ Ĝ/H. With this

isomorphism one may think of a character χ ∈ Ĝ/H as a character on Ĝ such that
kerχ ⊇H, that is, χ is automatically constant in the cosets of H. We have

̂̃
f(χ) = ∑

g+H∈G/H
f̃(g +H)χ(g +H)

=
l

∑
i=1

f(gi)χ(gi)

(1)= 1

∣H ∣ f̂(χ).

Theorem 2.7 (Poisson Summation Formula). Let H ≤ G and fix g ∈ G, f ∈ L2(G).
Then

∑
h∈H

f(g + h) = 1

∣H○∣ ∑χ∈H○

f̂(χ)χ(g). (2.5)

In particular, for g = 0 we obtain

∑
h∈H

f(h) = 1

∣H○∣ ∑χ∈H○

f̂(χ).

Proof. Let f ′ ∈ L2(G) be given by f ′(g) ∶= ∑h∈H f(g + h). Then f ′(g + h) = f ′(g) for

all h ∈ H. As in Lemma 2.6(2) we obtain f̃ ′ ∈ Ĝ/H given by g +H z→ f ′(g). Thus,
the left-hand-side of (2.5) equals f̃ ′(g +H). On the other hand we have

∑
χ∈H○

f̂(χ)χ(g) = ∑
χ∈H○

∑
b∈G

f(b)χ(b) ⋅ χ(g)

= ∑
χ∈H○

l

∑
i=1

∑
h∈H

f(gi + h)χ(gi + h) ⋅ χ(g) (as in Lemma 2.6)

= ∑
χ∈H○

l

∑
i=1

f ′(gi)χ(gi) ⋅ χ(g) (since χ ∈H○)

8



= ∑
χ∈H○

1

∣H ∣ f̂
′(χ)χ(g) (by Lemma 2.6(1))

= ∑
χ∈Ĝ/H

̂̃
f ′(χ)χ(−g +H) (by Lemma 2.6(2))

= ∑
χ∈Ĝ/H

∑
y+H

f̃ ′(y +H)χ(y +H)χ(−g +H)

= ∑
y+H

f̃ ′(y +H) ∑
χ∈Ĝ/H

χ(y − g +H)

= f̃ ′(g +H) ⋅ ∣G/H ∣,

where the last equality follows by the orthogonality relations in G/H. The result now
follows from Remark 2.1(7)(i). The case when g = 0 is clear.

2.2 Basic Notions on Rings and Modules

In this section we will set up some notations and discuss some preliminary properties
of rings and modules that will be needed later on. Unless otherwise stated, all the
rings and modules are finite. For details we refer the reader to [38, 39]. Let R be a
finite associative ring with identity 1 ≠ 0. As it is customary, we denote J(R) the
Jacobson Radical and R ∶= R/J(R) the associated semisimple ring, that is, the
direct sum of matrix rings over finite fields (due to Wedderburn):

R ≅Mµ1(Fq1)⊕⋯⊕Mµn(Fqn). (2.6)

Let A be a unital (that is 1⋅a = a for all a ∈ A) left R-module. The socle of A, denoted
soc(RA), is the sum of all minimal submodules of RA. Since R is finite, and therefore
artinian, this amounts to

soc(RA) = {a ∈ A ∣ J(R)a = 0}. (2.7)

For a bimodule RAR one considers left and right socles. In general soc(RA) ≠ soc(AR),
though this section and the next one will be vastly dedicated to modules with equal
left and right socle. The socle soc(RA) is essential in A, and this implies that

for all a ∈ A, there exists r ∈ R such that 0 ≠ ra ∈ soc(RA). (2.8)

If A′ is another left R-module, we write Hom(RA,RA′) for the set of homomorphisms
between these modules. We denote S ∶= End(RA) the ring of endomorphisms. The
multiplication is defined as f ⋅g ∶= g ○ f , where we use the convention1 (g ○ f)(a) ∶=
g(f(a)). This turns A into a right S-module via a ⋅f ∶= f(a). Thus a left R-module A
is canonically a (R,S)-bimodule. In addition, there is a canonical ring homomorphism

Θ ∶ R Ð→ End(AS), r z→ { Θ(r) ∶ AS Ð→ AS
a z→ ra

. (2.9)

1The reason why we reverse the order is to avoid ambiguities when composing left and right
linear maps simultaneously.
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If Θ is an isomorphism then A is called left balanced, see [23, p. 2]. In a similar way
one defines right balanced and balanced bimodules. We point out in here that
this can be done over any (R,R′)-bimodule. For the bimodule RAS and K ⊆ A, I ⊆
R,J ⊆ S we define the following annihilators2

⊥K ∶= {r ∈ R ∣ rK = 0} ≤ RR, K⊥ ∶= {s ∈ S ∣Ks = 0} ≤ SS,
I⊥ ∶= {a ∈ A ∣ Ia = 0} ≤ AS, ⊥J ∶= {a ∈ A ∣ aJ = 0} ≤ RA.

(2.10)

With the same notation as above and with the aid of (2.7) we have soc(RA) = J(R)⊥.

Now let R be a finite associative ring with identity, and A a finite (R,R)-bimodule.
Consider the (abelian) additive group of A. Due to 2.1(1) we have A ≅ Â as groups.
We endow Â with a (R,R)-bimodule structure as follows. For all r ∈ R,a ∈ A, and
χ ∈ Â, the scalar multiplication is given by

(r ⋅χ)(a) = χ(ar) and (χ⋅r)(a) = χ(ra). (2.11)

We call Â the character bimodule. Note that the left R-module structure on Â is
induced by the right R-module structure of A, and vice versa. In this sense we have a
functor ●̂ ∶RMÐ→MR from the category of left R-modules to the category of right R-
modules. Indeed, for a morphisms f ∶RAÐ→RB inRM, f̂ maps χ ∈ B̂ to χ○f ∈ Â. It
follows by the second part of (2.11) that f̂(χ ⋅r) = (f̂(χ)) ⋅r and thus f̂ is a morphism
in MR. As a special case, we can apply all the above to the (R,R)-bimodule R and
consider the character bimodule R̂. One can straightforwardly verify that ●̂ is an
exact contravariant functor. In particular this implies that R̂ is an injective module
(since R is trivially a free R-module, and thus projective).

Remark 2.8. One may go a step further and consider the character module of the

bimodule RÂR. More specifically, ̂̂A is also a (R,R)-bimodule under the same scalar

multiplication. That is, for all φ ∈ ̂̂A,χ ∈ Â, r ∈ R the scalar multiplication is given by

(r ⋅φ)(χ) = φ(χ⋅r) and (φ⋅r)(χ) = φ(r ⋅χ)
In fact Remark 2.1(3) enables a canonical isomorphism of (R,R)-bimodules

ζA ∶RAR z→ R
̂̂AR, az→ { eva ∶ Â Ð→ C∗

χ z→ χ(a) . (2.12)

Analogously one considers ̂̂R and the bimodule isomorphism ζR ∶RRR Ð→ R
̂̂RR.

Remark 2.9. Let A be a (R,R)-bimodule. For any n ∈ N so is An. Out of these we
can produce two more (R,R)-bimodules: Ân and Ân. Then Remark 2.1(2) gives a
canonical bimodule isomorphism

Ân ≅ Ân via (χ1, . . . , χn)(a1, . . . , an) ∶=
n

∏
j=1

χj(aj), (2.13)

2One might want to use subscripts. We omit subscripts for the sake of a lighter notation, and
use them when it is absolutely necessary.
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and thus, we may identify the two modules.

In what follows we study in details the character bimodule R̂. We start with an
easily verifiable proposition that connects annihilators with the notion of dual groups
defined in Remark 2.1(7). Note first that the dual subgroups of left (resp., right)
submodules are right (resp., left) submodules.

Proposition 2.10 ([27, p. 409]). For the character bimodule R̂ we have

K⊥ =K○ for all K ⊆ RR̂, ⊥K =K○ for all K ⊆ R̂R, (2.14)

I⊥ = I○ for all I ⊆ RR, ⊥J = J○ for all J ⊆ RR. (2.15)

Proof. We provide a proof of the first equality, with the rest being similar and/or
following by duality. For the forward containment, assume r ∈ K⊥. This yields
χr = εR for all χ ∈ K. By evaluating at 1 ∈ R we obtain χ(r) = 1 for all χ ∈ K, and
thus r ∈K○. Equality follows by the fact that all the statements made were actually
equivalences.

A left R-module A is called left faithful if rA = 0 implies r = 0. Right faithful
and faithful modules are defined similarly. We have the following.

Proposition 2.11. The character bimodule R̂ is faithful.

Proof. We show that R̂ is left faithful, with the right case being similar. Assume
rR̂ = {εR}. Then 1 = (rχ)(s) = χ(sr) for all χ ∈ R̂ and s ∈ R. Thus Rr ⊆ kerχ for
all χ ∈ R̂. Remark 2.1(7)(ii) implies Rr = 0, and therefore r = 0. This concludes the
proof.

Proposition 2.12 ([20, Prop. 2.4]). The character bimodule R̂ is balanced.

Proof. We show that R̂ is right balanced3, with the left version being symmetric.
Recall the ring homomorphism Θ from (2.9). Similarly, we have the right sided
version applied to the case A = R̂.

Φ ∶ R Ð→ End(RR̂), r z→ { Φ(r) ∶ RR̂ Ð→ RR̂
χ z→ χr

. (2.16)

First of all, Φ is well-defined since χz→ χr is indeed in End(RR̂). It is also straight-
forward to verify that Φ is a ring homomorphism as well as right R-linear. The
injectivity of Φ follows from the fact that R̂ is left faithful; see Proposition 2.11. We
show next that Φ is surjective. Recall the evaluation map form Remark 2.1(3). Note
that ev1 ○Φ(r) = evr. Remark 2.1(3) now implies

̂̂R = {evr ∣ r ∈ R} = {ev1 ○Φ(r) ∣ r ∈ R}.
3We specifically show the right version because the isomorphism constructed will be used later

on.
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Let now f ∈ End(RR̂). Then ev1 ○f ∈ ̂̂R, and hence ev1 ○f = ev1 ○Φ(r) for some r ∈ R.

This means (f(χ))(1) = (χr)(1) for all χ ∈ R̂. Applying this to the characters χs

for any s ∈ R and using the left linearity of f and the left module structure of R̂ we
obtain (f(χ))(s) = (rχ)(s) for all s ∈ R. Therefore f(χ) = χr, which in turn yields
f = Φ(r), as desired.

Definition 2.13 ([26,66]). s

(1) A left R-module RA is called quasi-Frobenius (QF) if for any n ∈ N and for any
submodule U ≤RAn we have:

(i) There exists an index set I and an injective homomorphism An/U ↪ ∏I A.

(ii) The canonical map Hom(An,A)Ð→ Hom(U,A) is surjective.

(2) A (R,R′)-bimodule A is called QF if for every maximal left ideal I ≤ RR and
maximal right ideal J ≤ R′

R′ we have I⊥ and ⊥J are either zero or irreducible
submodules of RA.

(3) A ring R is called QF ring if RRR is a QF bimodule.

Perhaps it is worth to give some intuition on the above definitions. Defini-
tion 2.13(1)(i) guarantees an analogue version of Rank-Nullity Theorem for vector
spaces. On the other hand, the second condition mimics the extendability of linear
forms (for vector spaces). The latter is a consequence of the injectivity of fields.
Definition 2.13(2) is best explained by the following very useful characterization.

Theorem 2.14 ([23, Thm. 2.1]). For a finite faithful left R-module RA with S =
End(RA), the following are equivalent:

(1)RA is a QF module.
(2)RAS is a QF bimodule.
(3)RAS is a balanced bimodule and any of the following equivalent conditions holds:

(i) for any submodules K ≤RA and L ≤ AS we have

K = ⊥(K⊥) and L = (⊥L)⊥. (2.17)

(ii) soc(RA) = soc(AS) =∶ soc(A) and the (R,S)-bimodule soc(A) is QF.

If any of the above conditions are satisfied, then for left ideals I ≤RR and right ideals
J ≤ SS, we have

⊥(I⊥) = I and (⊥J)⊥ = J. (2.18)

Remark 2.15. s

(1) Equations (2.17) and (2.18) are known in literature as the double annihilator
properties. Classically, a QF ring is defined as those artinian rings that satisfy
the double annihilator property; see [38, Thm. 15.1], for instance.

(2) Equation (2.14) along with Remark 2.1(7) implies that the character bimodule R̂
satisfies equation (2.17). Since R̂ is balanced thanks to Proposition 2.12, we can
conclude that R̂ is a QF (R,R)-bimodule. In particular, the isomorphism Φ of
Proposition 2.12 implies thatRR̂S is QF bimodule as well. Then Theorem 2.14(1)
implies RR̂ is a QF module.
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(3) Let RA be a QF module. Recall that the socle is given by soc(RA) = J(R)⊥.
Thanks to Theorem 2.14(3) and (2.7) we get

J(R) = ⊥(J(R)⊥) = ⊥soc(A). (2.19)

We now continue with the definition of Frobenius bimodules, and then present a
useful characterization in terms of the character bimodule. In the next chapter we use
this insight to define Frobenius bimodules employing a purely character-theoretic ap-
proach and bypass the notion of QF. We believe that, especially in a coding-theoretic
setting, this approach is by far more useful and pleasant. After all, Frobeniusness is
named after Frobenius’ work on similarities of representations of RR and RR̂.

Definition 2.16 ([23, Def. 2.16]). A finite QF bimodule RAR is called Frobenius
bimodule if there are module isomorphisms

RR ≅ Rsoc(A) and RR ≅ soc(A)R. (2.20)

Theorem 2.17 ([23, Prop. 2.17]). Let RAR be a finite QF bimodule. Then the fol-
lowing are equivalent:

(1)RAR is a Frobenius bimodule.
(2) soc(A) is a left and right cyclic R-module.
(3)RA ≅ RR̂ and AR ≅ R̂R.

Remark 2.18. s

(1) From Definition 2.16 we obviously get that a Frobenius bimodule is QF. However,
including QF in the definition of a Frobenius bimodule is redundant since the
condition on Theorem 2.17(3) alone implies QF, as we will see in Corollary 2.27.

(2) Classically, a (artinian) ring R (thus, not necessarily finite) is called Frobenius
if RRR satisfies (2.20). Even in this case, (2.20) solely implies that RRR is QF;
see [38, Thm. 16.14]. Moreover, for finite rings Honold [27, Thm. 2] showed that
R is Frobenius iff either of isomorphisms in (2.20) exist. That is, the existence of
either of the isomorphisms actually implies the other one.

(3) For the equivalence (2) ⇐⇒ (3) on Theorem 2.17 the assumption on RAR being
QF is crucial. In general, for a left R-module A we have soc(RA) is left cyclic iff

RA↪RR̂; see [69, Prop. 5.3].
(4) In Remark 2.15(2) we mentioned that RR̂R is a QF bimodule. Moreover, Theo-

rem 2.17(3) implies that R̂ is trivially a Frobenius bimodule.

2.3 A Character-Theoretic Approach to Frobeniusness

Let R be a finite ring and let A be a finite (R,R)-bimodule. In this section we focus
exclusively on character bimodules and give a character-theoretic approach to notions
introduced in Section 2.2. The aim is to study A via RR̂R and RÂR. In particular, we
develop the approach starting over with Definition 2.19, where we define Frobenius
bimodules without resorting to quasi-Frobenius bimodules; see also Definition 2.16.
Recall that the scalar multiplication that gives rise to the module structure of R̂ is
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given in (2.11). Recall also the canonical bimodule isomorphisms ζR and ζA discussed
in Remark 2.8.

Definition 2.19. Let R be any finite ring with identity and A a finite (R,R)-
bimodule. Then A is called a Frobenius bimodule if RA ≅ RR̂ and AR ≅ R̂R.
The ring R is called Frobenius if RRR is Frobenius.

Before we start exploring the consequences of the above definition, we record a
very useful result due to Wood that goes back to Bass’ Theorem [7, Lem. 6.4].

Theorem 2.20 ([68, Prop. 5.1]). Let R be any finite ring with identity and A a finite
left R-module. Let a, a′ ∈ A be such that Ra = Ra′. Then there exists a unit α ∈ R∗

such that a′ = αa.

Remark 2.21. s

(1) Let A be an (R,R)-Frobenius bimodule. By definition, there exists an isomor-
phism λ ∶RA ≅ RR̂. Recall that RR̂ is an injective module. As a consequence so
is RA. Now using the fact that the character functor ●̂ is exact and contravariant
we get for free that ÂR is projective. In fact we can say much more. Recall the
evaluation map form Remark 2.1(3). Then the induced map

RR Ð→ ÂR, r z→ ζR(r) ○ λ = evr ○ λ (2.21)

is an isomorphism of right R-modules. As a consequence, ÂR is a free module
of rank one. Any basis vector of ÂR is called a right generating character.
It follows that right generating characters are of the form ζR(u) ○ λ = evu ○ λ for
u ∈ R∗. Similarly, an isomorphism of right modules ρ ∶ AR ≅ R̂R gives rise to left
generating characters. To resume, given a right generating character χ and a
left generating character χ′ we have

Â = {χ⋅r ∣ r ∈ R} = {r ⋅χ′ ∣ r ∈ R}. (2.22)

(2) Let χ,χ′ ∈ Â be two left generating characters. By definition we have Rχ = Â =
Rχ′. Theorem 2.20 implies that there exists a unit u ∈ R∗ such that χ′ = uχ.
Conversely, if χ is a left generating character the so is uχ. This follows easily,
for instance, from Theorem 2.22(3) below. Therefore the set of left generating
characters is R∗χ. Similarly for right generating characters.

(3) Recall that R
̂̂RR ≅RRR via ζR. Let A be a Frobenius bimodule. It follows directly

from Definition 2.19 that RÂR is Frobenius iff R is a Frobenius ring. In fact, Â is
far from being Frobenius if R is not Frobenius .

(4) Making use of Propositions 2.11 and 2.12 we get that a Frobenius bimodule is
balanced and faithful. That is

End(RA) ≅ R ≅ End(AR) as rings (2.23)

as well as ⊥A = A⊥ = 0; see (2.10). In particular, we have group isomorphisms

Aut(RA) ≅ R∗ ≅ Aut(AR). (2.24)
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Below we list some basic facts about generating characters of Frobenius bimodules.
Recall the kernel of a character from Remark 2.1(7). The equivalences can be found
in [69, Lem. 5.2, Lem. 5.3, Cor. 5.1].

Theorem 2.22. Let RAR be a Frobenius bimodule and let χ ∈ Â. The following are
equivalent.

(1)χ is a left generating character of A, i.e., RÂ = Rχ.
(2)χ is a right generating character of A, i.e., ÂR = χR.
(3)kerχ contains no nonzero left submodule of A.
(4)kerχ contains no nonzero right submodule of A.

Furthermore, if χ is a generating character of A and V is any left R-module then the
map Hom(RV ,RA)Ð→ V̂, g z→ χ ○ g is an injective group homomorphism.

Proof. It only remains to prove the last part. We will use part (3), that is, kerχ does
not contain any nonzero left submodule of A. To that end, assume that (χ ○ g)(v) =
χ(g(v)) = 1 for all v ∈ V . This yields im g ⊆ kerχ. By assumption, we obtain im g = 0
and thus g = 0.

In particular, Theorem 2.22 implies that we need not specify the sidedness of
generating characters. From now on, we fix a Frobenius bimodule A = RAR and a
generating character χ. As in (2.22), one may write

Â = {χ⋅r ∣ r ∈ R} = {s⋅χ ∣ s ∈ R}. (2.25)

Note that (2.25) implies that for all r ∈ R there exists sr ∈ R such that χ ⋅ r = sr ⋅ χ;
see also Remark 2.25. We point out in here that typically sr ≠ r. The case when they
are equal will be considered later on; see also Theorem 2.30.

Remark 2.23. Let A be a Frobenius bimodule with generating character χ. For the
left R-linear map

βl ∶RAÐ→ RR̂, az→ { χ(●a) ∶ R Ð→ C∗

r z→ χ(ra) , (2.26)

we have

kerβl = {a ∈ A ∣ βl(a) = εR}
= {a ∈ A ∣ χ(ra) = 1 for all r ∈ R}
= {a ∈ A ∣ Ra ⊆ kerχ}
= {0},

where the very last step follows by Theorem 2.22(3). Therefore βl is injective. Since
A is Frobenius we have RA ≅RR̂ and in particular ∣A∣ = ∣R̂∣. This implies that βl is
an isomorphism. Similarly, we have the following isomorphisms:

βr ∶ AR Ð→ R̂R, az→ χ(a●),
αl ∶ RR Ð→ RÂ, r z→ χ(●r),
αr ∶ RR Ð→ ÂR, r z→ χ(r●).

(2.27)
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We end this remark by pointing out that all the above mentioned isomorphisms are
just special instances of (2.21) from Remark 2.21. Specifically, we have

αr(r) = ζR(r) ○ βl, αl(r) = ζR(r) ○ βr, for all r ∈ R, (2.28)

βr(a) = ζA(a) ○ αl, βl(a) = ζA(a) ○ αr, for all a ∈ A. (2.29)

Recall the endomorphism ring S = End(RA). On A we have now two right module
structures: AR and AS as described in Section 2.2. A natural question is how do
these two structures relate? To answer this question we start with the following
isomorphism of rings

τ ∶ R Ð→ S, r z→ βl
−1 ○Φ(r) ○ βl (2.30)

where Φ is as in Proposition 2.12. In addition to the isomorphism τ we also have the
natural ring homomorphism

σ ∶ R Ð→ S, r z→ { σ(r) ∶ RA Ð→ RA
a z→ ar

. (2.31)

Note that kerσ = A⊥ = 0 thanks to Remark 2.21(4). Hence σ is injective. Moreover,
the fact that ∣R∣ = ∣S∣ (thanks to (2.30)) implies that σ is an isomorphism of rings. In
other words all endomorphisms of RA are given by right multiplication by some ring
element r ∈ R. Summing up we have two different ways, yet very closely related (see
Remark 2.25 below), to describe the endomorphism ring S:

S = {τ(r) ∣ r ∈ R} = {σ(r) ∣ r ∈ R}. (2.32)

An identical approach can be done with AR and S′ ∶= End(AR). Equation (2.32)
along with its right-sided analogue imply the following.

Proposition 2.24. Any subset K ⊆ A satisfies

K is a submodule of AR ⇐⇒K is a submodule of AS,

K is a submodule of RA⇐⇒K is a submodule of S′A.

The following remark gives the relation between τ and σ.

Remark 2.25. Let χ be a generating character of A. Using (2.25) and A⊥ = 0 we
have that for every r ∈ R there exists a unique r′ ∈ R such that rχ = χr′ as characters.
This yields a bijection g ∶R Ð→ R, r z→ r′. It is straightforward to check that g is
in fact a ring homomorphism, and hence an automorphism of R. Moreover, by the
definition of τ we have τ(g(r)) = βl

−1 ○ Φ(g(r)) ○ βl ∈ S. We claim that τ ○ g = σ.
Indeed, for a ∈ A we have

((τ ○ g)(r))(a) = (βl
−1 ○Φ(g(r)) ○ βl)(a) = βl

−1((χg(r))(●a))

= βl
−1((rχ)(●a)) = βl

−1(χ(●ar)) = ar = (σ(r))(a).

We end this remark by pointing out that g is known in literature as the Nakayama
automorphism.
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We now return to annihilators defined in (2.10), and show that a Frobenius bi-
module also satisfies Proposition 2.10. This will be the crucial step toward showing
that Definitions 2.19 and 2.16 are equivalent. Recall that thanks to Propositions 2.12
and 2.24 we may identify R = S and RAR =RAS. As mentioned, we have the following.

Theorem 2.26 ([20, Prop. 2.10]). Let RAR be a Frobenius bimodule and S ∶=
End(RA). Then for the bimodule RAS we have the double annihilator properties

(⊥K)⊥ = K for all K ≤ AS, ⊥(K⊥) = K for all K ≤ RA

⊥(I⊥) = I for all I ≤ RR, (⊥J)⊥ = J for all J ≤ SS.

Proof. Recall first that for the case A = R̂ we get the double annihilator properties
by combining Proposition 2.10 and Remark 2.1(7); see also Remark 2.15(2). The
strategy is to transfer the problem from A to R̂ and then use the above-mentioned
fact.

We start by showing the very first equality. To this end, letK ≤ AS be a submodule
and consider L ∶= βl(K) ⊆ R̂. We claim that in fact L ≤ R̂R is a right R module. This
is not a priori clear since βl is only guaranteed to be left linear. Indeed, let χ ∈ L
and write χ = βl(a) for some a ∈ K. Recall that S = {τ(r) ∣ r ∈ R}. Since K ≤ AS
we have τ(r)(a) = a ⋅τ(r) ∈ K for all r ∈ R. From the very definition of τ we have
τ(r)(a) = βl

−1(βl(a)r), and thus βl(a)r = βl(τ(r)(a)) ∈ βl(K) = L. This proves the
claim. For the rest of the proof we use the notation I⊥A and I⊥R̂ in order to distinguish
between the annihilators of an ideal I ≤ RR in A and in R̂. Then left linearity and
injectivity of βl implies βl(I⊥A) = I⊥R̂ for any I ≤ RR. By the same properties we have
⊥K = ⊥L. Now the special case A = R̂ gives us (⊥L)⊥R̂ = L and thus we compute

∣(⊥K)⊥A ∣ = ∣βl((⊥K)⊥A)∣ = ∣βl((⊥L)⊥A)∣ = ∣(⊥L)⊥R̂ ∣ = ∣L∣ = ∣K ∣.

Together with the obvious containment K ⊆ (⊥K)⊥ we obtain the desired equality.
Next, let K ≤RA. Then since βl is left R-linear then βl(K) ≤RR̂ is trivial. Now

the second equality ⊥(K⊥) =K follows easily.
For the two remaining equalities we make use of the last part of Theorem 2.14.

Indeed, they follow by all the above and the fact that A is Frobenius.

Combining Proposition 2.24 and Theorem 2.26 we get the following immediate
corollary.

Corollary 2.27. For any Frobenius bimodule RAR and any submodule K ≤ AR we
have (⊥K)⊥ = K. In particular, Definition 2.19 alone implies that a Frobenius bi-
module is also a QF bimodule, and thus Frobenius in the sense of Definition 2.16 (by
Theorem 2.17).

In Sections 3.4 and 7.2 we will be focusing on local Frobenius rings. In many
circumstances, if R is a commutative ring the following helps transferring the problem
to local Frobenius rings.

Theorem 2.28 ([38, Thm. 15.27]). If R is a finite commutative ring then R ≅ R1 ×
⋯ ×Rt for suitable local Frobenius rings Ri.
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Let R be a local QF ring with unique maximal ideal m. Then J(R) = m and
(2.7) imply soc(R) = m⊥. Moreover m = soc(R)⊥ thanks to (2.19). Definition 2.13(2)
implies that soc(R) must be right cyclic. Similarly we may conclude that soc(R) is
left cyclic. That is, there exists α,β ∈ R such that αR = soc(R) = Rβ. In particular
we have the following.

Theorem 2.29. Let R be a local ring. Then R is QF iff it is Frobenius.

We continue with a special class of Frobenius bimodules. Note first that Defini-
tion 2.19 in general does not necessarily imply RAR ≅ RR̂R as bimodules. If the latter
is satisfied the bimodule RAR is called symmetric. We have the following char-
acterizations of symmetric bimodules; see [38, Thm. 16.54] for symmetric algebras
and [23, Prop. 2.11] for symmetric rings.

Theorem 2.30. Let RAR be a Frobenius bimodule. The following are equivalent.

(1)A is symmetric.
(2)There exists a generating character χ ∈ Â such that r ⋅χ = χ⋅r for all r ∈ R.

Proof. (1) Ô⇒ (2) Let Ψ ∶ RAR Ð→ RR̂R be an isomorphism of bimodules. Then

Ψ̂ ∶ R ̂̂RR Ð→RÂR, φz→ φ ○Ψ is again an isomorphism of bimodules. By Remark 2.8,

we have R
̂̂RR ≅RRR. With this identification, χ ∶= Ψ̂(1) ∈ Â is a generating character.

Since Ψ̂ is left and right R-linear we have

r ⋅χ = r ⋅(Ψ̂(1)) = Ψ̂(r) = (Ψ̂(1))⋅r = χ⋅r.

(2)Ô⇒ (1) The isomorphism of bimodules RRR z→RÂR, r z→ r ⋅χ = χ⋅r induces the
required isomorphism of bimodules RAR ≅ RR̂R.

Remark 2.31. A character χ ∈ Â such that r ⋅χ = χ ⋅r is called symmetric. Thus,
a bimodule RAR is symmetric iff it admits a symmetric generating character. Note
also that symmetric bimodules are precisely those Frobenius bimodules for which the
Nakayama automorphism from Remark 2.25 is the identity.

We end this section with some examples and nonexamples.

Example 2.32. s

(1) The class of Frobenius rings is quite large. It includes finite fields, finite principal
ideal rings (and consequently integer residue rings), full matrix rings over Frobe-
nius rings, finite products of Frobenius rings, finite group rings over Frobenius
rings; see [68, Ex. 4.4] for instance.

(2) The easiest example of a non Frobenius ring is R ∶= F2[x, y]/(x2, y2, xy). It is easy
to see that soc(R) = {0, x, y, x+y} which is clearly non principal. R is also a local
ring with unique maximal ideal soc(R). This implies that R is not even QF; see
Theorem 2.29.

(3) Let R be the commutative non-Frobenius ring above, and let A = R̂. We already
know that A is Frobenius bimodule; a generating character is given by ψ(χ) = χ(1)
for all χ ∈ R̂ as in Remark 2.21(1). We also already know that B ∶= Â is not a
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Frobenius bimodule; see Remark 2.21(3). This can be seen explicitly as follows.
It is easy to see that R = spanF2

{1, x, y} and A = spanF2
{χ1, χ2, χ3}, where

χ1(x) = χ1(y) = 1, χ1(1) = −1,

χ2(1) = χ2(y) = 1, χ2(x) = −1,

χ3(1) = χ3(x) = 1, χ3(y) = −1.

We also have

Rχ1 = {ε, χ1} and Rχ = {ε, χ, χ1, χ + χ1} for all χ ∈ A / {ε,χ1},

which in turn says that none of the characters in R̂ is generating. This implies
that none of the characters in B̂ can be generating (because B̂ ≅ R̂ as bimodules
thanks to Remark 2.8).

(4) It is straightforward to check that a vector space V over a finite field F satisfies
Definition 2.13(1)-(2), and therefore V is a QF module and bimodule over F. Yet,
V will be Frobenius iff dimF(V ) = 1. The latter makes it clear that Frobeniusness
is a very strong condition with significant size constraints.

(5) Symmetric rings trivially include commutative Frobenius rings. Full matrix rings
over finite fields are also symmetric (see [38, Ex. 16.57]). As a consequence of
(2.6) so is every finite semisimple ring.

(6) We end this list of examples by providing two examples of Frobenius non sym-
metric rings.

(i) Consider the ring

R ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

a 0 0 0
0 a b 0
0 0 c 0
d 0 0 c

⎞
⎟⎟⎟
⎠

RRRRRRRRRRRRRRRRRR

a, b, c, d ∈ F2

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

.

Denote a matrix A ∈ R as A(a, b, c, d). The character χ ∶ A(a, b, c, d) z→
(−1)a+b+c+d is a generating character, and thus R is Frobenius; see [18, Ex. 4.5].
Consider, for instance, A ∶= A(1,0,0,0). It is straightforward to check that
A⋅χ ≠ χ⋅A. Next, every generating character of R̂ is of type χU ∶= U ⋅χ where
U ∈ R∗ = {A(1, b,1, d) ∣ b, d ∈ F2}. Similarly, one finds a matrix A ∈ R for which
A⋅χU ≠ χU ⋅A. Hence R̂ does not admit any symmetric generating character.

(ii) Let Fq[x,σ] be a skew polynomial ring where σ is any nontrivial automorphism
of Fq acting via xa = σ(a)x. Then R ∶= Fq[x;σ]/(x2) is Frobenius but not
symmetric; see [23, Ex. 2.14].
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Chapter 3 Linear Codes over Rings and Modules

3.1 Basic Notions

Let R be a finite ring with identity and A be a finite unital left R-module. A
submodule 0 ≠ C ≤ RAn is called block linear code of length n. Elements of C
are called codewords and A is called the alphabet. It is worth pointing out that
this general definition is on its fullest. It includes linear codes over finite fields, that
is, A = R = Fq; it includes linear codes over finite rings, that is A = R; it includes
sublinear codes; that is A = R′ where R′/R is a ring extension. The latter is a
particularly interesting case. If R′ = Fpl and R = Fp for some prime p, the code C
is called additive. Additive codes not only form an interesting class on their own,
but also link with Quantum Information Theory and Quantum Error Correction. We
will discuss this connection in Chapters 6 and 7. We will say C is a [n, k]-code if
∣C∣ = ∣R∣k for some k ∈ N. In particular, a free module C ≤RAn of rank k is a [n, k]-
code. A linear code of length n is endowed with the Hamming weight, where for
a = (a1, . . . , an) ∈ An we define

wtH(a) ∶= ∣{i ∣ ai ≠ 0}∣. (3.1)

Since C is a submodule we have 0 ∈ C. The minimum distance of a code C is given
by

dH(C) ∶= min{wtH(a) ∣a ∈ C − {0}}. (3.2)

If in addition we have dH(C) = d we say that C is a [n, k, d]-code. The minimum
distance of a code is the most important invariant and completely determines its
theoretical error-correcting capabilities due to the following.

Theorem 3.1. Let C be a linear code of minimum distance d. Then C can detect any
pattern of d − 1 errors and can correct any pattern of ⌊(d − 1)/2⌋.

Let C ≤RAn be a linear code. From the very definition of the socle we have

soc(C) = C ∩ (soc(RA))n ≤ R(soc(A))n. (3.3)

Since soc(C) ⊆ C we clearly have dH(C) ≤ dH(soc(C)). On the other hand, (2.8)
implies the reverse inequality. This yields

dH(C) = dH(soc(C)). (3.4)

Equation (3.4) points out the importance of the notion of the socle. Since the socle
of a Frobenius bimodule is particularly nice, (3.4) provides yet another confirmation
about the usefulness of Frobeniusness in a coding theoretic setting.

We now continue with the dual of a linear code. There are many approaches one
can take. For our purposes it is convenient to define the dual of a code via bilinear
forms.
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Definition 3.2. Let RAR be a bimodule. A map β ∶ A×AÐ→ A is called a bilinear
form if the maps β(a, ●) ∶ A Ð→ A and β(● , a) ∶ A Ð→ A are right and left R-module
homomorphisms for all a ∈ A. In addition, β is called

(1) nondegenerate if the maps az→ β(● , a) and az→ β(a, ●) are injective.
(2) symmetric if β(a, a′) = β(a′, a) for all a, a′ ∈ A.
(3) alternating if β(a, a′) = −β(a′, a) for all a, a′ ∈ A.
(4) symplectic if β(a, a) = 0 for all a ∈ A.

We extend β to β ∶ An ×An Ð→ A via

β(a, a′) ∶=
n

∑
j=1

β(aj, a′j). (3.5)

Definition 3.3. The dual of a left linear code C ≤RAn is the left linear code

l(C) ∶= {a ∈ An ∣ β(a, c) = 0 for all c ∈ C} ≤RAn.

The dual of a right linear code C ≤ AnR is the right linear code

r(C) ∶= {a ∈ An ∣ β(c, a) = 0 for all c ∈ C} ≤ AnR.

Proposition 3.4. Let A be a Frobenius bimodule with generating character χ, and
C ≤RAn a linear code. Then

l(C) = {a ∈ An ∣ χ(β(a, c)) = 1 for all c ∈ C}

Proof. The forward containment is obvious. For “ ⊇ ” assume that a ∈ An is such that
χ(β(a, c)) = 1 for all c ∈ C. Note that β(a,C) ∶= {β(a, c) ∣ c ∈ C} is a right submodule
of An and by the assumption on a we have β(a,C) ⊆ kerχ. Now Theorem 2.22(4)
implies β(a,C) = 0 and hence a ∈ l(C).

Remark 3.5. Let R be a Frobenius ring with generating character χ. Take A = R
and let β(r, s) ∶= rs. Then for r, s ∈ Rn, as in (3.5), we extend β to the standard dot
product in Rn

β(r, s) ∶=
n

∑
j=1

rjsj.

Let C ≤RRn be a linear code. Using Proposition 3.4, and then Remark 2.9 we get

l(C) = {r ∈ Rn ∣χ(
n

∑
j=1

rjcj) = 1 for all c ∈ C}

= {r ∈ Rn ∣
n

∏
j=1

(χ⋅rj)(cj) = 1 for all c ∈ C}

≅ {ψ ∈ R̂n ∣ C ⊆ kerψ}.

Now Remark 2.1(7) implies l(C) = C○ ≤ RR̂n, and Proposition 2.10 further implies
l(C) = C⊥. For this reason and due to the fact that we will only consider the dual
codes of linear codes over Frobenius rings, from now on we will use the common perp
notation.
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3.2 General Weight Functions

Let C ≤ RAn be a linear code of length n. A weight function is simply a map
ω ∶ An Ð→ R such that ω(0) = 0. The minimum distance of C with respect to w is

dω(C) ∶= min{ω(a) ∣ a ∈ C − {0}}.

Before we go any further, it is worth pointing out that this definition differs from the
ones commonly used in literature. Indeed, one starts with a weight function on the
alphabet ω ∶ AÐ→ R and then extends it to a = (a1, . . . , an) ∈ An via

ω(a) =
n

∑
i=1

ω(ai). (3.6)

However, many weight functions that we will encounter later on are not of this form
and therefore we think that this approach is restrictive.

The most important weight function for codes over rings or modules is the ho-
mogeneous weight. It was introduced in [36] for codes over integer residue rings and
further developed for linear codes over rings and modules in [22,44].

Definition 3.6. A weight function ω ∶ A Ð→ R on a finite module RA is called
(normalized left) homogeneous if

(1)ω(a) = ω(a′) for all a, a′ ∈ A such that Ra = Ra′.
(2)∑a′∈Ra ω(a′) = ∣Ra∣ for all a ≠ 0.

In [23, Thm. 4.4] Greferath et al. establish the existence and uniqueness of the
homogeneous weight on arbitrary finite modules. For finite Frobenius bimodules a
very useful formula for the homogeneous weight has been established by Wood [70,
Prop. 9]. It is a straightforward generalization of [27, p. 412] by Honold, where the
same result was derived for finite Frobenius rings.

Theorem 3.7. Let RAR be a finite Frobenius bimodule with generating character χ.
Then the homogeneous weight on A is given by

ω(a) = 1 − 1

∣R∗∣ ∑u∈R∗
χ(au) = 1 − 1

∣R∗∣ ∑u∈R∗
χ(ua) for all a ∈ A.

Proof. First of all, the second equality follows by the fact that ∑u∈R∗ uχ = ∑u∈R∗ χu is
the sum of all generating characters ofA. Next, as mentioned, thanks to [23, Thm. 4.4]
there exists a unique homogeneous weight over a Frobenius alphabet. Thus it is
enough to show that the function ω satisfies Definition 3.6. The first property follows
immediately from Theorem 2.20. For the second property, let a ≠ 0. Then

∑
a′∈Ra

∑
u∈R∗

χ(a′u) = ∑
u∈R∗

∑
r∈R

(χ⋅r)(au) = 0,

since au ≠ 0 and the second inner sum above runs over all the characters ψ ∈ Â. Now
the statement follows.
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Remark 3.8. s

(1) Since characters take complex values, it is not a priori clear that the function ω
above takes in fact real values (as required by the definition of any weight function
in general and by Definition 3.6 in particular). However, since {uχ ∣ u ∈ R∗} =
{−uχ ∣ u ∈ R∗} we have

∑
u∈R∗

χ(au) = ∑
u∈R∗

χ(−au) = ∑
u∈R∗

(−uχ)(a) = ∑
u∈R∗

(uχ)(a) = ∑
u∈R∗

χ(au).

This yields ω(a) = ω(a) and hence ω(a) ∈ R for all a ∈ A.
(2) Note that Theorem 3.7 also makes it obvious that ω(0) = 0, which again, is not a

priori clear from Definition 3.6.

Remark 3.9. Let R = Fq be a finite field. Then, since the only non-zero ideal of R
is R itself, we have ω(r) = q/(q − 1) for all r ≠ 0. Conversely, assume that ω(r) = α
for all r ≠ 0. Then all non-zero ideals I ≤ R satisfy the size condition α = ∣I ∣/(∣I ∣ − 1).
Thus all non-zero ideals of R have the same size, and therefore R is a field. This
means that the homogeneous weight ω over a ring R is the Hamming weight (up to a
scaling factor) iff R is a field. In particular, ω is the Hamming weight (up to a factor
of 2) iff R = F2.

Example 3.10. Obviously the homogeneous weight depends on the alphabet. Let
R = F2 × F2. Let ω be the homogeneous weight on the R-module R. One computes
from definition 3.6 ω(0,0) = ω(1,1) = 0 and ω(0,1) = ω(1,0) = 2. If we take the
homogeneous weight ω̂ on the F2-vector space F2 ×F2, then ω̂(a) = 2 for all a ≠ 0. On
the other hand, if we take the homogeneous weight on F2 and extend it additively on
F2 × F2 as in (3.6), we obtain ω̃(1,0) = ω̃(0,1) = 1 and ω̃(1,1) = 2.

We continue next with the Rosenbloom-Tsfasman weight (RT-weight) introduced
in [54]. The RT-weight was used in [60] to detect matrix codes with large Hamming
distance. In addition, the RT-weight provides an instance of a weight that is not an
additive extension from AÐ→ R.

Definition 3.11. The RT-weight of a vector a = (a1, . . . , an) ∈ An is defined as

wtRT(a) = {max{i ∣ ai ≠ 0}, if a ≠ 0
0, if a = 0

.

The RT-weight as well as the Hamming weight are special cases of the following.
Let ≤ be a partial order on [n] ∶= {1, . . . , n} and consider the poset P ∶= ([n],≤).
A subset S ⊆ [n] is called an ideal if i ∈ S and j ≤ i imply j ∈ S. We denote
by ⟨S⟩ the smallest ideal generated by S. For a = (a1, . . . , an) ∈ An we denote by
supp(a) ∶= {i ∣ ai ≠ 0} the support of a.

Definition 3.12. The poset weight of a = (a1, . . . , an) ∈ An is given by

wtP(a) = ∣⟨supp(a)⟩∣ .
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As mentioned, both the Hamming weight and the RT-weight are special in-
stances of the poset weight. Indeed, let P be an anti-chain, that is, every two
elements are incomparable. In this case we have supp(a) = ⟨supp(a)⟩ and therefore
wtH(a) = wtP(a). On the other hand, if the partial order ≤ is the usual order of the
naturals we have wtRT(a) = wtP(a).

Recall that if RA is a left R-module then S ∶= End(RA) acts on A from the right
via a⋅f ∶= f(a). Now let G ≤ S∗, that is, a subgroup of the group of automorphisms
of RA. Denote A/G the orbit space of this group action and write A/G = ⋃li=1Oi. For
an orbit O ∈ A/G and a vector a = (a1, . . . , an) ∈ An denote

swcO(a) ∶= ∣{i ∣ ai ∈ O}∣.

Definition 3.13. With the same notation as above, the symmetrized weight com-
position (with respect to G) of a vector a ∈ An is defined as

swcG(a) ∶= (swcO1(a), . . . , swcOl(a)).

That is, swcG(a) encodes the number of entries of a that are contained in each orbit
Oi. Note that if R = A are fields and G = S∗ then the symmetrized weight composition
encodes the same information as the Hamming weight. The other extremal case
G = {1} gives the complete weight of a, that is, the number of coordinates equal
to a fixed module element; see [40, p. 142]. Note in addition that

swcG(a) = swcG(b) Ô⇒ wtH(a) = wtH(b). (3.7)

3.3 Isometries of Linear Codes

An isometry is intended to capture the sameness of two linear codes. Thus, we want
an isometry to preserve the algebraic structure of the code (linearity, for starters) as
well as the weight function the code is endowed with.

Definition 3.14. Let C ≤ An be a linear code and ω a weight function on C. A
R-linear map f ∶ C Ð→ An is called an ω-isometry if ω(f(x)) = ω(x) for all x ∈ C.
We call two codes ω-isometric if there exists an ω-isometry between them.

If for a given weight function ω, 0 ∈ C is the only codeword of weight zero (e.g.
wtP, and therefore wtH,wtRT) we get that an ω-isometry is injective and therefore an
isomorphism of modules onto its image. It is easy to see that the inverse of such a
map is an ω-isometry as well.

Of course, two isometric codes have the same minimum distance and therefore the
same error-correcting capabilities.

Recall that for a left R-module RA, S ∶= End(RA) acts on A from the right.
Similarly End(RAn) acts on RAn from the right via a ⋅f ∶= f(a). We have a ring
isomorphism

Φ ∶Mn(S)Ð→ End(RAn), M z→ { Φ(M) ∶ RAn Ð→ RAn

a z→ a⋅M . (3.8)
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As a consequence, every f ∈ End(RAn) acts on RAn as right multiplication by a
matrix with entries in S. Clearly, (3.8) implies Aut(RAn) ≅ GLn(S).

A weight function ω comes associated with the left and right symmetry groups.
For a fixed n ∈ N we define

Gω, l ∶= {u ∈ R∗ ∣ ω(ua) = ω(a) for all a ∈ An}, (3.9)

Gω, r ∶= {τ ∈ GLn(S) ∣ ω(a⋅τ) = ω(a) for all a ∈ An}. (3.10)

Example 3.15. Let R = Mk(Fq), A = Mk×m(Fq), ω = wtH, and n = 1. Then
Gω,l = GLk(Fq) and Gω,r = GLm(Fq). In particular, for k = 1 we get Gω,l = F∗q and for
m = 1 we get Gω,r = F∗q .

In Aut(RAn) we identify two subgroups of matrices: The group of lower triangular
matrices

LTn(S) ∶= {M ∈ GLn(S) ∣M is lower triangular}, (3.11)

and the group of monomial matrices

Monn(S) ∶= {M ∈ GLn(S) ∣
M has exactly one nonzero entry
in each row and column

}. (3.12)

And in general, for a subgroup G ≤ S∗ = Aut(RA) we define

MonG,n(S) ∶= {M ∈ Monn(S) ∣ the nonzero entries of M are in G}. (3.13)

For a given weight function ω and a linear code C ≤ RAn a natural question is
to understand the structure of an ω-isometry f ∶ C Ð→ An. This turns out to be
straightforward for the extremal case C = An and is given by the following.

Theorem 3.16. Let f ∈ End(RAn) and M ∈Mn(S) be such that f(a) = a⋅M for all
a ∈ An. Then

(1)f is wtH-preserving iff M ∈ Monn(S).
(2)f is wtRT-preserving iff M ∈ LTn(S).
(3)f is swc-preserving with respect to G ≤ S∗ iff M ∈ MonG,n(S).

As a consequence, if A is Frobenius bimodule, (2.24) implies M ∈ Monn(R),M ∈
LTn(R), M ∈MonG,n(R) respectively.

Proof. We prove the first part, with the rest being similar. The “if part” is obvious.
For the “only-if part”, put Aj ∶= 0 × ⋯ × A × ⋯ × 0. Let M = (mi,j) ∈ End(RAn)
be such that f(a) = aM as in (3.8). Whenever f is a Hamming isometry, for all
a ∈ Aj (a ≠ 0, of course), f(a) must be a weight one vector. Hence, there exists a
permutation σ ∈ Sn such that f(Aj) ⊆ Aσ(j). In addition, f is an isomorphism. This
yields f∣Aj is also an isomorphism and f(Aj) = Aσ(j). This means mσ(j), j ∈ Aut(RA).
This concludes the proof.
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Note that Theorem 3.16 establishes the right symmetry groups Gω, r for the spec-
ified weight ω. On the other hand, it is easy to see that Gω, l = R∗ in all the cases. In
this sense, all the above mentioned weight functions have full left symmetry. On
the other hand, none of the weights has full right symmetry in general.

Remark 3.17. In [50] the authors establish the right symmetry group of a general
poset weight for the case R = A = Fq. We sketch the proof for the general case. The
details can be filled similarly as in [50]. Let f and M be as in Theorem 3.16, and
assume f is wtP-preserving. Put Aj ∶= 0×⋯×A×⋯×0. Then, the ideals ⟨supp(f(a))⟩
have the same unique maximal element for all a ∈ Aj − {0}; see [50, Lem. 1.2]. This
gives a map φf ∶ j z→ max{⟨supp(f(a))⟩}. Then, similarly as in [50, Thm. 1.2], we
have

f(Aj) =∏
i≤j
Aφf (i). (3.14)

On the other hand, (3.14) implies that the jth column of M has entries mφf (i), j ∈ S
if i ≤ j and 0 else. So in essence, the right symmetry group is still the set of “lower”
triangular matrices where “lower” is in terms of the poset structure.

Remark 3.18. s

(1) Let M = (mi,j) ∈ Monn(S). By the very definition of a monomial matrix, there
exists a permutation π such that mi,j ∈ S∗ if i = π(j) and mi,j = 0 else. Since
the nonzero entries of M depend only on one coordinate, we will write mj instead
of mπ(j),j. With the same notation as in (3.8), the map f ∶= Φ−1(M) is called
monomial map. For a = (a1, . . . , an) ∈ An we have

f(a) = (m1(aπ(1)), . . . ,mn(aπ(n))). (3.15)

If G ≤ S∗ and mj ∈ G for all j then f is called a G-monomial map. Recall that
in the case when A is a Frobenius bimodule we have S ≅ R, and therefore S∗ ≅ R∗.
In this case (3.15) reads as

f(a) = (aπ(1)u1, . . . , aπ(n)un), (3.16)

where uj ∈ R∗ correspond to mj ∈ S∗.
(2) By the very definition of the Hamming weight and (2.1), for a ∈ A we have

1 −wtH(a) = 1

∣A∣ ∑
χ∈Â

χ(a).

For a = (a1, . . . , an) ∈ An we have

n −wtH(a) =
n

∑
j=1

(1 −wtH(aj)) =
1

∣A∣
n

∑
j=1

∑
χ∈Â

χ(aj). (3.17)

Now let A be a Frobenius bimodule with generating character χ. Then Â = {rχ ∣
r ∈ R} = {χr ∣ r ∈ R} and ∣A∣ = ∣R∣, and (3.17) reads as

n −wtH(a) = 1

∣R∣
n

∑
j=1

∑
r∈R

χ(ajr) =
1

∣R∣
n

∑
j=1

∑
r∈R

χ(raj). (3.18)
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Now, assume we have a linear map f ∶ C ≤ RAn Ð→ An. Let pj ∶ An Ð→ A be
the projection on the jth coordinate. Denote fj ∶= pj ○ f . Let ι ∶ C Ð→ An be the
canonical embedding, and similarly denote ιj ∶= pj ○ ι. In other words, for all x ∈ C,
ι(x) = (ι1(x),⋯, ιn(x)) and f(x) = (f1(x), . . . , fn(x)). Making use of (3.18) we
conclude that f is a Hamming isometry iff for all x ∈ C we have

n

∑
i=1

∑
r∈R

χ(ιi(rx)) =
n

∑
j=1

∑
r∈R

χ(fj(rx)). (3.19)

So far we have dealt with isometries of the special case C = RAn. In this case
we took high advantage of the fact that ιj are defined on the entire ambient space
An. What about when C ⊊ An? As we will see later on, this question is highly
nontrivial. The question was posed and answered first by MacWilliams [41] for the
case R = A = F2. A particularly elegant proof using character theory was given in [64]
for the case R = A = Fq, which eventually led Wood to the case of Frobenius alphabets.
The strategy, as we will see, works very well for any weight that is extended additively
as in (3.6). However, the strategy would not work for weights without this property
(e.g. poset weight and RT-weight). In Chapter 5 we will see a new strategy that
works for any weight function.

Theorem 3.19. Let A be a Frobenius bimodule and C ≤RAn be a linear code. Then
f ∶ C Ð→ An is a Hamming isometry iff there exists M ∈ Monn(R) such that f(x) =
x⋅M for x ∈ C.

Proof. The if part follows directly by Theorem 3.16(1). For the only if part, let
C ≤RAn be a linear code and f ∶ C Ð→ An be a Hamming isometry. We will show that
f is as in (3.16). We will use the same notation as in Remark 3.18(2). Note first that
it is enough to show that ιj = fπ(j)uj for some units uj ∈ R∗ and π ∈ Sn. Since f is a
Hamming isometry, (3.19) implies

n

∑
i=1

∑
r∈R

(χr) ○ ιi =
n

∑
j=1

∑
s∈R

(χs) ○ fj (3.20)

as characters on C. Then Remark 2.1(5) implies that the multisets {{(χr) ○ ιi ∣ r ∈
R, i ∈ [n]}} and {{(χs) ○ fj ∣ s ∈ R, j ∈ [n]}} coincide. The group Hom(RC, RA) is a
right R-module via (g ⋅r)(x) ∶= g(rx) for all x ∈ C and r ∈ R. Assume without loss
of generality that ι1R is a maximal (with respect to inclusion) among submodules
ι1R, . . . , ιnR,f1R, . . . , fnR. For r = 1R, there must exist k ∈ [n] and s ∈ R, such that
χ ○ ι1 = (χs) ○ fk. This yields

χ(ι1(a)) = χ(fk(sa)) = χ((fks)(a)), for all a ∈ C.

Thus im (ι1 − fks) ⊆ kerχ. Theorem 2.22(3) implies ι1 = fks and thus ι1R ⊆ fkR.
Since ι1R was chosen maximal, we have fkR = ι1R. Now Theorem 2.20 guarantees
the existence of a unit u1 ∈ R∗ such that ι1 = fku1. Then (χr) ○ ι1 = (χr) ○ (fku1) =
χ ○ (fkru1) implies

∑
r∈R

(χr) ○ ι1 =∑
r∈R

χ ○ (fkru1) =∑
s∈R

χ ○ (fks) =∑
s∈R

(χs) ○ fk.
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Using the above, one may delete the first and kth term from the outer sums in (3.20)
and then proceed similarly.

3.4 Linear Codes Over Local Frobenius Rings

Throughout this section R is a finite commutative local Frobenius ring. We will
denote m its unique maximal ideal J(R) = m and F ∶= R/m its residue field. Since a
Frobenius ring has a cyclic socle, we fix a generator

soc(R) = αR. (3.21)

In addition, for a local Frobenius rings we have

soc(R) = m⊥ and m = soc(R)⊥. (3.22)

Let m = (z1, . . . , zt) be minimally generated. Because m is the Jacobson radical of a
finite ring (and thus artinian), each zi is nilpotent. Let ki be the nilpotency index of
zi, that is the smallest integer such that zkii = 0. It is clear that (zk1−1

1 ⋯zkt−1
t ) ⊆ m⊥ =

soc(R). But a local Frobenius ring has exactly one minimal ideal, namely soc(R);
see [11, Thm. 6.5]. Thus, if zk1−1

1 ⋯zkt−1
t ≠ 0, we may conclude

soc(R) = (zk1−1
1 ⋯zkt−1

t ). (3.23)

Example 3.20 (see also [42, Prop. 3.3]). Consider the ring R = F2[x, y]/(x2+y2, xy).
Then m = (x, y). We have x2 = y2 ≠ 0 and x3 = y3 = 0. Thus the nilpotency index of
both x and y is 3. Yet x2y2 = xy = 0 and thus (3.23) cannot be true in this case. In
fact soc(R) = (x2) = (y2).

Before continuing with the main results of this section we discuss a special class
of commutative local Frobenius rings and their properties. A commutative ring R is
called chain ring if it is local and every ideal is principal. Obviously a chain ring
is Frobenius since by definition its socle is principal. In the following remark we list
some basic properties.

Remark 3.21. Let R be a chain ring. Then the following hold:

(1) Let γ be a generator of the maximal ideal m, that is, m = (γ). If ν is the smallest
integer such that γν = 0, then

0 = (γν) ⊊ (γν−1) ⊊ ⋯ ⊊ m = (γ) ⊊ R (3.24)

forms a chain1 of all ideals of R. As a consequence, soc(R) = (γν−1).
(2) Thanks to (3.22) we have (γν−1) = (γ)⊥ and (γν−1)⊥ = (γ). In fact, for chain rings

we have a stronger result. That is, for all 0 ≤ i ≤ ν − 1 we have (γi)⊥ = (γν−i−1).
1This is the reason why commutative local principal ideal rings are called chain rings.
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The arithmetic of chain rings is quite simple due to (3.24) (and its consequences).
This is in the heart of structural results on linear codes over chain rings discovered
in [48, 49]. A commutative local Frobenius is not a chain ring iff its maximal ideal
is not principal. Therefore, as we will see (e.g. Theorem 3.25), the arithmetic of
a general commutative local Frobenius ring is messier than that of a chain ring.
However, many of results from [48] remain true. It turns out that all we need is a
cyclic socle rather than every ideal being principal.

We now return to general commutative local Frobenius rings. The socle soc(R) =
αR is an F-vector space in a natural way. The map αr z→ r ∶= r + m is an iso-
morphism of F-vector spaces thanks to (3.22). For any n ∈ N this map extends to a
F-isomorphism

ρ ∶ αRn Ð→ Fn, α(r1, . . . , rn)z→ (r1, . . . , rn). (3.25)

We will write r ∶= (r1, . . . , rn) for r = (r1, . . . , rn). Again thanks to (3.22) we have

αr = 0 ⇐⇒ r = 0. (3.26)

Thus ρ preserves the Hamming weight, and therefore it is a Hamming isometry.

We also have a R-linear surjective map induced by multiplication by α

mα ∶ Rn Ð→ αRn, r z→ αr.

Again, thanks to (3.22), we get kermα = m(n) ∶= {(r1, . . . , rn) ∣ ri ∈ m for all i}.

Definition 3.22. (1) For any x ∈ R, the colon code of a linear code C ≤ Rn is defined
as

(C ∶ x) ∶= {r ∈ Rn ∣ xr ∈ C}.
(2) For any set X ⊆ Rn we define the reduction X ∶= {x ∣ x ∈ X}, where x ∶= x +m.

In other words
X = ρ(αX) = {ρ(αx) ∣ x ∈X}.

Theorem 3.23. Let {r1, . . . , rk} ⊆ Rn. Then {r1, . . . , rk} is R-independent iff
{r1, . . . , rn} is F-independent. In particular, if C ≤ Rn is a free code then dimR(C) =
dimF(C).

Proof. The first statement follows easily by (3.26). The second statement is an obvi-
ous corollary of the first one.

Of particular interest for us will be the colon code (C ∶ α) =m−1
α (C), for which we

have the following easily verifiable properties.

Proposition 3.24. Let C ≤ Rn be a linear code. Then

(1)C ⊆ (C ∶ α) and α(C ∶ α) = C ∩ αRn ⊆ C.
(2)C is a F-vector space and C = ρ(αC) ≅ αC ≅ C/(C ∩m(n)). In particular

∣C∣ = ∣C∣
∣C ∩m(n)∣ .
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Theorem 3.25. Let C ≤ Rn be a linear code such that C ≠ 0. Then dH(C) =
dH((C ∶ α)) ≤ dH(C).

Proof. We saw in Proposition 3.24(1) that α(C ∶ α) ⊆ C and C ⊆ (C ∶ α). Note that
α(C ∶ α) = 0 iff (C ∶ α) ⊆ m. The latter implies C ⊆ m and hence C = 0. As a
consequence α(C ∶ α) ≠ 0. This implies dH(C) ≤ dH(α(C ∶ α)). Making use of the
wtH-preserving isomorphism ρ we get

dH(C) ≤ dH (α(C ∶ α)) = dH (ρ (α(C ∶ α))) = dH ((C ∶ α)) .

To achieve equality above, it is enough to show that dH(α(C ∶ α)) ≤ dH(C). We
will do so by showing that for every v ∈ C there exists 0 ≠ v′ ∈ α(C ∶ α) such that
wtH(v′) ≤ wtH(v). Note first that for v ∈ C, v ∈ α(C ∶ α) iff v = αw for some w ∈ Rn.
We write in this case α ∣ v. Write m = (z1, . . . , zt) and let v ∈ C. Set v(0) ∶= v. If
α ∣ v(0) then there is nothing to do. Otherwise, there exists a maximal k1 such that
v(1) ∶= zk11 v

(0) ≠ 0. Maximality of k1 implies z1v(1) = 0. If α ∣ v(1) we are done.
Otherwise, there exists a maximal k2 such that v(2) ∶= zk22 v

(1) ≠ 0. Again, maximality
of k2 implies z2v(2) = 0. If α ∣ v(2) we are done, otherwise proceed similarly. In the
worst case scenario, for 1 ≤ i ≤ t, there exists a maximal ki such that v(i) ∶= zkii v(i−1) ≠ 0
and ziv(i) = 0. Clearly v(i) ∈ C and wtH(v(i)) ≤ wtH(v) for all i. Note that maximality
of ki implies ziv(t) = 0 for all i. Hence v(t) ∈ m⊥ ×⋯ ×m⊥. Since m⊥ = αR we get that
α ∣ v(t). Thus v(t) ∈ α(C ∶ α) and wtH(v(t)) ≤ wtH(v).

Next, C ⊆ (C ∶ α) implies C ⊆ (C ∶ α). Since C ≠ 0 we get (C ∶ α) ≠ 0 and thus

dH ((C ∶ α)) ≤ dH(C).

The next result gives a standard form for free codes and it constitutes the crucial
step toward achieving the desired equality dH(C) = dH(C).

Lemma 3.26. Let C ≤ Rn be a free code of dimension k. Then C is monomially2

isometric with a free code of form C′ = im (Ik ∣M ′) for some matrix M ′ ∈Mk×(n−k)(R).

Proof. Let {a1, . . . , ak} be a R-basis for C. Then C = imM where the ith row of
M ∈ Rk×n is ai. Note that a1 has to have at least one unit because otherwise αa1 =
0. Permute the columns to bring a unit in the first column and then perform row
operations to get a matrix of form

⎛
⎜⎜⎜
⎝

1 ∗ ⋯ ∗
0
⋮
0

M1

⎞
⎟⎟⎟
⎠
.

By the same argument, the first row of M1 has to have a unit (as long as k > 1) and
we proceed similarly to get the desired shape.

2Theorem 3.19 says that any Hamming isometry is a monomial map, so we call wtH-isometric
codes monomially isometric.
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Theorem 3.27. Let C = im (Ik ∣M). Then C∩αRn = αC. As a consequence (C ∶ α) = C
and dH(C) = dH(C). As a consequence of Lemma 3.26, the same is true for any free
code.

Proof. Obviously αC ⊆ C ∩ αRn. Now let a ∈ C ∩ αRn. Then there exists x ∈ Rk

such that a = x(Ik ∣ M) = (x ∣ xM) ∈ αRn. Hence, there exists y ∈ Rk such that
a = (αy ∣ αyM) = α(y ∣ yM) ∈ αC. Using Proposition 3.24(1), it follows that

(C ∶ α) = ρ(α(C ∶ α)) = ρ(αC) = C.

The above and Theorem 3.25 imply dH(C) = dH(C).

Recall from Remark 3.5 the notion of the dual of a linear code over R.

Corollary 3.28. Let C ≤ Rn be a free code of dimension k. Then C⊥ is free and
dimR(C⊥) = n − k.

Proof. Thanks to Lemma 3.26, we may assume without loss of generality that C =
im (Ik ∣ M). Then im (−MT ∣ In−k) ⊆ C⊥. Equality follows from Remark 3.5 and
Remark 2.1(7)(i).

Remark 3.29. For a linear code C ≤ Rn we have C⊥ ⊆ C⊥. This containment is
obviously strict in general. However, when C is a free code, Theorem 3.23 implies
equality. In particular, thanks to Theorem 3.27, we have dH(C⊥) = dH(C⊥) = dH(C⊥).

Let R be a chain ring and C ≤ Rn a linear code. With the same notation as in
Remark 3.21, we have a chain of colon codes

C = (C ∶ γ0) ⊆ (C ∶ γ) ⊆ ⋯ ⊆ (C ∶ γν−1) ⊆ (C ∶ γν) = Rn. (3.27)

It turns out that the chain (3.27) is strongly related with the corresponding chain of
C⊥. Indeed, for any 0 ≤ i ≤ ν − 1 the authors show in [48, Thm. 3.2(ii)]

(C⊥ ∶ γi) = (C ∶ γν−i−1)
⊥
. (3.28)

When R is a commutative local Frobenius ring we have the following result that
corresponds to the extremal cases i = ν − 1 and i = 0.

Theorem 3.30. Let C ≤ Rn be a linear code. Then

(1)(C⊥ ∶ α) = (αC)⊥ and (C⊥ ∶ α) = C⊥. As a consequence C⊥ = (αC)⊥.
(2)C⊥ = (C ∶ α)

⊥
.

Proof. (1) The first part of the statement follows by the chain of equivalences

r ∈ (C⊥ ∶ α) ⇐⇒ αr ∈ C⊥
⇐⇒ (αr) ⋅ c = 0 for all c ∈ C
⇐⇒ r ⋅ (αc) = 0 for all c ∈ C
⇐⇒ r ∈ (αC)⊥.
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We next show (C⊥ ∶ α) ⊆ C⊥. Let x ∈ (C⊥ ∶ α) and r ∈ (C⊥ ∶ α) be such that x = r. Then
αr ∈ C⊥. This yields α(r ⋅ c) = (αr) ⋅ c = 0 for all c ∈ C. Making use of (3.26) we get

x ⋅ c = r ⋅ c = 0 for all c ∈ C. Thus x ∈ C⊥. Conversely, let x ∈ C⊥ and r ∈ Rn be such that
x = r. Then r ⋅ c = 0 for all c ∈ C. In other words r ⋅ (αc) = 0 for all c ∈ C. This yields

r ∈ (αC)⊥ = (C⊥ ∶ α). Hence x = r ∈ (C⊥ ∶ α).
(2) Let x ∈ C⊥ and y ∈ (C ∶ α). Write x = v and y = w for some v ∈ C⊥ and w ∈ (C ∶ α).
Then (3.26) implies

x ⋅ y = 0 ⇐⇒ α(v ⋅w) = v ⋅ (αw) = 0.

But the last equality is true since v ∈ C⊥ and αw ∈ C. Thus, we have C⊥ ⊆ (C ∶ α)
⊥

and (C ∶ α) ⊆ (C⊥)⊥ . Thanks to part (1) and (2.17) we have

(C ∶ α) ⊆ (C⊥)⊥ = ((C⊥)⊥ ∶ α) = (C ∶ α).

This yields (C⊥)⊥ = (C ∶ α). Now (2.17) concludes the proof.

Example 3.31. Let R = F2[x, y]/(x2, y2). It is easy to see that m = (x, y) and
soc(R) = (xy); see also (3.23). In particular R is a (commutative) local Frobenius
(non-chain) ring. Let C ≤ R3 be the linear code generated by the codeword c =
(x,x, y). Since xc = (0,0, xy), yc = (xy, xy,0) ∈ C one computes

(C ∶ xy) = im (1 1 0
0 0 1

) . (3.29)

Similarly one concludes

(C⊥ ∶ xy) = im
⎛
⎜
⎝

1 1 0
0 1 0
0 0 1

⎞
⎟
⎠
= R3. (3.30)

Clearly C = 0 and thus C⊥ = F3
2. Moreover (3.30) implies (C⊥ ∶ xy) = F3

2. It also follows
from (3.29) that

C⊥ = (C ∶ xy)
⊥
= im (1 1 0) ≤ F3

2.

The rate of a linear code C ≤ Rn is defined as r(C) ∶= (log∣R∣ ∣C∣)/n. Thus, when

C is a free code of dimension k, thanks to Theorem 3.23 we have r(C) = r(C) = k/n.
The following result tells us that free codes over local Frobenius rings are as good as
linear codes over fields.

Theorem 3.32.

max{r(C) ∣ C ≤ Rn,C free, dH(C) = d} = max{r(C) ∣ C ≤ Fn,dH(C) = d}.

Proof. Let C ≤ Rn be a free code. Then dH(C) = dH(C) and r(C) = r(C) imply “ ≤ ”.
Conversely, let C ≤ Fn be a linear code of maximal rate r(C) and such that dH(C) = d.
If {x1, . . . , xk} is a F-basis of C, then {r1, . . . , rk} where xi = ri is R-independent
thanks to Theorem 3.23. Thus spanR{r1, . . . , rk} ≤ Rn is a free code with the same
rate and Hamming distance as C.
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Chapter 4 Partitions of Frobenius Alphabets

In this chapter we discuss partitions of finite Frobenius bimodules and their character-
theoretic duals. This generalizes the results in [17] where partitions of Rn with R a
Frobenius ring were considered. We will first consider partitions of abelian groups
and then, as usual, we will focus on the additive group of a Frobenius bimodule. The
module structure will allow us to define a different notion of dual partition. Although
the duality theory developed for partitions of Frobenius alphabets is interesting on
its own, we will focus on weight partitions and use the theory to prove extensions
theorems in the next chapter.

We start with some general notations. Let P = (Pk)Kk=1 be a partition of a finite
set X, i.e., X is the disjoint union of the subsets P1, . . . , PK . The sets Pk are called
blocks, and ∣P ∣ =K is the number of blocks of P (assuming all blocks are nonempty).
A partition P is called finer than the partition Q if every block of P is contained
in some block of Q. In this case we write P ≤ Q, and it follows that ∣Q∣ ≤ ∣P ∣. Two
partitions P, Q of X are called identical if P ≤ Q and Q ≤ P. We will denote by ∼P
the equivalence relation induced by the partition P, that is, x1 ∼P x2 iff there exists
a (unique) block Pi that contains x1, x2. Note that if P ≤ Q then x1 ∼P x2 implies
x1 ∼Q x2.

Definition 4.1. Let G be a finite abelian group and P = (Pk)Kk=1 be a partition of

G. The dual partition of P, denoted by P̂, is the partition of Ĝ defined via the
equivalence relation

ψ ∼P̂ ψ′⇐⇒ ∑
g∈Pk

ψ(g) = ∑
g∈Pk

ψ′(g) for all k = 1, . . . ,K.

We call P reflexive if P = ̂̂P (where we identify G and ̂̂G).

In the following remark we list some properties of P̂ and ̂̂P of a given partition P.

Remark 4.2. s

(1) P̂ = −P̂ = −̂P, where −P = −P1, . . . ,−PK and −Pk ∶= {−g ∣ g ∈ Pk}.
(2) If P ≤ Q then P̂ ≤ Q̂.
(3) The singleton {εG} is always a block of P̂.

(4) ∣P ∣ ≤ ∣P̂ ∣ and ̂̂P ≤ P. Furthermore, ∣P ∣ = ∣P̂ ∣⇐⇒ P = ̂̂P; see [17, Thm. 2.4].

From now on, let A be a finite Frobenius bimodule with generating character
χ. As it is customary in coding theory, we will consider a ∈ An as row vector and
otherwise we will write a⊺. Clearly An is also a R-bimodule. Recall from (2.13) the
(R,R)-bilinear isomorphism

Ân ≅ Ân via (χ1, . . . , χn)(a1, . . . , an) ∶=
n

∏
j=1

χj(aj). (4.1)
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In particular R̂n ≅ R̂n, and therefore ∣An∣ = ∣Ân∣ = ∣Rn∣ = ∣R̂n∣. Let ⟨ ● , ●⟩ denote both
the standard dot products An × Rn Ð→ A, ⟨a, r⟩ ∶= arT = ∑n

i=1 airi and Rn × An Ð→
A, ⟨r, a⟩ ∶= raT = ∑n

i=1 riai. Thanks to Proposition 2.11 these bilinear forms are non-
degenerate; see Definition 3.2(1).

We now are ready to define specific left and right dual partitions in Rn and An

using the module structure and Frobeniusness.

Definition 4.3. For a partition P = (Pk)Kk=1 of Rn the χ-left dual and χ-right dual
partitions are the partitions of An defined via

a∼P̂[χ,l]a′⇐⇒ ∑
r∈Pk

χ(⟨r, a⟩) = ∑
r∈Pk

χ(⟨r, a′⟩) for all k = 1, . . . ,K,

and
a∼P̂[χ,r]a′⇐⇒ ∑

r∈Pk
χ(⟨a, r⟩) = ∑

r∈Pk
χ(⟨a′, r⟩) for all k = 1, . . . ,K.

Similarly, for a partition Q = (Qk)Lk=1 of An the χ-left dual and χ-right dual par-
titions are the partitions of Rn defined by the equivalence relations

r∼Q̂[χ,l]r′⇐⇒ ∑
a∈Qk

χ(⟨a, r⟩) = ∑
a∈Qk

χ(⟨a, r′⟩) for all k = 1, . . . , L,

and
r∼Q̂[χ,r]r′⇐⇒ ∑

a∈Qk
χ(⟨r, a⟩) = ∑

a∈Qk
χ(⟨r′, a⟩) for all k = 1, . . . , L.

The so defined dual partitions are very closely related with the dual notion of
Definition 4.1. To see this we need some preparation. Recall the isomorphisms
βl, βr, αl, αr from Remark 2.23. They extend to isomorphisms

βl ∶ R(An)Ð→ R(R̂
n), az→ χ(⟨ ● , a⟩),

βr ∶ (An)R Ð→ (R̂n)R, az→ χ(⟨a, ●⟩)

⎫⎪⎪⎬⎪⎪⎭
(4.2)

αl ∶ R(Rn)Ð→ R(Â
n), r z→ χ(⟨ ● , r⟩),

αr ∶ (Rn)R Ð→ (Ân)R, r z→ χ(⟨r, ●⟩)

⎫⎪⎪⎬⎪⎪⎭
(4.3)

It follows directly by the definitions above that

αl(r)(a) = χ(⟨a, r⟩) = χ(
n

∑
i=1

airi) =
n

∏
i=1

(riχ)(ai),

and thus with the identification (4.1) we obtain the isomorphism

αl ∶ R(Rn)Ð→ R(Â
n), r z→ (r1χ, . . . , rnχ) (4.4)

αr ∶ (Rn)R Ð→ (Ân)R, r z→ (χr1, . . . , χrn) (4.5)

Again thanks to Proposition 2.11 we have riχ = εA iff ri = 0 and thus both αl and
αr are Hamming isometries. Similarly we have βl(a) = (χ(●a1), . . . , χ(●an)) for all
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a ∈ An and likewise for βr.

The isomorphisms in (4.2) and (4.3) satisfy the simple relations

αl(r)(a) = βr(a)(r) and αr(r)(a) = βl(a)(r) for all r ∈ Rn, a ∈ An; (4.6)

see also (2.28). These isomorphisms will be crucial for developing a duality theory
for partitions.

As mentioned we have the following straightforward observations.

Remark 4.4. s

(1) Let P be a partition of Rn and Q be a partition of An. Then

(i) P̂ [χ,l] ∶= βl
−1(P̂) and P̂ [χ,r] ∶= βr

−1(P̂).
(ii) Q̂[χ,l] ∶= αl

−1(Q̂) and Q̂[χ,r] ∶= αr
−1(Q̂).

As a consequence of Remark 4.2(4), for each partition P of Rn or An we have

∣P̂ [χ,l] ∣ = ∣P̂ [χ,r] ∣ = ∣P̂ ∣ ≥ ∣P ∣. (4.7)

(2) The dual partitions of Definition 4.3 clearly depend on the choice of the generating
character χ. But this can easily be described. Suppose χ′ is another generating
character of A. Then thanks to (2.21) we can write χ′ = uχ = χũ for some
units u, ũ ∈ R∗. As a consequence, χ′(⟨r, a⟩) = χ(⟨r, au⟩) and therefore for any

partition P of Rn we have a∼
P̂[χ′,l]a′ ⇐⇒ au∼P̂[χ,l]a′u and thus P̂ [χ′,l]

u = P̂ [χ,l]
,

where the latter means that each block is right multiplied by u. In the same way

ũP̂ [χ′,r] = P̂ [χ,r]
. Analogous relations hold true for the duals of partitions of An.

Remark 4.4 allows us to prove the following analogue of [6, Prop. 4.4].

Theorem 4.5. Let P be any partition of Rn or An. Then

̂̂
P [χ,l]

[χ,r]

= ̂̂P =
̂̂
P [χ,r]

[χ,l]

,

where ̂̂P is the bidual in the sense of Definition 4.1. As a consequence,

P is reflexive ⇐⇒ P =
̂̂
P [χ,l]

[χ,r]

⇐⇒ P =
̂̂
P [χ,r]

[χ,l]

.

Proof. Let P be a partition of An. Set Q = (Qk)Nk=1 = P̂
[χ,l]

and R = Q̂[χ,r] = βr
−1(Q̂).

Let a, a′ ∈ An. With the aid of (4.6) we compute

a∼Ra′⇐⇒ βr(a) ∼Q̂ βr(a′)
⇐⇒ ∑

r∈Qk
βr(a)(r) = ∑

r∈Qk
βr(a′)(r) for all k = 1, . . . ,N

⇐⇒ ∑
r∈Qk

αl(r)(a) = ∑
r∈Qk

αl(r)(a′) for all k = 1, . . . ,N
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⇐⇒ ∑
Ψ∈αl(Qk)

Ψ(a) = ∑
Ψ∈αl(Qk)

Ψ(a′) for all k = 1, . . . ,N

⇐⇒ a∼α̂l(Q)a
′

⇐⇒ a∼̂̂P a
′.

This establishes
̂̂
P [χ,l]

[χ,r]

= ̂̂P. The other identity as well as those for partitions of Rn

are shown in the same way. The rest follows.

For a matrix M ∈ Rn×m and for a ∈ An we have aM, (MaT)T ∈ Am in the obvious
way. This gives rise to the following group actions. Their orbits will play a crucial
role later on.

Definition 4.6. Let U be a subgroup of GLn(R). Then U induces a right and left
group action1 on An via

An × U Ð→ An, (a,U)z→ aU and U ×An Ð→ An, (U,a)z→ (UaT)T.
Denote by PAn,U and PAn,U⊺ the respective orbit partitions on An.

Remark 4.7. Let ω ∶ An Ð→ R be a weight function. Then ω induces a weight
partition Pω via a∼Pωa′ ⇐⇒ ω(a) = ω(a′). A map f ∶ An Ð→ An is ω-isometry
iff a∼Pωf(a) for all a ∈ An. This allows us to study the structure of ω-isometries by
realizing Pω as a orbit partition induced by some subgroup U ≤ GLn(R), and will be
the main tool used in the next chapter.

The orbit partitions of group actions defined above have interesting duality rela-
tions. We address this with the following two results.

Lemma 4.8. Let U be a subgroup of GLn(R). Then

(1)PRn,U ≤ P̂An,UT
[χ,r] and PRn,UT ≤ P̂An,U [χ,l].

(2)PAn,U ≤ P̂Rn,UT
[χ,r] and PAn,UT ≤ P̂Rn,U [χ,l].

Proof. Set P ∶= PRn,U , Q ∶= PAn,UT . Let r, r′ ∈ Rn be such that r∼Pr′, thus r′ = rU
for some U ∈ U . Then for any a ∈ An we have ⟨r′, a⟩ = ⟨rU, a⟩ = ⟨r, (UaT)T⟩. Let Q be
any block of Q. Then the closedness of Q under the left action of U yields

∑
a∈Q

χ(⟨r′, a⟩) = ∑
a∈Q

χ(⟨r, (UaT)T⟩) = ∑
a∈Q

χ(⟨r, a⟩).

This shows r∼Q̂[χ,r]r′. The other relations are shown in the same way.

Theorem 4.9. Let U be a subgroup of GLn(R). Then

PRn,U = P̂An,UT
[χ,r], PRn,UT = P̂An,U [χ,l],

PAn,U = P̂Rn,UT
[χ,r], PAn,UT = P̂Rn,U [χ,l].

As a consequence, all these partitions are reflexive. Moreover, the right (resp. left)
group action of U on Rn and the left (resp. right) action of U on An lead to the same
number of orbits.

1Of course these actions can be defined on any (R,R)-bimodule. In particular on Rn.
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Proof. Combining Remark 4.4(1) and Lemma 4.8 we obtain

∣PRn,U ∣ ≥ ∣P̂An,UT
[χ,r]∣ ≥ ∣PAn,UT ∣ ≥ ∣PRn,U ∣.

Thus we have equality everywhere, and again with Lemma 4.8 we arrive at the first
identity. Next, by applying Theorem 4.5 on the first identity we obtain the forth
identity. The two left are shown in the same way.

Remark 4.10. We mentioned in Remark 4.7 that the main idea is to realize the
partition Pω induced by a weight function ω as the orbit partition of some subgroup
of GLn(R). Let U ∶= Gω,r, where Gω,r is the right symmetry group defined in (3.10),
and consider the orbit partition P = PAn,U as in Definition 4.6. It follows from the
very definitions that P ≤ Pω, that is, PU is a finer partition than Pω. As we will see
in the next chapter, for nicely behaved weight functions we have equality P = Pω. In
turn, thanks to Theorem 4.9, this implies that Pω is reflexive. We will see in the next
chapter that the reflexivity of Pω is crucial for understanding ω-isometries.

We are now ready to prove the following crucial result for the next chapter.

Lemma 4.11. Let C ≤ RAn be a linear code and let U be a subgroup of GLn(R).
Assume f ∶ C Ð→ An is a linear map such that for all x ∈ C there exists a matrix
Ux ∈ U such that f(x) = xUx. Then, for all r ∈ Rn there exists a matrix Mr ∈ U such
that ⟨f(x), r⟩ = xMrrT for all x ∈ C.

Proof. Let P be a block of PRn,UT = P̂An,U [χ,l]. Then for all x ∈ C

∑
r∈P

χ(⟨f(x), r⟩) = ∑
r∈P

χ(⟨xUx, r⟩) = ∑
r∈P

χ(⟨x, (UxrT)T⟩) = ∑
r∈P

χ(⟨x, r⟩),

where the last step follows from the invariance of P under the left action of U . As a
consequence,

∑
r∈P

χ(⟨f(●), r⟩) = ∑
r∈P

χ(⟨● , r⟩)

and each side of the identity is a sum of elements in the character group Ĉ. Fix r ∈ Rn

and assume that r is contained in the block P of PRn,UT . Remark 2.1(5) implies
that the character χ(⟨f(●), r⟩) must appear on the right hand side of the above
identity. In other words, there exists r′ ∈ P i.e., r′ = (MrrT)T for some Mr ∈ U , such
that χ(⟨f(●), r⟩) = χ(⟨● , r′⟩). Thanks to Theorem 2.22 we conclude that ⟨f(●), r⟩ =
⟨● , r′⟩ as maps in Hom(RC,RA). This implies ⟨f(x), r⟩ = ⟨x, (MrrT)T⟩ = xMrrT, as
desired.

We end this chapter with some examples.

Example 4.12. s

(1) If the ring R is Frobenius as well, Theorem 4.9 implies

∣PRn,U ∣ = ∣PAn,UT ∣ = ∣PAn,U ∣ = ∣PAn,UT ∣.
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In other words, the right and left action of U leads to the same number of orbits.
However, this is not the case if the ring R is not Frobenius. Consider the com-
mutative non-Frobenius ring R = F2[x, y]/(x2, y2, xy); see Example 2.32(2). Let
A be the Frobenius bimodule A = R̂ and let

U = {(1 r
0 u

) ∣ r ∈ R, u ∈ R∗}.

Then one can compute that both, PR2,U and PA2,UT , consist of 17 orbits whereas
PR2,UT and PA2,U consist of 20 orbits.

(2) We will focus on weight partitions in the next chapter. However, we address
here a particularly easy case. Let PwtH be the Hamming partition on A, that
is, a∼PwtH

a′ iff wtH(a) = wtH(a′) for all a, a′ ∈ A. By the very definition of the
Hamming weight, it follows that PwtH has two blocks. Namely {0} and A ∖ {0}.
By Remark 4.2(3) we always have that {εA} is a block of P̂wtH . It follows by
the orthogonality relations (2.1) that Â ∖ {εA} is also a block of PwtH . Thanks
to Remark 4.2(4) we conclude that PwtH is reflexive. In fact, the same is true for
the Hamming weight on An. In this case PAn,wtH = (Pk)nk=1 where Pk = {a ∈ An ∣
wtH(a) = k}; see [17, Ex. 2.3(c)]. In addition, we have

P̂An,wtH
[χ,l] = P̂An,wtH

[χ,r] = PRn,wtH .

Making use of the wtH-isometries αl and αr, and the reflexivity of the Hamming
partition, we also have

P̂Rn,wtH
[χ,l] = P̂Rn,wtH

[χ,r] = PAn,wtH .

(3) Consider the weight partition Pswc induced by the symmetrized weight compo-
sition swc. Then (3.7) implies Pswc ≤ PwtH . This yields ∣PwtH ∣ ≤ ∣Pswc∣, and

∣P̂wtH ∣ ≤ ∣̂Pswc∣ thanks to Remark 4.2.
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Chapter 5 Equivalence of Classical Codes

In this chapter we study the equivalence of linear codes over Frobenius bimodules.
We use tools from the duality theory of partitions developed in the previous chapter.
The goal is to understand the structure of ω-isometries of a linear code C ≤RAn for a
given weight function ω. In Theorem 3.16 and Remark 3.17 we establish the structure
of various isometries for the extremal case C = An. On the other hand, Theorem 3.19
gives the structure of all Hamming isometries f ∶ C ⊊ An Ð→ An. Namely, f is a
Hamming isometry iff f is a monomial map; see Remark also 3.18(1). This means
that f can be extended to a Hamming isometry f̃ ∶ An Ð→ An. Or in other words,
any isometry f ∶ C ⊊ An Ð→ An is the restriction of Hamming isometry f̃ ∶ An Ð→ An.
For these reasons Theorem 3.19 is known in the literature as the MacWilliams
Extension Theorem.

In general, given an alphabet A and a weight function ω, the structure of ω-
isometries of the ambient space An is easily seen. So one can ask what is the structure
of ω-isometries C Ð→ An? Do they extend to an ω-isometry of An? These questions
are well studied in literature. We provide answers to some open questions as well as
alternative proofs to existing answers.

5.1 Variations of MacWilliams Extension Theorem

Throughout this section A is a finite Frobenius bimodule and χ ∈ Â is a generating
character. For a given weight ω we will establish whether or not ω-isometries f ∶ C ⊊
An are restriction of ω-isometries of An. We start with a definition.

Definition 5.1. Let ω be a weight function on a module RV . Then ω satisfies
the MacWilliams Extension Property if for any code C ≤RV every ω-isometry
f ∶ C Ð→ V can be extended to an ω-isometry of V .

The above definition deviates from others uses in literature in the sense that the
length of the code is fixed through the module V . This is necessary so that we
can also deal with weights that do not arise as the extension of a weight on the
alphabet as in (3.6). Yet, the above definition covers various cases. For instance, if
V = An is endowed with the Hamming weight with respect to the alphabet A, the
above is the classical MacWilliams extension property for module alphabets. On the
other hand, if we endow V with the Hamming weight (with respect to V ), then the
Hamming isometries are precisely linear injective maps. In this case the extension
property asks whether injective maps on submodules extend to injective maps of
the entire module. The latter is closely related with the notions of injective and
pseudo-injective modules. A left R-module V is called injective if for any pair of
left R-modules M1 ≤ M2, any linear map f ∶ M1 Ð→ V can be extended to a linear
map f̃ ∶ M2 ∶Ð→ V . On the other hand, V is called pseudo-injective if for every
submodule C ≤RV , any injective linear map f ∶ C Ð→ V can be extended to a linear
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map f̃ ∶ V Ð→ V . In general, there is no reason to expect f̃ to be injective. However,
Dihn and López-Permouth [12, Prop. 3.2] show that this is actually the case1.

Theorem 5.2. Let C ≤RV be a linear code and f ∶ C Ð→ V be a linear injective map.
Then f extends to an injective map f̃ ∶ C Ð→ V iff V is pseudo-injective.

Note that the above theorem says that the Hamming weight on an alphabet A
satisfies the extension property for linear codes of length one iff the alphabet A is
pseudo-injective. Jay Wood [69, Thm. 5.2, Thm. 6.2] pushed Theorem 5.2 one step
further.

Theorem 5.3. Let V = An. The Hamming weight on An (with respect to A) satisfies
the extension property iff A is pseudo-injective and has a cyclic socle.

Recall that a Frobenius bimodule A has a cyclic socle; see also 2.17(2). We also
mentioned in Section 2.2 that the character bimodule R̂ is injective. In particular
R̂ is pseudo-injective, and thus so is RA ≅ RR̂. In other words, the above theorem
implies Theorem 3.19. We provide an alternative proof of the latter using tools from
Chapter 4.

Alternative proof of Theorem 3.19. We use the same notation as in the proof of
Theorem 3.19 and Remark 3.18(2). Let f ∶ C Ð→ An be a Hamming isometry. Recall
that we need to find a permutation π ∈ Sn and units uj ∈ R∗ such that ιj = fπ(j)uj.

Let P be the Hamming partition on An as in Example 4.12(2). As mentioned
P̂ [χ,l]

is again the Hamming partition on Rn. Thus Q ∶= {rei ∣ 0 ≠ r ∈ R, i ∈ [n]},
where {e1, . . . , en} is the standard basis of Rn, is a block of P̂ [χ,l]

. As in Lemma 4.11
(the proof) we obtain

∑
z∈Q

χ(⟨● , z⟩) = ∑
z∈Q

χ(⟨f(●), z⟩) (5.1)

as sum of characters of C. Now Remark 2.1(5) implies that χ(⟨● , e1⟩) must appear
on the right hand side of (5.1). In other words, there exists 0 ≠ r1 ∈ R and π(1) ∈ [n]
such that χ(⟨● , e1⟩) = χ(⟨f(●), r1eπ(1)⟩). Hence ⟨● , e1⟩ = ⟨f(●), r1eπ(1)⟩ as maps on C.
This yields ι1 = fπ(1)r1. Similarly as in the proof of Theorem 3.19, r1 can be chosen
to be a unit, call it u1.

Now consider Qi ∶= {rei ∣ 0 ≠ r ∈ R} ⊂ Q. In fact Q is disjoint union of all the Qi.
We have

∑
x∈Q1

χ(⟨● , x⟩) = ∑
r∈R∖{0}

χ(⟨● , re1⟩) = ∑
r∈R∖{0}

χ(⟨● , e1⟩r)

= ∑
r∈R∖{0}

χ(⟨f(●), u1eπ(1)⟩r)

= ∑
x∈Qπ(1)

χ(⟨f(●), x⟩).

1Recall that V is finite.
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Thus, (5.1) can be reduced to

∑
z∈Q∖Q1

χ(⟨● , z⟩) = ∑
z∈Q∖Qπ(1)

χ(⟨f(●), z⟩).

This enables us to repeat the same argument with the character χ(⟨f(●), e2⟩) to
produce a unit u2 such that ι2 = fπ(2)u2. Proceeding in this way we arrive at the
desired result. ◻

Now we consider the symmetrized weight composition with respect to G ≤ S∗ =
Aut(RA). Thanks to (2.24) we work with subgroups of units G ≤ R∗. The following
result was proven in [14, Thm. 13] similarly as Theorem 3.19 and in [69, Thm. 8.1]
using averaging characters. We provide a proof using the same strategy as above.
Recall that the structure of swc-isometries for the extremal case C = An was given in
Theorem 3.16(c).

Theorem 5.4. Let C ≤RAn be a linear code and f ∶ C Ð→ An be a swc-isometry with
respect to G ≤ R∗. Then there exists a matrix M ∈ MonG,n(R) such that f(x) = xM
for all x ∈ C.

Proof. Put U = MonG,n(R) and consider the partition P ∶= PAn,U as in Definition 4.6.

Then Q ∶= {uei ∣ i ∈ [n], u ∈ G} is a block of P̂ [χ,l] = PRn,UT thanks to Theorem 4.9.
This yields

∑
z∈Q

χ(⟨● , z⟩) = ∑
z∈Q

χ(⟨f(●), z⟩). (5.2)

Hence, there exist u1 ∈ G and π(1) ∈ [n] such that ι1 = fπ(1)u1. Again, using Qi ∶=
{uei ∣ u ∈ G} ⊂ Q we obtain

∑
z∈Q∖Qπ(1)

χ(⟨● , z⟩) = ∑
z∈Q∖Q1

χ(⟨f(●), z⟩),

which allows us to repeat the same argument on finding u2 ∈ G and π(2).

It is obvious that when tools from Chapter 4 are used, the proofs of Theorems 3.19
and 5.4 are very similar. In fact both proofs fall under the same roof. We omit
the proof of the following theorem to avoid unnecessary repetition. Recall that the
Hamming partition and orbit partitions are reflexive.

Theorem 5.5 ([20, Thm. 4.14]). Let P be a reflexive partition of RAn and let C ≤ RAn

be a linear code. Suppose f ∶ C Ð→ An is a linear map that preserves the partition,
that is,

x∼Pf(x) for all x ∈ C. (5.3)

Assume further that S ⊆ R ∖ {0} is a subset such that the set Q ∶= {sei ∣ s ∈ S, i =
1, . . . , n} is a block of the dual partition P̂ [χ,l]

. Then

(1) If S is a subgroup of R∗ there exists a matrix M ∈ MonS,n(R) such that f(x) = xM
for all x ∈ C.
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(2) If R∗S ∶= {αs ∣ α ∈ R∗, s ∈ S} = S and 1 ∈ S there exists a matrix M ∈ Monn(R)
such that f(x) = xM for all x ∈ C.

We consider next the RT-weight and establish the structure of wtRT-isometries.
Recall that the RT-weight cannot be obtained via (3.6), and therefore we use the full
power of Definition 5.1. We need first two preparatory results.

Lemma 5.6. Let AR be any finite module. Let C, C′ ≤ An and f ∶ C Ð→ C′ a bijective
map. Suppose there exists a subring S of the matrix ring Mn(R) with the property

(1) for all x ∈ C there exists a matrix M ′
x ∈ S such that f(x) = xM ′

x,
(2) for all y ∈ C′ there exists a matrix M ′′

y ∈ S such that f−1(y) = yM ′′
y .

Then there exists for every x ∈ C a matrix Mx ∈ S∗ such that f(x) = xMx.

Proof. This is a simple consequence of Theorem 2.20.

Theorem 5.7. Let C ≤ An be a linear code and let f ∶ C Ð→ An be a wtRT-isometry.
Then, for all x ∈ C there exists a matrix Mx ∈ LTn(R) such that f(x) = xMx.

Proof. Let x = (x1, . . . , xn) ∈ C and set f(x) = y = (y1,⋯, yn). Since Cj ∶= xjR + ⋯ +
xnR ≤ AnR is a right module, we can make use of the double annihilator property (see
Corollary 2.27) as well as Lemma 5.6. Note first that if r ∈ ⊥Cj then wtRT(ry) < j.
Since f is a wtRT-isometry the latter yields

wtRT(ry) = wtRT(rf(x)) = wtRT(f(rx)) = wtRT(ry) < j.

In particular ruj = 0 and thus ⊥Cj ⊆ ⊥(yjR). Taking right annihilators and using the
annihilator property we obtain yjR ⊆ Cj. In other words, there exist mi,j ∈ R such
that yj = ∑n

i=j ximi,j. Hence y = f(x) = xMx where Mx = (mi,j) with mi,j = 0 for i < j.
This is precisely the condition on Lemma 5.6(1) above where S is the ring of lower
triangular matrices.

Note now that f−1 ∶ f(C) Ð→ C is also a wtRT-isometry. Proceeding similarly as
above we see that the second condition on Lemma 5.6(2) is satisfied. Therefore, Mx

can be chosen to be invertible, that is, Mx ∈ LTn(R) for all x ∈ C.

Theorem 5.8. Let C ≤ An be a linear code and let f ∶ C Ð→ An be a wtRT-isometry.
Then, there exists a matrix M ∈ LTn(R) such that f(x) = xM for all x ∈ C.

Proof. Thanks to Theorem 5.7, for all x ∈ C there exists Mx ∈ LTn(R) such that
f(x) = xMx. Let {e1, . . . , en} be the standard basis of RRn. Then Lemma 4.11 implies
that for each i ∈ [n] there exists Mi ∈ LTn(R) such that ⟨f(x), ei⟩ = xMie

⊺
i for all

x ∈ C. Define the matrix M = (M1e
⊺
1, . . . ,Mne⊺n). Then M is clearly lower triangular

and invertible because each Mi is. Furthermore, by construction f(x) = xM for all
x ∈ C.

Lastly, we establish the structure of ω-isometries where ω is the homogeneous
weight on A extended additively on An via (3.6). They have been already classified
in [23, Thm. 4.15] using the Möbius function. However, we take advantage of the
useful formula of Theorem 3.7 and provide a much shorter proof. It is easy to see
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that the partition induced by the homogeneous weight is not reflexive in general;
see [16, Ex. 3.4(b)]. Therefore Theorem 5.5 cannot be applied in this case. However,
the similarities between the Hamming weight and the homogeneous weight over a
Frobenius alphabet are clear from Theorem 3.7 and Remark 3.18(2). Therefore, to
no surprise, we can use the same techniques.

Theorem 5.9. Let C ≤ An be a linear code and let f ∶ C Ð→ An be a linear map.
Then f is an ω-isometry iff there exists a matrix M ∈ Monn(R) such that f(x) = xM
for all x ∈ C.

Proof. The “if part” is obvious. For the “only if part”, consider Q = {uei ∣ u ∈ R∗, i ∈
[n]}. Theorem 3.7 implies

ω(x1, . . . , xn) = n −
1

∣R∗∣
n

∑
i=1

∑
u∈R∗

χ(xiu) = n −
1

∣R∗∣ ∑y∈Q
χ(⟨x, y⟩).

Thus f is ω-preserving iff

∑
y∈Q

χ(⟨f(●), y⟩) = ∑
y∈Q

χ(⟨● , y⟩).

But the latter is exactly (5.2) for the subgroup S = R∗. As usual, this is sufficient to
obtain a matrix M ∈ Monn(R) such that f(x) = xM for all x ∈ C.

Corollary 5.10. A map f ∶ C Ð→ An is wtH-isometry iff it is ω-isometry. Moreover,
an ω-isometry is injective2.

The structure of wtP-isometries for the extremal case C = An is given in Re-
mark 3.17. To establish the general case we need the following definition. A poset
P = ([n],≤) is called hierarchical there exists a partition [n] = ∪ti=1Γi such that for
all i1 < i2 every element of Γi1 is less that Γi2 , and no other elements are compara-
ble. The following can be proven as in [6, Thm. 7.4, Thm. 7.6] with straightforward
generalizations.

Theorem 5.11. The poset weight on An satisfies the extension property iff the poset
is hierarchical.

In particular, the results of this section show that the Hamming weight, the homo-
geneous weight, the symmetrized weight composition, and the RT-weight satisfy the
extension property of Definition 5.1. In fact, the extension property is strongly related
to Frobeniusness. Wood showed [68, Thm. 6.4] showed that a finite commutative ring
R is Frobenius iff the Hamming weight on R satisfies the extension property. When
we switch to module alphabet A, the strongest result is Theorem 5.3. So if the Ham-
ming weight on A satisfies the extension property we are guarantied that soc(RA) is
cyclic, however we are not guarantied that A is Frobenius; see also Remark 2.18(3).

2This is not a priori clear since there might exist nonzero elements of homogeneous weight 0.
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5.2 Equivalence of Additive Codes

Let q be a power of some prime number. In this section we consider the case where
the alphabet A = Fq` (` > 1) is a finite field viewed as a module over the finite field
R = Fq. Of course A is a vector space over R of dimension `. In particular A does
not have a cyclic socle. As a consequence of Theorem 5.3, the Hamming weight on A
does not satisfy the extension property. Dyshko [13, Ex. 5] provides a linear code of
length q+1 and a Hamming isometry that cannot be represented as in Theorem 3.19.
Yet, in the same paper it is shown that any Hamming isometry of any linear code of
length at most q = ∣Fq ∣ is a monomial map.

In this section, unlike the Hamming weight, we show that the RT-weight on A
satisfies the extension property. As usual, we first establish the structure of wtRT-
isometries of the extremal case C = An, and then proceed to the general case. To
this end, we set up some notation. Set F ∶= Fq and let φ ∶ Fq` Ð→ F` be any F-
isomorphism of vector spaces. Then for any n ∈ N, Fnq is isomorphic to (F`)n = F`n via
Φ ∶ (x1, . . . , xn) z→ (φ(x1), . . . , φ(xn)). Then the RT-weight on (F`)n is the pullback
of the RT-weight on F`n under Φ, that is,

wtRT, `(x1, . . . , xn) ∶= wtRT(φ−1(x1),⋯, φ−1(xn))
for all xi ∈ F`.

Put F̃ ∶= Fql . Then, a map f ∶ C ≤ FF̃n Ð→ F̃n is wtRT-isometry iff the map

f̃ ∶= Φ ○ f ○Φ−1 ∶ Φ(C) Ð→ F`n is a wtRT, `-isometry. Note that, as an endomorphism
of F`n = (F`)n, the matrix representation of f̃ is a `n × `n block matrix over F where
each block is a ` × ` matrix; see also (3.8).

Then, similarly as in Theorem 3.16(2) we have the following; see
also [20, Prop. 5.2].

Proposition 5.12. Let f ∶ F̃n Ð→ F̃n be a F̃-linear map. Then the following are
equivalent.

(1)f is wtRT-isometry.
(2) f̃ ∶ F`n Ð→ F`n is a wtRT, `-isometry.
(3)There exists a matrix M ∈ LTn(M`(F)) such that f̃(x) = xM for all x ∈ F`n

Note that the above result does not mean that the map f ∶ F̃n Ð→ F̃n is given by
right multiplication with a lower triangular matrix with entries in F̃. This is simply
due to the fact that GL`(Fq) /≅ (Fq`)∗.

Theorem 5.13. Let C ≤FF̃n be a linear code and f ∶ C Ð→ F̃n be a linear map. Then
f is a wtRT-isometry iff there exists a matrix M ∈ LTn(M`(F)) such that f̃(x) = xM
for all x ∈ F`n. In particular, the RT-weight on FF̃ satisfies the extensions property.

Proof. As usual, the “if-part” follows by Proposition 5.12. For the “only if-part” we
induct on the length n of the code. The statement is clear for n = 1. Put C̃ ∶= Φ(C), and
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let n ≥ 2. Recall that f̃ is a wtRT, `-isometry. If f̃(x1, . . . , xn−1, xn) = (y1, . . . , yn−1, yn)
then

xn = 0 ⇐⇒ yn = 0. (5.4)

Consider the subspace

C̃′ ∶= {(x1, . . . , xn−1) ∣ (x1, . . . xn−1,0) ∈ C̃} ≤ F`(n−1).

We obtain an induced map

f̃ ′ ∶ C̃′ Ð→ F`(n−1), (x1, . . . , xn−1)z→ (y1, . . . , yn−1)

where (y1, . . . yn−1) is such that f̃(x1, . . . , xn−1,0) = (y1, . . . , yn−1,0), which is a wtRT, `-
isometry thanks to (5.4). By induction, there exists a matrix

A′ =
⎛
⎜⎜⎜
⎝

A11 0 ⋯ 0
A21 A22 ⋯ 0
⋮ ⋱ ⋱ ⋮

An−1,1 ⋯ An−1,n−2 An−1,n−1

⎞
⎟⎟⎟
⎠
∈ LTn−1(M`(F))

such that f̃ ′(x) = xA′ for all x ∈ C̃′. In other words

f̃(x1, . . . , xn−1,0) = ((x1, . . . , xn−1)A′,0) for all (x1, . . . , xn−1,0) ∈ C̃. (5.5)

Let pn be the projection on the nth coordinate. Then, the map f̃n ∶ pn(C̃) Ð→ F`
given by xn z→ pn(f̃(x1, . . . , xn)) is well defined and an isometry. From the base
case, there exists An,n ∈ GL`(F) such that f̃n(xn) = xnAn,n. Then we can clearly find
matrices An,j,x ∈Mr(F) such that

yj −
n−1

∑
i=j
viAij = xnAn,j,x for j = 1, . . . , n − 1.

Setting An,j,0 = 0 ∈M`(F) we obtain matrices

Ax =
⎛
⎜⎜⎜
⎝

A11 0 ⋯ 0
⋮ ⋱ ⋱ ⋮

An−1,1 ⋯ An−1,n−1 0
An,1,x ⋯ An,n−1,x Ann

⎞
⎟⎟⎟
⎠
∈ LTn(R) for all x ∈ C

which, by construction, satisfy f̃(x) = xAx for all x ∈ C̃.
Note that the matrices on the diagonal do not depend on x. Put A′′ =

diag(A11,⋯,Ann) ∈ GLn(M`(F)). The map

f̃ ′ ∶ C̃ Ð→ F`n, xz→ xAx(A′)−1

is again a wtRT, `-isometry on F`n. However, Ax(A′′)−1 ∈ LT`n(F) and thus f̃ ′ is
actually wtRT-isometry on C ≤FF`n. Now Theorem 5.8 concludes the proof.

45



Remark 5.14. It is worth mentioning here that the proof above is very similar with
the proof of [6, Thm. 7.4], where it is shown that the poset weight over An (with A
Frobenius bimodule) satisfies the extension property. As mentioned the RT-weight is
a special instance of the poset weight. Yet, a similar proof works just as well for the
non-Frobenius bimodule FF̃.

We end this section with a simple observation.

Example 5.15. Let R = Z4 × Z4 and consider the subring S ∶= {00,11,22,33} ≤ R.
Let SR be the alphabet. Consider the S-linear codes

C = {(00,00,00), (20,20,00), (02,02,00), (22,22,00)}

and
D = {(00,00,00), (20,22,00), (00,22,20), (20,00,20)}

on R3. Since C has an all-zero coordinate and D does not, it is easy to see that any
Hamming isometry between the two cannot be a monomial map.
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Chapter 6 Quantum Error-Correction

6.1 Basic Notions

We first set up some terminology in terms of the customary (and handy) bra-ket
notation. For details we refer the reader to [47]. Throughout, let H be a finite
dimensional complex Hilbert space. The inner product and the corresponding norm
will be denoted ⟨ ● ∣ ● ⟩ ∶ H×H Ð→ C and ∥ ●∥. Its elements will be denoted as ∣ψ⟩. With
H∗ we will denote the dual of H, and its elements will be denoted as ⟨ψ∣. We will
always have a specified orthonormal basis, with respect to which ∣ψ⟩ will be thought
as a column vector. Thus ⟨ψ∣ may be thought as a row vector, namely, the transpose
conjugate of ∣ψ⟩. For this reason it is also customary to use ∣ψ⟩† ∶= ⟨ψ∣ ∈ H∗. With
this notation we have

∣ψ⟩†(∣φ⟩) = ⟨ψ∣(∣φ⟩) = ⟨φ ∣ψ ⟩,
for all ∣ψ⟩, ∣φ⟩ ∈ H. Moreover, if {∣ψ1⟩, . . . , ∣ψn⟩} is an orthonormal basis of H we have

∣ψ⟩ =
n

∑
i=1

⟨ψi ∣ψ ⟩∣ψi⟩ (6.1)

for all ∣ψ⟩ ∈ H.
Let T ∶ H Ð→ H be a linear transformation. We will omit the parenthesis and write

T ∣ψ⟩ or ∣Tψ⟩ instead of T (∣ψ⟩). The adjoint of T is the unique linear transformation
T † ∶ H Ð→ H that satisfies

⟨T †ψ ∣φ ⟩ = ⟨ψ ∣Tφ ⟩
for all ∣ψ⟩, ∣φ⟩ ∈ H. A linear transformation T is called self-adjoint if T † = T . Of
particular interest is the self-adjoint transformation Tψ ∶= ∣ψ⟩⟨ψ∣. Thus

Tψ(∣φ⟩) = (∣ψ⟩⟨ψ∣)(∣φ⟩) = ⟨ψ ∣ φ ⟩∣ψ⟩.

Let T ∶ H Ð→ H be a linear operator and λ be an eigenvalue of T , that is,
T ∣ψ⟩ = λ∣ψ⟩ for some 0 ≠ ∣ψ⟩ ∈ H. We will denote

eig (T,λ) ∶= {∣ψ⟩ ∈ H ∣ T ∣ψ⟩ = λ∣ψ⟩},

the eigenspace of T corresponding to λ.
We will write Hn if dimCH = n. Consider any two-dimensional complex Hilbert

space H2 and fix a orthonormal basis B1 = {∣0⟩, ∣1⟩}. Let

H2n ∶=
n

⊗
i=1

H2 =∶ H⊗n
2

be the n-fold tensor product of H2. We write ∣x1⋯xn⟩ for ∣x1⟩ ⊗ ⋯ ⊗ ∣xn⟩. As an
orthonormal basis we use

Bn ∶= B⊗n1 = {∣a⟩ ∣ a ∈ Fn2} = {∣j⟩ ∣ j = 0, . . . ,2n − 1} (6.2)

where F2 = {0,1} is the field with two elements.
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Definition 6.1. s

(1) The pair (H2,B1) is called a quantum bit (qubit). A unit vector in H2 is called
a state of the qubit. The set of all states is called the state space.

(2) The pair (H2n ,Bn) is called a quantum register or a n-qubit. The basis elements
∣a⟩ are called computational basis states.

(3) A quantum gate is a unitary transformation U ∶ H2n Ð→ H2n .

Definition 6.2. An observable in H2n is a set of subspaces O ∶= {H0, . . . ,Hr} such
that Hi ⊥Hj for i ≠ j and H2n =H0⊕⋯⊕Hr.

Remark 6.3. Let T ∶ H Ð→ H be a self-adjoint operator and let λ0, . . . , λr be all its
different eigenvalues. Due to the Spectral Theorem, we have H = eig (T,λ0) ⊗ ⋯ ⊗
eig (T,λr) and ∣ψ⟩ ∈ H can be written uniquely as

∣ψ⟩ =
r

∑
i=0

λi∣Tiψ⟩, (6.3)

where Ti ∶ H Ð→ eig (T,λi) is the corresponding orthogonal projection. In other
words, the set {eig (T,λ0), . . . , eig (T,λr)} is an observable. That is, any self-adjoint
transformation can be thought as an observable, and vice versa.

Example 6.4. s

(1) Take the two dimensional complex Hilbert space C2 and take B1 = {∣0⟩, ∣1⟩} where
∣0⟩ ∶= (1,0)T, ∣1⟩ ∶= (0,1)T. A state of the qubit (C2,B1) is any vector ∣ψ⟩ =
α∣0⟩ + β∣1⟩ with ∣α∣2 + ∣β∣2 = 1. Using (6.2), to produce a 2-qubit we take (C4,B2)
where

∣0⟩ ∶= ∣00⟩ =
⎛
⎜⎜⎜
⎝

1
0
0
0

⎞
⎟⎟⎟
⎠
, ∣1⟩ ∶= ∣01⟩ =

⎛
⎜⎜⎜
⎝

0
1
0
0

⎞
⎟⎟⎟
⎠
, ∣2⟩ ∶= ∣10⟩ =

⎛
⎜⎜⎜
⎝

0
0
1
0

⎞
⎟⎟⎟
⎠
, ∣3⟩ ∶= ∣11⟩ =

⎛
⎜⎜⎜
⎝

0
0
0
1

⎞
⎟⎟⎟
⎠
.

(2) By definition, a quantum gate is a unitary transformation. The definition is clear
since we would want the state space to be preserved under a quantum gate. The
following are gates of special interest:

X ∶= (0 1
1 0

) , Z ∶= (1 0
0 −1

) .

Since X ∣0⟩ = ∣1⟩ and X ∣1⟩ = ∣0⟩, X is called the bit-flip gate. On the other hand
Z is called the phase-flip gate because Z ∣0⟩ = ∣0⟩ and Z ∣1⟩ = −∣1⟩. Put Y ∶= iXZ.
It is easy to see that {I2,X,Y,Z} form a linearly independent set of the vector
space M2(C). Thus

M2(C) = spanC{I2,X,Y,Z}. (6.4)

X,Y, and Z are called the Pauli matrices.
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LetO ∶= {H0, . . . ,Hr} be an observable. Then, any ∣ψ⟩ ∈ H can be written uniquely
as

∣ψ⟩ =
r

∑
i=0

αi∣ψi⟩ (6.5)

where ∣ψi⟩ is the projection of ∣ψ⟩ onto Hi. Let Pi ∶ H Ð→Hi be given by ∣ψ⟩z→ ∣ψi⟩;
see also Remark 6.3. With this notation, we have the following.

Definition 6.5. A measurement of an n-qubit with respect to the observable O
is the following: For a state written as in (6.5), pick a subspace Hi with probability
∥Pi∣ψ⟩∥2 and output the classical information i. After the measurement, the n-qubit
will collapse to the state Pi∣ψ⟩/∥Pi∣ψ⟩∥.

Remark 6.6. s

(1) Note that a measurement on Hn can provide at most n outcomes. When it can
provide exactly n the measurement is called maximal. Note that maximal mea-
surements correspond to orthonormal bases of H.

(2) A measurement will irreversibly destroy a state, unless the state falls entirely into
any of Hi’s. Thus, as we will see in more details later on, much of quantum error-
correction has to deal with producing states (or collection of states) that admit
efficient observables.

(3) Recall that we can view Hi’s as eigenspaces of some self-adjoint operator T . Thus
the outcomes of a measurement are precisely the distinct eigenvalues of T , and
after the measurement the n-qubit collapses to a normalized eigenstate (corre-
sponding to the known eigenvalue).

(4) The orthonormal basis Bn gives rise to a particularly nice observable, called the
standard observable, On. With the same notation as in (6.1) and (6.2), it
follows that ∣ψ⟩ will collapse to the basis state ∣j⟩ with probability ∣⟨ j ∣ψ ⟩∣2.

Example 6.7. s

(1) The dual observable (of O1) is O′
1 = {H0,H1} where H0 = spanC{∣0′⟩} and

H1 ∶= spanC{∣1′⟩} with

∣0′⟩ ∶= ∣0⟩ + ∣1⟩√
2

and ∣1′⟩ ∶= ∣0⟩ − ∣1⟩√
2

.

Consider a state ∣ψ⟩ = α∣0⟩ + β∣1⟩. Thus

∣ψ⟩ = α + β√
2

∣0′⟩ + α − β√
2

∣1′⟩.

It follows that a measurement of ∣ψ⟩ with respect to O′ will produce the outcome
0 (resp., 1) with probability ∣α + β∣2/2 (resp., ∣α − β∣2/2).

(2) In Remark 6.6(4) we discussed measurements of a n-qubit. Let us consider a
slightly different scenario. Assume we have a 2-qubit (H4,B2) and a state ∣ψ⟩ =
α00∣00⟩ + α01∣01⟩ + α10∣10⟩ + α11∣11⟩ ∈ H4. Consider the observable O = {H1

0 ,H
1
1}

where
H1

0 = spanC{∣00⟩, ∣01⟩} and H1
1 = spanC{∣10⟩, ∣11⟩}.
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Then, we get the outcome i with probability ∣αi0∣2 + ∣αi1∣2 and the post-
measurement state is

αi0∣i0⟩ + αi1∣i1⟩√
∣αi0∣2 + ∣αi1∣2

.

The above can be thought as a measurement of the first qubit of the 2-qubit
∣ψ⟩. Similarly one can measure the second qubit of ∣ψ⟩ using the observable
O = {H2

0 ,H
2
1} where

H2
0 = spanC{∣00⟩, ∣10⟩} and H2

1 = spanC{∣01⟩, ∣11⟩}.

Let ∣ψ⟩ = α∣0⟩ + β∣1⟩ be a state. Then there exists a quantum gate Uψ such that
Uψ ∣ψ0⟩ = ∣ψψ⟩. Namely

Uψ ∶= I2 ⊗ ( α −β
β α

) .

In other words, it is possible to clone any quantum state. However, the drawback
is that the quantum gate Uψ depends on ∣ψ⟩. As it turns out, there is no universal
gate that simultaneously clones every state. This fact constitutes a key difference
between quantum and classical information theory.

Theorem 6.8 (No-Cloning Theorem). A qubit cannot be cloned. That is, there exists
no quantum gate U such that U ∣ψ0⟩ = ∣ψψ⟩ for all states ∣ψ⟩ ∈ H2.

Proof. Let ∣ψ⟩ ≠ ∣φ⟩ be any two states and assume that there exists a unitary matrix
U such that U ∣ψ0⟩ = ∣ψψ⟩ and U ∣φ0⟩ = ∣φφ⟩. Then for the state ∣α⟩ = 1√

2
(∣ψ⟩ + ∣φ⟩)

one has

U ∣α0⟩ = 1√
2
(∣ψψ⟩ + ∣φφ⟩),

whereas

∣αα⟩ = 1

2
(∣ψψ⟩ + ∣φφ⟩ + ∣ψφ⟩ + ∣φψ⟩).

Thus U ∣α0⟩ ≠ ∣αα⟩ in general.

6.2 Error Detection and Correction

There are two obvious challenges in quantum information theory. First, the only
way to extract information from a qubit is via measurements. In this case we obtain
only one classical bit of information and quantum states are irreversibly lost. So any
attempt of extracting information could have fatal consequences. Secondly, due to the
No-Cloning Theorem, much of the classical information theory is simply not possible.
For instance, the simplest error-correcting code in classical information theory is the
repetition code where one adds redundancy as necessary. As mention, this is not
possible in quantum information theory. However, this challenges (and others) can
be overcome. The first attacking strategies where developed by Shor and Steane [59,
62]. The theory was quickly developed and generalized [9, 10]. In particular, Daniel
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Gottesman developed in his PhD thesis [21] the stabilizer formalism, which gives a
compact and algebraic description of quantum error-correction.

Much of quantum error-correction has to do with producing states that admit
efficient measurements. Two states are called distinguishable if there exists a mea-
surement that with certainty (that is, probability 1) tells us which one is which. We
have the following.

Theorem 6.9. Two states ∣ψ1⟩, ∣ψ2⟩ ∈ H2n are distinguishable iff ⟨ψ1 ∣ψ2 ⟩ = 0.

Proof. Assume that ⟨ψ1∣ψ2⟩ = 0. Then O = {H1,H2} where H1 = spanC{∣ψ1⟩} and
H2 = H⊥1 ∋ ∣ψ2⟩ is an observable. Measuring with O will output, with certainty, i
if the qubit was initially in the state ∣ψi⟩. Conversely, if two states ∣ψ1⟩, ∣ψ2⟩ are
not orthogonal there are no mutually orthogonal subspaces each containing one of
the states. In other words, there exists no measurement that with certainty outputs
different values for ∣ψ1⟩ and ∣ψ2⟩.

The above is the reason of the unitary constrain on quantum states. Indeed, two
parallel states are not distinguishable and thus we may scale to unit vectors. This
is commonly known as “the global phase is not noticeable”. Also, the above is (in
essence) the reason of Definition 6.12(2) of detectable quantum errors.

Definition 6.10. s

(1) An error on the n-qubit H2n is a linear transformation E ∶ H2n Ð→ H2n , which
we also may think of as a matrix E ∈M2n(C).

(2) The Pauli group P1 is the multiplicative group generated by the Pauli matrices;
see Example 6.4. In other words

P1 = {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ}.

Then, the Pauli group of a n-qubit Pn is

Pn = {E1 ⊗⋯⊗En ∣ Ei ∈ P1}
= {iλXa1Zb1 ⊗⋯⊗XanZbn ∣ λ ∈ Z4, ai, bi ∈ F2}
=∶ {iλX(a)Z(b) ∣ λ ∈ Z4, a, b ∈ Fn2}.

Remark 6.11. The Pauli matrices satisfy E† = E and X2 = Y 2 = Z2 = I. In addition

XY = iZ, Y Z = iX, XZ = −iY,
Y X = −iZ, ZY = −iX, ZX = iY.

It follows that the Pauli matrices either commute (EE′ = E′E) or anticommute
(EE′ = −E′E). Moreover, the Pauli matrices are hermitian (self-adjoint if thought
as operators) and unitary. Due to (6.4) we have that any error on a n-qubit is a
linear combination of elements of Pn. We saw in Example 6.4 that X,Z and Y can
be viewed as the bit-flip, phase-flip, and bit-phase-flip error respectively. We will see
that these are all the errors one needs to consider. In this sense the Pauli group plays
the role of an error group.
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Definition 6.12. s

(1) A quantum code of length n is a proper subspace Q of H2n .
(2) A quantum code Q ≤ H2n detects an error E ∈M2n(C) if for all ∣ψ⟩, ∣φ⟩ ∈ Q we

have
⟨ψ ∣φ ⟩ = 0 Ô⇒ ⟨ψ ∣Eφ ⟩ = 0.

(3) A quantum code Q ≤ H2n corrects a set of errors E ⊂M2n(C) if for all ∣ψ⟩, ∣φ⟩ ∈ Q
and for all E,E′ ∈ E we have

⟨ψ ∣φ ⟩ = 0 Ô⇒ ⟨Eψ ∣E′φ ⟩ = 0.

Remark 6.13. s

(1) In principle, a quantum code Q corrects an error E if for all ∣ψ⟩ ∈ Q, there exists a
quantum algorithm1 that takes as input E∣ψ⟩ and outputs ∣ψ⟩. It turns out that
the existence of such an algorithm is equivalent (see [21, Sec. 2.3], for instance) to
Definition 6.12(3), which we use as starting point. It is now easy to see that if Q
corrects E then it will also correct the linear span of E . Thanks to (6.4), Q ≤ H2

corrects any error E ∈M2(C) iff it corrects the errors X,Y , and Z.
(2) Since (E∣ψ⟩)† = ⟨ψ∣E† we have

⟨Eψ ∣E′φ ⟩ = ⟨ψ ∣E†E′ ∣φ ⟩.

Therefore, a quantum code corrects a set of errors E iff it detects every error in
E†E = {E†E′ ∣ E,E′ ∈ E}.

6.2.1 Shor’s 9-qubit code

In this section we describe the first quantum code found that corrects any error on
one qubit. This quantum code was discovered by Shor [59]. We first describe how to
correct the bit-flip error X. Consider the quantum code Q ∶= spanC{∣000⟩, ∣111⟩} ≤ H8.
Hence, a state ∣ψ⟩ = α∣0⟩+β∣1⟩ is encoded as α∣000⟩+β∣111⟩. Note first that this does
not violate the no-cloning theorem because we have cloned only the basis states ∣0⟩, ∣1⟩
and not the general state ∣ψ⟩. The error-correcting procedure is as follows. Compare
the first two qubits and the second two qubits. If the first two qubits are the same and
the second two qubits are the same, then no error occurred. If the first two qubits are
different and the second two qubits are the same, the first qubit is flipped during the
transmission. This procedure can be implemented by measuring the encoded state
with respect to the observable O ∶= {H0,H1,H2,H3} where

H0 ∶= spanC{∣000⟩, ∣111⟩}, H1 ∶= spanC{∣100⟩, ∣011⟩},
H2 ∶= spanC{∣010⟩, ∣101⟩}, H3 ∶= spanC{∣001⟩, ∣110⟩}. } (6.6)

The outcome of this measurement will tell us what error occurred. If the outcome
is 0 then no error happened. If the outcome is i then a bit flip has happened on the
ith qubit. Note that the measurement will not collapse the encoded state. Indeed,

1A quantum algorithm is a finite number of quantum gates and measurements.
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assume α∣000⟩ + β∣111⟩ is transmitted and ∣ψ′⟩ is received. Then ∣ψ′⟩ ∈ H0 iff there
is no bit flip (and also no other errors, of course!). Also, ∣ψ′⟩ ∈ Hi iff the ith bit is
flipped during transmission.

All the above shows that there exists a quantum algorithm (consisting of the
described measurement) that corrects one bit-flip. On the other hand, it is easy to
see that Q and E = {X ⊗ I2 ⊗ I2, I2 ⊗X ⊗ I2, I2 ⊗ I2 ⊗X}2 satisfy Definition 6.12(3).

In a very similar way one can describe the correction of the phase-flip error Z. In
this case we use ∣0′⟩ ∶= (∣0⟩ + ∣1⟩)/

√
2 and ∣1′⟩ ∶= (∣0⟩ − ∣1⟩)/

√
2 (see also Example 6.7)

and Q ∶= spanC{∣0′0′0′⟩, ∣1′1′1′⟩} ≤ H8. Then, we can either measure with respect to a
similar observable as in (6.6) or straightforwardly check that Q and {ZII, IZI, IIZ}
satisfy Definition 6.12(3).

So far we used 3-qubit codes. In order to correct a combination of the bit-flip
and phase-flip error, that is the XZ error, we will need a 9-qubit code. We point out
here that any code that corrects XZ will also correct Y (due to linearity of quantum
error-correction). Thus, such a code will correct any error E ∈M2(C). Shor’s 9-qubit
quantum code is

Q ∶= spanC{(∣000⟩ + ∣111⟩)⊗3, (∣000⟩ − ∣111⟩)⊗3} ≤ H29

The idea is again very similar. A bit-flip is corrected via an analogous observable to
(6.6), whereas a phase-flip error is corrected by comparing the phases of the blocks.
Definition 6.12(3) is particularly handy in this case.

6.2.2 Quantum Stabilizer Codes

Stabilizer formalism gives a compact and algebraic approach to quantum error-
correction. In here we discuss the binary case developed by Daniel Gottesman in
his PhD thesis [21]. The purpose is to give some motivation and background. We
will address the details when dealing with stabilizers over local Frobenius rings in
Section 7.1.

Let Q ≤ H2n be a quantum code. We can attach to Q a set of errors via

S(Q) ∶= {E ∈ Pn ∣ E∣ψ⟩ = ∣ψ⟩ for all ∣ψ⟩ ∈ Q}.

It is clear that S(Q) is a subgroup of Pn. Moreover, −I ∉ S(Q) since otherwise
Q = 0. We saw in Remark 6.11 that elements of Pn either commute or anticommute.
If S(Q) contains two anticommuting errors E,E′ then

∣ψ⟩ = EE′∣ψ⟩ = −E′E∣ψ⟩ = −∣ψ⟩

implies Q = 0. As a consequence S(Q) ≤ Pn is an abelian subgroup. Commuting
errors have the desirable property of having simultaneous eigenvalues. This motivates
the following definition.

Definition 6.14. s

2In what follows we will omit the tensor and write XII, IXI, IIX
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(1) An abelian subgroup S ≤ Pn such that −I ∉ S is called a stabilizer.
(2) A quantum stabilizer code associated to a stabilizer S is the subspace

Q(S) ∶= {∣ψ⟩ ∈ H2n ∣ E∣ψ⟩ = ∣ψ⟩ for all E ∈ S}.

All quantum codes presented in the previous section are examples of quantum
stabilizer codes. Their stabilizer can be easily seen and described. In fact, many
efficient quantum codes are of this nature, including the 5-qubit code [37] (the shortest
code that can correct any 1-qubit error), the Steane’s 7-qubit code [61], the so-called
graph stabilizer codes [57] etc.. The most beautiful feature of quantum stabilizer
codes is that they admit a syndrome decoding algorithm as in the classical case;
see [21, p. 20].

Given two stabilizers S ≤ S′ it follows directly by the definition that Q(S′) ≤Q(S).
Similarly, if Q ≤ Q′ then S(Q′) ≤ S(Q). Also from the very definition, for any
quantum code Q and stabilizer S we have

Q ≤Q(S(Q)) and S ≤S(Q(S)). (6.7)

Applying the above to the quantum stabilizer code Q(S) and to the stabilizer S(Q)
we obtain

Q(S) =Q(S(Q(S))) and S(Q) =S(Q(S(Q))). (6.8)

Quantum stabilizer codes have a nice error-correction criteria.

Theorem 6.15. Consider a set of errors E = {Ei} ⊆ Pn. Then:

(1)E is corrected by a stabilizer code Q(S) if E†
iEj ∉ C(S) −S for all i, j where C(S)

is the centralizer of S in Pn.
(2)E is detected by a stabilizer code Q(S) if Ei ∉ C(S) − S for all Ei ∈ E .

Proof. (1) We use Definition 6.12(3). If E†
iEj ∉ C(S) − S then either E†

iEj ∈ S or

E†
iEj ∈ Pn − C(S). Assume first that E†

iEj ∈ S and let ∣ψ⟩, ∣φ⟩ ∈ Q(S) be such that

⟨ψ∣φ⟩ = 0. Since E†
iEj ∣φ⟩ = ∣φ⟩ we immediately get

0 = ⟨ψ ∣φ ⟩ = ⟨ψ ∣E†
iEj ∣φ ⟩.

Assume now that E†
iEj ∈ Pn − C(S). Then there exists E ∈ S that does not commute

with E†
iEj. Hence E and E†

iEj must anticommute. Also, since E ∈ S we have
⟨ψ∣E = ⟨ψ∣ and E∣φ⟩ = ∣φ⟩. This yields

⟨ψ ∣E†
iEj ∣φ ⟩ = ⟨ψ ∣E†

iEjE ∣φ ⟩
= −⟨ψ ∣EE†

iEj ∣φ ⟩
= −⟨ψ ∣E†

iEj ∣φ ⟩,

and consequently, ⟨ψ ∣E†
iEj ∣φ ⟩ = 0, without even assuming ⟨ψ ∣φ ⟩ = 0.

(2) Consider the cases Ei ∈ Pn −S and Ei ∈ S and proceed as in part (1) to show that
Definition 6.12(2) holds.
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By the very definition, errors in S have no physical impact on Q(S). On the other
hand Theorem 6.15(2) says that an error outside C(S) is automatically detected by
Q(S). Thus the troubles come from C(S) − S, and the bigger this difference is the
more errors one has to control. Later on, we will study the size of this difference,
that is, the “true” errors, with classical tools. This suggests the following definition.

Definition 6.16. s

(1) The weight of a Pauli operator E = iλE1 ⊗⋯⊗En ∈ Pn where Ei ∈ {I,X,Y,Z} is

wt(E) = ∣{i ∣ Ei ≠ I}∣.

(2) The minimum distance of a quantum stabilizer code Q(S) is

dist(Q(S)) = { min{wt(E) ∣ E ∈ C(S) − S}, if S ⊊ C(S)
min{wt(E) ∣ E ∈ S − {I}}, if S = C(S) .

Corollary 6.17. A quantum stabilizer code with minimum distance at least 2t + 1
corrects any error of weight at most t.

Proof. Note first that wt(EE′) ≤ wt(E)+wt(E′) and wt(E†) = wt(E) for all E,E′ ∈
Pn. Then, if E,E′ are two errors of weight at most t, it follows that

wt(E†E′) ≤ wt(E†) +wt(E′) = wt(E) +wt(E′) ≤ t + t.

Hence, if dist(Q(S)) ≥ 2t + 1 we get E†E′ ∉ C(S) − S. The result then follows by
Theorem 6.15.
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Chapter 7 Stabilizer Codes over Frobenius Rings

The usefulness and easiness of binary quantum stabilizer is already clear from Sec-
tion 6.2.2. As mentioned the Pauli group plays the role of an error basis, which in turn
yields stabilizers and quantum stabilizer codes. The same ideas were developed in a
more mathematical language and eventually led to general error bases, Pauli groups,
and non-binary quantum stabilizer codes; see for instance [3,32,34]. One notices that
the underlying idea is to use the nice structure of characters of the additive group of
a finite field. This nice property is precisely Frobeniusness discussed extensively on
earlier chapters. This idea was used by Nadella/Klappenecker [43] to define quantum
stabilizer codes over arbitrary Frobenius rings.

7.1 Introduction

One particularly appealing feature of quantum stabilizer codes is their connection
with classical additive codes and symplectic geometry. This was first discovered
in [9] and then further developed in [10]. In here we give the appropriate definition
of the Pauli group over any Frobenius ring and discuss some of the details left out
from Section 6.2.2.

Recall the Pauli operators X,Z from Definition 6.10. For a = (a1,⋯, an) ∈ Fn2 we
use the notation X(a) ∶= Xa1 ⊗ ⋯ ⊗Xan . With the same notation as in (6.2) one
easily verifies that

X(a)∣b⟩ = ∣a + b⟩ for all ∣b⟩ ∈ Bn. (7.1)

Similarly, one has
Z(a)∣b⟩ = (−1)a⋅b∣b⟩ for all ∣b⟩ ∈ Bn (7.2)

where a ⋅b = ∑n
i=1 aibi is the standard dot product. One uses this idea to define general

X and Z operators. But first, we drop the bra-ket notation. Throughout, let R be a
finite Frobenius ring1 with cardinality ∣R∣ = d and generating character χ. A qudit
is the d-dimensional Hilbert space Cd together with a specified orthonormal basis B1

labeled via the ring elements. That is

B1 = {vx ∈ Cd ∣ x ∈ R}.

Then again, a n-qudit is the dn-dimensional vector space (Cd)⊗n ≅ Cdn together with

Bn ∶= B⊗n1 = {vx = vx1 ⊗⋯⊗ vxn ∣ x = (x1, . . . , xn) ∈ Rn}.

To generalize the bit-flip and the phase-flip errors one uses (7.1) and (7.2). Namely,
for a ∈ R define two linear transformations of Cd via

X(a) ∶ vx z→ vx+a

Z(a) ∶ vx z→ χ(ax)vx
1Eventually we will work with commutative rings; see the paragraph preceding Definition 7.10.
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Note that X(a) is a permutation matrix for all a ∈ R and thus unitary. Moreover,
the matrix representation of Z(a) with respect to B1 is diag(χ(ax))x∈R. For all a ∈ R,
Z(a) is as well unitary since character values are roots of unity. Let

E1 = {X(a)Z(b) ∣ a, b ∈ R}

For a = (a1, . . . , an) ∈ Rn define the following unitary transformations of Cdn :

X(a) ∶=X(a1)⊗⋯⊗X(an),
Z(a) ∶= Z(a1)⊗⋯⊗Z(an).

This amounts to

X(a)(vx) = vx+a and Z(a)(vx) = χ(a ⋅ x)vx for all a, x ∈ Rn.

Remark 7.1. Since X(a), Z(a) are unitary we have X(a)−1 = X(a)† and Z(a)−1 =
Z(a)†. In addition, the following are easily verifiable

X(a)` =X(`a) and Z(a)` = Z(`a) for all a ∈ Rn and ` ∈ Z, (7.3)

X(a)Z(b) =X(a′)Z(b′)⇐⇒ (a, b) = (a′, b′) (7.4)

for all (a, b), (a′, b′) ∈ R2n.

Recall that the Pauli group in the binary case was the multiplicative group gener-
ated by the Pauli matrices and was the error basis. In our case we need to be more
careful. The error basis (out of which we will construct the Pauli group) is

En ∶= {X(a)Z(b) ∣ a, b ∈ Rn} = {X(a1)Z(b1)⊗ . . .⊗X(an)Z(bn) ∣ (a, b) ∈ R2n}.

The intuitive thing to do is to consider the group generated by En. However, as
we will see, this will be the right approach precisely when the characteristic of R is
odd. That is, in general, we will need a group that contains ⟨En ⟩. The following
gives the multiplication and commutativity rules for elements of En

Proposition 7.2 ([43, Prop. 4]). Let E =X(a)Z(b),E′ =X(a′)Z(b′) ∈ En. Then,

EE′ = χ(b ⋅ a′)X(a + a′)Z(b + b′),
E′E = χ(b′ ⋅ a)X(a + a′)Z(b + b′).

In particular, E and E′ commute iff χ(b ⋅ a′ − b′ ⋅ a) = 1 = χ(b′ ⋅ a − b ⋅ a′).

The following is an immediate corollary. It points out how the characteristic
comes into play and helps computing the order of elements of En.

Corollary 7.3. Let (a, b) ∈ R2n. Then (X(a)Z(b))−1 = χ(ba)X(−a)Z(−b) and more
generally

(X(a)Z(b))` = χ(`(` − 1)
2

ba)X(`a)Z(`b) for all ` ∈ Z.
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Theorem 7.4. Let char(R) = c and define N ∶= lcm{∣X(a)Z(b)∣ ∣ (a, b) ∈ R2n}, where
∣ ● ∣ denotes the order of the given matrix in the unitary group U(dn). Then

N = { c, if c is odd,

2c, if c is even.

Proof. It is clear from Corollary 7.3 that c ∣ N . Now if c is odd then c(c−1)/2 = 0 and
the statement follows again from Corollary 7.3. Assume now that c is even. Then
2c(2c − 1)/2 = 0, and making use if Corollary 7.3 one more time we obtain N ∣ 2c.
To conclude the proof it remains to find (a, b) ∈ R2n such that (X(a)Z(b))c ≠ I.
Indeed, since c/2 is an integer, the character (c/2) ⋅χ cannot be the trivial character.
Thus there exists α ∈ R such that χ((c/2)α) ≠ 1. Now it is easy to check that
a = (α,0, . . . ,0) and b = (1,0, . . . ,0) do the job.

Definition 7.5. Let char(R) = c, N be as in Theorem 7.4, and let ω ∈ C∗ be a
primitive N -th root of unity. The n-qudit Pauli group associated with the
error basis En is

Pn ∶= {ω`X(a)Z(b) ∣ ` ∈ Z, a, b ∈ Rn} ≤ U(dn).

The elements of Pn are called Pauli operators.

Note that χ(a) ∈ ⟨ω ⟩ = {1, ω, . . . , ωN−1} for all a ∈ R implies that Pn is indeed a
group. In addition, using a primitive N -th root of unity is absolutely crucial. For
instance, if we use ω = −1 for the binary case R = F2 we leave out all the complex
phases; see also Example 7.13 for a more detailed description.

Remark 7.6. Let E = ω`X(a)Z(b) ∈ Pn, where ` ∈ Z, a, b ∈ Rn. Then the trace of
the matrix E is

Tr(E) = { ω`dn, if (a, b) = (0,0),
0, otherwise.

Indeed, assume first that a ≠ 0. In this case, since X(a) is a permutation matrix, its
diagonal elements are zero. And since Z(b) is a diagonal matrix for any b, so are the
entries of X(a)Z(b). For a = 0 we have X(a) = Idn . Thus

Tr(E) = Tr(ω`Z(b)) = ω` ∑
x∈Rn

χ(xb) = ω` ∑
x∈Rn

(bχ)(x) = ω`dn,

where the last equality follows by the orthogonality relations (2.1). Moreover, the
set En is an orthonormal basis ofMdn(C) with respect to the hermitian inner product

⟨E1 ∣E2 ⟩ ∶=
1

dn
Tr(E1E

†
2). (7.5)

In the language of Knill [35], the set En forms a nice unitary error basis.

Clearly, the self-adjoint operator X can be defined over any ring. In fact the same
is true even for Z, where one uses any non-trivial character. However, the resulting
En will be a nice error basis precisely when R is Frobenius; see [33, Lem. 2].
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We have a surjective group homomorphism

Ψ ∶ Pn Ð→ R2n, ω`X(a)Z(b)z→ (a, b), (7.6)

with kernel ker Ψ = {ω`I ∣ ` ∈ Z}. The latter is also the center of Pn. We will use
this to transfer the study to R2n. But first we give the definition of stabilizers and
quantum stabilizer codes in this new setting.

Definition 7.7. s

(1) An abelian subgroup S ≤ Pn is called a stabilizer if S ∩ ker Ψ = {Idn}.
(2) A subspace Q ≤ Cdn is called a quantum stabilizer code if there exists a stabi-

lizer S ≤ Pn such that

Q =Q(S) ∶= {v ∈ Cdn ∣ Ev = v for all E ∈ S} = ⋂
E∈S

eig(E,1).

(3) A linear code C ≤ R2n is called stabilizer code if there exists a stabilizer S such
that C = Ψ(S).

Theorem 7.8. Let S ≤ Pn be a stabilizer and Q = Q(S) ≤ Cdn be the corresponding
quantum stabilizer code. Then dimQ = dn/∣S∣.

Proof. Set P ∶= 1
∣S∣ ∑E∈S E. Since S is a group we have E′P = P for all E′ ∈ S, and

therefore P 2 = P . One easily shows that Q = imP and hence

dimCQ = dimC(imP ) = Tr(P ) = qn/∣S∣,

where the last step follows from Remark 7.6 along with the fact that S ∩ {λIdn ∣ λ ∈
C} = {Idn}.

Corollary 7.9. For a stabilizer code Q =Q(S) we have S =S(Q).

Proof. As in (6.7) we have S ≤S(Q(S)). Thanks to Theorem 7.8 and (6.8) we have
equality due to cardinality reasons.

To keep track of the commutativity of Pauli operators we use the following sym-
plectic bilinear form; see also Definition 3.2. In order to attain bilinearity we will
need to work with a commutative Frobenius ring, and that is what we assume from
now on.

Definition 7.10. The symplectic inner product on ⟨ ● ∣ ● ⟩s ∶ R2n × R2n Ð→ R is
defined as

⟨ (a, b) ∣ (a′, b′) ⟩s ∶= (a b)( 0 −In
In 0

)(a
′

b′
) = ba′ − b′a.

For A ⊆ R2n we define A⊥ ∶= {v ∈ R2n ∣ ⟨ v ∣w ⟩s = 0 for all w ∈ A}. If C ≤ R2n is a linear
code then C⊥ is the dual code as in Definition 3.3 As usual, C is called self-orthogonal
(resp., self-dual) if C ⊆ C⊥ (resp., C = C⊥).

We have the following special instance of Proposition 3.4.
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Proposition 7.11. Let C ≤ R2n be a linear code. Then

C⊥ = {v ∈ R2n ∣ χ(⟨ v ∣w ⟩s) = 1 for all w ∈ C}.

Theorem 7.12 ([19, Thm. 3.12]). Let C ≤ R2n be a submodule. Then
C is a stabilizer code iff C ⊆ C⊥. Thus, the stabilizer codes are exactly the self-
orthogonal linear codes of R2n with respect to the symplectic inner product.

Proof. “⇒” Let C = Ψ(S) for some stabilizer S ≤ Pn. We have to show that C ⊆ C⊥.
Let v = (a, b), w = (a′, b′) ∈ C. Since E = Ψ−1(v),E′ = Ψ−1(w) ∈ S, they commute.
Write E = ω`X(a)Z(b), E′ = ω`′X(a′)Z(b′). Then Proposition 7.2 and the definition
of the symplectic inner product yield χ(⟨ v ∣w ⟩s) = 1. Now Proposition 7.11 implies
v ∈ C⊥, and thus C ⊆ C⊥.
“⇐” Recall N and ω from Definition 7.5. Let now C ≤ R2n be a self-orthogonal linear
code. Consider the subset

G = {ω`X(a)Z(b) ∣ ` ∈ Z, (a, b) ∈ C} (7.7)

of the Pauli group Pn. Again, Proposition 7.2 implies that G is an abelian subgroup
of Pn. Let ξ be a character of (G, ⋅) such that ξ(ω`I) = ω` for all ` ∈ Z. Such
character ξ does indeed exist thanks to Remark 2.1(6). Define

S ∶= {ξ(χ(ab)X(−a)Z(−b))X(a)Z(b) ∣ (a, b) ∈ C} ⊆ G. (7.8)

We show first that S is a group. Let (a, b), (a′, b′) ∈ C. With the aid of Proposition 7.2
the following computation implies that S is closed under multiplication:

ξ(χ(ab)X(−a)Z(−b))X(a)Z(b)ξ(χ(a′b′)X(−a′)Z(−b′))X(a′)Z(b′)
= ξ(χ(ab + a′b′)X(−a)Z(−b)X(−a′)Z(−b′))χ(ba′)X(a + a′)Z(b + b′)
= ξ(χ(ab + a′b′ + ba′)X(−a − a′)Z(−b − b′))χ(ba′)X(a + a′)Z(b + b′)
= ξ(χ(ab + a′b′ + ba′)X(−a − a′)Z(−b − b′))ξ(χ(ba′)I)X(a + a′)Z(b + b′)
= ξ(χ(ab + a′b′ + ba′ + b′a)X(−a − a′)Z(−b − b′))X(a + a′)Z(b + b′)
= ξ(χ((a + a′)(b + b′))X(−a − a′)Z(−b − b′))X(a + a′)Z(b + b′)

where in the third step we used that ξ(χ(ba′)I) = χ(ba′) and in the fourth step
that ba′ = b′a for all (a, b), (a′, b′) ∈ C. Next, using (a′, b′) = (−a,−b) we also obtain
closedness with respect to taking inverses. Finally, S is an abelian group such that
S ∩ ker Ψ = {I} and C = Ψ(C).

We include linearity in the definition of stabilizer codes precisely because of the
above theorem for otherwise we would not get a one-to-one correspondence; see [19,
Ex. 3.11]. We next present an example that summaries the notions introduced so far.

Example 7.13. Let R = F4 = {0,1, α,α2} with α2 = α + 1, and let n = 1. Take the
generating character χ on F4 defined by χ(1) = 1 and χ(a) = −1 for a ∈ F4 ∖ {0,1}.
We use the orthonormal basis

B = {v0 = (1,0,0,0)T, v1 = (0,1,0,0)T, vα = (0,0,1,0)T, vα2 = (0,0,0,1)T}.
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Consider the stabilizer code C = im (1,1) ⊆ F2
4. We use the fourth root of unity ω = i,

Then (7.7) reads as
G = {i`X(a)Z(a) ∣ ` ∈ Z4, a ∈ F4}

A character ξ ∈ Ĝ that satisfies ξ(i`I) = i` is given by

ξ(i`X(αt)Z(αt)) = ξ(i`I)ξ(X(αt)Z(αt)) = i`+
t(t+1)

2 .

Then, the stabilizer of (7.8) reads as

S = {I4, X(1)Z(1), −iX(α)Z(α), iX(α2)Z(α2)},

which of course satisfies Ψ(S) = C.

What is the appropriate weight function to endow a stabilizer code with? Recall
the weight of a Pauli operator from Definition 6.16. Let v = (a, b) ∈ R2n. Since the
weight disregards the phases, we can use wt(Ψ−1(v)), making Ψ an isometry. This
amounts to the following.

Definition 7.14. The symplectic weight of a vector (a, b) = (a1, . . . , an, b1, . . . , bn) ∈
R2n is defined as

wts(a, b) ∶= ∣{i ∣ (ai, bi) ≠ (0,0)}∣.

Note that the symplectic weight of (a1, . . . , an, b1, . . . , bn) ∈ R2n is the same as
the Hamming weight of the rearranged vector (a1, b1, a2, b2, . . . , an, bn) ∈ (R2)n, where
(ai, bi) are considered as elements of R2. We will rely heavily on this simple remark
when discussing the equivalence of stabilizer codes is Section 7.3.

Of course, one would want a stabilizer code C to have the same error-correcting
capabilities as the associated quantum stabilizer code.

Definition 7.15. The minimum distance of a stabilizer code C = Ψ(S) is

dist(C) = { min{wts(v) ∣ v ∈ C⊥ − C}, if C ⊊ C⊥
min{wts(v) ∣ v ∈ C − {0}}, if C = C⊥ .

We will discuss the minimum distance and general structural results in details in
the next section.

7.2 Minimum Distance

In this section we will discuss stabilizer codes over commutative local Frobenius rings.
We will use the same notation as in Section 3.4. The symplectic weight is very similar
to the Hamming weight and many of the results will hold true even in this new setting.
If C is a stabilizer code then the reduction C is a stabilizer code over the residue field
F = R/m. If C is a free stabilizer code then C and C have the same rate due to
Theorem 3.23. However, C deals with a much larger error basis. How does the
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minimum distance of C compare with the minimum distance of C? First, a notation.
For a subset X of R2n or F2n we define

ds(X) ∶= min{wts(x) ∣ x ∈X − {0}}. (7.9)

In [43] the authors consider free stabilizer codes over chain rings, and give2 an upper
bound using the reduction of C⊥ − C. Namely, they show

dist(C) ≤ ds (C⊥ − C) . (7.10)

In order to compare the performance of C and C the respective minimum distances
should be compared instead. Moreover, the quantity on the right hand side of (7.10)
behaves unpredictably, especially for non-free stabilizer codes.

In Section 3.4 we considered linear codes with respect to the Hamming weight.
As in Theorem 3.25, for a stabilizer code C one obtains

ds(C) = ds ((C ∶ α)) ≤ ds(C). (7.11)

Lemma 3.26 played a crucial role in the proof of Theorem 3.27 to obtain equality
for free linear codes. Finding a generating matrix on standard form was trivial in
that case since we could simply permute the columns without changing the minimum
distance. In this new setting, permuting the columns of a generating matrix may
change the symplectic weight, and even worse, it may destroy self-orthogonality.
Thus, in order to obtain a standard form we need to establish first the according
allowed operations.

Definition 7.16. Let C ≤ R2n be a linear3 code and f ∶ C Ð→ R2n be a linear
map. Then f is called a symplectic isometry if wts(a) = wts(f(a)) and ⟨a ∣ b ⟩s =
⟨ f(a) ∣ f(b) ⟩s for all a, b ∈ R2n. Two linear codes C,C′ ≤ R2n are called symplectically
isometric if there exists a symplectic isometry f ∶ C Ð→ R2n such that f(C) = C′.

Example 7.17. We have two particularly nice symplectic isometries. For every
permutation σ ∈ Sn define the map τσ ∶ R2n Ð→ R2n given by

(a1, . . . , an, b1, . . . , bn)z→ (aσ(1), . . . , aσ(n), bσ(1), . . . , bσ(n)).

For every i ∈ [n] we define the map τi ∶ R2n Ð→ R2n given by

(a1, . . . , an, b1, . . . , bn)z→ (a1, . . . , ai−1, bi, ai+1, . . . , an, b1, . . . , bi−1,−ai, bi+1, . . . , bn).

It is clear that τσ and τi preserve the symplectic weight as well as the symplectic
inner product.

2This is for the case when C is not self-dual. As we will see, the self-dual case is much easier to
deal with.

3Although we give this general definition, we will be mainly focusing on symplectic isometries
of stabilizer codes.
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The following characterizes the structure of free stabilizer codes. To achieve the
normal form τσ and τi are sufficient.

Theorem 7.18 ([19, Thm. 4.7, Prop. 4.9]). Let C ≤ R2n be a free stabilizer code of
dimension k. Then C is symplectically isometric to a free code C′ of the form

C′ = im (Ik M N1 N2) ≤ R2n, (7.12)

where M ∈ Mk×(n−k)(R), N1 ∈ Mk(R), N2 ∈ Mk×(n−k)(R) such that N1 + N2MT ∈
Mk(R) is a symmetric matrix. Furthermore, if C′ is as in (7.12), then C′ is self-
orthogonal iff N1 + N2MT is symmetric. In addition, the symplectic dual is given
by

C⊥ = im
⎛
⎜
⎝

Ik 0 N1
T 0

0 In−k N2
T 0

0 0 MT −In−k

⎞
⎟
⎠
= im

⎛
⎜
⎝

Ik M N1 N2

0 In−k N2
T 0

0 0 MT −In−k

⎞
⎟
⎠
.

The above theorem, as in Theorem 3.27, implies equality on (7.11). We have the
following.

Theorem 7.19. Let C ≤ R2n be a self-dual stabilizer code. Then dist(C) ≤ dist(C),
with equality if C is free.

Proof. When C is self-dual we have dist(C) = ds(C). Similarly for C. In analogy with
the Hamming weight we have ds(C) ≤ ds(C), with equality if C is free.

From now on we focus on stabilizer codes that are not self-dual. In such case we
have

dist(C) = ds(C⊥ − C).
The difficulties dealing with non self-dual stabilizer codes arise mainly from the fact
that C⊥ − C is not a submodule (in fact is not even closed under multiplication).
However the necessary machinery is already developed in Section 3.4. Let α ∈ R be
such that

αR = soc(R) = m⊥,

as in (3.21) and (3.22), and ρ ∶ R2n Ð→ F2n be as in (3.25). Thanks to (3.26) ρ
preserves the symplectic weight.

Theorem 7.20. Let C be a free stabilizer code. Then dist(C) ≤ dist(C).

Proof. Note first that since ρ preserves the symplectic weight it is enough to show
that

ρ−1(C⊥ − C) ⊆ C⊥ − C. (7.13)

To this end, let x ∈ C⊥ − C for some x ∈ R2n. Thanks to Remark 3.29 we may assume
that x ∈ C⊥. Then ρ−1(x) = αx ∈ C⊥. Suppose αx ∈ C. Then x ∈ (C ∶ α), and thus

x ∈ (C ∶ α) = C, where the latter follows from Theorems 3.27 and 7.18, and we arrive
at a contradiction. Thus ρ−1(x) = αx /∈ C.

63



We continue with various sufficient conditions that imply equality in the above
theorem. It is precisely the nature of such conditions, along with computational data
that motivate the following Conjecture

Conjecture 7.21. dist(C) = dist(C) for any free stabilizer code C ≤ R2n.

A stabilizer code C is called pure if dist(C) = ds(C⊥). Otherwise, C is called
impure. Note that a self-dual stabilizer code is automatically pure. If C is a free
stabilizer code such that the reduced stabilizer code C is pure then (7.11) implies

dist(C) = ds(C
⊥) = ds(C⊥) ≤ ds(C⊥ − C) = dist(C),

where the in-between inequality follows by the obvious containment C⊥−C ⊆ C⊥. Along
with Theorem 7.20 we have the following.

Theorem 7.22. Let C be a free stabilizer code such that C is pure. Then dist(C) =
dist(C).

Example 7.23. We provide an example of a free impure stabilizer code for which
Conjecture 7.21 holds true. Let R = Z4, n = 7, and C = imG, where

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0 1 1 0 0 0 0 0 0
0 1 0 0 0 0 3 3 2 3 2 0 1 1
0 0 1 0 0 0 0 1 2 2 3 3 3 3
0 0 0 1 0 0 2 1 3 1 3 0 2 3
0 0 0 0 1 0 1 2 3 2 3 1 3 2
0 0 0 0 0 1 2 0 3 1 0 3 2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

One checks that C is a free stabilizer code with dual code C⊥ = imH, where

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0 1 1 0 0 0 0 0 0
0 1 0 0 0 0 3 3 2 3 2 0 1 1
0 0 1 0 0 0 0 1 2 2 3 3 3 3
0 0 0 1 0 0 2 1 3 1 3 0 2 3
0 0 0 0 1 0 1 2 3 2 3 1 3 2
0 0 0 0 0 1 2 0 3 1 0 3 2 0
0 0 0 0 0 0 1 0 1 3 3 2 0 0
0 0 0 0 0 0 0 1 3 0 2 1 2 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

One computes ds(C) = ds(C⊥) = 2, and dist(C) = 3 since

(0,1,1,0,0,0,1,0)H = (0,1,1,0,0,0,0,0,1,0,0,1,0,0) ∈ C⊥ − C.

To obtain the corresponding reductions we simply multiply codewords by 2 modulo
4 and replace the 2s with 1s. Also for the reductions, one computes

ds(C) = ds(C
⊥) = 2, and dist(C) = 3.
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For x = (a, b) in R2n or F2n define supp(x) ∶= {i ∣ (ai, bi) ≠ (0,0)}. It is clear that
wts(x) = ∣supp(x)∣. For a subset X of R2n or F2n define

supp(X) ∶= {supp(x) ∣ x ∈X − {0}}.

Let S(X) be the set of all minimal elements of supp(X) under inclusion. Now let
X,Y be any subsets of R2n or F2n. It follows directly by the definitions that

S(X) ⊆ S(Y ) Ô⇒ ds(Y ) ≤ ds(X).

Thus, by taking the contrapositive we obtain

ds(X) < ds(Y ) Ô⇒ S(X) /⊆ S(Y ). (7.14)

Theorem 7.24. Let C be a free stabilizer code such that S(C⊥ − C) ⊆ supp(C⊥ − C).
Then dist(C) = dist(C)

Proof. Assume dist(C) ≠ dist(C). Thanks to Theorem 7.20 this actually means
dist(C) < dist(C), and (7.14) implies that there exists x ∈ C⊥ − C such that supp(x) ∈
S(C⊥−C) but supp(x) ∉ S(C⊥−C). The assumption implies that supp(x) ∈ supp(C⊥−C).
This implies that supp(x) is not minimal on C⊥ − C. We show next that the latter

cannot happen, arriving thus to a contradiction. Indeed, assume there exists y ∈ C⊥−C
such that supp(y) ⊊ supp(x). Then (7.13) implies ρ−1(y) ∈ C⊥ − C. But ρ preserves
the symplectic weigh, which in particular yields

supp(ρ−1(y)) = supp(y) ⊊ supp(x).

But the latter cannot happen since supp(x) ∈ S(C⊥ − C). Contradiction!

We now give an example of non-free stabilizer code. It is worth pointing out that
we do not even have an example of non-free codes that disprove Conjecture 7.21.
When dealing with non-free stabilizer codes one needs to be aware of the strict con-
tainment C⊥ ⊊ C⊥; see also Theorem 3.30(2).

Example 7.25. Let R = Z8 and let C = imG, where

G ∶=
⎛
⎜⎜⎜
⎝

1 0 0 0 3 0 0 2 3 0
0 1 0 0 3 0 0 7 7 0
0 0 2 0 0 6 0 0 0 2
0 0 0 2 0 6 6 0 0 0

⎞
⎟⎟⎟
⎠
.

Then ∣C∣ = 83 ⋅ 2 and thus ∣C⊥∣ = 86 ⋅ 4. The dual code is given by C⊥ = imH, where

H ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 3 0 0 2 3 0
0 1 0 0 3 0 0 7 7 0
0 0 1 0 0 7 4 0 0 1
0 0 0 1 0 7 3 0 0 4
0 0 0 0 1 0 0 1 4 0
0 0 0 0 0 1 1 0 0 5
0 0 0 0 0 0 0 4 0 0
0 0 0 0 0 0 0 0 4 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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The last row of H shows that dist(C) = 1. One computes ds(C⊥ − C) = 2 whereas
dist(C) = 1. In this case (7.10) is strict.

We end this section with a comment. When a stabilizer code C is free we have
C⊥ − C ⊆ C⊥ − C. This yields

ds (C⊥ − C) ≤ dist(C).
Thus, Conjecture 7.21 implies equality on (7.10). Example 7.25 shows that freeness is
a necessary condition for (7.10). Yet, we are not able to find (should this be possible)
a non-free stabilizer code that disproves the conjecture.

7.3 Symplectic Isometries

In this section we discuss symplectic isometries introduced in Definition 7.16. The
study will be twofold. We first consider a stronger version of MacWilliams Extension
Theorem for symplectic isometries, and then discuss isometry groups of stabilizer
codes. The question is, does a symplectic isometry f ∶ C ≤ R2n Ð→ R2n extend to a
symplectic isometry of R2n for any linear code C? In this case both the symplectic
weight and the symplectic inner product have to be preserved. So we are simulta-
neously also dealing with Witt’s Extension Theorem [67] where a bilinear form has
to be preserved during the extension. As usual, in order to understand the structure
of symplectic isometries, we start with the extremal case C = R2n. Stabilizer codes,
that is self-orthogonal codes of R2n differ from this scenario. This is due to the fact
that R2n is not a stabilizer code and hence symplectic isometries of the extremal
case C = R2n have a much richer structure. However, this case still gives insight on
what to expect and aim. We mentioned that the symplectic weight on R2n can be
viewed as the Hamming weight on (R2)n. This allows us to invoke Theorem 3.16(1).
We make use of this explicitly via the change of coordinates

γ ∶ R2n Ð→ (R2)n, (a1, . . . , an ∣ b1, . . . , bn)z→ (a1, b1 ∣ a2, b2 ∣ . . . ∣ an, bn). (7.15)

For a linear map f ∶ R2n Ð→ R2n we define f̃ ∶= γ ○ f ○ γ−1 ∶ (R2)n Ð→ (R2)n; see the
following commutative diagram.

(R2)n (R2)n

R2n R2n

//
f̃

//
f

��

γ

��

γ (7.16)

Thus for x = (a1, b1 ∣ . . . ∣ an, bn) we have wtH(x) = wts(γ−1(x)), that is, the Hamming
weight on (R2)n is the pullback of the symplectic weight on R2n. In order to transfer
the problem completely to (R2)n we need to also pull back the symplectic inner
product. Namely, define

⟨x ∣ y ⟩ ∶= ⟨γ−1(x) ∣γ−1(y) ⟩s =
n

∑
i=1

xiJyiT, (7.17)
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for all x, y ∈ (R2)n, where

J =XZ = (0 −1
1 0

) . (7.18)

To resume, we obtain the following equivalences

f is wts-isometry ⇐⇒ f̃ is wtH-isometry (7.19)

and
f preserves ⟨ ● ∣ ● ⟩s ⇐⇒ f̃ preserves ⟨ ● ∣ ● ⟩. (7.20)

We call f̃ as well a symplectic isometry. With this notation we obtain the structure
of symplectic isometries of R2n.

Theorem 7.26. Let f ∶ R2n Ð→ R2n be a linear map. Then f is a symplectic isometry
iff the matrix representation of f̃ in M2n(R) is a block matrix of the form

diag(A1, . . . ,An)(P ⊗ I2), (7.21)

where Ai ∈ SL2(R) and P ∈ Sn is a permutation matrix.

Proof. For the “if part” note that (7.21) clearly preserves the Hamming weight on
(R2)n. Note also that (7.21) also preserves ⟨ ● ∣ ● ⟩. Indeed, for all A ∈ M2(R), we
have AJAT = det(A) ⋅ J , and thus

AJAT = J ⇐⇒ A ∈ SL2(R). (7.22)

Now the statement follows by (7.17). For the “only-if part”, the existence of Ai and P
follows by Theorem 3.16(1). Now assume that f̃ = diag(A1, . . . ,An)(P ⊗I2) preserves
⟨ ● ∣ ● ⟩. We want to show Ai ∈ SL2(R). Indeed, thanks to (7.17) we have

⟨ f̃(x) ∣ f̃(y) ⟩ = ⟨x ∣ y ⟩ Ô⇒
n

∑
i=1

xiAiJAiTyiT =
n

∑
i=1

xiJyiT (7.23)

for all x, y ∈ (R2)n. Then (7.23) implies AiJAiT = J for all i. Now the statement
follows by (7.22).

Note that (7.21) is precisely an element of MonSL2(R), n(M2(R)) from (3.13). This
motivates the following definitions.

Definition 7.27. The map f̃ as in (7.21) is called a SL2(R)-monomial map. We
will denote MonSL((R2)n) the group of SL2(R)-monomial maps of (R2)n. The group
of SL2(R)-monomial maps of R2n is given by

MonSL(R2n) ∶= {γ−1f̃γ ∣ f̃ ∈ MonSL((R2)n)}.

The map f̃ is called a monomial map if Ai ∈ GL2(R) in (7.21). We will denote
Mon((R2)n) and Mon(R2n) the groups of monomial maps of (R2)n and R2n respec-
tively. If two stabilizer codes are symplectially isometric via a SL2(R)-monomial map
we call them monomially equivalent.
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We will be using the term “(SL2(R)-) monomial map” interchangeably and it
should be clear from context whether we work over (R2)n or R2n. Theorem 7.26
implies that all the symplectic isometries of R2n are SL2(R)-monomial maps. On the
the other hand, again thanks to Theorem 7.26, we have that monomial maps preserve
the symplectic weight, but not necessarily the symplectic inner product.

Example 7.28. Recall the symplectic isometries of Example 7.17. One easily verifies
that the isometry τσ transforms to τ̃σ with matrix representation Pσ⊗ I2. The isome-
try τi transforms to τ̃i with matrix representation diag(I, . . . , I, J, I, . . . , I) ∈ GL2n(R),
with J at the ith diagonal position.

In Section 5.1 we saw that a Hamming isometry f ∶ C ≤ (R2)n Ð→ (R2)n cannot
be a monomial map in general. This is due to the fact that the R-module R2 does
not have a cyclic socle; see also Theorem 5.3. What about Hamming isometries that
preserve ⟨ ● ∣ ● ⟩? Are they given by (7.21)? The following example shows that the
answer is still no.

Example 7.29. Let C = imG ≤ (F2
2)4 be the F2-linear code given by

C = im

⎛
⎜⎜⎜
⎝

1 0 0 1 1 0 1 0
0 1 1 0 0 0 1 0
0 1 0 0 0 1 0 0
0 1 0 1 0 0 0 1

⎞
⎟⎟⎟
⎠
.

Let xi be the ith row of the above matrix. Consider the linear map f ∶ C Ð→ (F2
2)n

given by

x1 z→ (1 1 1 0 1 0 1 1)
x2 z→ (0 0 0 1 1 0 1 0)
x3 z→ (0 0 0 0 0 1 0 1)
x4 z→ (0 1 0 0 1 0 1 0)

One checks that f is a Hamming isometry that preserves ⟨ ● ∣ ● ⟩. Let G′ be the matrix
whose ith row is f(xi). Note that G′ has 2 × 2 zero blocks whereas G does not. It
follows easily from this observation that f cannot be extended to a SL2(F2)-monomial
map.

Of course we are interested on stabilizer codes. Note that C from the previous
examples is a self-orthogonal code with respect to ⟨ ● ∣ ● ⟩ and thus corresponds to
a stabilizer code in R2n. Whenever the Extension Property fails the structure of
isometries (symplectic isometries in this case) is yet to be discovered. To this end,
we start by defining two isometry groups of a linear code C ≤ R2n:

MonSL(C) ∶= {f ∈ Aut(C) ∣ f is the restriction of an SL2(R)-monomial map},
Symp(C) ∶= {f ∈ Aut(C) ∣ f is a symplectic isometry}. (7.24)
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Example 7.30. Consider the F2-linear code C ≤ (F2
2)4, generated by either of matrices

N1 =
⎛
⎜⎜⎜
⎝

1 0 0 1 1 0 1 0
0 1 1 0 0 0 1 0
0 1 0 0 0 1 0 0
0 1 0 1 0 0 0 1

⎞
⎟⎟⎟
⎠
, N2 =

⎛
⎜⎜⎜
⎝

1 1 1 0 1 1 0 1
0 1 0 1 0 0 0 1
0 0 1 1 0 0 1 1
0 0 0 1 0 1 0 1

⎞
⎟⎟⎟
⎠
,

and the map f̃ ∶ C Ð→ C that sends the ith row of H1 to the ith row of H2. One
checks straightforwardly that f̃ is a symplectic isometry. Moreover, f̃ cannot be a
SL2(F2)-monomial map due to the fact that there are 2×2 zero blocks in H2 whereas
no zero blocks in H1.

Thanks to Theorem 7.26 we have MonSL(C) ⊆ Symp(C). However, Example 7.30
shows that the containment is strict in general. In what follows we show that the
gap can be as big as possible when R = Fq. We then make use of the latter to create
stabilizer codes over commutative local Frobenius ring with arbitrarily big isometry
groups, answering in this way [19, Q. 7.4]. We heavily rely on the work of Wood [71]
on linear codes over matrix modules. We use the very same language and techniques.
Thanks to (7.19) and (7.20) it is enough to consider Fq-linear codes over F2

q endowed
with the Hamming weight and that are self-orthogonal with respect to ⟨ ● ∣ ● ⟩. First
we set up some notations.

Let C ≤ F2n
q be a stabilizer code of dimension k, and let G be a generating matrix.

Then G is a full-rank k × 2n matrix over Fq. View G as the linear map Fkq Ð→
F2n
q , xz→ xG with inputs on the left4. Thus

C = {xG ∣ x ∈ Fkq} = imG = (Fkq)G. (7.25)

This allows us to think of C as an embedding of Fkq in F2n
q via G. That is, we can

identify C with the pair (Fkq ,G). In this way, if xG z→ yG is an automorphism of C
then so is xG z→ yBG for any B ∈ GLk(Fq). Conversely, for any f ∈ Aut(C) there
exists (a unique) B ∈ GLk(Fq) such that the following diagram commutes.

Fkq

Fkq CC

''
∃!Bf

//
f

OO

G

//G

(7.26)

In other words, we may make the following identification

{BG ∣ B ∈ GLk(Fq)} = Aut(C). (7.27)

Under this identification, we obtain an isomorphism of groups

Φ ∶ Aut(C)Ð→ GLk(Fq), f z→ Bf , (7.28)

4To avoid ambiguities, all inputs in this section will be on the left and we precompose.
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where Bf is the unique invertible matrix such that f = BfG. An automorphism of
a stabilizer code trivially preserves ⟨ ● ∣ ● ⟩s. With the above identification the second
part of (7.24) reads as

Symp(C) = {B ∈ GLk(Fq) ∣ wts(xBG) = wts(xG) for all x ∈ Fkq}. (7.29)

Next, we address the group MonSL(C). Let f ∈ MonSL(C). As before, there exists a
unique Bf ∈ GLk(Fq) such that f = BfG. On the other hand, f is the restriction of
a SL2(Fq)-monomial map M . Thus we have BfG = f =M∣C. Denote5 by

rMonSL(C) ∶= Φ(MonSL(C)) ≤ GLk(Fq). (7.30)

Thus, in GLk(Fq) we have two subgroups that we can compare: rMonSL(C) and
Symp(C). Of course we have rMonSL(C) ≤ Symp(C). We will show that given H1 ≤
H2 ≤ GLk(Fq) that satisfy some necessary conditions6, there exists a stabilizer code
C such that rMonSL(C) ⊆H1 and H2 = Symp(C), with equality rMonSL(C) =H1 when
q = 2. We discuss first the necessary conditions following the line [71]. First we need
the notion of closure from group theory. For more details we refer the reader to [65]
and [71, Sec. 4].

Definition 7.31. Let a group G act on a set X from the left and let H ≤ G be a
subgroup. For x ∈ X, define orbH(x) ∶= {hx ∣ h ∈ H}. Then the closure of H with
respect to the action of G on X is

H = {g ∈ G ∣ g ⋅ orbH(x) = orbH(x) for all x ∈X}. (7.31)

The subgroup H is called closed if H =H.

We fix the following notation for the remainder of this section.

Notation 7.32. Recall the change of coordinates γ from (7.15). Let C ≤ F2n
q be a

stabilizer code and put C ∶= γ(C) ≤ (F2
q)n. For a generating matrix G of C we also put

N = γ(G), where the latter means that we permute the columns of G according to γ.
Clearly GL2(Fq) acts from the right on the matrix spaceMk×2(Fq) and F∗q acts from
the left on Fkq . Denote O# and O the respective orbit spaces. The group GLk(Fq)
acts on O# from the left and on O from the right in an obvious way.

Remark 7.33. Let C ≤ (F2
q)n be an Fq-linear code with generating matrix N . In

this case we think of N as k × n matrix whose columns are k × 2 matrices. Similarly
as in (7.29) we may define the isometry group of C as

Iso(C) ∶= {B ∈ GLk(Fq) ∣ wtH(xBN) = wtH(xN) for all x ∈ Fkq}. (7.32)

Next, let Mon(C) ∶= {f ∈ Aut(C) ∣ f is the restriction of a monomial map}. We
define rMon(C) ∶= Φ(Mon(C)) ≤ GLk(Fq). If C is self-orthogonal we naturally put

MonSL(C) ∶= {f̃ = γ ○ f ○ γ−1 ∣ f ∈ MonSL(C)} ≤ MonSL((F2
q)n), (7.33)

5We use the same notation as Wood [71] where the extra “r” stand for “restriction” since we
may identify Bf with M∣C .

6Not all subgroups of GLk(Fq) can be isometry groups.
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where C ∶= γ−1(C). Then MonSL(C) ⊆ Mon(C). Put rMonSL(C) ∶= Φ(MonSL(C)). It
follows that rMonSL(C) = rMonSL(C).

Remark 7.34. Let C ≤ (F2
q)n = imN be a self-orthogonal Fq-linear code and put

C ∶= γ−1(C) = imG. Then wts(xG) = wtH(xN) for all x ∈ Fkq . Comparing (7.29)
and (7.32) we conclude that Iso(C) = Symp(C). In addition, Remark 7.33 implies
rMonSL(C) = rMonSL(C) ≤ rMon(C). When q = 2 we have GL2(F2) = SL2(F2) and
thus rMonSL(C) = rMon(C).

Remarks 7.33 and 7.34 point out the importance of the isomorphism Φ from
(7.28). By considering the images under Φ of all the groups floating around we
obtain a unified approach that is independent of the change of coordinates γ.

Example 7.35. Let C ≤ F2⋅5
2 be the stabilizer given by the following generating matrix

G =
⎛
⎜
⎝

0 1 1 1 1 0 0 0 0 0
1 0 1 0 0 0 0 0 1 1
1 0 0 0 1 0 1 1 0 0

⎞
⎟
⎠
.

Using (7.29) one computes Symp(C) = GL3(F2). On the other hand, only 8 of these
symplectic isometries are restrictions of SL2(F2)-monomial maps.

Then, [71, Prop. 4.7] applied to our specific scenario reduces to the following.

Proposition 7.36. Let C ≤ (F2
q)n be a Fq-linear self-orthogonal code of dimension k.

Then rMon(C) is closed with respect to the action of GLk(Fq) on O# and Iso(C) is
closed with respect to the action of GLk(Fq) on O.

Theorem 7.37 ([71, Thm. 5.1]). Let H1, H2 ≤ GLk(Fq) be two subgroups such that
H1 is closed under the action of GLk(Fq) on O# and H2 is closed under the action
of GLk(Fq) on O. Then there exists n ∈ N and a Fq-linear code C ≤ (F2

q)n such that

H1 = rMon(C) and H2 = Iso(C).

Of course there is no reason for the linear code produced in Theorem 7.37 to be
self-orthogonal. However, we make use of it to produce a self-orthogonal code of the
same dimension without changing the isometry groups. To achieve this we make use
of the concatenated code. That is, for a linear code C, the concatenated code is
defined as

C ∣ C ∶= {(x ∣ x) ∣ x ∈ C} ≤ (F2
q)2n. (7.34)

Clearly, C ∣ C has the same dimension as C, but it is twice as long. In this sense C
has a rate twice as large as the rate of C ∣ C. So of course, achieving self-orthogonality
will come with a high cost.

Lemma 7.38. Let C = imN ≤ (F2
q)n be a Fq-linear code. Then rMon(C ∣ C) =

rMon(C) and Iso(C ∣ C) = Iso(C).
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Proof. The first statement is a corollary of [71, Prop. 3.7] along with the observation
that C ∣ C = im N̂ where N̂ ∶= N ∣ N is the corresponding concatenated matrix. Next,
by the very definition of the Hamming weight, for all B ∈ GLk(Fq) we have

wtH(xN ∣ xN) = wtH(xBN ∣ xBN) ⇐⇒ wtH(xN) = wtH(xBN).

The second statement then follows.

Lemma 7.39. Fix q = 2`. Let C ≤ (F2
q)n be a Fq-linear code. Then C ∣ C ≤ (F2

q)2n is
a self-orthogonal Fq-linear code.

Proof. Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ (F2
q)n. Then

⟨ (x ∣ x) ∣ (y ∣ y) ⟩ =
n

∑
i=1

xiJyiT +
n

∑
i=1

xiJyiT = 0,

since char(Fq) = 2. Thus C ∣ C is self-orthogonal.

Corollary 7.40. Let C ≤ (F2
q)n be a Fq-linear code where q = p` for some prime p.

Then the pth concatenated code C̃ ∶= C ∣ ⋯ ∣ C ≤ (F2
q)pn is self-orthogonal code such

that rMon(C) = rMon(C̃) and Iso(C) = Iso(C̃).

We are now ready to prove the main theorem.

Theorem 7.41. Let H1, H2 ≤ GLk(Fq) be two subgroups such that H1 is closed under
the action of GLk(Fq) on O# and H2 is closed under the action of GLk(Fq) on O.
Then there exists n ∈ N and a stabilizer code C ≤ F2n

q such that

rMonSL(C) ⊆H1 and H2 = Symp(C), (7.35)

with equality H1 = rMonSL(C) if q = 2.

Proof. Applying Corollary 7.40 to Theorem 7.37 we can produce a self-orthogonal
code C ≤ (F2

q)n, for some n, such that

H1 = rMon(C) and H2 = Iso(C).

Now C ∶= γ−1(C) ≤ F2n
q is a stabilizer code that satisfies (7.35), thanks to Remark

7.34. The equality for the case q = 2 was also discussed in Remarks 7.33 and 7.34.

We now address the general case of stabilizer codes over a local commutative
Frobenius R. In this case we obtain a weaker version of Theorem 7.41.

Remark 7.42. Let m be the maximal ideal of the local ring R and let α a generator
of the socle. Recall from Section 3.4 that thanks to (3.22) we obtain a well-defined
multiplication

r ⋅ x = rx, for all r ∈ Fq and x ∈ αR, (7.36)

which makes αR a Fq-vector space. Let X ≤ R2n be a submodule. We denote
αX ∶= {αx ∣ x ∈ X} and X ∶= {x ∣ x ∈ X} ≤ F2n

q . Note that αX is trivially self-
orthogonal. Thus, αX is a stabilizer code for any submodule X ≤ R2n. Recall also
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that we have an isomorphism ρ ∶ αR2n Ð→ F2n
q as in (3.25). In addition αX ≅ X

for any submodule X ≤ R2n, where the isomorphism is R-linear and Fq-linear. In
particular, for any n ∈ N, Fq-linear maps and R-linear maps of (αR)n coincide.

Theorem 7.43. Let H ≤ GLk(Fq) be a closed subgroup under the action of GLk(Fq)
on O. Then there exists n ∈ N and a stabilizer code C ≤ R2n such that H = Symp(C).

Proof. Let C̃ ≤ F2n
q be the stabilizer code produced by Theorem 7.41 that satisfies

H = Symp(C̃). Write C̃ = imG, and let gi be the ith row of G. Then C ∶= ρ−1(C̃) ⊆
(αR)2n ≤ R2n is a stabilizer code over R thanks to Remark 7.42. Let G′ be the matrix
whose ith row is αgi. Thanks to (7.36) we have

C = {xG′ ∣ x ∈ Fkq} = imFqG
′.

Furthermore, we mentioned in Remark 7.42 that Fq-linear automorphisms of C and
R-linear automorphisms coincide. This implies Symp(C) = Symp(C̃) =H.

So far we have been comparing symplectic isometries of stabilizer codes with the
symplectic isometries of the entire ambient space. But for a stabilizer code C we have
C ⊆ C⊥. How do symplectic isometries of C relate to symplectic isometries of C⊥? We
end this section with an example that addresses this. See also Questions 7.5 and 7.6
in [19].

Example 7.44. Consider the stabilizer code C ∶= γ−1(C) where C ≤ (F2
2)4 is the

self-orthogonal code generated by the matrix

G =
⎛
⎜
⎝

1 0 0 0 0 0 1 1
0 0 1 0 0 0 0 0
0 1 0 0 1 0 1 0

⎞
⎟
⎠
.

It is easy to see that C⊥ is generated by the matrix

H =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0 1 1
0 0 1 0 0 0 0 0
0 1 0 0 1 0 1 0
0 1 0 0 0 0 1 0
0 1 0 0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

Let gi be the ith row of G and f ∶ C Ð→ (F2
2)4 be the symplectic isometry given by

g1 z→ (1 0 0 0 0 0 1 0)
g2 z→ (0 0 0 1 0 0 0 0)
g3 z→ (0 1 0 0 1 0 0 1)

Clearly, there are exactly three self-dual codes Ci such that C ⊊ Ci ⊊ C⊥. Namely,
if hi is the ith row of H, they are C ⊕ ⟨h4⟩,C ⊕ ⟨h5⟩, and C ⊕ ⟨h4 + h5⟩. We claim
that f cannot be extended to a symplectic isometry of C⊥. To that end, assume f
extends to a linear map C⊥ Ð→ F8

2 that preserves orthogonality with respect to ⟨ ● ∣ ● ⟩,
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called again f . Since Ci’s are self-dual so are f(Ci)’s. Put C̃ ∶= f(C). Then C̃⊥ has
generating matrix

H̃ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 1 0 0 1 0 0 1
0 1 0 0 0 0 0 1
1 0 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

Similarly, there are three self-dual codes C̃j such that C̃ ⊊ C̃j ⊊ C̃⊥. Namely, if h̃i is

the ith row of H̃, they are C̃ ⊕ ⟨h̃4⟩, C̃ ⊕ ⟨h̃5⟩, and C̃ ⊕ ⟨h̃4 + h̃5⟩. Thus f(Ci) = C̃j
for some j, and f(Ci −C) = C̃j − C̃. By comparing the weight-distributions of Ci −C
and C̃j − C̃ for all i, j, we must have f(C1) = C̃1 in order to preserve the Hamming
weight. By the same argument f cannot be extended any further.

Table 7.1: Weight distributions of Ci −C
aaaaaaa
C

Ci 01∣00∣00∣10 2 01∣00∣01∣01 3 00∣00∣01∣11 2

10∣00∣00∣11 11∣00∣00∣01 2 11∣00∣01∣10 3 10∣00∣01∣00 2

00∣10∣00∣00 01∣10∣00∣10 3 01∣10∣01∣01 4 00∣10∣01∣11 3

01∣00∣10∣10 00∣00∣10∣00 1 00∣00∣11∣11 2 01∣00∣11∣01 3

10∣10∣00∣11 11∣10∣00∣01 3 11∣10∣01∣10 4 10∣10∣01∣00 3

01∣10∣10∣10 00∣10∣10∣00 2 00∣10∣11∣11 3 01∣10∣11∣01 4

11∣00∣10∣01 10∣00∣10∣11 3 10∣00∣11∣00 2 11∣00∣11∣10 3

11∣10∣10∣01 10∣10∣10∣11 4 10∣10∣11∣00 3 11∣10∣11∣10 4

Table 7.2: Weight distributions of C̃j − C̃
aaaaaaa
C̃

C̃j 01∣00∣00∣01 2 10∣00∣01∣00 2 11∣00∣01∣00 2

10∣00∣00∣10 11∣00∣00∣11 2 00∣00∣01∣10 2 01∣00∣01∣10 3

00∣01∣00∣00 01∣01∣00∣01 3 10∣01∣01∣00 3 11∣01∣01∣00 3

01∣00∣10∣01 00∣00∣10∣00 1 11∣00∣11∣01 3 10∣00∣11∣01 3

10∣01∣00∣10 11∣01∣00∣11 3 00∣01∣01∣10 3 01∣01∣01∣10 4

01∣01∣10∣01 00∣01∣10∣00 2 11∣01∣11∣01 4 10∣01∣11∣01 4

11∣00∣10∣11 10∣00∣10∣10 3 10∣00∣11∣11 3 00∣00∣11∣11 2

11∣01∣10∣11 10∣01∣10∣10 4 01∣01∣11∣11 4 00∣01∣11∣11 3

7.4 Applications to the LU-LC Conjecture

In this section we connect symplectic isometries of stabilizer codes with automor-
phisms of the Pauli group. This naturally brings into play the normalizer of the
Pauli group, which is known in literature as the Clifford group. Loosely speaking, we
will be discussing quantum gates that preserve the Pauli group.
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Recall that for a quantum gate U ∈ U(dn) we have U † = U−1. Thus the normalizer
of the Pauli group is given by

N (Pn) ∶= {U ∈ U(dn) ∣ UPnU † = Pn}.

Definition 7.45. The n-qudit Clifford group is Cn ∶= N (Pn)/{eiθI}.

Note that the Clifford group is simply the normalizer where we disregard the
phases. The latter is of course justified by the phase principle. Throughout this
section we will pay special attention to the subgroup C⊗n1 ≤ Cn. We call U ∈ Cn a
Clifford operator whereas U ∈ C⊗n1 a locally Clifford (LC) operator. Recall the
surjective group homomorphism Ψ from (7.6), with kernel ker Ψ = {ω`I ∣ ` ∈ Z}. We
will denote P∗n ∶= Pn/ker Ψ. Thus we have an induced isomorphism

Ψ∗ ∶ P∗n Ð→ R2n. (7.37)

Then Ψ and Ψ∗ agree when restricted to stabilizers. The normalizer N (Pn) acts on
Pn via conjugation. This induces a well-defined action of Cn on P∗n . Stated differently,
for all U ∈ Cn we obtain a group homomorphism

φU ∶ P∗n Ð→ P∗n , E z→ UEU †, (7.38)

which in turn is an automorphism of P∗n .

Remark 7.46. Similarly as above, using the action of N (Pn) on Pn we also obtain
a group homomorphism

Φ ∶ N (Pn)z→ Aut(Pn), U z→ {ΦU ∶ Pn Ð→ Pn
E z→ UEU † . (7.39)

Note that U ∈ ker Φ iff U commutes with every Pauli operator. Since the Pauli
operators span7 the matrix space Mdn(C), we may conclude that

U ∈ ker Φ ⇐⇒ UM =MU for all M ∈Mdn(C)
⇐⇒ U ∈ {eiθI ∣ θ ∈ R}.

Hence Cn = N (Pn)/ker Φ can be thought of as a subgroup of Aut(Pn). Namely,

Cn ≅ {ΦU ∣ U ∈ N (Pn)} ≤ Aut(Pn). (7.40)

Although Remark 7.46 gives a natural connection of the Clifford group with auto-
morphisms of the Pauli group, we focus only on (7.37) and (7.38). Thanks to (7.37)
we clearly have Aut(P∗n) ≅ Aut(R2n). Moreover, the map ΨU ∶= Ψ∗−1 ○ φU ○ Ψ∗ is
an automorphism of the additive group (R2n,+) for any U ∈ Cn. Since Ψ∗ and φU
are only group isomorphisms, it is impossible to say anything about R-linearity of
ΨU . For this reason we restrict ourselves to the Frobenius ring R ∶= Z/dZ. With this

7See (6.4) for the binary case. For the general case see, for instance, [19, Rem. 3.6] and the
references therein.
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restriction, ΨU is R-linear and it is given by right matrix multiplication. Namely, for
a matrix M ∈ GL2n(R) denote LM ∶ xz→ xM its induced linear map. Then for every
U ∈ Cn there exists M(U) ∈ GL2n(R) such that the following diagram

R2n R2n

P∗n P∗n

//
LM(U)

//
φU

��

Ψ∗

��

Ψ∗ (7.41)

Recall N from Theorem 7.4. We will slightly change the notation to the following

c = { c, if c is odd,

2c, if c is even.
(7.42)

Remark 7.47. Consider (7.41) for n = 1 and recall that we have fixed R ∶= Z/dZ.
We will see in Theorem 7.49 below that ΨU is a wts-isometry for every U ∈ C1.
Theorem 7.26 implies M(U) ∈ SL2(R). The converse is also true, that is,

for every M ∈ SL2(R), there exists U(M) ∈ C1 such that (7.41) commutes. (7.43)

In here we will need only the existence, thus, for the details of the existence we refer
the reader to [1,28]. It is worth mentioning that in these references the arithmetic is
modulo d where d is as in (7.42). Then one shows that the same holds true modulo
d; see [2, Lemma A.1], for instance. Hence, (7.43) holds regardless of whether d is
odd or even. Now let U = U1 ⊗⋯⊗Un ∈ C⊗n1 . Then

M(U) = diag(M(Ui))i (7.44)

is a 2n× 2n block diagonal matrix, where M(Ui) ∈ SL2(R). In other words, M(U) is
a SL2(R)-monomial map for every U ∈ C⊗n1 .

Remark 7.48. Let S ≤ Pn be a stabilizer. By definition S ∩ ker Ψ = {I} and thus
Ψ(S) = Ψ∗(S) gives rise to a stabilizer code C ≤ R2n. It is easy to see that for any
U ∈ Cn the group

φU(S) = USU † ∶= {UEU † ∣ E ∈ S} (7.45)

is again a stabilizer. Thus Ψ(USU †) also defines a stabilizer code CU ≤ R2n. Moreover,
we obtain a quantum stabilizer code Q(USU †). It is straightforward to verify that
Q(USU †) = UQ(S) ∶= {Uv ∣ v ∈ Q(S)}.

Theorem 7.49. Let U ∈ C⊗n1 . Then C and CU as in Remark 7.48. are symplectically
isometric.

Proof. Write U = U1 ⊗⋯⊗ Un with Ui ∈ C1. Consider the map ΨU ∶= Ψ∗−1φUΨ∗. By
Remark 7.48 we have ΨU(C) = CU . Thus, ΨU trivially preserves the symplectic inner
product on C. To complete the proof we need to show that ΨU also preserves the
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symplectic weight. Since Ψ is a weight preserving map, it is enough to show that φU
is weight preserving for any U = U1 ⊗⋯⊗Un ∈ C⊗n1 . Indeed, let E = E1 ⊗⋯⊗En ∈ S.
Recall from Definition (6.16) that wt(E) = ∣{i ∣ Ei ≠ I}∣. Moreover, we have

φU(E) = UEU † = U1E1U
†
1 ⊗⋯⊗UnEnU †

n,

which in turn implies wt(E) = wt(φU(E)).

Notation 7.50. We fix the following notation. A permutation σ ∈ Sn acts on
Rn by permuting the coordinates. For E = ω`X(a)Z(b) we will denote σ(E) ∶=
ω`X(σ(a))Z(σ(b)) and for X ⊆ Pn we will denote σ(X) ∶= {σ(x) ∣ x ∈ X}. It is easy
to see that S ≤ Pn is a stabilizer iff σ(S) ≤ Pn is a stabilizer.

Definition 7.51. s

(1) Two quantum stabilizer codes Q = Q(S) and Q′ = Q(S′) are called permutation
equivalent if there exists a permutation σ ∈ Sn such that S′ = σ(S).

(2) Two quantum stabilizer codes Q = Q(S) and Q′ = Q(S′) are called Clifford per-
mutation equivalent (CP) (resp., locally Clifford permutation equivalent
(LCP)) if there exists a permutation σ ∈ Sn and U ∈ Cn (resp., U ∈ C⊗n1 ) such that
S′ = Uσ(S)U †.

(3) Two quantum stabilizer codes Q and Q′ are called unitary equivalent (resp.,
locally unitary equivalent (LU)) if there exists U ∈ U(dn) (resp., U ∈ U(d)⊗n)
such that Q′ = UQ.

If we take σ to be the identity permutation in Definition 7.51(2) then we are deal-
ing with LC equivalent quantum stabilizer codes. It is obvious that two LC equivalent
quantum stabilizer codes are also LU equivalent. Is the converse true? This is known
in the literature as the LU-LC conjecture [56]. The conjecture was reduced to various
subclasses of quantum stabilizer codes [24, 45, 46, 72], to finally be proven incorrect
in [31]. One of these subclasses is that of quantum stabilizer states, that is, quan-
tum stabilizer codes of dimension one. Thanks to Theorem 7.12, quantum stabilizer
states correspond to self-dual stabilizer codes. The counterexample provided in [31]
is randomly generated. Thus the structure of such counterexamples is yet to be dis-
covered. In [55] the authors show that there exist infinitely many stabilizer states
that disprove the LU-LC conjecture. A sufficient condition for spotting LU quantum
stabilizer states that are not LC is of interest.

Remark 7.52. Note that we defined CP and LCP equivalence of quantum stabilizer
codes via their stabilizer groups. This is possible due to Remark 7.48 and Corol-
lary 7.9. Indeed, two quantum stabilizer Q = Q(S) and Q′ = Q(S′) codes are LC
equivalent iff there exists U ∈ C⊗n1 such that Q′ = UQ. The same cannot be done
(local) unitary equivalence. Indeed, if U ∉ Cn then USU † /⊆ Pn and thus Q(USU †) no
longer makes sense.

The following result characterizes LCP quantum stabilizer codes (and thus LC
quantum stabilizer states) using the language of Section 7.3.
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Theorem 7.53. Let C = Ψ(S) and C′ = Ψ(S′) be two stabilizer codes. Then C and C′
are monomially equivalent iff the quantum stabilizer codes Q(S) and Q(S′) are LCP
equivalent.

Proof. We show the forward direction, with the other one being similar. Let

M = diag(M1, . . . ,Mn)(Pσ ⊗ I2)

be a SL2(R)-monomial map as in (7.21) that maps C to C′. Let Ui ∶= U(Mi) ∈ C1 be as
in Remark 7.47 and consider U ∶= U1⊗⋯⊗Un ∈ C⊗n1 . Recall the change of coordinates
γ from (7.15). For (a, b) ∈ C we have

γ(a, b) =∶ x = (x1, . . . , xn) ∈ γ(C) =∶ C ≤ (R2)n,

where xi = (ai, bi) ∈ R2. Put Ei = Ψ∗−1(xi). Then E = E1 ⊗ ⋯ ⊗ En ∈ S, and every
element of S can be written in such way. With this notation we have

Uσ(E)U † = U1Eσ(1)U
†
1 ⊗⋯⊗UnEσ(n)U †

n

= φU1(Eσ(1))⊗⋯⊗ φUn(Eσ(n))
= φU1(Ψ∗−1(xσ(1)))⊗⋯⊗ φUn(Ψ∗−1(xσ(n)))
= Ψ∗−1(xσ(1)M1)⊗⋯⊗Ψ∗−1(xσ(n)Mn)
∈ S′,

because (xσ(1)M1, . . . , xσ(n)Mn) ∈ γ(C′). Thus Uσ(S)U † ⊆ S′. Since ∣S′∣ = ∣C′∣ = ∣C∣ =
∣S∣ = ∣Uσ(S)U †∣, equality follows.

We end this section with two examples that relate all the equivalence notions
discussed. Throughout we will use R = F2 and X ∶=X(1), Z ∶= Z(1).

Example 7.54. Let C ≤ F2⋅3
2 be the stabilizer code given by the following generating

matrix

G =
⎛
⎜
⎝

1 0 1 0 1 0
0 1 1 1 0 0
0 0 0 1 1 1

⎞
⎟
⎠
,

and consider the SL2(F2)-monomial map given by M = diag(M1,M2,M3)(Pσ ⊗ I2)
where we take the permutation to be the cycle σ = (123), and

M1 = ( 1 0
1 1

) ,M2 = ( 0 1
1 0

) ,M3 = ( 1 1
0 1

) .

Then, C′ ∶= {xM ∣ x ∈ C} is the stabilizer code given the following generating matrix

G′ =
⎛
⎜
⎝

1 0 1 1 1 1
1 0 0 0 1 1
1 1 0 1 0 1

⎞
⎟
⎠
.
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Then the corresponding stabilizers are S = ⟨XZX,ZXX,ZZZ⟩ and S′ =
⟨Y ZY,XZZ,Y XZ⟩. To Mi correspond the following Clifford operators that make
(7.41) commute:

U1 =
1√
2
( 1 i
i 1

) , U2 =
1√
2
( 1 1

1 −1
) , U3 = ( 1 0

0 i
) .

One easily verifies S′ = Uσ(S)U † where U = U1⊗U2⊗U3. The corresponding quantum
stabilizer states Q(S) and Q(S′) are the one-dimensional complex spaces generated
by vectors v = (1,0,0,−1,0,1,1,0)T and v′ = (1,1,−i, i,1,−1,−i,−i)T respectively. By
Theorem 7.53 and Remark 7.48 we have

Q(S′) = Q(Uσ(S)U †) = UQ(σ(S)). (7.46)

Note that σ(S) = ⟨ZXX,XXZ,ZZZ⟩ and Q(σ(S)) is generated by v′′ =
(1,0,0,1,0,−1,1,0)T. One could also verify (7.46) directly by noting that Uv and
v′′ differ only by the scalar (1 + i)/2.

Example 7.55. We revisit Example 7.30 with this new language. So let C = imG
and C′ = imG′ be the self-dual stabilizer codes where G and G′ are as follows

G =
⎛
⎜⎜⎜
⎝

1 0 1 1 0 1 0 0
0 1 0 1 1 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 1 1 0 1

⎞
⎟⎟⎟
⎠
, G′ =

⎛
⎜⎜⎜
⎝

1 1 1 1 1 0 0 1
0 0 1 1 0 1 0 0
0 0 0 0 0 0 1 1
0 0 1 1 1 0 0 0

⎞
⎟⎟⎟
⎠
.

The map f ∶ C Ð→ C′ that maps the ith row of G to the ith row of G′ is a symplectic
isometry and thus C and C′ are symplectially equivalent. On the other hand, it is
easy to see that there cannot exist a SL2(F2)-monomial map between the two. The
associated stabilizers are

S = ⟨XZXX,ZXIX,ZIZI,ZZIZ⟩,
S′ = ⟨Y XXY, IZXX, IIZZ,ZIXX⟩.

Then, the respective quantum stabilizer states are

Q(S) = spanC{(1,0,0,0,0,0,0,−1,0,0,1,0,0,1,0,0)T},
Q(S′) = spanC{(1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,−1)T}. (7.47)

Since f is not a SL2(F2)-monomial map Theorem 7.53 implies that Q(S) and Q(S′)
are not LCP equivalent. In fact, they are not even LU equivalent. To show this we
make use of the vectorization of matrix, that is, vec(X) of a matrix X is the column
vector where we stack the columns of X. Let X,X ′ ∈M4(F2) be the matrices whose
vectorization gives the vectors in (7.47). Namely

X =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 −1 0 0

⎞
⎟⎟⎟
⎠

and X ′ =
⎛
⎜⎜⎜
⎝

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 −1

⎞
⎟⎟⎟
⎠
.
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Assume that there exists U = U1 ⊗ U2 ⊗ U3 ⊗ U4 ∈ U(2)⊗4 such that Q(S′) = UQ(S).
From elementary properties of the Kronecker Product, this is equivalent with

(U3 ⊗U4)X(U1
T ⊗U2

T) =X ′.

Clearly this is impossible since the right-hand-side has rank 2 whereas the left hand
side has rank 4.

7.5 MacWilliams Identities

In this section we will describe MacWilliams Identities [40, Chapter 5] for stabilizer
codes over (commutative8) Frobenius rings. We will use the famous Gleason’s ap-
proach [5, §1.12] via the Poisson Summation Formula described in Theorem 2.7, which
is in line with the main theme of this thesis. But first we start with a few conventions.
Let W be a complex vector space and denote WR the set of all maps R Ð→W . Then
one may define the Fourier Transform of f ∈WR to be the map f̂ ∈W R̂ similarly as
in Definition 2.3. Recall that for Frobenius rings the map R Ð→ R̂, r z→ rχ is an
isomorphism. Under this isomorphism and with a slight abuse of notation we will
think of f̂ as taking r ∈ R as an input instead of rχ ∈ R̂. In other words, we will think
of f̂ as an element of WR:

f̂(r) ∶= f̂(rχ) =∑
s∈R

f(s)χ(rs).

We will first discuss the MacWilliams Identity with respect the symplectic weight.
Let C ≤ R2n be a stabilizer code and put

Ai = ∣{(a, b) ∈ C ∣ wts(a, b) = i}∣ and Bi = ∣{(a, b) ∈ C⊥ ∣ wts(a, b) = i}∣. (7.48)

Then the symplectic weight enumerator of C and C⊥ are given by the following
homogeneous polynomials:

WEC(U,V ) =
n

∑
i=1

AiU
n−iV i ∈ C[U,V ],

WEC⊥(U,V ) =
n

∑
i=1

BiU
n−iV i ∈ C[U,V ].

The following result is well-known for additive codes endowed with the Hamming
weight. Since the symplectic weight in R2n is the Hamming weight in (R2)n, the very
same proof works for our case, which we include for completeness.

Theorem 7.56. Let R be a (commutative) Frobenius ring with d elements, and let
C ≤ R2n be a stabilizer code. Then

WEC(U,V ) = 1

∣C⊥∣WEC⊥(U + (d2 − 1)V,U − V ).

8The only reason we assume commutativity is so that Theorem 7.12 holds.
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Proof. Set W = C[U,V ] and consider x = (a, b) = (a1, . . . , an, b1, . . . , bn) ∈ R2n. Define
fi ∶ R2 Ð→W, xi ∶= (ai, bi)z→ U1−wts(xi)V wts(xi) and put

f(x) ∶=
n

∏
i=1

fi(xi) =
n

∏
i=1

Un−wts(x)V wts(x).

Note that xiχ = (ai, bi)χ = (aiχ, biχ) is the trivial character iff wts(xi) = 0. This fact
along with the orthogonality relations (2.1) implies

f̂ i(xi) =
⎧⎪⎪⎨⎪⎪⎩

U + (d2 − 1)V, if xi = (0,0),
U − V, if xi ≠ (0,0).

(7.49)

Now we compute

WEC(U,V ) =∑
x∈C
f(x) (by definition)

= 1

∣C⊥∣ ∑c∈C⊥
f̂(x) (by Theorem 2.7)

= 1

∣C⊥∣ ∑c∈C⊥
n

∏
i=1

f̂i(xi) (by Remark 2.5)

= 1

∣C⊥∣ ∑c∈C⊥
(U + (d2 − 1)V )n−wts(x)(U − V )wts(x) (by (7.49))

= 1

∣C⊥∣WEC⊥(U + (d2 − 1)V,U − V ) (by definition).

We point out in here that Theorem 7.56 applies exclusively to quantum stabilizer
codes for which the symplectic weight enumerators can be defined via the stabilizer
groups. Weight enumerators for general quantum codes were defined by Shor and
Laflamme [58]. For a quantum code Q ≤ Cdn of dimension K and orthogonal projector
P ∶ Cdn Ð→ Q, instead of (7.48) one uses

ASL
i = 1

K2 ∑
E∈Pn

wt(E)=i

Tr(E†P )Tr(EP ) and BSL
i = 1

K
∑
E∈Pn

wt(E)=i

Tr(E†PEP ). (7.50)

Then the corresponding MacWilliams Identity along with other generalizations were
established in [52, 53, 58]. As pointed out in [32, Lem. 22], the quantities in (7.50)
are just scalar multiples of the quantities in (7.48) for quantum stabilizer codes, and
thus they encode the same information. In turn, this fact allows for a much pleasant
approach. In [32, Thm. 23] the authors show a MacWilliams Identity for quantum
stabilizer codes over finite fields where they use a slightly different symplectic weight
enumerator (they use a polynomial in one variable instead a homogeneous polynomial
in two variables).

Next, we consider an asymmetric case. It is known from [30] that a quantum
channel is asymmetric with respect to errors. Namely, X-errors are much more
likely to occur than the Z-errors or the combined XZ-errors. This motivates the
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study/construction of quantum codes that can correct X-errors in a much higher
rate than the Z-errors. Although this is a very active area of research, in here we will
consider only a MacWillimas-type Identity. To that end, for x = (a, b) ∈ R2n denote

wts,X(x) ∶= wtH(a) and wts,Z(x) ∶= wtH(b). (7.51)

The above quantities capture the capability of a quantum stabilizer code to correct
the respective error. Then, the asymmetric symplectic weight enumerator of C
is defined as

AWEC(U1, V1, U2, V2) ∶=
n

∑
i,j=1

Ai,jU
n−i
1 V i

1U
n−j
2 V j

2 ,

where Ai,j = ∣{x ∈ C ∣ wts,X(x) = i and wts,Z(x) = j}∣. Similarly, one puts Bi,j = ∣{x ∈
C⊥ ∣ wts,X(x) = i and wts,Z(x) = j}∣ and AWEC⊥ .

Theorem 7.57. Let R be a (commutative) Frobenius ring with d elements, and let
C ≤ R2n be a stabilizer code. Then

AWEC(U1, V1, U2, V2) =
1

∣C⊥∣AWEC⊥(U1 + (d − 1)V1, U1 − V1, U2 + (d − 1)V2, U2 − V2).

Proof. As one might have already guessed, the proof is very similar with that
of Theorem 7.56, and thus we will only sketch a proof. Consider x = (a, b) =
(a1, . . . , an, b1, . . . , bn). Define

f1, i(ai) ∶= U1−wtH(ai)
1 V

wtH(ai)
1 and f2, j(bj) ∶= U1−wtH(bj)

2 V
wtH(bj)

2 .

Then put

f(x) = (
n

∏
i=1

f1,i(ai))(
n

∏
j=1

f2,j(bj)) ,

and proceed as in the proof of Theorem 7.56.

Note that the weights defined in (7.51) do not capture the capability of the quan-
tum stabilizer code to independently correct the combined XZ-errors. We end this
section by briefly discussing this scenario for the binary case d = 2. Let x = (a, b) ∈ F2n

2 .
For c ∈ F2

2 define
wtc(x) ∶= ∣{i ∣ (ai, bi) = c}∣. (7.52)

Note that, for instance, wt(1,1) will capture the Y = iXZ-errors independently. Then
one defines the complete weight enumerator of C ≤ F2n

2 as

CWEC(U(0,0), U(1,0), U(1,1), U(0,1)) ∶=∑
x∈C
∏
c∈F2

2

U
wtc(x)
c , (7.53)

which as well satisfies a MacWilliams identity. For the details we refer the reader
to [69, Section 13.2]. Similar ideas for general binary quantum codes and asymmetric
Shor-Laflamme weights are discussed in the recent work [29].
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Chapter 8 Conclusion and Future Research

In this thesis we discuss classical and quantum codes over Frobenius alphabets. We
provide a unified approach to equivalence related questions. As a preparatory step,
we develop a character-theoretic approach to Frobeniusness which does not resort
to quasi-Frobeniusness. Equivalence of classical codes is studied via MacWilliams
Extension Theorem and isometry groups. We determine the structure of ω-isometries
by studying the corresponding induced partition Pω. Similarities are drown between
the equivalence of classical codes and quantum codes. We introduced the notion of
symplectic isometries as a tool to study the equivalence of quantum stabilizer codes.
Finally, we discussed the performance of quantum stabilizer codes over Frobenius
rings and conjectured that they are as good as quantum stabilizer codes over fields.
We established the isometry groups of stabilizer codes and applied the results to
LU-LC conjecture. We also discussed MacWilliams Identities for stabilizer codes
with respect to the symplectic weight.

We pointed out that whenever a MacWilliams Equivalence Theorem does not
hold, the two isometry groups Monω ⊊ Isoω are different. In this case one wonders
how different they could be. However, there is another quite interesting approach one
could take. Recall the MacWilliams Extension Property (EP) from Definition 5.1.
Theorem 5.3 characterizes alphabets that have EP with respect to the Hamming
weight. Consider now a proper field extension E/F . Theorem 5.13 implies that the
alphabet FE has EP with respect to the RT weight. Yet, since E does not have a
cyclic socle over F , the alphabet does not have EP with respect to the Hamming
weight. In [13] Dyshko shows that a “partial” EP holds true. Namely, for any n ≤ ∣F ∣
and code C ≤ En, every Hamming isometry f ∶ C Ð→ En extends to a Hamming
isometry of En. Moreover, for N = ∣F ∣+1, there exists a code C ≤ EN and a Hamming
isometry f ∶ C Ð→ EN that does not extend to a Hamming isometry of EN . This
motivates the following definition and open problem.

Definition 8.1. A left R-module A is of type (N,ω)-EP (or N -EP if the weight is
pre-specified) if all the ω-isometries between codes of length at most N extend. An
alphabet that has EP with respect to ω is of type ∞-EP.

Problem 8.2. Given a natural number N , a weight function ω, and a left R-
module A, under what conditions is A of type N -EP?

We have mentioned that techniques developed in this thesis also apply to weights
like RT and poset weight that are not additively extended from the alphabet to
the ambient space. There is a very interesting and important instance that fits this
scenario: the rank weight in linear network coding. Consider Fqm , d ∈ {1, . . . , n}
where n < m, and put k = n − d + 1. Fix a vector g = (g1, . . . , gn) ∈ Fnqm such that
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{g1, . . . , gn} is linearly independent over Fq. Define

G =
⎛
⎜⎜⎜⎜
⎝

g1 g2 ⋯ gn
gq1 gq2 ⋯ gqn
⋮ ⋮ ⋱ ⋮

gq
k−1

1 gq
k−1

2 ⋯ gq
k−1

n

⎞
⎟⎟⎟⎟
⎠
.

Then Cg,k ∶= im FqmG is called a Gabidulin code [15]. One endows Cg,k with the rank
weight. Namely, for v = (v1, . . . , vn) ∈ Fnqm define

wtrk(v) = dimFq(spanFq{v1, . . . , vn}). (8.1)

Fqm-linear wtrk-isometries of Fnqm are well-known in the network coding community [8].
As usual, we have two associated isometry groups: Monwtrk(Cg,k) ⊆ Isowtrk(Cg,k) (see
(1.1)) where the containment is strict as it can be seen from a modified version
of [6, Ex. 2.9(a)].

Problem 8.3. How big can the gap Monwtrk(Cg,k) ⊊ Isowtrk(Cg,k) be?

Next, we list some future directions in quantum computation. Of course, an
obvious future direction would be to settle Conjecture 7.21. As we mentioned, we are
not able to construct non-free stabilizer codes that disprove the conjecture.

Problem 8.4. Prove Conjecture 7.21. Determine whether or not the conjecture holds
true for non-free stabilizer codes.

Problem 8.5. Is Theorem 7.20 true for any stabilizer code?

In Theorem 7.41 we showed that the gap between the isometry groups of stabilizer
codes can be as big as possible. However, the stabilizer codes constructed with
predetermined isometry groups are asymptotically bad. Indeed, the rate goes to zero
as the characteristic of the alphabet goes to infinity.

Problem 8.6. Construct asymptotically good stabilizer codes that satisfy Theorem
7.41.

For the general case over local Frobenius rings a partial result is presented. In this
case, the group Symp(C) is easily understood and related with the case of stabilizer
codes over fields. Whereas, since SL2(R) ≠ SL2(Fq) (R finite local Frobenius ring
and Fq = R/m the residue field), the techniques presented in this thesis do not help
toward understanding MonSL(C).

Problem 8.7. Establish an analogous result as in Theorem 7.41 for stabilizer codes
over Frobenius rings.

In Section 7.4 we related equivalence notions of quantum stabilizer codes with
symplectic isometries. In particular, Theorem 7.53 characterizes LCP equivalence in
terms of SL2(R)-monomial maps. We view this as the first step toward systematically
constructing LU equivalent stabilizer states that are not LC. Of course, much more
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work is needed to understand the structure of counterexamples of LU-LC conjecture.
The strategy for searching for such counterexamples was already pointed out in Ex-
ample 7.55. Let us make this precise. Let C = imG, C′ = imG′ ⊆ F2n

q be two stabilizer
codes of the same dimension. Define two isometry groups

rMon(C, C′) ∶= {B ∈ GLk(Fq) ∣ GM∣C = BG′,M is an SL2(Fq)-monomial map},
Symp(C, C′) ∶= {B ∈ GLk(Fq) ∣ wts(xG) = wts(xBG′) for all x ∈ Fkq}.

Example 7.55 shows that rMon(C, C′) ⊊ Symp(C, C′) in general. Let f ∈ Symp(C, C′)−
rMon(C, C′). Since f ∉ rMon(C, C′), Theorem 7.53 guarantees that Q(Ψ−1(C)) and
Q(Ψ−1(C′)) cannot be LCP stabilizer codes. So if they are LU equivalent to start
with, we have a counterexample. Unfortunately it is not clear how LU equivalence
fits into the language of Section 7.3. Thus more work is needed for understanding
what symplectic isometries produce LU equivalent quantum stabilizer codes. As far
as LU-LC conjecture is concerned we may restrict ourselves on quantum stabilizer
states, to which correspond self-dual stabilizer codes.

Problem 8.8. Let C, C′ ⊆ F2n
q be two self-dual stabilizer codes. Establish how differ-

ent rMon(C, C′) and Symp(C, C′) can be. That is, let H, K ≤ GLn(Fq) be two groups
that satisfy some reasonable necessary conditions. Is it possible to construct two
self-dual stabilizer codes C and C′ such that H = rMon(C, C′) and K = Symp(C, C′)?

Problem 8.9. Let C, C′ ⊆ F2n
q be two self-dual stabilizer codes, and f ∶ C Ð→ C′ be a

symplectic isometry. Find sufficient conditions for the existence of U ∈ U(q)⊗n with
Q(Ψ−1(C′)) = UQ(Ψ−1(C)).

Note that a rather weak necessary condition for symplectic isometries that
produce LU states was mentioned in Example 7.55. Namely, if v and v′ are
generators of two quantum stabilizer states, then the n × n matrices X, X ′ with
v = vectorization(X) and v′ = vectorization(X ′) must have the same rank.

Continuing with the line of Problem 8.9 we introduce the following group:

LUSymp(C) ∶= {f ∈ Symp(C, C′) ∣ f corresponds to a LU map}. (8.2)

It follows that MonSL(C, C′) ⊆ LUSymp(C,C′) ⊆ Symp(C, C′). The latter containment
is also strict, as one can see from Example 7.55. Since the LU-LC conjecture is false,
it follows that the former containment is also strict.

Problem 8.10. Characterize the group LUSymp(C, C′). How big can the differences
between the three groups be?

Copyright© Tefjol Pllaha, 2019.
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