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PREFACE 

report on nutrient uptake and chemical composition of algae 

~esults of the first phase (OWRR Project No. A-021-KY) of a 

8 study entitled Algal Growth and Deco_mposition: Effects on 

. Tile study is continuing as OWRH Project No. A-023-KY, Algal 

com osition: Effects on Water Qualit , Phase 2. A study on the 

mica! composition on the rate and extent of algal decomposition 

,regeneration is in the final stages and will be completed in 1970. 

uate the effects of various factors on the rate and extent of 

by decomposing algae is in the preliminary stages. 

assistance and cooperation afforded the authors during this study 

rt A. Lauderdale, Director of The University of Kentucky Water 

Institute, are gratefully acknowledged. 
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ABSTRACT 

The chemical composition of algae grown in batch cult 
u re deP<!,ITu<i:i 

mainly on environmental conditions, nutrient availability, presence 

cell age, and species, The effects of nutrient availability and eel] 

culture (algae+ bacteria+ microscopic animals) were evaluated. 

conditions and the changes in compositions were observed. 

those necessary for growth, and super-luxurious uptake, where som£; ntl!ln• 

are stored rather than converted into algal protoplasm, were obsc 

commonly used model for calculating the weight percentage of 

inaccurate when super-luxurious uptake occurred. Composition of the, <;;;;Jl!!<:ri 

was generally characterized by protein synthesis during the 

growth phase, by a fluctuating composition during transition from mil 

abundant to nutrient-deficient growth, and by lipid and.I or carbohvdrn!t: tJt!!i!iiii!il 

and the establishment of a relatively constant composition durinµ; the 

deficient growth phase. Two unialgal cultures accumulated 

one accumulated lipids, Soluble extracellular substances were 

cultures which caused high concentrations of color. 

KEYWORDS: * algae, carbohydrates, *chemical composition. 
cyanophyta, *cycling nutrients, *eutrophication, lipids, *nitrogen· 
requirements, *phosphorus, proteins. 
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CHAPTER I 

INTRODUCTION 

Wastewater discharges containing nutrients available for plant growth 

result in the artificial nutrient enrichment of many surface waters. This enrich-

ment in turn results in excessive growths of aquatic plants, primarily algae, 

which have many detrimental effects on water quality. The evidence currently 

available indicates that nitrogen and phosphorus are the most serious offenders 

in promoting these excessive plant growths or algal "blooms". Nitrogen and 

phosphorus enter receiving waters through agricultural drainage, domestic and 

industrial waste treatment plant effluents, and various other sources. Large 

quantities of both nitrogen and phosphorus come from both agricultural and 

municipal wastewaters, but the ratio of nitrogen to phosphorus is usually 

considerably greater in agricultural drainage than in municipal wastewaters 

where large quantities of phosphorus originate from synthetic detergents. 

When nitrogen and phosphorus are added in sufficient quantities to natural 

waters which generally contain adequate amounts of carbon and trace elements, 

and environmental conditions are favorable, an algal bloom will generally occur. 

This large growth of algae quickly consumes the available supply of nutrients in 

solution. Algal cell division is then believed to cease and growth during this 
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nutrient-,deficient period is thc,ught to occur i::l the form of increased cellular 

size and mass. Growth continues until inhibited by nutrient availability or some 

other unfavorable environmental factor and then decomposition commences, The 

extent and characteristics of decomposition are thought to depend on the 

compositions attained by the algae during growth, These compositions depend 

primarily upon the environmental conditions and the algal species involved. 

One of the major efforts of current research is to find an economical 

way to remove nutrients from wastewaters, thus preventing algal growth and 

the associated water quality problems. Some authors have proposed treatment 

processes which utilize algae to remove the nutrients before they reach the 

receiving waters. These "activated" algae processes show considerable promise, 

but the major problem seems to be that of disposal of algae grown for the 

purpose of nutrient removaL A common suggestion has been digestion either 

by aerobic or anaerobic means. However, the digestibility seems to depend 

on the age of the algae and the associated environmental conditions. More 

commonly, algae are employed in waste stabilization lagoons throughout the 

.! 
world for the treatment of various types of wastes. These algae are only 

,I rarely harvested from the lagoons and thus must ultimately decompose 

in situ. ---
It was the purpose of this study to determine the changes which occur in 

the composition of the organic matter of algae as the cells grow and age, By 

becoming familiar with some of the composition changes which occur during 



algal growth, especially during the nutrient-deficient growth phase, better in

sight can be gained for the design of waste treatment systems utilizing growing 

algae. A better knowledge of the organic composition of algae will also give an 

indication of the extent of algal decomposition that will occur under natural 

conditions, thereby lending insight into the water quality problems associated 

with algal decomposition. 
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CHAPTER II 

BACKGROUND 

A. Chemical Composition of Algae 

The stoichiometry of the growth and aerobic decomposition of algae can 

be represented by the following equation (1): 

- -3 + 
aco

2
+cN0

3
+eP0

4 
+(c+3e)H + 1/2 (b-c-3e) H

2
o 

Aerobic Decomposition 
Growth ,.., 

C H N O P + (a+b/4+5c/4-d/2+5e/4)0 . In this equation the coefficients a, 
a b c d e 2 

b, c, d, and e, which determine the chemical composition of the algal matter 

synthesized, vary depending on the species and age of the algae, temperature, 

available nutrients, and other related factors (1). Many elements not shown 

in the above equation participate in the synthesis of algal matter. Eyster (2, 3) 

divided the elements necessary for the growth of green and blue-green algae 

into two classes, macronutrients and micronutrients, depending on their 

relative abundance in the algal cell. The macronutrients, which are used 

generally as building materials, include carbon, hydrogen, oxygen, nitrogen, 

phosphorus, sulphur, potassium, magnesium, and sodium. The micronutrients 

include iron, manganese, copper, zinc, molybdenum, vanadium, boron, chlorine, 

cobalt, silicon, and calcium, and are commonly metal constituents of enzymes 

which enter into biological reactions. 
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1. Elemental Composition. Carbon, hydrogen, oxygen, and nitrogen 

are generally considered to be the major constituents of algal matter and are 

commonly measured as that fraction of the dry weight of algal solids which 

volatilizes during combustion at about 600° C (4). This fraction, called the 

volatile solids, is a good measure of the organic portion of algal matter and is 

normally 85-95% of the total dry weight of freshwater green and blue-green algae. 

The fraction of algal solids not volatilized during combustion is termed 

the ash and includes the micronutrients as well as the macronutrients other 

than C, H, 0, and N. This fraction is a good measure of the inorganic matter 

present and normally represents 5-15% of the total dry weight of freshwater 

green and blue-green algae. Reported concentrations of minor chemical 

constituents of Chlorella pyrenoidosa are illustrated in Table 2. 1. 

Constituent 

Total Ash 
p 

Ca 
Mg 
K 
Na 
s 
Fe 
Mn 
Sr 
Cu 
Zn 

TABLE 2. 1 

Ranges of Concentrations of Minor Chemical 
Constituents in Chlorella pyrenoidosa Cells. 

(% of Total Dry Weight) 
Concentration Range 

1. 4-20. 2 
0.06-3.0 

o. 0-1. 6 
0. 3-L 5 

o. 04-1. 4 
0.07-0.7 
0.4-0.8 

0.02-3.4 
0.02-2.6 

0. 0004-0. 05 
0.0008-0,03 
0,0004-0.009 

- 5 -

Reference 

(5, 6, 7) 
(1,5,7,8,9,10) 

(5, 8) 

(5) 
(5) 
(5) 
(8) 
(8) 
(8) 
(8) 

(8) 
(8) 



2. Organic Composition. In general the majority of the organic fraction 

of algal matter is comprised of proteins, carbohydrates, and lipids. However, 

in some instances chlorophyll may comprise a relatively significant portion of 

the organic matter. Spoehr and Milner (6) found that under certain conditions 

the chlorophyll content of Chlorella pyrenoidosa was as high as 6% of the total 

dry weight, but under different conditions the chlorophyll content of the same 

algae could decrease to 1/2000 of this value. other investigators (11, 12) 

reported chlorophyll contents ranging from 3. 3-6% by weight for Chlorella 

pyrenoidos2; cells grown under various environmental conditions. 

Extracellular products produced by certain algae can comprise a 

significant amount of the total organic matter. These extracellular products 

are soluble substances set free from live, healthy algal cells and are distinct 

from the substances liberated by autolysis or decomposition of dead algal 

cells (13, 14, 15). Lefevre (16) stated that the characteristics of the extracellular 

products vary according to the algal species and include polysaccharides, amino 

acids, vitamins, steroids, saturated and unsaturated fatty acids, and toxic as 

well as stimulating factors. 

In natural environments these substances are diffused into the water 

containing the algal growth and would exert some effect on the aerobic 

decomposition of algae which occurs in the upper layers of a natural water but, 

in general, would not settle into the lower layers where anaerobic decomposition 

takes place. Gromov (17), in a review of research on algal cultures in the 
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Soviet Union, explained instances in which 5-10% and sometimes even 30% of 

the organic matter synthesized by Chlorella was liberated into the culture 

medium. The algae excreted three to five times more organic matter during 

a lag period of growth and in the beginning of a lag phase than during 

exponential growth or during a stationary phase, The excretion of organic 

matter into the medium increased under unfavorable growth conditions and the 

composition of organic matter excreted by different Chlorella strains was 

somewhat different. Carbohydrates and acetic, formic, glicolic, pyruvic, 

ex -ketoglutaric, and glioxilic acids were discovered in the culture medium 

of Chlorella, but nitrogenous organic compounds were not detected. 

a. Proteins. Fowden (18) stated that the cellular nitrogen may be 

divided into fractions including inorganic-, free cc amino-, amido-, volatile-, 

and protein-nitrogen. The volatile nitrogenous compounds and inorganic 

nitrogen are usually quantatively insignificant and protein normally constitutes 

the main nitrogen fraction, representing 80% or more of the total nitrogen in 

unicellular algae. Protein is assumed to contain a relatively constant 

percentage of nitrogen by weight; the value most commonly used is 16%. Hence, 

the percent by weight of algal protein can be calculated as 6. 25 (~100/16) 

times the percent by weight of nitrogen (6, 19, 20). 

Fowden (18) and Fisher and Burlew (21) have presented data on the 

amino acid composition of the bulk proteins of several algae. Fowden found 

eighteen different amino-acids in the bulk protein of Chlorella vulgaris and 



Anabaena cylindrica, with arginine, aspartic acid, glutamic acid, 

and lysine being the most significant, Fisher and Burlew found ten 
u Ulli;!'t!M 

amino-acids in the crude protein of pilot-plant and laboratory gr 
0\Vn 

pyrenoidosa cells, with the most significant being arginine, leucinc, 

and valine. 

Gromov (17) found no significant differences in fractions of 

for Chlorella and Scenedesmus for autotropic and heterotrophic growth. 

Milner (19) demonstrated that the actual mass of protein in cultures of 

Chlorella pyrenoidosa was relatively constant and did not appear to 

significantly as the algal cells went from the "normal" 50%-protein, 

lipid state to a low-protein, high-lipid state, 

b. Carbohydrates. Carbohydrates are generally found in the storffllf!!i .. / 

materials, cell walls, and mucilages of algae. The cell wall 

. be roughly divided into water-soluble and water-insoluble materials, 

water-insoluble materials generally having a less complicated molecular 

structure which determines to a large extent the properties which rc,,dc•r 

suitable as skeletal materials, The water-soluble carbohydrates arc ge 

mucilaginous or pectic substances located at greater distances from tlw 

lamen than the water-insoluble carbohydrates (22). Various carbohvdr::iU! 

constituents found in the storage materials, cell walls, and m,1cilagcs 

and blue-green algae are listed in Table 2. 2, 
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TABLE 2.2 

ohydrate Constituents Found in the Storage Materials, Cell Walls, and 
. Mucilages of Green and Blue-Green Algae. 

storage Materials: 

glucose 
sucrose 
fructose 
insulin 
trehalose 
glycogen 
arabinose 

cellulose 
mannan 
xylan 
alginic acid 
fucinic acid 
pectin 

Mucilages: 

glucose 

rhamnose 
mannose 
glucuronic acid 
galacturonic acid 

Type of Algae 

green & blue-green 
green 
green 
green 

blue-green 
blue-green 
blue-green 

none given 
none given 
none given 
none given 
none given 
none given 

green &blue-green 
green & blue-green 
green &blue-green 
green & blue-green 
green & blue-green 
green & blue-green 

blue-green 
blue·-green 

Reference 

(23, 24) 
(24) 

(23,24) 
(24) 
(24) 

(24) 
(24) 

(22) 
(22) 
(22) 
(22) 
(22) 
(22) 

(25) 
(15, 25) 
(15, 25) 

(25) 
(25) 
(25) 
(25) 
(25) 

Lipids. Lipids are usually measured experimentally as two fractions: 

Ifiable fraction (free fatty acids and their esters) and an unsaponifiable 

, with the saponifiable fraction generally comprising the majority of 

ids (19, 20). Various authors (19, 26, 27) found that fatty acids occurring 
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in algae range from 12-carbon to 24-carbon acids with onlv e,•e 
) - ..,, n nurn 

ones being of any significance quantitatively. These fatty acids most 
1 

occur as mono-, di-, or tri-glycerides as opposed to free fatty acids, 

B. Variations in Chemical Composition 

Typical compositions of the three classes of organic comi,oun,•, ,,,:;,: 

comprise the major portion of algal mass are shown in Table 2. 3 

assumption is made that carbon, hydrogen, oxygen, and nitrogen conuiri,m 

entire algal mass, the composition of algal matter can vary over a I m:,i±,w! 

range depending upon the relative proportions of these four fractions, 

range over which carbon can vary is from 40-77%, hydrogen from r, ,-

oxygen from 11-53%, and nitrogen from 0-16%. 

TABLE 2. 3 

Elemental Composition of Typical Organic Compounds Which Com 
Mass [ After Foree and McCarty (9) J 

(% By Weight) 

Typical Compound C H 0 

Carbohydrate (CH
2
0)x 40. 0 6.7 53.3 

Protein (Average) 54 7 23 

Lipid (C
18

H
32

o
2

) 77. 2 11. 4 11. 4 

·------

Foree and McCarty (9) pointed out that the chemical compos,ti<,ll 

algae is generally more dependent on the environmental conditions 

the algae are grown than on the innate characteristics of the 
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izations of compositions based on chemical formulas, usually 

ing only the major chemical constituents, are meaningless unless the 

logical history and environmental conditions under which the algae were 

are specifically defined. They illustrate by showing that the composition 

rella pyrenoidosa has been reported anywhere in the range from 

cH10. 2°3. 23N to c57. 3Hl03. 2°10. ON. 

Spoehr and Milner (6) studied the effects on algal cell composition of 

environmental factors such as temperature, atmospheric composition, 

tration of mineral nutrients, and illumination intensity and intermittent 

ntinuous illumination. The wide variation in protein, lipid, and 

ydrate fractions found by Spoehr and Milner are shown in Table 2. 4. 

es grown in media with low nitrogen concentrations and cultures 

ated with high light intensity produced algal cells of high lipid content. 

Milner (19) and Fogg and Collyer (20, 28) found that the accumulation of 

roportions of lipid material was more dependent on environmental 

'ons than on certain classes or individual species of algae. Species 

g to the same class contained similar relative amounts of crude protein, 

hydrolyzable polysaccharide. There were no fundamental differences 

algae belonging to Chlorophyta (green algae). Even though 

ntatives of the Cyanophyta (blue-green algae) under certain 

· ances had moderately high fat contents, they appeared to differ from 

orophyta in that fat accumulation was not associated with low cell 
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Culture 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

Mean 

TABLE 2.4 

Organic Composition of Chlorella pyrenoidosa Grown Under 
Various Environmental Conditions 

[ Calculated from data by Spoehr and Milner (6) J 

(% Ash- Free Dry Weight) 

Protein Carbohydrate 

58.0 37.5 

70.5 23.8 

88.2 6.6 

64.8 17.7 

33.0 38.2 

67.2 11. 4 

49.2 23.0 

30.0 24. 8 

19.2 20.8 

10.l 20.0 

8.0 13.2 

7.3 9.5 

8.9 4.8 

39.6 19.3 

-12 ~ 

4. 

17. 

2f( 
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nitrogen content. Gromov (17) found that the correlation between carbohydrate 

and lipid synthesis varied depending on both the strain of algae and the 

environmental conditions encountered by the algae during growth. 

Collyer and Fogg (28) found that the lipid content of Chlorella cells 

increased with culture age and the increase could be related to the 

exhaustion of nitrogen from the growth medium. Aach (29) found, from 

analysis of Chlorella cells during growth, that the lipid content of the cells 

increased from 22% of the dry weight on the second day of growth to 70% 

on the twenty- fifth day when growth had ceased. Miller (26) reported that 

growth. (increase in cell number} can continue slowly for some time in a 

medium entirely depleted of nitrogen, producing cells of high fat content. 

However, it is generally believed that for all practical purposes cell division 

ceases after the nitrogen has been depleted from the growth medium. 

C. Nutrient Uptake 

Gerloof and Skoog (30, 31) presented resuJts of studies on tb.e blue-

green alga, Microcystis .aeruginosa, which indicated that algae migb.t store 

nitrogen or phosphorus from an environment containing relatively b.igh 

concentrations of these elements to permit continued growth in an environment 

where they are deficient. They believe th.at nitrogen and pllosphorus would be 

distributed in successive cell diYisio:m until one of the elements was reduced 

to its growtb.-limiting critical value of 4. O and 0. 12%, respectively. For 

cellular nitrogen and phosphorus contents of 4. 0-7. 7% and 0, 12·-0. 46%, 
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respectively, the algal yield was constant and it was postulated that these 

increases above the critical levels represented luxury consumption of nit, 
t ogen 

and phosphorus, 

In contrast, Knauss and Porter (8) found for the green alga, Chiarella 
~ 

pyrenoidosa, that absorption of all elements except phosphorus and sulfur v,as 

directly proportional to the concentration of that element in the nutrient cc,uc,,vr; 

The qllantities of phosphorlls and sulfur in the algal cells were constant when 

the cells were grown in the higher nutrient concentrations of these elements. 

Borchardt and Azad (10) found that for Chlorella and Scenedesmus three regiims 

of phosphorus uptake may be established. For cellular phosphorlls contents of 

0-1% the algal yield is directly proportional to the phosphorus content. For 

phosphorus contents of 1-3% yield is constant and phosphorus is stored in the 

algal cells. When the phosphorus content rises above 3%, the cell is saturated 

and can no longer store phosphorus. Therefore, "lllxury uptake" was defined 

as that phosphorus incorporated into the cells above the critical level of 1 % 

cellular phosphorus, 

D, Effect of Bacteria and Animals on Algal Yield 

Under environmental conditions favorable for algal growth, the major 

fraction of the nutrients in a growth medium are incorporated into cellular 

material by algae rather than by other populations, such as bacteria and 

animals, These other populations can affect the natural algal yield by 

competing for available nutrients and predation, but the effect which the 
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'.bacteria and animals will have depends on the source of energy available to 

these populations (1). If organic pollutants other than algae are present, 

bacteria and animals may form the major fraction of the living organic mass 

present. However, in algal systems with light as the energy source, bacteria 

and animal mass seldom comprise more than 1 % of the total organic matter 

present. In this case the nutrients used by the bacteria and animal populations 

are small in relation to the total quantity of available nutrients (l, 32). 

E. Summary 

The previously presented background material showed that the organic 

composition of algae is far from being a constant which can be determined and 

reported as such. It has been shown that the protein, carbohydrate, and lipid 

portions vary depending on time of growth (cell age), availability of nutrients, 

presence of predators (decomposers), and environmental conditions. Spoehr 

and Milner (6), after investigation of several environmental factors, concluded 

th.at evaluating the effect of one factor operating independently of otb.ers was 

almost impossible. Therefore, algal cell composition is only significant wb.en 

reported along with. the environmental conditions prevailing during growth. 

Tb.e environmental conditions to which the algal cultures of this study were 

subjected, as well as other growth and sampling procedures, are described in 

tb.e next section entitled "Experimental Procedure. " 
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CHAPTER III 

EXPERIMENTAL PROCEDURE 

The purpose of this section is to describe the procedures followed for 

growing and sampling the algae used in this study O The next section entitled 

"Analytical Procedure" describes the specific analytical analyses usedo 

Ao Growth Procedure 

L Culture Vesselso The four vessels in which the algal cultures were 

grown consisted of 9-liter pyrex bottles with lower sampling nodules as shown 

in Figure 30 L The purpose of the glass tubing extending to within. one inch of 

the bottom of the vessel was to supply an air-carbon dioxide mixture to the 

growing algaeo The shorter piece of glass tubing served as a pressure release 

for the system" A piece of cotton was placed in the end of the short tube to 

minimize contamination and evaporation from the vessel. Each vessel was 

housed on a magnetic stirrer which provided continuous agitation to the 

growing cultures by a rotating magnetic stirring bar O The glass tubing 

extending from the lower sampling nodule was used as a sampling porL The 

Noo 8 stopper containing this piece of tubing was sealed to the nodule with 

silicone rubbero When not in use the sampling port was closed with a 
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FIGURE 3.1. Diagram of Culture Vessel. 
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"Castaloy" hosecock clamp. Silicone rubber was also used to seal all outside 

contacts between glass tubing and rubber stoppers. 

2. Light. Light to the algal cultures was supplied continuously by four 

horizontally supported 40 watt Cool White fluorescent lamps at an intensity of 

approximately 500 foot-candles at the outside surface of the vessels. 

3. Gas Mixture and Supply System. An inorganic carbon source was 

continuously provided to each growing algal culture by a mixture of air and 

carbon dioxide at a rate of approximately 2. 5 liters per minute. The pH of the 

bicarbonate-buffered growth medium was kept in the range 6. 5-7, 5 by 

maintaining carbon dioxide in the mixture at approximately 2% by volume, 

The gas sources were the laboratory compressed air supply and pure 

bottled carbon dioxide, A system composed of glass T's, rubber tubing, and 

Nalgene twistcock connectors was used to transport the air and carbon dioxide 

from their respective sources to the culture vessels as shown in Figure 3, 2. 

A Castaloy clamp was installed on the tubing leading to each culture vessel on 

each side on the Nalgene connector. The purpose of the clamp nearer the 

vessel was to regulate the flow into the vessel. The other clamp served to 

terminate the flow into a vessel without a pressure loss to the entire system 

when that vessel had to be removed from the system for manual shaking. 

4. Temperature. The temperature in the room housing the growing 

cultures was controlled by a thermostat and maintained at approximately 25 °C 

throughout the duration of the study. 
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5. Culture Growth Medium, All cultures were grown in the same 

synthetic medium which was designed to approximate a typical nutrient-enriched 

surface water. The chemical composition of the synthetic growth medium was 

similar to that of the FMB medium used by Foree and McCarty (9) and is 

shown in Table 3.1. The growth medium was prepared in each culture vessel by 

first adding appropriate amounts of previously prepared concentrated solutions 

to approximately 6 liters of distilled water and then diluting to a total volume of 

8 liters. The concentrations of nutrients in the growth medium measured during 

the study varied somewhat from the values given in Table 3. 1 due to the 

Inaccuracy of diluting in the culture vessel when initially preparing the medium 

and to evaporation during the growth period. 

TABLE 3.1 

Chemical Composition of Synthetic Growth Medium 

Chemical 

MgSO 
4

. 7H
2

0 

CaC1
2 

NaHC0
3 

KHC0
3 

KH
2
Po

4 
NH

4
Cl 

Fe, B, Mn, Mo 9 Si 

Zn, Cu 7 Co 7 Ni~ Cr, v 
EDTA 

KOH 

Concentration (mg/1) 

45.0 

55.0 

250 } 100 

16.8 

95.5 

0,1 

0.01 

2.0 

1. 0 
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200 mg/1 
Alkalinity as Ca CO 

3 

3. 8 mg/1 P 

25. 0 mg/1 N 

Added as 1 ml 
trace element solution 
per liter of 
medium 



B. Sampling 

1. SamQling Schedule. After the growth medium was inoculated and 

growth began, a constant check was kept on the ammonia nitrogen concentration 

in the culture vessels. Assuming that the initial ammonia nitrogen concentration 

of the growth medium was 25 mg/1, an effort was made to sample the growing 

algae when the ammonia nitrogen concentration was approximately 20 mg/1, 

10 mg/1, 5 mg/I, and O mg/L In order to check the ammonia nitrogen 

concentration a sample was taken and filtered through Whatman Glass Fibre 

Filter Paper, Grade GF/C, 4. 25 cm diameter. The direct nesslerization test 

for ammonia nitrogen given in Standard Methods for the Examination of Water 

and Wastewater~ Twelfth Edition (4), pp. 193-194, was run on a suitable 

aliquot of this check sample. The first samplings were actually taken at 

ammonia nitrogen concentrations of approximately 10 mg/1 because initially 

it was not reallzed that precipitates formed by reaction with the Nessler's 

reagent resulted in turbidity which caused the direct nesslerization tests to 

give values approximately twice the true value. Subsequently, precaution was 

taken to avoid this precipitate formation. It should be emphasized that this 

test was used only for sampling purposes and the values obtained by direct 

nesslerization are not reported in the results of this study. 

When the ammonia nitrogen concentration became O mg/1, it was 

assumed that essentially all the nutrients had been ingested by the algae and 

that growth was in the m1trient"·deficient phase. Samples were taken at 5, 10, 



15, 30, and 50 days after this time. A time of O corresponds not to the day the 

cultures were inoculated but to the day when the ammonia nitrogen concentration 

first reached O mg/L Hence, a time of -1 refers to one day before the nutrient

deficient phase of growth began. 

2. Sampling Procedure. The first step in sampling a culture was to 

dislodge any algae clinging to the sides of the culture vessel with a brush. To 

prevent contamination, the same brush was always used for a particular culture 

vessel. Next, each vessel was removed from its place on the magnetic stirrer 

and shaken manually. The vessel was then placed back on the magnetic stirrer 

and mixed vigorously throughout the sampling process. Two samples were 

then taken. The first sample of approximately 200 ml was placed directly into 

a 250 ml plastic bottle and designated the 11 total11 sample. A second sample of 

approximately 250 ml was withdrawn into a 250 ml centrifuge bottle and 

centrifuged for about an hour on an International Equipment Company Waltham 

Centrifuge. The supernatant was then filtered through Whatman Glass Fibre 

Paper. The filtrate was collected and approximately 200 ml was placed in 

another 250 ml plastic bottle and designated as the II soluble fraction. 11 Botti the 

11total 11 and "soluble fraction" samples were immediately placed in a freezer 

and kept frozen at -30° C. For analysis, samples were removed from trre 

freezer and thawed in a refrigerator at about + 4' C. 



C. Analysis 

1. Total Sample. The total sample was analyzed by the procedures 

described in the next section entitled "Analytical Procedure" for the 

following: 

a. Chemical Oxygen Demand 

b. Total Suspended Solids 

c. Volatile Suspended Solids 

d. Total Kjeldahl Nitrogen (Organic plus Ammonia Nitrogen) 

e. Total Phosphorus 

f. Total Lipids 

2. Soluble Fraction. The soluble fraction was analyzed by the 

procedures given in the next section for: 

a. Chemical Oxygen Demand 

b. Ammonia Nitrogen 

c. Total Kjeldahl Nitrogen 

d. Nitrate Nitrogen 

e. Total Phosphorus 

f. Color 
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CHAPTER IV 

ANALYTICAL PROCEDURE 

The purpose of this section is to describe the analytical procedures used 

for the determination of the various parameters considered in this study. 

A. Chemical Oxygen Demand (COD) 

The method used for determination of the COD was the dichromate reflux 

method. The detailed procedures used in this method are given in Standard 

Methods (4), pp. 510-514 with one exception: the ferrous ammonium sulfate 

titrant used was approximately 0. 125 N instead of 0. 25 N. The following 

volumes were used in all cases: sample plus distilled water - 20. 0 ml, 

standard potassium dichromate solution - 10. 0 ml, and concentrated acid - 30 mL 

B. Suspended Solids 

The suspended solids concentration of a sample was determined using 

Whatman Glass Fibre Paper, Grade CF/ C, 4, 25 cm diameter, by the technique 

described by Wyckoff (33). For consistency a 10. 0 ml sample was used 

throughout the suspended solids analysis except for the instances in which this 

sample size caused an excessively slow flow rate through the filter. In these 

cases the sample size was reduced. 
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1. Total Suspended Solids. To determine the total suspended solids 

concentration, the samples were filtered through Whatman glass pads using a 

Millipore Filter Apparatus. The total suspended solids concentration of the 

samples was determined as the weight (to the nearest 0.1 mg) of the residue 

left on the filter pad after drying to constant weight in a 103 ° C oven. 

2. Volatile Suspended Solids. The filter pads from the total suspended 

solids analysis were burned in a muffle furnace at 580-600°C for 10 minutes. 

The volatile suspended solids content of the samples was determined as that 

portion of the total suspended solids which was lost during combustion. Care 

was taken to maintain the temperature in the furnace below 600' C, the melting 

point of the glass filter pads. 

C. Nitrogen 

1. Ammonia Nitrogen. The ammonia nitrogen concentration of the 

samples was determined by a procedure which consisted of steam distillation on 

a micro Kjeldahl apparatus followed by nesslerization. The reagents used in 

this procedure are the same as those described in Standard Methods, pp. 389-

391. Each sample and 3 ml of the phosphate buffer solution were added to a 

200 ml distillation flask. This mixture was steam-distilled and approximately 

20 ml of the condensate was collected in a 50 ml nessler tube and diluted to 

the 50 ml mark with distilled water. Nessler's reagent was added, and after 

allowing at least 30 minutes for color development, the color was measured 
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photometrically on a Beckman DB Spectrophotometer with wave-length set at 

410 mu. The ammonia nitrogen content (in mg) of a sample was determined 

from a previously developed calibrati.on curve and, knowing the sample size , 

the ammonia nitrogen concentration in mg/1 was calculated. When possible, 

sample sizes were selected so as to contain 0. 05-0. 20 mg of nitrogen. At 

least one ammonium chloride standard within this range was run with each set 

of samples. 

2. Total Kjeldahl Nitrogen. The total Kjeldahl nitrogen concentration 

of the samples was determined by a micro Kjeldahl digestion procedure, which 

converts organic nitrogen to ammonia nitrogen, followed by the ammonia 

nitrogen steam distillation and nesslerization procedure described above. The 

reagents used are described in Standard Methods, pp, 402-404. Each sample, 

5 ml acid-sulfate digesting solution, and 4 or 5 Hengar Granules were added 

directly to a 200 ml distillation flask, placed on a micro Kjeldahl heating 

apparatus, and digested until approximately 20 minutes after the samples 

became colorless. After digestion the samples were cooled and 25 ml of 

distilled water and 2 drops of phenolphthalein indicator were added. After 

neutralization to the phenolphthalein end-point with sodium hydroxide, the 

samples were distilled and the total Kjeldahl nitrogen content was measured as 

ammonia nitrogen by the procedure described above. A reagent blank of 

distilled water and at least one ammonium chloride standard were run with each 

set of samples. 
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3. Nitrate Nitrogen. The nitrate concentration of a sample was 

determined using the Ultraviolet Spectrophotometric Method described in 

Standard Methods, pp. 200-202. Even though this method was satisfactory for 

the purposes of this study, it is rather insensitive and may not be useful in 

many cases. A sample size of 15. 0 ml was used in all nitrate nitrogen 

determinations. 

D. Total Phosphorus 

The total phosphorus concentration was determined by the following 

procedure: (a) The sample and LO ml of a 70 gm/1 magnesium chloride 

reagent were added to a vycor dish, evaporated to dryness in a 103°C oven, 

and burned for 10 minutes at 600° Cina muffle furnace. The purpose of this 

step is to convert the organic phosphorus to pyrophosphate as described by 

Sawyer and McCarty (34), p. 471. (b) The contents of the vycor dish were 

cooled and diluted to 25 ml with distilled water. One-half ml of the strong acid 

solution was added to the dish and the contents were autoclaved for 30 minutes 

at 15 psi. Boiling in strong acid hydrolyzes the polyphosphates to 

orthophosphates as described in Standard Methods, pp. 236-237. (c) The 

contents of the vycor dish were transferred with 2 or 3 rinses to a 50 ml 

nessler tube and the total phosphate content was determined by the stannous 

chloride method described in Standard Methods, pp. 234-236. The use of 50 ml 

nessler tubes instead of 100 ml tubes as set forth in Standard Methods 

necessitated a proportionate reduction of the quantities of reagents. 
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The color determinations were made photometric,,lly on a Beckman DB 

Spectrophotometer with the wave-length set at 690 mu. The total phosphorus 

content (in mg) of a sample was determined using a previously developed 

calibration curve and, knowing the sample size, the total phosphorus concentratic, 
J,, 

in mg/1 was calculated. When possible, sample sizes were chosen so as to 

contain O. 005-0. 03 mg of phosphorus. A reagent blank of distilled water and 

at least one potassium phosphate standard were run with each set of samples. 

E. Color 

The amount of color in the samples was determined by the procedure 

described in Standard Methods, pp. 127-129. A stock solution of Platinum 

Cobalt Color Standard with a color of 500 units was used to prepare the 

standards. The pH values recorded for this procedure were measured on a 

Beckman Model N pH meter. 

F. Total Lipids 

The total lipid concentration of the samples was determined using a 

modification of the wet extraction method described by Loehr and Rohlich (35). 

A 20 ml sample or a sample diluted to 20 ml was added to a Waring blender and 

acidified to pH 3. Sixty-five ml of a 50% chloroform - 50% methanol solution 

were added and the mixture was homogenized for 2 minutes. The contents of 

the blender were filtered through Grade CF/C Whatman Glass Fibre Paper 

and the filtrate was transferred to a 1000-ml separatory funnel. The blender 
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and filtering apparatus were rinsed with 15 ml of the 50% chloroform - 50% 

methanol solution and the rinse was added to the separatory funnel. The 

separatory funnel and contents were manually shaken for one minute and 

allowed to separate, After separation was complete, the chloroform layer 

containing the lipids was drawn off into a tared beaker and the total lipids 

content of the samples was determined as the residue remaining in the beaker 

after evaporation of the chloroform on a steam bath, drying to constant weight 

in a 103'C oven, and cooling in a dessicator. An analytical balance was used for 

all weight determinations with readings being made to the nearest 0. 1 mg, A 

reagent blank was run with each set of samples. 

Lipid analyses were not made on the soluble fraction because it was 

assumed that sufficient calcium and magnesium were present in the growth 

medium to precipitate any lipid material which could potentially be released 

into solution, 



CHAPTER V 

RESULTS AND DISCUSSION 

A. General 

Several investigations have been conducted during the last 20 years 

which have contributed to the understanding of the mechanisms of algal 

growth. However, the objectives of these studies have been quite diverse, 

and usually only one or two isolated pure or unialgal cultures were studied. 

The major objective of this study was to specifically evaluate the effect of 

nutrient availability on the chemical composition of three unialgal cultures, 

known to have different growth characteristics, and a heterogeneous algal 

culture containing microscopic animals. The experiments were designed to 

maintain optimum environmental conditions (lighting, carbon availability, 

etc.) other than nutrient availability during the entire growth period. 

1. Algal Cultures Used. The algae studied were three unialgal 

cultures and one mixed culture. The mixed culture was taken from a pond 

in Kentucky and is subsequently referred to as Kentucky Mixed. The unialgal 

cultures were Chlorella pyrenoidosa (26), Scenedesmus guad,:-icauda (76), 

and Anabaena sp. (B380). The numbers in parentheses are the identification 
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numbers in the Indiana University Collection from which the cultures for initial 

inoculation were obtained (Starr, 36). Chlorella and Scenedesmus are green 

algae which were chosen because they are typically found in waste stabilization 

ponds as well as in many natural waters. Anabaena, a blue-green alga capable 

of fixation of atmospheric nitrogen, was chosen because it is a typical nuisance 

causing alga found in many lakes and reservoirs of the United States (37). The 

mixed culture was studied so that a closer simulation of natural conditions 

could be obtained. The mixed culture contained a wide variety of microscopic 

animals indigenous to the pond where the sample was originally taken, while 

the unialgal cultures contained bacteria but no animals. 

During the preliminary phases of the study it was noted that different 

algal species responded differently to the growth medium to be used, resulting 

in different lag growth phases for each culture. Since it was desired to keep 

each of the four cultures under study in approximately the same phase of 

growth at a given time, each culture was initially seeded with a different volume 

of inoculant. This was accomplished by growing a preliminary set of cultures 

in the same growth medium and then using various sized aliquots from these to 

inoculate the cultures upon which the results are based. Larger inoculants 

were used for the cultures which had previously exhibited longer initial lag 

times. The following volumes were used to inoculate the final 8-liter 

cultures: Kentucky Mixed - 10 ml, Scenedesmus - 10 ml, Chlorella - 20 ml, 

and Anabaena - 100 ml. This technique worked quite well and the growth phases 
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• 
for the four cultures corresponded rather closely, thus facilitating sampling 

and analysis. Periodically, samples were removed from the growing cultures 

and analyzed as described previously. 

2. Symbols Useri. The symbols used in the presentation of results that 

follow and the method for determining the quantity which each symbol denotes 

are given in Table 5. 1. 

B. Nutrient Uptake 

Of all the elements necessary for algal growth, nitrogen and phospb.orus 

are the two which most often determine the algal growth potential of natural 

waters. Assuming that .the other elements, commonly referred to as trace-

elements, are relatively abundant in natural situations, much controversy b.as 

arisen as to which of these two elements first limits algal growth. in a natural 

situation where they are simultaneously consumed by algae. A detailed study of 

which of the two is the major limiting nutrient was not an objective of this 

study; therefore the experiments were designed so that nitrogen and pb.ospb.orus 

would both be simultaneously depleted from the growth medium. This was 

accomplished by making the ratio of nitrogen to phosphorus in the growth medium 

approximately equal to the "average" ratio normally found in algae growing . 

under nutrient-abundant conditions. 

The uptake of the nitrogen and phosphorus for the four cultures is 

sh.own in Figures 5. 1-5. 4. These curves show that the nitrogen and phosphorus 
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Abbreviation 

MT 

MS 

M 

s 

NTK 

NSK 

NA 

N 
w 

%N "' 

PT 

PS 
p 

%P 

LI 

%LI 

%PR 

%CA 

TABLE 5,1 

ABBREVIATED SYMBOLS 

Total Chemical Oxygen Demand Concentration 

Soluble Chemical Oxygen Demand Concentration 

Particulate Chemical Oxygen Demand Concentration 

Volatile Suspended Solids Concentration 

Total Kjeldahl Nitrogen Concentration 

Soluble Kjeldahl Nitrogen Concentration 

Ammonia Nitrogen Concentration 

Particulate Nitrogen Concentration 

Nitrogen Content of Particulate Material 
expressed as a percentage of S 

Total Phosphorus Concentration 

Soluble Phosphorus Concentration 

Partilculate Phosphorus Concentration 

Phosphorus Content of Particulate Material 
expressed as a percentage of S 

Particulate Lipid Concentration 

Particulate Lipid Concentration expressed as a 
percentage of S 

Particulate Protein Concentration expressed as 
a percentage of S 

Particulate Carbohydrate Concentr.ation 
expressed as a percentage of S 

Means of Determination 
Direct Measurement 

Direct Measurement 

Calculated as (MT - M
8

) 

Direct Measurement 

Direct Measurement 

Direct Measurement 

Direct Measurement 

Calculated as (NTK- NSK) 

Calculated as 100 (N/S) 

Direct Measurement 

Direct Measurement 

Calculated as (PT - P 
8

) 

Calculated as 100 (PIS) 

Direct Measurement 

Calculated as 100 (LI/S) 

Calculated as 6, 25 (%N) 

Calculated as (100-%LI-%PR) 
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in solution were depleted simultaneously as expected. Growth subsequent to 

the exhaustion of ammonia nitrogen in the growth medium was defined as 

"nutrient-deficient" growth, as indicated in Figures 5. 1-5. 4. Growth prior to 

the exhaustion of nutrients from solution was defined as "nutrient-abundant." 

Indications are that the true nutrient-deficient growth phase began, not when 

the nitrogen and phosphorus were exhausted from solution in the growth medium 

but after the nutrients stored during growth in the nutrient-abundant growth 

phase were converted into algal protoplasm, mainly in the form of protein. 

In reality, the stored nitrogen and phosphorus were converted into protein 

very shortly after the growth medium was void of these nutrients and for all 

practical purposes the nutrient-deficient growth phase began when nitrogen 

and phosphorus were exhausted from the growth medium. 

To verify that ammonia nitrogen was the principal nitrogen 

constituent of the growth medium, analysis was made for nitrate nitrogem 

This provided a check to determine if any of the ammonia nitrogen had been 

converted by "nitrifying" autotrophic bacteria to nitrate which still remained in 

solution in the growth medium. The nitrate analysis revealed little or no 

nitrate in solution at any time throughout the study period. Hence, it appeared 

that the algae directly incorporated the ammonia nitrogen into their cells and 

if any ammonia was converted to nitrate, it too was immediately incorporated 

into the cells. 

' 



Miller (26) reported that algal cell division can continue slowly for some 

time in a medium entirely depleted of nitrogen. Gerloof and Skoog (30) 

reported critical values of 4. 0% and 0, 12% for cellular nitrogen and phosphorus 

contents, respectively, for _Microcystis aeruginosa, They indicated that when 

these levels are reached cell division ceases and the growth rate decreases, 

implying that the cellular nutrient content controls cell division and growth rate. 

Conversely, Jewell and McCarty (1) indicated that cell division stops when the 

nutrients are exhausted from solution and growth continues as an increase in 

cellular mass with resulting changes in the organic composition. Jewell and 

McCarty's concept is more generally accepted,~' the nutrient-deficient 

growth phase is characterized by algal growth without cell division. 

Most researchers generally have assumed that all nitrogen taken into 

an algal cell is converted directly into protein, i._ e. protein nitrogen is 100% 

of the cellular nitrogen, and it has been established that complex protein is 

approximately 16% nitrogen by weight. Hence, the percent by weight of algal 

protein can be calculated as 6. 25 (~ 100/16) times the percent by weight of 

cellular nitrogen. This method of calculation is applicable in instances when 

nitrogen is converted directly to protein, but not for certain stages of growth 

during which nitrogen is stored and converted to protein at a later time, Each 

algal species exhibited different nitrogen storing characteristics and only by 

examination of different cultures can insight be gained into this phenomenon, 

j.i ,, 
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1. Chlorella. The variation in cellular nitrogen content during both 

the nutrient-abundant and nutrient-deficient growth phases for the Chlorella 

culture is shown in Figure 5. 5. Using the nitrogen contents in Figure 5. 5, the 

protein contents of the algal cells during the nutrient-abundant growth phase 

calculated as 6. 25 x %N were 68. 8, 62. 5, and 65. 6. The corresponding weight 

percentage of lipids were measured to be 45. 0, 62. 2, and 50. 0. Summing the 

above values of only protein and lipids gives totals greater than 100%, which are 

obviously impossible. A minimum carbohydrate content of about 10% would be 

expected (see Table 2. 4) which indicates a maximum sum of lipid plus protein 

of about 90%. Therefore, the protein content as calculated by 6. 25 times the 

weight percentage of nitrogen was too high, indicating that all nitrogen taken 

into the algal cell during nutrient-abundant growth was not converted directly 

to protein. This suggests three regimes of nitrogen uptake: (1) the cells only 

take in enough to sustain a minimum concentration necessary for growth; 

(2) the cells take in more nitrogen than is necessary to sustain growth but 

convert the nitrogen directly into protein; and (3) the cells take in nitrogen over 

that necessary for growth and store some of it rather than converting it directly 

to protein. This second type of uptake is usually defined as "luxurious" 

uptake and for this study the third type of uptake will be defined as 11super

luxurious". The first type of uptake would be manifested by constant cellular 

nitrogen content during growth and was not observed for any of the cultures in 

this study. The data in Figure 5. 5 indicate that for nitrogen contents above 
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approximately 9%, super-luxurious uptake occurred and some of the nitrogen 

taken into the cell was stored and not converted directly to protein. However, 

once the nutrients were exhausted from the growth medium, the algae apparently 

converted the stored nitrogen into protein. After this conversion was completed 

the model for calculating the protein content was applicable. 

Fowden (18) found that young cultures of Chlorella, growing under 

optimum conditions, contained nearly 10% nitrogen, while in old nitrogen

deficient cultures the total nitrogen content rarely exceeded 2% and values of 

less than 1 % were not uncommon. For a 90-day growth period Jewell and 

McCarty (1) found nitrogen contents of 3. 5% for the green alga, Chlamydomonas, 

1. 9% for Chlorella, and L 3% for the diatom, Nitzschia colosterium. Foree 

and McCarty (9) observed a wide range in the nitrogen content of Chlorella 

depending primarily on the length of the growth period under batch culture 

conditions, 34 and 48-day growth periods yielded nitrogen contents of 8. 2% 

and 1. 8%, respectively. The minimum nitrogen content for the Chlorella 

culture as shown in Figure 5. 5 was 2. 3%. 

The minimum cellular phosphorus content shown in Figure 5. 5 for 

Chlorella was 0, 5%. Foree and McCarty (9) found phosphorus contents of 0. 7% 

and 0. 4% for Chlorella after a 48-day growth period, Jewell and McCarty (1) 

reported values of 0. 5% for Chlamydomonas and 0. 2% for Chlorella after a 

90-day growth period. Borchardt and Azad (10) have defined three phosphorus 

regimes for Chlorella and Scenedesmus; from O to 1 % cellular phosphorus, 
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growth is dependent upon the actual phosphorus content; from 1 to 3%, growth is 

independent of the phosphorus content and phosphorus is stored in the algal 

cells; and above 3%, growth is independent of the phosphorus content and the 

cell is saturated with respect to phosphorus. These authors defined "luxury 

uptake" of phosphrous as that incorporated into algal cells above the critical level 

of 1. 0%. However, these values were determined for algal growth when 

phosphorus was available in solution in the growth medium and, therefore, do 

not apply to growth under nutrient-deficient conditions as defined for this study. 

2. Scenedesmus. The cellular nitrogen and phosphorus contents of 

this culture are shown in Figure 5. 6. The rather high nitrogen contents during 

the nutrient-abundant growth phase suggested the super-luxurious uptake and 

corresponding storage of nitrogen as was found for Chlorella. However, 

coupled with these high nitrogen contents and the corresponding high calculated 

protein contents were low measured lipid contents. The sum of the lipid and 

protein contents was high but always enough less than 100% to allow for the. 

minimum expected carbohydrate content. For the Scenedesmus culture, at 

nitrogen contents as high as 12. 5%, all nitrogen taken into the cell was 

apparently directly converted to protein and, therefore, this alga apparently 

had little or no ability to store nitrogen during growth under nutrient-abundant 

conditions. This was possibly responsible for the more rapid growth during 

the nutrient-abundant growth phase than was observed for the Chlorella and 

Anabaena cultures. 
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The rapid growth rate continued into the nutrient-deficient grow-th phase 

and after day 10 began to decrease as shown in Figure 5. 6. At this ti.me the 

percentages of cellular nitrogen and phosphorus reached values of 2. 4 and 0. 4, 

respectively, and remained approximately at these levels throughout the 

remainder of the study period. For Scenedesmus, Jewell and McCarty (1) 

found nitrogen and phosphorus contents of 4. 4% and 0. 8%, respectively, after 

a 29-day growth period and L 1% and 0. 2%, respectively, after an 87-day 

growth period, 

After 15 days of nutrient-deficient growth the algal mass began to 

decrease, as shown by the volati.le suspended solids (S) curve in Figure 5. 6, 

probably due to death of the old algal cells and subsequent autolysis and/ or 

bacterial decomposition. This phenomenon was not observed in the other two 

unialgal cultures studied. 

3. Anabaena. The nitrogen curve in Figure 5. 7 shows a large nitrogen 

uptake with little corresponding growth during the nutrient-abundant growth 

phase for the Anabaena culture. Such a large uptake of nitrogen occurred 

during this period that calculation of the weight percentage of protein as 6. 25 

times the weight percentage of nitrogen yielded a protein content greater than 

100%. This indicated the same super-luxur!ous uptake and corresponding 

storage of nitrogen in the Anabaena cells as was found for Chlorella, except on 

a more pronounced scale. At the begl.nning of the nutrient-deficient growth 

phase the protein content was calculated as 86, 9% which added to a measured 
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lipid content of 42, 3% gave a value greater than 100%, Therefore, even after 

the nutrient-deficient growth phase began, some of the stored nitrogen had not 

been converted to protein, However, after 5 days of nutrient-deficient growth, 

most of the nitrogen had apparently been converted to protein, 

Fixation of atmospheric nitrogen occurred once the nitrogen was 

exhausted from the growth medium and caused the nitrogen content of the 

Anabaena culture to decrease at a slower rate than observed in the two green 

algal cultures previously described. This nitrogen fixation allowed protein 

synthesis to continue during the nutrient-deficient growth phase. Thus, the 

increase in volatile suspended solids (S) throughout the growth period as 

shown in Figure 5, 7 was probably due to both algal cell division and lipid 

and/ or carbohydrate synthesis. 

For the Anabaena culture the cut-off between luxurious uptake, where 

all nitrogen is converted to protein, and super-luxurious uptake, where some 

nitrogen is stored and later converted to protein, appeared to be at a cellular 

content of approximately 12%, As can be seen in Figure 5. 7, this cellular 

nitrogen content occurred about 3 days after the onset of the growth phase 

defined as nutrient-deficient, At the end of 50 days of nutrient-deficient 

growth, the nitrogen content of the cells had decreased to 4. 1 %. Foree and 

McCarty (9) observed nitrogen contents of 8. 9% and 7. 4% for Anacystis and 

Anabaena, respectively, after approximately 49 days of growth in batch 

culture, 
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I 
I The phosphorus curve .in Figure 5. 7 shows a large decrease in cellular 

phosphorus content at the beginning of the study, followed by a gradual decrease 

over the last 45 days. During the nutrient-abundant growth phase cellular 

phosphorus contents of 3. 8% and 3. 6% were observed. These values are above 

the maximum of 3% given by Borchardt and Azad (10). However, this 3% was 

determined for the green algae, Chlorella and Scenedesmus, and probably does 

not generally apply to other algal species. At the end of the 50-day growth 

period, the cellular phosphorus content had decreased to 0. 2%. Foree and 

McCarty (9) found phosphorus contents of 0. 8% and 1. 2% for Anabaena and 

Anacystis, respectively, after 49 days of growth under batch culture conditions. 

4. Kentucky Mixed. At the end of the study all four cultures were 

checked for the presence of animals by microscopic observation. Animals were 

found only in the Kentucky Mixed culture. Here a large population of rotifers 

along with a variety of other microscopic animals was noted. The influence of 

this animal population on various growth parameters is shown in Figure 5. 8. 

During the nutrient-abundant growth phase, the highest value of cellular 

nitrogen recorded was 8. 6%, corresponding to a protein content of about 54%, 

which was in the range of protein values normally found for this type of growth. 

The relatively low protein content, as compared with that of the three previous!\' 

discussed cultures, corresponded to a large initial growth rate and indicated 

little, if any, super-luxurious uptake of nitrogen. However, it must be noted 

that the nutrient-abundant growth· phase was observed for a shorter time in 
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this culture and super-luxurious uptake could have occurred very early before 

quantitative observation began. 

After approximately 10 days of nutrient-deficient growth, the algal mass 

turned from its typical green color to yellowish-brown due to aging of the alga] 

species which was then predominant in the mixed culture. After approximately 

an additional 20 days of growth in this state, the mass again turned green when 

conditions became favorable for growth of a different algal species. The 

favorable growth conditions came as a result of a release of nutrients into 

solution caused by autolysis or decomposition of the algal cells by animal 

predators. This same effect had been observed by Jewell and McCarty (1). 

The rotifers and other predators were mainly responsible for the wide 

variations in the parameters shown in Figure 5. 8. By consuming the algal cells 

and releasing the resultant waste products into solution, they were responsible 

for the decrease in mass as shown by the dip in the volatile suspended solids (S) 

curve in Figure 5. 8. The nitrogen and phosphorus contents of animal cells are 

generally higher than those of the algae in the culture at this time. As the algal 

cells were metabolized by the decomposers, the liberated nitrogen and 

phosphorus were converted into animal cellular matter, thus accounting for the 

rise in the percentage of cellular nitrogen and phosphorus of the mixed culture 

during the period when the mass was declining, 

After 30 days of nutrient-deficient growth and the corresponding algal 

population change, the culture mass again began to increase with a 
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corresponding decrease in the cellular nitrogen and phosphorus contents. The 

nutrient content of the cells at the end of the study had little significance 

because it clearly depended on the time of sampling relative to the time of 

population change and would more than likely be different for each mixed 

culture studied. 

c. Organic Composition 

The three major constituents of the organic matter of an algal cell are 

protein, lipid, and carbohydrate. If lipid content is measured directly and 

protein content is calculated as a function of cellular nitrogen content as 

previously described, then carbohydrate content can be calculated with 

reasonable accuracy as (100% - % lipids - % proteins). Due to the uncertainty 

of calculating the protein content during the nutrient-abundant growth phase as 

previously indicated, the organic compositions presented in this section are 

only for the nutrient-deficient growth phase. This is not meant to imply that the 

model for calculating the protein content automatically becomes accurate once 

the nutrients are depleted from solution. However, once nutrient-deficient 

growth begins, stored nitrogen will be converted to protein relatively rapidly, 

thus increasing the accuracy ·of the model as nutrient-deficient growth progresses. 

Fisher (38) found that Chlorella and some other unicellular algae 

contained 45-50% protein when grown with an adequate nitrogen supply, and 

under conditions of nitrogen starvation algae could be grown with a lipid content 

as high as 86% as compared with 20-25% in normal Chlorella. Von Witsch and 
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Harder (39) concluded from studies with Chlorella, Scenedesmus, and the diato 
11J, 

Nitzschia palea, that after cessation of cell division almost all the absorbed 

radiation was used for formation of fat, but this fat storage (up to 70% of the 

dry weight) was not produced at the expense of the rest of the cellular organic 

matter. Milner (19) similarly concluded that the actual mass of protein in an 

algal culture did not appear to change much as the cells went from the normal 

50%-protein, 20%-lipid state to a high-lipid, low-protein state. It may there-

fore be generally concluded that during the nutrient-abundant growth phase algae 

synthesize mainly proteins, but after protein formation is complete they 

synthesize fats and/ or carbohydrates which add to the mass of the cell 

resulting in a decrease in protein content on a weight percentage basis. 

Two parameters used as measures of the amount of organic material 

present in the particulate fraction of an algal culture were chemical oxygen 

demand (M), the amount of oxygen necessary to oxidize the organic matter to 

carbon dioxide, water, and ammonia; and volatile suspended solids (S), the 

weight of the organic mass. Foree and McCarty (40) derived the following 

theoretical M: S ratios for the three main constituents of organic matter: 

carbohydrate (CH
2
0) -1. 07, protein (C 

9 
H

6 12
0 N 

00
)- 1. 50, and 

x -- 3. 6 . 1. 26 1. --

lipid (C
18

H
32

o
2
)-2. 86. Therefore, the relationship between the measured M 

and S curves should be a function of which organic constituent was predominantly 

being synthesized by the algal cells. If lipids alone were being synthesized, the 

M curve should rise much faster than the S curve; if only proteins were being 
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synthesized, the M curve should rise faster than the S curve but not as fast as 

for lipids; and if carbohydrates were being predominantly synthesized, the 

M and S curves should be almost parallel. The relationships between the M 

and S curves presented later generally closely follow the theoretical pattern 

described above. 

Lipid and/ or carbohydrate synthesis during the nutrient-deficient 

growth phase depended primari1y upon the algal species and is discussed on 

a culture-to-culture basis below. 

1. Chlorella. The variations over the study period of particulate COD, 

volatile suspended solids, cellular nitrogen, and lipid concentration in mg/1 

are shown for the Chlorella culture in Figure 5. 9. The lipids (LI) curve in 

this figure shows a high rate of lipid accumulation relative to the organic 

mass as measured by volatile suspended solids. The effect of the previously 

discussed high M: S ratio for lipids is vividly illustrated by the divergence of 

the M and S curves corresponding to lipid accumulation in this culture. The 

figure also shows a steady rise in the cellular nitrogen concentration (N), 

which reached a value above that originally in the growth medium. This was 

attributed to a noted evaporation of water from the culture vessel throughout 

the growth period. 

The protein, lipid, and carbohydrate fractions for the Chlorella 

culture are shown in Figure 5. 10. At the beginning of the nutrient-deficient 

growth phase the protein content was about 53%. It then fell off rapidly for 
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the next 10 days and gradually decreased to 14% at the end of 50 days. The rapid 

decrease in protein content during the first 10 days corresponded to the large 

carbohydrate increase (from 12% initially to 43% after 10 days). After day 10 

the relatively high carbohydrate content started to decrease due to lipid 

synthesis, which began about day 5 and continued throughout the remaining 45 

days, reaching a value of 57%, As indicated previously, this relatively large 

build-up of lipids under nutrient-deficient conditions is characteristic of 

Chlorella (19, 38, 39), 

Near the end of the 50-day growth period, the Chlorella cells had 

changed from a bright green to a greenish-yellow color due to a decrease in 

chlorophyll content in the old cells, This same effect has been noted by 

Gromov (1 7) who found that the chlorophyll content of algal cells and their 

photosynthetic capacity decreased during prolonged exposure to a nitrogen

free medium, Syrett ( 41) also found that as nitrogen deficiency developed, the 

amount of chlorophyll in the cells decreased and photosynthesis fell, though 

not simply as a consequence of the drop in chlorophyll content, 

2, Scenedesmus, The growth parameters for this culture are shown 

in Figure 5, lL The M and S curves in this figure show that maximum growth 

occurred during the first 15 days of nutrient-deficient growth and after this 

time the culture mass remained relatively constant, except for a small 

decrease in organic mass after 15 days apparently due to death and decomposition 

of the cells, The Scenedesmus culture was unlike the Chlorella culture in that 



it synthesized almost no lipid material throughout the period of observation 

(see Figure 5. 11). 

The cellular nitrogen concentration curve in Figure 5. 11 shows the 

large nitrogen uptake prior to the nutrient-deficient growth period and an 

increase in concentration after the nutrient-deficient growth phase began. Since 

this increase raised the nitrogen concentration above that originally in the 

growth medium and since Scenedesmus is not a known nitrogen fixer, it was 

attributed to evaporation of water from the culture vessel. 

The organic compositions for the Scenedesmus culture are shown in 

Figure 5. 12. At the b!3ginning of the nutrient-deficient growth phase the 

culture was approximately 50% proteifr- 50% carbohydrate. During the first 

5 days, when the growth rate was maximum, the algal cells synthesized a 

large amount of carbohydrate material causing an increase in the carbohydrate 

content and a corresponding decrease in the protein content as shown in 

Figure 5. 12. Between days 5 and 15, the rate of carbohydrate synthesis 

decreased corresponding to a declining growth rate as shown in Figure 5. 11. 

The protein and carbohydrate fractions remained relatively constant for the 

last 35 days of the study during which a small amount of decomposition took 

place. 

The lipids curve in Figure 5. 12 shows that also on a percentage basis 

there was very little lipid, material synthesized at any time. Therefore, 

Scenedesmus did not synthesize lipids under nutrient-limiting conditions as 
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did ChloreHa, but synthesized large amounts of carbohydrate material which 

amounted to 85% of the organic material presenL The carbohydrate and lipid 

results during the last 40 days of the study agreed with those of Gromov (17) 

who observed no significant changes in carbohydrate and lipid content of 

Scenedesmus guadricauda during growth in a nitrogen-deficient medium. 

Toward the end of the 50 day growth period, the cells of this culture also 

became yellowish in color due to the decrease in chlorophyll content, 

3. Anabaena. The growth parameters for this culture are shown in 

Figure 5, 13. The nitrogen curve shows that fixation of atmospheric nitrogen 

by Anabaena began about the time nitrogen was exhausted from solution in the 

growth medium aud continued at a rapid rate for 30 days. At this time the 

rate of fixation abruptly decreased, probably due to the exhaustion from 

solution of one or more trace elements, such as cobalt, molybdenum, or 

boron (3), known to be necessary for nitrogen fixation, or possibly due to 

inhibition of light penetration by a gelatinous substance which was observed in 

the growth medium at this time. The organic mass as measured by M and S 

increased at a fairly constant rate until day 30, then began to increase at a 

much faster rate. The lipid concentration, which had generally been increasing. 

began to decline after day 30 and by the end of the 50-day growth period had 

been reduced to near zero. 

The rather unusual behavior of the observed parameters which began at 

day 30 can be explained by examination of the organic compositions shown in 
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Figure 5.14. At day 30, the Anabaena cells began a rapid build-up of 

carbohydrates and a decrease in lipids on a percentage basis due to conversion 

of lipid material to carbohydrate material or due to the lipid material being 

burned up in respiration. The carbohydrate content at the end of the study was 

74% and still increasing. 

Observation of the growing culture at day 30 revealed that the culture 

medium had begun to change in viscosity and was becoming jelly-like. By 

day 50 there had been a definite change in the viscosity of the medium and the 

culture was very difficult to sample. The viscosity change is thought to be due 

to the sloughing-off of the gelatinous sheath surrounding the cells and the 

production of extracellular polysaccharides by the Anabaena cells. The 

producti.on of e1s.1:racellular substances by blue-green algae was noted by 

Fogg (14), who found that from 5-60% of the nitrogen fixed by Anabaena 

cylindric.!! appeared extracellularly in combined form. Lewin (15) observed 

this same phenomenon in some species of green algae and reported that as 

laboratory cultures aged, the mucilage content became so high as to change 

the viscosity of the growth medium. 

The Anabaena culture in this study was continuously sparged with a 

co
2
-air mixture and, as previously shown, a large fixation of atmospheric 

nitrogen occurred. This is contrary to the belief of Prescott (24), who 

stated that experiments have shown that nitrogen will not be fixed if there is 

an unlimited or fully adequate supply of co
2 

or hydrogen available to the 

algaeo 
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The nitrogen value of the day 15 sampling of the Anabaena culture was 

considerably below the curve as drawn in Figure 5. 13. Examination of the data 

which led to this point revealed that this data point was almost certainly 

inaccurate and should be neglected. The nitrogen values shown previously 

in Figure 5. 7 and the protein values in Figure 5. 14 have been determined by 

neglecting this data point. 

4. Kentucky Mixed. The curves in Figure 5. 15 show the pronounced 

effects which the previously discussed population change had on the growth 

parameters of the culture. The culture mass reached a maximum after 10-15 

days of nutrient-deficient growth much like the Scenedesmus culture, decreased 

from there until day 30, and then again began to increase due to the population 

change. The population change also exerted a rather large effect on the 

lipid concentration of this culture (see Figure 5. 15). The lipid concentration 

increased and reached a maximum after 15 days of growth, then decreased to 

near zero indicating that the decomposers had metabolized nearly all of the 

lipid material. After day 30, the newly predominating algal species began to 

synthesize lipid material, hence the lipid increase shown in Figure 5. 15 for 

this period. 

The cellular nitrogen curve in Figure 5. 15 shows that some nitrogen was 

released into solution during the first 5 days of nutrient-deficient growth but by 

day 10 the cellular nitrogen concentration had increased to approximately that of 

the growth medium. After day 10 the rather large increase in nitrogen 
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concentration was probably due to some nitrogen fixation by one or more algal 

species in the mixed culture. However, this fixation, which seemed to occur 

between days 15 and 30, was much less than that which occurred in the 

Anabaena culture previously discussed. The small increase in nitrogen 

concentration after day 25 was probably due to evaporation of water from the 

culture vessel, 

The variations in organic composition of the mixed culture are shown 

in Figure 5.16. The wide variation in organic content throughout the study was 

due to the variation of biological species in this culture. During the first 5 days 

of nutrient-deficient growth, a large carbohydrate build-up, coupled with a 

large protein decrease and a smaller lipid decrease, occurred. After day 5 

the algal cells began synthesizing both lipids and proteins, causing a decrease 

in the carbohydrate fraction. The protein synthesis can be attributed to algae 

capable of fixation of atmospheric nitrogen and thus ceased after day 30 when 

nitrogen fixation stopped. The algal species predominating in the nutrient-

deficient medium was responsible for the lipid synthesis which occurred 

between days 5 and 15. The decrease in lipid content between days 15 and 30 

was due to the action of the animals on the algae in the culture. The predomination 

of the new algal species caused the increase in lipid content and corresponding 

decrease in protein content after day 30. 

After 15 days of nutrient-deficient growth, the carbohydrate fraction had 

reached a minimum and the initial growth of the culture was maximum. During 
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the following 15 day period (days 15-30) when the animals seemed to control the 

culture, the carbohydrate fraction increased at a rather rapid rate. After the 

population change had been completed, the carbohydrate content increased only 

slightly for the remainder of the growth period. 

D. Significance of Organic Composition 

Varma and DiGiano (42) stated that aging of the algal cell causes a shift 

in the metabolic pathway, causing a change in algal composition. Specifically, 

a young cell will be high in protein and carbohydrate while an old cell will be 

high in lipid content, and as a result, the young cell should be attacked more 

readily by the decomposers. The results of a study by Collyer and Fogg (24), 

showing that all algae do not accumulate lipids, were verified by the 

previously presented results of this study, which further showed that some algal 

species can accumulate carbohydrates instead of lipids as the cells ag_e in a 

nutrient-deficient environment. Jewell and Mc Carty (1) found a generally 

smaller rate and extent of aerobic decomposition for old algal cultures generally 

high in lipid and/ or carbohydrate content. Foree and McCarty (9) found that in 

anaerobic environments acid-forming bacteria could not degrade algal lipids, 

but that methane-forming bacteria and corresponding methane fermentation 

were necessary for degradation of algal lipids. 

The above discussion suggests that the effects of organic composition on 

algal decomposition are significant but not fully understood. Additional studies 

are needed before significant conclusions can be drawn relative to the specific 
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effects of variations in chemical composltlon on the rate and extent of 

decomposition of algae under various environmental conditions, This study 

should provide a good background for future studies of this nature, 

E, Water Quality Effects 

Algae are known to cause taste, odor, and color in water, primarily due 

to excretion of extracellular organic matter. Generally, when algae grow 

under favorable conditions Httle extracellular matter is produced, However, 

once growth conditions become unfavorable, metabolic pathways seem to change, 

often resulting in excretion of extracellular organics into the growth medium, 

Gromov (17) found that ln certain instances 30% of the organic matter 

accumulated by Chlorella was excreted into the growth medium and excretion 

increased under unfavorable growth conditions with each algal species 

excreting different substances, 

In this study unfavorable conditions occurred when the nitrogen and 

phosphorus were exhausted from solution in the growth medium, Once this 

occurred, protein synthesis and corresponding cell division ceased causing a 

change in metabolic pathways, thus allowing lipid and/or carbohydrate 

synthesis on a large scale, It is believed that the majority of substances which 

cause water quality problems are excreted by the algae during the nutrient

deficient growth period, 

Five tests which measure or reflect the palatability or esthetic 

acceptability of water are temperature, turbidity, color, taste, and odor (43), 



Of these, color was chosen for this study because temperature was held constant 

turbidity was removed during filtration, and taste and odor are highly subjective 

The color test, as described in the section "Analytical Procedure," was run 

on the "soluble fraction" and therefore the color measured was "true color" as 

distinguished from "apparent color" which is caused by suspended matter. The 

color and corresponding organic mass of the algal cultures are shown in Figure 

5.17. 

For Chlorella the color increased from O units for the first 

observation to 100 units at the end of 50 days of nutrient-deficient growth and 

almost parallels the increase in mass of the culture. The Scenedesmus culture 

accumulated a total of 60 units of color; 30 during initial growth and the 

remaining 30 during the period when decomposition caused a decrease in algal 

mass. The Anabaena culture accumulated a total of 2400 units of color during 

the period of observation, 600 during the period of nitrogen fixation and the 

additional 1800 during the period when the production of the gelatinous 

extracellular matter was evident. The Kentucky Mixed culture accumulated a 

total of 200 units of color; 40 units during initial growth, 110 units during the 

decomposition period when the bacteria and animals were active, and 50 units 

between the population change and the last observation. 

The U. S. Public Health Service recommends a maximum of 15 color 

units for a water supply to be used for domestic consumption. Assuming that 

some dilution would occur in a natural situation, a water supply containing an 
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algal growth similar to those of this study would require extensive treatment 

before use for domestic purposes. 
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CHAPTER VI 

SUMMARY 

For all four algal cultures, uptake of nitrogen and phosphorus from 

the growth medium occurred very rapidly, For the nutrient-abundant growth 

period, calculating the weight percentage of protein of the Chlorella and 

Anabaena cells as 6, 25 times the weight percentage of nitrogen gave values too 

high because some of the nitrogen taken into the cells during this period was 

stored and not converted to protein until after the nutrients were exhausted 

from the growth medium, The Scenedesmus and Kentucky Mixed cultures did 

not exhibit this strong tendency to store nitrogen, 

Some investigators have postulated that cell division and maximum 

algal growth continue until critical levels of cellular nitrogen and phosphorus 

are reached. Others have postulated that protein synthesis and cell division 

cease once either nitrogen or phosphorus has been exhausted from solution in 

the growth medium, but growth as measured by increase in mass may 

continue, Both theories were found to be applicable to some extent in that 

observed organie compositions indicated that protein synthesis and cell 

division ceased shortly after nitrogen and phosphorus were exhausted from 

solution in the growth medium, while measured growth parameters showed 
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that maximum growth continued after this time. Growth after cessation of eel) 

division occurred as an increase in algal cell size and mass due to synthesis 

of lipids and/ or carbohydrates. 

The Scenedesmus culture differed from the other two unialgal cultures in 

that after certain levels of cellular nitrogen and phosphorus were reached, 

growth ceased. The Kentucky Mixed culture also exhibited this phenomenon for 

a period, but due to the many algal species present and the action of decomposers, 

a different algal species began to predominate and therefore growth continued. 

The unialgal cultures were characterized by synthesis of a large fraction of 

proteins during nutrient-abundant growth, by a fluctuating composition during 

transition from nutrient-abundant to nutrient-deficient growth, and by a 

relatively constant composition after a period of nutrient-deficient growth. The 

mixed culture behaved in much the same manner, but the composition changes 

were masked by the presence of predators in the form of microscopic animals. 

The results of previous investigations, demonstrating that Chlorella 

accumulated large quantities of lipid material, were verified by the accumulation 

of a lipid content of 53% of the volatile suspended solids by the Chlorella culture. 

Scenedesmus, a green alga as is Chlorella, accumulated very little lipid 

material during either growth phase, but synthesized carbohydrate material 

which amounted to 85% of the volatile suspended solids at the end of observation. 

Anabaena, a blue-green alga, similarly appeared to have little potential 

for lipid accumulation, and due to its capability of fixation of atmospheric 
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nitrogen, the cells never became truly nitrogen-deficient. Anabaena, like 

Scenedesmus, was found to favor carbohydrate synthesis. This culture 

accumulated a gelatinous carbohydrate substance, which changed the viscosity 

of the culture medium, amounting to 75% of the volatile suspended solids. 

The Kentucky Mixed culture, a mixture of both green and blue-green algae, 

accumulated a substantial amount of carbohydrate material during the 

nutrient-deficient growth phase. The decomposer population in this culture 

consumed the lipid material which had been synthesized during the early part 

of the nutrient-deficient growth phase. After the change in algal predomination, 

lipid matter was again synthesized. 

The parameter chosen to demonstrate the effects of algal growth in 

batch culture on water quality was color which gave a qualitative measure of 

the amount of extracellular products excreted into the growth medium. After 

50 days of nutrient-deficient growth, the color had reached 60, 100, and 

2400 units in the Scenedesmus, Chlorella, and Anabaena cultures, respectively. 

The color causing substances excreted by Anabaena were believed to be 

associated with the materials which were responsible for the viscosity change 

in the growth medium, Color formation in the Kentucky Mixed culture medium 

was apparently related to the decomposition initiated by the microscopic animals, 

100 of the 200 total units accumulated coming during the period of active 

decomposition. 
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CHAPTER VII 

CONCLUSIONS 

The following conclusions are drawn based on the results of this study 

of algae growing in batch culture: 

L Two regimes of uptake may be defined when excess nitrogen and phosphorus 

are present in the growth medium: (1) "Luxurious" uptake occurs when 

nutrients are incorporated into cellular protoplasm at levels greater than those 

necessary for growth. (2) "Super-luxurious" uptake occurs when some 

nutrients are taken into the cell but stored rather than converted into algal 

protoplasm. 

2. Due to the storage of non-protein nitrogen by algae uuder nutrient-abundant 

conditions, calculating the weight percentage of protein during this period as 

6. 25 times the weight percentage of nitrogen may give inaccurate results. 

3. The mass of an algal cell can continue to increase after nitrogen and 

phosphorus have been exhausted from the growth medium due to the change in 

metabolic pathway and synthesis of lipid and/ or carbohydrate material. In 

most cases this increase in mass will continue at a significant rate until the 
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algal cells have reached nitrogen and phosphorus contents below 2% and O. 2%, 

respectively. 

4. Composition of the unialgal cultures is characterized by synthesis of 

mainly protein during the nutrient-abundant growth phase, by a fluctuating 

composition during transition from nutrient-abundant to nutrient-deficient 

growth, and by lipid and/ or carbohydrate synthesis and the establishment of a 

relatively constant composition during the nutrient-deficient growth phase. 

5. Composition of a heterogeneous algal culture containing microscopic 

animals is characterized by the same trends as uni algal cultures, but these 

trends are masked by the effects of the microscopic animals. 

6. All green algal species do not accumulate lipids in response to nutrient

deficient growth; some species accumulate carbohydrates. 

7. Excessive growth under nutrient-deficient conditions has a detrimental 

effect on water quality. Soluble extracellular substances are produced which 

can cause very high concentrations of objectionable color. 
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