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OPTIMAL DISTRIBUTION FEEDER RECONFIGURATION WITH DISTRIBUTED 

GENERATION USING INTELLIGENT TECHNIQUES 

 

Feeder reconfiguration is performed by changing the open/close status of two types of 

switches: normally open tie switches and normally closed sectionalizing switches. A whole 

feeder or part of a feeder may be served from another feeder by closing a tie switch linking 

the two while an appropriate sectionalizing switch must be opened to maintain the radial 

structure of the system. Feeder reconfiguration is mainly aiming to reduce the system 

overall power losses and improve voltage profile.   In this dissertation, several approaches 

have been proposed to reconfigure the radial distribution networks including the potential 

impact of integrating Distributed Energy Resources (DER) into the grid. These approaches 

provide a Fast-Genetic Algorithm “FGA” in which the size and convergence speed is 

improved compared to the conventional genetic algorithm. The size of the population 

matrix is also smaller because of the simple way of constructing the meshed network. 

Additionally, FGA deals with integer variable instead of a binary one, which makes FGA 

a unique method. The number of the mesh/loop is based on the number of tie switches in a 

particular network. The validity of the proposed FGA is investigated by comparing the 

obtained results with the one obtained from the most recent approaches.  The second 



the approach is the implementation of the Differential Evolution (DE) algorithm. DE is a 

population-based method using three operators including crossover, mutation, and 

selection. It differs from GA in that genetic algorithms rely on crossover while DE relies 

on mutation. Mutation is based on the differences between randomly sampled pairs of 

solutions in the population. DE has three advantages: the ability to find the global optimal 

result regardless of the initial values, fast convergence, and requirement of a few control 

parameters. DE is a well-known and straightforward population-based probabilistic 

approach for comprehensive optimization. 

In distribution systems, if a utility company has the right to control the location and size of 

distributed generations, then the location and size of DGs may be determined based on 

some optimization methods. This research provides a promising approach to finding the 

optimal size and location of the planned DER units using the proposed DE algorithm. DGs 

location is obtained using the sensitivity of power losses with respect to real power 

injection at each bus. Then the most sensitive bus is selected for installing the DG unit. 

Because the integration of the DG adds positive real power injections, the optimal location 

is the one with the most negative sensitivity in order to get the largest power loss reduction. 

Finally, after the location is specified, the proposed Differential Evolution Algorithm 

(DEA) is used to obtain the optimal size of the DG unit. Only the feasible solutions that 

satisfy all the constraints are considered. 

 The objective of installing DG units to the distribution network is to reduce the system 

losses and enhance the network voltage profile. Nowadays, these renewable DGs are 

required to equip with reactive power devices (such as static VAR compensators, capacitor 

banks, etc.), to provide reactive power as well as to control the voltage at their terminal 

bus. DGs have various technical benefits such as voltage profile improvement, relief in 

feeder loading, power loss minimization, stability improvement, and voltage deviation 

mitigation. The distributed generation may not achieve its full potential of benefits if placed 

at any random location in the system. It is necessary to investigate and determine the 

optimum location and size of the DG. Most distribution networks are radial in nature with 

limited short-circuit capacity. Therefore, there is a limit to which power can be injected 

into the distribution network without compromising the power quality and the system 

stability. This research is aiming to investigate this by applying DG technologies to the 



grid and keeping the system voltage within a defined boundary [0.95 –  1.05 𝑝. 𝑢]. The 

requirements specified in IEEE Standard 1547 are considered.   

This research considers four objectives related to minimization of the system power loss, 

minimization of the deviations of the nodes voltage, minimization of branch current 

constraint violation, and minimization of feeder’s currents imbalance. The research 

formulates the problem as a multi-objective problem. The effectiveness of the proposed 

methods is demonstrated on different revised IEEE test systems including 16 and 33-bus 

radial distribution system.  

 

 KEYWORDS: network reconfiguration, Genetic Algorithm (GA), Differential Evolution 

Algorithm (DEA), Distributed Generation (DG), Sensitivity Analysis, Optimal Location 

and Size of DGs units. 
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Chapter 1  

Introduction 

1.1 Power Distribution Networks  

Power Distribution networks are overgrowing and becoming more complex and 

complicated systems. Power generation is defined as the process used to produce 

electricity, normally at a central power plant. The transmission term is the process of 

transporting electricity to the customers at high voltages. Distribution is defined as the  

process of transforming electricity to lower voltages and transporting it shorter distances 

to individual consumers [1]. 

The traditional power system is fundamentally the interconnection of different power 

system components, such as synchronous machines, power transformers, transmission 

lines, transmission substations, distribution lines, distribution substations, and different 

types of loads. They are placed far away from the power consumption area, and electric 

power is transmitted through long transmission lines. Nowadays, the distribution system is 

neither traditional nor complex system because it has become smart systems. A smart 

system is a modern form of the traditional power grid which provides a more secure, 

reliable and dependable electrical service. It is, in fact, two-way communication between 

the utility and the electricity consumer. In addition, the distribution term now is divided 

into two types. One-Way distribution in which the power can only be distributed from the 

central plant using traditional energy infrastructure. The second type is the two-way 

distribution, while power still provided from the essential power plant, in a smart system, 

power can bi-directional and flow back to the transmission lines from a secondary power 

provider.  These providers can be small or large scale individuals who have access to 

alternative power sources, such as wind turbine or solar panels, that can send energy back 

into the grid. The smart grid is capable of providing data and information of all the events 

in real time. The components of a smart grid include smart meters, smart substations,  smart 

appliances, and advanced synchrophasor technologies. The utilities have the least 

controllability of the customer connected devices which is also where most of the change 

is occurring.  The result is a set of challenges associated with further integrating of 
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Distributed Energy Resource (DERs). To meet these challenges, an integrated approach 

for planning DERs is needed. In the late years, there has been a notable influx of DERs 

onto the grid particularly on the distribution system, either at the medium or low-voltage 

level. Specifically, installations of the solar photovoltaic (PV) systems are growing rapidly. 

PV systems are known as distributed generators (DGs) and also defined as an on-site 

generation or a decentralized energy source. Nowadays, there are a massive amount of the 

connected DGs units onto the grid. This shift alters the manner in which electricity is being 

generated, transmitted, and managed, thus necessitating a change in how utilities plan and 

integrate this resource. DERs conflicts have already risen between distribution systems 

designed for one-way power flow and DERs that want to force power flow in the opposite 

direction. Screening methods exist to avoid adverse impacts due to DERs, but this 

addressing the abundance of DERs interconnection requests and can result in higher overall 

costs if the resource is not fully integrated and located appropriately. For instance,  let’s 

consider designing the voltage regulator for a feeder. Without DERs, the network planner 

designs for a voltage drop from the substation to the feeder extremities. If the voltage is 

projected to drop too low during the peak demand periods, a capacitor bank or voltage 

regulator is added to boost the voltage level. Feeder voltage control is designed to yield 

voltages within ANSI C84.1. For the grid with DERs, the planner must also design for the 

voltage rise resulting from DER power output and must consider time(e.g., the impact of 

solar generation (at the bigging of the day or during the day)) in the analysis. An example 

of the time and location is the evaluation of PVs on a distribution feeder. Therefore, DERs 

are required to coordinate and approve when the DER are allowed to actively participate 

in regulating the voltage by changes its real and reactive output power. Besides, DERs 

must be coordinated with the protection devices when connected to the grid. A meshed 

system may better support DERs but requires an entirely different planning paradigm for 

distribution. New types of line equipment would be required to protect a new system 

configuration. Since the grid is becoming more complex, utility planning needs to change 

also they need a new planning method that can accommodate the more integrated system.  

While the planning functions of the DERs do not change, additional critical items should 

be considered to integrate DERs better and to quantify the overall impact of such sources 

more precisely. The main factors that need to be considered in a proactive planning 
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approach with DERs are the size and location, distribution systems response 

characteristics, and DER technologies.  Part of this research is aiming to optimally 

determine the location of the planned DERs using Differential Evolution Algorithm DEA.  

The distribution feeder response characteristics attentional is to determine the hosting 

capacity of the feeder. The hosting capacity of a feeder is defined as the amount of DERs 

a feeder can support under its existing topology, configuration, and physical response 

characteristics. If the hosting capacity is appropriately done then it will provide a range of 

information such as, how many DERs can be accommodated without system upgrades, 

what issues arise at the hosting capacity limits, the location of the DERs so that problems 

can be avoided, and the location where additional DERs are likely to cause issues on the 

grid. The third crucial item of integrating the DERs is the DER technologies. Different 

generation such as solar and wind can have widely varying impacts on voltage and capacity 

value compared with the dispatchable generation. The difference primarily comes from the 

timing in which the electricity is generated and the character of the energy output.  

Distribution system assessment for DERs must focus on incorporating DERs while 

maintaining established standards of reliability and power quality. When planning a 

distribution system the first step to be considered is to establish the distribution feeder ’s 

ability to host DERs that is to determine its hosting capacity. Hosting capacity is to 

determine the number of DERs that feeder can accommodate under current grid conditions 

without affecting power quality or reliability.  

1.2 The impacts and benefits of integrating DERs in the distribution 

networks 

1.2.1 Protection  

The utility must retain the ability to detect and isolate faults as well as provide service 

restoration to all customers in a timely fashion. Additional DERs can affect the utility’s 

ability to perform these functions. Besides, DERs must stop injecting real power when the 

grid lost its energy. In other words, DERs should inject power only when the connection 

point or bus to the grid is energized. Standard fault current analysis can be used to compare 

the fault response with and without the DERs to evaluate the potential impact on system 

protection.  
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1.2.2 Voltage  

Distribution system designed to maintain primary voltages level within the standard ranges. 

Typically, the voltage levels are kept within ±5% of the normal rating. DER installations 

have the potential to change the voltage along a distribution feeder because of the power 

they inject into the grid.  For variable generation such as wind and PVs, unacceptable 

voltages can occur, causing overvoltages or voltage deviations that can affect regulation 

equipment. Alternatively, if DERs coordinated with utility regulation, additional voltage 

support can be achieved. DERs must obey the IEEE1547 standard in which they must be 

coordinated with the utility operator and have the ability to participate and adjust their 

output power. 

1.2.3 Energy  

DER installation has the potential impact the reduce distribution losses because of the 

generated energy is provided closer to the consumer. DER is also known as an onsite 

generation source. The optimal location and size of the DERs is the crucial parameter of 

reducing system losses. The extent to which DERs can reduce losses depends on the 

location and the length of time for which the energy is injected into the grid. Briefly, DERs 

has a significant impact in reducing system losses if integrated at their optimal location. 

This research provides a promising method to determine the location and size of the DERs 

optimally.   

1.2.4 Reliability  

Reliability is a measure of the number and duration of interruptions of electrical service 

experienced by consumers. Additional, it is the ability of the system and its components to 

withstand instability.   DER installation has the potential to improve reliability, but they 

must use reliable technologies and site in locations on the distribution system where they 

can effectively deliver power during system failure events and after fault isolation. As the 

size and capacity, DER output must be available at the time of need to improve system 

reliability.  
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1.2.5 Capacity  

Distribution systems are designed to provide service to all customers, especially at the peak 

demand periods when assets are most constrained. A potential benefit of integrating DERs 

into the distribution system is their ability to reduce net feeder demand and relieve capacity 

on existing distribution infrastructure, potentially deferring distribution-capacity upgrades. 

DERs must have the ability to provide capacity during the peak load periods. Capacity 

analysis requires specific information regarding thermal characteristics, the associated load 

profile characteristics, and projected load growth. Capacity is analyzed separately for each 

feeder and substation to identify the potential benefits arising from power being generated 

locally, as well as any adverse consequences of two-way power flows on feeder carrying 

capacity. 

1.3 Loss minimization of the Power Distribution system  

The amount of power losses in the electric distribution system and where they largely occur 

in the system are of great interest to the engineers in developing a rate structure for different 

classes of customers. Resistive line losses are also lower on higher-voltage systems, 

especially in a voltage-limited circuit. Because system losses are a function of the current 

squared (𝐼2𝑅), most losses occur on the primary near the substation. Losses occur 

regardless of the power factor of the circuit. Reducing the reactive portion of the total 

current, will significantly impact the system total losses.  

Electrical power losses in distribution systems vary with numerous factors depending on 

system configuration, such as the level of losses through transmission and distribution 

lines, transformers, capacitors, insulators, e.g. [2]. In distribution systems, there are two 

types of Power losses, real power loss (active power 𝑃), and reactive power loss (reactive 

power 𝑄). The real power loss is caused by the resistance of lines, while reactive elements 

produce the reactive power loss.  

Traditionally, there are different ways to reduce system losses including using a higher 

system voltage, reduce loads, balance the circuits,  increase power factor,  use three-phase 

circuits, and use larger size conductors. Additional, Capacitors provide enormous benefits 

to distribution system interpretation.  Such as, capacitors reduce system losses, free up 

capacity (the same circuit can serve more load), and reduce voltage drop. This research is 
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aiming to reduce total system losses (reduce line current) by using intelligent techniques 

such as distribution feeder reconfiguration, integrating DERs in the system to mitigate the 

amount of energy provided by the central power plant ( onsite generation ), and using DE 

algorithm to reconfigure the network.  

1.4 Dissertation Outline 

The optimization approach is a procedure in which the best possible values of decision 

variables are acquired under a certain set of conditions/constraints and in accordance with 

a selected optimization fitness or objective function. The most common and known 

optimization algorithm applies to a design that will minimize the total cost function or 

maximize the reliability or any other particular objective. 

Nowadays, there exist a lot of various optimization approaches that work using heuristic-

based search techniques in deterministic and stochastic contexts and gradient-based. In 

order to achieve high applicability of the optimization approach to various problem 

domains, natural and physical principles are mimicked to develop robust optimization 

algorithms. Evolutionary algorithms, simulated annealing, ant colony optimization, 

memetic algorithms, particle swarm optimization are few examples of such algorithms. 

The remainder of this dissertation is organized as follows: The literature review related to 

the feeder reconfiguration technique and the contribution of the DER’s output power and 

its impact into the radial distribution networks. The feeder reconfiguration to solve the 

multi-objective problem using a new load flow strategy by employing a graph theory is 

described in Chapter 2. In chapter 3 the reconfiguration problem is solved by using the 

intelligent technique. Traditional GA was commonly used to solve this problem, then in 

the last decade many researchers tried to improve the performance of the GA. Since the 

distribution networks have become larger and larger and also because of regulation and the 

environmental concerns has brought to the attention of the energy market the need for clean 

energy resources. The central traditional power plants have to be upgraded and the inside 

power sources are needed such as DGs and offshore power plants. Now the need for a 

robust method to take into account the impact of the integrated DGs such impacts is the 

reverse power and voltage violation, etc,. Additionally, the need for a fast and quick 

approach to reconfiguring the system especially when there is a significant change in the 
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load or when the fault occurred in the system. Chapter 4  provided the fast genetic algorithm 

(FGA) in which we consider all the operation requirements besides the constraint and 

promising to have fast convergence and less memory needed. After the study and the 

simulation in chapter 3 and because of the intense and deep research about the optimization 

techniques it comes to my mind to use the evolutionary algorithms specifically the 

Differential Evolution Algorithm (DEA). The evolutionary process, first developed to 

evolve finite state machines (FSM), consists of finding a set of optimal behaviors from a 

space of observable behaviors [3] [4].  In this chapter (chapter 4) I proposed to implement 

DE algorithms to solve the radial distribution systems. The impact of the integrated DGs 

in the system is considered and in fact, the size and location of DGs units are randomly 

chosen because the assumption is that these units already exist in the grid, therefore, it is 

not controllable. Now, what if the utility company for example wants to control these 

sources, or in other words wants to plane new off-site sources. These questions have 

brought the idea of chapter 6 in which the optimal location and sizing of the planned DGs 

using the proposed DEA. The proposed topology in chapter 6 is to reconfigure the system 

first, then obtained the location of the planned DGs unit by using the real power loss 

sensitivity analysis, and then after setting the DG at its obtained optimal location the size 

is computed by using DEA. Keeping in mind that the connection of the  DGs units must 

obey the IEEE 1547 standard. Finally, the conclusions and future work are discussed in 

Chapter 7. 
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Chapter 2  

Literature Review 

 The existing distribution networks are growing in complexity, due to the gradual increase 

of power demand and the existence of different customers with more sensitive loads. Each 

feeder in a distribution system has a different mixture of commercial, residential and 

industrial type loads, and it is well known that the daily load variations of these load types 

are dissimilar. Consequently, the peak loads on substation transformers, on individual 

feeders, or on feeder sections occur at different times (non-coincidence of peaks). Feeder 

reconfiguration processer allows the transfer of loads from loaded feeders or transformers 

(heavily loaded) to relatively less loaded feeders or transformers (lightly loaded). Such 

transfers will effectively alter the level of loads on the feeders being switched and also 

improve the voltage profile of the feeders and reducing the overall system power losses 

[5]. Feeder reconfiguration is performed by changing the open/close status of switches. 

Primary distribution networks contain two types of switches, known as tie switches 

(normally open) and sectionalizing switches (normally closed). These switches are 

designed for both protection and configuration purposes. A whole feeder or part of a feeder 

may be served from another feeder by closing a tie switch linking the two while an 

appropriate sectionalizing switch must be opened to maintain the radial structure of the 

system.  

The use of distribution feeder reconfiguration for loss reduction was first proposed by 

Merlin and Back (1975) [6]. They have used a branch-bound type optimization strategy to 

calculate the minimum loss configuration. Based on their method, a heuristic algorithm has 

been suggested by Shirmohammadi and Hong [7]. Their solution procedure also starts by 

closing all of the network switches to find the maximum voltage difference between the tie 

switches. Then to consider closing first the tie switch with the maximum voltage difference, 

after that form the loop and opening and closing each sectionalizing switch of the branches 

one after another to establish the optimal flow pattern in the system. Borozan [8] have 

presented a network reconfiguration technique similar to that of Shirmohammadi and Hong 

[7]. However, their methodology contains three main parts: real-time load estimation, 

effective determination of power loss configuration, and cost/benefit evaluation. Civanlar 
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[9] made the use of heuristics to determine a distribution system configuration which would 

reduce line losses. He used a branch exchange methodology for switching mechanism: to 

ensuring the radial nature of the distribution system opening of any switch was required 

the closure of another switch correspondingly.   Baran and Wu (1989) [10] have attempted 

to improve the method of Civanlar by introducing two approximation formulas for power 

flow in the system loads transfer. Baran and Wu Power-flow equations were defined by a 

recursive approximation of 𝑃, 𝑄, and 𝑉 at each bus. Then he proposed an efficient load 

flow equations to solve power flow equations by formulating the load balancing and loss 

reduction as an integer programming problem. Lu. [11] have proposed two algorithms 

minimizing the real power loss in distribution networks. Taylor and Lubekaman [12] have 

proposed a heuristic approach to distribution feeder reconfiguration for loss reduction, 

removal of transformer overloads, and feeder constraint problems.  To find the global or 

near-global optimal solutions, Chiang and Jean-Jumean [13], [14] and Jeon et al. [15] have 

proposed new solution methodologies using the simulated annealing algorithm for the 

reconfiguration. Chen and Cho [16] have presented optimal switching criteria using binary 

integer programming with a branch-and-bound technique for network reconfiguration to 

achieve energy loss minimization for the short-term and long-term operation of distribution 

systems. Wagner et al. [17] have compared various methods of feeder reconfiguration for 

loss minimization problems. Zhou et al. [18] have proposed two feeder reconfiguration 

algorithms for the service restoration and load balancing purpose. Their method combined 

the optimization techniques with fuzzy logic and heuristic rules for robust performance and 

efficiency improvement. Zhou et al. [19] have also proposed another heuristic-based feeder 

reconfiguration algorithm for reducing the operating cost in the real-time operating 

environment. Lin and Chin [20] have presented an algorithm for distribution feeder 

reconfiguration using the ohmic index, a voltage index, and decision index to determine 

the switching operation. Borozan and Rajakovic [21] have considered the application 

aspects of optimal distribution network reconfiguration. Taleski [22] have provided a 

method to determine the configuration with minimum energy losses for a given period. N. 

Rug and S. Siris [23] have presented an approach for finding the optimal implementation 

of feeder reconfiguration in unbalanced loading distribution systems with the objective of 

power loss reduction. M.P.sharma [24] also have presented an in-depth analysis of Feeder 
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Reconfiguration (FR) of 139-bus, 33 kV distribution system, by using minimum Power 

Flow-based Reduction (MPFR) technique. 

Network reconfiguration problems have been considered as a crucial area of interest in 

recent years. Most of the approaches proposed heuristics, approximate techniques or 

mathematical programming. Therefore, the obtained results are either approximate or only 

local optimum solutions. Network reconfiguration using genetic algorithms (GA’s) based 

approaches and simulated annealing have also been used by  [25]. 

In general distribution feeder reconfiguration is implemented from time to time especially 

when there is a significant change in loads or sudden fault occurring on the network. 

Network reconfiguration is the method of changing the topological structure of feeders by 

changing the open/closed status of sectionalizing and tie switches. Nowadays the 

renewable energy resources have become a primary alternative energy source.  These 

sources are also known as distributed generation (DGs) units. They are installed in the 

system to serve as an on-site source of power near the site where the energy is needed and 

to be consumed. DGs can be presented by different types of resources and technologies 

such as wind, solar, fuel cells, hydrogen, biomass, and combined heat and power (CHP). 

These technology has drawn significant attention for utilities to accommodate DG units in 

their systems [26] [27]. In a real system, the location of the existing DG units is not quite 

demonstrated by utility company because it is customer owned. Therefore, its location and 

size are not controllable, and if it is agreed to be integrated into the grid, then it becomes a 

type of fixed source. 

On the other hand, if utility company owns it, then becomes controllable and its location 

and size may be determined based on some optimization methods such as sensitivity 

analyses as presented by Das [28]  or Loparo [29], or any other methods. To date, there is 

no standardized regulation enacted to define the frequency of reconfiguring the distribution 

network. However, because distribution network applications use much real-time 

information, which usually has a discrete time step of an hour [30], distribution networks 

may be configured in each hour based on the status of time-varying loads, and available 

output power from the DG units [31] [32].  
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The genetic algorithm (GA) was first proposed by Nara [33] for distribution network loss 

minimization. Many other authors have followed and improved this method for the 

distribution network optimization. 

Conventional genetic algorithms often have slow convergence speed and easily stuck at a 

local optimum. Thus, in order to overcome these shortcomings, many interested 

researchers have made considerable efforts to improve GA’s performance of  (Vasconcelos 

and Saldanha (1997) [34], Vasconcelos et al. (2001)) [35]. The significance of the 

probabilities of crossover (𝑝𝑐) and mutation (𝑝𝑚) in controlling GA’s has been 

acknowledged in GA research, since 𝑝𝑐 and 𝑝𝑚 greatly determine whether the algorithm 

will find a near optimum solution or whether it will find a solution efficiently (Zhang et al. 

(2004)) [36]. This research proposes a Fast Genetic Algorithm (FGA) for distribution 

feeder reconfiguration for loss reduction and load balancing with the ability to find the 

global solutions. It also introduces some new features improving accuracy and the 

computational efficiency, including a unique population generation, a Tabu list of 

infeasible solutions, a two-termination criterion and also the refined adaptation of 

crossover and mutation probabilities according to the genetic diversity in the population. 

Different case senarious will be considerd inhere such as, load flow analysis before abd 

after network configurtion  and feeder reconfiguration with/without the DGs connection. 

Ramos et al. [37] developed algorithms based on genetic algorithm and conventional mixed 

integer linear problem. Wang et al. [38] proposed an algorithm to minimize loss and load 

balancing for a large-scale unbalanced system using network reconfiguration. 

Now for the distributed generation DG implementation in distribution power system 

network, there are many effort research employed in this aspect. N. Rugthaicharoencheep 

and S. Sirisumrannukul [39] have presented a work to minimize system total power loss in 

the presence of DGs that cause reverse power flows and voltage variations. Their method 

focused on solving optimization problem subject to system constraint consisting of load-

point voltage limits, radial configuration format, no load-point interruption, and current 

feeder capability limits, the idea in their research is using a Tabu search algorithm. Ding 

and Kenneth [29] they followed up on their previous work and have presented feeder 

reconfiguration for unbalanced distribution systems. They proposed a sensitivity analysis 
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of the real power injection and nonlinear programming to determine the locations and sizes 

of DG units.  

Placement of DGs units is an essential factor because improper location may lead to voltage 

instability and power loss. The Newton Rapson, load flow method, used in [40]. This 

method reduces the power loss and the cost factor very effectively, but the conventional 

method of load flow analysis was not applicable for distribution system because of its high 

R/X ratio, a large value of resistance and reactance of the line and radial structure of the 

distribution system. Tuba Gozel used loss sensitivity factor for determination of the optimal 

size and location of DG to minimize total power loss [41]. Andrew used the Linear 

Programming Technique for placement of DG with multiple constraints [42]. Mallikarjuna 

used Simulated Annealing for determining the optimal location and size of DG units in a 

microgrid, given the network configuration and heat and power requirements at various 

load points [43]. Krueasuk used PSO to find optimal location and size of DG [44]. Lalitha 

used fuzzy approach to find optimal DG localization [45]. Hughifam used a multi-objective 

function to minimize the cost of energy losses, Investment cost of DG and Operation and 

maintenance cost [46]. Ochoa minimized real power loss and single phase short circuit 

level [47]. Celli used multi-objective approach, Genetic Algorithm (GA) has been adopted 

to solve the optimal placement of different types of generation simultaneously. He saved 

the energy in the form of greenhouse gas emission reduction [48]. Vinoth Kumar addressed 

minimizing the multi-objective index using a genetic algorithm for the optimal Placement 

of DG [49]. The proposed approach in [50] is applied to determine the  optimal location 

and size of integrating DGs units into the distribution system.   

In the optimization process of a difficult task, the method of the first choice will usually be 

a problem specific heuristics. These techniques using expert knowledge achieve superior 

performance. If problem specific technique is not applicable due to unknown system 

parameters (e.g., node voltage and branch currents), the multiple local minima, or non-

differentiability, Evolutionary Algorithms (EAs) have the potential to overcome these 

limitations [51]. EAs are a class of direct search algorithms. A conventional direct search 

method uses a strategy that generates variations of the design parameter vectors. Once a 

variation is generated, the new parameter vector is accepted or not. The new parameter 

vector is accepted in the case it reduces the objective function value. This method is usually 
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named the greedy search. The greedy search converges fast but can be trapped by local 

minima. This disadvantage can be eliminated by running several vectors simultaneously 

which is the main idea of differential evolution (DE) algorithm.  

Differential evolution (DE) is a stochastic, population-based search strategy developed by 

Stern and Price [52] in 1995. DE differs significantly from other evolutionary algorithms 

(EA), in the sense that the direction information and the distance from the current 

population are used to guide the search process. In most EAs, variation from one generation 

to the next is achieved by applying crossover and mutation operators. If both these 

operators are used, the crossover is usually applied first, after which the generated offspring 

are mutated. The main difference between DEA and EVs in that: 

• Mutation operator is applied first, then the generate trial vector is used within the 

crossover to generate the offspring. 

• Mutation step sizes are controllable parameters and are not sampled from a prior 

distribution function.  

In DEA, mutation step sizes are influenced by differences between individuals of the 

current population. 

Additionally, DEA is a population-based using three operators such as crossover, 

mutation, and selection. It differs from another algorithm like GA is that genetic 

algorithms rely on crossover while DEA relies on mutation. This operation is based on 

the differences between randomly sampled pairs of solutions in the population. 

The DEA  has three advantages: finding a global minimum regardless of the initial 

population parameter values, converges fast, and a few control parameters are needed [53].  

 In DE algorithm, all solutions have an equal opportunity of being preferred as parents, and 

selection does not depend on their fitness values.  

This dissertation proposed a DEA for finding the optimal size and location of the planned  

DG unit in a distribution network. The technique will minimize real and reactive power 

losses and improve the system overall voltage profile. The optimizations technique are 

performed in three stages: the network reconfiguration, the locations, and the sizes of DGs 

units. Different test systems are used herein to validate the effectiveness of the proposed 

approach. 
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Chapter 3  

 Distribution Feeder Reconfiguration For Loss Reduction  

3.1 Introduction  

Distribution systems are generally designed and built as meshed networks, while they are 

operated radially. Their configurations processers may vary with manual or automatic 

switching operations so that all of the loads are served and increase power quality and 

improve system reliability and also reduce network losses. Feeder reconfiguration benefits 

the system by relieving the overloading of the network components by transferring loads 

from heavily loaded lines to partially loaded one. Network configuration is performed by 

changing the status of the switches. Distribution networks contain two types of switches 

normally closed switches (sectionalized switches) and normally open switches (tie 

switches). In general, feeder reconfiguration is performed when there is a significant 

change on loads or during contingency conditions such as sudden fault occurring on the 

feeder. 

Additionally, to date, there is rules or standard regulation enacted to define the frequency 

of implementing the network reconfiguration. However, based on the literature review 

most distribution network application use real-time data with a discrete time step of one 

hour. Therefore, hourly feeder reconfiguration is used in most existing online studies to 

reduce distribution system losses.   

In light of the literature review in chapter two, most approaches proposed so far use some 

heuristics, mathematical complex programming or approximate techniques and it considers 

taking long computation time and more memory space. Thus, the obtained results are either 

approximate or only local optimal solutions. Also, they require more time and memory to 

be computed especially for large systems. Due to this, the proposed work in this chapter is 

to formulate and solve the distribution feeder reconfiguration problem using a simple load 

flow technique for the radial distribution network. This technique involves only the 

implementation of a simple algebraic expression of receiving-end voltages and employing 

the graph theory to efficiently construct the system structure. The topology is to set the 

value of the substation voltage to 1 𝑝. 𝑢 and since the load date ( 𝑃&𝑄) is provided and 
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specified as a 𝑃𝑄 load, then branch currents become easily to obtain. The power flow 

results are obtained iteratively. This section is only focus on the reconfiguration technique 

without including distributer energy resources. The reconfiguration approach is tested on 

the IEEE 33 bus radial distribution system  [10] has five tie-switches (dotted branches) and 

32 in service branches (solid branches) with sectionalizing switches at each line and 33 

nodes. The system has a total load of 3.715MW and 2.30MVAr. The base network power 

loss is 202.6762kW and tie switches are 33, 34, 35, 36, 37. To simplify the analysis, it 

assumed that the test system is presented on a per phase basis and the loads along the feeder 

are considered as a spot load with constant 𝑃, 𝑄 loads placed at the end of the lines. It is 

also assumed that there is a sectionalized switch associated with each line in the system. 

The problem formulation considers four objectives related to minimization of the system 

power loss, minimization of the deviation of the nodes voltage, minimization of branch 

current constrain violation, minimization of feeder currents imbalance.  

In this section will investigate feasible methods for solving the multi-objective problem. 

One possible formulation is to use weight-based objective function formulation, where 

different weights are assigned to each objective. The reconfiguration depends on the proper 

selection of weighting factors. One has to select proper values of weightings factors such 

that each object may be given preference as desired by the operator.   

The remainder of this chapter is organized as follows. The load flow formulation is 

presented in Section 3.2. power system modeling using graph theory is discussed in Section 

3.3. solution methodology is detailed in Section 3.4. In Section 3.5, the load flow 

calculation techniques are illustrated in details.  The feeder reconfiguration techniques are 

presented in section 3.6.  the fitness function is formulated in section 3.7. distribution test 

systems and the simulation results and discussion are presented in section 3.8 and 3.9 

respectively. In section 3.10 the Test feeder performance after reconfiguration with the 

presence of DGs units is investigated using the IEEE 33-bus test system. The DG effect on 

the radial distribution system is discussed in 3.11.  Conclusions are drawn in Section 3.12. 
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3.2 Load flow formulation 

To illustrate the solution methodology of the load flow analysis, let’s assume that the 

balanced three-phase radial distribution network is represented by an equivalent circuit. 

Let’s consider a single line diagram of a radial distribution system shown in figure 3.1. In 

this dissertation, the formulation of load flow is adopted with the use of graph theory. The 

total number of nodes beyond each feeder, branch or letteral is identified by applying graph 

theory topology. Known the number of nodes beyond each node would ease the 

computation of branch currents of each edge in the system. For example, the current of 

edge 1 (branch 1 between node 1 and node 2) would be the summation of all the load 

currents in the system, thus 𝐵𝑐1 = 𝐼2 + 𝐼3 + 𝐼7 + 𝐼4 + 𝐼8 + 𝐼5 + 𝐼12 + 𝐼10 + 𝐼9 + 𝐼6 + 𝐼11 

Load currents (𝐼2, 𝐼3, … . ) can be calculated using (3.7).  

 

Figure 3.1 Simple line diagram of a radial distribution system 
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3.3 Power system modeling using graph theory 

This part will introduce a graph theory and describe how to use it to model a power system. 

Graph theory is an area of mathematics describing the study of pairwise relations between 

objects.  

Graph theory can be applied to power systems in multiple ways. A graph is an object having 

two sets called vertex set and edge set [54].  The vertex set cannot be empty, but the edge 

set can be. The elements in the vertex set are called vertices. Each element in the edge set 

is a two-element subset of the vertex set. These elements are called edges. 

Now, since the line data is known or provided (e.g., sending end and receiving end nodes) 

a power system model can be built using a graph theory idea above. Fundamentally, any 

buses in the power system are connected through circuit breakers and switches, therefore 

the circuit breakers and switches can be modeled as edges, and the buses are modeled as 

vertices in a graph. For example, let’s consider figure 3.1, if the breaker s1 (e.g., 

sectionalized switch or tie switch) between the substation node (node 1) and first node next 

to the substation (node 2) is closed, then the switch s1 is called vertices, and the edge is 

created. However, if the switch s1 is open, then there is no edge between these two nods. 

Figure 3.2a shows a graph representation of the power system Figure 3.2b shows the same 

power system with s1 open. 
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Figure 3.2 A graph representation of the power system 

The results from the graph property are:  

Edges: [1x1 table]: the edges are representing the branches or feeders. 

 Nodes: [2x0 table]: the nodes are the busses creating the branches.  

If a particular node is connected with more than one node (e.g., node with connected 

lateral), then the Neighbors command is used to identify the connected node in a graph. 

For instance, let's consider figure 3.1 again node 4 has two connected nodes next to it 

besides node three which is the source of node 4. Therefore, node 4 has three neighbors 

node 3, node 5, and node 10. After specifying the neighbors of each node, the edges are 

created, and the network and power flow are modeled. 

3.4 Solution methodology 

The branch number, sending-end and receiving-end node of the feeder shown in figure 3.1 

are given in Table 3.1.  The strategy is to consider a branch at each time and then identifying 

the number of nodes beyond this particular branch as discussed in the previous section 
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(graph theory), for instance, consider branch 1. The voltage at the receiving-end node can 

be obtained as 

V(2) =  V(1) −  I(1)Z(1)                                                      3. 1 

Table 3-1 Solution methodology of load flow analysis 

Branch 

number (𝑗𝑗)     

Sending end 

𝑚1 = 𝐼𝑆(𝑗𝑗) 

Receiving 

end  

𝑚2 = 𝐼𝑅(𝑗𝑗) 

Nodes beyond branch 

𝑗𝑗 

Total 

number of 

Nodes 𝑁(𝑗𝑗) 

beyond 

branch 𝑗𝑗 

 1 1 2 2,3,7,4,8,5,10,9,12,6,11 11 

2 2 3 3,4,5,10,6,11 6 

3 3 4 4,5,10,6,11 5 

4 4 5 5,6 2 

5 5 6 6 1 

6 2 7 7,8,9,12 4 

7 7 8 8,9,12 3 

8 8 9 9 1 

9 4 10 10,11 2 

10 10 11 11 1 

11 8 12 12 1 

 

Similarly, for branch number 2 

V(3)  =  V(2)  −  I( 2 ) Z( 2 )                                                   3. 2 

Since the substation voltage is known 𝑉(1), if 𝐼(1) is known as well (by initializing a flat 

voltage start for all nodes and using (3.7)), then it becomes easy to calculate the voltage of 

node number 2,  𝑉(2) from (3.1). Once 𝑉(2) is known, it is also easy to calculate 𝑉(3) 

from (3.2). Similarly, following the same procedure all node voltages can be easily 

calculated. Therefore, the generalized equation is represented as follows: 

V(m2)  =  V(m1)  −  I( j j ) Z( j j )                                            3. 3 
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where 𝑗𝑗 is the branch number, it can be evaluated for 𝑗𝑗 = 1,2,3, … . . 𝐿𝑁1 where (𝐿𝑁1 =

𝑁𝐵 − 1): 𝐿𝑁1 and 𝑁𝐵 are the total number of nodes and a total number of branches 

respectively. the  

m1 =  IS ( j j )                                                                         3. 4 

m2 =  IR ( j j )                                                                         3. 5 

𝐼𝑆(𝑗𝑗) and 𝐼𝑅(𝑗𝑗) are a sending-end node of branch 𝑗𝑗 and receiving-end node a of branch 

𝑗𝑗 respectively. 

The current through branch 1 is equal to the sum of the load currents of all the nodes beyond 

branch 1 (i.e.). 

I(1) =  ∑ IL(i)LN1
i=2                                                                   3. 6 

Therefore, it becomes possible to calculate all the branch currents after identifying the 

nodes beyond all the branches. The generalized form of the current equation is:  

 IL(i) =
PL(i)−jQL(i)

V∗(i)
       i = 2,3, …… , NB                                3. 7 

where, 𝑃𝐿(𝑖) and 𝑄𝐿(𝑖) is the real and reactive power loads at the 𝑖𝑡ℎ node. 

The losses of branch 𝑗𝑗 are given by: 

 LP(jj) = |I(jj)|2R(jj)                                                  3. 8 

   LQ(jj) = |I(jj)|2X(jj)                                                  3. 9 

The main advantage of identifying the nodes beyond all the branches is to compute the 

exact current flowing through all branches, which give us the ability to quantify the current 

of a particular branch.  

3.5 Load-flow calculation technique 

Once all nodes beyond each branch are known, it becomes straightforward to calculate the 

current flowing through each branch. The load current drawn by each node is calculated 

using (3.7)  

I(jj) =  ∑ IL{IE(jj, i)} 
N(jj)
i=1                                       3. 10                                                                            
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Where 𝐼𝐸(𝑗𝑗, 𝑖) indicates all the nodes 𝑖 beyond branch 𝑗𝑗 

 The topology herein is to initiate a constant flat voltage of all the nodes and then the branch 

currents are computed using (3.7).  After that compute branch currents using (3.10), and 

then the voltage of each node is calculated using (3.3) with (3.4). The real and reactive 

power losses of each branch are calculated using(3.8) and (3.9), respectively. Once the new 

voltage values of all the nodes are computed, the convergence of the solution is then 

checked. The convergence is checked such that if, in successive iterations the maximum 

difference in voltage magnitude (DVMAX <= 0.0001 𝑝. 𝑢)., then the solution has 

converged. Otherwise, if it does not converge, then the load currents are computed using 

the most recent voltages values, and the whole process is repeated. The load-flow algorithm 

for solving the radial distribution network is given in the form of a flowchart in Figure 3.2.  
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Figure 3.3 Flow-chart for load-flow calculation of radial distribution network 

start 

from B 

to A 

from A 

read substation voltage 𝑉(𝑖), 

line data and load data. 

Assume a flat voltage start 

𝑉(𝑖) = 𝑉(1) = 1∠0 for all the 

nodes  

Set 𝑉𝑉(𝑖) = 𝑉(𝑖) 

Set 𝐼𝑆𝑆(𝑗𝑗) = 𝐼𝑆(𝑗𝑗) and 

𝐼𝑅𝑅(𝑗𝑗) = 𝐼𝑅(𝑗𝑗) for all the 

Set iteration count 𝑘 = 0 

Set DVMAX =0.0 

Calculate 𝐼𝐿(𝑖) using (3.7) 

for 𝑖 = 2,3, … , 𝑁𝐵 

Calculate branch currents 

using (3.10) 

Set 𝑚1 = 𝐼𝑆𝑆(𝑗𝑗) and 𝑚2 = 𝐼𝑅𝑅(𝑗𝑗) 

Compute receiving end voltage 𝑉(𝑚2) 

using (3.3) 

𝐷𝑉(𝑚2) = 𝐴𝐵𝑆(𝑉(𝑚2) − 𝑉𝑉(𝑚2)) 

Solution has 

converged 

Check if  

𝐷𝑉(𝑚2)

> 𝐷𝑉𝑀𝐴𝑋 

𝐷𝑉𝑀𝐴𝑋

= 𝐷𝑉(𝑚2) 
𝑗𝑗 = 𝑗𝑗 + 1 

Check if 𝑗𝑗 ≤

𝐿𝑁1 

Check DVMAX≤

𝜀 

𝑘 = 𝑘 + 1 

Set  

𝑉𝑉(𝑚2) = 𝑉(𝑚2) 

for 𝑚2 = 2,3, . . 𝑁𝐵 
Calculate 

line losses, 

and print 

stop 

to B 

yes 

no 

yes 

no 

no 

yes 
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3.6 Feeder reconfiguration technique 

After the brief explanation of the power flow technique employed in this research, the 

reconfiguration will be discussed in details. 

This research aims to investigate and solve multi-objective function, based on four 

objectives related to optimal real power loss minimization, deviation of the node voltages, 

branch current violation, and feeder currents imbalance. In fact, in reality, it is hard to have 

a situation in which all the objectives can be met or be in the best possible way to be 

satisfied simultaneously [55] [56]. Therefore, the four objectives are augmented into an 

objective function j though appropriate choice of weighting factors. 

3.6.1 Real power loss (𝑋𝑖) 

Xi = 
Ploss(i)

Ploss0     i = 1,2, … . . , Nk                                            3. 11 

where 𝑃𝑙𝑜𝑠𝑠(𝑖) = total real power loss when the 𝑖𝑡ℎ branch in the loop is opened  

           𝑃𝑙𝑜𝑠𝑠0 = total power loss in the network before reconfiguration 

 𝑁𝑘 = total number of branches in the loop including tie branch, when the  

𝑘𝑡ℎ switch is closed. 

For the best results, the value of 𝑋𝑖 has to be less than unity. 

3.6.2 Maximum voltage deviation (𝑌𝑖) 

Yi = max|Vs − Vij|   for i = 1,2, …Nk and j = 1,2, … , NB                     3. 12 

where 𝑉𝑠 = substation voltage in 𝑝. 𝑢,  

 𝑉𝑖,𝑗 = the voltage of node 𝑗 corresponding to the opening of the 𝑖𝑡ℎ branch in the 

loop (in p.u) 

 𝑁𝐵 = total number of nodes in the system 

The boundaries of the voltage deviation are ± 10, for example, if the substation voltage is 

equal to  1 𝑝. 𝑢 then the system minimum constraint is set to 𝑉𝑠𝑚𝑖𝑛 = 0.9 𝑝. 𝑢 then 𝑌𝑖 =

 𝑌𝑚𝑎𝑥 = 0.10. 
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The better configuration result is obtained when 𝑌𝑖 < 0.10, if this condition satisfied then 

the system will have better voltage profile. 

 

3.6.3 Maximum branch current (Zi) 

Zi = max (
|I(i,m)|

Ic(m)
)  fro i = 1,2, … , Nk and m = 1,2,…NB − 1                             3. 13 

where 

 |𝐼(𝑖,𝑚)| is the current magnitude of branch 𝑚 when the 𝑖𝑡ℎ branch in the loop is opened. 

𝐼𝑐(𝑚) is the  maximum current carrying capacity of branch 𝑚. 

Although the branch currents of the system are set to be less than or equal to the rated 

capacity, the 15%  overloading is allowed [5] for each branch. Meanwhile, during the 

iterative process, if any branch is overloaded more than 15% or in another word, if 𝑍𝑖 >

1.15, then the objective function value is set to very high value.  

3.6.4 Feeder load balancing (Ui) 

Ui = max (
IFFi

max−IFi,j

IFFi
max )  for 1 = 1,2, … , NK and j = 1,2, . . NF               3. 14 

where 

 𝑁𝐹 is the total number of feeders,  

𝐼𝐹𝑖,𝑗 is the current of feeder 𝑗 corresponding to the opening of the 𝑖𝑡ℎ branch in the loop  

𝐼𝐹𝑖
𝑚𝑎𝑥 is the maximum of all the feeder currents corresponding to the opening of the 𝑖𝑡ℎ 

branch in the loop, that is 𝐼𝐹𝑖
𝑚𝑎𝑥 = max (𝐼𝐹𝑖,𝑗) 

From (3.14) it is obvious that a better feeder load balancing can be achieved if the value of 

𝑈𝑖 is low. In this case, a limit  [5] is imposed on 𝑈𝑖 such that 𝑈𝑖 = 𝑈𝑚𝑎𝑥 = 0.25 this 

indicates that the maximum deviation of feeder current will be 25% with respect to the 

maximum value of the feeder current.  

3.7 Fitness function formulation  

The four objectives described by (3.11), (3,12), (3.13), and (3.14) are combined through 

appropriate weighting factors to form the objective function of the radial distribution 

system as follows: 
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Min ji = w1 Xi + w2 Yi + w3 Zi + w4 Ui    for i = 1,2, … . , Nk                      3. 15 

The reconfiguration depends on the proper selection of the weighting factors 

(w1, w2, w3, w4). One has to select proper values of weighing factors such that each object 

may be given preference as desired by the operator. In this research three cases for different 

weighting factors are considered here. 

The strategy of the reconfiguration herein is that at the beginning all the tie switches are 

considered. In other words, first, run the load flow program under normal condition (initial 

case) to compute the voltage difference across all the tie switches. Detect the open ties 

switch which has the maximum voltage difference, then consider closing this tie switch 

first, as it is expected that this switch will cause a maximum loss reduction, minimum nodes 

voltage deviation, minimum branch current constraint violation, and better load balancing. 

Closing tie switch and opping another sectionalized switch will result transferring lodes 

between feeders. The same strategy is repeated for the remaining tie switches in the next 

iterations.  

The topology of the switch operation is that when closing a particular tie switch the loop 

is formulated, and the number of nodes and branches includes the tie switch is observed, 

and then the opening of each branch in the loop is an option (the radial structure is retained). 

A number of the loop (mesh) is equal to the number of ties. The objective function is 

evaluated for each option, and the optimal solution is computed. For the illustration 

purpose, let’s consider closing a tie 𝒙, and the loop is formulated, the observed total number 

of branches are ten including tie branch, then open and close each branch at a time which 

means evaluate the objective function (3.15) ten times such that, 𝑗𝑥 = (𝑗1, 𝑗2, 𝑗3, …… . 𝑗10). 

the optimal solution will be 

 OS = min {j1, j2, j3, …… j10}                                                 3. 16 

 

3.8 Distribution test systems  

To validate the performance of the presented approach two test systems are considered. 

The 11-kV rural radial distribution system is having two substations, four feeders, 70 

nodes, and 79 branches including tie branches as shown in Figure 3.3. This network has 

11 tie switches, and these tie switches are open under normal operating condition. Data 
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for this system can be found in [5]. The second test feeder considered herein is the 33-bus 

IEEE radial distribution test system [10].   

3.9 Simulation Results and Discussion 

3.9.1 The 11-kV rural radial distribution system 

The reconfiguration algorithm is illustrated and tested on an 11 kV radial distribution 

system having two substations, four feeders, 70 nodes, and 79 branches including tie 

branches as shown in Fig.3. This network has 11 tie switches, and these tie switches are 

open under normal operating condition. Data for this system can be found in [5]. Results 

before reconfiguration and after reconfiguration are given in table 3.2. 

Solution algorithm 

Step-: Read the system data. 

Step-2: Run the load flow program. 

Step-3: Compute the voltage difference across the open tie switches ∆𝑉𝑡𝑖𝑒(𝑖). 

Step-4: Identify the open tie switch across which the voltage difference is maximum and 

its code 𝑘 such that, ∆𝑉𝑡𝑖𝑒,𝑚𝑎𝑥 = ∆𝑉𝑡𝑖𝑒(𝑘).  

Step-5: Select the tie switch ′𝑘′ and identify the total number of loop branches 𝑁𝑘 including 

the tie branch when the tie switch 𝑘 is closed. 

Step-6: Opening one branch at a time in the loop and run the load flow program and 

evaluate the value for each objective, compute 𝑋𝑖 , 𝑌𝑖 , 𝑍𝑖 , and 𝑈𝑖 using (3.11) to (3.14) 

respectively, and then compute 𝑗𝑖 using eqn. (3.15). 

Step-7: Obtain the optimal solution for the operation of the tie switch 𝑘. 𝑂𝑆𝑘 = min {𝑗𝑖}, 

and open the branch corresponding to min {𝑗𝑖}. Noting that if the value of 𝑂𝑆𝑘 and 𝑂𝑆𝑘−1 

are the same then the same switch is opened again and this tie switch is not carried out.  

Step-8: Check 𝑁𝑡𝑖𝑒 = 𝑁𝑡𝑖𝑒 − 1. 

Step-9: Check if 𝑁𝑡𝑖𝑒 = 0. If yes, go to step 11 otherwise go to next step. 

Step-10: Rearrange the coding of the rest of the tie switches, and go to step-2. 

Step-11: Print the output results and stop. 
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Figure 3.4 Distribution system with two substations and 11 ties switches before 

reconfiguration. 
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Results of load flow before reconfiguration are given in table 3.2.  Table 3.3 shows the 

results of different cases after reconfiguration. The real power loss before reconfiguration 

as shown in table 3.2 is  229.0891𝑘𝑊 (3-phas), and the minimum voltage 𝑉𝑚𝑖𝑛 =

 0.9046 𝑝. 𝑢 occurred at node number 69. In the first case of table 3.3 , all the four 

objectives are considered. The reconfiguration results show a promised result, it can be 

seen that the real power loss is reduced to 210.9385 𝑘𝑊. This means the reduction of 

power losses is  18.1505 𝑘𝑊, meanwhile, the minimum system voltage is 𝑉min =

0.9269 𝑝. 𝑢 occurred at node 51. The system minimum voltage has improved from 

0.9046 𝑝. 𝑢 to 0.9269 𝑝. 𝑢. in addition, the results after reconfiguration show that the 

feeder currents are more balanced as compared to that computed before reconfiguration.  

In the first case, only four tie switch operation was required to get the optimum results.  

The procedure is that in the first iteration the maximum voltage difference occurred at tie 

switch number four, therefore consider closing this tie switch first. Next, the maximum 

voltage difference occurred at tie number six and then tie nine and tie eight, but for the case 

of tie eight operation closing and opening branches did not make any difference, and the 

results remained the same. So there is no improvement of the optimal objective function 

value for this tie switch operation. Next, consider closing tie one. In this case, there is some 

improvement in the value of the optimal solution. 

 For case two, only power loss reduction index is considered in the objective function. 

Thus, 𝑤1 = 1 and 𝑤2 = 𝑤3 = 𝑤4 = 0. From table 3.3 it can be seen that the power loss is 

202.42 𝑘𝑊. This means the system power loss has improved by 26.6691𝑘𝑊. in this case 

the system minimum voltage occurred at node 31, but however, the feeder currents are not 

that balanced as compared to case one. In this case, five tie switch operation was required.  

In case three, consider only two objectives (power loss reduction and maximum voltage 

deviation). From table 3.3 it can be observed that the real power loss is reduced by 

22.64𝑘𝑊, and the minimum system voltage occurred at node 31. The feeder currents are 

not that balanced as compared to that in case one. There is a slightly change in the currents, 

because in this case, only four tie operation were required to get the optimal solution. The 

final configuration is given in Figure 3.4. 
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Table 3-2 load flow results before feeder reconfiguration 

Real power loss 

(𝑘𝑊)  

Minimum system voltage 

𝑉𝑚𝑖𝑛(𝑝. 𝑢) 
Feeder currents (𝐴) 

 

    229.0891                                  

 

𝑉𝑚𝑖𝑛 = 𝑉69 = 0.9046 

𝐼𝐹1−2 = 𝐼𝐹1 =  102.3402 

𝐼𝐹1−18 = 𝐼𝐹2 = 110.5245 

𝐼𝐹70−32 = 𝐼𝐹3 = 160.2338 

𝐼𝐹70−53 = 𝐼𝐹4 = 149.6140 

 

Table 3-3 load flow results after feeder reconfiguration 

C
as

e 
N

o
. Power losses 

𝑘𝑊 
𝑉𝑚𝑖𝑛 (𝑝. 𝑢) 

Weighting 

factors 
Feeder currents (𝐴) 

1 210.9385 
𝑉𝑚𝑖𝑛 =

𝑉51=0.9269 

𝑤1 = 2 𝐼𝐹1 = 132.1800 

𝑤2 = 10 𝐼𝐹2 = 133.0157 

𝑤3 = 1 𝐼𝐹3 = 130.5629 

𝑤4 = 1 𝐼𝐹4 = 125.0315 

2 202.4217 
𝑉𝑚𝑖𝑛 =

𝑉31=0.9302 

𝑤1 = 1 𝐼𝐹1 = 113.1240 

𝑤2 = 0 𝐼𝐹2 = 133.0157 

𝑤3 = 0 𝐼𝐹3 = 136.4268 

𝑤4 = 0 𝐼𝐹4 = 135.1105 

3 204.7918 
𝑉𝑚𝑖𝑛 =

𝑉31 =0.9341 

𝑤1 = 2 𝐼𝐹1 = 113.1240 

𝑤2 = 10 𝐼𝐹2 = 133.1042 

𝑤3 = 0 𝐼𝐹3 = 136.4268 

𝑤4 = 0 𝐼𝐹4 = 135.1105 
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Figure 3.5 Distribution system performance after reconfiguration 
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3.9.2 IEEE 33-bus radial distribution system  

The assumption herein is that the test system is presented in a per phase basis and the loads 

along the feeder are considered as a spot load with constant P, Q loads placed at the end of 

the lines. Also, it is assumed that each load is associated with the sectionalized switch.  

Figure 3.6 represents the IEEE 33 bus radial distribution system [10] has five tie-switches 

(dotted branches) and 32 in service branches (solid lines) with sectionalizing switches at 

each line and 33 nodes. The system has a total load of 3. 715 MW and 2. 30 MVAr. The 

base network power loss is 202. 6762 kW and tie switches are 33, 34, 35, 36, 37. 

 

 

Figure 3.6 Single line diagram of IEEE 33 bus distribution system 

The reconfiguration technique of this test system is implemented by following the same 

strategy above. This test system has five ties in which the number of loops will be five and 

five cases will also be conducted figure 3.7. 
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Figure 3.7 loop formulation of the 33-bus test system 

Different case scenarios are considered. The simulation results of load flow before and 

after reconfiguration are shown in Table 3.4. For the first case study, the maximum voltage 

difference occurred at tie 3 which is between node 22 and node 12. It's seen that the optimal 

solution or optimal power flow pattern happened when closing tie 3 and opening section 

switch between node 8 and 9. results of tie 3 operations. The real power loss is 140.4143kW 

this means a reduction of real power loss is 36.9501 kW. Minimum system voltage has 

improved from 0.9198 p.u to 0.9327 p.u, and that after reconfiguration it occurred at node 

33 instead of node 18. Figure 3.8 shows the radial configuration of the network after the 

first switching operation. For the second case, the maximum voltage difference occurred 

at tie 5 which is between node 25 and node 29.  The results of this case show that the real 

power loss is dropped to 139.3385 which mean the reduction is 1.0758 kW. Also, the 

minimum system voltage has improved to 0.9379 p.u. Figure 3.9 shows the optimal radial 

configuration of the network after the second switching operation.  The third case, the 

power flow results that the maximum voltage difference occurred at tie 4 which is between 

node 18 and 33 branch number 36 (see figure 3.6). The results of case 4 and 5 also show 
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no improvement on the power loss reduction and voltage profile. Therefore, these tie 

switches will remain open.  

 

Table 3-4 feeder reconfiguration results of the 33-bus system 

Real power loss (𝑘𝑊) 
Minimum system 

voltage 𝑉𝑚𝑖𝑛(𝑝. 𝑢) 
Feeder current (𝐴) 

177.3644 𝑉𝑚𝑖𝑛 = 𝑉18 = 0.9198 345.1304 

Case 1     140.4143 𝑉𝑚𝑖𝑛 = 𝑉33 = 0.9327 345.1304 

Case 2   139.3385 𝑉𝑚𝑖𝑛 = 𝑉33 = 0.9379   345.1304 

 

 

 

Figure 3.8 Distribution system with tie-3 closed (case 1) 
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Figure 3.9 Distribution system after reconfiguration case 2 (tie-5 operation) 

 

3.10 Test feeder performance after reconfiguration with the presence 

of DGs units 

Distributed generation is operated according to its role in the system. Two main modes of 

DG connection can be distinguished. Operating as a backup source within a microgrid, 

operating in parallel with the distribution system. The operation of DG in parallel with the 

distribution system can contribute reducing losses, and voltage drop as well as relieves 

overburdened transmission and distribution facilities [57]. Distributed generation helps to 

reduce losses as it locally generates power demanded by loads, rather than producing it in 

large generation centers and forcing it to travel long distances to consumption points. The 

reduction achieved will depend on the generator’s rated power and location.  The 

characteristic of the IEEE 33-bus test feeder after reconfiguration is investigated under the 

presence of existing DGs units. The generation units by independent producers can be 

randomly located and provided they fulfill the connection rules, the main results of the 

study can be useful for the utility, which could decide whether the ratings and locations of 

the generation units are adequate or not.    
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Distribution system power losses depend on network topology and the amount, location 

and output power of the integrated DGs units. The integration of DGs units adds a positive 

active power injection to the grid (injects negative current). In this part, the installation 

node and capacity of DGs are not optimum. The reason is that owners of DGs determine 

the installation location and capacity of the units to improve their economic benefits. 

Additionally, the owners of the DGs are usually individuals and non-utilities. Therefore, it 

becomes noncontrollable, and in this case, the size and location cannot be demonstrated. If 

the owner of DGs is the utility company, then the choice of its locations and sizing is 

important because additional DGs may cause an increase in power losses, this phenomena 

brings the need for optimization techniques and opens a vast research area for the interested 

researcher.  This optimization permits the best location of generators to be found so that 

the power losses in the distribution systems are minimized. The determination of finding 

the optimum locations are changed as the load variations. 

Table 3.5 shows the simulation results of replacing the DGs unit at different buses with 

different sizing (single phase network).  

Table 3-5 Different case studies of the DGs unit replacement 

location DG Size (kW) “real 

output power.” 

System Real Power 

Loss (kW) 

Current from substation 

(A) 

Base case _ 139 345.1304 

30 300 93.4376   301.2559 

30 400  86.7577   283.2619 

16 300 124.9642   301.2559 

16 400 138.6488 283.2619 

6,24 200,100 111.7453 301.2057 

18,33 220,350 117.4423 254.6760 

 

The study provided here is aimed at analyzing the impact of DG units on the system 

performance.  From the presented results in table 3.5, some conclusions can be derived. 

For instance,  there is a significant improvement in the system real power losses. Also, the 

provided current from the sub-station is smaller. This apparently due to the provided power 

from the connected DGs units. It is evident that, despite that randomness, the contribution 
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of the DGs units remains helpful even with multiple connected units and different sizes. 

Additionally, taking into account the distribution system characteristic when integrating 

the DGs units. In other words, the feeder hosting capacity has to be considered.   

 

3.11 DG effect on the radial distribution system 

High penetration of distributed generation (DG) such as photovoltaic (PV) and wind 

turbines (WT), have caused new challenges such as voltage rise and reversed power flows. 

This continually growing use of DG in medium-voltage distribution networks will 

profoundly impact the development of future electrical systems. 

The grids were designed to transfer power from generating units connected to the high 

voltage grids towards the end consumers connected to the low voltage grids. With changed 

power mix, power flows in the system will change resulting in possible grid problems. One 

of the main problems is keeping the voltage within the operational limits of the system 

(0.95~1.05 p.u). When the generation exceeds the consumption in a distribution network, 

the power will flow from the low voltage network towards the high voltage network 

(reverse power flow) which will cause the voltage to rise in the low voltage network. 

Reactive power support from DG units can be a valuable resource to mitigate the problem. 

Reactive power is necessary to operate the power system. The primary source of reactive 

power is synchronous generators. If this source is shut down, the reactive power must come 

from another source. DGs units can provide reactive power by using inverters. Taking into 

an account using reactive power control for supporting voltage control, minimize system 

losses, reducing congestion, and compensating the consumer’s reactive power demand.  

Distribution networks are normally built up in the following way: The high voltage 

transmission network is connected to the medium voltage distribution network via a 

primary substation. A number of feeders are connected to this substation. These feeders are 

in general radially connected. Underground cables are mostly used in these feeders, and 

they have capacitive characteristics, so they produce reactive power. Loads connected to 

these feeders are mostly resistive and have a power factor very close to 1. Some big loads 

are connected to the medium voltage network, and they are required to have a power factor 
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within a range of 0.9 inductive and 0.9 capacitive [58]. The voltage drop along the feeder 

can be approximated by [59]: 

∆V ≈
R∗Pload+X∗Qload

Vn
                                                     3. 17 

where, 

∆𝑉      Voltage change across the line  

𝑃𝑙𝑜𝑎𝑑   Active power consumption by the load (negative) 

 𝑅        Resistance of the line 

 𝑄𝑙𝑜𝑎𝑑 Reactive power consumption by the load (negative) 

 𝑋        Reactance of the line 

 𝑉𝑛       Nominal voltage 

The voltage in distribution networks with no DG decreases therefore from the primary 

substation to the end of the feeder. When DGs are connected, the power flow can be 

reversed. So the voltage can be higher at the end of the feeder than at the primary substation 

thus (3.17) becomes: 

∆V ≈
R∗(Pload+PDG)+X∗(Qload+QDG)

Vn
                                        3. 18 

If the generation is a lot higher than the demand, the voltage rise can exceed the limits. To 

avoid this, the reactive power in the generation units can be utilized. Typically, loads have 

a power factor close to unity. DGs units (e.g., PVs, WTs)  are usually connected through 

an inverter that can adjust the active and reactive power almost free but limited by the 

current limit of the inverter. When a DG unit is operated inductively, it consumes reactive 

power so 𝑄𝐷𝐺 comes negative which lowers the voltage. Capacitive operation however 

injects reactive power which increases the voltage. The impact that reactive power 

adjustments have depends highly on the R/X ratio of the lines. In medum voltage grids, the 

R/X ratio is usually around 1, so active and reactive power have equal an impact on the 

voltage rise. Thus, DGs units can generate or consume reactive power Q. this impact is 

invistigated unsing the IEEE 33-bus test system presented above. Table 3.6 show the results 

of positive and negative output reactive power of the DG inverter.  
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Table 3-6 The impact of the positive and negative output Q of the DG inverter 

location 

DG Size 

System Real 

Power Loss (kW) 

Current from 

substation (A) 
P_outout Q_output 

30 300 
200 84.3880 266.1626 

-200 119.7280 339.3522 

30 400 
100 84.3880 266.1626 

-100 93.4376 301.2559 

16,22 300,100 
100,50 146.7896 257.9406 

-100,-50 119.1757 310.5145 

16 400 
150 176.4969 258.0045 

-150 121.5862 310.5401 

6,24 200,100 
100,75 101.0301 270.2650 

-100,-75 127.0945 334.4468 

18,33 220,350 
120,200 125.9726 211.8366 

-120,-200 123.9099 310.4632 

 

 

3.12 Conclusion  

 

In this chapter, a new approach has been proposed to reconfigure the radial distribution 

networks with the impact of the existed DG units. Feeder reconfiguration is performed by 

changing the open/close status of switches. Primary distribution networks contain two 

types of switches, known as tie switches (normally open) and sectionalizing switches 

(normally closed). These switches are designed for both protection and configuration 

purposes. A whole feeder or part of a feeder may be served from another feeder by closing 

a tie switch linking the two while an appropriate sectionalizing switch must be opened to 

maintain the radial structure of the system. In this research, the problem is formulated as a 

multi-objective problem dealing with four objectives related to minimization of the system 
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power loss, minimization of the deviations of the nodes voltage, minimization of branch 

current violation and minimization of feeder’s currents imbalance. Different loss reduction 

and load balancing scenarios have been investigated. For instance, simulation results study 

before and after network reconfiguration, with and without including DGs, and after 

reconfiguration with the presence of single and multiple DG units. The proposed methods 

are tested on 70-node 11kV and 33-bus systems.  

The increase of DER connected to the distribution network results in possible grid 

problems. The main problem is the reactive power support which is the subject of the last 

part of this chapter. The primary source of reactive power support comes from conventional 

power plants and with an increasing share of DER. DGs units can provide or consume 

reactive power. This advantages of the DER can decrease the use of the capacitor bank 

equipment. In other words, DER can be coordinated with a voltage regulator and to 

contribute to regulating the system node voltages by adjusting its output power.   
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Chapter 4  

Distribution Feeder Reconfiguration for Power Loss Reduction 

Using Fast Genetic Algorithm (FGA) Technique  

4.1 Introduction  

Genetic algorithms are global optimization algorithms based on the mechanics of natural 

selection and genetics. They employ a structured yet randomized, parallel multipoint search 

strategy that is biased toward reinforcing search point of  “high fitness,” i.e., points at which 

the function being minimized has relatively low values. Genetic algorithms are similar to 

simulated annealing [60] in that they employ random ( probabilistic) search strategies. 

However, one of the obvious distinguishing features of genetic algorithms is their effective 

implementation of parallel multipoint search.  According to the research work conducted 

in the past and the demand of having an easy and straightforward approach dealing with 

the optimization problems of distribution feeder reconfiguration, this chapter is tending to 

improve the genetic algorithm processes. In this chapter, the fast genetic algorithm FGA is 

developed. The novelty of this approach is that, in contrast to the traditional GA and all 

other approaches using binary parameters and aiming in finding the optimal global solution 

of any complex problem. We do not use the binary representation of the fitness function 

parameters instead integer parameters have been used, and also we construct the population 

matrix in a different way. Basically, the initial population is performed by closing the tie 

switches with the maximum voltage difference in order to formulate mesh networks and 

then opening sectionalized switches one by one for each mesh to maintain the radial 

structure of the system. As far as the computation time is considered, the Tabu lists with 

heuristic rules are also employed in the searching process to enhance performance. 

Most distribution systems configured radially. There are numerous numbers of different 

types of switches in the distribution networks, the focus of this research would be on the 

normally open tie switches and normally closed sectionalized switches. This large number 

of the switch in the grid would tend to a tremendous number of switching operations. 

Therefore, network reconfiguration has become a complex and challenging decision-

making process for system operators.   
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Although there has been much work done on modifications and improvements to the 

genetic algorithms, this chapter will present FGA to solve the multi-objective problem 

optimally. The proposed method herein defers from the others in such a way the population 

matrix is structured differently, the network is converted to a meshed pattern and becomes 

easy to study and solve, and the conversion speed is improved. Most reconfiguration 

problems are formulated as a mixed integer nonlinear optimization problems. The proposed 

FGA is dealing with an integer parameter type because the parameters herein is a switch 

status ( e.g., switch numbers). Integer programming with FGA involves several 

modifications of the traditional algorithm. The new approach will be tested and validated 

on revised IEEE 16-bus test system.   

The remainder of this chapter is arranged as follows. Section 4.2 presents the problem 

formulation. Section 4.3 provides the encoding and initialization techniques of the 

proposed FGA. In Section 4.4 presents the initialization techniques of the FGA. Crossover 

and mutations are described in sections 4.5 and 4.6, respectively. In section 4.7 the fitness 

function is formulated based on the objectives and operational constraints. Section 4.8 

draws the flow-chart of the proposed FGA. The simulation results are presented in Section 

4.9. Finally, conclusions are drawn in Section 4.10. 

4.2 Problem formulation  

In the open loop radial distribution system, each radial feeder is divided into load sections 

with sectionalizing switches (normally closed and has connections to other feeders via a 

tie switches ( normally open). The loss minimization reconfiguration problem of the 

distribution system is to decide the position of the sectionalizing switches (open/close).  

This part of the dissertation focuses on the minimization of the real power loss and the 

number of switching subjected to the radial network structure. 

Figure 4.1 shows a sample distribution system contains three feeders with thirteen normally 

closed sectionalizing switches and three normally opened tie switches, namely s15, s21, 

and s26. For instance, transferring load 11 from feeder 2 to feeder 1 will require closing 

switch s15 and opening switch s19. Closing a switch should always follow the opening of 

another switch (to maintain the radial structure of the system). 
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Figure 4.1 Revised IEEE 16-bus test system 

 

The minimizing loss problem is known as:  

minPloss(Sv)                                                                     4. 1 

With           

𝑃𝑙𝑜𝑠𝑠 = ∑𝑅𝑖 ∗ |𝐼𝑖|
2

𝑁𝑏

𝑖=1

 

Such that,  

𝐼𝑖 ≤ 𝐼𝑚𝑎𝑥    ∀ 𝑖 = 1~𝑁𝑏 

𝑉𝑚𝑖𝑛 ≤ 𝑉𝑗 ≤ 𝑉𝑚𝑎𝑥     ∀  𝑗 = 1~𝑁 

Where, 

Feeder 1  Feeder 2  Feeder 3  

4 

5 

6 7 16 
15 

13 

14 10 9 

12 

8 

11 

1 2 3 

S11 

S13 

S14 S26 S25 

S23 

S22 

S24 

S21 

S17 

S16 

S18 

S20 

S19 

S15 

S12 
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 𝑃𝑙𝑜𝑠𝑠 = total line losses of the distribution feeder 

 𝑆𝑣 = the status of the switch 

 𝑁𝑏 = total number of branches in the system 

 𝑉𝑚𝑖𝑛 , 𝑉𝑚𝑎𝑥 = minimum and maximum voltage magnitude limit of the node voltage 

 𝑅𝑖 = the resistance of branch 𝑖. 

𝐼𝑖 = the current magnitude of branch 𝑖 ( the branch current is equal to the sum of all 

load currents beyonde a particular branch).  

 𝑁 = total number of buses.  

The planning solution algorithm is to follow the solution of the simple genetic algorithm 

(SGA) [61] and refined genetic algorithm (RGA) [62]. The novelty of the proposed method 

herein is that the formulation of the population matrix is different and the tabu search is 

used to prevent from evaluating the same chromosome more than ones. Defying the upper 

and lower bounds of each loop of the meshed system is the main key to reducing the size 

of the population matrix. Besides, this will guaranty that all the chromosomes of the matrix 

become unique and finding the optimal solution will be easier and fast more or less system 

converges fast and less computation time. After the convergence, strings are decoded to 

the original solution variables and the solutions are obtained.   

The assumption herein is that the load type is considred to be a 𝑃𝑄 load and provided at 

the end node. By following the soultion methodolgy presebted in the previous chpter, 

despite the size of the system even with the lack of information about the given system the 

only data required here is the line and load data. Line data provides the impedance of each 

branch and also the connectivity of the adjacent nodes. Load data provides the load power 

at each end node bus.  

4.3 Encoding and initialization techniques of FGA  

In this chapter, the total number of meshes 𝑚 in the system is formulated based on the total 

number of normally opened tie switches 𝑆. To show the status of S switches in a 

distribution feeder, a string of 𝑆 bit can be used. For each switch, “1” shows that the switch 

is closed and “0” shows it is open. If the status of switches change, their string code will 

change too. Then reconfiguration problem is a binary issue, because all states of the 

network are combinations of 0 and 1. An optimum code for the network has to be found 
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which results in a minimum value of the objective function.  Basically, for a distribution 

network with 𝑆 switches, there are 2𝑆 possible codes which all of them are not necessarily 

feasible. For the infeasible solutions, since its predictable in the reconfiguration problems, 

it will be saved in the Tabu list to limit both the processing time and searching space( e.g., 

not to be evalated more than onse). To determine the feasible states let’s consider the 

network shown in Figure 4.1, it contains three feeders and based on the radiality concern, 

it is obvious that there must not be any closed loop between these feeders, and all the loads 

must be energized too. So, for each mesh we should have only one 0 for each network code 

(e.g., only one open switch), if there are more, that code is infeasible. The other important 

limitation is that the main feeders (directly connected to the sub-station) or switches of end 

loads or feeders should always  be 1. For the illustration purpose, see Figure 4.1. There are 

three meshes, mesh 1 is the left branches (codes 12, 15, 19, and 18), mesh 2 is the right 

branches (codes 17, 21 and 24), and mesh 3 is the down branches (codes 13, 14, 26, 25, 

and 23). As mentioned above, there should be only one 0  in every three codes to maintain 

structure feasibility, the total number of feasible codes is equal to the multiplication of the 

number of all collected codes. 

The assumption as mentioned above is that there should be no common switches between 

any two meshes and also end node’s switches must always remain closed and excluded 

from the mesh structures (e.g., node 12 in figure 4.1). Table 4.1 illustrating the coding 

scheme of the proposed algorithm, where ‘0’ indicates an open switch, ‘1’ indicates a 

closed switch. 𝑀1 indicated mesh number 1, and 𝑀2,𝑀3 are mesh 2 and 3 respectively. 

Notation 𝑋 represents the chromosomes of the population matrix. The genes of each 

chromosome are representing the open switches. For instance, the chromosome 𝑋𝑏𝑎𝑠𝑒 =

[𝑤1, 𝑤2, 𝑤3] = [15,21,26], where 15, 21, and 26 are the genes of this chromosome, and 

represents the open switches of three meshes respectively. Basically, based on the proposed 

method there should be no common of any genes of each chromosome, this advantage will 

improve the performance of GA and speed the system convergence. Taking into account 

that the genes herein is an integer numbers and are not binary in contrast to traditional GA. 

The boundary of each variable is set to be from 1 to the total number of switches of each 

mesh. Then, transformation code is needed to pass theswitch number to the FGA code for 

each iteration. Finally, when the system converges the coded switch numbers are decoded 
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and transformed back to the actual switch numbers. For example, from table 4.1  

𝑀1𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 = [11,12,15,19,18,16], which has 6 switches, therefore, the boundaries are 

set from 1 to 6, such that 𝐵1 = [1,2,3,4,5,6] where 𝐵 indicates the boundaries of each 

mesh. Since, in  𝑀1𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 the  switch numbers are non-consecutive so  𝑀1𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 and 

𝐵1 must be symmetrical. The same procedure is followed for the other meshes.   

Table 4-1 A coding scheme of the test feeder in figure 4.1 

Base case 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

S base (switch 

status) 
1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 

R
G

A
 [

6
3
] M1 11 12 15 19 18 16           

M2 16 17 21 24 22            

M3 13 14 26 25 23 24 21 17 18 19 15 12     

u
si

n
g

 

p
ro

p
o
se

d
 F

G
A

 

M1 11 12 15 19 18 16           

M2 17 21 24 22             

M3 13 14 26 25 23            

 

Genetic operators are the stochastic transition rules applied to each chromosome during 

each generation procedure to generate a newly improved population from the previous one. 

A genetic algorithm usually consists of reproduction, crossover and mutation operators. 

GA highly relies on the crossover operator.  

4.4 Initialization  

The initial population is based on the number of variables and the population size (𝑝). 

Thus, the initial population is {𝑋𝑖|𝑖 = 1,2, …… , 𝑝}.  

From table 4.1 𝑋𝑖 = [𝐿𝐵, 𝑈𝐵] where, 𝑋1 = [1,6], 𝑋2 = [1,4], and 𝑋3 = [1,5]. The 

proposed topology will randmly chose one element from each loop and the population 

matrix is fromulated as 

Popmatrix = [

x1, x2, … . xn

:
:

x1p, x2p, … . xnp

]                                                           4. 2 
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One advantage of the proposed algorithm is that there should not be any similar 

chromosomes in the population matrix and, each chromosome is evaluated only ones.  

4.5 Crossover  

Crossover is a structured recombination operation by exchanging genes of two parents. In 

the planned FGA the neighboring genes (switches) has a higher priority to be selected than 

the other switches in the same mesh. In other words, in Figure 4.1, switch s24 and s17 have 

higher priorities to replace switch s21. The new chromosomes obtained from the crossover 

and mutation is formulating the offspring. The probability of parent-chromosomes 

crossover is assumed to be 0.8. 

4.6 Mutation 

Mutation is the occasional random alteration of genes. Also, it is the process of random 

modification of a string position by changing “0” to “1” or vice versa, with a small 

probability. It prevents the loss of genes through reproduction and crossover by ensuring 

that the probability of searching any region in the problem space is never zero.  The 

probability of mutation is assumed to be 0.02. 

4.7 Fitness Function  

In order to formulate the objective function (4.1) will be used as a fitness function by 

adding constraints as: 

F = Ploss(Sv) + ∑ λI,i
Nb
i=1 ∗ (Ii − Ilim)2 + ∑ λV,j

N
j=1 ∗ (Vj − Vlim)2                  4. 3 

Where, 𝜆𝐼,𝑖 , and 𝜆𝑉,𝑗are the penalty factors that can be adjusted in the optimisation 

procedure. 𝐼𝑙𝑖𝑚  and 𝑉𝑙𝑖𝑚 are defined as: 

Ilim = {
Ii                if   Ii ≤ Imax  
Imax           if   Ii  >  Imax 

                                                                     4. 4 

Vlim = {

Vj         if Vmin ≤ Vj  ≤   Vmax

Vmin     if Vj < Vmax               

Vmax     if Vj > Vmax                

                                                             4. 5 
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The idea herein is that if one or more variables violate their limits, the penalty factors will 

increase, and the corresponding chromosome will be entered into the Tabu list to avoid 

generating the same infeasible solution again.  
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4.8 FGA flowchart  

 

Figure 4.2 Flowchart of the proposed FGA 
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4.9 Simulation results and discussions 

The proposed FGA is tested on a revised 16-bus IEEE distribution test system shown in 

figure 4.1. The assumption to be made is that each transformer can serve all the system 

loads. Distribution feeder reconfiguration is implemented when the load is changed or 

when the fault occurs in the system. The simulation of the proposed algorithm is performed 

using different steps and employing the 3D matrix method to solve different system 

functions. Also, since the parameters of the fitness function are an integer, the proposed 

FGA code can handle all the data types. In this research, the strategy of the encoding and 

decoding are the main parameters to be considered.  

System constraints are considered to be the node voltage boundaries and the branch 

currents limits. Based on the literature review, the node voltages are demonstrated to be 

between 0.95 and 1.05 p.u. Additionally, it is desirable that the branch currents of the 

system be less or equal to their respective rated capacity. A %15 overloading is allowed 

for each branch [5].  

The stopping criteria to be considered in here is that the process of generating new trails 

with the best fitness will be continued until the fitness value are optimized, or the maximum 

generation number is reached. the strategy and the implementation of the FGA process are 

illustrating in the flowchart of figure 4.2. One can also add another stopping rules such that 

the population matrix is to be updated after each iteration. Additionally, for each generated 

parents (e.g., new chromosomes ) the Tabu list is checked to ensure that the new child is 

not in the Tube list in this way, it is to be guaranteed that each chromosome is evaluated 

ones and also the convergence speed is improved. This research is mainly focusing on 

optimally configuring the radial distribution system for power loss reduction and voltage 

profile improvement. Different criteria can be used and also different objectives can be 

solved using the proposed algorithm.   

The test system presented in figure 4.1 is used to validate the performance of the proposed 

method. The system contains three transformers sited as node 1, 2 and 3 respectively. The 

assumption as mentioned above is that each transformer should be able to serve the whole 

system in case of any contingency. The system also has 13 normally closed switches and 

three normally open tie switches. The total loads are 31.7 MW and 20.3 MVAr, base power 

is 100 MVA, and the base voltage is 12.66 kV.  
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Table 4-2 The simulation parameters of FGA 

Number of variables Maximum 

generation 

Mutation probability Crossover 

probability 

3 200 

 

0.02 

 

0.8 

Table 4.2 shows the simulation parameters of the proposed method. The maximum 

generation is meant to be high to expand the search area and also to ensure finding the 

optimum solution.  

The load flow analysis presented in chapter 3 is used to investigate the performance of the 

FGA. Because the GA is a stochastic optimization method, the optimization results and 

calculation time of each test are different.  

 

  

Figure 4.3 The proposed FGA performance characteristics of the best penalty value and 

mean value of the fitness function 
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Although the size of the population matrix is 150 by 3, the proposed method since it is 

using the Tabu list will first check and eliminate the repeated chromosomes from the 

population matrix and then start the evaluation process. For this particular example or test 

system, there are only 83 survival chromosomes from the total of 150, this means that there 

will be no repeated process of any chromosomes. figure 4.3 represents the performance of 

the FGA the initial penalty is 10, and the penalty factor is 100.  

  

Figure 4.4 The real power loss computation using the proposed method 

Figure 4.4 shows the system total real power loss. This optimal result is obtained with 

optimal switch operation of opening the switches s15, s21 and s14. One advantage of the 

genetic algorithm is to search from a population of points rather than a single point. 

Therefore, the obtained result should be promising. figure 4.5 is a zoomed layout of figure 

4.4 to show the exact value of the system total real power loss. By the way, the system total 

real power loss before reconfiguration is 220 kW and 256.6641kVAr. from figure 4.5, it 

can be noticed that the real power loss reduction is 18.1kW, i.e., 8.22% real power loss 

reduction after reconfiguring the system.   
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Figure 4.5 Zoomed in the plot for real power loss value 

 

Figure 4.6 Reactive power loss of the test system using FGA 
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Figure 4.6 represents the total reactive power loss of the test system. It can be seen that the 

reactive power loss is 225.2 kVAr. This means the reactive power loss reduction is 31.4640 

kVAr, i.e., 12.25% power loss reduction. 

 

Table 4-3 The comparison of the proposed FGA with other methods 

 

Table 4.3 represents the comparison of the proposed method with other topologies. More 

data can be discussed from the simulations process, in this study the only focus was the 

minimization of power losses and voltage profile improvement. Also from the table, it can 

be seen that the elapsed time is way less using the proposed algorithm because each 

chromosome is evaluated only ones and the topology ensured that both the repeated and 

infeasible solutions are saved in the Tabu list.  

4.10 Conclusion  

This chapter has presented an improved smart technique of configuring the radial 

distribution system based on FGA for the minimization of the system power losses and 

improving its voltage profile. The problem is formulated as a multi-objective problem 

solved using the proposed method and the graph theory together with a backward-forward 

load flow method presented in chapter 3. The graph theory is used in order to generalize 

and obtain the radial connectivity of the test system (e.g., to make sure that all the loads 

are served and the radiality is retained). The FGA is like the traditional GA in relying on 

the crossover and mutation process. However, FGA is using integer parameters in which 

the decoding and coding of the fitness function are unique in contrast with other methods. 

Topology 

name 

Total 

active 

load 

MW 

Total 

reactiv

e load 

MVAr 

Base 

voltage  

Initial  

real 

power 

loss 

kW 

Initially 

opened 

switching  

Obtained 

results 

(real 

power 

loss kW) 

Optimal 

switching  

Populati

on/gene

ration 

Elapsed 

time 

(sec) 

Das [64] 4.47 3.06 11 5.09 33,34,35

,36,37 

4.32 8,27,33,

34,36 

70/100 1900 

Civanlar  28.7 17.3 23 1.79 17,18,19 1.63 10,11,19 30/40 30 

Baran 3.72 2.29 12.66 4.13 33,34,35

,36,37 

3.56 7,9,14,3

2,37 

40/50 160 

Propossed 

FGA 
31.7 20.3 12.66 9.93 15,21,26 2.74 15,21,14 30/40 18.6 
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Additionally, FGA solutions do not rely on the initial population values because it searches 

from a population of points and the feasible obtained results are compared, and the optimal 

result is chosen in each iteration processes. The feasible solution is defined as the solution 

of which all the operational constraints are satisfied (e.g., the branch currents are at or 

below the limits, and the node voltages are within the specified boundaries). Switching 

status or infeasible solution are not carried out. Basically, only feasible solutions are 

crossed or mutated at each iteration step.  

In comparison with other methods ( references), the detailed coding strategy and FGA 

procedures are valid and effective for all networks even with an all parameter types (e.g., 

binary, integer, etc.). the obtained simulation results have shown the effectiveness of the 

proposed method. The computation times are way less compared with other references, 

that is because of the way the population matrix constructed and based on the partially 

meshed networks.  
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Chapter 5  

Optimal Distribution Feeder Reconfiguration with Distributed 

Generation using Differential Evolution (DE) 

5.1 Introduction  

In this chapter, the radial distribution feeder reconfiguration for loss reduction and voltage 

profile improvement including the presence of DGs using the Differential Evolution DE is 

proposed. The DGs units are assumed to exist in the system which means its location and 

size is not controllable since it is a customer owned. DGs can harm the grid if placed or 

connected randomly resulting in increasing the end user voltage. The study here is aiming 

to keep the system node voltages within an acceptable limit by configuring the system 

using DE and checking the voltage violation limit for each load flow execution. The 

proposed DE algorithm is a new approach used in a power system area.  DE is a stochastic, 

population-based search strategy developed by Storn and Price [53]. While DE shares 

similarities with other evolutionary algorithms (EA), it differs significantly in the sense 

that distance and direction information from the current population is used to guide the 

search process (e.g., using the current population). In DE algorithm, all solutions have an 

equal opportunity of being preferred as parents, and selection does not depend on their 

fitness values. Nowadays, the integration of renewable energy sources adds more 

complexity to the optimization problem that cannot be easily solved with existing classical 

mathematical optimization methods. DE performance depends on two processes, known as 

the mutation process and recombination (crossover) process. The two tuning parameters, 

called scale factor (F) and crossover probability (CR), which control the performance of 

DE in its mutation and recombination processes. 

In DE operation the child vector is generated by applying the mutation and crossover 

operation. In mutation operation, a trial vector is generated with the help of the objective 

vector and two erratically preferred individuals. The deviation in the objective vector 

depends on mutation factor F and the difference between the randomly selected individuals. 

The crossover operation is applied between the objective vector and parent vector to 

generate the child vector using crossover probability (CR). Like any other method, these 
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tuning factors have a boundary such that large values may result in skipping of actual 

solutions, and small values also may cause performance degrades.  This makes it clear that 

the conflicts in the child vector from the parent vector depends on the values of F and CR. 

In this chapter, the population matrix size is formulated in such a way the rows represent 

the number of iteration time, and the column is representing the number of variables (e.g., 

number of tie switches). Each chromosome of the population matrix contains a number of 

open switches called genes, each gene representing switch number. For example, s15, s21, 

and s26 are the genes of this chromosome and represents the open switches in three meshes, 

respectively, as shown in Figure 5.1. The effectiveness of the proposed algorithm is tested 

on two systems, IEEE 16 and 33-bus radial distribution system having three substations 

and one substation respectively. The proposed algorithm is finally compared to some 

previous methods such as a Genetic algorithm. 

The remainder of this chapter is described as follows. Section 5.2 introduces problem 

formulation using 16-bus test feeder for illustration propose. Section 5.3 presents the 

proposed Differential Evolution algorithm DE.  Section 5.4 discusses the DE operations 

and tests. The flow chart of the DE algorithm is represented in section 5.5.  test systems 

descriptions are viewed in section 5.6 two radial distribution test system are been used in 

this chapter. Simulation results and discussion of both test systems are given in section 5.7. 

Conclusions are drawn in section 5.8.   

5.2 Problem Formulation 

The complexity of any optimization problem depends on the objective function formulation 

and the considered constraints. For modem urban distribution systems, the number of 

distribution transformers may reach two to three thousand, and each transformer may be 

supplied by four or five different feeders and substations [65]. Such systems are very 

complex, difficult to monitor, and challenging to control optimally in real-time. Losses 

associated with each configuration must be calculated, and this requires optimal load flow. 

The problem is compounded by the desire to maintain the radial configuration of the 

distribution system and by operational constraints (e.g., voltage range, current limit, etc.) 

ensuring feeders and transformers are not overloaded and ensuring voltage drop limitations 
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are not exceeded. As well, there is a need for efficient data structures and algorithms that 

will permit reconfiguration in real-time. 

In this chapter, the reconfiguration problem is illustrated using the three feeder test system 

as shown in Figure 5.1. Data for this system can be found in [11].  This sample distribution 

system contains three feeders with thirteen normally closed sectionalizing switches and 

three normally opened tie switches, namely s15, s21, and s26. 

The loss minimization problem is formulated as:  

minPloss(x)                                                                  5. 1                                                              

with         

Ploss = ∑ Ri ∗ |Ii|
2Nb

i=1                                                    5. 2                                                   

such that,  

𝐼𝑖 ≤ 𝐼𝑚𝑎𝑥    ∀ 𝑖 = 1,2. . , 𝑁𝑏 

𝑉𝑚𝑖𝑛 ≤ 𝑉𝑗 ≤ 𝑉𝑚𝑎𝑥     ∀  𝑗 = 1,2, . . , 𝑁 

where,  𝑃𝑙𝑜𝑠𝑠 = total line losses of the feeder 

𝑥 =  status vector of the switch 

𝑁𝑏 = total number of branches in the whole system 

𝐼𝑖 = current magnitude of branch 𝑖 

𝐼𝑚𝑎𝑥 = upper limit of branch current magnitude 

𝑉𝑗 = voltage magnitude of branch 𝑗 

𝑉𝑚𝑖𝑛 , 𝑉𝑚𝑎𝑥 = lower and upper limit of node voltage magnitude 

𝑅𝑖 = resistance of branch 𝑖 

𝑁 = total number of buses 

𝑥 = [𝑠𝑤1 𝑠𝑤2 𝑠𝑤3, … 𝑠𝑤𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑖𝑟𝑎𝑏𝑙𝑒𝑠]  

From Figure 5.1 𝑥 = [15 21 26], these represents the open switches of three meshes, 

respectively. One advantage of the proposed method is using the integer numbers instead 

of binary numbers involving several modifications of the basic algorithm.  
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Figure 5.1 Revised IEEE 16-bus test system 

Distribution system losses are known as 𝐼2𝑅, and thus the problem is a nonlinear integer 

optimization problem, with a quadratic objective function, 0 − 1 type state variables where 

0 indicates open switch and 1 represents a closed switch, and linear constraint equations 

with state-dependent constraint formula. The value of the objective function is determined 

from the optimal power flow solution given settings of the control variables. At each 

iteration, a new power flow is required to determine a new system operating point. The 

problem presents a heavy computational burden for even a moderately-sized distribution 

system. 

Reconfiguration for loss reduction typically involves evaluating many combinations of 

switching options to determine which option offers the lowest losses. Apparently, in a large 

system, even with a high-speed computer, the time needed to complete a load flow to 

evaluate every option would be prohibitive. 
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5.3 The Proposed Differential Evolution Algorithm (DEA) 

Differential evolution is a strategy that optimizes a problem by iteratively trying to enhance 

an individual solution with regard to a specified gauge of excellence. DE algorithm is used 

for multidimensional real-valued functions, but it does not put together the ascent of the 

problem being optimized, so the optimization problem does not have to be differentiable 

as is mandatory for traditional optimization methods [66]. DE algorithm optimizes a 

problem by considering a population of candidate solutions and generating new contestant 

solutions by combining existing ones according to its simple formulae, and then 

memorizing whichever candidate solution has the minimum score fitness on the 

optimization problem at hand. Thus in this way, the optimization problem is treated as a 

black box that merely makes available a gauge of quality specified a candidate solution, 

and the gradient is for that reason not considered necessary. 

5.3.1 Overview of the optimization parameters  

In simple terms, optimization is the attempt to maximize a system’s desirable properties 

while simultaneously minimizing its undesirable characteristics. What these properties are 

and how effectively they can be improved depends on the problem at hand. In general, the 

objective function, 𝑓(𝑥)  =  𝑓(𝑥0, 𝑥1, … , 𝑥𝐷  − 1), has D parameters that influence the 

property being optimized. There is no unique way to classify objective functions, but some 

of the objective function attributes that affect an optimizer’s performance are: 

• Parameter quantization: is to check whether the objective function variables 

continuous, discrete or do they belong to a finite set. Additionally, are all the 

variables of the same type. 

• Parameter dependence: Can the objective function parameters be optimized 

independently (separable function), or does the minimum of one or more 

parameters depend on the value of one or more other parameters (parameter-

dependent function). 

• Dimensionality, D: How many variables define the objective function. 

•  Modality: Does the objective function have just one local minimum (uni-modal) 

or more than one (multi-modal)? 
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• Constraints: Is the function unconstrained, or is it subject to additional equality and 

inequality constraints? 

General formulation of DE: 

DE differs from other algorithms such that: 

• mutation is applied first to generate a trial vector, which is then used within 

the crossover operator to produce one offspring,  

• mutation step sizes are not sampled from a prior known probability 

distribution function. 

• In DE, mutation step sizes are influenced by differences between individuals of 

the current population. 

5.3.2 Parameter Representation 

DE encodes all parameters as floating-point numbers, regardless of their type. Even integer 

and discrete variables are encoded as real values to add diversity to their difference 

distributions DE have several significant advantages over the traditional GA approach to 

continuous parameter optimization. Advantages include:  

• Ease of use   

• Efficient memory utilization  

• Lower computational complexity – scales better on large problems 

• Lower computational effort – faster convergence 

• Greater freedom in designing a mutation distribution. 

5.3.3 Population Structure 

In addition to the population size, 𝑁𝑝, the performance of DE is influenced by two control 

parameters, the scale factor, F, and the probability of recombination, CR. The more 

individuals there are in the population, the more differential vectors are available, and the 

more directions can be explored. However, it should be kept in mind that the computational 

complexity per generation increases with the size of the population.  

DE’s most versatile implementation maintains a pair of vector populations, both of which 

contain 𝑁𝑝 (the number of population members) D-dimensional vectors of real-valued 

parameters. The current population, symbolized by 𝑃𝑥, is composed of those vectors, 𝑥𝑖,𝑔, 
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that have already been found to be acceptable either as initial points, or by comparison with 

other vectors. 

For an objective function 𝑓 ∶ 𝑋 ⊆  ℝ𝐷 ⟶ ℝ where the feasible region 𝑋 ≠ ∅, the 

minimization problem is to find 𝑥∗ ∈ 𝑋 such that 

 f(x∗) ≤ f(x)  ∀ x ∈ X                                                       5. 3                                               

such that:  𝑓(𝑥∗) ≠ −∞ 

Px,g = (xi,g)                                                               5. 4 

𝑥𝑖,𝑔 = [𝑥0,𝑖,𝑔, 𝑥1,𝑖,𝑔, ……𝑥𝑗,𝑖,𝑔] 

Where, 𝑖 = 0,1, … . , 𝑁𝑝 − 1 , 𝑔 = 0,1, … , 𝑔𝑚𝑎𝑥 , 𝑎𝑛𝑑  𝑗 = 0,1, . . . , 𝐷 − 1 

𝑁𝑝 =population size 

 𝑔 = generation number  

 𝐷 = D-dimensional search space 

Indices start with 0 to simplify working with arrays and modular arithmetic. The index, 

𝑔 =  0, 1, . . . , 𝑔𝑚𝑎𝑥, indicates the generation to which a vector belongs. In addition, each 

vector is assigned a population index, 𝑖, which runs from 0 to 𝑁𝑝  −  1. Parameters within 

vectors are indexed with 𝑗, which runs from 0 to 𝐷 −  1. 

Once initialized, DE mutates randomly chosen vectors to produce an intermediary 

population, 𝑃𝑣,𝑔, of 𝑁𝑝 mutant vectors, 𝑣𝑖,𝑔: 

Pv,g = (Vi,g)                                                          5. 5 

𝑉𝑖,𝑔 = (𝑣𝑗,𝑖,𝑔) 

Each vector in the current population is then recombined with a mutant to produce a trial 

population, 𝑃𝑢,𝑔 of 𝑁𝑝 trial vectors, 𝑢𝑖,𝑔: 

Pu,g = (ui,g)                                                       5. 6                                                      

𝑢𝑖,𝑔 = (𝑢𝑗,,𝑔) 

During recombination, trial vectors overwrite the mutant population so that a single array 

can hold both populations. 
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Figure 5.2 General Evolutionary Algorithm Procedure 

 

5.3.4 Initialization  

Before the population can be initialized, both bounds for each parameter must be specified. 

These 2𝐷 values can be collected into two, 𝐷 −dimensional initialization vectors, 𝐿𝑏 and, 

𝑈𝑏, for which subscripts 𝐿 and 𝑈 indicate the lower and upper bounds, respectively.  

xj
L ≤ xj,i,1 ≤ xj

U                                                            5. 7                                                 

Once initialization bounds have been specified, a random number is assigned to each 

parameter of every vector value from within the prescribed range. For example, the initial 

value (𝑔 = 0) of the 𝑗𝑡ℎparameter of the 𝑖𝑡ℎ vector is:  

X(m, n) = X_min(n) + round(rand() ∗ (X_max(n) − X_min(n)))        5. 8 

The random number generator, 𝑟𝑎𝑛𝑑(), returns a uniformly distributed random number 

Even if a variable is discrete or integral, it should be initialized with a real value since DE 

internally treats all variables as floating-point values regardless of their type. 

In this dissertation, since most of the parameters are representing the switch status which 

is an integer value. The parameter's types is an integer and the Matlab function 𝑟𝑜𝑢𝑛𝑑 is 

used to obtain the intiger values. The upper and lower bounds of each parameter is 

formulated based on the meshed loop structure. In other words, because different loops 

might have branches and switches in common, there must be at least only one opened 

branch in each loop for the final radial structure.   

In addition, the structure of the system loops must obey  these rules: 

1) All feeder section must be served, 

2) Radial network structure must be retained, 

Selection Initialization Mutation Recombination 
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3) Node voltage magnitude within bounds, 

4) Branch currents also must be within bounds. 

5) Substation node and end node loads should not be counted. 

5.3.5 Mutation  

One of the DE advantages is searching from a large search space. The mutation procedure 

expands the search space. Each of the 𝑁 parameter vector undergoes mutation, 

recombination, and selection. Once initialized, DE mutates and recombines the population 

to produce a population of 𝑁𝑝 trial vectors. In particular, differential mutation adds a 

scaled, randomly sampled, vector difference to a third vector. Equation (5.8) and (5.9) 

shows how to combine three different, randomly chosen vectors 𝑥𝑟1,𝐺  , 𝑥𝑟2,𝐺   and 𝑥𝑟3,𝐺   to 

create a mutant vector, 𝑣𝑖,𝑔: 

vi,g = xr0,g + F(xr1,g − xr2,g)                                       5. 9                                     

The scale factor, 𝐹 ∈  (0,∞), is a positive real number that controls the rate at which the 

population evolves. While there is no upper limit on 𝐹, effective values are seldom greater 

than 1.0. 

Additionally, The scaling factor, F ∈ (0,∞), controls the amplification of the differential 

variations, (xr1,g − xr2,g). The smaller the value of 𝐹, the smaller the mutation step sizes, 

and the longer it will be for the algorithm to converge. Larger values for 𝐹 facilitate 

exploration, but may cause the algorithm to overshoot good optima. The value of F should 

be small enough to allow differentials to explore tight valleys, and large enough to maintain 

diversity. As the population size increases, the scaling factor should decrease [3]. The more 

individuals in the population, the smaller the magnitude of the difference vectors, and the 

closer individuals will be to one another. Therefore, smaller step sizes can be used to 

explore local areas. More individuals reduce the need for large mutation step sizes. 

Empirical results suggest that large values for both 𝑁𝑝 and 𝐹 often result in premature 

convergence [ [67], [68]], and that 𝐹 = 0.5 generally provides good performance [ [69], 

[70], [71]]. 

The base vector index, 𝑟0, can be determined in a variety of ways, but for now it is assumed 

to be a randomly chosen vector index that is different from the target vector index, 𝑖. Except 

for being distinct from each other and from both the base and target vector indices, the 
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difference vector indices, 𝑟1 and 𝑟2, are also randomly selected once per mutant. Figure 5.2 

illustrates how to construct the mutant, 𝑣𝑖,𝑔, in a two-dimensional parameter space. In 

general, Different approaches can be used to select the target vector and to calculate 

differentials. 

 

 

Figure 5.3 Differential mutation: the weighted differential, F(x_(r1,g)-x_(r2,g) )  is added 

to the base vector, x_(r0,g), to produce a mutant, v_(i,g). 

5.3.6 Recombination 

The probability of recombination, 𝐶𝑅, has a direct influence on the diversity of DE. This 

parameter controls the number of elements of the parent, 𝑋𝑖,𝑔  that will change. The higher 

the probability of recombination, the more variation is introduced in the new population, 

thereby increasing diversity and increasing exploration. Increasing 𝐶𝑅 often results in 

faster convergence, while decreasing 𝐶𝑅 increases search robustness [67], [70]. 

Most implementations of DE strategies keep the control parameters constant. Although 

empirical results have shown that DE convergence is relatively insensitive to different 

values of these parameters, performance (regarding accuracy, robustness, and speed) can 

be improved by finding the best values for control parameters for each new problem. 

𝑥1 

𝑣𝑖 ,𝑔 =  𝑥𝑟0,𝑔 + 𝐹(𝑥𝑟1,𝑔 − 𝑥𝑟2,𝑔) 

𝑥0 

𝑥𝑟0,𝑔 

𝑥𝑟1,𝑔 

𝑥𝑟2,𝑔 

𝐹(𝑥𝑟1,𝑔 − 𝑥𝑟2,𝑔) 
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To complement the differential mutation search strategy, DE also employs uniform 

crossover. Sometimes referred to as discrete recombination. In particular, DE crosses each 

vector with a mutant vector. The trial vector 𝑢𝑖,𝑔 is developed from the elements of the 

target vector, 𝑥𝑖,𝑔 and the elements of the donor vector, 𝑣𝑖,𝑔. Then, the elements of the 

donor vector enter the trial vector with the crossover probability 𝐶𝑅. 

uj,i,g = {
vj,i,g    if randj,i  ≤ CR or j = Irand

xj,i,g    if randj,i  > CR or j ≠ Irand
                                     5. 10                       

The crossover probability, 𝐶𝑅 ∈  [0,1], is a user-defined value that controls the fraction of 

parameter values that are copied from the mutant. To determine which source contributes 

a given parameter, uniform crossover compares 𝐶𝑅 to the output of a uniform random 

number generator, 𝑟𝑎𝑛𝑑𝑗(). If the random number is less than or equal to 𝐶𝑅, the trial 

parameter is inherited from the mutant, 𝑣𝑖,𝑔 otherwise, the parameter is copied from the 

vector, 𝑥𝑖,𝑔. In addition, the trial parameter with randomly chosen index, 𝑗𝑟𝑎𝑛𝑑, is taken 

from the mutant to ensure that the trial vector does not duplicate 𝑥𝑖,𝑔. Because of this 

additional demand, 𝐶𝑅 only approximates the true probability, 𝑝𝐶𝑅, that a trial parameter 

will be inherited from the mutant.  

5.3.7 Selection 

Selection is applied to determine which individuals will take part in the mutation operation 

to produce a trial vector, and to determine which of the parent or the offspring will survive 

to the next generation. 

There are two functions for the selection operator: First it selects the individual for the 

mutation operation to generate the trial vector, and second, it selects the most excellent, 

between the parent and the offspring based on their fitness value for the next generation. 

In other words, If the trial vector, 𝑢𝑖,𝑔, has an equal or lower objective function value than 

that of its target vector, 𝑥𝑖,𝑔, it replaces the target vector in the next generation otherwise, 

the target retains its place in the population for at least one more generation (5.11). By 

comparing each trial vector with the target vector from which it inherits parameters, DE 

more tightly integrates recombination and selection than do other evolution algorithmes. 

xi,g = {
ui,g                 if f(ui,g) ≤ f(xi,g)

xi,g                                 otherwise
                               5. 11                                
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Once the new population is installed,  repeat the process of mutation, recombination, and 

selection until the optimum is located, or a prespecified stopping criterion is satisfied, e.g., 

the number of generations reaches a preset maximum, 𝑔𝑚𝑎𝑥. 

in other words, to construct the population for the next generation, the deterministic 

selection is used: the offspring replaces the parent if the fitness of the offspring is better 

than its parent. Otherwise the parent survives to the next generation. This ensures that the 

average fitness of the population does not deteriorate. 

General Differential Evolution Algorithm [66]. 

1) Set the generation counter, iter = 0; 

2) Initialize the mutation factor, 𝐹 and crossover probability 𝐶𝑅 ; 

3) Create and initialize the population 𝑃, based on the size and number of variables;  

4) Set the boundaries of each variable [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥] 

5) while stopping condition(s) not true for each individual do, 𝑥𝑖(𝑔)  ∈  𝑃(𝑔) do 

6) produce  the trial vector, 𝑣𝑖,(𝑔) by applying the mutation operator; 

7) Create an offspring, 𝑢𝑗,𝑖,(𝑔), by applying the recombination operator; 

8) Evaluate the fitness, 𝐹(𝑥𝑖(𝑔)); and 

9) Evaluate the fitness, 𝐹(𝑢𝑗,𝑖,(𝑔); 

10) Compare if 𝐹(𝑥𝑖(𝑔))  is better than , 𝐹(𝑢𝑗,𝑖,(𝑔);then  

11) Add 𝑥𝑖(𝑔))   to 𝑃(𝑔 + 1), else, 

12) Add  (𝑢𝑗,𝑖,(𝑔) to 𝑃(𝑔 + 1); 

13) Return the individual with the lowest fitness value as an optimal solution. 

5.4 DE operation and test  

The simplicity of DE’s generate-and-test loop becomes apparent once Eqs. (5.9) to (5.11) 

are combined: 

uj,i,g = {
xr0,g + F(xr1,g − xr2,g)    if (rand(0,1) ≤ CR  or j = jrand),

xi,g                                                                                     otherwise
              5. 12 

 

𝑥𝑖,𝑔+1 = {
𝑢𝑖,𝑔,         𝑖𝑓 𝑓(𝑢𝑖,𝑔) ≤ 𝑓(𝑥𝑖,𝑔)

𝑥𝑖,𝑔                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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5.5 The flowchart of the DE algorithm  

Figure 5.4 shows a flowchart of DE. That 𝑟0, 𝑟1, 𝑟2 and 𝑖 are distinct indices is not made 

explicit in this figure. 
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Figure 5.4 A flowchart of DE’s generate-and-test loop 
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5.6 Test systems  

The proposed methodology to reconfigure the radial distribution systems and managing the 

grid-connected DG units is tested on two adaptive IEEE test system. Figure 5.1 shows the 

16-bus test system with three initially opened tie switches. the 16-node test system is 

represented by its equivalent circuit in a single line diagram. The substation nodes are 

numbered as 1,2, and 3 respectively. Base values for this system are 12.66kV with 

100MVA respectively. having 3 substations, three main feeders, 16 nodes, 13 

sectionalizing switches, and 3 tie line switches. The system total active power is 28.7MW, 

and total reactive power is 17.3MVAr. In this work, the assumption is that each one of the 

three transformers can carry the total loads of the network. The second example is an IEEE 

33-node radial distribution system.  Figure 5.5 shows the reconfiguration of the revised 

system with five normally opened tie switches. This test system is presented on a per phase 

basis and the loads along the feeder are considered as a spot load with constant P, Q loads 

placed at the end of the lines. In addition, each line in the system is associated with a 

sectionalized switch. This system has five tie-switches (dotted lines) numbered as (33, 34, 

35, 36, 37) and 32 in service branches (solid lines) and 33 nodes. The system has a total 

load of 3.715 MW and 2.30 MVAr. 

5.7 Simulation results and discussions 

In this dissertation, forward and backward sweep algorithm is used for load flow analysis 

since it is using some simple algebraic equations and gives accurate results for the 

distribution system. The analysis is performed in different testing criteria, for instance, 

both test systems are tested before and after reconfiguration without DG units, and then 

the test is performed with integrating single and multiple DG units. Finally, simulation 

and discussion using GA and proposed DE algorithm.   Table 5.2 represents the load flow 

results for both test networks under normal condition. Distributed generators can generate 

or consume reactive power 𝑄. Table 5.3 show the results of positive and negative output 

reactive power of the DG units.  

Loss reduction depends on network topology and the amount, location and output power 

of the DG units installed in the distribution system. The integration of DG units adds 

positive active power injections to the grid (injects negative current). In this part, the 
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installation node and capacity of DGs are not optimum. The reason is that owners of DGs 

determine the location and capacity of the unit to improve their economic benefits. 

Basically, the owners of DGs are usually individuals and non-utilities. Therefore, in this 

case, the size and location are not controllable. If the owner of DGs is the utility 

company, then the choice of the locations and sizing is important because additional DGs 

may cause an increase in power losses.  

The proposed topology to reconfigure the distribution feeders for loss reduction and 

managing the grid-connected DG units are tested on two test feeders 16-bus test system 

shown in figure 5.1, and IEEE 33-bus test system shown in figure 5.5. The test results are 

obtained as follows: 

1) distribution feeder results before reconfiguration, 

2) distribution feeder results after reconfiguration, 

3) distribution feeder results after reconfiguration with DG, 

4) distribution feeder results after reconfiguration with DG using a genetic 

algorithm, 

5) distribution feeder results after reconfiguration with DG and using the proposed DE 

algorithm, and comparing the obtained results with the ones obtained using GA. 
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Figure 5.5 Single line diagram of IEEE 33 bus distribution system, s denoted switch and 

the dotted lines represent the tie switches 
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The simulation parameters of the proposed DE algorithm are shown in Table 5.1.the most 

important ones are the mutation and crossover factors because they create a new trial matrix 

from mutation and recombination procedure. then each trial in been evaluated and the 

fitness results are compared with the original population matrix in order to obtain the best 

fitness and memorize it. 

Table 5-1 Simulation parameters of DE 

Population 

size 

Mutation 

factor 

Crossover 

rate 

Max iteration  

100 0.5 0.8 50 

 

Figure 5.6 shows the performance of the DE algorithm such that the system reached the 

optimal minima in a faster time and less iteration. The idea herein is that for each evaluation 

step the size of the population matrix is updated in order to prevent from evaluating the 

same trail more than ones. This means that, since the topology is to memorize the trials 

with the best fitness value, the stopping criteria is met when the rows of the trial matrix 

become the same. In contrast with GA, the minimum loss reduction found by GA is 0.0061 

p.u, but the ones obtained by DE was 0.0060 this because DE screech from a larger space 

and moreover the mutation operation is also expanding the search area.  

 

Figure 5.6 Convergence curve of the best fitness value of DE algorithm 
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Table 5-2 Simulation Results of Both Test Systems Before and After Feeder 

Reconfiguration and after reconfiguration using GA and proposed DE 

Case study 

System 

Real 

Power 

Loss 

(p. u) 

System 

Reactive 

Power Loss 

(p. u) 

Minimum 

system 

voltage 

Vmin(p. u) 

Current 

from 

substation 

(p. u) 

Tie-switch 

opened 

1
6
-b

u
s 

te
st

 s
y
st

em
 

Before 

Re-conf. 
0.0066 0.0070 V12 = 0.9522 0.3449 15,21,26 

After Re-

conf. 
0.0063 0.0067 V12 = 0.9560 0.3446 19,17,14 

Using 

GA 
0.0061 0.0066 V12 = 0.9583 0.3443 19,17,26 

Using DE 0.0060 0.0064 V12 = 0.9588 0.3444 19,17,26 

3
3
-b

u
s 

te
st

 s
y
st

em
 

Before 

Re-conf. 
0.0018 0.0012 V18 = 0.9198 0.0757 33,34,35,36,37 

After Re-

conf. 
0.0014 0.0010 V33 =  0.9379 0.0757 8,27,33,34,36 

Using 

GA 
0.0012 0.0009 V33 =  0.9381 0.0528 8,27,33,34,36 

Using DE 0.0010 0.0008 V33 =  0.9382 0.0526 8,27,33,34,36 
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Table 5-3 Simulation Results of Both Test Systems After Feeder Reconfiguration Using 

Proposed DE 

DG unit 

location 

DG Size System 

Real 

Power 

Loss 

(p. u) 

System 

Reactive 

Power 

Loss 

(p. u) 

Current 

from 

substation 

(p. u) 

Tie-switch 

opened PDG−
output(p. u) QDG_output(p. u) 

1
6
-b

u
s 

te
st

 
sy

st
em

 
u
si

n
g
 

D
E

 

12 0.0600 
0.0360 0.0029 0.0032 0.2738 12,21,26 

- 0.0360 0.0037 0.0040 0.3265 12,22,14 

10 0.0300 
0.0180 0.0041 0.0046 0.3135 15,21,14 

-0.0180 0.0042 0.0047 0.3470 12,21,26 

16 0.0360 
0.0240 0.0011 0.0016 0.3129 12, 21, 26 

-0.0240 0.0014 0.0021 0.4075 12,22,14 

3
3
-b

u
s 

te
st

 s
y
st

em
 u

si
n
g
 D

E
 

30 0.0120 

0.0030 0.0008 0.0006 0.0584 
8,27,33,34

,36 

-0.0030 0.0009 0.0007 0.0661 
8,27,33,34

,36 

16,2

2 

0.0060, 

0.0075 

0.0023, 

0.0015 
0.0013 0.0009 0.0557 

8,27,33,34

,36 

-0.0023, -

0.0015 
0.0012 0.0008 0.0650 

8,27,33,34

,36 

18,3

3 

0.0105,0.01

20 

0.0015,0.001

2 
0.0013 0.0011 0.0477 

8,27,33,34

,36 

-0.0015, -

0.0012 
0.0012 0.0009 0.0718 

8,27,33,34

,36 

 

The simulation results of the first case for the network reconfiguration without placing DG 

units are shown in Table 5.2. It is evinced that by applying the proposed method the system 

real/reactive power losses are minimized to 0.0060 and 0.0064 p.u respectively for the 16-

bus test system, and 0.0010 and 0.0008 p.u for the 33-bus system. The weakest node 
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voltage magnitude is improved to 0.9588 p.u and 0.9382 p.u for both test system 

respectively.  Table 5.3 shows the results for the second case after installing a single and 

multiple DGs at different locations using DE algorithm. The obtained results show that 

system performance in terms of power losses and voltage profile has been improved more 

than those shown in Table 5.2. 

 

5.8 Conclusion 

 In this chapter, a new approach has been proposed to reconfigure the distribution network 

with the impact of the existent and planned DG units. In addition, different loss reduction 

and load balancing scenarios, such as before/after network reconfiguration, with/without 

including DGs, and after reconfiguration with the presence of single and multiple DG units 

are also simulated to validate the effectiveness of the proposed method. An efficient 

differential evolution algorithm is used in the optimization process of the network 

reconfiguration. The proposed methods are tested on 16- and 33-bus systems. The 

simulation results have demonstrated that the DE algorithm achieved better performance 

than traditional methods including genetic algorithm. 
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Chapter 6  

Optimal Placement and Sizing of Distributed Generation in a Radial 

Distribution System Using Differential Evolution Algorithm (DEA) 

6.1 Introduction  

The continuous growth in power demand, lack in active power generation as well as 

limitations of traditional transmission and distribution (T&D) infrastructure have led to 

increased interest in distributed generation (DG) utilization.  In addition, DG which tend 

to utilize renewable energy, can reduce greenhouse emissions and reduce the demanded 

power that must be produced and provided by incorporated power plants. Optimal 

placement and sizing of DG units can reduce the power losses of distribution networks, 

release power capacity for existing or expanding loads, and improve voltage profile at the 

load nodes. This chapter proposes an efficient optimization technique based on Differential 

Evolution Algorithm (DEA) for optimal allocation and sizing of DGs units in distribution 

systems. The algorithm is based on the node voltage sensitivities index (VSI) in which the 

node, that is most sensitive to voltage collapse is identified. Additionally, the algorithm is 

also based on the real power losses of each branch with respect to real power injection at 

each node. The weakest bus is considered to be the one with maximum active power loss. 

System power loss data can be collected based in a certain time period, it could be seasonal 

or yearly data collection. In this work, both the real output power of the DGs and reactive 

output power of the DGs inverter has been considered.  

Due to the environmental impact concerns and incentives from regulators, Distributed 

Generation (DG) has become the central part of the distribution networks. Distributed 

generation is known as an on-site generation or decentralized generation. It referred to the 

generation of electricity for use on-site, rather than transmitting energy over the electric 

grid from a large, centralized facility. That is to take its advantages of cleaner energy, less 

loss, and local power supply. The impact of dispersed generation (DG) by adding an active 

power source to the distribution network is aiming mainly to reduce the active power loss 

in the distribution network and as a result, improving the voltage profile at the network. 

Nowadays, these renewable DG are required to equip with reactive power devices (such as 
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static VAR compensators, capacitor banks, etc.), to provide reactive power as well as to 

control the voltage at their terminal bus. DGs have various technical benefits such as 

voltage profile improvement, relief in feeder loading, power loss minimization, stability 

improvement, and voltage deviation mitigation. In other words, the distributed generation 

does not benefit the network if placed in any random location in the system.  Therefore, it 

is necessary to determine the optimal location and size of the DG. In fact, most distribution 

networks are weak and radial in nature with low short-circuit capacity. Therefore, there is 

a limit to which power can be injected into the distribution network without compromising 

the power quality and the system stability. Thus, this work is aiming to investigate this by 

connecting DG technologies to the grid and demonstrating the system voltage within a 

defined boundary [0.95 – 1.05 p. u].  

The IEEE Standard 1547 has to be obeyed for the interconnection of Distributed Energy 

Resource (DER). DER include distributed generators and energy storage systems. The 

standards provide requirements of connecting the DGs to the grid, relevant to the 

performance, operation, safety considerations, and maintenance of the interconnection. 

Such requirements are that, first, the DER units do not unintentionally provide power to 

the adjacent electricity customers or to the utility grid when the grid has lost its power 

supply from the transmission system [72]. Second, in the case of an open-phase condition, 

the DGs must detect and stop injecting power to the grid. Third, in the case of voltage 

regulation requires the operator of the distribution grid and the DGs are required to 

coordinate with each other to allow the DG to participate by changing its real and reactive 

power outputs.  

To study the impact of integrating DGs units into the distribution network, several kinds 

of literature have proposed the use of different optimization techniques. The optimum 

placement and sizing are done to achieve different objectives. In [73] evolutionary 

programming with the objective of maximizing the reduction of the load supply costs was 

used. Besides, Siano  [74] proposed the combination of a Genetic Algorithm (GA) and 

Optimal Power Flow (OPF) to efficiently site and size a predefined number of DGs. It 

differs from other proposed methods that only define the optimal locations and capacities 

of DG as a means of ensuring that the maximum amount of DG can be connected to the 

existing and future networks. Also, in [75] Particles Swarm Optimization (PSO) was used 
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for optimal placement of multi-DGs with the aim of minimizing the total real power loss. 

Other various methods such as simulated annealing technique [76], Tabu search method 

[77] [78], and artificial bee colony (ABC) [79], etc. Alarcon- Rodriguez et al. 

[80]introduced the use of time-varying loads for analysis of reliability and efficiency of 

distribution networks with DG. In [81], Ochoa et al. proposed a time-varying approach in 

demand load and generation, and steady-state analysis of technical issues such as losses, 

voltages, reserve capacity of conductors, and short-circuit levels was presented. 

This work analyzes the impact of the DG installation on the performance of the distribution 

network and its parameters such as voltage, active and reactive power loss [82] . The 

topology is that the DG unit is injecting real power to the selected node and meanwhile, 

the voltage of all nodes is checked as well as the branch currents to prevent from having 

overvoltage or exceeding the line capacity limits. The feasible solution is the case of 

satisfying all the operation constraints, such as node voltages has to be within sitting limits, 

brunch currents also within its maximum and minimum limits, the size of the DG is 

specified. The solution methodology herein is to evaluate the system whit out DG 

connection and then reconfigure the system by closing the tie switches and specify the tie 

with the maximum voltage difference and consider closing this tie first, then the DG 

location is obtained using the sensitivity of power losses with respect to real power 

injection at each bus. Then the most sensitive bus is selected for installing the DG unit. 

Because the integration of the DG adds positive real power injections, the optimal location 

is the one with the most negative sensitivity in order to get the largest power loss reduction. 

Finally, after the location is specified the proposed DEA is used to obtain the optimal size 

of the DG unit. Only the feasible solution who satisfy all the constraint is considered.      

This chapter proposed a Differential Evolution Algorithm for the sizing of the DG unit in 

a distribution network the technique will minimize real power losses and improve system 

voltage profile. The optimizations technique are performed on three stages, first, the 

network reconfiguration is performed, then, the optimal location of the planned DG is 

determined, and finally, the size of DG located at its optimal location is obtained by using 

the proposed DEA. In this chapter, the proposed DEA is applied on a revised version of 

the IEEE 33-bus test system. Differential evolution (DE) is a stochastic, population-based 

search strategy developed by Storn and Price [83] in 1995. While DE shares similarities 
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with other evolutionary algorithms (EA), it differs significantly in the sense that 

information from the current population is used to guide the search process. In DE 

algorithm, all solutions have an equal opportunity of being preferred as parents, and 

selection does not depend on their fitness values. In DE, each new solution fashioned 

competes with its parent and the superior one wins the contest [84]. In DE operation the 

child vector is generated by applying the mutation and crossover operation. In mutation 

operation, a trial vector is generated with the help of the objective vector and two erratically 

preferred individuals. The deviation in the objective vector depends on mutation factor F 

and the difference between the randomly selected individuals. On the other hand, the 

crossover operation is applied between the objective vector and parent vector to generate 

the child vector using the crossover probability (CR). Like any other method, these tuning 

factors have a boundary such that large values may result in skipping of actual solutions, 

and small values also may cause performance degrades. The conflicts in the child vector 

from the parent vector depends on the values of 𝑭 and 𝑪𝑹. 

This chapter is organized as follows: section 6.2 represents the problem formulation of 

power loss minimization. Section 6.3 Presents the proposed Differential Evolution 

algorithm DEA. Section 6.4 provides the approach to find the optimal placement and size 

of DG units. Simulation results and discussion are given in section 6.5. Finally, 

Conclusions are provided in section 6.6. 

6.2 Problem formulation  

The problem considered herein is to minimize the system power losses and to improve the 

voltage profile. The integration of single or multiple DGs units in the power distribution 

network is a challenging problem that involves complex nonlinear equations. Sizing and 

allocation of the DGs is a vital parameter as the random placement of DG in the grid can 

cause a negative consequence such as an increase in system total power losses and out-of-

limit voltages. On the contrary, if the DGs are precisely placed and optimally sized, then it 

will improve the system’s overall efficiency. This work mainly focuses on identifying the 

optimal size and location of installing DGs units in the grid in the way all the constraints 

are satisfied. The problem is formulated as a multi-objective problem, whose objectives 

include minimization of total system active and reactive power losses, minimization of 
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feeder’s currents imbalance, and minimization of node voltage deviation considering the 

substation as a reference.  

The loss minimization is formulated as:  

minPloss(x)                                                            6. 1                                                                         

with         

Ploss = ∑ Ri ∗ |Ii|
2Nb

i=1                                               6. 2                                                               

such that,  

𝐼𝑖 ≤ 𝐼𝑚𝑎𝑥                    ∀ 𝑖 = 1,2. . , 𝑁𝑏 

𝑉𝑚𝑖𝑛 ≤ 𝑉𝑗 ≤ 𝑉𝑚𝑎𝑥     ∀  𝑗 = 1,2, . . , 𝑁 

where,  𝑃𝑙𝑜𝑠𝑠 = total line losses of the feeder 

𝑥 =  status vector of the switch 

𝑁𝑏 = total number of branches in the whole system 

𝐼𝑖 = current magnitude of branch 𝑖 

𝐼𝑚𝑎𝑥 = upper limit of branch current magnitude 

𝑉𝑗 = voltage magnitude of branch 𝑗 

𝑉𝑚𝑖𝑛 , 𝑉𝑚𝑎𝑥 = lower and upper limit of node voltage magnitude, herein, 0.95 ≤ 𝑉𝑗 ≤ 1.05 

𝑅𝑖 = resistance of branch 𝑖 

𝑁 = total number of buses 

𝑥 = [𝑠𝑤1 𝑠𝑤2 𝑠𝑤3, … 𝑠𝑤𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑖𝑟𝑎𝑏𝑙𝑒𝑠]  

The total power loss of any branch is determined by summing up all the losses of all branch 

sections beyond this particular branch of the feeder, that is: 

DeltaP = ∑ Ibranch
2 ∗ Rbranch

Nb
branch=1                                 6. 3                         

DeltaQ = ∑ Ibranch
2 ∗ Xbranch

Nb
branch=1                                   6. 4                   

            



81 
 

where,  

𝐷𝑒𝑙𝑡𝑎𝑃 = real power loss. 

𝐷𝑒𝑙𝑡𝑎𝑄 = reactive power loss. 

The operating constraints of the system are defined as inequality and equality constraints. 

6.2.1 Inequality Constraints 

6.2.1.1 Power generation limits 

The output generating power of the DGs unit must be within a limit. 

Thus, 

𝑃𝐷𝐺𝑖,𝑚𝑖𝑛 ≤ 𝑃𝐷𝐺𝑖 ≤ 𝑃𝐷𝐺𝑖,𝑚𝑎𝑥                                            6. 5 

𝑄𝐷𝐺𝑖,𝑚𝑖𝑛 ≤ 𝑄𝐷𝐺𝑖 ≤ 𝑄𝐷𝐺𝑖,𝑚𝑎𝑥                                           6. 6 

In this chapter, the feasible solution is obtained in such a way the optimal location and size 

of the connected DG satisfies all the operating constraints. Considering that all the node 

voltages are within limits and that there are no violations in the value of voltage. 

6.2.1.2 Branch power limit constraint: 

 

𝑃𝑗
2 + 𝑄𝑗

2 ≤ (𝑆𝑗
𝑚𝑎𝑥)                                                         6. 7                    

𝑃𝐷𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑃𝐷𝐺𝑖 ≤ 𝑃𝐷𝐺𝑖

𝑚𝑎𝑥                                                      6. 8                    

𝑄𝐷𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐷𝐺𝑖 ≤ 𝑄𝐷𝐺𝑖

𝑚𝑎𝑥                                                      6. 9            

6.2.1.3 Bus voltage limits 

𝑉𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑚𝑎𝑥                                                           6. 10 

6.2.1.4    Branch current magnitude: maximum limit 

 

|𝐼𝑖| ≤ 𝐼𝑚𝑎𝑥                                                                     6. 11 

6.2.2 Equality Constraints 

Power balance: the power flow equations must be satisfied 

𝑃𝑖 = 𝑃𝐷𝐺𝑖 − 𝑃𝐷𝑖                                                          6. 12 

𝑄𝑖 = 𝑄𝐷𝐺𝑖 − 𝑄𝐷𝑖                                                        6. 13 
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where,  

𝑃𝐷𝐺𝑖 and 𝑄𝐷𝐺𝑖 are distributed power generation at bus 𝑖. 𝑃𝐷𝑖 and 𝑄𝐷𝑖 are the loads at bus 

𝑖. 

In this dissertation, the feasible solution is obtained in such a way that optimal location 

and size of the connected DG satisfies the operating constraints, by taking into account 

that all the node voltages are within limits and that there are no violations in the value of 

voltage. 

 

6.3 Differential Evolution Algorithm 

Differential Evolution is a Global Optimization algorithm searching from an ample space 

of candidate solutions. DE algorithm is used for multidimensional real-valued functions, 

so DE does not need the optimization problem to be differentiable as is mandatory for 

traditional optimization methods [84]. Differential Evolution algorithm involves three 

unique advantage, does not depend on the initial population values in finding the global 

minima, using few parameters, and fast convergence. DE differs from Genetic Algorithm 

in such a way that it relies on mutation scheme while GA relies on crossover processer. 

Also, DE uses a non-uniform crossover, it can take a child vector parameter from one 

parent more often than it does from others. The DE algorithm also uses the mutation 

mechanism and selection operation to point the search toward the prospective region in the 

search area. the  

DE algorithm optimizes a problem by considering a population of candidate solutions and 

generating new contestant solutions by combining existing ones according to its 

straightforward formulae, and then memorizing whichever candidate solution has the 

excellent score or fitness on the optimization problem at hand.  

General problem formulation of DE is as follows 

DE differs from other algorithms such that: 

1) Mutation is applied first to generate a trial vector, which is then used within the 

crossover operator to produce one offspring. 

2) Mutation step sizes are not sampled from a prior known probability distribution 

function. 
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3) In DE, mutation step sizes are influenced by differences between individuals of the 

current population. 

For an objective function 𝑓 ∶ 𝑋 ⊆  ℝ𝐷 ⟶ ℝ where the feasible region 𝑋 ≠ ∅, the 

minimization problem is to find 𝑥∗ ∈ 𝑋 such that 

f(x∗) ≤ f(x)  ∀   x ∈ X                                                       6. 14                                                           

such that:                                𝑓(𝑥∗) ≠ −∞ 

The parameter vectors of the optimization function have the form:  

xi,G = [x1,i,G, x2,i,G, …… xD,i,G] ∀ i = 1,2. . , N                             6. 15                                 

where, 

 𝑁 =population size 

 𝐺 = generation number  

 𝐷 = D-dimensional search space 

6.3.1 Initialization  

The initialization procedure is to define the upper and lower bounds for each parameter 

such that 

xj
L ≤ xj,i,1 ≤ xj

U                                                       6. 16 

In distribution systems especially in this part, we are dealing with a switch (e.g., integer 

parameters), in this case sitting the upper and lower boundaries of each variable must obey 

these rules: 

1. There should be no common switches between two meshes. 

2. Only one open switch in each mesh. 

3. Switches of the end node loads remain on and should not be considered in the 

boundary. 

4.  The radial structure must be retained.                                        

Then randomly select the initial parameters values uniformly on the intervals [𝑥𝑗
𝐿 , 𝑥𝑗

𝑈 ]. 



84 
 

The population matrix is formulated based on the number of variables (e.g., number of 

open ties) and maximum population size.  

popmatrix =

[
 
 
 
 

x1   x2, …… . xn

:
:
:

x1p   x2p …… . xnp]
 
 
 
 

                                               6. 17                                      

Where the 𝑛 denoted number of variables, and 𝑝 is the population size. 

6.3.2 Statistics  

Load-flow computation (6.1) is used as a fitness function by adding some constraints such 

as: 

F = Ploss(Sv) + ∑ λI,i
Nb
i=1 ∗ (Ii − Ilim)2 + ∑ λV,j

N
j=1 ∗ (Vj − Vlim)2                6. 18 

where,  𝜆𝐼,𝑖 , and 𝜆𝑉,𝑗are the penalty factors that can be adjusted in the optimisation 

procedure. 𝐼𝑙𝑖𝑚  and 𝑉𝑙𝑖𝑚 are defined as: 

Ilim = {
Ii                if   Ii ≤ Imax  
Imax           if   Ii  >  Imax 

                                           6. 19                                                    

 

Vlim = {

Vj         if Vmin ≤ Vj  ≤   Vmax

Vmin     if Vj < Vmax               

Vmax     if Vj > Vmax                

                                      6. 20                                              

6.3.3 Mutation  

One of the DE advantages is searching from a large search space, and the mutation 

procedure expands the search space. Each of the N parameter vectors undergoes mutation, 

recombination, and selection. To illustrate that, for a given parameter vector 𝑥𝑖,𝐺 randomly 

select three vectors 𝑥𝑟1,𝐺  , 𝑥𝑟2,𝐺   and 𝑥𝑟3,𝐺 such that the indices 𝑖, 𝑟1, 𝑟2 and 𝑟3 are distinct. 

Then calculate the donor vector by adding the weighted difference of two of the vectors to 

the third such that: 

vi,G+1 = xr1,G + F(xr2,G − xr3,G)                                             6. 21                                               



85 
 

where, F = mutation scale factor is a constant from [0,1]. 

6.3.4 Recombination 

Recombination incorporates successful solutions from the previous generation. The trial 

vector 𝑢𝑖,𝐺+1 is developed from the elements of the target vector, 𝑥𝑖,𝐺 and the elements of 

the donor vector, 𝑣𝑖,𝐺+1. Then, the elements of the donor vector enter the trial vector with 

the probability CR. 

Thus, 

uj,i,G+1 = {
vj,i,G+1 if randj,i  ≤ CR or j = Irand

xj,i,G  if randj,i  > CR or j ≠ Irand
                          6. 22                                 

𝑖 = 1,2, … ,𝑁; 𝑗 = 1,2,… , 𝐷 

where, 

 rand𝑗, 𝑖~ 𝑈[0,1], 𝐼𝑟𝑎𝑛𝑑 is a random integer from [1, 2…, D], and 𝐼𝑟𝑎𝑛𝑑 ensures that 

𝑣𝑖,𝐺+1 ≠ 𝑥𝑖,𝐺 

6.3.5 Selection  

There are two functions for the selection operator. First, it selects the individual for the 

mutation operation to generate the trial vector. Second, it selects the most excellent for the 

parent and the offspring based on their fitness value for the next generation. The target 

vector 𝑥𝑖,𝐺 is compared with the trial vector 𝑣𝑖,𝐺+1 and the one with the lowest function 

value is admitted to the next generation. 

xi,G+1 = {
ui,G+1 if f(ui,G+1) ≤ f(xi, G)

xi, G                         otherwise
                              6. 23                                    

Finally, mutation, recombination a, d selection continues until some stopping criterion is 

met. 

The steps of the general Differential Evolution Algorithm are shown as follows: [85] 

14) Set the generation counter, iter = 0; 

15) Initialize the mutation factor, 𝐹 and crossover probability 𝐶𝑅 ; 

16) Create and initialize the population 𝑃, based on the size and number of variables;  
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17) Set the boundaries of each variable [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥] 

18) while stopping condition(s) not true do the following for each individual, 𝑥𝑖(𝐺)  ∈

 𝑃(𝐺) do 

19) Create the trial vector, 𝑣𝑖,(𝐺) by applying the mutation operator; 

20) Create an offspring, 𝑢𝑗,𝑖,(𝐺), by applying the recombination operator; 

21) Evaluate the fitness, 𝐹(𝑥𝑖(𝐺)); and 

22) Evaluate the fitness, 𝐹(𝑢𝑗,𝑖,(𝐺); 

23) Compare if 𝐹(𝑥𝑖(𝐺))  is better than, 𝐹(𝑢𝑗,𝑖,(𝐺);then  

24) Add 𝑥𝑖(𝐺))   to 𝑃(𝐺 + 1), else, 

25) Add (𝑢𝑗,𝑖,(𝐺) to 𝑃(𝐺 + 1); 

26) Return the individual with the best fitness as an optimal solution. 
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6.4 DEA flowchart  

 

Figure 6.1 DEA flowchart 

Set  𝐹, 𝐶𝑅,max𝑝𝑜𝑝, 𝑖𝑡𝑒𝑟 = 0 
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6.5 Optimum placement and sizing of DG units 

Power loss reduction problems are depending on the network topology and the number of 

connected DG, location, the output power of the DGs units installed in the grid. The 

connected DGs must obey the IEEE Standard 1547. Also, it can be aggregated into an 

equivalent unit.    

6.5.1 Optimal Location of DG units  

The DG location is obtained using the sensitivity of power losses with respect to real power 

injection at each bus. The most sensitive bus is selected for installing the DG unit. Because 

the integration of the DG adds positive real power injections, the bus with the highest 

negative sensitivity value is considered as the weakest bus in the system, and DG unit will 

be placed at that respective bus.  The mathematical formulation considered in the optimal 

placement is the maximum of (6.3), more details can be found at [86] [87], and is given as: 

DGlocation = max (DeltaP(Nb))                                6. 24                                                 

The planned DG unit is modeled as a positive current injection located at its obtained 

optimal location.  

IDG,i =
PDG,i−jQDG,i

Vi
∗                                                      6. 25 

It has been assumed that the study is implemented on a single line test system, but in a real 

three-phase network, the injected current from DG unit still can be computed using (6.16) 

by adding B and C phases. Now, in the case of three phase system, the type of the DG unit 

will be matter and has to be carefully considered. If the DG unit is considered or operates 

at a constant voltage, then two loop computation [88] is needed to get the equivalent current 

injection. The inner loop calculates the reactive power output of the DG unit which is 

necessary to keep the node voltage magnitude at the specified limits in an iterative manner, 

and the outer loop computes the current injection with the initially specified active and 

reactive power calculated from the inner loop, However, if the DG unit operates at constant 

power then the equivalent current injection could be directly obtained using (6.16) because 

the active and reactive power values are provided. In addition to the three-phase networks 

it is known that although a single-phase or two-phase branches usually exist in the 
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unbalanced networks [89], in this particular case it’s still valid such that the values of the 

missing corresponding phase impedances are set to zero, and as a result the currents and 

voltages of the missing phases are detected from the results, and keeping in mind zero 

phase impedance are only for the computation purpose and it does not indicate short circuit 

condition.    

6.5.2 The optimum size of DG units  

The optimum sizes of the DG units to be installed at the obtained optimal location is 

determined to minimize system total power losses and improve the voltage profile. Thus, 

for a reconfigurable system with connected DG units. The solution strategy is to generate 

a set of random DG sizes within a specified range using the proposed DEA. Placed at the 

obtained location (6.15) and then power flow is executed for each DG size. The fitness 

function is evaluated for total power reduction, and the feasible solution is obtained. 

The steps of network reconfiguration, and finding the location and the size of the DGs units 

using the DEA are explained as follows: 

Step1_ Read system data.  

Step2_ Run power flow without DG connection. 

Step3_ determine the DG location using (6.15) 

Step4_ by using DEA do the following:  

1) reconfigure the system following our method in [82]  

 2) generate a random size of DG and evaluate the fitness function for each size, if 

all the constraints are satisfied and all the node voltages are between the minimum 

and maximum boundaries, write down the optimal solution and do the same for 

another switch statues.  

Step5_ after evaluating all the chromosomes of the population matrix and after applying 

the operating parameters like mutation, crossover, and recombination, note down the 

optimal solution with a minimum power loss and an accepted voltage. 

Step6_ note down the real and reactive power loss and voltage magnitude.  
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6.6 Simulation results and discussions 

The effectiveness of the proposed DEA to solve the optimal size and location of the DGs 

units followed by the network reconfiguration is illustrated using the IEEE 33-bus radial 

distribution test feeder. The simulation results have produced the desired results.  

Figure 6.2 presents the test system of a 33-node radial distribution system [90]. This test 

system is presented on a per phase basis, and the loads along the feeder are considered as 

a spot load with constant 𝑃, 𝑄 loads placed at the end of the lines. In addition, each line in 

the system is associated with a sectionalized switch. This system has five tie-switches 

(dotted lines) numbered as (33, 34, 35, 36, 37) and 32 in service branches (solid lines) and 

33 nodes. The system has a total load of 3.715 MW and 2.30 MVAR without any connected 

DG unit. Base values are 12.66kV and 100MVA respectively. 

 

Figure 6.2 Loop representation of a single line diagram of IEEE 33-bus distribution 

system, where, s denoted switch and the dotted lines represent the tie switches 
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Table 6-1 Simulation results of the optimal switching plane and optimal placement and 

sizing of installed DG units 

Case#  DG  

Location  

DG size (kW)  Real  

Power  

Loss(kW)  

Reactive 

power 

loss(kVAr)  

Sub- 

current  

(KA)  

Tie-Switch  

Status   

1(Base  

Case)  

-  -  64.3894  54.0280  345.1304  33,34,35,36,37   

  

2  33  324.8984  34.4397  26.2894  293.1455  10,17,27,18,32  

3  5,27  787.5761,  

882.4191  

44.9553  32.7910  196.2822  10,19,27,22,28  

4  19,33  683.7605,  

391.5140  

38.7450  31.7989  198.0507  6,13,35,18,9  

5  19,33,2  165.9004,  

272.3896,  

380.0187  

33.9801  26.2634  210.8594  10,19,27,18,32  

6  2, 23, 5,  

24  

207.9960,  

568.4179,  

822.7620,  

556.3637  

35.9253  27.0175  279.2741  26, 20, 35, 30,  

12  

7  33, 19,  

23, 20      

2  

533.0945,  

913.4328,  

139.9755,  

429.4281,  

821.5341  

36.7124  31.2641  218.7507  4, 19, 27, 24,  

32  

8  23, 2,  

24, 19,  

22  

867.5652,    

813.7468,    

467.3644,    

141.2449,    

738.6867  

33.0319  25.5680  313.5803  8, 15, 11, 23,  

31  

 

The most desired objective of the proposed approach is to determine the optimal location 

and size of the planned DGs units. The real power and reactive power losses, as well as the 

voltage profile enhancement, are the primary goals of this work.  Table 6.1 shows the 

simulation results of deferent cases for single and multiple DGs unites installed at their 

optimal location and size. Figure 6,3, and 6.4 presents the simulation results of the case 

studies. It can be seen, there has been a significant reduction of the real and reactive power 
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losses after installing the DGs units and network reconfiguration. The system node voltages 

are also improved and well constrained between the limits. Feeder current which is the 

current from the substation also been reduced after installing the DGs units. There has also 

been a significant achievement in mitigating the node Voltage deviation. The maximum 

and minimum boundary of the DGs size is set between 50kW to 1000kW. Basically, for 

each case the installed DGs units inject power to the system and check the node voltages 

limits if one node violates its limit then the solution will not be considered, and the 

algorithm will consider another size and location and search for only the feasible solutions 

where all the constraints are satisfied.  

 

Figure 6.3 Power Flow results with DG unit installed at bus # 33 
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Figure 6.4 Power Flow results with DG unit installed at bus # 5 and 27 

 

 

Figure 6.5 Power Flow results with DG units installed at bus # 19 and 33 
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Figure 6.6 Power flow results with DG units installed at bus # 19, 33 and 2 

 

Figure 6.7 Power flow results with DG units installed at bus # 2, 23, 5 and 24 
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Figure 6.8 Power flow results with DG units installed at bus # 33, 19, 23, 20 and 2 

 

Figure 6.9 Power flow results with DG units installed at bus # 23, 2, 24, 19, and 22 
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Table 6-2 Simulation parameters of DEA 

Population 

size  

Mutation 

factor  

Crossover 

rate  

Max  

iteration   

Number 

of 

variables   

Min DGs 

unit 

size(kW)  

Max DGs unit 

size(kW)  

100  0.8  0.7  100  5  50  1000  

Simulation parameters of the proposed DEA are shown in Table 6.2. Mutation factor and 

crossover rate are mainly the tuning parameters. The new trial matrix is created from 

mutation and recombination procedure. Each trial is evaluated, and the obtained results are 

compared with the ones computed by the corresponding chromosome of the original 

population matrix.  The best fitness is then saved and to be memorized. Figure 6.10 presents 

the performance of the proposed DEA. From the simulation results, the optimal minima 

were found in faster time and less iteration. The stopping criteria are that after each 

evaluation step the size of the population matrix is updated to prevent evaluating the same 

chromosome more than ones.  

 

Figure 6.10 Convergence curve of the best fitness value of DE algorithm 
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6.7 Conclusions  

This chapter proposed a new approach for distribution system reconfiguration and optimal 

sizing and placement of DGs units. The problem is solved by using A Differential 

Evolution Algorithm DEA. The proposed method in this chapter is a continuation of the 

method discussed in the previous chapter of optimal distribution feeder reconfiguration 

with distributed generation using the intelligent technique. The objective of this chapter is 

to find the optimal location and size of the planned DGs unlike the study of chapter 5 where 

the size and location were chosen randomly because the assumption was the DGs units 

already exist in the network. Although, the existing DGs must have the ability to be 

coordinated and partially controlled by the operator (aggregator), its size and location are 

still uncontrolled. In this chapter the size of the DGs units was determined using the 

proposed DEA, and the location was also obtained using sensitivity analysis based on the 

network real power loss. Simulation results of the IEEE 33-bus test system have 

demonstrated the efficiency and the effectiveness of the proposed algorithm for 

determining the optimal sizing and placement of the DGs units and reconfiguring the 

distribution feeders. The future work would be to investigate the distribution feeder 

response characteristics, where the hosting capacity of the feeder is to be determined. The 

hosting capacity is defined as the amount of DERs a feeder can support under its existing 

topology, configuration, and physical response characteristics. If the hosting capacity is 

appropriately done, then it will provide a range of information such as, how many DERs 

can be accommodated without system upgrades, what issues arise at the hosting capacity 

limits, the location of the DERs so that problems can be avoided, and the location where 

additional DERs are likely to cause issues on the grid. 
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Chapter 7  

Conclusion and Future Work 

7.1  Conclusion  

In this dissertation, several distribution feeder reconfigurations with and without the impact 

of the integrated distributed generator have been proposed to investigate and provide a 

promising solution to reduce the total system power losses and improve the voltage profile. 

Chapter 1 provided an overview of a distribution system definition. It shows the difference 

between the traditional distribution system and the smart distribution system besides the 

impact of the upgrading the existing old networks.  The traditional power plant is placed 

far away from the power consumption area, and electric power is transmitted through long 

transmission lines. Long transmission lines mean high power loss, less power quality, and 

lower reliability. Nowadays, the distribution system is neither traditional nor complex 

system because it has become a smart system. A smart system is a modern form of the 

traditional power grid which provides more secure, reliable and dependable electrical 

service. It is, in fact, two-way communication between the utility and the electricity 

consumer. In addition, the distribution term now is divided into two terms. One-Way 

distribution in which the power can only be distributed from the central plant using 

traditional energy infrastructure. The second type is the two-way distribution, while power 

still provided from the essential power plant, in a smart system, power can bi-directional 

and flow back to the transmission lines from a secondary power provider.  

The review of the literature was presented in chapter 2. It provides the research history of 

most of the methods and theories applied to the radial distribution system in the effort of 

mitigation the power losses.  it can be noticed that most of the approaches have proposed 

various topologies to network reconfiguration, and almost all of these studies assumed a 

balanced network to simplify the computation. However, distribution networks are usually 

unbalanced due to non-uniform load distribution and nonsymmetrical conductor spacing 

on the three-phase systems.  Additionally, since this research is mainly forcing on optimally 

solving the optimization problems, the aim was to investigate and study the intelligent 

technique were used such as genetic algorithm and evolutionary algorithms.  
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In chapter 3, distribution feeder reconfiguration for loss reduction was proposed. In this 

chapter, the problem is formulated as a multi-objective problem considering four objectives 

related to, minimization of the system real power loss, minimization of the deviations of 

the nodes voltage, minimization of branch current violation and minimization of feeder’s 

currents imbalance.  Since these objectives are different and difficult to be solved by the 

conventional approaches that may optimize only a single objective. A new approach based 

on load flow formulation using the graph theory was proposed. It is aiming to formulate 

and solve the distribution feeder reconfiguration problem using a simple load flow 

technique for the radial distribution network. This technique involves only the 

implementation of a simple algebraic expression of receiving-end voltages and employing 

the graph theory to efficiently construct the system structure. The four objectives are 

combined through appropriate weighting factors to form the objective function of the radial 

distribution system as presented in (3.15). Different loss reduction and load balancing 

scenarios have been investigated. For instance, simulation results study before and after 

network reconfiguration, with and without including DGs, and after reconfiguration with 

the presence of single and multiple DG units. At this point, the size and location of the DGs 

units are selected randomly and it has been assumed as a non-controllable source (owned 

by the customer). The proposed methods were tested on 70-node 11kV and IEEE 33-bus 

112.6kV radial distribution test system. The simulation results have proved the efficiency 

and feasibility of the proposed method, besides the obtained results has shown high 

improvement on the system performance by reducing its total power losses and balancing 

its branch currents. In addition, the convergence characteristics were fast due to the simple 

algebraic questions used in load flow.  

In chapter 4 a new approach based on the Fast-Genetic Algorithm (FGA) was proposed to 

solve and reconfigure the distribution system problem for power losses minimization. The 

proposed method is similar to the traditional GA but it defers from in the way of 

constructing the population matrix. The distribution network is formulated as a meshed 

system, the number of the meshes are related to the number of open ties. The main idea is 

relying on setting the boundary of each parameter of the fitness function. There should be 

no common variable in any boundaries, and also substation nodes and end node load should 

not be included in the boundaries that are to ensure that all loads are served and system 
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radially is retained. Additionally, the proposed method guarantees the fast convergence and 

comparable results. Most reconfiguration problems are formulated as a mixed integer 

nonlinear optimization problems. The proposed FGA is dealing with an integer parameter 

type because the parameters herein is a switch status ( e.g., switch numbers). Integer 

programming with FGA involves several modifications of the traditional algorithm. It can 

be noticed from the simulation results that the computed results are satisfied compared with 

other methods.  

 In chapter 5, the radial distribution feeder reconfiguration for loss reduction and voltage 

profile improvement including the presence of DGs using the Differential Evolution DE is 

proposed. The DGs units are assumed to exist in the system which means its location and 

size is not controllable since it is a customer owned. DGs can harm the grid if placed or 

connected randomly resulting in increasing the end user voltage. The study here is aiming 

to keep the system node voltages within an acceptable limit by configuring the system 

using DE and checking the voltage violation limit for each load flow execution. The 

proposed DE algorithm is a new approach used in a power system area.  While DE shares 

similarities with other evolutionary algorithms (EA), it differs significantly in the sense 

that distance and direction information from the current population is used to guide the 

search process (e.g., using the current population). In DE algorithm, all solutions have an 

equal opportunity of being preferred as parents, and selection does not depend on their 

fitness values. DE performance depends on two processes, known as the mutation process 

and recombination (crossover) process. The two tuning parameters, called scale factor (F) 

and crossover probability (CR), which control the performance of DE in its mutation and 

recombination processes, respectively. The scaling factor, F ∈ (0, ∞), controls the 

amplification of the differential variations. The smaller the value of 𝐹, the smaller the 

mutation step sizes, and the longer it will be for the algorithm to converge. Larger values 

for 𝐹 facilitate exploration, but may cause the algorithm to overshoot good optima. The 

value of F should be small enough to allow differentials to explore tight valleys, and large 

enough to maintain diversity. The crossover probability 𝐶𝑅, has a direct influence on the 

diversity of DE. This parameter controls the number of elements of the parents that will 

change. The higher the probability of recombination, the more variation is introduced in 
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the new population, thereby increasing diversity and increasing exploration. Increasing 𝐶𝑅 

often results in faster convergence, while decreasing 𝐶𝑅 increases search robustness.  

Chapter 6 proposed a new topology of finding the optimal location and sizing of the 

planned DG units. The optimizations technique is performed on three different scenarios: 

reconfiguring the system, finding the optimal locations, and optimal the sizes of the DGs 

units. In fact, DGs have a great impact on reducing power losses and improving the system 

performance if placed at its optimal location. However, if DGs placed randomly then they 

harm the system and cause issues instead of benefits.  

The solution methodology presented in this chapter is to evaluate the system whit out DG 

connection and then reconfigure the system by closing the tie switches and specify the tie 

with the maximum voltage difference and consider closing this tie first, then the DG 

location is obtained using the sensitivity of power losses with respect to real power 

injection at each bus. Then the most sensitive bus is selected for installing the DG unit. 

Because the integration of the DG adds positive real power injections, the optimal location 

is the one with the most negative sensitivity in order to get the largest power loss reduction. 

Finally, after the location is specified the proposed DEA is used to obtain the optimal size 

of the DG unit. Only the feasible solution who satisfy all the constraint is considered. 

7.2 Future work  

For the optimal location and sizing of planning and integrating DGs units discussed in 

Chapter 6, which only investigate the optimal connection of the DGs into the distribution 

system. The distribution performance characteristics have to be taking into account 

especially with the high interest of energy consumers to install and invest from their DGs. 

The distribution feeder response characteristics attentional is to determine the hosting 

capacity of the feeder. The hosting capacity of a feeder is defined as the amount of DERs 

a feeder can support under its existing topology, configuration, and physical response 

characteristics. If the hosting capacity is appropriately done then it will provide a range of 

information such as, how many DERs can be accommodated without system upgrades, 

what issues arise at the hosting capacity limits, the location of the DERs so that problems 

can be avoided, and the location where additional DERs are likely to cause issues on the 

grid.    
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