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Frontispiece 

BASAL CURDSVILLE LIMESTONE SPRING 

Figure 1 

Nonesuch Community Spring in basa 1 Curds ville Limestone, 
Sa !visa Quadrangle, Woodford County, Kentucky. Hammer 
handle at contact of Tyrone Limestone (below) and Curdsville 
Limes tone (above). 
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ABSTRACT 

Factors controlling the porosity and permeabi.lity of the Curds­

ville Limestone Member of the Lexington Limestone of Midd.le 

Ordovician Age in the Blue Grass Region of Kentucky are geological. 

Microstratigraphic analysis had led to the division of the lower 

Lexington Limestone, consisting principally of the Curdsville Member 

into three beds which may be subdivided into "zones" made up of 

several lithologic types and sub-types. Lower, middle, and upper 

bed characteristics are helpful in determining the regional depositional 

history in the progressively transgressing Curds ville sea. Paleo­

geography of Curdsville time has been determined by delineation of 

two local facies: (1) a carbonate bank--shoal area facies, and 

(2) a shelf--channel area facies. 

Permeable carbonate bank--shoal facies are best developed on 

the structurally high Jessamine Dome Shoal Area where the Curdsville 

Limestone is found at shallow depth. Ground waters of meteoric 

origin have created sink holes, solution valleys, and caverns 

through solution enlargement of fractures comprising an extensive 

intersecting joint system. 

Detailed examination of the Bryantsville Quadrangle on the 

Jessamine Dome Shoa 1 Area indicates that "fracture traces" such 

v 



as sink hole, solution valley, and stream channel alignments are 

controlled mainly by nearly vertical joints in the Curdsville and 

underlying Tyrone Limestones. High frequency and intersection of 

joint fractures may indicate the presence of permeable limestone 

aquifers at shallow depth, The hypothesis can be tested by drilling 

severa 1 wells in prospective areas. 

KEY WORDS 

Porosity, carbonate porosity 

Permeability, carbonate permeability 

Carbonate aquifer, limestone aquifer 

Curdsville limestone 

Carbonate petrology 

Carbonate lithology 

Carbonate bank facies 

Joint frequency and fracture traces 
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INTRODUCTION 

ACKNOWLEDGMENTS 

"Factors Controlling Porosity and Permeability in the Curdsville 

Member of the Lexington Limestone" (OWRR Project No. A-003-KY) 

was sponsored by the University of Kentucky Water Resources 

Institute and supported by funds provided by the United States Depart­

ment of the Interior, Office of Water Resources Research, as authorized 

under the Water Resources Research Act of 1964. 

Research was begun in September 1965 and finished in June 

1967, although some capital expenditures were made during fiscal 

year 1964-65. 

Cores obtained by the United States Geological Survey and the 

Kentucky Geological Survey during the Kentucky Mapping Program were 

m~de available to the author. Paul Richards, Earle Cressman, 

Don Wolcott, and Douglas Black of the USGS Office in Lexington 

and Robert Cushman and Herbert Hopkins of the USGS Office in 

Louisville have been most cooperative in providing information and 

advice. 

Colleagues at the University of Kentucky, Irving S. Fisher 

assisted in x-ray diffraction experiments and John V. Thrailkill 



analyzed spring water samples, Robert Lauderdale, Director of the 

Water Resources Institute of the University of Kentucky and his 

secretary Mrs. Betty Bradshaw have aided during all stages of the 

project beyond normally expected assistance. 

OBJECTIVES 

The principal objective of this project was to analyze a typical 

carbonate ground water aquifer in the Blue Grass region in order to 

isolate the principal geological factors controlling porosity and 

permeability which affect movement and accumulation of ground water. 

The Curds ville Limestone Member, the basal member of the 

Lexington Limestone of Middle Ordovician age, was selected for 

study because it is well exposed and easily located in the drainage 

of the Kentucky River and tributaries; it is limited in thickness; it 

contains some intergranular porosity and permeability; it is well 

fractured with joints, faults, and bedding planes which promote the 

development of solution features such as sink holes and caverns; 

and it contains springs and wells locally. 

Locating ground water resources in the carbonate rocks of the 

Blue Grass region has been a problem for years. Most farmers in 

the area have few, if any, water wells and depend on numerous 

farm ponds, some local springs, or water from the Kentucky River. 

Studies of fairly detailed nature have been made, resulting in such 

- 2 -
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publications as those of Hamilton (1950), Hall and Palmquist (1960), 

Hendrickson and Krieger (1964). While of importance in indicating 

the location, quality, quantity, and potability of water from known 

wells these reports are limited for several reasons. The basic 

geology was done on inadequate topographic base maps published 

prior to the availability of new larger scale, topographic base maps 

made from aerial photographs. Moreover, the lack of mapping detail, 

the lumping of several units together, and the dependence on 

reconnaissance geologic knowledge of earlier workers, have led to 

generalized conclusions, which, though helpful, have not solved 

many of the problems of obtaining water on individual farms. 

This lack of basic, accurate, detailed, geological information 

in Kentucky has led to a joint 10-year federal-state Geologic 

Mapping Program which has already resulted in the geologic mapping 

of 15 Blue Grass quadrangles. The principal investigator of this 

project has done the geology on three of these and in the process 

has been on every farm in an area covering about 200 square miles 

and he has personally observed the importance of detailed mapping 

in determining the occurrence of both surface and subsurface water. 

The large mapping units of the past have been broken down recently 

into smaller members which vary considerably in porosity, permea­

bility, composition and in lateral and vertical extent (Black and 

- 3 -



MacQuown, 1965; Black, Cressman, MacQuown, 1965), More 

detailed field, microscopic, chemical, and x-ray work on each 

member and contained beds should be of considerable value in deter­

mining likely conditions for ground or surface water accumulation. 

Microstratigraphic examination (detailed foot by foot examina­

tion) of the Curdsville Limestone Member at 27 surface and subsurface 

stations has resulted in a delineation of favorable areas for ground 

water accumulation which are amenable to drilling and testing and 

therefore the principal objective of the project has been accomplished. 

Minor objectives· involving the development of techniques 

applicable to the study of prospective acquifers has been achieved 

within the limits imposed by the time available for research. Discus­

sion of methods, results, and possible future approaches to chemical 

analyses, porosity and permeability determinations, x-ray diffraction 

work, and insoluble residue analysis, are discussed in attached 

appendices (Appendices A to D inc.). Insoluble residue work and 

quantitative carbonate petrology beyond the scope of this project 

will be pursued and should result in publishable research. 

Mr. George Hine plans to complete a M. S. thesis by December 

1967 involving selection of prospective ground water drill sites 

in the Curdsville Limestone through study of aerial photography 

and detailed field work. 

- 4 -
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SCOPE 

Representative field exposures in the Kentucky River and 

tributary drainage systems and subsurface cores provided 26 complete 

and several incomplete 30-foot sections of the Curdsville Limestone 

Member at stations throughout the Blue Grass Region and north to the 

Ohio River (Fig. 2). Descriptive logs were prepared for each station 

and 510 rock samples were collected, an average of 17 samples per 

station or about one sample every two feet of section. Most of these 

samples were cut and polished for examination under the binocular 

microscope. Acetate peels (200) were made and sealed in slide 

mounts and projected on a screen to aid in sample description, Thin 

sections (430) were prepared from chips and stained with Alizarin 

red dye before examination under the petrographic microscope to 

aid in separating calcite from dolomite and silica. Representative 

point counts were made from selected thin sections. Percentages 

were determined for such parameters as composition, texture (including 

grain size, shape, roundness, sorting, cement, matrix), alteration, 

fossil abundance and diversity, etc. Although the results are 

beyond the scope of the present project, they were useful in litholog­

ical descriptions and the results will be published later. However, 

a complete petrographic microscope percentage analysis of the 

silica (detrital quartz and chert) in all thin sections was made by 

- 5 -



Figure 2 

INDEX MAP AND GEOLOGIC STRUCTURE 
CLRDSVILLE LIMESTONE MEMBER OF THE LEXINGTON LIMESTONE 

LOCATIONS 
SURFACE STATIONS 

•MML 

MEASURED SECTIONS 

SUBSURFACE STATIONS 

.aaL 
MEASURED CORES 

BR'l'ANTSVILLE QUADRANGLE 
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the point count method to aid in facies analysis. This method proved 

to be much faster than insoluble residue methods first used. 

Field observations included measurement of approximately 275 

joint measurements, 40 fracture frequency readings, 80 ripple mark 

strikes and cross bedding dips. Twelve samples of water from 

representative springs were collected and analyzed by Dr. Thrailkill 

(Appendix A). Ten core samples of repr'esentative lithologies were 

analyzed for porosity and vertical permeability (Appendix B). 

Practical techniques were developed for future utilization of 

x-ray diffraction for the analysis of clay size material (Appendix C). 

Appendix D describes insoluble residue techniques employed for 

about 100 insoluble samples from 4 stations. Appendix E is a list 

of all station locations. 

First Year's Work 

A detailed progress report of the first ye'ar's work was prepared 
,' 

in August 1966 and submitted to OWRR by the University of Kentucky 

Water Resources Institute (MacQuown, 1966). Much of the signifi-

cant data has been reproduced in this Completion Report. This early 

work was limited to an area near the Kentucky River, Dix River, and 

tributary streams in the Blue Grass Region of Kentucky in the outcrop 

belt of the Curdsville Limestone. Samples collej';ted from this area 

provided the basis for subdivision of lithologic types previously 

- 7 -



employed in field mapping the area (Black and MacQuown, 1965). 

The Curdsville was also divided into a number of "zones" from the 

base to the top. Each of these included several lithologic types. 

The "zones" reflect the geologic history of the deposits laid down 

during Curdsville time. Changes in "zones" from station to station 

indicate the presence of local facies variation which was further 

delineated during the second year of the project. 

Second Year's Work 

During the second year of the project, the area of investigation 

was expanded to include much of the Blue Grass Region plus some 

of the surrounding region north to the Ohio River. Availability of new 

core data from the USGS-KGS Kentucky Mapping Program provided a 

broader base for analysis of the regional and local geology. Most 

of the detailed microstratigraphic, insoluble residue, x-ray, and 

petrographic work was done during the second year. An understanding 

of the geologic factors which have controlled the porosity and 

permeability of the Curdsville Limestone has led to positive sugges­

tions for finding ground water as discussed in this report. 

GEOLOGY 

REGIONAL STRATIGRAPHY 

The Middle Ordovician Iexington Limestone of the Blue Grass 

iegion includes three members in the area of this project. The 

- 8 -
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basal Curdsville Limestone Member is the principal unit discussed in 

this report and is generally thirty feet thick in the area of study, 

although it varies in thickness from 20 to 35 feet. It is overlain 

by, and transitional with, the shaly Lagana Member in the western 

and south central pprtion and by the limy and shaly Grier Member in 

the eastern and north central portion. Thus the upper boundary is 

somewhat arbitrary. The lower boundary is distinct because of an 

abrupt change in lithology. The coarser grained Curds ville Member 

is underlain by the finer grained, semi-lithographic ''bitdseye" 

Tyrone Limestone of the High Bridge Group of Middle Ordovician age. 

Stratigraphic relations are discussed by Black and MacQuown (1965) 

and Cressman, Black, and MacQuown (1965). 

MICROSTRATIGRAPHY AND HISTORY OF SEDIMENTATION 

The stratigraphic contribution of this report cons is ts of the 

microstratigraphic, or detailed foot-by-foot, analysts of the Curds­

ville Limestone Member and the delineation of local facies changes. 

11 Zones 1
' 

Informal lithologic units called "zones" which were delineated 

during the first year of the project are useful in interpreting the 

history of sedimentation in the region as summarized in Table 1 

and illustrated on cross sections (Fig. 3). 

- 9 -



TABLE 1 

GEOLOGIC HISTORY OF CURDSVILLE DEPOSITIONAL ZONES 

Depositional Lithologic Possible Eustatic Tectonic 
Zones Trees Descrietion Environment Conditions Events 

Fossiliferous III Biostromal Carbonate bank Major transgression Major carbonate 
Limestone Deeper water locally bank buildup may 

(II). Shallower in be localized by 
Logana (basal) II Interbedded ls. Infra tidal bank areas (III) . ancestral high on 

and sh. shelf First indication present 
of important Cincinnati arch 
Regional facies 

Fossiliferous III Biostromal Carbonate bank change (Type III ;! 
Limestone (II) ' (I) or shoal II). Upper Bentonites 

...., 
suggest tectonic 0 

events in 
Appalachians 

Upper Calciru- preceding major 
dite Ia Bioclastic and Waves and transgression. 

(III) intraclastic currents 
(Ib) 

Upper ''Flow II, Ic Interbedded and Minor crlces Middle Bentonites 
Rolls" (Ia , b) Inter laminated Currents varying water and bentonitic 

depth regress ion limestones 
suggest 

Third Calciru- Ia Bioclastic Waves and transgression minor tectonic 
dite currents cyclic sedimentation events in 

Appalachians 

~ 
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TABLE 1 (Continued) 

Depositional Lithologic Possible Eustatic Tectonic 
Zones Ty2es Descri2tion Environment Conditions Events 

Middle "Flow le, II Inter laminated Currents regression 
Rolls" (lb) early, local 

carbonate shoals 

Second Calciru- Ia, III Bioclastic Waves and 
dite locally bio- currents 

stromal 
Lower ''Flow le Interlamina ted Currents Initial trans2ression ...... 
Rolls" Deepening water ...... 

Cross-bedded lb Bioclas tic Tidal (intra-
calcarenite Intra cla s tic tidal currents) 

well sorted) 

Basal calciru- Ia Intra cla s tic Surf zone (waves) Shallow Lower Bentonites 
dite Bioclastic poorly sorted water suggest tectonic 

events in 
Appalachians 
preceding trans-
gression 

Tyrone (upper) v Micritic Supra tidal, very shallow 
lime mud lagoonal, water 

Tidal flats. 
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Figure 3c 

CROSS SECTIONS OF CURDSVILLE LIMESTONE 
LITHOLOGIC TYPES AND ZONES 
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Lithologic Types and Sub-types 

The "zones" consist of several lithologic types. These lithologic 

types, first described by Black and MacQuown (1965), were divided 

into sub-types during the first year of the project to aid in detailed 

field and microscopic examination. The basis for subdivision is 

indicated in a series of photographic reproductions (Figs. 4-9, inc.), 

and summary characteristics are listed in Table 2. 

Beds 

The basal Lexington Limestone, composed primarily of the Curds­

ville Member and lower portions of the overlying Logana or Grier 

Members locally has been divided intb three ten-foot beds for analysis 

of lithologic and reservoir characteristics. Measurements have been 

made upward from the distinct contact of the Lexington with the under­

lying Tyrone Limestone. This procedure is necessary because 

porosity and permeability development as well as water movement 

and accumulation are not restricted to formal stratigraphic units such 

as formations and members. Key beds within formations such as 

impermeable shales and bentonites several feet thick may determine 

the base of an aquifer unit made up of portions of several members 

or formations. 

The basis for subdivision of the lower Lexington Limestone 

(primarily the Curds ville Limes tone Member) into three ten-foot 

- 15 -



Figure 4. LITHOLOGIC TYPE la 

Basal Curdsville calcirudite (Type la) lies above Tyrone (Type V) 
at hammer head. Better joint development and different joint 
orientation in Tyrone. 

300 mm 

10 mm 

1 mm 

Surface section Keene Quad. (KA) 

Acetate peel of polished surface 

Denny Core Hole, Nicholasville Quad. 
(ND) 

Photomicrographs 

Keen A Section (KA) 
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Figure 5. LITHOLOGIC TYPE lb 

Curdsville calcarenite with low angle cross-bedding (Type lb) 
above hammer handle. Basal calcirudite (Type la) below hammer. 
Joints better developed in Type lb. 

300 mm 

Surface section Keene Quad. (KA) 

Acetate peel of polished surface 

10 mm 

Little Hickman Quad. , (LHC). 
Surface Section 

Photomicrograph 

1 mm 

Keene A Section (KA) 
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Figure 6. LITHOLOGIC TYPE le 

Curds ville Laminated calcisiltite (Type le) in 6" zone (length of 
hammer head) between thicker beds of Type la. 

300 mm 

10 mm 

l mm 

Surface section, Keene Quad. (KA) 

Acetate peel of polished surface. 

Nicholasville Quad. , Denny C-ore Hole 
(ND) USGS-KSG. 

Photomicrograph 

Lexington East Quad. (LEB), Core hole, Ferguson-Bosworth Co. 
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Figure 7. LITHOLOGIC TYPE 11 (a and b) 

Lower Logana interbedded, tabular, micro-grained limestone 
(Type l la) and shale (Type l lb). Contact with underlying Type 
111 at hammer handle. 

300 mm 

10 mm 

1 mm 

Surface section, Keene Quad. (KA) 

Acetate peel of polished surface 

Nicholasville Quad., Denny Core Hole 
(ND) USGS-KGS. 

Photomicrograph 

Bryantsville Quad. (BD). Surface section. 
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Figure 8. LITHOLOGIC TYPE 111 

Upper Curdsville irregularly bedded fossiliferous limestone 
(Type 111). Jointing shows wavy surfaces and is discontinuous, 
irregular in part. 

300 mm 

10 mm 

1 mm 

Surface Section, Keene Quad. (KA) 

Acetate peel of polished surface 

Nicholasville Quad. , Denny Core Hole (ND), USGS­
KGS 

Photomicrographs 

Keene Quad. (KA). Surface Section. 
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Figure 9. LITHOLOGIC TYPE V 

Upper Tyrone semi-lithographic limestone (Type V) with well 
developed joint system, Stair-step offsetting of some joints. 

300 mm 

10 mm 

Surface Section, Keene Quad. (KA) 

Acetate peel of polished surface 

Nicholasville Quad. , Denny Core Hole 
(ND), USGS-KGS. 
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TABLE 2 

CURDSVILLE LIMESTONE LITHOLOGIC TYPES 

Lithologic Grain Cement General Porosity, Permeability 
Rock Types* Texture or Matrix Color Bedding Characteristics and Reservoir Character 

I. Calcarenite, Silt to Sparry Light PJanar to Grains of whole Solution and spar 
calcirudite, and gravel size calcite gray- slightly or fossil frag- formation in vugs , 
calcisiltite and Value of wavy .Some ments (rounded along joints , bedding 

pseudos par, 5 or more. cross- and sorted gener- planes. Intergranular 
micros par; Low chrorra bedding or ally). Intraclasts porosity locally. 
sparse yellow cross- common.Sub-angular Springs and wells 
micrite common lamination, quartz grains, locally. 

feldspar. 

Ia**. Calcirudite Gravel size Spar to 
common and micros par. 

Light 

.'IB!Y· 

Blocky, Intraformational Possible aquifer. 
Oxidation of pyrite 

finer Sparse 
grains micrite 

thick-bedd!d.conglomera te 
common. Large 
fossils and frag­
ments in some 
coquina beds . 
Vugs, pyrite 
weathering to 
limonite, chett 
and detrital quartz 
common. Medium 
washed and sorted. 

to limonite. Chert 
nodules formed in 
surface sections. 
Fluorite and calcite in 
vugs and veins . 
Microcline and 
plagioclase feldspar 
a minor constitutent. 

*see Black and MacQuown (1965); Black, Cressman, MacQuown (1965) for detailed descriptions. 

**subdivisions of types as proposed in this report. 

~ 
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Lithologic 
Rock Types* 

Ib**. Calcarenite 

Ic**. Calcisiltite 

II. Tabular bedded, 
micrograined 
limestone and 
shale 
Fine calcisiltite. 

TABLE 2 (Continued) 

Grain 
Texture 

Cement 
or Matrix 

General Porosity, Permeability 
Color Bedding Characteristics and Reservoir Character 

Sand size Spar to 
common and micros par. 

Very Light Wavy to Light colored, well 
washed and sorted, 
Cross-laminated· to 
blocky. Chert, 
detrital quartz, and 
minor feldspar. 

~- planar, 
finer Sparse 
grains 

Silt size 

Fine silt 
to clay 
size 

micrite. 

Micros par 
Sparse 
micrite. 

Medium 

~-

Microspar Dark gray 
and micrite. Value of 
Some pseudo- 5 or less. 
spar. Neutral 

hue 
common. 

Low angle 
cross­
bedding 
common. 
Medium 
Bedded. 

Thin light Transitional 
gray lamina between Type I 
Inter-bedced and II. Commonly 
with thin associated with 
darker gray convolute "flow 
lamina.Low roll" beds. Fairly 
angle cross well washed and 
laminae. sorted. 
Planar to 
wavy beds. 

Thin-beddrl ·.small fossils and 
to lamina­
ted planar 
surfaces. 

fragments. Sjnall 
intraclasts, and 
pellets. Quartz 
grains and clay 
minerals. Some 
"flow tolls" . 
Weathers to buff 
color. 

Possible aquifer, 
Thinner bedding and 
cross-bedding offer 
additional solution 
avenues. Better 
sorting than Type Ia. 

Poor aquifer? Fine 
grains limit permeabil­
ity. All Type I groups 
form typical Karst 
topography when 
exposed at surface. 

Aquiclude. Little or 
no intergranular porosi­
ty or permeability. 
Perched water tables 
form on these beds. 
Farm ponds may hold 
surface water. 

*see Black and MacQuown (1965); Black, Cressman, MacQuown (1965) for detailed descriptions. 

** 
Subdivisions of types as proposed in this report. 



TABLE 2 (Continued) 

Lithologic Grain Cement General Porosity, Permeability 
Rock Types* Texture or Matrix Color Bedding Characteristics and Reservoir Character 

Ha**. Microgra ined Silt to Micros Ear Mecfum Planar, tab~· Darker color indi- Aquiclude. Few reser-
limestone clay size and micrite dark gral:'. ular;. bed's., cates fine grain voir possibilities. 

values of Thin bedded and clay content. Types !Ia -and I!b pre-
4 and 5 Weathers to buff vent solution in under-

color. lying potential 
aquifers. 

IIb**, Li.my shale Clal:'. size Micrite Dark to Thin, shaly Very dark color Aquiclude. No reser-
and shaly some fine and very dark bedding may be due to voir possiblities, 
limestone silt. micros par gray organic content, Wet weather springs 

N Values of grain size, a\:mve. 
"" 3 and 4. reducing condi-

tions. 

III, Irregularly Glay to SEar to Medium Irreg:ularli Clay size material Moderate to poor inter-
bedded to gravel micrite. gray bedded to in irregular thin granular porosity. Can 
.nodular size.IIIa, IIIa spar, or values of nodular. laminae between contain well and sp_~ing 
fossiliferous gravel IIIb pseudo- 5+ Irregular rubbly, abundantly water. Probably poor 
limestone size; IIIb, spar; thin shale fossiliferous nodu- to fair aquifer. Joint 
subtypes** saiid IIIc micro- partings les . Grades to and bedding plane 
IIIa , IIIb , IIIc size;IIIc , spar. Types I and II. porosity. 

silt size. 

* See Black and MacQuown (1965); Black, Cressman, MacQuown (1965) for detailed descriptions. 
** 

Subdivisions of types as proposed in this report. 
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Lithologic 
Rock Types* 

V. Cryptograined 
(sublithographic) 
limestone 
confined to 

Tyrone Limes tone 

Bentonite 

r- r-:; 

Grain 
Texture 

Clay size 

Clay to 
fine silt 
size 

Cl r- "' r- :--1 ~ 

TABLE 2 (Continued) 

Cement 
or Matrix Color 

Micrite with Very light 
some "birds- gray. 
eyes 11 11 Dove 11 

color 

Potassium, Pastel 
bearing, non- greenish 
swelling white 
variety to buff 

Bedding 

Medium to 
thick 
bedded, 
planar, 
tabular 

Tabular, 
shaly, 
bedding 

:--1 :--:] :---i :--1 ---, :---i 

General Porosity, Permeability 
Characteristics and Reservoir Character 

Lime mud matrix, 
arg illaceous, 
weathers to white, 
rounded tabulae. 
Prominent in Tyrone 
Limestone below 
Curds ville 

Prominent near 
base and in middle 
to upper patt of 
Curds ville. Also 
in upper 20' of 
Tyrone. 

No intergranular 
porosity but well 
developed joints 
provide avenues for 
solution and aquifer 
development. 
Springs are formed 
above bentonite 
layers. Some well 
possiblities. 

Aquiclude. Prevents 
solution and develop­
ment of aquifers in 
underlying beds. 
l'lerched water tables 
may form above 
bentonites. 

*See Black and MacQuown (1965); Black, Cressman, MacQuown (1965) for detailed descriptions. 



beds is graphically illustrated in Figure 10. This illustration is a 

summary of data compiled from a foot-by-foot analysis of rock 

samples from all stations. The composite log of lithologic types 

shows the dominant (most common) and secondary lithologies, 

the position of bentonites, and the relative number of shaly layers 

in each bed. The silica graph is particularly significant in a 

dominantly limestone section. Silica content (detrital quartz 

and chert) was first determined at four representative stations by 

both insoluble residue and petrographic analysis. Because results 

were similar, the faster petrographic point count method was then 

applied to a study of thin-sections at all stations. Only the silt 

and larger silica grains can be determined by this method, however. 

The graph of average insoluble residues from four stations compares 

favorably with the graph of average silica for all stations thus indi­

cating that the insolubles are mostly silica . 

. Lower B¢d 

The lower bed of the Curds ville Member is largely light colored, 

fine to coar=- crystalline, biocla stic limes tone consisting of 

calcirudites (Type Ia), cross-bedded, ripple-marked calcarenites 

(Type Ib), and laminated calcisiltites (Type Ic) as shown in Figure 

10. The lower bed is the only one containing more than 5% sub­

rounded detrital quartz of fine sand size. In most sampled sections 

- 26 -
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the basal five-foot unit of the lower bed consists mainly of very 

light colored calcirudite and calcarenite characterized by angular 

edgewise conglomerate (intrasparite) made up of limestone fragments, 

including some derived from the underlying Tyrone Limestone (Type V), 

and whole or broken fragments of Curdsville fossils. The basal unit 

also is lower in total silica .than the upper unit, although the surface 

sections exhibit prominent sea ttered chert nodules. Locally, thin 

bentonite layers several inches thick occur in the lower five feet. 

Thicker layers of the "mud cave" bentonite several feet thick occur 

in the underlying upper Tyrone Limestone below the Curdsville-

Tyrone contact at several localities such as the type section of the 

Curdsville Member at Curdsville Station (:,NC) and at High Bridge to 

the north on the Kentucky River. The Clay's Ferry station (FCF) 

also contains a contact bentonite. Other bentonites are commonly 

found in the underlying Tyrone Limestone within an interval several 

feet below the contact, and a thick bentonite layer (the "pencil 

cave") occurs some fifteen feet below the base of the Curdsville. 

Each of these layers may act as an aquiclude (particularly the thick 

"pencil cave" bentonite) inhibiting the downward movement of water 

and all are important in the development of a number of springs 

loca}!y in the basal Curdsville and upper Tyrone Limestones which 

together form an aquifer unit. The upper five feet of the lower bed 

- 28 -
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is characterized by Type I limestones except for several thin layers 

(several inches thick) of darker shaly limestone (Type IIb). The ratio 

of silt size quartz to fine san'd size quartz increases in the upper' five 

feet partly as a result of decreasing mechanical energy in a deepening 

transgressive sea. The increased percentage of chert in the upper five 

feet is related to the great "flood" of bentonite material deposited as 

volcanic ash which is dominant in the lithology of the middle bed 

above. Chert may occur both below and above bentonite layers as 

indicated by Huff (1962). 

Initial high to later medium mechanical energy conditions resulting 

from wave and current action in a transgressing sea would account for 

the light colored "winnowed" coarse bioclastic grains, the "edgewise" 

conglomerate, the ripple marks, the. cross bedding ,and the progressive 

decrease in de tr ital quartz grain size. Altered volcanic a sh deposits 

formed bentonite, and the absence of bentonite locally is best 

explained through submarine erosion by waves and currents. At 

least some of the angular to sub-angular material described as 

quartz silt may be of volcanic origin as shown by the increased 

percentage of this fraction in the cherty layers. Euhedral and 

subhedral microcline and plagioclase feldspar in many of the lime-

stone layers may have been derived from bentonite but work to 

date is not conclusive. 

- 29 -



Shallow water environment of deposition is indicated for the 

Tyrone Limestone (Type V) which underlies the lower bed. The Tyrone 

is characterized by laminated sediment and "birdseyes" suggestive 

of stromatolites as found in the supratidal environments of southern 

Florida and the Bahamas today. Extensive tidal flats were exposed 

to subaerial drying during Tyrone time which resulted in mud-cracks 

in the dessicated lime mud later consolidated to semilithographic 

limestone (micrite and microsparite). 

Middle Bed 

The middle bed of the Curdsville Member contains gray to buff 

microcrystalline to medium crystalline, sparsely fossiliferous, 

finely laminated limestones consisting of medium dark calcisiltites 

(Type !Ia) and darker shaly and silty calcilutites (Type IIb) in 

addition to interbedded calcarenites (Types Ib, IIIb), calcirudites 

(Type Ia), and some calcisiltites (Type Ic). A number of thin 

bentonites and bentonitic limestones and associated chert above and/ 

or below the bentonites accounts for the high percentage of chert 

and insoluble residue found in this bed (Fig. 10). The percentage 

of quartz is somewhat less than in the lower bed (particularly the 

fine sand size) and the silt size detrial quartz is more abundant 

than the fine sand size quartz thus indicating continued transgres­

sion of the sea with possible deeper water and perhaps some change 

- 30 -
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in the detrital source area. Some of the silt may be of volcanic 

origin. Ball and Pillow structures (''(low rolls" or convolute bedding) 

occur locally and are common in the silty layers, particularly where 

they are interbedded with fine sand layers and lie above shaly 

layers. The origin of these features has been variously ascribed 

to pore pressure changes creating a submarine quicksand, earth­

quakes, loading of soft clay layers with blocks of partly consoli­

dated coarser grained material, or disruption by currents or s term 

waves. The association of several lithologic types with bentonites 

of volcanic ash origin indicate an unstable sea affected by volcanic 

activity and possibly earthquakes, the influx of large amounts of 

wind-born elastic ash deposits, occasional storm waves or currents, 

and possible fluctuation of sea level. The increase of finer bio­

clastic material suggests somewhat lower mechanical energy overall 

as the transgressing Curdsville sea created a deeper water environ­

ment. Minor regression of the sea may explain the presence of 

coarser calcirudites and calcarenites near the top of the bed and 

in the lower part of the overlying bed,resulting from higher wave or 

current energy conditions in somewhat shallower water. 

The Upper Bed 

The upper ten-foot bed is characterized by eastern and western 

facies (Fig. 10). The eastern facies is dominantly a medium gray, 
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medium to coarse grained, bioclastic limestone (Types III, I) quite 

similar to and difficult to differentiate from the overlying Grier Member. 

The western facies is dominantly a dark gray, fine grained bioclastic 

limestone (Type II) similar to and difficult to differentiate from the 

overlying Logana Member. Both facies contain interbedded Type I 

layers characteristic of the Curdsville Member which are particularly 

prominent near the base. These higher energy lithologies probably 

indicate a slight recession of the sea, somewhat shallower water and 

increased wave and current energy. However, the low percentage of 

detrital quartz indicates a continusid dominant transgresi,ion of the 

seas. The few bentonites found in the upper bed are usually 

restricted to the lower and upper layers or are found above the top of 

the Curdsville Member. Therefore the chert content (usually assoc­

iated with bentonite) in the upper bed is low. The progressive 

deposition of the western shaly facies over the eastern limy facies 

culminates in the deposition of the shaly Logana Member over the 

entire western part of the project area. 

REGIONAL STRUCTURE 

The principal regional structural features of the Blue Grass 

region are the north-south trending Cincinnati Arch and the major 

fault systems including the Kentucky River and the West Hickman 

Creek -- Bryan Station Faults as shown on Figure 2. 
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Local structural features of importance include the Jessamine 

Dome, which is partially truncated by the major fault systems, the 

Switzer Graben, the Versailles cryptoexplosive structure (Black, 1965), 

and numerous minor faults delineated in the Kentucky Mapping Program. 

The minor fault trends are generalized and the sense of movement is 

not indicated. In addition to faulting, numerous joints add to the 

fracture pattern. Several sets of largely vertical joints are dominant 

in an extensive network or joint system as shown by rose diagrams 

on Figure 11. The orientation of Joints differs to some extent in the 

Tyrone and Curdsville Limestones indicating that the pattern is con­

trolled in part by the difference i.n lithology of the two units. Orienta­

tion of jointing within the three beds of the Curdsville Limestone 

varies locally as shown on Figure 11 probably because of differences 

in lithology of each bed and also due in part to some variation in 

regional stresses within the various local areas. Local variation in 

joint directions in the Blue Grass Region has been observed by 

Stafford ( 196 3) . The important relations hip of join ts to solution, 

water movement, and aquifer development is discussed later in 

this report. 

Structural History 

The s true ture map (Fig. 2) indicates that the axis of the 

Jessamine Dome may have had a slightly different orientation than 
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Figure 11 
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the axis of the Cincinnati Arch proper and may have been formed at 

a slightly different time. Both features are truncated by the major 

faults which may be therefore partly younger than the fold features. 

The minor faults appear to be influenced in part by the major faulting 

and in part by the Jessamine Dome. 

CURDSVILLE FACIES AND PALEOGEOGRAPHY 

A transgressing sea resulted in a vertical change in lithologies 

through time as evidenced by the previously described lower, middle, 

and upper beds of the Curdsville Limestone. These changes were 

largely regional in nature and affected the entire project area except 

in late Curdsville time when distinct eastern and western regional 

facies were deposited. However, local facies also were prominent 

throughout Curdsville time in specific local areas. These local area 

facies have been divided into two groups, (1) the carbonate bank ri:,r, 

shoal area facies, and (2) the shelf or channel area facies. These 

facies intertongue, but one or the other are dominant locally. Brief 

area facies des_criptions will be followed by evidence for their 

delineation (Fig. 12). 

Carbonate Bank or Shoal Facies 

The carbonate bank or shoal facies mainly consist of lighter 

colored, coarser crystalline, coarser grained calcirudites (Types Ia, 

IIIa) and calcarenites (Types Ib, IIIb) which were reworked, 
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winnowed, sorted, and rounded before final deposition by medium 

to high energy waves and currents possibly in slightly shallower 

water than the surrounding shelf-channel areas. The carbonate banks 

are the large indefinite areas to the east that were slowly transgressed 

by the Curds ville sea. The shoals are the smaller banks that have 

been partly defined by better control in the central map area. 

Shelf or Channel Facies 

The shelf or channel facies ma inly consist of darker colored, 

finer crystalline, finer grained calcisiltites (Types le, IIIc) , very 

fine calcisiltites (Type Ila), and calcilutites (Type IIb) which were 

deposited in medium to low energy areas with limited current activity, 

possibly in slightly deeper water than the bank-shoal areas. The 

shelf is the large indefinite area to the west where the transgressing 

sea first deepened and where somewhat deeper water existed through­

out Curdsville time resulting in the deposition of more fine shaly 

limestone than in the bank-shoal areas. The western facies of the 

upper bed consisting of the Curdsville and the overlying shaly 

Lagana Member is particularly prominent in the shelf area. The 

channel areas are the narrower areas in the bank-shoal complex that 

also may represent slightly deeper water conditions where fine 

sediments probably winnowed from the shoal areas were deposited. 
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Evidence for Local Area Facies 

The first evidence for existence and location of the coarse bank­

shoal and the fine shelf-channel facies areas is shown on the facies 

map of Figure 12 and is based on the ratio of the coarse to the fine 

lithologies at each station as determined by field and polished 

section descriptions. The basis for subdivisions into two lithologies 

is explained on the map. An arbitrary coarse/fine ratio of 1. 5 was 

chosen as the boundary between the indicated bank-shoal and the 

adjacent shelf-channel areas. Support for this method of separating 

facies areas was tested by several other approaches. The Geological 

Society of America Rock Color Chart was used to determine color (value) 

from wet polished sections at each station and the results are illus­

trated on the map of Figure 13. Standard value numbers range from 

white XlO) to black (1) but valures for the Curdsville Limestone range 

from 8 to 3. The bank-shoal areas contain lighter colored facies and 

are indicated by average station values higher than 5 whereas the 

shelf-cbapnel areas contain darker colored facies and are indicated 

by average values lower than 5. The rock color chart was also used 

in the preparation of the map of Figure 14 which illustrates the 

relationship between the two dominant hues (yellow and neutral) 

and the two principal facies::., Stations with greater than 3% yellow 

hues and less than 1% neutral hues are located in the bank-shoal 
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areas and, conversely, stations with less than 3% yellow and more 

than 1 % neutral hues are located in the shelf-channel areas. Minor 

hues, including yellow-red and greenish-blue are related to weathering 

and are not applicable to facies differentiation. Finally, the map of 

Figure 15 illustrates the relationship of silica to the two major facies. 

The map is contoured on the basis of the percentage of silica greater 

than clay size as determined by examination of thin sections for each 

station. In the bank and shoal areas the percentage of silica is 

greater than 10% (detrital quartz 5% and chert 5%) whereas in the 

shelf-channel areas the percentage of silica is less than 10%. Both 

the fine-sand and silt size detrital quartz is higher in the bank-shoal 

areas as compared with the shelf-channel areas. The silica content 

appears to be related to paleogeographic areas and is not primarily 

a result of weathering. Chert nodules are more common at weathered 

surface stations than at unweathered subsurface stations but this 

may be due to secondary growth of nodules at the surface at the 

expense of finely divided silica as a result of solution and later 

redeposition locally without any significant change in total silica. 

In summary all parameters investigated indicate the areal 

extent of discrete bank-shoal and shelf-channel facies thus estab­

lishing the paleogeography of Curdsville time, Other parameters 

have not been completely investigated. However, preliminary 
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Figure 14 
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Figure 15 
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thin section analysis indicates that the greater number and diversity 

of fossil forms, the coarser fossil fragments, the intraclasts, the 

cross-bedding and coarse lamination, are characteristic: in the 

bank-shoal areas, whereas sparse fauna in a dark micritic matrix 

with microspar cement, thin lamination, and shaly bedding are more 

characteristic of the shelf-channel areas. 

Ripple Marks and Cross Bedding 

Sixty-seven strike directions of cross bedding and ripple mark 

axes and eighteen dip directions of cross bedding and current ripple 

mark steep lee slopes were measured in the Curds ville Limestone. 

Limited data available does not justify plotting individual rose 

diagrµms at each field station or the preparation of vector diagrams. 

Strike and dip rose diagrams are shown for the principal shoal areas 

and for the channel or non-shoal areas. Composite diagrams summarize 

the total strike and dip data (Fig. 16). 

Only general observations can be made. The four asymmetrical 

ripples observed were confined to the channel areas. Their lee side 

dip slopes indicate currents moved toward the southeast. The four­

teen cross beds observed were confined to the shoal area and the 

dips show random distribution with a slight suggestion of a westward 

directional trend. Strike directions, in general, are northwesterly 

in the channel and nort!h-:northeasterly in the shoal area. 
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Figure 16 
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Relationship of Facies to Structure 

The carbonate shoal south of Lexington shown on the facies map 

(Fig, 12) is remarkably similar in shape and location to the Jessamine 

Dome shown on the structure mpp {Fig. 2). Minor faults appear to 

be prominent in the shoal flank areas, Although the control is limited, 

other shoals may be present along the Cincinnati Arch. This relation­

ship suggests that positive, or at least neutral areas resulting in 

higher sea bottom topography and the consequent development of 

carbonate shoals in medium · to high energy environment were present 

in Curds ville time, 

Therefore an ancestral Cincinnati Arch or at least an ancestral 

Jessamine Dome may have been present. Moreover the eastern channel 

area corresponps closely with the major fault system and may represent 

a negative area that later developed into the Kentucky River and related 

West Hickman Creek - Bryan:: Station fault systems. The channel 

area between Lexington and Frankfort corresponds closely to the area 

of the prominent Switzer Graben and the Versailles Crypllo-explosive 

Structure mapped by Black (1965). Both channel areas could well 

have been located in weak structurally negative areas resulting 

in somewhat deeper sea bottoms locally which were filled with 

lower energy deposits during Curds ville time. It is interesting to 

speculate that the crypto··explosive structure is in fact a 
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crypto··volcanic structure possibly resulting from a subterranean 

volcanic intrusion or explosion in a structurally weak zone as con­

ceived by Bucher (1936) for the Jeptha Knob crypto··volcanic structure 

some miles west of the project area. If so, this structure would not 

then be an astrobleme resulting from a meteoric impact. 

REIATIONSHIP OF GEOLOGY TO GROUND WATER 

T01NT AND BEDDING PIANE FREQUENCY 

Joints and bedding planes, the obvious avenues of solution and 

water movement, vary in length, character, and number. Generally 

they are better developed nearer the surface where weathering and 

ground water movement have been more effective. They also vary 

relative to lithology as shown in the following analysis. 

Joint and bedding plane frequency was determined for eight 

surface localities located on the Jessamine Dome Shoal Area between 

Lexington and Danville and in the adjacent channels (Fig. 12). At 

each field station grids five feet square were laid out for each vert­

ical five-foot interval of the Curdsvi11e Limestone. The length of 

joints and bedding planes in the grids were measured. Data from 

five field stations in the shoal area and three stations in the channel 

areas were added and averages determined for each area:~s shown 

on Table 3. 
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TABLE, 3 

AVERAGE LENGTH OF JOINTS AND BEDDING PLANES* 

In the Curdsville Limestone 

Shoal Area Field 
Stations DA, LHC, FL, KA, SC 

Channel Area 
BD. FCF, Frankfort 

Joints 

Bedding Planes 

"Crack" Index 
(Joints plus 
bedding planes) 

22' 47' 

106' 203' 

126' 250' 

All Areas 

32' 

l.42' 

174' 

* Average length of joints, bedding planes, and "cracks" in a five-foot 
square cross section of Curdsville Limestone at field stations in shoal 
and channel areas. 
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The table illustrates that in the shoal area of coarser grained 

crystalline limestone the joints, bedding planes, and "cracks" {joints 

plus bedding planes) are less numerous than in the finer grained shaly 

limestones of the channel areas" Therefore, potential avenues of water 

movement should be greater in the latter areas. However, impermeable 

shaly layers and the more discontinuous nature of joints largely 

confined to individual beds in these areas deters water movement 

except along some bedding planes where minor perched springs 

develop. Although fewer joints are found in the shoal areas, those 

formed are more effective and more solution cavities (sink holes and 

caverns) are formed. Consequently more favorable aquifer conditions 

exist in the coarser grained limes tone of the shoal areas . Other 

shoal and bank areas contain favorable lithology but are not exposed 

at the surface and joints have not been enlarged by solution to the 

same extent. Moreover these more deeply buried shoals would likely 

contain salt and sulphur water and would therefore not be favorable 

fresh water aquifers. However,gas was found in the core hole at station 

SR in the flanks of the carbonate bank to the east. Some permeability 

must be present and commercial oil and gas accumulation in buried 

banks and shoals is possible. 

CHARACTERISTICS OF CURDSVILLE WATER MOVEMENT 

Water movement in the Curdsville Limestone is related to lithology 
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and is restricted largely to joint and bedding plane fractures in lime­

stone beds which have been enlarged by solution. The openings formed 

result in sink holes and solution valleys developed along joint sets 

and caverns developed along bedding planes. Porosity and vertical 

permeability in the limestone studied are very low (Appendix B) , and 

for this reason little water moves through intergranular openings. 

Where the Curdsville 11imestone occurs near the surface, solution can 

be effective. Springs and some wells are present where water fills 

solutional openings. 

Downward movement of ground water is locally interrupted by 

bentonites and shales which occur at vatious positions within the 

Curds ville interval resulting in perched water tables and intermittent 

springs. Where bentonites and shales occur at the surface, farm ponds 

built on these lithologies may hold water. Bentonites act as effective 

barriers to water movement, partly as a result of mixed layer clays, 

which may swell or slough in the presence of water, thus filling 

effective pore space and forming an impermeable layer. Shales 

(mainly limy shales) may contain some bentonite, but impermeability 

is ma inly related to the presep.ce of compacted fine silt and clay 

which limits water movement thus preventing solution and the develop­

ment of permeable channels. Therefore, in areas where the Curds­

ville contains many small shale units the water movement is restricted 
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to the thicker, coarser limestone units between the shales. Where 

shales and bentonites are absent, groundwater can move downward 

and laterally for greater distances. The rock is more easily dissolved 

and channels are enlarged. 

Joint characteristics are directly related to rock type. Medium 

to thick bedded carbonate units contain continuous, largely vertical, 

regular joints. Thinner bedded carbonate units contain less continuous 

joints commonly offset along bedding planes, but which may be 

effective permeable fractures. Shales and bentonites, more than a 

few inches thick, have few continuous joints. 

Joint trends differ s tra tigraphically and geographically. Usually 

joints are larger and more numerous near fault zones and as a result 

many may give rise to high yield springs such as the Sulfur Well and 

Keene Springs near the towns bearing these names. 

CURDSVILLE AND TYRONE LIMESTONE WATER ANALYSES 

No attempt was made to make a complete water analysis of the 

water from the Curds ville and underlying Tyrone Limestone. Wells 

over 80 to 100 feet deep usually contain salt or sulfur water (Hendrickson 

and Krieger, 1964) and are therefore unsuited for most common uses. 

Water from shallow wells and springs contains calcium and magnesium 

ions, making the water hard but usable. Dr. John Thrailkill from the 

Departmentof Geology at the University of Kentucky analyzed 12 spring 
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samples collected during the project for calcium and magnesium, 

and this report is included in Appendix A. Table 4 is a comparison 

of Qalit:ium- magnesium data from the work of several authors. 

AQUIFER CLASSES AND DISTRIBUTION 

Class I - Perched Springs 

Curds ville springs can be divided into three general classes. 

Class I, or perched water table springs, occur in the Frankfort area 

in tributary streams along the Kentucky River. Springs with low flow 

rates occur as beading plane seeps along the tops of impervious 

bentonite and shale zones as shown on the map of Figure 17. Ca/Mg 

ratios are low, probably as a result of fairly large amounts of dolomite 

associated with the finer grained rocks. Slow water movement in the 

rock allows time for chemical reaction between calcite, dolomite, 

and ground water to reach equilibrium. 

Class II - Gravel Source Springs 

Class II, or gravel source springs, have moderate to high rates 

of flow (10-60 gallons per minute) and low concentrations of dissolved 

materials, as indicated by the Nonesuch spring (frontispiece, Fig. 1). 

Water collected in high level river gravels in old stream channels at 

the surface enters joint controlled solution openings in the underlying 

limestone. Jillson, 1946-48, noted the occurrence of Irvine Gravels, 

deposited along the former course of the Kentucky River and current 
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TABLE 4 

CAICIUM-MAGNESIUM GEOCHEMISTRY OF CURDSVILLE AND 
TYRONE LIMESTONE WATERS IN THE BLUE GRASS REGION 

(Figures in ppm) 

Lexington 
Limestone 

J. V. Thrailkill* 
This report 

Hendrickson and Krieger 
1964 

Palmquist and Hall 
1961 

Springs 

Ca 

Mg 

Wells and Springs 

Ca 

Mg 

61. l** 

4.8** 

Ca/Mg ratio (ppm) 12. 7 (springs) 

High Bridge Group 

Springs 

Ca 

Mg 

44.3*** 

5.5*** 

Ca/Mg ratio (ppm) 8. 12 

*see Appendix A of this report 

76.7 

6.0 

78.1 

9. 1 

12. 8 (springs) 

91 

6.4 

14.2 

79.0 

6.0 

13. 0 (wells 
and springs) 

**curdsville Member of Lexington Limestone only 

** *Tyrone Limestone of High Bridge Group only 
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detailed work of the Kentucky Mapping Program is revealing more 

gravel deposits along former drainage channels (Earle Cressman, 

Personal Communication). Low concentrations of dissolved material 

probably is a result of short transportation in the limestone (Table 5). 

Class III - Tubular Springs 

Class III, or tubular springs, are common in the Jessamine Dome 

Shoal Area north of Danville. Flow rates are variable from 1 to 40 

gallons per minute, and Ca concentrations are high (Table 5). The 

high Ca/Mg ratios indicates a lack of dolomite in the sediments 

assuming the water has had time to reach equilibrium with the rock 

through which it passes according to Thrailkill (Appendix A). 

Bentonites, forming aquicludes, occur at various levels in the area. 

The high percentage of limestone indicates possible high solubility 

for the rock and accounts for the large solution openings. 

Wells 

Wells were not observed, sampled, or tested in the field . 
. ,, 

Published information is not specific for wells in the Curdsville 

Limestone Member alone. Most produce from several horizons 

including the Tyrone Limes tone below. 

The best prospective area for Curdsville wells is probably in 

l 
the Jessamine Dome Shoal Area where favorable lithology and 

fracture conditions exist, such as in the Bryantsville Quadrangle area. 
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TABLE: 5 

COMPARISON OF CALCIUM-MAGNESIUM 
IN CURDSVILLE LIMESTONE SPRINGS 

{by area) 

Average 
Ca in PPM Mg PPM ++ ++ Ca·. /Mg 

64 4 .4 9.4 

45 8. 2 3.4 

13 3. 5 2.3 
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PROSFECTIVE CURDSVILIE LIMESTONE AQUIFERS 
IN THE BRYANTSVILLE QUADRANGLE AREA 

The Bryantsville Quadrangle area, located on Figure 2, was 

selected for detailed study as representative of the Jessamine Dome 

Shoal Area. Springs and wells have been found in the Curdsville 

Limes tone which occurs near the surface over much of the quadrangle. 

Because intergranular porosity and permeability are cf:minor importance 

in the Curdsville Limestone as observed in core analysis, subsurface 

water movement must be largely confined to fractures (joints and 

faults) or to bedding planes which have been enlarged by underground 

solution. Surface water movement is partly controlled by fractures 

which produce a somewhat rectangular drainage pattern in the present 

stream channel of the Dix River and its tributaries as shown on the 

map of Figure 18. Evidence of linear alignment of sink holes, solution 

valleys, stream valleys, and old river courses are abundant on the 

Bryantsville topographic quadrangle. Moreover, all these features 

called "fracture traces" or lineaments are remarkably similar in 

orientation to the measured joint fractures in outcrops of the Curds-

ville and Tyrone Limestones in the same area as shown on the map. 

Therefore, although fault fractures may be important locally, joints 

seem to be the dominant avenues of solution, and enlarged joints 

are probably the principal aquifers. Springs observed in the field 

issue from joints. The Joints are largely vertical, and wells drilled 
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Figure 18 
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in areas of concentrated joints or where joint sets cross should 

encounter more enlarged fractures and yield more water than wells 

drilled in other areas. Old river courses marked by large numbers of 

sink holes might be particularly favorable well sites. Lattman and 

Parizek, 1964, applied this reasoning to a limestone area in 

Pennsylvania and found that wells drilled near crossing "fracture 

traces" encountered more cavities at depth and yielded more water 

than wells drilled in interfracture areas. 

Further work, including drilling, is needed to prove the validity 

of the relationship between "fracture traces" and favorable well 

locations in the Bryantsville area. Aerial photographs were examined 

for a small portion of the Bryantsville quadrangle and indicate addi­

tional evidence for fracture traces and solution phenomena. Obvious 

joints were observed near the Dix River and other places. Shallow 

depressions, and soil color variations suggest possible alignments. 

Lattman and Parizek, op.cit,, using infrared aerial photographs made 

with a blue filter were able to find soil moisture differences along 

fracture traces. Field examination would yield additional information 

in regard to fractures and fracture traces. A drilling program could 

be set up as a separate Water Resources Institute Project with wells 

proposed for favorable fracture tra<,;,e areas with provision for one or 

more control wells in interfracture areas. 
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SUMMARY 

The factors which control the porosity and permeability of the 

Curds ville limestone are geological. Stratigraphy and structure 

r determine water movement and aquifer development. 

Microstratigraphic analysis of over 500 hand specimens and 400 

thin-sections from 27 surface (outcrop) and subsurface (core) stations 

in the Blue Grass Region and north to the Ohio River provides the 

basis for subdivision of the lower Lexington Limestone, consisting 

principally of the Curdsville Member, into three distinct ten-foot 

L beds. Each bed can be subdivided into less distinct "zones" con-

sis ting of several Lithologic Types. These divisions aid in the 

i: interpretation of the geologic history and paleogeography of Curds-

c ville time. 

Both vertical (stratigraphic) and lateral (facies) changes occur 

L in the Curdsville Member. The lower bed, which has the most 

I : favorable aquifer attributes was deposited by high energy wave 

and current action in a shallow sea. The middle and upper beds 

[ were deposited in deeper water under lower energy conditions in 

L a progressively transgressing sea. These latter beds contain more 

L 
impervious shale and bentonite aquicludes than the lower bed. 

However, locally, shaUow water was maintained over carbonate 

L bank-shoal areas as compared with slightly deeper water over 
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shelf-channel areas during most of Curdsville time" The high energy 

bank-shoal facies were washed free of much of the fine impervious 

material and thus developed into thicker potential aquifers than 

the shelf-channel facies" 

The Jessamine Dome Shoal Area is the most favorably located 

shoal for ground water solution and accumulation in the Curds ville 

Limestone because of subsequent uplift and erosion of this feature 

along the Cincinnati Arch" Meteoric waters at shallow depths have 

replaced unpotable salt and sulphur waters still found in the more 

deeply buried bank or shoal areas" Dissolving ground waters have 

enlarged fractures (mostly joints) in the limestone resulting in sink 

holes, solution valleys, and caverns thus providing increased avenues 

for ground water movement and accumulation as evidenced by the 

existence of springs and wells in the area" 

The Bryantsville Quadrangle north of Danville on the Jessamine 

Dome Shoal Area was examined in detail for joint and fault fracture 

frequency and alignment. Alighments of such features as sink hole 

trends, present and pre-existing stream channels, and prominent 

dry solution valleys were also determined" The obvious similarities 

in trend of all these lineaments or "fracture trace" features with 

the fracture pattern indicates that the subsurface solution and 

surface water erosion are controlled by the fractures" Likewise 
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water movement and accumulation might also be found at depth in 

these largely vertical fractures. Thus local high frequency and crossing 

of plotted "fracture traces" may indicate the most likely sites for 

prospective Curdsville water wells. This hypothesis can be evaluated 

by drilling and testing several favorably located wells. 
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APPENDIX A(l) 

CALCIUM-MAGNESIUM RATIOS IN SPRING 
WATERS FROM THE CURDSVILLE LIMESTONE 

By John Thrailkill 

Twelve water samples from springs in the Curdsville and Tyrone 

limestones were analyzed for calcium and magnesium ions by atomic 

absorption spectrophotometry. A Beckman DB-G spectrophotometer 

with atomic absorption accessory was used. Samples were diluted 

10 fold to bring them into the linear range of the instrument, and a 

Na
2

EDTA (ethylene diamine tetra acetate) - NaOH solution was 

2- -3 
added to eliminate Na and K enhancement and SO 4 and PO 4 

interferences. The analyses were performed by M. Osolnik and 

R. Worley. The precision of this technique has not yet been estab-

lished, but the coefficient of variation of the analyses is probably 

no greater than 5%. The analytic results are shown below. 

Molality (m) x 10
3 

Ratios 
ppm me.a 2 + } '-1 

Sample 
ca 2+ Mg2+ 2+ Mg2+ 

Ca ppm 
No. Ca mM 2 Mg ppm 

g + 

1 81 4.5 2.0 0.19 10.5 18.0 

2 65 6.5 1. 6 0.27 5.9 10.0 

3 86 3.5 2. 1 0. 14 15.0 24.6 

4 78 3.5 1.9 0. 14 13 .6 22.3 
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Ratios 

Sample 
ppm Molality (m) x 10

3 mca2+ 
Ca EEm 

2+ 2} 2+ 2+ mM 2 
No. Ca Mg Ca Mg g + Mg EEm 

5 88 4.0 2.2 0. 16 13. 7 22.0 

6 42 4.5 1. 0 0. 19 5.3 9.4 

7 46 5.0 1. 1 0.21 5.2 9 .:2 

8 41 6.0 1. 0 0.25 4.0 6,8 

9 49 10. 5 1. 2 0.43 2.8 4,6 

10 50 6,0 1. 2 0.25 4.8 8.3 

11 13 3.5 0.32 0. 14 2.3 3.7 

12 44 Ll _!_,_!.._ 0. 10, 11. 0 17.6 

Averages 56.9 5.0 1.4 0.21 7.8 13. 0 

The analyses are quite um.remarkable and appear to be typical of 

springs from the Lexington group, as indicated by analysis in 

Hendrickson and Krieger (1964, p. 34-35). The high Ca/Mg ratio 

indicates that largely calcite has been dissolved, but the presence 

of some Mg suggests some dolomite solution. Because the solution 

kinetics of dolomite are generally thought to be slower than those for 

calcite, the water could have been in contact with equal amounts of 

both minerals. 

It is not possible to determine the degree of saturation of the 

water with respect to calcite or dolomite with the limited data, The 

2+ 
high Ca concentrations indicate that the waters have either been 

in equilibrium with a high partial pressure of co
2 

or that there has 
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been evaporation. In spring water, the former is a far more likely 

explanation, inasmuch as both ground water and vadose seepage are 

commonly in equilibrium with a P C02 higher than that of the normal 

atmosphere. The 88 ppm Ca 
2

+ in sample S suggests an equilibrium 

-3 . 
P C02 of about 3 x 10 atm (10 times that of the normal atmosphere). 

Although relatively little can be said about the probable history 

and evolution of the spring waters, it is possible to compute, 

assuming saturation, the equilibrium relationships with respect to 

calcite and dolomite, the most abundant carbonates in the rocks 

through which the water has passed. From the equation 

2+ 
2CaC0

3 
+ Mg 

calcite ) 

2+ 
CaMg(C0

3
) 2 + Ca 

dolomite 

it can be seen that the equilibrium constant K = aCa2+ / aMg2+ 

(assuming pure solid phases at unit activity). Although a complete 

analysis of the spring waters is not available, they are undoubtedly 

within the applicability range of the Deybe-Huckel equation for 

individual ion activity coefficients and it is unlikely that any 

complexing is important. Since, by the Deybe-H'uckel expression, 

C 2+ YM 2+ y a ~ g then ac 2+ I aM 2+...., me 2+ I mM 2+ a g-a · g. 

A value of K may be derived from the expression lnK = -t..G
0 

/RT 

if the free energies of formation of the various species involved in 

the reaction are known. Of these, all are known with fair accuracy 
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except that for dolomite. Recent determinations have tended toward 

values of AG0 f for dolomite of between -516 and -517 kcal. These 

values yield values of K from O. 185 to O. Inasmuch as the ratios 

ac 2+ /aM 2+ (me 2+ I m 2+ in. table) are considerably higher than 
a g a Mg , 

either value of K (the lowest is 2 ,3 for sample No. 11), the waters 

at saturation are in equilibrium with calcite. Stated another way 

(and assuming reversible equilibria), if waters with the mCa2+ /mMg2+ 

ratio of those sampled are saturated with respect to calcite, they 

are undersaturated with respect to (and hence would dissolve) dolomite. 
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APPENDIX A(2) 

SAMPLED SPRINGS IN THE CURDSVILLE AND TYRONE LIMESTONES 

Sample Carter Date 
No_._ Count_y Quadrangle Farm Coordinates Collected Aquifer Remarks 

1 Garrard Bryan ts ville Maywick 16-0-59 11/24/66 Curds ville 
800' FWL, 
3400' FSL 

2 Mercer Wilmore 25-P-58 
900' FWL 
3500' FSL 11/14/66 Curds ville 

3 Garrard Bryantsville - Rice 5-N-59 
1500' FWL, 
2200' FSL 11/24/66 Curds ville 

as or Grier as 
4 Garrard Bryantsville 11-0-".58 

1500' PEL 
3000' FSL 11/15/66 Curds ville Flows from 

joint,110° 
5 Garrard Bryan ts ville Maywick 20-0-58 

1700' PEL 
3000' FSL 11/24/66 Curds ville Flows from 

Joint on top 
of mud cave 

6 Jessamine Nicholasville 12-Q-59 
2000' FNL 
2000' PEL 9/14/66 Tyrone 10' Near 

below Jessamine 
Curds ville Creek 
Contact 

- -----, 
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Sample 
No, Qoupu,__ Quadrangle 

7 Jessamine Little 
Hickman 

8 Woodford Frankfort 
East 

9 Frank Un Frankfort 
East 

a- 10 Jessamine Little 
I~ Hickman 

11 Woodford Sal visa 

12 Garrard Bryantsville 

r:-il --, il 

Aff'ENDIX A (2) 
(Continued) 

Carter 
Farm Coordinates 

20-Q-59 
Halfhill 300' FNL 

1100' FWL 
10-T-56 
1100' FNL 
700'FWL 

Fint,A,W, 2-T-56 
250' PEL 
1900' FSL 
4-P-60 
200' FWL 
1000' FNL 

l-Q-57 
300' PEL 
800' FSL 

Mt, Oliver 5-0-59 
Church 500' FWL 

500' FSL 

--, --, 

Date 
Collected 

9/14/66 
9/13/66 

9/13/66 

9/14/66 

10/26/56 

9/14/66 

--, ---, 
.J 

.Ag_uifer 

50' below 
base of 
Curds ville 
Curds ville 

Tyrone 

Curds ville 

Curds ville 

--, --, --, 

Remarks 

Old Crow 
Dist, 
Spring 

West 
Sulfur Well 
Spring 

Nonesuch 
Community 
Spring 
Mt, Oliver 
Church 
Spring 



AR'ENDIX B 

INTERCRYSTALLINE POROSITY AND VERTICAL PERMEABILITY 
IN THE CURDSVILLE LIMESTONE 

(After Data from Oilfield Research, Inc. , Evansville, Ind.) 

Vertical 
Permea-

Area Lithologic Porosity Bulk Wet bility 
(Facies) Station Type Percent Density Md. 

Shelf PB 

242 la 2. 1 2.66 0. 14 
240 lb 1.2 2.68 <0.10 
236.8 le 0.6 2.68 
226.1 I!b 0.9 2.64 
210.5 !Ila 0.6 2.69 <O. 10 
246 v 0.5 2.67 

Carbonate HS 
Bank 

388.S la 1. 5 2.68 
386.2 lb 1. 5 2.68 
390.4 le 0.6 2.66 
355 Ila 3. 1 2.62 
368 .4 Illa 0.9 2.70 
356.6 I!Ib 4.7 2.64 <O. 10 
367.4 Ille 2.2 2.71 

SR 

429.8 Ia 4.0 2.64 <O. 10 

Porosities of less than 3% are of less than normal accuracy using 
commercial techniques. We chose the most applicable method, and the 
most accurate from our laboratories - weight loss method. The entire 
sample received was subjected to vacuum for 1 1/2 hours and the 
chamber then filled with water. The fluid was then pressured to 1500 
psi and let stand for 1 1/2 hours. The rock was weighed, including 
the contained fluid, and dried at less than 100°C for three hours. Each 
sample was weighed again, the weight loss representing the vblume of 
pore space. Upon determining total volume by submersion the porosity 
was calculated by standard procedure. 
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Based on our experience and a review of the porosity results, 
we felt it unnelJessary to test all the samples for permeability. First, 
many of the samples received are too small to drill a 3/4" standard 
plug. Although V2" (diameter) plugs could have been drilled, the 
results often leave something to be desired. However, we primarily 
based our decision on comparable rock lithologies which we have 
tested. The porosity is a good permeability indicator. Intercrystalline 
porosity, as observed in limestones, is normally quite low and the 
permeability negligible. Vugular porosity will normally be 8 to 12% 
and the permeability profile erratic. Dolomite porosity can be low 
(<8%), or high, (>20%), but with intercrystalline porosity the permea­
bility will not be extremely high {>100 md.). The five permeability 
tests confirmed our preconceived ideas and, we hope, suffice for 
your purposes. In other words, we doubt any of the samples not 
tested will have measurable permeability at two atmospheres pressure 
differential. 

Should you desire further testing, or have any questions regarding 
the above results contact us at your convenience. We have waived 
the minimum charge for these tests. 

OILFIELD RESEARCH, INC. 
Evansville, Indiana 

Ben Ross Oates 



APPENDIX C 

X-RAY ANALYSIS OF CURDSVILLE LIMESTONE INSOLUBIE RESIDUES 

George T. Hine 

Qualitative x-ray diffraction determinations were made on several 

samples of insoluble material, from station FEC, which showed the 

presence of quartz, montmorillonire-illite clays, feldspar, and some 

carbonates. Quantitative values for the materials were not determined. 

Subsequent petrographic examination, of station FEC thin sections, has 

confirmed the presence of quartz, clay, and feldspar. 

Quantitative x-ray diffraction determinations of quartz content 

in the insoluble residues was attempted with limited success. 

Dr. I. S. Fisher (Geology Department, University of Kentucky) has 

prepared a calibration curve for the determination of quartz in insoluble 

residues with calcite as an internal standard. This curve could not 

be used with the FEC samples because of the occurrence of several 

extraneous peaks in the vicinity of the standard calcite peak. Two 

attempts were made to prepare a calibration curve, one using zircon 

and the other using silicon as internal standards. The results 

obtained in each case were variable, although promising with a 

definite trend, indicating the need for refinement in method. Addi­

tional work with the x-ray was not done because work with the 
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petrographic thin sections yielded sa tis tac tory information as to 

quartz content in the Curdsville Limestone as well as distinguishing 

the type of quartz (chert and detrital quartz). 

PREIARATION OF STANDARD MATERIAL 

Quartz: Clear fragments of quartz were ground in a crusher and then 

powdered for five minutes in a Spex-mix No. 5000 mixer mill. 

Clay filler: Mud Cave bentonite from Curdsville station was treated 

overnight in a bath of concentrated (commercial grade 33%) 

HCL. The residue was washed several times to remove the 

acid. Tha remaining material was placed in water, mixed, 

and the fi.ne material in suspension was decanted, allowed 

to settle, and the clear water was siphoned off. The fine 

clay was air direct, removed from the beaker, crushed in a 

mortar and pestle, and placed in a closed bottle. 

Zircon: Fine grained zircon sand of high purity was placed in the 

Spex-mix for five minutes and powdered. 

PREIARATION OF STANDARD SLIDES 

Six 1.25 g. samples were prepared, each containing 0.25 g. of 

zircon and 1. 00 g. of either pure quartz, clay, or a mixture of both 

so that samples of 1.00 g., 0.80 g., 0.60 g., 0.40 g., 0.20 g., 

and O. 00 g. of quartz and an inverse amount of clay were made up. 

Each of the six samples was plac~d in the Spex-mix for one minute 
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to produce a nearly homogenous material. The six samples were 

removed from the mixer and each sample was divided equally between 

three clean petrographic slides. A mixture of Duco Cement and 

acetone was added to each slide and the moistened material was 

then spread evenly over the slide. The fixing solution was allowed 

to dry and the excess material was scraped from the ends of the slide. 

X-RAY DIFFRACTION PROCEDURES 

The standard slides were placed in the x-ray and peaks and 

backgrounds were read as follows: 

Readings 2 e d spacing 

Background 32.25° 
• 

Montmorillonite 35.oo· 2. 55 A 
• 

Quartz 36.50° 2 .49 A 

Background 48.oo• 

• 
Quartz 50.30° 1.82 A 

• 
Zircon 53.50° 1. 71 A 

Background 54.30° 

Machine Settings 

Tube Voltage 3 5 kv. 

Tube Current 16 ma. 

Detector Voltage 1.6 kv. 

Pulse Height Discrimi-
nation base 5. 0 v. 
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Each peak and background was read three times for 100 seconds per 

slide and the average of the peaks and backgrounds for the three 

duplicate slides was calculated. 

DETERMINATION OF RATIOS 

The zircon/quartz ratios were calculated from the average values 

using the formula: 

~Z~i_rc~o_n_c~o_u~n~t~s_-_b~a~c~k-g~ro~u~n_d~c~o_u~n~t_s~ = zircon/ quartz ratio 
Quartz counts - background counts 

These ratios were plotted on three cycle semi-logarithmic paper. The 

ratio for zircon/quartz (Figure 19) yielded a smooth curve exqipt in the 

area of O. 80 g. quartz. The cause of the variation was not determined 

although additional samples were run. The other ratio (zircon/clay) 

showed similar deviations in the O .80 g. quartz area perhaps indicating 

a mixing or packing variation with slides of the composition 0. 80 g. 

quartz and O. 20 g. clay and O. 25 g. zircon. 

A new set of standard slides, identical to the zircon standard 

slides except for the use of silicon as the internal standard, were 

prepared. Silicon is often used to calibrate the goniometer on the 

x-ray diffractometer since it has sharp definite peaks which can be 

accurately located. Using the silicon peak as a reference, counts 

were made as follows: SiHdon (28.443°); Background (27.843°); 

Background (27.162°); Quartz (26.662°). The resulting curve showed 

even more variation than the zircon standard curve. 
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Figure 19 

CALIBRATION CURVE FOR DETERMINATION 
OF QUARTZ CONTENT 
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ADDITIONAL WORK 

Since the completion of the x-ray work, additional information 

was obtained by Dr. Fisher as to recommended procedures for quantita­

tive standardization of the x-ra y to an accuracy of± 1 % • The method 

is as follows: 

1. Crush all material to a size which will pass a 325 mesh screen. 

2. Prepare the sl,ides by back filling a hoUow area in the slide 

so that the powder is level with the upper surface of the 

slide, so that it will be in the focal plane of the x-ray when 

in the slide holder. The old method of gluing the material 

to the slide introduces error as a result of differing thickness 

of the standard which varies the focusing of the x-ray beam. 

3 . The peak area should be determined using a step scanner. 

Because for quantitative work it is important to determine 

the area under the peak rather than the peak height. The 

peak height is more sensitive to grain size than is the peak 

area. 

4. Readings of 50, 000 counts should be made on each peak 

and the time required for the accumulation of this number 

of counts should be recorded. 

The method outlined should result in a calibration standard with an 

accuracy of ± 1 % • 
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APPENDIX D 

INSOLUBLE RESIDUES OF CURDSVILLE LIMESTONE 

By George Hine 

I. Four stations were selected for insoluble contenL (CA, DA, 
FEC, CT) 

II. Modified standard insoluble techniques were used. 
(after Ireland, 1958, p. 75) 

A. Two sampling techniques were used. 
1. Gbres were sliced to give a continuous sample for 

each 1 foot interval. 

2. Surface sections were sampled for each 1 foot interval 
and proportional amounts of each rock type present 
were collected, 

B. The samples were crushed to"-Omm and lOg of each was 
separated and placed in a 11 beakeL 

C. Each sample was dissolved in 400cc of 20% HCl for at 
least 10 hrs. and until all reaction had stopped. 

D .. Each sample was decanted and washed three times to 
remove all acid and salts, 
all insoluble materials, 

Care was taken to preserve 

E. The samples were air dried, weighed, and placed in small 
stoppered bottles for storage. 

III. Several methods of examination were used on the residues. 

A. The % insoluble for each one foot interval was plotted for 
each section, as were various running averages and total 

r 

[ 

! 
l 

l 
averages. l 

B. Each sample was studied under the microscope to determine 
the nature of the insoluble materiaL 
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C, Color determinations were run on the samples. (GSA Rock 
Color Chart, 1948). 

D, Grain size analysis was run on several samples and the 
composition of the size fraction noted. 

E. Stain tests for bentonite clay were made. 

F. Insoluble % were compared with y ray logs. 

G, X-ray examination was tried on several samples. 

H. Relation between rock type and insoluble content were 
noted. 
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Station 

BA 
BB 
BC 
BD 
CA 
CT 
CYT 
DA 
FCF 
FEC 
FEO 
FL 
FLS 
FWD 
GG 
HS 
KA 
LEL 
LHC 
LWB 
MC 
ND 
NV 
PB 
SC 
SH 
SR 
TD 

-"VJVK 
WL 
WC 

APPENDIX E 

STATION LOCATIONS OF CURDSVILLE IIMESTONE SECTIONS 

Carter Coordinates Quadrangle 

23-0-58 Bryant s ville 
14-N-58 Bryan ts ville 
15-N-58 Bryantsville 
6-N-59 Bryantsville 

10-S-62 Clintonville 
17-R-6 l Cole town 
10-W-62 Cynthiana 
20-0-57 Danville 
9-Q-62 Ford 
8-T-56 Frankfort East 

10-T-56 Fra nlliort East 
23-R-62 Ford 
22-AA-62 Falmouth 
17-V-56 Frankfort West 
21-AA-57 Glencoe, 
13-R-65 Hedges 
16-R-58 Keene 
6-S-62 Lexington East 

22-P-59 Little Hickman 
19-T-60 Lexington West 
13-W-67 Moorefield 
4-Q-60 Nicholasville 

10-Q-60 Nicholasville 
20-CC-57 Pa tr<iot 
19-R-57 Sal visa 

8-V{-60 Sadieville 
16-T-66 Sideview 
24-S-57 Tyrone 
ll-Q-61 Valley View 
17-Q-61 Valley View 
7-P-58 Wilmore 
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