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Dedra Harmody1, Jing Chen4, Haining Zhu4, Peter J. McCarthy1* , Xingmin Sun2* and
Guojun Wang1*

1 Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, United States, 2 Department of
Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States, 3 Infection Control
Center, Xiangya Hospital, Central South University, Changsha, China, 4 Department of Molecular and Cellular Biochemistry,
University of Kentucky, Lexington, KY, United States

The global prevalence of drug resistance has created an urgent need for the discovery
of novel anti-infective drugs. The major source of antibiotics in current clinical practice
is terrestrial actinobacteria; the less-exploited deep-sea actinobacteria may serve as
an unprecedented source of novel natural products. In this study, we evaluated 50
actinobacteria strains derived from diverse deep water sponges and environmental
niches for their anti-microbial activities against a panel of pathogens including Candida
albicans, Clostridium difficile, Staphylococcus aureus, and methicillin-resistant S. aureus
(MRSA), and Pseudomonas aeruginosa. More than half of the tested strains (27)
were identified as active in at least one assay. The rare earth salt lanthanum chloride
(LaCl3) was shown to be as an effective elicitor. Among the 27 strains, the anti-
microbial activity of 15 were induced or enhanced by the addition of LaCl3. This part
of study focused on one strain R818, in which potent antifungal activity was induced
by the addition of LaCl3. We found that the LaCl3-activated metabolites in R818
are likely antimycin-type compounds. One of them, compound 1, has been purified.
Spectroscopic analyses including HR-MS and 1D NMR indicated that this compound
is urauchimycin D. The antifungal activity of compound 1 was confirmed with a minimal
inhibitory concentration (MIC) of 25 µg/mL; the purified compound also showed a
moderate activity against C. difficile. Additional notable strains are: strain N217 which
showed both antifungal and antibacterial (including P. aeruginosa) activities and strain
M864 which showed potent activity against C. difficile with an MIC value (0.125 µg/mL)
lower than those of vancomycin and metronidazole. Our preliminary studies show that
deep-sea actinobacteria is a promising source of anti-infective natural products.

Keywords: actinobacteria, natural products, anti-infective, antifungal, antibacterial, drug resistance, lanthanum
chloride, deep-sea sponge

INTRODUCTION

Infectious diseases remain a major threat to human health, annually causing millions of deaths
worldwide, especially in medically less-developed countries and regions (Spellberg et al., 2008).
There were estimated 1.2 million tuberculosis deaths, 1.03 million HIV/AIDS deaths, and 719,600
malaria deaths in 2016 (The Lancet, 2017). However, the situation is worsened significantly
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by the prevalence of (multi-)drug resistance (Ventola, 2015). Due
to drug resistance, current antibiotics are losing their capacity
to treat infectious diseases, and pathogens such as Klebsiella
pneumoniae, Pseudomonas aeruginosa, and Staphylococcus
aureus have again become fatal threats. Both the United States
Centers for Disease Control and Prevention (CDC) and the
World Health Organization (WHO) have issued lists of priority
pathogens: the CDC listed 18 drug-resistant bacteria as threats
to the United States1; in 2017, WHO listed, for the first time, 12
families of bacteria as the greatest threat to human health2. Novel
antibiotics are urgently needed to treat disease caused by these
pathogens.

Actinobacteria, a group of Gram-positive filamentous
bacteria, have been an exceptionally rich source of bioactive
natural products used to treat infectious diseases and are the
source of the majority of currently used antibiotics (Newman
and Cragg, 2016). The genomic era has witnessed an explosion
of genomic data that unexpectedly revealed the abundance of
silent/cryptic secondary metabolic gene clusters in actinomycete
genomes, which are unexpressed under standard laboratory
culture conditions. Activation of these silent pathways represents
a tremendous opportunity to discover new compounds to
treat infectious and other diseases from known organisms
(Van Lanen and Shen, 2006; Nett et al., 2009; Bachmann et al.,
2014; Ziemert et al., 2016). Meanwhile, actinobacteria from
unique environmental niches or new taxa are still highly sought
for drug discovery. Due to sampling difficulties, deep-sea
actinobacteria are generally much less studied as a source of
natural products. In this study, we focused on actinobacteria
isolated from deep-sea sponges and aimed to find novel
anti-microbial natural products. Actinobacteria were cultured
and tested against a panel of bacterial pathogens regarded as
common causes of healthcare-associated infections and listed
among the most severe threats to human health by CDC1 or
WHO2: Clostridium difficile, P. aeruginosa, methicillin-resistant
S. aureus (MRSA), and Candida albicans. C. difficile, a cause
of life-threatening diarrhea, is listed by CDC as an URGENT
threat (the highest level). The C. difficile infection (CDI)
is the most common cause of infectious diarrhea in the
healthcare setting with about 453,000 cases and 29,000 deaths
yearly in the United States as reported by CDC in 2015;
the annual healthcare costs for acute care facilities alone are
about $4.8 billion3. Though therapeutics such as vancomycin,
metronidazole, fidaxomicin, or nitazoxanide are available,
due to drug resistance or toxicity to gut microbiome, new
drugs, especially those with narrow spectrum, are highly
needed. As a CRITICAL pathogen (the highest level) listed by
WHO, P. aeruginosa is a leading cause of hospital-associated
infections (HAIs); many isolates are resistant to a wide
range of antibiotics; multidrug-resistant P. aeruginosa is
also listed as a SERIOUS threat (the second highest level)
by CDC. Also listed as SERIOUS threats by CDC include

1https://www.cdc.gov/drugresistance/biggest_threats.html
2http://www.who.int/mediacentre/news/releases/2017/bacteria-antibiotics-
needed/en/
3https://www.cdc.gov/media/releases/2015/p0225-clostridium-difficile.html

both fluconazole-resistant Candida and MRSA, the latter is
regarded as a HIGH (the second highest level) by WHO as
well.

In this preliminary study, we evaluated anti-pathogen
activities of crude extracts from 50 deep-sea actinobacteria strains
derived from various sponge hosts that were collected from
environmentally and geographically diverse locations; many of
them are rare actinobacteria. In an attempt to activate any
dormant secondary metabolic capabilities of these strains, LaCl3
was supplemented to the culture medium as an elicitor. LaCl3 has
been shown to be an effective elicitor of secondary metabolism
in microorganisms in our previous studies (Kawai et al., 2007;
Tanaka et al., 2010; Ochi and Hosaka, 2013; Ochi et al., 2014). The
efficient activation/induction of new metabolites/anti-microbial
activities by LaCl3 was detected in this study. Strains exhibiting
potent antifungal or antibacterial activities were identified; of
particular interest is the identification of a strain producing
metabolites which are more potent than vancomycin against
C. difficile.

TABLE 1 | A summary of sponge species, the depth of sampling site, and the
number of microbial strains isolated from each sponge.

Sponge
taxonomy

Depth (fsw) Sample
location

Number of strains

Axinellida sp. 246 Gulf of Mexico,
Florida,
United States

1 (1)∗

Sarcotagus sp. or
Smenospongia
sp.∗∗

205 Georgia,
United States

1

Discodermia sp. 440–575 Bahamas;
Honduras;
Guanaja

12 (6)

Forcepia sp. 230–240 Gulf of Mexico,
Florida,
United States

18 (14)

Gorgonacea sp. 1,123 Curacao 1

Hexactinellida +
Zoanthidea

720 Curacao 2

Ircinia felix 20 Florida Keys,
United States

1 (1)

Leiodermatium sp. 1,288 Puerto Rico;
Florida (Miami),
United States

5

Oceanapiidae sp. 2,790 Bahamas 1 (1)

Scleritoderma
cyanea

795 Curacao 1 (1)

Spongosorites sp. 730 Puerto Rico 2 (1)

Theonella sp. 692 Puerto Rico 3 (1)

Theonellidae n.sp. 655 Florida Keys,
United States

1 (1)

Thrinacophora
funiformis

150 Florida (Key
Biscayne),
United States

1

∗(x) indicates the number of strains that showed anti-infective activity in at least
one assay. Several sponges have been collected from multiple locations. ∗∗The
taxonomy of this sponge specimen (log# 23-V-92-1-011) was unable to be
distinguished between these two species. fsw, feet sea water.
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FIGURE 1 | Representative inhibition zones in disk fusion assays. C.a., Candida albicans; S.a., Staphylococcus aureus; P.a., Pseudomonas aeruginosa, Neg,
solvent methanol as negative controls; Pos, positive controls; nystatin (100 U) for C. albicans, gentamicin (10 µg) for S. aureus and P. aeruginosa, and cefoxitin
(30 µg) for MRSA. N217, R786, N201, and N816, crude extract of each strain in the absence of LaCl3; R818-la and J378-la, crude extract of R818 and J378
supplemented with LaCl3 (2 mM), respectively; N217-6, a partially purified fraction (#6) of the N217 crude extract.

MATERIALS AND METHODS

Strains, Media, and Chemicals
All marine actinobacteria are maintained in the Harbor
Branch Oceanographic Institute (HBOI) Marine Microbial
Culture Collection. GYM, SFM, and SPY (also called Medium
A) media were prepared as previously described (Hu and
Ochi, 2001; Wang et al., 2008; Tanaka et al., 2009). All
actinobacteria strains were cultured at 25◦C. Test pathogens
included C. albicans ATCC 44506, S. aureus ATCC 29213 and
MRSA ATCC 700787, P. aeruginosa ATCC 27853, and C. difficile
UK6.

Chemicals and organic solvents were purchased from
Thermo-Fisher Scientific or Sigma-Aldrich. Premixed LB powder
was purchased from BD Difco. Nystatin (100 U) and gentamicin
(10 µg) disks were manufactured by Becton-Dickinson BBL;
cefoxitin (30 µg) disks were manufactured by Oxoid.

Fermentation, Extraction, and HPLC
Analysis of Actinobacteria Metabolites
A small-scale 100 mL fermentation was used. Each strain was
inoculated into two 250-mL flasks, each containing 100 mL of
SPY medium with or without the supplementation of 2 mM
LaCl3, and cultured at 25◦C on a rotary shaker (220 rpm) for
7 days. Each fermentation broth was mixed with 200 mL ethyl
acetate (EtOAc), and subjected to 60 min ultrasonication, with
mixing every 20 min; the extraction was repeated once using fresh
EtOAc. The organic layers were combined and evaporated under
vacuum using a Heidolph evaporator to generate a crude extract.
Dried crude extracts were stored at−20◦C for HPLC analysis and
bioassays.

Each crude extract was dissolved in methanol (100%) to a final
concentration of 5 or 10 mg/mL. HPLC analysis was performed
using an UltiMate 3000 system (Thermo) equipped with an
Apollo C18 column (250 mm × 4.5 mm) with a fingerprint

Frontiers in Microbiology | www.frontiersin.org 3 April 2018 | Volume 9 | Article 787

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-00787 April 26, 2018 Time: 14:23 # 4

Xu et al. Prospecting Marine Actinobacteria for Anti-infectives

TABLE 2 | Representative strains in the disk diffusion assay against Candida
albicans, Staphylococcus aureus and MRSA, and Pseudomonas aeruginosa.
Inhibition is recorded as the diameter of the zone of growth inhibition (mm).

Strain Inhibition zone (mm)

C.a. MRSA S.a. P.a.

J378 ND 12 9 ND

J378-la ND 25 16 ND

N201 101 16 −
2 9

N201-la ND 13 −
2 ND

N203 12 18 −
2 14

N203-la ND 11 −
2 ND

N217 11 20 14 14

N217-la ND 16 13 10

N248 ND ND −
2 ND

N248-la ND 10 −
2 ND

N816 ND ND ND ND

N816-la ND 11 12 ND3

P114 ND 9 ND ND

P114-la 131 10 ND ND

P257 ND ND 12 ND

P257-la ND ND 26 ND

R786 22 121 ND ND

R786-la 22 131 ND ND

R818 ND ND −
2 ND

R818-la 21 ND −
2 ND

S355 ND ND −
2 ND

S355-la ND 101
−

2 ND

V324 ND 11 −
2 ND

V324-la ND 15 −
2 ND

Pos. cont. 27 19 22 23

C.a., C. albicans; S.a., S. aureus; P.a., P. aeruginosa; Pos. cont., positive controls
[nystatin (100 U) for C. albicans; cefoxitin (30 µg) for MRSA; gentamicin (10 µg) for
S. aureus and P. aeruginosa]; “-la,” cultures supplemented with LaCl3; ND, activity
not detected; 1the edge of inhibition zone is hazy; 2not determined; 3anti-P.a.
activity was observed only using partially purified fractions.

gradient of H2O+0.1% TFA (solvent A)/MeCN (solvent B): 5 min
equilibration, 5% B; 0 min, 5% B; 15 min, 100% B; 20 min, 100%
B, and a flow rate of 1.5 mL/min.

Extraction and Purification of
LaCl3-Activated Metabolites With
Antifungal Activity in the Strain R818
R818 spores from Marine Agar 2216 (MA) plates were inoculated
into 60 250-mL flasks; each flask contains 100 mL of SPY media
(soluble starch 20 g, glucose 10 g, peptone 5 g, yeast extract 5 g,
K2HPO4 0.5 g, MgSO4·7H2O 0.5 g, CaCO3 2 g, and sea salt 39.5 g,
per liter) supplemented with 2 mM LaCl3. Flasks were incubated
on a shaker at 200 rpm and 28◦C for 7 days. The broth (6 L) was
extracted with four times with an equal volume of EtOAc, and
the combined EtOAc layers were concentrated under vacuum.
The crude extract (4.9 g) was fractioned on a CombiFlash Rf200
system (Teledyne Isco) using a RediSep Rf Gold C18 column (size
50 g) with a flow rate of 40 mL/min. Fractions with antifungal
activity were pooled and used for bioactivity-guided purification.

Compound 1 (2.0 mg) was purified by semi-preparative HPLC
(H2O+0.1% TFA/MeCN: 70/30, flow rate at 3 mL/min) using an
Apollo C18 column (250 mm× 10 mm).

Structural Elucidation of Compound 1
The structure of compound 1 was determined by HRESI-MS and
1D NMR spectra. The exact molecular weight was determined
by an LTQ Orbitrap VELOS high-resolution mass spectrometer.
1D NMR spectra were recorded on a JEOL ECA-600 system
using a Shigemi symmetrical NMR microtube with the solvent
DMSO-d6.

Anti-microbial Bioassays
Activity against C. albicans, S. aureus, MRSA, and P. aeruginosa
assays was determined using a standard disk-diffusion method
as described previously (Wright et al., 2007). Briefly, 125 µg of
each sample was applied to a 6-mm diameter filter-paper disk,
which was then dried and placed onto the surface of a seeded
agar plate: Sabouraud Dextrose agar plates for C. albicans and
cation-supplemented Mueller–Hinton agar plates for bacteria. All
plates were seeded at approximately 1 × 106 cells/mL. Zones
of growth inhibition were measured after incubation for 24 h
at 37◦C. Positive controls were included for all assays: nystatin
(100 U) for C. albicans; cefoxitin (30 µg) for MRSA; and
gentamicin (10 µg) for S. aureus and P. aeruginosa.

Activity against C. difficile was determined using an initial
screening against UK6, a hypervirulent epidemic strain (Wang
et al., 2015). Extracts that showed sensitivity against UK6
at 64 µg/mL were further proceeded to determine minimal
inhibitory concentrations (MICs) using the broth microdilution
method (Clinical and Laboratory Standards Institute, 2007).
Briefly, actinobacteria extracts were added at final concentrations
ranging from 64 to 0.0625 µg/mL to wells of 96-well microplates
which contain UK6 cells (1.5 × 108 cells/mL, 100 µL per
well) in the BHIS medium. The plates were incubated at 37◦C
for 24 h. The MIC value of each extract was determined as
the lowest concentration at which no growth of UK6 was
observed. Vancomycin and metronidazole were included as
positive controls.

MTT Cell Viability Assay
MTT (3-(4,5-dimethylthiazol-2yl)-2,5-dipheynyltetrazolium
bromide (Sigma-Aldrich, St. Louis, MO, United States) cell
viability assay was performed to evaluate the cytotoxicity of
extracts against HepG2 and HEK293T cell lines cultured in
Dulbecco’s Modified Eagle Medium (DMEM) supplied with
10% FBS and 1% penicillin/streptomycin. Cells (104 cells/ well)
were seeded in triplicates in 96-well plates and were cultured
overnight. Extracts of the M864 strain were added to the 96-well
plates at a final concentration ranging from 128 to 0.125 µg/mL
in DMEM medium. Methanol solvent at a final concentration of
0.5% was used as a control. After 24-h incubation, MTT analysis
of the plates was performed as described early (Fotakis and
Timbrell, 2006). Data were analyzed with GraphPad PRISM 6
software (GraphPad Software, Inc., La Jolla, CA, United States),
and the half maximal inhibitory concentration (IC50) was
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FIGURE 2 | HPLC traces of the extracts from strains R818 (A) and J378 (B). Metabolites/peaks elicited or enhanced by the rare earth salt LaCl3 (labeled as “-la”)
were highlighted by red dashed boxes. Absorbance was recorded at UV = 254 nm. Inset in A, the typical UV spectrum of the LaCl3-activated metabolites in R818; a
representative peak marked by an asterisk (compound 1, RT = 9.25 min) was purified and identified as urauchimycin D. The inhibition zone of 1 against C. albicans
was measured as 16 mm.

reported as the concentration of extract required for 50%
inhibition compared with control cells.

RESULTS AND DISCUSSION

Actinobacteria Isolated From Deep-Sea
Sponges
With over 1,000 new compounds discovered annually over
the last decade, marine natural products (MNPs) represent
an increasingly attractive source of new anti-infective agents
(Blunt et al., 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015,
2016, 2017). Among marine organisms, marine actinobacteria
are an important producer (Manivasagan et al., 2014; Betancur
et al., 2017). Over the past 30 years, HBOI has collected

biological (such as sponges and corals) or sediment samples
mainly from the east coast of the United States, the Gulf of
Mexico, and the Caribbean Sea, as well as European and African
deep waters using the Johnson Sea Link manned submersibles
(Sfanos et al., 2005; Gaskill, 2011). From these samples, we
have been isolating microorganisms including actinobacteria.
In an effort to prospect these marine actinobacteria for
novel anti-infective natural products and to optimize the
approach for compound production, 50 strains from the
HBOI collection were used in this study (see details in
Supplementary Table S1), all of which were cultivated from
marine sponges. With the exception of Ircinia felix, all sponge
samples were collected from deep-sea environments ranging
from ∼200 to ∼2,800 fsw, as summarized in Table 1.
Analysis of strain taxonomy showed that the 50 strains
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FIGURE 3 | The HR-MS spectrum of compound 1.

TABLE 3 | 1H and 13C NMR chemical shifts of compound 1 in DMSO-d6.

Position δH (J in Hz) δC

2 169.7

3 5.24 (1H, t, 7.8) 53.8

4 5.50 (1H, m) 70.5

6 175.3

7 2.29 (1H, m) 45.3

8 3.25 (1H, t, 10.8) 77.2

9 4.68 (1H, m) 76.1

10-NH 9.25 (1H, d, 7.8)

11 169.6

12 114.4

13 150.4

14 126.9

15 8.24 (1H, dd, 1.2, 8.4) 125.1

16 6.93 (1H, t, 8.4) 118.4

17 7.87 (1H, dd, 1.2, 8.4) 123.2

18 1.29 (3H, d, 6.6) 15.1

19 1.17 (3H, d, 6.6) 14.2

20 1.35 (3H, d, 6.6) 18.4

21-NH 9.85 (1H, s)

22 8.33 (1H, d, 1.8) 160.4

8-OH 5.68 (1H, bs)

represent 15 genera. Even though 19 strains are Streptomyces
spp., most of the remaining strains are rare actinobacteria,
such as Actinomycetospora, Agrococcus, Leifsonia, Nocardiopsis,

Promicromonospora, Rhodococcus, Salinispora, and Tsukamurella
(Supplementary Table S1).

Deep-Sea Actinobacteria as a Rich
Source of Anti-infective Natural Products
Table 1 shows the diversity of both sponge species and
environment where the sponge samples were obtained. This
diverse source of actinobacteria might suggest a high degree
of chemical diversity of secondary metabolites generated by
these strains, in particular, among the less-exploited rare
actinobacteria.

Since recent advances in the study of microbial genomes have
shown an abundance of cryptic secondary metabolic gene clusters
in the microbial genome, activation of these gene clusters might
lead to discovery of new natural products. We have reported that
salts of the rare earth element lanthanum have been reported
to elicit the production of natural products (Kawai et al., 2007);
the method was also used by other groups to identify new
compounds, such as frenolicin G from Streptomyces sp. RM-
4-15 which was isolated from an Appalachian active coal fire
site (Wang et al., 2013). For each strain, LaCl3 (2 mM) was
supplemented to the medium as a chemical elicitor. Fermentation
broths were extracted with ethyl acetate, dried, and re-suspended
in methanol for evaluation. As a result, a total of 100 extracts were
tested for their activity against a panel of human pathogens.

Due to the difficulty of sampling, deep-sea actinobacteria
have been studied to a far lesser extent than those from shallow
water and terrestrial sources, and thus one might expect them
to have potential for the production of novel natural products.
Our results indeed indicated a high rate of pathogen inhibiting
activity. Out of 50 strains tested, 27 were identified as active
in at least one assay. Of these, most strains (21) showed
activity against the drug-resistant bacterium MRSA with a few
strains showing potent anti-MRSA activity compared to the
positive control (30 µg of cefoxitin and 19 mm of inhibition
zone); metabolites of 11 strains showed antifungal activity;
three strains exhibited anti-Pseudomonas activity and one strain
showed potent activity against C. difficile (see full results in
Supplementary Table S1 and representative bioassay results in
Figure 1 and Table 2).

Two strains, R786 and R818, showed strong antifungal activity
(Table 2). Notably, strain N217 has broad activity against all
tested pathogens except C. difficile. Recent fractionation studies
of N217 metabolites suggest that this broad spectrum activity
is likely contributed by different types of compounds (Xu and
Wang, unpublished data). The other notable strain is M864,

TABLE 4 | Determination of MIC for the crude extracts, vancomycin, and metronidazole against C. difficile UK6 using the broth microdilution method. WG1-60-60 and
WG1-60-61 are extracts of M864 fermented with or without the LaCl3 supplementation, respectively.

MIC (µg/mL)

0.125 0.25 0.5 1 2 4 8 16 32 64

No. of entries 2 0 2 0 0 0 0 0 0 98

WG1-60-60 Vancomycin

WG1-60-61 Metronidazole
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TABLE 5 | Determination of cytotoxicity for the M864 extract WG1-60-61 against
HEK293T and hepG2 and cell lines using the MTT cell viability assay.

MIC (µg/mL) IC50 (µg/mL) SI (IC50/MIC)

HEK293T HepG2 HEK293T HepG2

WG1-60-61 0.125 111.6 92.37 892.8 738.96

which is the only strain producing potent anti-C. difficile
metabolites in this study. Significantly, the MIC value
(0.125 µg/mL) of extracts from the strain M864 is lower
than those of vancomycin and metronidazole, both of which
are first-line antibiotics used in the treatment of CDI (see
details below). M864 was cultivated from a sponge of the family
Oceanapiidae collected from Bahamas at a depth of 2790 ft.
Sequence analysis of the M864 16S rDNA gene using BLAST
showed 99% homology to that of Salinispora arenicola strain
SCSIOZ-SH11 (GenBank acc# KC747479.1).

Induction of Antifungal and Antibacterial
Activity by LaCl3 Supplementation
LaCl3 has been shown to be an effective elicitor of secondary
metabolism in microorganisms. Among 27 strains active in
at least one assay, the addition of LaCl3 (2 mM) induced
or enhanced the production of anti-microbial activity in 15
strains; in 11 strains, the activity was attenuated (see the details
in Supplementary Table S2). For example, the strain R818
showed potent antifungal activity only in the presence of LaCl3;
anti-MRSA activity was elicited in strains N816 and S355 with
the addition of LaCl3, and was significantly enhanced in J378
(Table 2).

HPLC analysis of these extracts clearly showed new peaks
in R818 which might be responsible for the induced antifungal
activity in R818. Similarly, peaks with increased abundance in
J378 may be associated with the increased activity (Figure 2).
In the crude extract of R818-la, new peaks with a similar UV
spectra (UVmax = 227 and 317 nm) were found (Figure 2A),
which are absent in the crude extract of R818 without the addition
of LaCl3. In order to identify LaCl3-activated metabolites that
showed antifungal activity, the strain R818 was fermented in large
scale. From 6 L of culture, a representative peak was purified
with a retention time (RT) of 9.25 min. This compound (1) was
isolated as white solid. The C. albicans inhibition test showed
that compound 1 has an inhibition zone of 16 mm (Figure 2A).
Using a standard microtiter broth assay method (McCarthy et al.,
1992), we observed an MIC of 25 µg/mL for compound 1 against
C. albicans. Compound 1 also showed moderate anti-C. difficile
activity (Supplementary Figure S1), whereas the crude extract of
R818 showed no activity. HR-MS analysis suggested a molecular
formula C18H22O8N2 as a [M+H]+ ion at m/z 395.1449
(Figure 3). 1H and 13C NMR analyses were also performed; the
data are summarized in Table 3 and Supplementary Figures S2,
S3. We found the spectroscopic results were identical to those of
the known compound urauchimycin D which was also recently
isolated from a deep-sea bacterium Streptomyces somaliensis
SCSIO ZH66 (Yao et al., 2006; Li et al., 2017). Hence, compound

1 was identified as urauchimycin D, one of well-known antifungal
antimycins. We concluded that antimycin-type metabolites have
been activated by the rare earth salt LaCl3 in the strain R818.

Activity Toward C. difficile in Vitro
One hundred extracts were screened against UK6 in a bacterial
growth inhibitory assay at a concentration of 64 µg/mL.
UK6 was sensitive to all samples at this concentration. We
subsequently performed a broth dilution assay, which showed
that 98 of the extracts showed effective bacterial growth
inhibition at concentration ≥64 µg/mL, as summarized in
Table 4. Two samples showed a potent growth inhibitory
activity against UK6. Both were extracted from the M864
strain fermented with (WG1-60-60) or without (WG1-60-61)
the LaCl3 supplementation. The MIC analysis of the M864
extracts indicated that M864 metabolites contain compounds
that are more active than the current drugs vancomycin and
metronidazole. The MIC value is 0.125 µg/mL for M864 extracts
WG1-60-60 and WG1-60-61, whereas it is 0.5 µg/mL for
vancomycin and metronidazole (Table 4).

In order to test cytotoxicity and the therapeutic potential of
M864 metabolites, the MTT cell viability assay was performed
using HepG2 and HEK cell lines. Inhibition of cell viability by
WG1-60-61 was analyzed and the IC50 value was determined. As
shown in Table 5, WG1-60-61 showed low cytotoxicity against
HepG2 and HEK293T cell lines with IC50 values of 92.37 and
111.6 µg/mL, respectively. The selective index (SI, the rate of
IC50/MIC) was also calculated. WG1-60-61 showed a good SI
against both cell lines, 738.96 for HepG2 cells and 892.8 for
HEK293T cells (Table 5). These results suggested that M864
metabolites likely contain natural products which are more
potent than vancomycin against C. difficile, have a good SI, and
deserve further investigation.

CONCLUSION

The less-studied actinobacteria cultivated from deep-sea niches
such as those associated with sponges represent unique
environment and new taxa for the discovery of novel MNPs.
In this preliminary study, we screened extracts of 50 strains,
cultivated from diverse marine sponges, mostly collected from
the deep sea (∼200 to ∼2,800 fsw). More than half of the strains
showed anti-microbial activity in at least one assay, indicating
the potential of this group of actinobacteria for the production
of natural products. Among them, several strains were identified
with exceptional activities, such as R786 and R818 for their potent
antifungal activity, J378 for anti-MRSA activity, and N217 for
both antifungal and antibacterial activities. Another intriguing
strain is M864, the only strain in this work potently inhibiting the
growth of C. difficile. Recent research has shown the abundance
of biosynthesis-like gene clusters in actinobacteria genomes,
which do not appear to be expressed under standard laboratory
culture conditions. Activation of these cryptic gene clusters would
significantly enhance opportunities to discover novel natural
products. In this study, a chemical elicitor, LaCl3, has been shown
effective in inducing antifungal or antibacterial activities in
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strains that do not show such activities under normal cultivation
conditions. In the strain R818, antimycin-type compounds were
activated by LaCl3, which show potent antifungal activity.

Our results suggest that deep-sea marine actinobacteria
represent a promising source of new anti-microbial MNPs.
Purification and structural identification of additional bioactive
chemicals are in process. The draft genome sequences of R818,
J378, and N217 have been determined; analysis of potential
biosynthetic gene clusters and gene–compound relationships is
also being investigated.
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