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ABSTRACT OF DISSERTATION 

 
 

STRAIN-SPECIFIC PROTEIN INTERACTION AND LOCALIZATION OF 

TWO STRAINS OF POTATO YELLOW DWARF VIRUS AND 

FUNCTIONAL DOMAINS OF THEIR MATRIX PROTEIN 

 

 Potato yellow dwarf virus (PYDV) is the type species of the genus nucleorhabdovirus which is 
typified by its nucleotropic characters of the members. The virus accomplishes its replication and 
morphogenesis in the nuclei of infected cells. Two strains, Constricta strain (CYDV) and 
Sanguinolenta strain (SYDV) have been described at the level of vector-specificity. CYDV is 
vectored by Agallia constricta and SYDV is transmitted by Aceratagllia sanguinolenta. The full-
length genome of CYDV was sequenced. The 12,792 nt antisense genome encodes seven open 
reading frames in the order of, nucleocapsid protein (N), unknown protein (X), phosphoprotein (P), 
movement protein (Y), matrix protein (M), glycoprotein (G), and large polymerase protein (L). The 
features of each protein including a nuclear localization signal, isoelectric point, and 
transmembrane domain, were determined by predictive algorithms. The gene coding region was 
flanked by leader and trailer, and each ORF was separated by a conserved intergenic junction. In 
the intergenic junctions, the highly conserved cis-regulatory elements, polyadenylation signal, gene 
spacer, and transcription start site, were identified. The similarities of amino acid sequences 
between each cognate protein of SYDV and CYDV were higher than 80% except for X and P 
proteins. The protein localization and interaction assays of each CYDV protein identified strain-
specific associations in comparison with those of SYDV and generated unique protein interaction 
and localization map compared to SYDV. Phylogenetic analysis using L protein identified that 
CYDV forms a clade with other leafhopper-transmitted rhabdoviruses. Protein sequence 
comparisons revealed that CYDV X has greater similarity to the cognate protein of Eggplant mottle 
disease virus than to SYDV X. The localization patterns of CYDV-N and -Y were different 
compared the cognate proteins of SYDV. The functional nuclear export domain of SYDV M was 
identified using c-terminal fragments of the Mwt(aa 211-243), MLL223AA(aa 211-243), and 
MKR225AA(aa 211-243). Based on the data, the functional domains M mediating membrane 
association, nuclear import and export were mapped for both strains and suggested a model 
whereby M mediates intra- and intercellular movement of PYDV nucleocapsid.  



 

KEYWORDS: rhabdovirus, protein localization and interaction map, nuclear localization signal, 
nuclear export signal 
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CHAPTER 1 

A Comprehensive literature reviews 

Rhabdovirus 
 

The Rhabdoviridae are a family in the order Mononegavirales, whose members infect a 

wide range of hosts including vertebrates, arthropods, and plants (Dietzgen et al., 2017, Walker et 

al., 2015). Many of them (i.e., rabies virus, viral hemorrhagic septicemia virus, maize mosaic virus) 

are pathogens that significantly affect public health and agricultural industries (Bohle et al., 2011; 

Jackson et al., 1997; Reed et al., 2005). Currently, rhabdoviruses are taxonomically classified into 

eighteen genera and one unassigned species (Table 1) (Walker et al., 2018).  

The majority of rhabdoviruses are transmitted by arthropod vectors, such as aphids, 

planthoppers, leafhoppers, blackflies, and mosquitoes (Franck, 1973; Jackson et al., 2005; Walker 

et al., 2015). Metagenomic studies have found rhabdovirus-like endogenous viral elements from 

arthropod genomes, and these data suggest that the vectors were subjected to repeated rhabdovirus 

infection during their evolutionary history and the integrated sequences are engaged actively in the 

vector evolution. (Geisler et al., 2016; Longdon et al., 2015; Fort et al., 2012). While the other 13 

genera of rhabdoviruses are transmitted by insect vectors, lyssaviruses, novirhabdoviruses, 

perhabdoviruses, spriviviruses, and tupaviruses are circulated among vertebrate hosts without a 

biological vector (Table 1) (Dietzgen et al., 2017; Walker et al., 2018).  

All rhabdovirus genomes are about 11 to 16 kb in size and include at least five common 

genes encoding nucleoprotein (N), phosphoprotein (P), matrix protein (M), glycoprotein (G) and 

RNA-dependent RNA polymerase (L) (Fig. 1.1) (Dietzgen et al., 2017; Walker et al., 2015). These 

genes are flanked by leader and trailer sequences which are untranslated and partially 

complementary (Bejerman et al., 2015; Heaton et al., 1989; Jackson et al., 2005). Each gene is 

separated by a conserved intergenic junction region (Bejerman et al., 2015; Heaton et al., 1989). 

These intergenic junctions have three highly-conserved cis-regulatory elements, namely the 
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polyadenylation signal, the intergenic spacer, and the transcription start site (Follett et al., 1974; 

Banerjee et al., 1987; Ivanov et al., 2011; Liu et al., 2018).  Some rhabdovirus genomes encode 

accessory genes in addition to the five major structural protein coding genes (Fig 1.1). These 

accessory proteins are likely to confer virus-specific biological properties such as host specificity, 

and pathogenicity (Walker et al., 2015). 

The five canonical proteins, N, P, M, G, and L are common across all members of 

Rhabodoviridae, and they serve as structural components of the virion (Luo et al., 2007; Ryu et al., 

2017; Jackson et al., 2005). Nucleoprotein (N) is a major component of the nucleocapsid. This 

RNA-binding protein encapsidates the virus genome RNA and actively interacts with the L and P 

proteins to form the minimal infectious unit, the ribonucleoprotein (RNP) complex (Green et al., 

2009). Rhabdovirus N proteins are comprised of two main domains, the N-terminal domain (NNTD) 

and the C-terminal domain (NCTD). Two other sub-domains, the NNT-arm and NCT-loop, are 

extended from NNTD and CCTD, respectively. The RNA binding cavity locates at the interface 

between NNTD and NCTD, and the viral RNA is tightly bound to the cavity. One nucleoprotein 

interacts with nine ribonucleotides of viral genome (Iseni et al., 1998). The basic residues of N 

form multiple salt-bridges with the sugar-phosphate groups of RNA and these electrostatic 

interactions stabilize the N-RNA complex. This N-RNA complex is highly protected against 

degradation by nuclease (Iseni et al., 1998). The exchange of the NNT-arm and NCT-loop in opposite 

directions between adjacent N protomers mediates N polymerization to encapsidate the entire virus 

genomic RNA (R. Assenberg et al., 2010; Ivanov et al., 2011, Luo et al., 2007). While RNA 

encapsidation by N is selective to its compatible virus genomic- and antigenomic RNA, the viral- 

and host- mRNAs do not interact with N proteins (Ivanov et al., 2011, Luo et al., 2007). The 

concentration of N0-P (0 represents absence of RNA) plays a role in switching the mode of replicase 

(L) from transcription to replication (Arnheiter et al., 1985; Gupta et al.,1997). 
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Phosphoprotein (P) plays multifunctional roles during the transcription and replication 

processes (R. Assenberg et al., 2010; Leyrat et al., 2011). P is an essential non-catalytic cofactor 

of the large polymerase (L) that mediates the attachment of L to the N-RNA template and stabilizes 

the interaction between L and nucleocapsid during RNA synthesis (Leyrat et al., 2011). P also 

chaperones N during the assembly of new nucleocapsids. P binds to nascent N and produces N0-P 

complex, and this interaction prevents self-aggregation and non-selective binding to host RNAs 

(Ivanov et al., 2011; Chenik et al., 1998). The nascent N proteins are transferred from the soluble 

N0-P complex to encapsidate newly synthesized viral genome- and anti-genome (Leyrat et al., 

2011). P protein has a modular structure with three structured domains that are concatenated by 

two intrinsically disordered regions (IDRs) in order N0-binding MoRE (molecular recognition 

element)-IDRNT-PCED (central oligomerization domain)-IDRCT-PCTD (C-terminal N-RNA binding 

domain) (R. Assenberg et al., 2010; Leyrat et al., 2011). The N0-binding MoRE interacts with 

nascent N proteins. The IDRNT contains phosphorylation sites that may be involved in the 

modulation of transcription. N0-binding MoRE, IDRNT, and N-partial PCED together form a highly 

acidic N-terminal region and mediate P-L interaction. PCED mediates the self-assembly of P. The 

IDRCT has been known as the interaction domain for cellular partners (e.g., dynein). The PCTD 

interacts with N-RNA complexes (Ivanov et al., 2011; R. Assenberg et al., 2010; Leyrat et al., 

2011). P protein was shown to possess multiple binding sites for host factors and viral proteins (i.e., 

NES, NLS, N-, N-RNA-, L- binding domains). In infected cells P occurs in several truncated forms 

in different phosphorylation states (R. Assenberg et al., 2010 Leyrat et al., 2011). These data 

indicate that the P protein plays multiple roles as a component of multi-molecular complexes.  

Matrix protein (M) is a structural component that related to maturation of rhabdovirus 

virion: it condenses ribonucleocapsid into the core and produces the M protein layer between the 

condensed RNP and the viral envelope containing glycoproteins. In addition to the structural role, 

M has been implicated in regulating the host immune response by suppressing the related gene 
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expression (Connor et al., 2002, Finke et al., 2003). In 2005, Faria et al (2005). reported that the 

interaction of M with host Rae1 inhibits nuclear export of host mRNA. The tertiary structures of 

rhabdovirus M proteins are similar between distantly related rhabdoviruses despite the dissimilar 

amino acid sequence (Graham et al., 2008). The detailed functional domains of the matrix proteins 

of rhabdoviruses are still not clear. However, the role of the basic N-terminus domain of the protein 

for self-aggregation and membrane association has been well characterized in the protein structure 

level (Gaudier et al., 2001, Gaudier et al., 2002 Graham et al., 2008). The late domain (PPPY motif) 

in the matrix protein is essential for virus budding via interaction with specific cellular proteins 

containing WW domains (i.e., NEDD4, a ubiquitin ligase that interacts with the vesicle formation 

and cargo sorting ESCRT complexes) (Harty et al., 1999, Craven et al., 1999).  

Glycoprotein (G) is an N-glycosylated type I transmembrane protein. G proteins are 

assembled into trimer complexes to form the spikes on the virion surface (Goder et al., 2001, 

Walker et al., 1999, Coll et al., 1995). Although G proteins of the rhabdovirus members from 

different genera share a low level of amino acid sequence identity, the sequence alignment results 

have revealed that they have 12-16 highly conserved cysteine residues, 2-6 potential glycosylation 

sites, an amino-terminal hydrophobic signal peptide, and a carboxy-terminal hydrophobic 

transmembrane domain (Goder et al., 2001, Walker et al., 1999, Coll et al., 1995). The disulfide 

bridges formed by the most highly conserved six cysteines produce the core of the G protein 

structure and define the common discontinuous antigenic sites (Walker et al., 1999). In the early 

stage of virus infection, the G protein spikes mediate the attachment of the virion to host cell 

receptors and induce virus mediated-endocytosis (Albertini et al., 2012). During the endocytosis, 

the pH-dependent conformational change of the G protein into trimer induces virus membrane 

fusion with endosomal membranes and releases the virus nucleocapsid into the cytoplasm (Regan 

et al., 2013; Johannsdottir et al., 2009; Albertini et al., 2012). In the early studies about rhabdovirus 

maturation and budding, the glycoproteins were found to be one of the major determinants for the 
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virus budding process (Simons et al., 1980, Weiss et al., 1980). However, electron microscopy 

studies using the VSV and RV lacking the G protein gene demonstrated that the G protein is not 

necessary for the release of the virus particle, but it contributed to the efficiency of virus budding 

(Mebatsion et al., 1996; Robison et al., 2000). According to Mebatsion et al., the budding 

efficiency of ΔG rabies viruses was 30-fold less than that observed for the wild type virus. 

The rhabdovirus large (L) proteins are an approximately 250 kDa multi-enzymatic proteins 

that catalyzing genome RNA transcription and replication in association with viral 

ribonucleoprotein as a template (Baltimore et al., 1970). In addition to the RdRP (RNA-dependent 

RNA polymerase) activity, the protein catalyzes viral mRNA capping, methylation, and 

polyadenylation. The L protein sequence is well conserved among all rhabdoviruses and electron 

cryomicroscopic data identified the five conserved functional domains and two structural domains 

in the L protein that represent their enzymatic functions: polymerase (RdRP)-, capping (Cap)-, 

linker-1, connector (CD)-, linker-2, methyltransferase (MT)-, and C-terminal (CDT)- domains in 

order (Liang et al., 2015). In transcription, the L protein mediated-mRNA capping mechanism is 

different from that of their eukaryote hosts (Ivanov et al., 2011). While eukaryotes transfer GMP 

to the terminal diphosphate of RNA, the GDP is preferentially transferred to a 5’ monophosphate 

RNA by the capping domain of the rhabdovirus L protein. After that, the cap is methylated at ribose 

2’-O and guanine-N-7 positions by the MT domain (Ivanov et al., 2011; Liang et al., 2015). The 

poly-adenylation of mRNA is catalyzed by the C-terminal region of the RdRP domain, and the 

ploy-A tail is synthesized by slippage of L protein on a U-track region in the intergenic junction 

region (Barr et al., 1997). During replication and transcription, L protein does not directly bind to 

the N-RNA template, but L requires the viral phosphoprotein (P) as a cofactor, which serves as a 

bridge between L and the N-RNA complex (Wu et al., 2002; Banerjee et al., 1987, Whelan et al., 

2002). The structural conformation and enzymatic activity of L is controlled by phosphoprotein 

(Das et al., 1997, Pattnaik et al., 1997) 
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Rhabdoviruses have a characteristic bullet-shaped or bacilliform enveloped virion. The 

size of virions ranges from 100 to 430 x 45 to 100 nm (Bandyopadhyay et al., 2010; Burrell et al., 

2017; Higgins et al., 2016; Jackson et al., 2005; Ryu et al., 2017). In general, the chemical 

composition of rhabdovirus is 0.7 % to 5 % RNA, 20 to 25 % lipid, 60 to 70 % protein, and 3 to 

13 % carbohydrate (Ahmed et al., 1964; Bishop et al., 2018). In the virus particle, the negative-

sense single-strand RNA genome is encapsidated along its entire length by the N protein. The 

polymerase complexes which consist of L and P proteins are associated with the N-RNA complex 

and form ribonucleoprotein (Luo et al., 2007; Ruigrok et al., 2011; Yang et al., 1999; Ye et al., 

2006). This complex represents the minimum infectious unit of rhabdovirus (Ganesan et al., 2013; 

WalPita et al., 2005). The nucleocapsid is condensed into the core structure by the M protein layer 

(Raux et al., 2010; Solon et al., 2005). The core particle is surrounded by lipid bilayer containing 

transmembrane G proteins that constitutes the spikes exposed on the surface of the virion 

(Bejerman et al., 2015; Burrell et al., 2017; Mann et al., 2014; Regan et al., 2013).  

The replication mechanism is almost universal across all members of the family except the 

genus Nucleorhabdovirus, due to the plant cell environment and formation of a replication factory 

in the nucleus by the genus members (Jackson et al., 2005; Redinbaugh et al., 2005, Burrell et al., 

201; Ryu et al., 2017). The rhabdoviruses replication cycle follows: 1) cell entry, 2) uncoating and 

releasing the nucleocapsid to the cytoplasm, 3) transcription and translation, 4) genome replication 

and encapsidation, and 5) assembly and budding (Hull et al., 2014; Ivanov et al., 2011; Albertini 

et al., 2012; Ammar et al., 2008; Burrell et al., 2017; Mann et al., 2014; Regan et al., 2013).  

While the entry of rhabdoviruses is mediated by receptor binding and endocytosis (Sun et 

al., 2005; Sun et al., 2010), that of plant-adapted rhabdoviruses is mediated by insect vectors 

(Albertini et al., 2012; Johannsdottir et al., 2009; Regan et al., 2013). In the entry of animal 

rhabdoviruses, the viral envelope fuses to the endosomal lipid bilayer by the pH-dependent 

conformational change of the G protein trimer (Coll et al., 1995; Albariño et al., 2011, Kim et al., 
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2017). Subsequently, the matrix protein layer of the core is dissociated from ribonucleocapsid, 

followed by the liberation of the infectious unit to host cytoplasm. After the uncoating process, the 

liberated RNPs form characteristic cytoplasmic inclusions where the viral transcription and 

replication occurs (Albertini et al., 2012; Dietzgen et al., 2017; Kim et al., 2017). The transcription 

mechanism of rhaboviruses is called the stop-start mechanism. (Abraham et al., 1976; Ball et al., 

1976; Ivanov et al., 2011, Whelan et al., 2002). In this mechanism, the viral polymerase binds to 

the single-entry point of 3’ terminal of ribonucleocapside and produces first the leader RNA (not 

capped nor polyadenylated) (Kurilla et al., 1983; Abraham et al., 1976) and reinitiates the 

transcription of the downstream genes, i.e., the nucleoprotein gene (Abraham et al., 1976; Ball et 

al., 1976). The polyadenylation of mRNA of the upstream gene and the re-initiation of the 

downstream gene expression is regulated by the regulatory elements encoded in the gene junction 

regions (Barr et al., 1997; Ivanov et al., 2011; Iverson et al., 1981). One of features of the stop-

and-start mechanism is transcriptional attenuation at gene borders, which results in a transcript 

gradient due to the detachment of polymerase from each gene junction (Abraham et al. et al., 1976; 

Ball et al., 1976; Whelan et al., 1999). The genome replication is initiated after the polymerase 

function switches to replication by N protein accumulation. In the replicative mode, the polymerase 

complex ignores the regulatory sequence and synthesizes the full-length genome and anti-genome 

(Mann et al., 2014). Nucleocapsids are assembled during RNA replication. Matrix proteins are 

recruited to condense the new RNPs at the host plasma membrane from where virions will bud 

(Graham et al., 2008; Raux et al., 2010; Solon et al., 2005). Glycoproteins are incorporated during 

budding into virion, and the matured- and enveloped progeny particles are produced (Chen et al., 

2008; Jayakar et al., 2004).  

Plant-adapted Rhabdoviruses 
  

Plant rhabdoviruses infect a wide variety of plants including agriculturally important crops 

such as lettuce, potatoes, tomatoes, maize, barley, and rice (Jackson et al., 2005; Mann et al., 2014; 
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Redinbaugh et al., 2005; Dietzgen et al., 2017, Walker et al., 2015). More than 90 plant 

rhabdoviruses have been identified (Jackson et al., 2005; Mann et al., 2014). Currently, The 

complete genome sequences of fifteen plant-adapted rhabdoviruses are available: Alfalfa dwarf 

virus (Bejerman et al., 2015), Barley yellow striate mosaic virus (Yan et al., 2015), Colocasia 

bobone disease-associated virus (Higgins et al., 2016), Lettuce necrotic yellows virus (Dietzgen et 

al., 2006), Lettuce yellow mottle virus (Heim et al., 2008), Northern cereal mosaic virus (Tanno et 

al., 2000), Datura yellow vein virus (Dietzgen et al., 2015), Eggplant mottled dwarf virus (Zhai, 

unpublished, Genbank: KJ080287.1), Maize Iranian mosaic virus (Ghorbani et al., 2018), Maize 

fine streak virus (Tsai et al., 2005), Potato yellow dwarf virus (Bandyopadhyay et al., 2010) Rice 

yellow stunt virus (Huang et al., 2003), Sonchus yellow net virus (Heaton et al., 1989), Taro vein 

chlorosis virus (Revill et al., 2005). Plant-adapted rhabdoviruses are taxonomically divided into 

four genera, Cytorhabdovirus, Nucleorhabdovirus, Varicosavirus and Dichorhavirus. The virions 

of plant-adapted rhabdoviruses are typically bacilliform in shape except Varicosavirus (rod shape). 

Cyto-, nucleo- rhabdovirus and dichoravirus are transmitted by arthropod vectors such as aphids, 

leafhoppers,  planthoppers, and mites in the persistent manner (Kuzmin et al., 2009; Lvov et al., 

2015; Jackson et al., 2005). Otherwise, Varicosavirus is transmissible by fungi (Hartwrite et al., 

2010). The members of Cytorhabdovirus and Varicosavirus replicate in the cytoplasm of infected 

host cells. The maturation and budding of virions are associated with the endoplasmic reticulum 

membrane (Mann et al., 2014). Currently, eleven species cytorhaboviruses are identified and of 

which Lettuce necrotic yellows virus is the type species (Jackson et al., 2005). The type species is 

“a virus chosen for each genus to serve as an example of a well characterized virus species among 

the members of the genus” (ICTV master species lists, 2016). Nucleorhabdoviruses and 

dichoraviruses replicate in the nuclei of infected plant cells. The viruses do their replication and 

morphogeneis in the infected host nuclei (Bejerman et al., 2015; Jackson et al., 2005; Mann et al., 

2014). The genus has ten species, and Potato yellow dwarf virus is the type species. 

(Bandyopadhyay et al., 2010; Lamprecht et al., 2009; Liu et al., 2018; Martin et al., 2012). All 
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plant-adapted rhabdovirus genomes encode the accessory movement protein (MP) that mediates 

cell-to-cell movement and induces systemic infection. The MP gene is located between P and M 

genes, and the movement proteins are thought to be related to the microtubules and plasmodesmata 

in the plant cell (Bejerman et al., 2015; Heaton et al., 1989; Jackson et al., 2005; Redinbaugh et 

al., 2005; Walker et al., 2011).  

Potato yellow dwarf virus 
 

Potato yellow dwarf virus (PYDV) is the type species of genus Nucleorhabdovirus. Black 

(1941) described the two strains of PYDV at the vector-specificity level (Black et al., 1941). 

According to the data, the leafhopper, Agallia constricta (Fig. 1.2a) that transmits the New Jersey 

strain of PYDV did not transmit the New York strain, which is vectored by Aceratagallia 

sanguinolenta (Fig. 1.2b) (Black et al., 1941). The New Jersey strain and the New York stain of 

PYDV were later renamed as Constricta yellow dwarf virus (CYDV) and Sanguinolenta yellow 

dwarf virus (SYDV). The two strains are also serologically distinct. Except for G protein, CYDV 

antigens do not interact with the SYDV antibody (Black et al., 1941) (Fig. 1.2d). The same result 

was obtained from SYDV antigens with the CYDV antibody (Fig. 1.2c). Development of the 

method for inoculation of Potato yellow dwarf virus on the vector cell monolayers allowed more 

detailed studies to explain the biological distinction between the two PYDV strains in the vector 

specificity (Black et al., 1941, Hsu et al., 1973). The optimal pH for the Sanguinolenta strain of 

PYDV inoculation to the leafhopper cell was 5.9, while the optimal inoculation pH for the 

Constricta strain was 5.3 (Hsu et al., 1973). The data indicated that the surface proteins of the virus 

particle are involved in the functional role during the inoculation of insect vector cells (Falk et al., 

1983; Hsu et al., 1984). Hsu et al. used two-dimensional protein gel electrophoresis to determine 

the isoelectric point (pI) of SYDV-G and CYDV-G proteins and identified their pI as 4.8 and 4.3, 

respectively (Hsu et al., 1984). The infectivity neutralization tests by Hsu et al. (1984) revealed 

that SYDV-G specific-antibody significantly reduced the number of CYDV-infected AS-2 cells. 
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Infection of the cell by CYDV was inhibited by the SYDV-G specific antibody as well, but the 

sensitivity was tenfold less than that of SYDV (Hsu et al., 1984).   

Among the two strains, the full-length genome sequence and protein localization and 

interaction map of the SYDV were determined (Bandyopadhyay et al., 2010). The SYDV genome 

consists of 12,881 nucleotides that have two more ORFs of X and Y proteins in addition to the five 

common canonical protein genes that are shared by all rhabdoviruses (Bandyopadhyay et al., 2010). 

ORF X is located between the N and P genes, and ORF Y is located between the P gene and the M 

gene (Fig. 1.1b, PYDV). The gene coding region is flanked by the leader and trailer sequences. The 

overall genome structure is 3’ leader-N-X-P-Y-M-G-L-trailer 5’ (Bandyopadhyay et al., 2010).  

The functional role of SYDV-X is unclear, but a BLASTp search using the X protein amino acid 

sequence suggested that SYDV-X is similar to the MFSV-ORF3 protein (Bandyopadhyay et al., 

2010). The amino acid sequence similarity of SYDV-Y to SYNV-sc4, which has identified as a 

movement protein, suggests its cell-to-cell movement function (Heaton et al., 1989; Anderson et 

al., 2014; Huang et al., 2005). The GFP-tagged Y protein localized on the cell periphery region, 

and this localization aspect was similar to the SYNV SC4 (Bandyopadhyay et al., 2010; Min et al., 

2010). The function of N, P, M, G, and L of SYDV was proposed based upon amino acid similarity 

with the cognate proteins of SYNV which was previously characterized (Bandyopadhyay et al., 

2010; Heaton et al., 1989). N, P, and M proteins were localized on the nucleus (Bandyopadhyay et 

al., 2010). Bandyopadhyay et al. (2010) showed the rearrangement of the inner nuclear membrane 

by SYDV-M without the context of virus infection, which was not observed from the SYNV-M 

expression. The SYDV-G protein was localized on the nuclear membrane (Bandyopadhyay et al., 

2010; Anderson et al., 2014). In addition to the accumulation of the PYDV particle in the 

perinuclear space (Knudson et al., 1973), these interactions and localization patterns of the viral 

proteins in the plant cell explain the nucleotropic life cycle of PYDV in more detail 

(Bandyopadhyay et al., 2010; Anderson et al., 2014). 
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Nuclear transport 
 

Molecular transport between the cytoplasm and nucleoplasm is essential for many 

physiological and cytopathological processes, such as gene expression, cell signaling, pathogen 

infection, and immune response in cells (Raikhel et al., 1992; Moore et al., 1996; Sanderfoot et al., 

1996; Whittaker et al., 1998). The cytoplasm and nucleoplasm are separated by the nuclear 

envelope (NE), which consists of the inner nuclear membrane (INM) and outer nuclear membrane 

(ONM). The ONM is continuous with the membrane of the endoplasmic reticulum. The space 

between the INM and ONM is termed the perinuclear space, and this space is connected to the 

lumen of the ER (Fig. 1.3a). The only channels through which molecular transport can take place 

are the selectively permeable channels called nuclear pore complexes (NPCs) (Naim et al., 2007; 

Wang et al., 2007; Wente et al., 2010; Kabachinski et al., 2015). Cargo proteins travel between the 

cytoplasm and the nucleus in association with nuclear transport receptors (Kabachinski et al., 2015).  

1) Nuclear Pore Complex  
The general structure of the NPC is an octagonal cylindrical opening that is embedded 

within nuclear envelope. Each NPC consists of eight symmetrical spokes that surround a central 

channel. The spokes are attached to a nuclear ring and cytoplasmic ring (Fig. 1.3a). The cytoplasmic 

filaments extend from the cytoplasmic ring toward the cytoplasm, while the nuclear filaments 

emanate from the nuclear ring and conjoin distally to form a nuclear basket. The central channel 

connects the cytoplasmic space to the nucleoplasm and contains selectively permeable barrier that 

is formed by FG rich domains extended from central nucleoporins (D’Angelo et al., 2008, 

Onischenko et al., 2011; Alber et al., 2007) (Fig. 1. 3a, b). These substructures of the NPC consist 

of multiple copies of about 30 different nucleoporins (Ibarra et al., 2015; Tamura et al., 2013). 

Comprehensive proteomic studies of NPC in Saccharomyces cerevisiae determined 29 different 

nucleoporins (Rout et al., 2000). Rout et al., (2000), characterized the localization of each 

nucleoporin in NPC and their functions (Rout et al., 2000). Two years after this study, the first 

vertebrate NPC proteomics data reported that there are 29 nucleoporins in rat liver nuclei 
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(Cronshaw et al., 2002). In addtion to yeast and vertebrates nucleoporins, thirty putative 

nucleoporins were reported from Arabidopsis thaliana in 2010 by Tamura et al (2010). Their data 

revealed that plant nucleoporins have higher sequence homology to vertebrate nucleoporins than 

to those of yeast (Tamura et al., 2010). Despite the low primary sequence similarity, the basic NPC 

structure is conserved in plants, yeast, and vertebrates (Tamura et al., 2010; Eckardt et al., 2010). 

The nucleoporins in vertebrates, yeast, and plants are listed in Figure 1.3b.  

The nucleoporins can be broadly grouped into three categories based on their functional 

properties and localization in the NPC: (1) membrane nucleoporins, (2) scaffold nucleoporins, and 

(3) barrier nucleoporins (Fig. 1.3b) (Onischenko et al., 2011; Tamura et al., 2013; Alber et al., 

2007; Parry et al., 2014). The membrane nucleoporins are thought to anchor the NPC to the nuclear 

envelope. In plants, the membrane nucleoporins, GP210 (homology of yeast pom152)(Gerace et 

al., 1982; Greber et al., 1990) and NDC1(Wonzniak et al., 1994) form an outer transmembrane 

ring of NPC. Yeast and vertebrates possess additional nucleoporins, Pom 34 and Pom 121, 

respectively. The scaffold nucleoporins bridge the membrane nucleoporins to the barrier nuclear 

porins. The scaffold nucleoporin group is comprised of 19 members in plants. These nucleoporins 

constitute the outer ring, inner ring, and linker in the NPC. These substructures are thought to play 

a key role to maintain the stable connection between the NPC and the nuclear envelope. In plants, 

the outer ring is composed of 12 nucleoporin members: Nup160, Nup133, Nup107, Nup96, Nup75, 

Nup43, SEH1, SEC13, ALADIN, GLE1, RAE1, and Elys. The inner ring is located in the central 

part of the main channel and consists of 4 nucleoporin members (Nup205, Nup188, Nup155, 

Nup35). The linker nups (Nup93 and Nup88) connects the outer ring and inner ring. The barrier 

nucleoporins are categorized into three groups: cytoplasmic FG-Nups, Central FG-Nups, and 

Nuclear-FG Nups based on their orientation in NPC. FG-Nups have phenylalanine-glycine repeats, 

the large intrinsically-disordered domains. The two cytoplasmic FG-nups, Nup214 and CG1 are 

the constituents of cytoplasmic filaments in plants and vertebrates. In plants, the Nup1/136, Nup50, 
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and NUA (Nup153, Nup50, and Tpr in vertebrate) form the nuclear basket. These structures play a 

role in interaction transport receptors and serve as docking sites for nuclear import and export. 

Hutton et al., (2009) reported that Nup358, a cytoplasmic filament component, interacts with 

RanGAP (RanGTPase-activating protein) to facilitate the nuclear transport receptor-dependent 

nuclear import (Hutten et al., 2019). Nup358 is absent in plants, but plant RanGAPs have a 

conserved WPP domain which interacts with the WPP domain-interacting proteins (WIPs) that 

direct RanGAP to NE (Zhao et al., 2008). The nuclear basket components, Nup136 and NUA, are 

involved in mRNA export (Xu et al., 2010) and plant developments (Tamura et al., 2010). The 

overexpression of the nuclear basket components induced dramatic accumulation of poly-A RNA 

in nucleus, and gene silencing of Nup 153 induced a dwarf phenotype of A. thaliana. Nup153 (Nup 

136 homolog) interacts with lamin B, which supports the nuclear structure. The association of plant 

Nup136 with the nuclear lamina has also been suggested (Tamura et al., 2013). The central FG 

Nups have FG-rich repeats forming a selective barrier regulating nucleocytoplasmic transport in 

the central channel of NPC. The unfolded structure allows low-affinity and high-specific 

interactions with the transport factors (Strawn et al., 2004). Five FG nups (Nup98, Nup58, Nup54, 

and Nup35) have been identified from plants (Zhao et al., 2011). Ryan et al. (2010) showed that 

all FG nucleoporins could interact with at least one transport receptor (Ryan et al., 2010). As briefly 

stated above, the central channel of the NPC is filled with these highly flexible, natively unfolded- 

and fiber-like FG repeats that extended from FG-Nups located in NPC center (Jovanovic-Talisman 

et al.,2017). The meshwork of FG-Nup filaments forms the permeable barrier in the central channel 

of NPCs and directly mediates nucleocytoplasmic transport via interaction with nuclear transport 

receptors (NTR). (Freitas et al., 2009; Naim et al., 2007; Wente et al., 2010). The NTRs bind to 

cargo and the transport complexes gain access the central channel through the intrinsic weak 

affinities between NTRs and FG-repeats. The weak and transient interaction prevents the transport 

complex from getting stuck in the mesh structure and allow it moves rapidly in the pore (Boche et 

al., 1997; Fung et al., 2017). 
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2) Nuclear transport receptors  
There are two types of passage through the central barrier of the NPC. Small molecules 

below 40 kDa or 5nm in diameter move through NPC rapidly by free diffusion (Alberts B et al., 

2002). Although the passive diffusion of the proteins larger than 40 kDa has been reported (Wang 

et al., 2007, Popken et al., 2015), the diffusion efficiency was much lower than the small molecules 

(Timney et al., 2016; Wang et al., 2007). The transport of most proteins larger than the diffusion 

limit is mediated by nuclear transport receptors (NTR) (Timney et al., 2016; Naim et al., 2007; 

Wang et al., 2007). The NTRs are collectively referred to as karyopherins with those involved in 

import and export termed importins and exportins, respectively (Lusk et al., 2002). The importin-

β superfamily proteins are major nuclear transport receptors that interact with Ran small GTPase 

and transport of cargo proteins (Merke et al., 2011). Goldfarb et al. (2004) classified the 14 

importin-βs in the yeast genome, 18 of these proteins in human genome. Eighteen importin-β 

proteins were identified from the Arabidopsis thaliana genome (Tamura et al., 2014). In the 

classical nuclear import model, the interaction between cargo and importin-β is mediated by adapter 

proteins called importin-αs. The adapter protein recognizes two classes of NLS, known as classical 

NLSs: monopartite and bipartite NLSs (Kosugi et al., 2008). Several structural studies revealed 

that importin-ɑ is composed of an N-terminal importin-β-binding (IBB) domain, ten armadillo 

(Arm) repeats, and conserved short acidic amino acids clusters in the C-terminal region (Kobe et 

al., 1999; Lott et al., 2011; Lange et al., 2007). The IBB domain has the autoinhibitory sequence, 

KRR residue, which regulates the binding affinity of both types of cNLS, preventing re-binding 

and mediating the release of cargo in the nucleoplasm (Lott et al., 2011; Lange et al., 2007). The 

Arm repeats produce two binding domains, major groove and minor groove, that interact with the 

cargo NLSs (Lange et al., 2007). Although many cargo proteins can be imported in importin-ɑ-

independent manners, cNLS-mediated nuclear import has been assumed as the most prevalent 

pathway due to the surfeit of known cNLS containing proteins (Goldfarb et al., 2004). The global 
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analysis of protein localization in yeast revealed that 45% of the 5850 yeast proteins in the 

GenBankTM set have the potential to be imported by the cNLS (Huh et al., 2003).  

The karyopherins which mediate nuclear export of cargo proteins are called exportins. The 

chromosome regions maintenance 1/exprotin1/Exp1/XPO1 (CRM1) has been reported as the major 

transport receptor for the export of proteins from the nucleoplasm to the cytoplasm (Thakar et al., 

2013). CRM1 recognizes the leucine-rich nuclear export signals of cargo proteins. O’Reilly et al., 

(2011) classified nine exportin gene families, XPO 1-7, XPOT, and TNPO from human and mice 

karyopherins. Plant genomes encodes PLATKAP instead of XPO6 gene (O’Reilly et al., 2011; 

Tamura et al., 2014). These exportins are functionally diverse. XPOT and XPO1 export tRNAs and 

proteins containing leucine-rich NESs. XPO5 exports eEF1A, tRNA, and 60S ribosomal subunits. 

XPO6 exports actin (O’Reilly et al., 2011).  

3) Nuclear import 
The NLSs are typically a stretch of 7-20 amino acids within karyophilic proteins. Various 

classes of NLSs have been reported from different organisms (Cooper et al., 2000; Krichevsky et 

al., 2006; Whittaker et al., 1998). The first NLS to be identified, at the molecular level, was the 

large T antigen NLS of the simian virus 40 (SV40) (Kalderon et al., 1984). The viral NLS was 

found to consist of the seven basic amino acids, PKKKRKV. Kalderon et al. demonstrated that this 

sequence was sufficient to import the heterologous cytoplasmic proteins, namely B-galactosidase 

and pyruvate kinase (Kalderon et al., 1984). Four years later, Dingwall et al. identified the amino 

acid structure of another type of cNLS, the bipartite signal (underlined), from Xenopus 

nucleoplasmin which consists of sixteen residues, KRPAATKKAGQAKDKK (Dingwall et al., 

1988). They found that two clusters of basic residues (underlined) are necessary for nuclear 

targeting of the protein (Dingwall et al., 1988). These two NLSs are considered as the prototypes 

of the classical nuclear localization signals (cNLS) (Rihs et al., 1991). Although the prototypical 

sequence of the cNLSs have been defined and may be the most common, there are still many 
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different NLSs that do not match the consensus rule (Kosugi et al., 2009). Kosugi et al. classified 

NLSs binding to importin-ɑ into six classes, based on their binding modes and amino acid sequence 

similarities. In their study, the monopartite NLSs that bind to the major groove of importin-ɑ were 

designated to Class 1 and Class 2 based on its consensus sequence. Class 1 NLSs have monopartite 

and consecutive basic amino acid residues with a consensus sequence of KR(K/R)R or K(K/R)RK. 

The prototype monopartite NLS of SV40 (PKKKRKV) is an example of Class 1 NLS.  Class 2 has 

(P/R)XXKR(^DE)(KR) as its consensus sequence. The NLS of human c-myc 

(PAAKRVKLD/RQRRNELKRSF) is an example of Class 2 NLSs. Amino acid replacement 

analysis revealed that the activity of Class 2 NLS is affected by flanking residues (Kosugi et al., 

2009). The NLSs of Class 3 and Class 4 bind to the minor groove of importin-ɑ (Kosugi et al., 

2009). They are also monopartite NLSs but differ from Class 1 and Class 2, in that they have only 

two or three consecutive basic amino acids. Class 3 has a consensus sequence KRX(W/F/Y)XXAF 

(Kosugi et al., 2009). This sequence was identified in the C terminus of nucleolar RNA helicase 

II/Gu(Ddx21) in mice (Kosugi et al., 2009). The consensus sequence of Class 4 NLS was 

determined to be (R/P)XXKR(^DE) (Kosugi et al., 2009). Class 5 NLSs are also monopartite and 

importin-ɑ minor groove binding signals but differ from other NLS subgroups in their specific 

binding activity to plant importin-ɑ. The consensus sequence of the NLS subgroup is 

LGKR(K/R)(W/K/Y) (Kosugi et al., 2009). The prototype bipartite NLS of nucleoplasmin and its 

homologs are designated Class 6. These cNLSs interact with the heterodimeric import receptor, 

Importin-α/β complex. These NLSs have two clusters of basic amino acids separated by a linker 

domain which consists of 10-12 amino acids. The consensus amino acid sequence of Class 6 NLS 

has been defined as (K/R)(K/R)X10-12(K/R)3/5. (K/R)3/5 represents at least three of either lysine or 

arginine of five consecutive amino acids. The bipartite NLS binds to both the major groove and 

minor groove of importin-ɑ. While the N terminal basic stretches (K/R)(K/R) bind to the minor 

groove, the C-terminal basic stretches bind to the  major groove (Kosugi et al., 2009).  
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The cargo proteins bearing cNLSs interact with a heterodimeric complex which consists of 

importin-ɑ and -β. The importin-ɑ in the complex specifically recognizes the NLS in the cargoes. 

The trimeric complex (importin α/β-cargo) binds to the cytoplasmic side of the NPC (Whittaker et 

al., 1998; Natalia et al., 2009; Miyamoto et al., 2016). Translocation of the trimeric complex into 

the nucleus is mediated by the interaction between importin-β and FG-Nups. (Kalab et al., 2008; 

Lui et al., 2009). The cargo complex is driven by the progressively increasing binding affinity of 

importin-β for Nup358, Nup62, and Nup 153, which are in the cytoplasmic, central, and 

nucleoplasmic regions of the NPC, respectively (Fig. 1.3b-c) (Ben-Efraim et al., 2001). The 

liberation of the cargo from the nuclear import complex is mediated by Ran (Ras-related nuclear 

protein) protein which is also known as GTP-binding nuclear protein Ran in nucleus. The protein 

is one of major components directing nucleocytoplasmic trafficking. While Ran proteins are 

distributed in a GDP-binding state in the cytoplasm, the GTP-binding form predominates in the 

nuclues. The cytoplasmic Ran-GDPs are imported by NTF2 (nuclear transport factor 2) and  

converted into Ran-GTP by Ran nucleotide exchange factor, a regulator of chromosome 

condensation 1 (RCC1) (Lui et al., 2009; Renault et al., 2001). Once the nuclear import complexes 

arrive inside the nucleus, Ran-GTP binds to the importin-β, followed by the release of cargo from 

the complex (Alberts B et al., 2002; Askjaer et al., 1999; Lui et al., 2009). After cargoe release, the 

importins and Ran-GTPs are exported to the cytoplasm for recycling. The importin β/Ran-GTP 

complexes are exported through the NPCs, and, the free importin-α proteins bind to the export 

factor CAS (Cellular apoptosis susceptibility protein) which interacts with Ran-GTP to be exported 

(Cressman et al., 2001; Freitas et al., 2009; Kobayashi et al., 2013; Miyamoto et al., 2016). At the 

cytoplasmic surface of NPC, Ran-GTP is hydrolyzed by the Ran-GTPase activation protein 

(RanGAP). At this time, Ran-binding proteins (e.g., RanBP1) in cytoplasmic space enhance the 

GTPase activity of Ran to recycle the protein for the next round of nuclear import cycle (Fig.1. 4a) 

(Boche et al., 1997).  
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In addition to the classical import pathway, some cargo proteins are imported into the 

nucleus without the interaction between cargoes and adapter proteins. The importin ɑ-independent 

nuclear import pathways for Human Immunodeficiency Virus (HIV) Rev and Tat (Traut et al., 

1999), ribosomal proteins (Rout et al., 1997), cAMP-response element binding protein (CREB) 

(Forwood et al., 200), the human-T-cell leukemia virus type 1 (HLTV-1) protein Rex (Palmeri et 

al., 1999), Cyclin B1 (Takizawa et al., 1999) have been defined. These NLSs bind directly to 

importin-β. The proline-tyrosine localization signals (PY-NLSs) are also recognized by importin-

β2 or transportin-1. The PY-NLSs are structures disordered in free cargoes. The transportin-binding 

domain composed of a hydrophobic N-terminal, a central arginine residue and a C-terminal RX2-

5PY sequence (Soniat et al., 2016). The import of the cargos including phosphorylated Arg-Ser (RS) 

repeats is mediated by transportin3 (Trn3) (Maertens et al., 2014). About 32% of cargos that bind 

to Trn3 have the RS repeat. Other Trn3 cargos use the Arg-Glu (RE) motif or Arg-Asp (RN) motif.  

The NLS of Mat- α2 type protein contains a mix of hydrophobic and basic amino acids (Raikhel et 

al., 1992).  

4) Nuclear export 
Transport of cargo from the nucleoplasm to the cytoplasm is mediated by the specific 

receptors, called exportins (Moore et al., 1996). The chromosome region maintenance 1 (CRM1) 

protein (also known as exportin-1 or XPO1) binds various nuclear export signals (NESs) in 

hundreds of different cargos (Fung et al., 2017). Currently, 265 experimentally identified protein 

cargos are recorded in NES databases (Xu et al., 2012; Fu et al., 2018, http://prodata.swmed.edu ), 

and over 1000 putative CRM1 cargos were identified in a recent proteomics study (Fu et al., 2018). 

The first characterized NES was HIV-1 Rev, and the transcription factor, TFIIA, from Xenopus 

(Askjaer et al., 1998, Moore et al., 1996). Sequence-wise, NESs are hydrophobic sequences of 10-

14 amino acids, often rich in leucine residues. For example, the C-terminal of HIV1 Rev, 

LQLPPLERLTL, is essential in the trafficking of the protein from the nucleus to the cytoplasm 

(Alberts B et al., 2002; Moore et al., 1996). In plant viruses, one of the well-described NES is the 
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Squash leaf curl virus (SLCV: Geminivirus) BR1 movement protein that functions as a nuclear 

shuttle protein (NSP) (Sanderfoot et al., 1996, Ward et al., 1999). The Xenopus TFIIA NES can 

functionally substitute the SLCV NSP NES in both nuclear protein export and virus infectivity. 

This data suggested that the basic nuclear export machinery is highly conserved between animals 

and plants (Ward et al., 1999).  

Several nuclear export receptors such as CRM1/exportin (XPO 1) and cellular apoptosis 

susceptibility proteins (CAS), were identified in various eukaryotic organisms (Fornerod et al., 

1997; Stade et al., 1997; Kutay et al., 1997). During protein export, the trimeric export complexes, 

which consists of cargo, CRM1, and Ran-GTP, are translocated through the central channel of NPC 

and bind to Ran-binding protein 1 (RanBP1).  RanBP1 releases CRM1 from Ran GTP, which is 

followed by the dissociation of the complex. The de-phosphorylation of RanGTP is mediated by 

RanBP1-associated RanGAP. Once the exported molecules are released into the cytoplasm, CRM1 

is recycled back to the nucleus, and Ran-GDP is directed to the nuclear import cycle (Fig. 1. 4b) 

(Seewald et al., 2003, Askjaer et al., 1999, Kehlenbach et al., 1999). 

NLSs and NESs in plant nucleorhabdoviruses 
 

Nucleorhabdoviruses, such as SYNV, PYDV, MFSV, and RYSV have a nucleotropic life 

cycle. The accumulation of viral genomes and structural proteins in the host nucleus (especially in 

the viroplasm) is characteristic of the cytopathology of a nucleorhabdovirus infection. The newly 

assembled virions are found in the perinuclear spaces (Fig. 1.5) (Krichevsky et al., 2006). These 

data indicate that the viruses accomplish transcription, replication, and morphogenesis using the 

host nuclear machinery, and must be shuttled using the nuclear transport machinery to gain access 

to the replication factory (Claudia et al., 1998; Follett et al., 1974, Ghosh et al., 2008; Goodin et 

al., 2001; Revill et al., 2005; Chambers et al., 1965). The nuclear-cytoplasmic transports of the 

viral components can be mediated by the NLSs and NESs on the viral proteins or those of their 

interaction partners (Min et al., 2010).    
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Goodin et al., determined the NLSs of N and P proteins of SYNV in 2001 (Goodin et al., 

2001). The site-specific mutagenesis and deletion analyses demonstrated that the SYNV-N protein 

contains a bipartite NLS in its C-terminus between amino acids 465 and 481 (Goodin et al., 2001). 

The functional NLS domain of P was identified from the N-terminal between amino acids 40 and 

124 (Goodin et al., 2001). However, the nuclear import of P was not medicated by importins-α 

which binds to cNLS. This data suggests that P use an alternative pathway for nuclear import. Also, 

a putative NES was suggested to be located in the C-terminus of the P protein (Goodin et al., 2001). 

Co-expression of N and P affected their cellular localization pattern and nuclear structure as well 

(Goodin et al., 2001). Considering that N and P are essential nucleocapsid core components in all 

rhabdoviruses, the functional NLSs on the two proteins suggest that nuclear transport of the SYNV 

ribonucleoprotein complex is most probably associated with the core components (Goodin et al., 

2001; Min et al., 2010; Krichevsky et al., 2006). A model for the nuclear exportation of the SYNV 

ribonucleocapsid was suggested by Min in 2010 (Min et al., 2010). The model suggests that the 

unbudded ribonucleocapisds of SYNV serve as a cell-to-cell movement complex via the RNPs 

interaction with the host factors Ni67, Mi7, sc4i17 and sc4i21 (Min et al., 2010). The Ni67 and 

Mi7 are the ER-associated transcription activator and transcription factor respectively. Sc4i17 and 

sc4i21 are microtubules associated host factors, a microtubule-anchored transcription activator and 

motor-kinesin, respectively. The N/Ni67 and M/Mi7 interactions take place in the nucleus, and the 

two host factors have NESs. The interaction between the RNPs and the host factors could mediate 

the export of the minimal infectious units to the cytoplasm. Sc4 and glycoprotein interact with the 

RNPs to establish the cell-to-cell movement complex with the sc4i17 and sc4i21. The interaction 

pattern of sc4/sc4i17 on the nuclear periphery and filamentous complexes that radiated from the 

nucleus suggest that the movement protein-related host factors could guide the RNPs to the 

plasmodesmata (Min et al., 2010).  
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The nuclear localization of PYDV proteins (Bandyopadhyay et al., 2010) and the 

functional NLSs on N, P, and M have been identified (Anderson et al., 2014; Anderson et al., 2018). 

PYDV-N is localized exclusively on the nucleus when expressed as a GFP fusion in the plant cell 

(Anderson et al., 2014). Alanine-scanning mutagenesis identified the two amino acid motifs, 

419QKR421 and 432KR433, in the N protein. The two motifs were essential for nuclear import and 

interaction with importin-α. The three amino acid regions 6ISPSRKLRDR15, 18SK19, 35KK37 of the 

phosphoprotein were identified as functional NLSs. The mutagenesis on these regions altered the 

nuclear localization pattern (Anderson et al., 2014). SYDV-P did not interact with NbIMP-α but 

interacted with importin-α7 and –α9 of the non-host plant Arabidopsis thaliana (Anderson et al., 

2014). The protein functional domain predictive program, PSORT identified a possible bipartite 

NLS between amino acids 213-229 of PYDV-M (Anderson et al., 2014; Anderson et al., 2018). 

Alanine scanning analysis revealed that the individual amino acids K225 and R226 are required for 

the NLS function of the protein. The existence of an  NES of PYDV-M was suggested by the 

exclusive cytoplasmic localization of the M fragment spanning amino acid residues 211-253. An 

NES was predicted by NetNES algorithm on the C-terminal of M, between amino acid 241-251 of 

M. The M and XPOI interaction were confirmed by BiFC assay (Anderson et al., 2018). 

Despite the long history of Potato yellow dwarf virus as a research subject for the studies 

of fine-structure of virion (MacLeod et al., 1966), structural proteins (Adam et al., 1944; Knudson 

et al., 1972), cytological effects of the virus infection in host plant cells (Goodin et al., 2005; Ghosh 

et al., 2008; MacLeod et al., 1966; Lin et al., 1987), and the vector specificity (Chiu et al., 1970; 

Gaedigk et al., 1986) of plant-adapted rhabdoviruses, little has been known about the molecular 

determinants of its interaction with plant hosts or insect vectors. Until now, at least seven strains 

of PYDV have been described based on their biological properties including vector-specificity  and 

symptom severity on model plants (Black et al., 1940). Of which, the two strains of PYDV, 

Constricta- and Sanguinolenta- potato yellow dwarf virus, which are distinguished by the two 
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different leafhopper vector transmissions, Agallia constricta and Aceratagallia sanguinolenta, 

respectively, became the predominant research strains to study the strain-specific differences of the 

virus structural proteins and cytopathology on the vector (leafhopper) cells (Black et al., 1941; 

Chiu et al., 1970; Lin et al., 1987). However, no attempt has been made to study genotypic 

differences between the two strains that may affect their remarkedly different biological properties 

including pathogenesis and vector specificity.  

Regarding viral proteins commonly have various functional domains that mediate 

interactions of the viral proteins with multiple factors of hosts and vectors (Verdaguer et al., 2014; 

Subramani et al., 2018) and these interactions are critical determinants of host range and vector 

specificity of the virus (Wintermantel et al., 2016; Mendez-Rios et al., 2010), the sequence 

variations between the two very closely related virus subspecies, CYDV and SYDV, will have 

profound effects on their virus-host and virus-vector protein interactions which would be directly 

linked to their differential symptom development in the host plant (Ghosh et al., 2008)  and distinct 

vector specificity (Black et al., 1941). Furthermore, the impact of sequence variation between the 

two strains will be resulted in as unique subcellular interaction and localization patterns of the virus 

proteins for each virus in the host cell. Therefore, determining full-length genome sequence, 

analyzing genomic structure, prediction of functional domains for viral genome and proteins, and 

determining subcellular localization and interaction of viral proteins for the two viruses will provide 

a clue to find out the molecular determinants that make the two viruses have different biological 

characteristics.  

The purpose of this research is determining the full-length genome sequence of CYDV to 

allow comparative genomic analysis of two PYDV subspecies, CYDV and SYDV, and 

characterization of protein interaction and localization patterns of the viruses in-vivo to provide 

linkage between the sequence information and subcellular functions of the proteins. The SYDV 

genome sequence was already fully sequenced by Bandyopadhyay (2010) in our previous research. 
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 Their genomic information including cis-regulatory elements, amino-acids similarities, 

predicted functional domains of proteins of each virus can be used to explain the distinct spatial 

patterns of protein localizations and interactions between the two viruses at subcellular level. 

Further, this research also focuses on highly conserved functional regions of CYDV and SYDV 

proteins to predict commonly pivotal function of the proteins for the nucleotropic biology of 

nucleorhabdovirus.  

To achieve the purpose of this research, each ORF of the CYDV, except L protein, was 

cloned into GFP fusion expression vector and bimolecular fluorescence complementary assay 

vector to define the subcellular localization and binary interaction of the viral proteins. The resulted 

information was integrated into protein interaction and localization map (PILM). The subcellular 

localization, interaction patterns and PILM of CYDV were compared to those of SYDV to elucidate 

the protein functions and phenotypic uniqueness of them. In-silico prediction for features of viral 

proteins supported the in-vivo results. These in-vivo and in-silico results were used for mapping of 

the functional domains of viral proteins that related to the inter- and intracellular movement of 

PYDV.  Ultimately, these comparative analysis results of two strains of PYDV will provide a link 

between the molecular features of rhabdovirus strains and their differential interactions with host 

and vector species. 
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Table 1. Genera of Rhabdoviridae 
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Figure 1.1. The genome organizations of selected plant negative-strand RNA viruses. (a) Common 

genomic structure of rhabdovirus. All members of the Rhabdoviridae family have the five canonical 

proteins the order, Nucleoprotein (N), Phosphoprotein (P), Matrix protein (M), Glycoprotein (G), 

RNA-dependent RNA polymerase (L). The ORFs are distinguished by intergenic junctions 

(diamond). (b) Genome organization of plant rhabdoviruses. The accessary genes are shown as red 

boxes in the genomes.  
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Figure 1.2. Insect vectors and serotype-specific detection of the CYDV and SYDY strains of PYDV. 

(a) Agallia constricta, the vector of CYDV (b) Acerataallia sanguinolneta, the vector of SYDV. 

(C-D) Serological difference between CYDV and SYDV.   

 

 

 

(Picture courtesy: National Museum Wales. Agallia constricta: NMW image No. i14071, 

Aceratagallia sanguinolneta: NMW image No. i14089) 
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Figure 1.3. Structure of nuclear pore complexes in human, yeast, and plant. (a)Schematic image of 

NPC. (b) Nucleoporins of plant, yeast, and vertebrates. (c) The distribution and approximate 

location of nucleoporins in Plant.  
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Figure 1.4. Generalized diagram of nuclear transport. (a) Nuclear import. The nuclear import begins 

with the dimeric complex formation between importin α and importin-β.  The importin-α of the 

heterodimer binds to the import cargo which has cNLS domain. The trimeric complex is imported 

to the nucleoplasm through NPC. The imported Ran-GDP is phosphorylated by RCC1 and interacts 

with importin-β, followed by cargo and importin-α dissociation from the complex. After cargo 

releasing, the import complex components are exported through NPC and recycled for next round 

of nuclear import. (b) Nuclear export. The substrates in the nucleus which has NES motif are 

shuttled out of nucleus using exportin (CRM1/XPO1). The export receptor binds to Ran-GTP and 

recognize the NES cargo. The interaction generates the trimeric export complex NES 

cargo/CRM1/Ran-GTP. The complex translocated via the NPC channel. The complex is 

dissociated by dephosphorylation of Ran-GTP to release the cargo into cytoplasm. 
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Figure 1.5. Comparison of life cycle between nucelo- and cytorhabdoviruses in the host cell. In 

the early stage of infection, the viruses are introduced into the host cell by the feeding behavior of 

the vector. The uncoating of virion take places through the cytoplasmic membrane, mostly ER, 

association of the virion. The RNP complex is released into cytoplasmic space. The members of 

Cytorhabdovirus induce the formation of inclusion bodies in the cytoplasm. The transcription, 

replication, and morphogenesis occur in the cytoplasmic inclusion body. Otherwise, 

nucleorhabdoviruses transport their RNP core into nucleus and induce nuclear viroplasm. The 

transcription of viral mRNA and replication, production of progeny particles takes place in the 

nucleus. [INE: Inner Nuclear Membrane, ONE: Outer Nuclear Membrane] 

(Picture courtesy: Biology of plant rhabdoviruses. Annu Rev Phytopathol (2005) 43:623-60) 
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Chapter 21 

Genome sequence variation in the constricta strain dramatically alters the protein 
interaction and localization map of Potato yellow dwarf virus 

Although the coding capacity of viral genomes is low, it is common for each encoded 

protein to interact with multiple target factors, often located in different subcellular loci (Nagy et 

al., 2016; Min et al., 2010; Martínez et al., 2016). Additionally, sequence divergence among viral 

strains can have profound effects on virulence, symptom development or adaptation to new hosts 

and vectors (Sánchez et al., 2015; Pita et al., 2015). As such, determination of the subcellular 

localization of viral proteins and mapping their interacting partners is fundamental to understanding 

virus-host interactions (Dietzgen et al., 2017; Ramalho et al., 2014; Martin et al., 2012; Dietzgen 

et al., 2012). Of particular interest in this regard are viruses that are able to replicate in diverse cell 

types, as proteins encoded by these viruses must contain domains that mediate interaction with 

factors in evolutionarily divergent hosts.  

Rhabdoviruses infect a broad range of hosts, and members of this group includes viruses 

that infect humans, terrestrial animals/vertebrates, fish, arthropods and plants (Dietzgen et al., 2017; 

Jackson et al., 2005). Currently, the plant-adapted rhabdoviruses are assigned to two genera, 

Cytorhabdovirus and Nucleorhabdovirus, and two more recently described genera, Dichoravirus 

and Varicosavirus, contain members with bi-segmented genomes that also infect plants (Dietzgen 

et al., 2017; Dietzgen et al., 2014, Kormelink et al., 2011). The genus Cytorhabdovirus, for which 

the type species is Lettuce necrotic yellows virus, contains those plant rhabdoviruses that replicate 

and undergo morphogenesis in the cytoplasm of infected cells (Fig. 1.5) (Dietzgen et al., 2006). 

Potato yellow dwarf virus (PYDV) is the type species of the genus Nucleorhabdovirus, while 

Orchid fleck virus is the type species of the genus Dichorhavirus. Both of these genera are typified  

1 This chapter was originally published as: Jang, C., Wang, R., Wells, J., Leon, F., Farman, M., 
Hammond, J., and Goodin, M (2017). Genome sequence variation in the constricta strain 
dramatically alters the protein interaction and localization map of Potato yellow dwarf virus. 
Journal of general virology. 98(6),: 1526-1536. All experiments were conducted by Chanyong Jang.  
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by the nucleotrophic character of the member viruses (Fig. 1.5) (Dietzgen et al., 2017; Dietzgen et 

al., 2014; Kondo et al., 2006; Bandyopadhyay et al., 2010).  

PYDV was first reported as a highly destructive pathogen of potato (Solanum tuberosum), 

and early research of this virus contributed significantly in the arena of virus-insect interactions 

(Hsu et al., 1973; Black et al. 1943). At least seven strains of PYDV have been described at the 

level of vector-specificity and biological variation in symptom severity (Black et al., 1941; Black 

et al., 1943). Of these, two strains distinguished by their differential transmission by leafhopper 

vectors, Aceratagallia sanguinolenta and Agallia constricta, referred to hereafter as sanguinolent 

yellow dwarf virus (SYDV; also called PYDV-New York) and constricta yellow dwarf virus 

(CYDV; also called PYDV-New Jersey), respectively, became the predominant research strains 

that served as early models for defining the ultrastructure and cytopathology of plant-adapted 

rhabdoviruses (Black et al. 1965; MacLeod et al., 1966; Reeder et al., 1972) and development of 

sucrose-gradient centrifugation (Brakke et al., 1970) as an analytical method. Symptom severity of 

SYDV is greater than CYDV in Nicotiana benthamiana, and, in our hands, is easier to purify given 

its higher titre in that host (Bandyopadhyay et al., 2010; Ghosh et al., 2008; Brakke et al., 1970). 

The genome of SYDV was characterized previously (Bandyopadhyay et al., 2010) and, 

since then, those of several segmented and non-segmented plant rhabdoviruses have been described 

(Min et al., 2010; Dietzgen et al., 2017; Ramalho et al., 2014; Martin et al., 2012; Deitzgen et al., 

2012). Collectively, the pattern that has emerged is that the protein interaction and localization 

maps (PILMs) for each virus are unique (Dietzgen et al., 2017; Ramalho et al., 2014; Martin et al., 

2012). Much of this variation is attributable to highly divergent genomic sequences among the viral 

species. In light of this, we sought to determine if lesser variation in genome sequence could 

profoundly affect PILMs at the level of viral strains, instead of between viruses. As such, we 

developed a PILM for the CYDV strain of PYDV and compared it to that of SYDV 

(Bandyopadhyay et al., 2010). It is clear from our studies that even modest changes in sequence 
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variation can affect the topology of PILMs. These studies provide a link between the molecular 

features of rhabdovirus strains and their differential interactions with host and vector species.  

Methods 
 
Virus maintenance and purification  
 

Potato yellow dwarf virus strain CYDV (American Type Culture collections accession PV-

233) was maintained by serial passage in N. benthamiana and N. rustica. Plants housed in insect-

proof cages. Field isolates of CYDV were collected from infected tomato (Solanum lycopersicum) 

in 2010, and black nightshade (Solanum nigrum) and pepper plants (Capsicum annum) in the fall 

of 2016 in Beltsville, MD (Hammond, unpublished data). This isolate will hereafter be referred to 

as CYDVMD. Potato yellow dwarf virus strain CYDV (American Type Culture collections 

accession PV-233) was maintained by serial passage in N. benthamiana and N. rustica. N. 

benthamiana lines expressing autofluorescent proteins fused to histone 2B, a nuclear marker, or 

RFP-HDEL (endomembrane marker), were maintained in the greenhouse for virus infection under 

conditions reported previously (Goodin et al., 2007). Plants housed in insect-proof cages. As 

reported for SYDV, CYDV was purified on sucrose density gradients, as described previously 

(Ghosh et al., 2008).  

Isolation of total RNA, RT-PCR 
 

Total RNA was extracted from plant tissues using the Qiagen RNeasy Plant minikit. Except 

where noted, first-strand cDNA synthesis and PCRs were carried out using Superscript reverse 

transcriptase IV (Thermo Fisher Scientific) and Phusion high-fidelity DNA polymerase 

(Finnzymes), respectively.  

ION Torrent sequencing  
 

Poly(A)+-RNA was purified from total RNA isolated from CYDV-infected leaves of N. 

rustica at 30 days post inoculation using a Dynabeads mRNA Purification Kit according to the 

manufacturer’s instructions. The genomic sequence of CYDV was determined using the same ION 
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Torrent sequencing pipeline utilized for determination of the CoRSV genome (Ramalho et al., 

2014). All library construction and sequencing steps were performed by staff of the Advanced 

Genetic Technology Center (University of Kentucky). Template cDNA was prepared using an 

IonPGM Template OT (One-Touch) 200 Kit. Sequencing was performed with an Ion PGM 

sequencing 200 Kit and the Ion 316 chip. Contigs were assembled from the high-quality read data 

using the Trinity assembler package (Haas et al., 2013).  

5’ and 3’ RACE 
 

5’- and 3’-RACE were performed with the BD-SMART RACE cDNA Amplification kit 

according to the manufacturer’s instructions (Thermo-Scientific). For these analyses, cDNA was 

synthesized using MMLV reverse transcriptase, and PCRs were conducted with Advantage-II DNA 

polymerase (Clontech).  

DNA sequence analysis 
 

Homology searches were used to compare CYDV sequences to the genomes of other 

rhabdoviruses using the various BLAST tools provided on the National Center for Biotechnology 

Information (NCBI) server. ORFs were identified using the ORF finder search tool (Wheeler et al., 

2007). The primary structures of proteins encoded by CYDV were analyzed using a variety of 

algorithms provided by the Expasy proteomics server: https://www.expasy.org/ (Gasteiger et al., 

2003), including Compute pI/MW (Bjellqvist et al., 1993), PSORT for prediction of protein 

localization (Nakai et al., 1991), signal P for prediction of signal peptide cleavage sites (Bendtsen 

et al., 2004) and NetNGlyc for prediction of N-glycosylation sites (Blom et al., 2004). 

Phylogenetic analysis 
 

All L-protein sequences used in the sequence alignment study were obtained from data 

deposited in the NCBI database. In addition to that for CYDV, L-gene sequences utilized in 

phylogenetic analyses include the following: coffee ringspot virus-Larvas strain (CoRSV; 

KF812526), Eggplant mottled dwarf virus (EMDV;NC_025389), Lettuce necrotic yellows virus 
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(LNYV; AJ867584), Maize mosaic virus (MMV; AY618418.1), Sonchus yellow net virus (SYNV; 

L32603.1), Maize fine streak virus (MFSV; AY618417.1), Potato yellow dwarf virus (PYDV; 

NC_016136.1), Maize Iranian mosaic virus (MIMV; DQ186554), Northern cereal mosaic virus 

(NCMV; NC_00225.1), Orchid fleck virus (OFV; NC_009609), Rice yellow stunt virus (RYSV; 

NC_003746.1), Taro vein chlorosis virus (TaVCV; NC_006942.1) and Vesicular Stomatitis 

Indiana virus (VSIV;NC_001560.1). 

 Sequence alignment and phylogenetic trees, generated using the neighbor-joining method 

with a bootstrap test with 1000 replicates, were conducted using the phylogeny.fr suite of online 

tools, as described previously (Dereeper et al., 2008; Ramalho et al., 2016).  

A partial sequence of the L gene from CYDVMD (isolated from tomato) was recovered by 

PCR using generic plant rhabdovirus primers (Lamprecht et al., 2009). This sequence had a 99% 

nucleotide sequence identity to CYDV and was deposited in GenBank as accession (No. JQ405264). 

Protein expression in plant cells 
 

Sequence-validated clones in vector pDONR221 (Invitrogen) of all CYDV ORFs, except 

L, were recombined into the appropriate binary vectors for localization of fluorescent protein 

fusions in plant cells (Goodin et al., 2007; Chakrabarty et al., 2007). Tests for protein interactions 

were conducted using BiFC assays as described previously (Ramalho et al., 2014; Anderson et al., 

2018, Jang et al., 2017). Importantly, the conversion of the pSAT-based vectors to allow Gateway 

recombination-based cloning entirely eliminate the high background when ‘empty’ vectors 

expressing the two halves of YFP were co-expressed. As such, we have determined that false 

positives are less likely to occur when using the pSITE-BiFC vectors (Min et al., 2010; Martin et 

al., 2009). Therefore, the vectors employed in this study were pSITE-2CA (GFP fusions) and 

localization experiments, and the pSITE-BiFC-nEYFP and pSITE-BiFC-cEYFP vectors for BiFC 

assays. Recombinant vectors were transformed into Agrobacterium tumefaciens strain LBA4404. 
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Agroinfiltration for expression of protein fusion in plant cells was conducted essentially as 

described previously (Goodin et al., 2007).  

Laser scanning confocal microscopy  
 

Microscopy for this study was conducted using an Olympus FV1000 laser-scanning 

confocal microscope as described previously (Goodin et al., 2007). 

Results 
  
Genome sequence of CYDV 
 

The complete 12 792 nt genome of CYDV deposited in GenBank as accession KY549567, 

was determined. The antigenomic sequence has the coding capacity for ORFs, encoding proteins 

greater than 100 aa each (Fig. 2.1). The L gene shares 99% nucleotide sequence identity with a 

partial L-gene sequence of a rhabdovirus isolated from Maryland, here identified at CYDVMD 

(GenBank JQ405264.1). Overall, the genome of CYDV shares 69% sequence identity with SYDV 

at the nucleotide level. This variation is distributed more or less evenly across the genome, with the 

N genes sharing 71 % identity, and the X, P, Y, M, G and L genes sharing 22, 52, 74, 72, 69 and 

72 %, respectively. The relationship between CYDV and SYDV is closer if the comparisons are 

relaxed and similar aa substitutions are considered, i.e., isoleucine and leucine at the same position 

being considered as functional equivalent, according to default settings on the blast server. In this 

scenario, the N, X, P, Y, M, G and L relationships are 83, 43, 73, 88, 83, 88 and 81% aa similarity, 

respectively. Interestingly, the CYDV X gene shares greater sequence relatedness (90% identity) 

with the cognate protein of Eggplant mottled dwarf virus (EMDV). At 52%, the phosphoproteins 

of CYDV and SYDV share the lowest aa identity of any cognate pair within the genomes of these 

viruses.  

Phylogenetics of CYDV based on L-protein sequence comparisons  
 

The phylogenetic relationship of the SYDV strain of PYDV to that of other rhabdoviruses 

has been established previously (Dietzgen et al., 2016; Bandyopadhyay et al., 2010). Based on a 
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similar analysis using the primary structure of L proteins, we show that CYDV is most closely 

related to other leafhopper-transmitted rhabdoviruses, with EMDV being the next most closely 

related species after SYDV (Fig. 2.2) (Pappi et al., 2013). The aphid-transmitted SYNV, as well as 

the Brevipalpus mite-transmitted dichoraviruses, OFV and CoRSV, form clades that are well 

separated from the leafhopper-transmitted viruses (Fig. 2.2). Likewise, the planthopper-transmitted 

viruses and TaVCV form a separate clade.  

Terminal sequences and gene junctions in the CYDV genome 
 

Regarding SYDV reported previously, the leader and trailer terminal sequences of CYDV 

have a complete base complementarity over only a very short region, namely the terminal nine 

bases of the genome (Fig. 2.3) (Bandyopadhyay et al., 2010).  

A conserved gene junction with the consensus 3’-AAUUAUUUUUGGGUUG-5’ (Fig. 

2.4a) was located between each of the ORFs in the CYDV genome, as well as the leader (ldr)/N 

gene junction. This junction differs from that for SYDV only with respect to the position of the 

adenine in the poly-U track (Fig. 2.4b). Overall, the CYDV junctions share a similar tripartite 

organization with that of other plant-adapted rhabdoviruses. Region 1, consisting of a poly-U track 

that serves as a template for poly-adenylation of nascent mRNA transcripts; region 2, consists of 

triple guanine residues; and region 3, the transcriptional start site, consisting of UUG. As is typical 

for rhabdoviruses, each individual gene junction differs slightly from the consensus sequence. Most 

notably for CYDV, the intergenic spacer in the N/X and G/L junctions contained an additional 

guanosine residue (Fig. 2.4a).  

Predict features of PYDV proteins  
 

Generally, the predicted sizes of CYDV-encoded proteins are the same as, or slightly 

smaller, than their SYDV cognates. The N, X and G proteins are approximately 1, 1 and 3 kDa 

smaller than their SYDVcounterparts, respectively, whereas the P, Y, M and L proteins are of 

equivalent sizes for both viruses.  
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Various protein localization prediction algorithms were used to identify potentially 

biologically relevant motifs in the CYDV-encoded proteins. A subset of this information is 

provided in table 1. Regarding its SYDV cognate, protein localization prediction algorithms failed 

to identify a nuclear localization signal (NLS) in the CYDV nucleocapsid protein. Furthermore, the 

primary structure of CYDV-N does not contain the mapped QKRANEEAPPAAQKR bipartite 

NLS found in SYDV-N (Anderson et al., 2012). Algorithm-predicted NLSs were identified in the 

phosphoprotein, matrix protein and polymerase protein. Both CYDV and SYDV N proteins have 

a predicted isoelectronic point (pI) of 7.62. The X protein of CYDV has a predicted pl of 3.87, 

slightly more acidic than the pI 4.5 of its SYDV cognate. Similar to CYDV-X, the P protein at pI 

6.23 is slightly more acidic than the 7.72 of its SYDV cognate. The putative movement protein, 

CYDV-Y has a pI of 6.6 while that of SYDV is 7.0, both matrix proteins sharing a pI close to 9.0. 

Both CYDV and SYDV glycoproteins have a pI around 4.6. However, consistent with other 

proteins, the CYDV-L at pI 6.75 is greater than one log more acidic than its SYDV cognate (pI 

7.99) (Table 2).  

Although the CYDV-G ORF predicts a smaller protein than its cognate, the relative 

molecular weight based on the electrophoretic mobility of CYDV-G was reported to be greater than 

that for SYDV-G (92 kDa versus 85 kDa) (Falk et al., 1983). The CYDV-G and SYDV-G proteins 

are predicted to have seven N-linked glycosylation sites each, and six and nine, respectively, O-

linked glycosylation sites. The actual degree of glycosylation has not been mapped physically, and 

therefore the reason for the difference in electrophoretic mobility of these proteins remains 

equivocal.  

Localization of CYDV protein fusions in plant cells  

To test whether the sequence variation between SYDV and CYDV influenced protein 

localization, we determined the subcellular localization patterns for six CYDV proteins in planta 

and compared these data to published results for SYDV (Bandyopadhyay et al., 2010). Each GFP 
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fusion of N, X, P, Y, M and G proteins was expressed in the plant expressing RFP fused to histone 

2B (Fig. 2.5). In contrast to GFP:SYDV-N, whose localization was distributed evenly across the 

nucleoplasm, GFP:CYDV-N localized in sub-nuclear loci with a cross-sectional area about 2µm 

(Fig. 2.6a). GFP:CYDV-X distributed throughout the cell, with accumulation in the nucleus. 

GFP:CYDV-P accumulated in puncta distributed throughout the nucleoplasm but was excluded 

from the nucleolus. GFP:CYDV-Y partitioned between the cell periphery and the nuclear envelope 

(Fig. 2.6b), suggesting a membrane association for this protein. Regarding the SYDV matrix 

protein, the cognate CYDV protein was exclusively nuclear when expressed as a GFP fusion. 

GFP:CYDV-G associated with endomembranes, with the most easily detectable signal localized 

on the nuclear envelope.  

Interaction matrix for CYDV proteins 

In addition to protein localization studies, we investigated whether the determined 

sequence divergence between the two viral strains impacted the interaction of CYDV proteins, 

relative to the interactions observed for SYDV (Bandyopadhyay et al., 2010). In order to make 

direct comparisons, the same type of bimolecular fluorescence complementation (BiFC) assay was 

used to define the interaction and localization patterns of CYDV proteins (Fig. 2.7). While all 

pairwise interactions were tested, in the four protein fusion orientations possible with BiFC, only a 

subset of the data is reported here. The N, X, P, Y, M and G proteins were tested in all pairwise 

interactions and against glutathione-S-transferase (GST), which served as a non-binding control 

(Fig. 2.7). The L protein was not included in these experiments as we were unable to detect GFP 

fusion of this protein in planta (data not shown). None of the CYDV proteins showed interaction 

with GST. Positive BiFC interactions were detected for the pairs N/N, N/X, N/P, N/Y, N/M, N/G, 

P/P, X/P, X/Y, X/X, /M and M/M. No other interactions were detected. The X protein did not 

interact with the G protein. The resulting BiFC and localization data were integrated into a CYDV 
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PILM, which differs significantly from that of SYDV. The M/Y, Y/Y and G/G interactions were 

unique to SYDV (Fig. 2.8), while the P/P and X/M interactions were unique to CYDV.  

Localization of PYDV proteins in virus-infected plant cells 

It has been reported previously that localization patterns of plant-adapted rhabdovirus 

proteins can differ markedly in the context of infected cells compared to single protein expression 

in virus-free cells (Goodin et al., 2007). Given this precedent, we expressed GFP fusion of proteins 

from both CYDV and SYDV in transgenic N. benthamiana plants expressing RFP targeted to the 

endomembrane system, which provided a facile means to track changes in plant nuclear proteins 

as well (Fig. 2.9-10).  

GFP:CYDV-N was unevenly distributed throughout the nucleoplasm, while the 

GFP:CYDV-X and GFP:CYDV-P proteins exhibited a more even distribution throughout the 

nucleoplasm. In the case of the P protein, the punctate nuclear localization pattern observed when 

localized in virus-free cells was absent in virus-infected cells. The Y protein showed accumulation 

of the cell periphery, as well as the nuclear envelope. The GFP: CYDV-M protein co-localized with 

membranes that accumulated in intranuclear spherules. Regarding its localization pattern in virus-

free cells, the GFP:CYDV-G protein accumulated primarily on perinuclear membranes and the 

nuclear envelope.  

In contrast to its cognate protein, GFP:SYDV-N was distributed evenly across the 

nucleoplasm in virus-infected cells. GFP:SYDV-X protein showed greater partitioning between the 

nucleus and cytoplasm than GFP:CYDV-X, which was primarily nuclear in the context of infected 

cells. GFP:SYDV-P  was observed on large sub-nuclear foci in virus-infected cells, in a pattern 

clearly distinguishable from that produced by GFP:CYDV-P. GFP:SYDV-M localized to 

intranuclear membranes in virus-infected cells, while GFP:SYDV-G was found on endomembranes 

in presence or absence of virus.  
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Discussion           

We have produced a PILM for the CYDV strain of PYDV. The SYDV and CYDV strains 

represent the closest related plant-adapted rhabdoviruses for which PILMs have been produced. 

Despite their close sequence relatedness, there are significant contrasts in the protein interaction 

and localization patterns, which provides insights at the molecular and cellular levels for the 

contrasting biology of these viruses.  

Of particular interest is the difference in CYDV-N of the region spanning the NLS that was 

mapped in SYDV-N protein (QKRANEEAPPAAQKR) (Anderson et al., 2012). While the 10aa 

spacer is maintained between the paired KR residues essential for nuclear localization, the sequence 

of the spacer is not conserved, nor are the KR residues flanked by glutamines. Functional mapping 

will have to verify the KRTAEDATTQQTKR sequence in CYDV-N as being a bona fide NLS. If 

this is indeed the case, then the charge and sequence variation may explain the marked difference 

in localization patterns of the PYDV-N proteins, particularly as variation in NLS sequence greatly 

impacts affinity and isoform selectivity for nuclear import receptors including importin-a, which is 

the presumed karyopherin for SYDV-N (Anderson et al., 2012; Kosugi et al., 2009). If this is not 

the NLS region, then CYDV-N must utilize an entirely different signal to facilitate targeting of this 

protein to the nucleus. However, given the 71% sequence identity (83% similarity) of the CYDV- 

and SYDV-N proteins, there is no readily identifiable region that might encode an alternative NLS 

in CYDV-N.  

In addition to differences in nuclear localization patterns per se, an intriguing result is the 

observation that CYDV-Y is targeted to the nuclear envelope, while its SYDV cognate is not. This 

difference is observed from virus infected cell as well. The primary structure of these proteins is 

74% identical and 88% similar, with the dissimilar residues dispersed over the entire length of the 

proteins. As such, there is no obvious region in CYDV-Y that readily accounts for targeting of this 

protein to the nuclear envelope. However, differential interaction with a nuclear transport receptor 
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may account for the differential localization pattern (Boni et al., 2015). Therefore, the nuclear 

envelope-targeting region will have to be mapped physically (Anderson et al., 2012). The 

difference in partitioning of the Y proteins is maintained in the context of infection, with the SYDV-

Y accumulating in the nucleus whereas the CYDV-Y does not. Assuming that the Y protein 

mediated cell-to-cell transport of PYDV strains, then a differential in the efficiency of transport of 

PYDV strains, then a differential in the efficiency of transport may, in part, account for the 

differential symptom severity of these viruses in plants. 

The effect of any single difference in the localization and interactions of PYDV proteins 

of the general interaction of this virus with its plant host cannot be determined from the present 

study. Collectively, it stands to reason that a ‘summation’ of these differences has resulted in vector 

and plant selectivity. More broadly, it is interesting to note that every plant-adapted rhabdovirus 

has a unique PILM (Min et al., 2010; Ramalho et al., 2014; Martin et al.,2012, Bandyopadhyay et 

al., 2010). All of these PILMs were constructed using BiFC assay in leaf epidermal cells of N. 

benthamiana. Given the uniformity of assay conditions, the differential interactions should be a 

reflection of the intrinsic properties of each viral protein. BiFC is known to report only very stable 

interactions, and thus a lack of detecting any particular interaction, e.g. P/P for SYDV or N/N for 

CoRSV, does not mean that these interactions do not occur, but only that they are not stable enough 

to yield BiFC-positive results. Each protein-protein interaction in the BiFC, and every interaction 

in general, is governed by a particular dissociation constant (KD) (Pusch et al., 2011). Thus, 

variation in PILMs, in part, likely represents variation in KD for each viral protein. Extrapolating 

from the PILMs, it is not uncommon for viral proteins to interact with at least one, and often many 

more, host cell proteins to interact with at least one, and often may more, host cell proteins (Nagy 

et al., 2016, Min et al., 2010; Mann et al., 2016). Therefore, virus evolution, in particular adaptation 

to hosts and vectors, must be restricted or permitted according to the efficiency of binding of 

interaction domains in viral and host proteins (Koonin et al., 1989; Duffy et al., 2008; Cuevas et 
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al., 2015). Moreover, infection by viruses induced global changes in alternative splicing of host 

mRNAs (Boudreault et al., 2016). This alternate splicing may alter protein-interaction domains in 

host factors (Scheckel et al., 2015; Irimia et al., 2014). Furthermore, interaction with viral proteins 

can cause dramatic changes in localization of host factors, which may alter their ability to associate 

with their normal interactors (Min et al., 2010). Coupled with this is the extensive alteration of host 

cells, particularly nuclear structure, that is evident in CYDV- and SYDV-infected cells. In short, 

the protein interactome encountered by individual viral proteins is likely to be something quite 

different from that which exists in the absence of infection. Especially, the subcellular locations of 

N, P, and Y proteins of CYDV in the virus-infected cells revealed noticeably different localization 

patterns compared to those of SYDV that observed from SYDV-infected cells. The results revealed 

that SYDV-N GFP fusion signal was more focused on the central region of nucleus with higher 

intensity and SYDV-P GFP fusion localized multiple separated foci in nucleus. While we have not 

investigated their difference localization patterns in amino acid sequence level, considering the N 

and P proteins are major components of virus replication complex (Deng et al., 2007: Luo et al., 

2007; Ruigrok et al., 2011;Wu et al., 2002 ;Yang et al., 1999), each virus seems use the host plant 

nucleus in somewhat different way for their replication (Xu et al., 2002). In our hands, SYDV is 

easier to purify given its higher titre in infected host compared to those of CYDV. We are assuming 

that the higher titre of SYDV would be directly related to the greater symptom severity of host 

plant by SYDV infection than CYDV infection (Ogbe et al., 2003). The different N and P 

localization patterns of the two viruses could be the clue to explain different symptom development 

and severity. Systemic attempts using high-throughput protein interaction screening and revers 

genetic system to build the virus-host protein interaction map are needed to investigate the 

biological relevant between protein localization interaction pattern and in-situ virus life-cycle.   

Taken together, we posit that virus-host cell compatibility is governed, in part, by 

summation of the efficiency by which viral proteins interact with each other and with host factors. 
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These interactions, in turn, are governed by the KD for each interaction. By corollary, adaptation to 

new hosts or vectors will be governed by the existence of requisite interaction domains in host 

factors in new hosts, or sufficiently rapid selection of virus variants form the quasi-species cloud 

upon entry to a new host or vector. This hypothesis is supported by phylogenetic evidence, which 

demonstrates that plant-adapted species group according to their insect vector, thus is it likely that 

insects are the key driver of speciation for this group of viruses (Bandyopadhyay et al., 2010). It is 

intriguing that the X protein of CYDV is more closely related to its cognate protein in EMDV than 

to SYDV. While there is no firm evidence for recombination between or among these viruses, the 

solanaceous hosts common to both may have provided such an opportunity (Parrella et al., 2016). 

Thus, variation in PILMs is likely expected given the diverse host range that can be collectively 

infected by the plant-adapted rhabdoviruses for which PILMs have been generated. Furthermore, 

within a single-host species, e.g. N. benthamiana, plant-adapted rhabdovirus exhibit a wide range 

of pathogenicity, with some viruses expressing a recovery phenotype (SYNV) (Ghosh et al., 2008), 

taking exceptionally long (weeks) to establish infections (PYDV) (Ghosh et al., 2008), or requiring 

plants to be maintained at elevated temperatures in order to establish systemic infections (CoRSV) 

(Ramalho et al., 2014).  

Mechanistic investigation of the hypotheses above will require expansion of the availability 

of recombinant viral systems (Jackson et al., 2016; Wang et al., 2015) and detailed biochemical 

characterization of rhabdoviral protein complexes, with particular attention paid to the 

determination of KDs for interactions contributing to PILMs, as well as a broader characterization 

of host factors that interact with plant rhabdoviral proteins (Min et al., 2010). However, the 

availability of a significant number of PILMs raises intriguing questions about their underlying 

molecular basis, which have implications for understanding the evolutionary trajectories of these 

viruses.  
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Figure 2.1. Comparison of the CYDV and SYDV genomes and proteins. The 12 792 nt CYDV 

genome is organized into seven ORFs (open boxes) that are separated by conserved gene junctions 

and flanked by short leader (ldr) and trailer (trl) sequences, respectively. The predicted size of the 

encoded protein (in kDa) for each ORF is provided in parentheses.  
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Figure 2.2. L protein derived phylogeny. Viruses infecting a variety of hosts were selected, 

including those that do not infect plants (NP) as well as plant-adapted species that replicate in nuclei 

(N) or cytoplasm (C) of infected cells. Vectors for the plant-adapted viruses are provided at the end 

of the virus abbreviation, namely: a, aphid; l, leafhopper; m, mite; or p, planthopper. Virus names 

and GenBank accession numbers are listed in Methods. CoRSV, coffee ringspot virus; MMV, 

Maize mosaic virus; TaVCV, Taro vein chlorosis virus; MIMV, Maize Iranian mosaic virus; OFV, 

Orchid fleck virus; SYDV, Potato yellow dwarf virus-Sanguinolenta strain; CYDV, Potato yellow 

dwarf virus-Constricta strain; RYSV, Rice yellow stunt virus; SYNV, Sonchus yellow net virus; 

NCMV, Northern cereal mosaic virus; LNYV, Lettuce necrotic yellows virus; RABV, Rabies virus; 

VSIV, Vesicular stomatitis virus – Indiana serotype. All branch points had bootstrap values greater 

than 0.6. The scale bar indicates the number of aa changes per site. 
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Figure 2.3. Complementarity in the leader (3′) and trailer (5′) regions of selected rhabdoviruses in 

the Nucleorhabdovirus (N), Cytorhabdovirus (C) and Vesiculovirus (V) genera. 
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Figure 2.4. Comparison of the intergenic junction sequences of rhabdoviruses. (a) Sequence of each 

intergenic junction (IGJ) in the CYDV genomic RNA (drawn here in genomic orientation). The 

IGJs are divided into three regions to denote the poly-adenylation signal, intergenic spacer and 

transcription start site. The consensus IGJ is provided at the bottom. (b) Consensus IGJ 

comparisons from rhabdoviruses in the Nucleorhabdovirus (N), Cytorhabdovirus (C) or 

Vesiculovirus (V) genera. n, variable number of nucleotides. 
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Table 2. Features of PYDV proteins determined by predictive algorithms.  

TM, transmembrane; pI, isoelectric point. 

 

 

 

 

 

 

 

§ The putative NLS of N was not predicted computationally and is instead the regions of the 

CYDV-N protein corresponding to the mappe3d NLS in SYDV 
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Figure 2.5. subcellular localization of CYDV proteins. CYDV proteins were expressed using agro-

infiltration as amino-terminal fusions to GFP in leaf epidermal cells of N. benthamiana plants 

transgenic for RFP fused to the nuclear marker protein Histone 2B. Particular GFP fusions are listed 

on the left-hand side of the Figure 3nd their corresponding localization in nuclei and whole-cell 

views is shown to the right and far right, respectively. Whole-cell views are not shown for proteins 

whose localization was exclusively nuclear. Scale bar, 10 µm. 
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Figure 2.6. The different localization pattern of CYDV-N and -Y compared to their cognate 

proteins of SYDV. (a) Comparison of GFP fusion of CYDV N and SYDV N (b) Comparison of 

AGFP fusion of CYDV Y and SYDV Y. Each protein was expressed using agro-infiltration as 

amino-terminal fusions to GFP in leaf epidermal cells of N. benthamiana plants transgenic for RFP 

fused to the nuclear marker protein Histone 2B. Particular GFP fusions are listed on the left-hand 

side of the Figure 3nd their corresponding localization in nuclei and whole-cell views is shown to 

the right and far right, respectively. Whole-cell views are not shown for proteins whose localization 

was exclusively nuclear. Scale bar, 5 µm. 
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Figure 2.7. BiFC assay for all pairwise combinations for CYDV-encoded proteins, except L. The 

binary interactions of viral proteins were assayed in bimolecular fluorescence complementation 

experiments. Specific combinations are listed on the left-hand side of each column of single-plane 

confocal micrographs that show the location of YFP fluorescence (BiFC) relative to that of the 

CFP-marked nucleus (CFP). Interaction assays were conducted in leaf epidermal cells of transgenic 

N. benthamiana expressing CFP fused to the nuclear marker protein Histone 2B. The merger of the 

BiFC and CFP channels is also shown (Overlay). Protein fusions to each half of YFP were tested 

in all pairwise interactions, of which only a subset is shown here. Glutathione-S-transferase (GST) 

was used as a non-binding control. The majority of BiFC-negative results are not shown, save those 

necessary to confirm specificity of binding in the positive assays. Panel (a): Whole cell view ; panel 

(b): Nuclear view of positive interactions in panel (a). Scale bar, 10 µm. 
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Figure 2.8. Comparison of integrated protein interaction and localization maps. (a) CYDV (b) 

SYDV. Self-interactions are indicated by curved lines. Lines indicate interactions between 

heterologous proteins. The subcellular localization of GFP-protein fusions is indicated in the 

superscripts: n, nucleus; n/m, nucleus/membrane; m, membrane; cp, cell periphery. 
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 Figure 2.9. The localization pattern of CYDV-encoded proteins in the context of the virus-infected 

plant cell. CYDV-encoded proteins were expressed as amino-terminal fusions to GFP in CYDV-

infected leaf epidermal cells of N. benthamiana plants transgenic for RFP targeted to 

endomembranes (RFP-ER). Specific CYDV proteins are listed on the left-hand side of the Figure 

3nd their corresponding localization in whole-cell or nuclear views is shown to the left and far left, 

respectively. Scale bars, 10 µm (whole-cell view) and 2 µm (nuclear view).  
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Figure 2.10. The localization pattern of SYDV-encoded proteins in the context of the virus-infected 

plant cell. SYDV proteins were expressed as amino-terminal fusions to GFP in SYDV-infected leaf 

epidermal cells of N. benthamiana plants transgenic for RFP targeted to endomembranes (RFP-

ER). Specific SYDV proteins are listed on the left-hand side of the Figure 3nd their corresponding 

localization in whole cell or nuclear views is shown to the right and far right, respectively. Scale 

bars, 10 µm (whole-cell view) and 2 µm (nuclear view). For comparison, the overlay of SYDV 

protein-GFP fusions in mock-inoculated leaves is shown on the right-hand side (Images were taken 

by Joseph Wells in 2013). 
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Chapter 3 
Validation of nuclear export function of  

the 3’ terminal leucine-rich domain of PYDV matrix protein 

Rhabdoviruses are members of the order mononegavirales which has a monopartite single-

stranded negative-sense RNA genome (Ryu et al., 2017). The members of the Rhabdoviridae 

family infect a wide range of hosts including vertebrates, invertebrates, and plants. (Redinbaugh et 

al., 2005; Ryu et al., 2017; Gubala et al., 2011; Goldberg et al., 2017). The plant-adapted 

rhabdoviruses are classified into four genera currently, Varicosavirus, Dichoravirus, 

Nucleorhabdovirus and Cytorhabdovirus, based on their sequence similarity to other rhabdoviruses  

(Liu et al., 2018). Nucleorhabdovirus and Dichoravirus  accomplish their replication, transcription, 

and morphogenesis in the nucleus. Otherwise, Cytorhabodvirus and Varicosavirus exclusively stay 

in the cytoplasm of the host cell during their infection (Redinbaugh et al., 2005; Jackson et al., 

2005; Liu et al., 2018).  

Potato yellow dwarf virus (PYDV) is the type species of the genus Nucleorhabdovirus 

(Anderson et al., 2012). This virus was first reported as a highly destructive pathogen of potato 

(Solanum tuberosum) in 1922 (Barrus et al., 1922). This virus has contributed to the study of the 

virus-vector specificity and interaction, genetic variation of insect vectors, virus inoculation method 

for vector cell monolayer and development of density-gradient centrifugation for virus purification 

(Black et al., 1940; Black et al., 1941; Black et al., 1943; Brakke et al., 1951; Hsu et al., 1973). 

The genome size is about 12 kb, and the negative-sense single-stranded genome encodes seven 

genes in order, N, X, P, Y, M, G and L (Bandyopadhyay et al., 2010). 

Given their limited coding capacity, the proteins of RNA viruses often have functions 

beyond their roles in structure or replication (Weber et al, 2015). As such, plant virus replicase 

proteins have been shown to be suppressors of RNA silencing (Qu et al, 2005)  or have been shown 

to interact with myriad cellular factors (Denison et al, 2008; Nagy et al, 2016). In the case of 
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rhabdoviruses, their matrix proteins have been shown to target nuclear pore complexes, where they 

inhibit the export of host cell mRNAs (Petersen et al., 2000). Plant-adapted rhabdoviruses such as 

PYDV and Sonchus yellow net virus (SYNV) have been shown to dramatically alter nuclear 

architecture in order to establish sites of replication and assembly (Ghosh et al., 2008; Goodin et 

al., 2007). In an earlier study, we reported that the M protein was capable of inducing intranuclear 

accumulation of the inner nuclear membrane in Nicotiana benthamiana (Bandyopadhyay et al., 

2010). This activity is likely required for establishing sites of virion assembly (Sun et al., 2018), 

once the matrix protein associates with viral nucleocapsids, which then accumulate in perinuclear 

spaces (Jackson et al., 2005; Mann et al., 2014).   

The functional domain assay using alanine scanning mutagenesis performed by Anderson 

(2014) revealed that K225 and R226 of SYDV-M are the functional domains for the nuclear 

localization in-vivo. At the time, lack of interaction between SYDV-MKK213AA and NbImp-α1 

supported the possibility of that K213 and K214 motifs of M affect the affinity of the M-NLS for 

NbImp-α1 (Anderson et al., 2014; Anderson et al., 2018). Interestingly, the aa 211-253 fragments 

of Mwt and M mutants were exclusively localized on the cytoplasmic space of plant cell, although 

the fragments still contained the functional NLS domain (Anderson et al., 2014; Anderson et al., 

2018). The possible M-NES were predicted using NetNES on the carboxy-terminus of the M 

protein, at 244-LPSMLKML-251 which containing leucine-rich motif (Anderson et al., 2018). This 

computational prediction was supported by the result of the BiFC interaction assays of full-length 

M protein and its carboxy-terminal fragment (aa 211-253) with the nuclear export receptor XPO1 

(Anderson et al., 2018). One of noticeable observation was the different spatial interaction patterns 

of XPOI with full-length and aa 211-253 fragment of SYDV-M, inside and outside nucleus 

respectively (Anderson et al., 2014). 

In this study, The NES effect on the nuclear localization of M was tested using the short aa 

211-243 fragments of Mwt, MLL223AA, and MKR225AA which do not contain the predicted NES domain. 
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The subcellular localization patterns of the GFP fusions of Mwt (aa 211-243), MLL2223AA (aa 211-

243), and M KR225AA (aa 211-243) were compared to those of GFP fusion of Mwt (aa 211-253), 

MLL2223AA (aa 211-253), and M KR225AA (aa 211-253) to define the effect of NLS and NES on the 

nuclear localization of them.  This research shows the absence of the NES on the C-terminal directs 

the GFP signal of the short fragments to the nucleus.  

In previous research, we have shown that M/N interaction occurs in the nucleus and M/Y 

interaction results in intranuclear accumulation of Y which is exclusively localize to the periphery 

of cells in a self-interaction (Bandyopadhyay et al., 2010). Also, we have shown that M/G 

interaction results in the relocalization of M to cytoplasmic membranes. (Bandyopadhyay et al., 

2010).  

Based on these data, this research suggests the ‘catch and release model’ for SYDV-M that 

explaining a role of the matrix protein in the inter- and intra- cellular movement of potato yellow 

dwarf virus. In this model, a portion of M proteins in nucleus ‘catch’ the nucleocapsid complex via 

N-M interaction in nucleus. M interacts with G and Y proteins in the nucleus. It seems M/G 

interaction promotes the expose of NES in SYDV-M to the exportin. The M/exportin interaction 

mediates the export of the nucleocapsid complex of the virus. And Y proteins of the complex 

deliver the complex to the plasmodesmata to ‘release’ the nucleocapsid complex to the neighbor 

cells for following cell-to-cell movement of the virus.  

Methods 
 
Plant materials and virus maintenance.  

All plants, including transgenic autofluorescence marker lines (AFP fused histone 2B, a 

nuclear marker; AFP-HDEL, endomembrane marker), were maintained in the greenhouse under 

controlled conditions. Sanguinolenta strain of Potato yellow dwarf virus was maintained by 

continuous mechanical inoculation in Nicotiana benthamiana and Nicotiana rustica in isolation 

cage (Martin et al., 2009).  
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Isolation of total RNA, RT-PCR 

Total RNA was extracted from virus-infected and virus-free plant tissues using the Qiagen 

RNeasy Plant Minikit (Qiagen). The first strand cDNA synthesis and PCRs were carried out using 

Superscript reverse transcriptase IV (Thermo Fisher Scientific) and SeqAmpTM high-fidelity DNA 

polymerase (Takara), respectively. All of the primers designed in this research was made using 

SYDV sequence deposited in NCBI with GenBank accession no, NC_016136. 

Computational prediction of the export signal using expasy server 

To predict nuclear export signal on the primary structure of SYDV M protein in silico, we 

used NET-NEX algorithm which is provided from expasy proteomic server (la Cour et al., 2004).  

Site-directed mutagenesis.   

Site-directed mutagenesis was performed using the Q5 site-directed mutagenesis kit (NEB) 

following the protocol provided by the manufacturer. Sequence validated full-length SYDV M 

cloned into gateway cloning donor vector pDONR221 was used as a template for the mutagenesis. 

Mutagenized clones were sequenced to validate the presence of the planned mutation (Anderson et 

al., 2014). The carboxy-terminal (aa 211- 243) fragments of wt and mutant SYDV M generated by 

PCR targeting that specific region and cloned into pDONR 221 (Invitrogen).    

Protein expression in plant cells 

Expression of translational GFP fusion protein in plant cells for protein localization assay 

was performed using pSITE-2CA (GFP-fusion) vector (Chakrabarty, 2007). Recombinant vectors 

were transformed into Agrobacterium tumefaciens strain LBA 4404 (Anderson et al., 2014; 

Ramalho et al., 2014). The grown agrobacteria cells were suspended in infiltration buffer (0.1M 

MgCl, 0.1M MES, Acetosyringone) to a density of OD 0.6 (Martin et al., 2012). Agroinfiltration 

for expression of protein fusions into Nicotiana benthamiana was performed using a syringe to the 

abaxial leaves. About 1 cm2 leaf was taken to examine each expression construct. Sampling 

performed from a minimum of three leaves, from a minimum of three plants (Goodin et al., 2002). 
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Laser scanning confocal microscopy 

Olympus FV1000 laser-scanning confocal microscope was used to take all microscopic.  

The dual color image of micrograph was acquired using sequential scanning mode to avoid 

interruption between the overlapped wavelength of GFP and RFP laser, as described in previous 

research (Goodin et al., 2007).  

 

Results 
 
Deletion of 3’ terminal 10 amino acids containing leucine-rich residues from aa211-253 
fragments of SYDV-Mwt, -MLL233AA, MKR225AA directed the GFP signal into nucleus 

The 10 amino acids spanning aa 244-253 which include putative NES domain were deleted 

from the carboxy-terminal fragments (aa 211-253) of SYDV-Mwt, -MLL223AA, and, -MKR225AA to 

explain the steady cytoplasmic-localization of their GFP fusions (Anderson et al., 2018), although 

the carboxy-terminal fragments have functional NLS at the 225KR226 that confirmed using 

alanine-scanning mutagenesis, yeast-based nuclear import assay, and BiFC assay using NbImp-α1 

(Anderson et al., 2018). Generally, natural karyophilic domains of nuclear proteins preserve their 

ability to direct nuclear localization of heterologous protein which is fused to the domain (Weninger 

et al., 2015, Cressman et al., 2001). We postulated that this discrepancy came from the nuclear 

export of the GFP fusion of the Mwt (aa 211-253) by the NES signal located on aa 244-251 

(Anderson et al., 2018). We amplified the sequence region that corresponding from the 211th to 

243th amino acids of SYDV-Mwt, -MLL223AA, and -MKR225AA, hereafter namely, SYDV-Mwt (aa 211-

243), -MLL223AA (aa 211-243), and -MKR225AA (aa 211-243), respectively.  

The resulted shorter fragments (aa 221-243) GFP-fusions of the carboxy-terminal 

fragments directed the GFP signal into nuclei (Fig.3.1). The Mwt (aa 211-243) directed GFP to the 

nucleus, but the fusion also appeared to accumulate in perinuclear membranes [Fig.3.1(a-c)]. 

Otherwise, MLL223AA (aa 211-243) fully localized GFP to the nucleus and did not show any nuclear 
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envelope association [Fig.3.1(d-f)]. Localization of the GFP fusion of M KR225AA (aa 211-243) was 

indistinguishable from GFP alone, despite the fragment did not have functional NLS. These 

observations support the leucine-rich domain of the carboxy-terminal have function for regulation 

of nuclear export of SYDV-M protein in the cytoplasmic shuttling of the protein.   

Discussion    

The replication and maturation of nucleorhabdoviruses occur in the nuclei of the infected 

host cell (Bandyopadhyay et al., 2010; Dietzgen et al., 2015; Ghosh et al., 2008; Goodin et al., 

2001; Lamprecht et al., 2009). The viruses form viroplasms in nucleus which is enriched in the 

viral replicase complex and assembly machinery (Martins et al., 1998; Deng et al., 2007; Kondo et 

al., 2013; Sen et al., 2007). The rhabdovirus matrix proteins condense the ribonucleocapsid and 

mediate virus budding in association with G proteins (Chen et al., 2008; Harty et al., 1999; Jayakar 

et al., 2004). While the detailed mechanisms of these processes are not yet determined, the 

fundamental requirements for their nucleotropic life cycle include the nucleocytoplasmic shuttling 

of the virus proteins required for replication and morphogenesis (Alber et al., 2007; Alves et al., 

2008; Anderson et al., 2012; Anderson et al., 2014). The nuclear transport of viral proteins is 

mediated by the interaction of the protein functional domains with nuclear transport receptors 

(Alves et al., 2008; Fornerod et al., 1997; Goldfarb et al., 2004; Sanderfoot et al., 1996). Therefore, 

mapping of the functional domains for nuclear transport in a viral protein is essential to understand 

the biology of nucleorhabdoviruses.  

In this research, deletion of 10 amino acids domain, 244-LPSMLKMLSP-253 which 

contains leucine (underlined) phasing common in NESs from SYDV-Mwt (aa 211-253), -MLL223AA 

(aa 211-253), and -MKR225AA (aa 211-253) directed the localization of their GFP fusion to the 

nucleus. These observations provide more reliable evidence of the nuclear export function of the 

domain that predicted from the BiFC assay using AtXPO1(Arabidopsis thaliana nuclear exportin-

1) and the NetNES algorithm. The MLL233AA (aa 211-243) fully localized the GFP fusion signal to 
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the nucleus without the perinuclear membrane association which is observed from the aa 211-243 

fragment of wild-type. This result supports the nuclear membrane association of the di-leucine 

residues at aa 223-224 which were previously shown that the substitution of these two residues to 

alanine inhibits the intranuclear membrane accumulating by GFP fusion of full-length SYDV-M 

(Anderson et al., 2014). The subcellular localization pattern of the NLS mutant fragment, MKR225AA 

(aa 211-243) was indistinguishable from GFP alone. The nuclear localization of this short GFP-

fusion fragment likely comes from the protein size, 36.2 kDa, which is much smaller than the 

maximal size of protein for free-diffusion through nuclear pore complex, 60kDa (Wang et al., 2007). 

The solitary and dominant effect of 225KR226 residues for nuclear import was previously tested 

using yeast-based nuclear import assay, BiFC assay using NbImp-α, and alanine-scanning 

mutagenesis. Therefore, we do not believe the short carboxy-terminal fragment of SYDV-M NLS 

mutant does have any additional NLS in its sequence and assume that the GFP signal in nucleus 

was derived by free-diffusion of the GFP fusion protein.  

The nuclear export function of 244-LPSMLKMLSP-253 domain of SYDV-M is also 

supported by the BiFC interaction assays of full-length M protein or its carboxy-terminal fragment 

(aa 211-253) with nuclear export receptor, XPOI, which were conducted in our previous research 

(Anderson et al., 2018). In the assay, the full-length SYDV-M interacted in the nucleus otherwise 

the aa 211-253 SYDV-M fragment interacted with the nuclear export receptor outside of nucleus. 

Taken together, these results strongly support the hypothesis that the 244-LPSMLKML-251 on the 

carboxy-terminal region is a bona fide nuclear export signal, along with the nuclear localization of 

the carboxy-terminal of M fragments lacking the predicted NES domain, SYDV-M (aa 211-243).  

The comprehensive functional domains described above are mapped on the corresponding 

amino acid sequence of SYDV and CYDV in Fig. 4.2. The sequence conservation in the functional 

residues of SYDV and CYDV suggests that these two regions are critical in the biology of PYDV 

considering the role of those domains in the nucleocytoplasmic shuttling. If these functional 
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domains are active during virus infection, it is possible that M may mediate the cell-to-cell 

movement of PYDV by exporting the nucleocapsids to the cell periphery. According to our 

previous research, SYDV-M protein interacts with N, G, and Y in the PILM which was built in 

previous research (Bandyopadhyay et al., 2010; Anderson et al., 2018). The research showed that 

N and M exclusively localized in nucleus, while Y localized in cytoplasmic space. Also, G localized 

to endomembrane (Bandyopadhyay et al., 2010). M/N and M/Y interactions occurred in nucleus 

(Anderson et al., 2018). M/G interaction resulted in the re-localization of M to cytoplasmic 

membrane (Bandyopadhyay et al., 2010). It is not clear how SYDV-G protein allows the NES 

domain of M protein expose to the export receptor yet. However, considering protein-protein 

interaction leads to conformational change of the participants and G protein does not have any 

predicted NES, the G interaction with M may mediates the M-XPO1 interaction to induce nuclear 

export of the partially condensed nucleocapsid complex. To refine the association of G/M 

interaction in nuclear export of SYDV-M, BiFC assay of G and M in the leptomycin-B (exportin 

inhibitor) treated plant tissue is required. SYDV-Y protein is putative movement protein which has 

high similarity to the SYNV-sc4 protein in amino acid sequence (Bandyopadhyay et al., 2010). 

SYDV-N proteins form the ribonucleoprotein complex via encapsidating the genome RNA. Min et 

al., (2010) suggested that partially condensed SYNV nucleocapsid complex by its M is presumably 

the mobile form of the virus for cell-to-cell movement. According to Min’s suggested model (2010), 

the SYNV nucleocapsids are exported from nucleus to cytoplasmic space in the association with 

the host factors Ni67 and Mi7 which have functional NLS and predicted NES (Min et al., 2010).   

If the NLS and NES domains are relevant in the context of virus infections, the PYDV-M 

may assist cell-to-cell movement of PYDV nucleocapsids by exporting nucleocapsids to the 

cytoplasmic space which requires the interaction of M with N, G, and Y (Bandyopadhyay et al., 

2010). The role of M in the virus cell-to-cell movement can be explained using ‘catch and release’ 

model (Fig. 4. 3) whereby a subpopulation of M binds to N associated with the nucleocapsids to 
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mediate their nuclear export. Unmasking NES domain of M by M-G interaction may be required 

to initiate the interaction of M with exportin to export the M-nucleocapsid complex . Interaction of 

these same M of nucleocapsid complex to Y proteins at the cell cytoplasmic space may ‘release’ 

the nucleocapsids at, or in the vicinity of, plasmodesmata. To support this model more firmly, more 

evidence that proving Y association with plasmodesmata proteins and kinesin superfamily proteins, 

and mapping of host proteins that interact with nucleocapsid components are needed. According to 

Anderson’s report (2018), SYDV-M uses same the sites to interact with N and Y. This suggests 

that competition for these sites by N and Y may finely modulate the cell-to-cell movement function 

of M.  

We have not investigated the conformational change of SYDV-M masking or exposing its 

NLS or NES situationally. Furthermore, the NES domain was not defined at the amino acid level 

in this study. Establishment of reverse genetic system for PYDV will provide more clear answers 

for these demands to understand the multiple pathways of nucleocytoplasmic shuttling of viral 

proteins and nucleocapsid complexes.  
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Figure 3.1. Confocal micrograph of the cellular localization of  GFP tagged fragments of SYDV 

Mwt(aa 211-243), MLL223AA(aa 211-243), and MKR225AA (aa 211-243). (a-c) confocal micrographs 

showing GFP fluorescence (a), RFP fluorescence (b), and overlay (c) of a and b, of the aa211-243 

fragment from the wild-type M protein. (d–f) Confocal micrographs showing GFP fluorescence (d), 

RFP fluorescence (e), and overlay (f) of (d) and (e), of the aa211-243 fragment from M protein 

containing the LL223AA mutation. (g–i) Confocal micrographs showing GFP fluorescence (g), 

RFP fluorescence (h), and overlay (i) of (g) and (i), of the aa211-243 fragment from M protein 

containing the KR225AA mutation, which presents a similar localization pattern to GFP alone (data 

not shown). Similar results were obtained with fragments of M spanning residues 211–229 (data 

not shown). Scale bar, 10µm 
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Figure 3.2. Functional domain map of amino acids 211–253 residue of the M protein of SYDV and 

CYDV. The amino acid domains highlighted in blue interacted with nuclear import receptor 

importin-α (Anderson et al., 2018). The underlined KR, the second residue, showed the most 

profound effect on nuclear localization in the GFP fusion expression in plant (Anderson et al., 

2018). The di-leucine, LL in red, mediates the ability of M to be associated nucler inner-nuclear 

membranes. The predicted nuclear export signal is marked in parentheses.  
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Figure 3.3. “Catch and release” model for SYDV-M. The interaction of M with N, Y, G, NbIMP-

α, and XPOI (Bandyopadhyay et al 2010; Anderson et al., 2018) and direction of GFP of short C-

terminal fragments lacking the expected NES domain into nucleus suggest a possible role of 

PYDV-M protein in the inter- and intra- cellular trafficking of nucleocapsid complex of the virus. 

The interaction of the M ‘catching’ N of the viral nucleocapsids may result in XPOI-mediated 

nuclear export in the association with G. The M/Y interaction in the cell periphery region may 

‘release’ the nucleocapsid at, or in the vicinity of, plasmodesmata to facilitate cell-to-cell movement 

of nucleocapsids of PYDV.      
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Chapter 4 

Future studies 
 

Attempt to establish the reverse genetic system for plant-adapted negative-
strand RNA viruses. 

 

Negative-sense single-stranded RNA viruses (NSRVs) consist of two orders, 

Mononegavirales and Bunyavirales, and three unassigned families, Arenaviridae, Aspiviridae, and 

Orthomyxoviridae, and an additional unassigned genera Deltavirus (Cann et al., 2011). The viruses 

include many devastating pathogens such as rabies virus, ebola virus, influenza virus, and hepatitis 

delta virus, and so on (ConzelMann et al., 1998; Beeching et al., 2014; Strassburg et al., 1986; 

Einer-Jensen et al., 2004). Reverse genetics has been particulary useful to study these viruses 

because of the capability to rescue recombinant viruses from cDNA. The genetically manipulated 

viruses have been used widely to study their biologies including virus-host interactions, virus-

vector specificity, and pathogenesis-related factor (Albariño et al., 2011; Atieh et al., 2018; Collins 

et al., 2013; NeuMann et al., 2002; Nolden et al., 2017; Pekosz et al., 1999; Pleschka et al., 1996; 

Tierney et al., 2005; Yun et al., 2003). In revese genetics for NSRVs, the following conditions 

must be met for the successful recovery of the infectious virus from cDNA: (1) The viral genome 

must be encapsidated entirely by nucleocapsid proteins. (2) The encapsidation process requires a 

precise terminal sequence of 5’ and 3’ ends of the viral genome. (3) The viral RNA-dependent 

RNA polymerase (P-L complex) is essential for transcription of viral genome and mRNA (4) the 

encapsidated genome and polymerase complex should produce ribonucleoprotein (RNP) complex 

in the susceptible cell (Fig. 4.1) (Pekosz et al., 1999; Jackson et al., 2016; Ganesan et al., 2013; 

Nolden et al., 2017).  

While rescue of an animal-infecting negative-strand RNA virus (influenza virus) was 

achieved for the first time in 1989 (Palese et al., 1989), the successful applications of the reverse 
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genetic system for plant-adapted NSRVs was delayed until a mini-replicon system for Sonchus 

yellow net virus was established (Ganesan et al., 2013). Two years after that, the full-length 

infectious SYNV was rescued from cDNA through an Agrobacterium-mediated DNA transfer 

system (Wang et al., 2015). In the system, the anti-genome of SYNV was flanked by modified 

Cauliflower mosaic virus 35S promoter and HDV-ribozyme in the vector to produce precise 5’- 

and 3’- termini. The three RNP components (N, P, and L), and the three gene silencing suppressors 

[barely stripe mosaic virus Ƴb (Ƴb), tomato bushy stunt virus p19 (p19), and tobacco etch virus 

HC-pro (HC-pro)] were co-expressed with the viral genome to inhibit host gene silencing.     

Like other viruses, plant-adapted rhabdovirus genomes have various cis-regulatory 

elements to control virus transcription and replication (Barr et al., 1997; Whelan et al., 1999). Add 

to that, the viral proteins establish complicated interaction networks with host factors to hijack the 

host cell and its resources that required during infection (Anderson et al., 2012; Bandyopadhyay et 

al., 2010; Dietzgen et al., 2012; Martin et al., 2012). These interactions involve various functional 

motifs in the proteins (Sanderfoot et al., 1996; Sen et al., 2007; Vzorov et al., 2005; Wang et al., 

2012; Ye et al., 1994). Functional studies of viral proteins and cis-elements on the viral genomes 

of plant-adapted NSRVs are most commonly based on the use of predictive algorithms, proteins 

interaction and localization maps, and protein sequence homology with their counter partners 

infecting animals (Anderson et al., 2012; Bandyopadhyay et al., 2010; Ghosh et al., 2008; Claudia 

R. F et al., 1998; Claudia et al., 1998; Deng et al., 2007; Goodin et al., 2001; Goodin et al., 2007; 

Heaton et al., 1989; Claudia et al., 1998). Although these approaches have generated useful 

speculation about plant-adapted NSRV biology, the information may not reflect the in-situ 

functionalities of the viral proteins and regulatory sequences due to the absence of virus infection.  

In this study, the reverse genetic system was applied to Coffee ringspot virus and Potato 

yellow dwarf virus. Coffee ringspot virus (CoRSV) is a member of the newly recognized genus 

Dichoravirus, a plant-infecting bipartite negative-stranded RNA virus that is transmitted by the 
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Brevipalpus mite (Ramalho et al., 2014; Dietzgen et al., 2014). The full-length genome sequence 

and gene organization of the virus were determined in 2014 by Ramalho et al. (2014). The virus 

has two segmented genomes namely, RNA 1 and RNA 2. RNA 1 encodes five open reading frames 

(ORFs) encoding N, P, movement protein, M, and G respectively, while RNA2 has a single ORF 

encoding large polymerase (L). The viral genes are separated by intergenic gene junctions (IGJs), 

and the gene coding region of each RNA genome is flanked by leader and trailer sequences 

(Ramalho et al., 2014). The virus-specific protein interaction and localization map (PILM) for 

CoRSV was constructed using transient expression of GFP fusions and a BiFC assay in the model 

plant, N. benthamiana (Ramalho et al., 2014). The nuclear localization of N, P, and M in the PILM, 

viroplasm-like structure (VpLS) formed by N and P co-expression (Ramalho et al., 2014), and the 

accumulation of virus particles in nuclei and viroplasm formation in the infected plants (Kitajima 

et al., 2003) strongly indicate that the virus has the nucleotropic life similar to that of 

nucleorhabdoviruses.  

Potato yellow dwarf virus (PYDV) is the type species of the genus Nucleorhabdovirus 

(Bandyopadhyay et al., 2010; Jones et al., 1990). PYDV was first reported as a highly destructive 

pathogen of potato (Solanum tuberosum) (Barrus et al., 1922). Early research on this virus has 

contributed significantly to the study of virus-insect interaction (Black et al., 1941; Black et al., 

1943; Black et al., 1965; Hsu et al., 1973), lipid contents of the virus particle (Ahmed et al., 1964, 

MacLeod et al., 1968), and virus purification using sucrose gradient centrifugation (Brakke et al., 

1951; Hsu et al., 1973). PYDV has two strains distinguishable by vector specificity and serotype, 

namely Constricta yellow dwarf virus (CYDV) and Sanguinolenta yellow dwarf virus (SYDV) 

respectively. They are selectively transmissible by the Agallia constricta and Aceratagallia 

sanguinolenta, respectively (Ghosh et al., 2008; Black et al., 1941; Hsu et al., 1973). Those two 

virus genome sequences and genetic contents were characterized, and the protein interaction and 
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localization map (PILM) of each virus was completed (Bandyopadhyay et al., 2010; Jang et al., 

2017).  

To rescue the recombinant virus, the full-length antigenome of CoRSV and SYDV were 

cloned into the pCass4HDV vector (Annamalai et al., 2006) and pCB301-2µ-HDV (Sun et al., 

2017) and minigenomes were generated based on the virus genome sequence.  The cDNA of RNP 

core proteins (N, P, and L) of each virus were cloned into protein expression vectors, pGD (Goodin 

et al., 2002), pTRBO (Lindbo et al., 2007), and pSITE systems (Chakrabarty et al., 2007). This 

study aims to develop a reverse genetics system for generation of infectious CoRSV and SYDV 

from their cDNA clones. The recombinant viruses from the system will allow elucidating the wider 

portion of cytopathological properties of the plant-adapted negative-strand RNA viruses from their 

RNA sequence level. Furthermore, these approaches would be extended to the interaction of viral 

and vector proteins that regulate the vector specificities, disease control for the important crops in 

the global trade market and pharmaceutical use for public health.  

Methods 

Plant materials and virus maintenance 

All plants, including transgenic marker lines of Nicotiana benthamiana and wild type 

Chenopodium quinoa, were maintained in the greenhouse on open benches or  a 28° C growth 

chamber in the Kentucky Tobacco Research and Development Center (KTRDC) (Martin et al., 

2009; Anderson et al., 2014; Ramalho et al., 2014). The Sanguinolenta strain of Potato yellow 

dwarf virus (American Type Culture collection accession PV-234) was maintained by serial 

passage of mechanical inoculation in N. benthamiana and Nicotiana rustica (Martin, et al., 2009; 

Anderson et al., 2012). The mechanical serial passage in Chenopodium quinoa maintained coffee 

ringspot virus-Lavras strain. To maintain Coffee ringspot virus (CoRSV), C. quinoa was pre-

incubated for three days in the 28°C chamber before mechanical inoculation using the virus 

reservoir and maintained five to seven days more after the inoculation in the same place to increase 
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the CoRSV infection efficiency. After the incubation, the plants were moved and maintained in the 

greenhouse until infection symptoms were visible (Ramalho et al., 2014).  

Isolation of total RNA, RT-PCR 

Total RNA was extracted from plant tissues using the Qiagen RNeasy Plant minikit 

(Qiagen). Except where noted, first-strand cDNA synthesis and PCRs were carried out using 

Superscript reverse transcriptase IV (Thermo Fisher Scientific) and Phusion high-fidelity DNA 

polymerase (Finnzymes), respectively.  

Cloning of the CoRSV full-length antigenome (ag) RNA 1 and RNA 2 into pGEM-T easy 
vector 

cDNA of agRNA 1 and agRNA 2 were subcloned into pGEM-T easy vector (Promega) 

(Fig. 4.3a) before they are cloned into pCass4HDV (Fig. 4.2). The primer sets, 

‘FspI_R1F’/’KpnI_R1R’ and ‘FspI_R2F’/’KpnI_R2R’ amplified agRNA 1 and agRNA 2 from 

CoRSV infected C. quinoa respectively. FspI and KpnI enzyme sites were introduced on 5’ and 3’ 

ends of agRNA 1 and agRNA2 repectively during the PCR. The PCR products were cloned directly 

into pGEM-teasy vector (Promega) via TA cloning to generate pGEM-R1 and pGEM-R2 (Fig. 

4.3a).  

Cloning of the full-length antigenomic cDNA of SYDV into pGEM-T easy vector 

Three partial segments of antigenome of SYDV, SYDV_P1, SYDV_P2, and SYDV_P3, 

were amplified using the following primer pairs (‘SYDV-P1F’/‘SYDV-P1R’, 

‘SYDV_P2F’/‘SYDV_P2R’, AND ‘SYDV_P3F’/‘SYDV_P3R’) and sub-cloned into pGEM-T 

easy vector (Promega), to construct pGEM_P1, pGEM_P2, and pGEM_P3. pGEM_P1 and 

pGEM_P2 were digested by KpnI and NotI and the resulted fragments were separated in the 0.8 % 

agarose gel. The SYDV_P2 fragment from pGEM_P2 was subcloned into pGEM_P1 backbone 

and pGEM_P1:P2 was produced. pGEM_P1:P2 and pGEM_P3 were digested by XmaI and NotI. 

The SYDV_P3 fragment from pGEM-R3 was inserted to the opening of the pGEM_P1:P2 to 

generate pGEM_agSYDV (Fig. 4.3b).   
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Construction of full-length antigenomic sequence of CoRSV RNA1 and RNA2 in pCass4HDV 

The full-length CoRSV agRNA 1 and agRNA 2 were cut out from pGEM-R1 and pGEM-

R2 using FspI and KpnI, respectively. The agRNA 1 (6.5 kb) and agRNA 2 (5.9 kb) fragments 

were separated from pGEM backbone on the 0.8 % agarose gel and purified from the gel using gel 

extraction and purification kit (Quiagen) (Fig. 4.4a-b). The CoRSV RNA1 and RNA2 were ligated 

into StuI and KpnI treated pCass4HDV by T4 ligase in vector/insert ration, 1: 3 (Fig. 4.4c). The 

extra sequences between inserted viral genome and the regulatory elements of the vector, 35S 

promoter and ribozyme, were removed using site-directed substitution mutagenesis (NEB, Q5 Site-

Directed Mutagenesis Kit) (Fig. 4.4d-e).   

Construction of full-length antigenomic sequence of SYDV in pCass4HDV 

pGEM_agSYDV was digested by HindIII to generate the two fragments ‘H-YD-H’ and 

linear pGEM_S-H-V [Fig. 4.5(1)]. The pGEM_S-H-V was religated [Fig. 4.5(2)] and used as a 

PCR template to amplify the 5’p-S-H-V-p3’ fragment [Fig. 4.5(3)]. The PCR product was inserted 

in the StuI site of the modified (m) pCass4HDV, the HindIII site removed [Fig. 4.5(4)]. The resulted 

mpCass4HDV_S-H-V was re-digested using HindIII. The 5’-H-YD-H-3’ fragment was inserted in 

the HindIII site in 5’-S-H-V-3’ to build pCass4HDV_agSYDV [Fig. 4.5(6)]. To remove the extra 

sequences between the 3’ terminus of the SYDV antigenome and the HDV-ribozyme of the vector, 

site-specific sequence deletion was carried using a Q5 Site-Directed Mutagenesis Kit (NEB) [Fig. 

4.5(7)].  

Cloning N,  P, and L of CoRSV into pSITE vectors and pTRBO vector  

The cDNAs of N, P, and L of CoRSV were amplified using the primer sets, 

‘CoRSVNF/CoRSVNR’,  ‘CoRSVPF/CoRSVNR’, and ‘CoRSVLF/CoRSVLR’. The primer sets 

introduced attB1-PacI and NotI-attB2 sequences on 5’ and 3’ ends of the PCR products respectively. 

The PCR products were recombined to pDONR 221 vector (Invitrogen) using BP clonase 
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(Thermofisher) )(Fig. 4.6b). Subsequentially, the pDONR constructs were utilized for LR reaction 

(LR clonase-II) to clone cDNAs of N, P, and L into pSITE 0A and pSITE-FLAG 

(Thermofisher)(Fig. 4.6c). The cDNAs of N, P, and L in pDONR 221 were cloned into the pTRBO 

vector using the PacI and NotI sites (Fig. 4. 6a) (Lindbo et al., 2007, Martin et al., 2009; Anderson 

et al., 2014).  

Cloning N,  P, and L of SYDV into pGD vector  

 The cDNAs of SYDV-N, -P, and -L were amplified from SYDV infected N. benthamiana 

the primer set ‘SYDVNF/SYDVNR,’ ‘SYDVPF/SYDVPR’, and ‘SYDVLF/SYDVLR’. XhoI and 

BamHI sites were introduced on the 5’ and 3’ ends of the PCR products. The PCR products were 

subcloned into the pGEM-T easy vector. The pGEM constructs were digested using XhoI and 

BamHI, and the viral gene fragments were cloned into pGD vector (Goodin et al., 2002) to produce 

pGD-SYDVN, pGD-SYDVP, and pGD-SYDVL (Fig. 4.6d). 

Construction of pCASS4HDVRz-CoRSVMG_GFP 

The multicloning site was generated between leader and trailer sequence of CoRSV in the 

pGEM-R1 using site-directed substitution mutagenesis. The primer pair ‘R1_Cassette 

F/R1_Cassette-R’ was used to replaced the gene encoding region of CoRSV to the synthesized 

multicloning site, 5’-GGATCCGACTCGAGTTAGATCTGTAAGCTT-3’. The XhoI and HindIII 

sites were introduced to 5’ and 3’ ends of GFP sequence respectively using the primer set, ‘XhoI-

GFP/GFP-HindIII’. The PCR product was cloned into the multicloning site above to construct 

pCASS4HDVRz-CoRSVMG-GFP.  

Plasmid purification from yeast and electrotransfromation of Agrobacterium.   

20 µl of yeast lysis buffer (2% Triton X-100, 1% SDS, 100mM NaCl, 10mM Tris-HCl pH 

8.0, 1mM EDTA pH 8.0) was added to eppendorf tube. The 3-4 day old yeast colony was picked 

using pipet tip and resuspended in the 20 µl of yeast lysis buffer. 20 µl of phenol:chloroform was 

added along with half-volume of glass beads into the tube, and was vortexed with maximum speed 
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for 5 min. The tubes were centrifuged for 5 min at the maximum speed and the upper aqueous 

solution was taken for following steps. PCR targeting several parts of SYDV genome was 

performed to validate the plasmid using the aqueous phase. one µl of aqueous phase was mixed 

with competent cells (electrocompetent Agrobacterium strain C58C1) on ice and then was pipetted 

into a precooled electroporation cuvette (0.1 cm). Electroporation was performed by using a Bio-

Rad gene Pulse set at 1.8 kV, 25mF with Pulse controller of 200 ohms. The cells were grown at 

25 °C for three hours and all agrobacterium culture was plated as described previously (Goodin et 

al., 2007) 

Construction of full-length antigenomic sequence of SYDV into pCB301-2µ-HDV via 
Yeast homologous recombination.   

To generate pCB301-2µ_agSYDV, the antigenome of SYDV was amplified into four parts 

(SYDV_a, SYDV_b, SYDV_c, SYDV_d) using the primer pairs, ‘SYDVaF/SYDVaR’, 

‘SYDVbF/SYDVbR’, ‘SYDVcF/SYDVcR’, and ‘SYDVdF/SYDVdR’, respectively. Yeast vector 

backbone was amplified from pCB301-2µ-HDV using the ‘SYDV_backbone_F/ 

SYDV_backbone_R’ primer pair (Figure 3.7a). The full-length SYDV-L was amplified into two 

parts, SYDVL-a and SYDVL-b using the primer sets ‘SYDVL-aF/SYDVL-aR’ and ‘SYDVL-

bF/SYDVL-bR’ respectively (Fig A.7b). The primers were designed to generate at least 40 bp 

overlapping sequence between the neighboring fragements to facilitate the yeast mediated 

homologus recombination during yeast transformation process. The concentration of each PCR 

product and the vector pCB301-2µ  was measured on the agarose gel. The amount of each fragment 

was adjusted to about 0.8 µg. The DNA mixture was transformed into L 40 yeast competent cells 

using the LiAC method (Gietz et al., 2007). The total DNA mixture, 10 µl of sheared salmon sperm 

DNA (10mg/ml), sterilized 300 µl of PEG/LiAC solution (40% of PEG, 1X TE, 1X LiAC in total 

volume) was added to 50 µl of competent cells. The tube was vortexed and incubated at 30 °C for 

30 min with shaking. Heat shock was applied using 42 °C heat block for 30 min and the tube was 

chilled on ice for 1-2 min. The tube was centrifuged (3000rpm for 2min) to pellet the cells and the 
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supernatant was discarded. The pellet was resuspended in 100 µl of sterile 1 X TE buffer and spread 

onto tryptophan deficiency media for selection. After 3-4 days, the yeast colonies grown to an 

appropriate size were picked to confirm the cloning results using colony PCR (Fig. 4.7c).   

 

Agrobacterium-mediated viral genome protein expression in plant cells 

The viral genome and protein expression constructs were transformed into Agrobacterium 

tumefaciens strain LBA 4404 and grown on the LB plates containing proper antibiotics. The plates 

were incubated for 72 hours or until colonies were grown to a proper size. A single colony was 

transferred and spread onto a new media plate and grown for two days. The cells were scraped from 

the plates and resuspended in the infiltration buffer [10 mM of MgCl2, 10 mM of 2-(N-

Morpholino)-ethanesulfonic acid (MES)] (Goodin et al., 2007). The final concentration of bacterial 

suspensions was adjusted to an OD 600 of 0.8 and incubated for 3hrs with 100 µM acetosyringone 

under room temperature for activation. The ribonucleocapsid components (N, P, and L) and the 

viral genome suspensions of each virus, were mixed in the desired combinations and volumes. The 

bacteria suspensions of pGD-HcPro (TEV), pGD-p19 (TBSV), and pGD- γb (BSMV) were added 

to inhibit the gene silencing effect by the plant.  

Western blotting 

For blotting and detection of proteins from plant samples, the soluble proteins were 

extracted from agroinfiltrated-, virus infected- and mock-inoculated plants. 200 mg of leaf tissues 

were collected using the cork borer and ground with tungsten beads (3 mm) and liquid nitrogen in 

eppendorf tube by vortex machine. The tissue powder was resuspended in the 200µl of 1x sample 

buffer (50mM Tris-HCl pH 6.8, 2% SDS, 10% glycerol, 1% β-mercaptoethanol, 12.5mM EDTA, 

0.02% bromophenol blue) and boiled for 5 minutes. The total proteins were separated in SDS-

PAGE of the desired concentration.  The separated proteins were visualized using Coomassie blue 

on the SDS gel or transferred to polyvinylidene difluoride (PVDF) membrane by application of an 
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electrical current. The targeted proteins were visualized on the membrane using the proper primary 

and secondary antibodies and detection agents.  

Laser scanning confocal microscopy 

Agroinfiltrated N. benthamiana leaves were examined on an Olympus FV1000 laser-

scanning confocal microscope as described previously. Micrographs for overlapped two-channel 

image were acquired sequentially, as described in previous (Goodin et al., 2007)   

Results  

Expression of CoRSV RNA 1 and RNA 2 from pCass4HDV constructs was detected using 
RT-PCR.  

Expression of antigenomic viral RNA is one of the essential elements to rescue infectious 

negative-strand RNA virus from cDNA (Horimoto et al., 1994; Pleschka et al., 1996; Pekosz et al., 

1999; Desselberger et al., 2017). To express agRNAs in N. benthamiana, the cDNAs agRNA 1 and 

agRNA 2 were cloned into pCass4HDV vector and pCass4HDV-R1 and pCass4HDV-R2 were 

constructed. The cDNA constructs were digested by HindIII for restriction analysis; Comparison 

of the enzyme digestion pattern to in-silico   (Fig. 4.8a-b). The expression of agRNA1 and agRNA2 

was detected from the RT-PCR using each RNA of pCass4HDV-R1 and pCass4HDV-R2 

agroinfiltrated N. benthamiana. The primer sets, ‘R1_1657F/R1_3357R’ and ‘R13284F/R14947R’ 

amplified about 1.7 kb PCR products from pCass4HDV-R1 infiltrated plants (Fig. 4.8c, lane 1, 2). 

‘R2_1471F/R2_3015R’ and ‘R2_4431F/R2_5945R’ amplified about 1.5kb PCR product 

pCass4HDV-R2 infiltrated plants (Fig. 4.8c, lane 3, 4). DNA contamination of the RNA samples 

was not detected (Fig. 4.8c. lane 5-8).    

Coffee ringspot virus nucleoprotein (N), Phosphoprotein (P), and RNA dependent RNA 

polymerase (L) were expressed using pSITE gateway system and FLAG fusion proteins were 

visualized by western blot.  
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The three RNP complex proteins, (N, P, and L) are compulsory to produce functional RNA 

complex along with ag-vRNA (WalPita et al., 2005, Pekosz, 1999). The cDNAs encoding CoRSV-

N, -P, and- L were cloned to pSITE-0A and pSITE-FLAG (Fig. 4.5). pSITE-FLAG-CoRSV-N, 

pSITE-FLAG-CoRSV-P, and pSITE-FLAG-CoRSV-L were expressed in N. benthamiana via 

agroinfiltration. FLAG-CoRSV-N and FLAG-CoRSV-P were detected by colorimetric 

development (Fig. 4.9a). In the result, the major band size for FLAG-CoRSV-N was 60kDa and 

other multiple bands were also detected in various sizes. FLAG-CoRSV-P was detected on the 

PVDF membrane as about 35 kDa in size. The expression level of FLAG-CoRSV-P was lower than 

FLAG-CoRSV-N. Otherwise, FLAG tagged CoRSV-L was not detected from the colorimetric 

development. To detect FLAG-CoRSV-L, Chemiluminescent development was used to increase 

the detection sensitivity, and the FLAG-CoRSV-L expression was detected through X-ray film 

development. The detected size of CoRSV L on X-ray film was about 230 kDa (Fig. 4.9b).  

Expression of native CoRSV-N and -P using pTRBO, the Tobacco mosaic virus (TMV)-based 
transient expression vector. 

pTRBO-CoRSV-N and pTRBO-CoRSV-P were transformed to the Agrobacterium strain 

LBA 4404 and infiltrated to N. benthamiana to express the native CoRSV-N and CoRSV-P. The 

protein samples were extracted from the infiltrated leaves after 48 hours post-infiltration. The 

extracts were subjected to western blot using CoRSV N antibody or gel staining using Coomassie 

blue. The western blot using CoRSVN specific antibody showed four protein bands on the 

membrane (Fig. 4.10a). Approximately 55 kDa, 50 kDa, 45 kDa, and 40 kDa bands were detected 

from the CoRSV-N sample (Fig. 4.10a). The P expression was tested on the gel stained by 

Coomassie brilliant blue due to absence of proper antibody (Fig. 4.10b). About 35 kDa single band 

was detected from the proteins samples which collected from the pTRBO-CoRSV-P agroinfiltrated 

plants (Fig. 4.10b). 

CoRSV N and P co-expression induces viroplasm-like structure in the nucleus and nuclear 
expansion  
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Several studies have shown that the transient co-expression of nucleoproteins (N) and 

phosphoproteins (P) of plant negative-strand RNA viruses are sufficient to form VpLS in the plant 

and insect cells and various N and P interactions have been characterized (Wang et al., 2018; Deng 

et al., 2007; Kondo et al., 2013, Jang, 2018, Ramalho et al., 2014). In the previous research about 

CoRSV protein localization, the co-expression of N-GFP and RFP-P promoted the relocalization 

of the RFP-P to the cytoplasm by N-GFP. The nuclear co-localization of CoRSV N-GFP and 

CoRSV RFP-P did not induce the VpLS, while N and P interaction signal was localized in the 

VpLS in the BiFC assay (Ramalho et al., 2014).   

Due to the absence of polyclonal antibodies for CoRSV proteins, the functionality of the 

native N and P was tested in the transgenic RFP-H2B N. benthamiana using a confocal microscope, 

at 48 hours post-infiltration. The single expression of CoRSV-N did not induce any morphological 

change of nuclei in the infiltrated plants (Fig. 4.11a, left panels). Otherwise, CoRSV-P single 

expression formed an irregular shaped subnuclear structure (Fig. 4.11a, middle panels). The 

subnuclear structure formed by single P expression (Fig. 4.11a) was different from the nuclear 

viroplasm induced by the virus infection(Fig. 4.11b). The boundary of the subnuclear space formed 

by single P expression was irregular. The noticeable effect in the size of nuclei by P was not 

observed. The N and P co-expression induced VpLS in the nuclei of the infiltrated plants (Fig. 

4.11a, right panels). This VpLS was very similar to the nuclear viroplasm induced by the CoRSV 

which has smooth spherical shape. Considering the feature of RFP-H2b and the confocal images, 

the chromatin and nucleolus seemed not to be in the VpLS. The results reported here were 

reproduced at least five times. And the N and P expression using pSITE-0A showed the same results 

(Fig. 4.11a). 

GFP-ER signal re-direction was observed in the nuclei by the single P expression.  

Host membrane remodeling by virus infection has been reported from various viruses 

including plant rhabdovirus (Carette et al., 2000; Jackson et al., 2005; Suhy et al., 2000; Reichel et 
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al., 1998). Especially, significant ER membrane signal re-direction from the cytoplasm to 

nucleoplasm in N. benthamiana 16C plant by SYNV infection was reported by Jackson et al.,(2005). 

In this research, GFP-ER signal rearrangement was observed in 16c N. benthamiana (GFP-ER 

marker plant) transiently expressing CoRSV-P. The nuclei of the cells in the 16C N. benthamiana 

plants were stained using DAPI, and the nuclei appeared to have an irregular shaped subnuclear 

space like those of nuclei in the transgenic RFP-H2b N. benthamiana plants expressing P (Fig. 

4.11a and Fig. 4.12). The accumulation of GFP signal in the subnuclear space seemed to reflect 

that the ER membrane is re-directed into the P-induced inner space of nuclei. Moreover, the GFP 

signal intensity in the cell periphery region and nuclear membrane was noticeably lower than those 

in the mock-inoculated plant. A bulk of GFP signal was concentrated on the subnuclear space which 

is induced by P expression (Fig. 4.12). The results reported here were reproduced at least five times.  

Inhibition of DAPI staining of nuclei of cells expressing CoRSV RNAs and N, P, L  

The extremely low efficiency of DAPI staining of nuclei was observed while testing the 

cellular effect of the coexpresssion of CoRSV-N, -P, -L, and antigenomic viral RNAs in GFP-ER 

line of N. benthamiana at the three days post infiltration. A very limited number of stained nuclei 

were found. It was almost impossible to distinguish nuclei using DAPI staining. Otherwise, 

extremely swollen nuclei-like membrane patterns were detected (Fig. 4.13). This phenomenon was 

not observed in the N, P, and N/P co-expression. DAPI staining of the RFP-H2B plant expressing 

CoRSV N, P, L, and, RNA1 and RNA2 revealed that the DAPI staining of the nucleus was 

substantially inhibited (Fig. 4.14a).  In most of the cases, the inhibition of DAPI staining was 

limited to the nuclei which are enlarged and containing VpLS (Fig. 4.14a-c). A total of 155 nuclei 

were counted using the confocal microscope and the nuclei were classified into four types: type 1, 

the undyed nucleus with clear subnuclear space and expansion; type 2, the undyed nucleus with 

expansion, but unclear VpLS; type 3, dyed nucleus with expansion and/or subnuclear structure; 

type 4, nucleus in usual shape (5-10 µm) (Fig. 4.14c). 30 % of nuclei had clear subcellular 
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nucleoplasm and expansion in size (47/155), type 1 and type 3. Only three of the 47 nuclei were 

DAPI-labeled. About 52% of the nuclei among the counted (80/155) showed clear DAPI-label 

(type 4). The rest (18%) showed relatively bigger size and very weak or undetectable DAPI-label 

(type 2) (Fig. 4. 14b). The difference in the DAPI density seemed to be directly correlated to the 

morphological variation of the nuclei. (Fig. 4.14b, 14c). More than 99% of the nuclei of the cells 

in the mock infiltrated samples were DAPI-labeled strongly. The data obtained from this 

measurement was similarly reproduced more than twice with the slight deviation (data not shown).  

The temperature may affect the morphology of VpLSinduced by CoRSV RNA1, RNA2, N, P, 
and L  

In our previous research, exposure of plants to 28°C increased the rate of systemic infection 

of C. quinoa and N. benthamiana by CoRSV (Ramalho et al., 2014). It seemed that the heat stress 

applied to the plants allowed CoRSV the chance to overcome the plant resistance to the virus 

(Ramalho et al., 2014). The plants infiltrated by Agrobacterium suspensions harboring all 

components (agRNA1/agRNA2/N/P/L/GSSs) for the CoRSV rescue were maintained in a 28 °C 

chamber pre- and post-infiltration to maximize the chance of virus infection and symptom 

development. Leaf tissues were collected at 72-hour post infiltration to observe the morphological 

aspect of the nuclei of cells in the RFP-H2B N. benthamiana. About 34% (42/123) of nuclei showed 

clear and typical nuclear expansion accompanying viroplasm-like subnuclear space under the 

microscopic view, immediately after sampling from the 28°C chamber (Fig. 4. 15a-b). However, 

from the observation taken three hours after the temperature change to 23°C, the number of nuclei 

having VpLS (2/147) was noticeably reduced (Fig. 4. 15c-d). Three more observations were 

repeated to acquire the arithmetic mean of the phenomenon. In individual observation, 100 nuclei 

were randomly counted under microscopic view and the number of nuclei with clear VpLS were 

compared before and after the temperature change. An average of 30% of nuclei in each observation 

appeared to be enlarged and to have clear VpLS structure under 28°C. Otherwise, the observation 

after 3 hours incubation under 23 °C revealed that 38% of nuclei among the counted remained in 
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the expanded state, but the subnuclear structure was observed to be missing. Only seven nuclei 

among the total 300 nuclei were observed with VpLS. Similar morphological change of nuclei 

according to the temperature change was reproducibly observed (Table 3).  

ER signal accumulation and size contraction of the enlarged nuclei were detected from the 
DAPI-stained RFP-ER N. benthamiana expressing CoRSV RNAs and N, P, L, after low 
temperature (23°C) treatment.  

For more detailed observation, the three enlarged nuclei (>15nm) which are visibly well-

stained by DAPI were picked and numbered from 1 to 3 in the Agroinfiltrated tissue sample of the 

RFP-ER N. benthamiana. Two nuclei (No. 1 and 2 in Fig. 4.16a-b) of the three picked nuclei 

showed ER-accumulation in the nucleus after 23°C treatment for 10hrs. The ER accumulation in 

the nucleus did not occur in the healthy ER marker transgenic plant (Fig. 4.16d). The nucleus No. 

3 showed a significant size contraction at 1.5 hrs after first observation under 23°C (Fig. 4.16b). In 

addition to the three nuclei, at least 12 nuclei were found to be noticeably contracted over time. 

Among them, the three nuclei representing the nuclear size contraction were photographed (Fig 4. 

16c). They showed nucleus volume reduction at 3 hours after 23°C exposure. The nuclear 

contraction was reproducibly obtained from the RFP-H2B N. benthamiana expressing all CoRSV 

RNP constituents (RNAs, N, P, and L) at least twice more (data not shown).  

The simultaneous expression of the CoRSV viral antigenomes and N, P, L could not recover 
the infectious virus.  

For the experiment in Fig. 4.17, a total of 108 plants (36 of wild-type, 18 of GFP-ER, 18 

of RFP-ER, 18 of CFP-H2B, and 18 of RFP-H2B N. benthamiana) were infiltrated using the 

Agrobacterium suspension mixture. About three-weeks post infiltration, only four plants showed 

phenotypical changes including marginal yellowing, small yellow spots, and crinkle in the upper-

leaves above the infiltrated leaves (Fig. 4.17a). Mock-inoculated plants did not show any change. 

RT-PCR targeting CoRSV-M (Fig. 4.17b), immunoblotting using CoRSV-N specific antibody (Fig. 

4.17c), microscopic observation (Fig. 4.17d) and mechanical inoculation using the leaves showing 
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morphological change (not shown) revealed that no virus infection. The same experiment was 

reproduced 14 times more.  

CoRSV N and P co-expression inhibited the GFP expression from CoRSV minigenome, but 
did not block the GFP expression from pSITE 0A   

To evaluate the functionality of the cDNA clones of the CoRSV polymerase complex 

constituents (N, P, and L), various minigenome cassettes were cloned into pCass4HDV. The 

pCass4-CoRSV_MG_GFP induced a detectable background signal which came from leaky 

expression of the GFP gene in the minigenome cassette [Fig. 4.18(b)-a]. However, the co-

expression of N and P inhibited the background GFP signal [Fig. 4.18(b)-c]. The single expression 

of N did not affect to the GFP expression [Fig. 4.18(b)-b]. N, P, and L co-expression with the mini-

genome showed a very limited number of GFP-foci under the microscope [Fig. 4.18(b)-d]. The 

western blot assay using GFP antibody for the samples used in Fig. 4.18(b) produced same results 

as the microscopic observation. The western results revealed that N/P and N/P/L co-expression 

inhibits the GFP expression [Fig. 4.18(c)]. Minigenome and CoRSV-P combination was tested 

separately. P expression did not prevent the GFP expression from the minigenome (data not shown). 

The N/P co-expression did not affect the expression of GFP from pSITE 0A [Fig. 4.18(e)]. The 

results obtained in this experiment were reproducible in the repeated experiments.   

Expression of full-length SYDV antigenomic RNA and N, P, L protein to generate infectious 
virus from the cDNA.  

To rescue infectious Sanguinolenta strains of PYDV from the antigenomic cDNA clone, 

the full-length anti-genomic sequence was cloned into pCass4HDV vector to generate 

pCass4HDV_agSYDV (Fig. 4.19b). The construct was digested by HindIII for restriction analysis 

(Fig. 4.19a). pGD vector was applied to express SYDV-N, -P, and -L proteins. RT-PCR specific to 

the SYDV genes coding N and P was performed using the cDNA obtained from the plant transiently 

expressing pCass4HDV_agSYDV. About 1. 5kb of N and 750bp of P of SYDV was amplified from 

RT-PCR (Fig. 4.19c). DNA contamination from RNA sample was not detected. A negligible band 
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was amplified from the SYDV N specific PCR (Fig. 4.19c). The immuno-blotting assay using 

polyclonal SYDV antibody was performed to visualize N, P, and L of SYDV expression from the 

pGD constructs. The expression level of N and P was enough to visualize. Otherwise, SYDV L 

protein expression level was not detectable on the PVDF membrane (Fig. 4.19d). 

Chemiluminescence X-ray film development was not able to detect the L expression (data not 

shown). The L in the pGD vector was verified by sequencing (Retrogen). Multiple bands were 

detected from the protein sample of the plant expressing pGD-SYDVN. The major band size was 

detected around 50 kDa marker. The protein sample obtained from the plant expressing SYDV-P 

generated either multiple protein bands. The major band was about 33 kDa. (Fig. 4. 17d)  

Discussion  

Determining the functional role of proteins and regulatory elements in the genome of the 

plant-adapted rhabdoviruses is most commonly based on the use of predictive algorithms, transient 

expression of autofluorescence protein fusion in the cell, and the analogy by amino acid sequence 

homology to their animal infecting counter partners (Anderson et al., 2018; Bandyopadhyay et al., 

2010; Ghosh et al., 2008; Jang et al., 2017). Despite the accumulation of much speculations from 

these approaches, the knowledge about the in-situ role of the viral genome and gene products in 

the context of virus infection is still limited (Goodin et al., 2007; Jackson et al., 2005; Jackson et 

al., 2016; Pappi et al., 2013; Jang et al., 2017; Tsai et al., 2005).  

Recently,  reporter gene expression using plant-adapted rhabdovirus mini-replicon system, 

and recovery of the infectious virus from model plant were achieved through the co-expression of 

a virus antigenome, RNP core proteins (N, P, and L) and gene silencing suppressors by 

Agrobacterium-mediated cDNA transfer mechanism (Ganesan et al., 2013; Wang et al., 2015). 

This promising system will allow generating recombinant plant-adapted negative-strand RNA 

viruses to study the relevance of their genetic sequence to the virus structure and protein functions. 
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Furthermore, these strategies will promote the extensive application of plant-adapted NSRVs to 

therapeutic and agricultural purposes.  

In this research, agRNA1 and agRNA2 of CoRSV, and its RNP core proteins (N, P, and L) 

were expressed in N. benthamiana with gene silencing suppressors using an Agrobacterium-

mediated gene delivery system. The expression of agRNA1 and agRNA2 was confirmed using RT-

PCR (Fig. 4.9). The expression of three core proteins was visualized using FLAG-tag fusion 

proteins. In western blot tests, FLAG fusion N protein appeared to be multiple bands. The size of 

the major band was about 50 kDa (Fig. 4.10). The predicted size by computational calculation 

(SerialCloner v2.6.1, serialbasics) of N was 49kDa. N proteins of NSRVs have been shown to be 

highly self-associated (Ambroise-Desfosses et al., 2013) and phosphorylated in previous reports 

(Yang et al., 1999; Wu et al., 2002). Post-translational modification and insufficient denature of 

the sample could be resulted in the multiple minor bands and larger major band. FLAG fusion P 

was detected around the 40kDa size marker. The predicted molecular weight of P was 26kDa. The 

FLAG-L protein was detected using a chemiluminescence western blot. The expression level was 

lower than other proteins even though it was expressed from the same 35S promoter-based protein 

expression system. The band was detected around the 230kDa region. The predicted size was 

212kDa.  

In previous research, CoRSV-N was localized on the nucleus and cell periphery region, 

and P was exclusively localized to the nucleus. While the GFP fusion of P did not induce any 

morphological change in the nucleus (Ramalho et al., 2014), in this research, the untagged P 

expression induced subnuclear space in the RFP-H2b marker plants. This result is very intriguing 

because orchid fleck virus (OFV), the prototype virus of dichoravirus, needs both N and P protein 

to induce morphological change of host nucleus (Kondo et al., 2013). The differential morphology 

of subnuclear space by P compared to the VpLS of N and P co-expression or viroplasm by CoRSV 

infection suggests the CoRSV-P protein has distinct functions compared to OFV-P. Indeed, 
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CoRSV-P enables to induce ER-membrane rearrangement from 16c N. benthamiana which is not 

reported from OFV-P single expression (Kondo et al., 2013). The rearranged GFP-ER signal of the 

16c plant accumulates in the subnuclear space generated by P expression. This may associate to 

that P interact with host cell cytoskeleton and with nucleocytoplasmic trafficking carriers (Leyrat 

et al., 2011). In a similar case, the redirecting of ER-signal flow from the cytoplasm to the nucleus 

by SYNV and PYDV infection in the 16c plant has been reported (Jackson et al., 2005). CoRSV-

P has 32% of amino acid similarity to the cognate of OFV, however, the differential amino acid 

residues are dispersed along with the P amino acid sequence. Therefore, physical scanning of the 

functional domain(s) of CoRSV-P that related to the ER-rearrangement (Anderson et al., 2012).  

Formation of VpLS without ER membrane disruption in CoRSV-N and -P co-expressed 

plant tissue suggests that CoRSN-N functions in maintaining intact nuclear structure during 

infection. Regarding overly perturbated host cellular condition is not always favorable to viruses, 

viruses need to make their host survive long enough to the viruses replicate and spread (Koyuncu 

et al., 2013). Therefore, as a nucleotropic virus, maintaining the subcellular site for virus factory, 

nucleus, would be critically important to the virus and N protein may perform the role to keep host 

nuclei intact during its infection.     

The unexpected DAPI staining pattern by simultaneous expression of all RNP components 

(agRNA1, agRNA2, N, P, and L) extended the areas of our concern to alteration of chromatin 

structure and perturbation of nucleocytoplasmic transport by the virus. During this research, most 

of nuclei in the virus-infected, CoRSV-N and P co-expressed, and all RNP components expressed 

cells are relatively bigger (>15µm) than normal nuclei of epidermal cells which have about 5~10 

µm in size (Nagar et al., 1995). In the RNP component expression experiment, the nuclei in the 

rage of normal size (≈ 10 µm) were stained by DAPI, which is not observed from enlarged nuclei 

having the VpLS (>20 µm). The size-dependent inhibition of DAPI uptake suggests two 

collaborative factors possibly explaining the phenomenon; (1) Generation of swelling force by 
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impaired nucleocytoplasmic transport of host cell by viral factors and (2) Alteration of host 

chromatin structure by previous one.  

Already, many research and reviews emphasized that the volume of nucleus are closely 

related to swapping of cytosolic and nuclear substances through nuclear pore complex, the 

nucleocytoplasmic transport (Ganguly et al., 2016; Levy et al., 2010; Edens et al., 2013; Jevtić et 

al., 2014). The extremely swelled nuclei by expression of RNP components and the inhibited 

translation of CoRSV leader and trailer sequence flanked GFP RNA by CoRSNV-N and -P co-

expression in this research may indicate the inhibited nuclear export of the RNA molecules that 

encapsidated by CoRSV-N and P. This rises an intriguing question about the compatibility of the 

predicted NESs from CoRSV-N and -P of the RNP complex of CoRSV with N. benthamiana export 

receptors. Ramalho et al. (2014) reported the predicted-NESs of N and its capability of P re-

localization from the nucleus to cell periphery by N-P interaction. However, according to the result, 

the formation of multimer during encapsidation may affect to the functionality of NES of N. More 

detailed information about what conformational changes of CoRSV-N occur by the interaction 

between RNA and the viral protein is required to solve this problem (Fernández-Coll et al., 2018).  

Nuclear chromatins form a dynamic architecture that maintains the stability and 

accessibility of the chromatin machinery. The viruses invading host nucleus must contend with, 

modulate and utilize the forces that drive chromatin formation and regulate chromatin structure 

(Knipe et al., 2013, Lieberman et al., 2006, Goodin et al., 2001; Liu et al., 2018; Wang et al., 2018). 

Chromosome condensation by TGMV in plant nuclei (Bass et al., 2000), the marginalization of 

condensed chromatin to the nuclear envelope in the rat prostatic adenocarcinoma 3 (AT3) by the 

rabies virus (Jackson et al., 1997) were reported. The chromatin condensation directly related to 

the chromatin compactness that affects the fluorochrome uptake of nucleus, for example, in-situ  

DAPI staining of chromatin (Mascetti et al., 2001). DAPI associates with the minor groove of 

dsDNA, with a preference for the A-T clusters (Chazotte et al., 2011).  The margination of the 
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RFP-H2B patterns and poor DAPI staining in the enlarged nuclei may indicate that the excessive 

accumulation of RNP or RNP components generates swelling force excluding the chromatin 

primarily around the nuclear membrane and expanding the nuclear envelope (Bass et al., 2000, 

Jacson et al., 1997). Meanwhile, the marginalized chromatins may be extremely condensed by the 

swelling force generated by impaired export of viral factors. We have not investigated the 

interaction between CoRSV factors and host factors that related to the nuclear morphology yet. 

High-throughput screening for global interaction between CoRSV and host plant is required to 

provide reliable answers for the gap of our knowledge about the viroplasm formation by virus 

infection.  

In previous research, Ramalho et al., reported that the pre-incubation of C. quinoa in a 

28 °C chamber before inoculation with CoRSV developed systemic susceptibility (Ramalho et al., 

2014), and increased the chance of the infection of N. benthamiana by the virus (unpublished data).  

During the attempts of infectious virus recovery from cDNAs, the VpLS in the enlarged nuclei 

disappeared after the plants were exposed to 23 °C for 3 hours. We do not have apparent evidence 

explaining the morphological change of the nuclei by temperature change yet. Even the minimal 

temperature changes might cause great effects on the protein physiochemistry (Fields et al., 2001; 

Greenfield et al., 2006; Dong et al., 1995), nucleocytoplasmic shuttling (Enami et al., 1993; Koh 

et al., 2015; Matthew et al., 1995), and nuclear membrane architecture (Nägel et al., 1977). The 

translation rate of encapsidation signal flanked RNA in different temperature will provide a more 

refined answer for relation between nuclear transport of encapsidated RNA by CoRSV-N and 

temperature changes.   

Although the active cytopathological responses in the infiltrated cells, only a few plants 

show abnormal change on the upper-leaves above the infiltrated leaf compared to the mock-

inoculated plants after 3-4 weeks post inoculation in each experiment. Infectious virus is not 

detected from RT-PCR,  immunoblotting, and microscopic observation. If perturbated 
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nucleocytoplasmic transport is directly related to the failure of recovery of the CoRSV from the 

cDNA, then impaired NES function of CoRSV-N would be a major factor impeding the recovery 

of the virus from this system. Still, there is no direct evidence of accumulation of encapsidated 

GFP-RNA and antigenomic RNAs in the nuclei. The RNA visualization, localization, and 

quantification using in-situ hybridization (FISH) (Kliot et al., 2014; Shargil et al., 2015) would be 

helpful to explain these results. Also, RNA gel shift assay is required to confirm the formation of 

RNP complex.  

In this research, the SYDV antigenomic RNA and the RNP core proteins (N, P, and L) 

were also expressed in N. benthamiana using Agrobacterium-mediated DNA delivery system. 

However,  recovery of infectious SYDV from the agroinfiltrated N. benthamiana has not been 

detected.  

Overall discussion and future direction 
 

In this dissertation (1) The full-length genome sequence of CYDV was determined and its 

genetic contents were compared to those of SYDV and other rhabdoviruses, (2) the subcellular 

localizations of CYDV proteins and all pair-wise binary interactions of CYDV proteins, except L 

protein, were determined, and the data generated unique PILM for each strain, (3) the functional 

domains of PYDV-M protein that regulate the inter- and intracellular movement of the virus were 

mapped, and (4) viroplasm-like structure formation in the plant host nuclei by co-expression of  

nucleoprotein and phosphoprotein was confirmed using CoRSV-N and -P proteins during attempt 

of establishing reverse genetic system for plant-adapted rhabdoviruses.   

Although the most of rhabdoviruses share almost universal replication mechanism across 

the family (Dietzgen et al., 2017), nucleorhabdoviruses are slightly different compared to other 

members  since they induce replication compartments in nucleus rather than cytoplasm where most 

of other rhabdoviruses replicate (Bandyopadhyay et al., 2010; Goodin et al., 2001; Lamprecht et 

al., 2009). Hence, their infection process, cytopathology and proteins functions that regulate their 
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nucleotropic biology are not clearly understood so far compared to other cytotropic viruses in the 

family (Francki et al., 1973; Jackson et al., 2005; Mann et al., 2014; Redinbaugh et al., 2005). 

Moreover, despite the long history of the research about the vector-specificity for the two strains 

of PYDV, CYDV and SYDV (Black et al., 1940; Black et al., 1941; Hsu et al., 1973), the 

comparative analysis for the viruses in genomic sequence level has not been made yet. Hence, there 

is a gap in our knowledge about what genotypic variations make the differential phenotypes 

between two strains of PYDV.  

In this research, the two strains of PYDV showed the close sequence relatedness. The 

highly conserved consensus sequence of intergenic junction regions between CYDV and SYDV, 

and, exact same nine nucleotides complementarity of the leader and trailer sequences of each strain 

may supports that CYDV and SYDV presumably share common replication and transcription 

mechanism (Ivanov et al., 2011). The sequence identity of these regulatory regions which are 

recognized by the polymerase complex indicates that they share common recognition mechanism 

for RNA synthesis by polymerase (Whelan et al., 1999; Whelan et al., 2002; Assenberg et al., 2010; 

Ivanov et al., 2011).  

While they have highly similar regulatory sequences, the subcellular localization and 

interaction patterns of some of their proteins were distinct compared to each other. Particularly, 

this study shows remarkably different subcellular localization pattern of CYDV-N compared to that 

of SYDV in the subnuclear area. The amino acid region spanning the bipartite NLS of CYDV-N 

protein (KRTAEDATTQQTKR) was compared to that of SYDV-N protein 

(QKRANEEAPPAAQKR). While the 10 aa linker residue (underlined) is maintained between the 

bipartite KR residues (bolded), the sequence of the linker is not conserved. Also, the KR residues 

of CYDV-N NLS are not flanked by glutamines. The existence of di-proline residues in SYDV-N 

protein NLS which does not exist in the NLS of CYDV-N may explain the significant difference 

in localization pattern of the PYDV-N proteins. Proline is known as a structural disruptor of protein 
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secondary structure due to the conformational rigidity (MacArthur et al., 1991; Morgan et al., 2013). 

It also affects to the rate of peptide bond formation between proline and other amino acid (Tang et 

al., 2014; Zarrinpar et al., 2003) that may result in the affinity and isoform selectivity for nuclear 

import receptors including importin-α (Marfori et al., 2011), which is presumed karyopherin for 

SYDV-N (Anderson et al., 2018). The nuclear envelope association of CYDV-Y, which is not 

observed from the SYDV cognate, is a quietly intriguing result from this research. The CYDV-Y 

protein has 74% identity and 88% similarity compared to SYDV-Y and there are no significantly 

different amino acid residues between the two Y proteins. Otherwise, the dissimilar amino acids 

sequence residues dispersed over the entire length of the CYDV-Y in the alignment result (Clustal-

omega, EMBL). Any membrane association domains (PSORTII, Nakai et al., 1997), ER retention 

signal(PS-Scan, De Castro et al., 2006), and cNLS (cNLS mapper, Kosugi et al., 2009) of CYDV-

Y were not predicted from the computational algorithm. Therefore, the nuclear envelope-targeting 

domain of CYDV-Y will have to be mapped physically.  

The comparative analysis of subcellular localization of virus proteins in a virus-free and 

virus-infected host cell is very useful for in-depth studying of their function and mechanism in the 

virus biology (Grummer et al., 2001; Shen et al., 2007). The differentiation of the subcellular 

localization pattern of CYDV-N, -P, and -M, in the CYDV-infected host cell, compared to those in 

the virus-free cell indicates the extensive alteration of host cell environment by the virus infection, 

especially nucleus. Virus infections cause a global change in alternative splicing of host mRNAs 

(Boudreault et al., 2016; Mach et al., 2015). Also, this may result in the modification of interaction 

domains of host factors that mediate virus-host interaction (Wu et al., 1993).  

The phylogenetic tree demonstrates that plant-adapted rhabdoviruses are grouped 

according to their arthropod vectors (Grummer et al., 2001; Shen et al., 2007). The result supports 

that the host-vector interaction is an evolutional driving force of speciation for this group of viruses 

(Bourhy et al., 2005; Dietzgen et al., 2016). The adaptation of viruses to their new vectors or hosts 
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will be affected by virus-compatible interaction domains in host factors that pre-exist in newly 

introduced hosts, or sufficiently rapid optimising of the virus population in the new vectors or hosts 

in the early stage of invasion into the cell that allows better utilising host cellular machinery, 

avoiding from host defense mechanism and optimising virulence (Longdon et al., 2014). 

Interestingly, CYDV-X is more closely related to EMDV-X (Babaie et al., 2015) than to SYDV-

X. There is no obvious evidence for genome recombination between or among plant-adapted 

rhabdoviruses but regarding the viruses share common solanaceous hosts, they may have had such 

an opportunity (Parrella et al., 2016).   

Matrix protein of rhabdoviruses condenses the nucleocapsid and mediate association with 

the glycoprotein and acquirement of envelope (host-derived membrane) during morphogenesis 

(Anderson et al., 2018; Graham et al., 2008; Solon et al., 2005). The detailed molecular mechanism 

and related functional domains of M proteins in the processes are still unclear for the 

nucleorhabdoviruses (Anderson et al., 2018; Bejerman et al., 2015; Sun et al., 2018). However, an 

obvious thing is M proteins of nucleorhabdoviruses have to gain access to nucleus during their 

infection to perform their role for virus maturation (Anderson et al., 2018). Therefore, mapping of 

the functional domains in matrix protein is essential for understanding the molecular and cellular 

aspect of the protein (Ozawa et al., 2007; Sanderfoot et al., 1996; Whittaker et al., 1998). The re-

direction of a portion of GFP-fusion signal into nucleus from cytoplasmic region by deletion of aa 

244-553 residues from the aa 211-253 fragments of SYDV-Mwt, -MLL223AA, and -MKR225AA supports 

the functionality of previously expected NES domain in the deleted region. Lacking perinuclear 

membrane-associated GFP signal of the SYDV-MLL223AA aa 211-243 fragment is supportive 

evidence of the membrane association of 223LL225 amino acid residues that reported by Anderson 

et al., (2018). According to the amino acids alignment result, the NLS and  NES domains are 

conserved in the matrix proteins of both CYDV and SYDV. This may indicate that the commonly 

shared regions critically function in the nucleotropic biology of PYDV (Fleith et al., 2016). In our 
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previous research, Min et al.,(2010) suggested that partially condensed nuclecapsids by M mediate 

the cell-to-cell transmission of nucleorhabdovirus. If the functional domains of SYDV-M are active 

during virus infection, based on the collective information above, the role of M in cell-to-cell 

movement of PYDV exporting the nucleocapsids to the cell periphery using the interaction of M 

with N, Y, and G can be suggested (Anderson et al., 2018; Bandyopadhyay et al., 2010). Y protein 

is the cognate of SYNV-sc4 protein which is characterized as a movement protein (Bandyopadhyay 

et al., 2010; Min et al., 2010). N is a structural protein which forms the ribonucleoprotein complex  

(Luo, 2007). SYDV G/M interaction mediated the cytoplasmic localization of SYDV-M 

(Bandyopadhyay et al., 2010). Based on these data, we propose a “catch and release” model that 

explains the role of M protein in virus transmission from cell to cell. In this model, a portion of M 

in the nucleus ‘catch’ the N of RNP complexes to mediate the export of capsid cores from the 

nucleus to cytoplasm with G protein association. Afterward, Y protein in cytoplasmic space 

interacts with the M of the RNP complexes and then direct the infectious units to the vicinity of 

plasmodesmata to ‘release’ them into neighbor cells for following cell-to-cell movement.  

While trying to rescue the infectious virus from cDNA clone of CoRSV, we observed 

several intriguing phenomena by CoRSV-N and -P proteins. In our research, co-expression of 

CoRSV-N and -P induced intranuclear viroplasm-like structure and particularly the CoRSV-P was 

capable of inducing a morphological change of nucleus via ER-membrane rearrangement which is 

the first report from dichoravirus. Kondo et al., reported that Orchid fleck virus (OFV) could induce 

intranuclear viroplasm-like structure (VpLS) by OFV-N and -P co-expression, however, either 

single expression of N or P did not induce any morphological change of nucleus (Kondo et al., 

2013). We have not investigated the host membrane association of CoRSV-P in amino acids level 

in this research, however it has been reported that rhabdovirus P proteins interact with host 

endomembrane, cytoskeleton, and nucleocytoplasmic trafficking carriers (Hsieh et al., 2010; Rowe 

et al., 2016; Leyrat et al., 2011; Leopold et al., 2006). The inhibited DAPI uptake of nucleus by 
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simultaneous expression of CoRSV RNP components including RNA1, 2, N, P and L was observed. 

While we do not have clear answers to explain this phenomenon, the extremely swollen nuclei, 

chromatin margination, and  inhibited translation of GFP which is flanked by CoRSV leader and 

trailer sequence indirectly indicate that the RNP complexes of CoRSV are not ordinarily exported 

from nucleus (Edens et al., 2013; Ganguly et al, 2016; Levy et al., 2010). We are strongly suspect 

that the inhibited export of RNP from nucleus can be closely related to the alternation of chromatin 

structure of host cell (Knipe et al., 2013; Lieberman et al., 2006; Nagamine et al., 2008).  

To generate more experimental evidence supporting the hypotheses above, development 

of the reverse genetic system for these viruses and detailed biochemical characterization of 

rhabdoviral protein complexes are required, with particular attention paid to the determination of 

the binding affinities for viral protein interactions which are shown this research. Reverse genetic 

system for these viruses also will assists research to elucidate the in-situ functions of the proteins 

or the two strains of PYDV and CoRSV. To be specific, rescuing PYDV fromm cDNA clone will 

facilitate straight comparative analysis between CYDV and SYDV through modification cis-

elementary sequences, gene deletion, swapping, and rearrangement between the two virus. In this 

research, CoRSV showed noticeable possibility as a research tool for study of plant nuclear factors 

and endomembrane system via the chromatin margination and ER-membrane rearrangement by its 

N and P protein expression. We also need to extend our focus for CoRSV study to that how the 

virus maintain the nuclear envelope structure during its infection even though the sinlge expression 

of CoRSV-P capable to perturb the ER-membrane structure. This apprach will provides more 

oppotunites to understand the protein interactions and activities of the host and virus during 

nucleotropic infection. Etablishing reverse genetic system is crucially required for the study. These 

future approaces will broaden our knowledge of the cellular and molecular aspects of the viral 

proteins in the interactions among plant-adapted rhabdoviruses, plant hosts and insect vectors. 
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Figure 4.1. Common strategy for recovery of negative-strand RNA virus. (1) Expression of 

antigenomic viral RNA (ag vRNA) having precise 5’ and 3’ terminus is required. (2) The viral 

genome must be encapsidated by the nucleocapsid protein. (3) The viral RNA-dependent RNA 

polymerase (P-L complex) is essential for viral genome and mRNA synthesis. (4) The encapsidated 

viral genome and the polymerase should be produced in the host cell simultaneously to produce 

ribonucleoprotein (RNP) complex in the susceptible cell to initiate transcription. 
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Figure 4.2. Map of pCass4HDV. The left border and right border are marked as a green box. 

Cauliflower mosaic virus duplicated 35S promoter is marked as a double red arrow in green outline. 

The 35S terminator is marked as a brack box. The multi-cloning site is located between the 35S 

promoter and 35S terminator. The transcription start site of the modified 35S promoter and self-

cleavage site of HDV ribozyme are marked using bold arrow.  
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Figure 4.3. Schematic diagram for construction of full-length antigenomic sequence in the pGEM-

T easy vector (a) Construction of pGEM-R1 and pGEM-R2. The antigenomic sequence of CoRSV 

RNA 1 and RNA 2 was amplified using corresponding primer sets, Fsp_R1F/KpnI_R1R and 

Fsp_R2F/KpnI_R2R. The primer sets introduced FspI and KpnI on the 5’ and 3’ termini of 

agRNA1 (green box) and agRNA2 (blue box) respectively. The antigenomic cDNAs were sub-

cloned into pGEM T-easy vector. The nzyme sites were labeled using overbar on the corresponding 

sequence. (b) Construction of pGEM_agSYDV. The three PCR fragments were used to generate 

entire antigenome of SYDV. SYDV_P1 (blue box), SYDV_P2 (Gray box), and SYDV_P3 (yellow 

box) were sub-cloned into pGEM. The SYDV-P2 fragment which is excised from pGEM_P2 was 

sub-cloned into the KpnI /NotI treated pGEM_P1 to generate pGEM_P1:P2. The XmaI/NotI 

fragment including SYDV-P3 were cloned into XmaI/NotI treated pGEM_P1:P2 to assemble entire 

sequence in the pGEM T-easy vector. 
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Figure 4.4. Schematic diagram for construction of pCass4 HDV_R1 and pCass4 HDV_R2 (a-b) 

Extraction of CoRSV R1 and CoRSV R2 from pGEM-R1. (c)The CoRSV RNA 1 and RNA2 were 

cloned into the pCass4HDV, StuI and KpnI treated (d-e) The extra sequences between, CoRSV 

R1/ribozyme, CoRSV R2/ribozyme, and 35Sp/RNA2 were removed using site-directed deletion 

mutagenesis. 
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Figure 4.5. Schematic diagram of pCass4 HDVagSYDV construction. (1) HindIII digestion cut the 

pGEM-asSYDV into two fragments, ‘H-YD-H’ and the remaining. (2) Re-ligation of the remaining 

generates pGEM_S-H-V. (3) The S-H-V part was amplified using phosphorylated primer pair, P-

SYDV_F/P_SYDV_R.  (4) The 5’ p-S-H-V-p 3’ part was inserted to the StuI site of mpCass4HDV 

to generate mpCass4HDV_S-H-V. (5) mpCass4HDV_S-H-V was reopened by HindIII digestion. 

(6) The fragment ‘H-YD-H’, which was generated in the step (1), was inserted to the HindIII site 

located in S-H-V. The orientation of the insert was confirmed through KpnI digestion. (7) The extra 

region between agSYDV and HDV ribozyme was removed by site-directed PCR deletion.      
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Figure 4.6. Construction of N, P, and L expression vectors for CoRSV and SYDV. (a) Map of the 

pTRBO vector (Lindbo, 2007). Green outlined arrow, CaMV 35S promoter. Reverse triangle, 

subgenomic promoter. Red box, CaMV polyA signal sequence/terminator. Violet box, Ribozyme. 

CoRSV-N and CoRSV-P was cloned into pTRBO (b) The cDNAs of CoRSV-N, -P, and -L were 

cloned into pDONR 221. The adapter ‘attB1-PacI’ and ‘NotI-attB1’ sequences were introduced to 

the 5’ and 3’ termini of the genes. (c) CoRSV-N, -P, and -L were cloned into pSITE-0A and pSITE-

FLAG. (d) SYDV N, P, and L were cloned into pGD vector using XhoI and BamHI sites. Green 

box arrow, CaMV 35S promoter; Grey box, multi-cloning sites; Black box: 35S terminator. 
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Figure 4.7. Construction of full-length antigenome and L of SYDV using yeast mediated 

homologous recombination. (a) Full-length agSYDV assembly by yeast. The four fragments a, b, 

c, and d were labeled as double arrow box with color (a, green; b, blue; c, yellow; d, grey). The 

heads of the arrows represent the overlapping region. Linearized pCB301-2µ-HDV is depicted as 

the black line. (b) assembly of SYDV L in the yeast cell through yeast homologous recombination. 

The two parts of SYDV L, SYDVL-a (blue double arrow box) and SYDVL-b (yellow double arrow 

box), were assembled to generate entire SYDV L. in pCB301-2µ-HDV. (c) The results of yeast 

mediated homologous recombination for SYDV L.    
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Figure 4.8. Expression of CoRSV RNA1 and RNA2 from pCass4HDV (a) in silico digestion 

pattern of pCass4 HDV-R1 and pCass4 HDV-R2 by HindIII. (b) The gel image of HindIII treated 

pCass4HDV-R1 (lane 1), and pCass4HDV-R2 (lane 2) (c)RT-PCR result from pCassHDV-R1 and 

pCassHDV-R2 infiltrated N. benthamiana. Lane 1: RNA1, 1657-3357, Lane 2: RNA1, 3284-4947, 

Lane 3: RNA2, 1471-3015, Lane4: RNA2, 4431-5945. From lane 5-8: Same primer pairs 

corresponding to lane 1 to lane 4 respectively, but RNA was used as a PCR template instead of 

cDNA to confirm DNA contamination.   
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Figure 4.9. Expression of FLAG-fusion of CoRSV-N, -P, and -L from pSITE-FLAG. (a) 

Colorimetric development of FLAG fusion proteins, N and P of CoRSV, on PVDF membrane. (b) 

Chemiluminescent detection of FLAG-fusion of CoRSV-N, P, and L on X-ray film.   
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Figure 4.10. Expression of CoRSV-N and -P protein from pTRBO vector. (a) Immunoblotting 

assay specific to CoRSV-N. Two major bands were detected around 50 kDa size marker. (b) The 

CoRSV-P protein expression were detected from the SDS-PAGE gel by Coomassie blue staining. 

P protein bands were observed around 35kDa marker.   
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Figure 4.11. Formation of viroplasm like structure (VpLS) by CoRSV-N and -P, in the nuclei of 

RFP-H2b-expressing transgenic N. benthamiana. (a) Expression of CoRSV-N (left column), 

CoRSV-P (middle column), and co-expression of CoRSV-N and -P (right column) in transgenic 

nuclear marker, RFP-H2B, N. benthamiana. All images were taken 72 hours post infiltration. (b) 

CoRSV: The DAPI-stained nuclear in CoRSV infected transgenic GFP-ER marker plant, N. 

benthamiana, upper row. Mock: Nuclear DAPI staining of Mock inoculated (pTRBO only), N. 

benthamiana (GFP-ER), bottom row. Scale bar = 10 µm. 
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Figure 4.12. GFP-ER signal accumulation in the subnuclear space by CoRSV-P expression.  N 

expression from pTRBO vector did not induce any difference in nucleus (DAPI) and ER-membrane 

(GFP) compared to mock. The single expression of P formed a subnuclear space in the nucleus 

(DAPI) and GFP-ER signal was accumulated in the subnuclear space (GFP). The inner boundary 

of the subnuclear space induced by P was more irregular than the VpLS formed by N and P co-

expression and the true viroplasm induced by CoRSV. The size of nuclei under p expression was 

not different from those of N expression. ER accumulation in the sub-nuclear space was not 

detected. Scale bar = 5 µm. 
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Figure 4.13. Inhibited DAPI staining of nuclei in GFP-ER N. benthamiana with simultaneous 

expression of CoRSV agRNA1, agRNA2, N, P, and L. Scale bar = 10 µm. 
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Figure. 4. 14. Size-dependently inhibited DAPI staining under simultaneous expression of viral 

RNAs, and N, P, and L in RFP H2b N. benthamiana. (a) Confocal image of DAPI stained RFP-

H2B plant expressing agRNA1/agRNA2/N/P/L. The most of enlarged nuclei having VpLS 

remained red in merged image. Otherwise, nuclei in the of normal state compared to mock, 

appeared to be purple. (b) Comparison of the DAPI staining intensity according to size of nucleus. 

(C) The nuclei in the infiltrated plant were categorized into 4 types according to its appearance: 

Type1, the nucleus with VpLS, expansion, and no DAPI staining; Type 2, the expanded nucleus 

without VpLS, no DAPI staining; Type 3, Nucleus with expansion and staining; Type 4, Nucleus 

in normal state with DAPI staining. negative control. Total 155 nuclei were counted. Type 1: 28% 

(44/155); Type 2 18% (30/155); Type 3: 2% (3/144); Type 4: 52 % (80/155). Scale bar = 10 µm. 
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Figure 4.15. The alteration of VpLS pattern according to temperature in infiltrated plant. The 

Agroinfiltrated tissues were collected at 72 hpi. (a-b) At 28 °C, about 30% of nuclei were bigger 

than normal size (5-10µm) and the most of enlarged nuclei showed VpLS (white arrow). (c-d) After 

3 hours incubation under 23°C, 38% of nuclei showed the size expansion, but without VpLS 

(Yellow arrow). Only 2 % of nuclei maintained the clear VpLS. The experiments were repeated 

three times and total 300 nuclei were randomly counted under the microscopic observation in each 

time (Table 3), Scale bar = 30µm.      
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Table 3. Number of the nuclei classified according to the  shape at each temperature. 

    (Temp., temperature; VpLS, viroplasm-like structure; Avg, average; SD, strandard deviation) 
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Figure 4.16. Effect of temperature change on the ER localization pattern and the size of nucleus in 

the agroinfiltrated plant. Confocal (a) A low magnification view of microscopy (10X). The nuclei 

marked with arrow in the images were observed over time, at 0h (28°C), 1.5 h, 3 h, 10 h (23°C).  

(b) Two nuclei (1, 2) showed ER-signal accumulation (RFP) in the nucleus at 10h. The nucleus, 

No.3 showed rapid nuclear contraction at 1.5 h. (c) Noticeable size contraction were observed 

(yellow arrows). The targeted nuclei were photographed at 0h (28°C), 1.5h, 3h, and 10 h (23°C). 

(d) Mock inoculation. Red scale bar = 100 µm, White scale bar = 10 µm. 
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Figure 4.17. Test for recovery of infectious virus from the infiltrated plants (a) Agrobacterium 

cultures containing pCass4HDV-R1, pCass4HDV-R2, pSITE0A-N, pSITE0A-P, pSITE0A-L, 

pGD-p19, pGD-pƳB, and pGD-HC-Pro were mixed and infiltrated to N. benthamiana. The plants 

were maintained in 28 °C. A few plants showed marginal yellowing, small yellow spots, and 

crinkling on the leaves above the infiltrated leaves that were distinct from mock, at 3 weeks post 

infiltration. (b) Non-detection of viral genome and/or mRNA in the plants showing distinct 

phenotype. (c) Non-detection of CoRSV-N protein in the plnats. Lane 1, pSITE0A-N (positive 

sample); Lane2, pSITE0A-P (Negative);  Lane 3-5, pSITE 0A-N/pSITE 0A-P/pSITE 0A-

L/pCass4HDV-R/pCass4HDV-R2/pGD-GSSs (sampled at 3 DPI); Lane 6-8, repeat of lane 3-5 

(sampled at 7 DPI); Lane 9-11, samples from the leaves showing phenotypical change; Lane 12, 

Mock inoculation.  (d) Non-detection of viroplasm in the nuclei in the plants. Bar=10µm. Same 

experiments were repeated more than 10 times.   
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Figure 4.18. CoRSV leader and trailer sequence specific inhibition of GFP by CoRSV-N and -P 

co-expression.  (a) Map of pCass4HDV-CoRSVMG_GFP. Green box arrow, CaMV 35S promoter; 

Red box, leader sequence of CoRSV; Green box, GFP; Blue box, trailer sequence of CoRSV, 

Yellow box; HDV ribozyme; Black box, 35S terminator. (b) N and P co-expression inhibited the 

GFP expression from pCass4HDV-CoRSVMG_GFP. A, pCass4HDV-CoRSVMG_GFP only; b, 

pCass4HDV-CoRSVMG_GFP+N; c, pCass4HDV-CoRSVMG_GFP+N+P; d, pCass4HDV-

CoRSVMG_GFP+N+P+L. Bar = 100 µm. (c) Detection of GFP protein from the protein samples 

that used in (b). (d) Map of pSITE0A-GFP. Green box arrow, CaMV 35S promoter; Yellow box, 

Tobacco etch virus translational leader; Green box, GFP; Black box, 35S transcriptional terminator 

(T). (e) GFP expression from pSITE0A with CoRSV-N and P proteins. a. pSITE0A-GFP only; b, 

pSITE0A-GFP+N, pSITE0A-GFP+N+P, pSITE0A-GFP+N+P+L.  Bar = 200 µm  
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Figure 4.19. Expression of SYDV antigenomic RNA from pCass4 HDV_agSYDV, and SYDV -N, 

-P, and -L expression from pGD vector. (a) in silico HindIII digestion of pCass4 HDV_agSYDV 

and gel image of pCass4 HDV_agSYDV digested by HindIII. (b) Schematic representation of 

pCass4HDV_agSYDV (c) Detection of antigenomic RNA of SYDV using RT-PCR targeting N 

and P. Lane 1-2, PCR results using cDNA; Lane 3-4, PCR results using RNA. (d) Detection of N, 

P, and L protein expression using SYDV antibody 
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