
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Theses and Dissertations--Animal and Food 
Sciences Animal and Food Sciences 

2019 

AUTOMATED BODY CONDITION SCORING: PROGRESSION AUTOMATED BODY CONDITION SCORING: PROGRESSION 

ACROSS LACTATION AND ITS ASSOCIATION WITH DISEASE AND ACROSS LACTATION AND ITS ASSOCIATION WITH DISEASE AND 

REPRODUCTION IN DAIRY CATTLE REPRODUCTION IN DAIRY CATTLE 

Carissa Marie Truman 
University of Kentucky, cmtr224@g.uky.edu 
Digital Object Identifier: https://doi.org/10.13023/etd.2019.004 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Truman, Carissa Marie, "AUTOMATED BODY CONDITION SCORING: PROGRESSION ACROSS LACTATION 
AND ITS ASSOCIATION WITH DISEASE AND REPRODUCTION IN DAIRY CATTLE" (2019). Theses and 
Dissertations--Animal and Food Sciences. 96. 
https://uknowledge.uky.edu/animalsci_etds/96 

This Master's Thesis is brought to you for free and open access by the Animal and Food Sciences at UKnowledge. It 
has been accepted for inclusion in Theses and Dissertations--Animal and Food Sciences by an authorized 
administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu. 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Kentucky

https://core.ac.uk/display/232594696?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/animalsci_etds
https://uknowledge.uky.edu/animalsci_etds
https://uknowledge.uky.edu/animalsci
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu


STUDENT AGREEMENT: STUDENT AGREEMENT: 

I represent that my thesis or dissertation and abstract are my original work. Proper attribution 

has been given to all outside sources. I understand that I am solely responsible for obtaining 

any needed copyright permissions. I have obtained needed written permission statement(s) 

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing 

electronic distribution (if such use is not permitted by the fair use doctrine) which will be 

submitted to UKnowledge as Additional File. 

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and 

royalty-free license to archive and make accessible my work in whole or in part in all forms of 

media, now or hereafter known. I agree that the document mentioned above may be made 

available immediately for worldwide access unless an embargo applies. 

I retain all other ownership rights to the copyright of my work. I also retain the right to use in 

future works (such as articles or books) all or part of my work. I understand that I am free to 

register the copyright to my work. 

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE 

The document mentioned above has been reviewed and accepted by the student’s advisor, on 

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of 

the program; we verify that this is the final, approved version of the student’s thesis including all 

changes required by the advisory committee. The undersigned agree to abide by the statements 

above. 

Carissa Marie Truman, Student 

Dr. Joao H. C. Costa, Major Professor 

Dr. David L. Harmon, Director of Graduate Studies 



AUTOMATED BODY CONDITION SCORING: PROGRESSION ACROSS 

LACTATION AND ITS ASSOCIATION WITH DISEASE AND REPRODUCTION IN 

DAIRY CATTLE 

________________________________________ 

THESIS  

________________________________________ 

A thesis submitted in partial fulfillment of the 

requirements for the degree of Master of Science in the 

College of Agriculture, Food and Environment 

at the University of Kentucky 

By 

Carissa Marie Truman 

Lexington, Kentucky 

Director:  Dr. Joao H.C. Costa, Assistant Professor of Animal Science 

Lexington, Kentucky 

2018 

Copyright © Carissa Marie Truman 2018 



ABSTRACT OF THESIS 

AUTOMATED BODY CONDITION SCORING: PROGRESSION ACROSS 

LACTATION AND ITS ASSOCIATION WITH DISEASE AND REPRODUCTION IN 

DAIRY CATTLE 

Body condition scoring is a technique used to noninvasively assess fat reserves. It provides 

an objective estimate to describe the current and past nutritional status of the dairy cow and 

has been associated with increased disease risk and breeding success. Traditionally body 

condition scores are taken manually by visual appraisal on a 1 to 5 scale, in one-quarter 

increments. However, recent studies have shown the potential of automating the body 

condition scoring of cows using images. The first objective was to estimate the likelihood 

of disease development and breeding success, using odds ratios, associated with body 

condition score scored automatically at various points in lactation. The second objective of 

our research was to use a commercially available automated body condition scoring camera 

system to monitor body condition across the lactation period to evaluate differences 

between stratified parameters and to develop an equation to predict the dynamics of the 

body condition score. We found that poor body condition score at different times during 

the transition period are associated with increased disease occurrence and lower 

reproductive success. Automated body condition scoring (ABCS) curve during lactation 

was influenced by many factors, such as parity, ABCS at time of calving, disease 

occurrence, and milk production. 

KEYWORDS:  BCS, imaging, dairy cattle management, precision dairy farming 
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OUTLINE OF THESIS 

The following thesis manuscript provides information and studies relating to the 

use of automated body condition scoring in dairy cows. The first chapter seeks to introduce 

the topic, and to state the purpose, objectives and the hypotheses of the studies presented 

in this thesis in the following chapters. The second chapter is a review of the literature 

review of the use of body condition scoring for dairy cattle. The aim of the literature review 

is to detail and critically analyze the background knowledge about body condition scoring 

of dairy cattle. The third chapter is an original research study on the relationship of 

automated body condition scoring with disease and reproduction, in the order of 

introduction, material and methods, results, discussion, and conclusion. Chapter four is the 

second original research project, progression of automated body condition score across 

lactation. The fourth chapter follows the same format of the previous chapter. Lastly, 

chapter five summarizes the conclusions from the original research projects and finishes 

with future research suggestions. 
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CHAPTER ONE 

Introduction of Thesis: 

Automated body condition scoring: progression across lactation and its association 

with disease and reproduction in dairy cows 
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JUSTIFICATION 

Body condition scoring is a nutritional tool for producers to evaluate the stores of 

fat. By visually assessing the cows’ rear exterior a score from 1 to 5 (in 0.25 increments) 

or 1 to 10 in other parts of the world, can be determined. Highly under- or over-conditioned 

cows are indicative of an improper nutrition program or other deviations, such as disease. 

Naturally, body condition follows a curve across lactation, yet major deviations, resulting 

from suboptimal environmental conditions, leads to disease and reproductive 

repercussions. Although generations of research have supported this claim, over half of 

producers include no body condition scoring on farm. Low adoption rates of this practice 

can be attributed to labor, time, and training required. Lastly, the actions to take following 

data collection may be unclear or difficult to implement. 

These previously described limiting factors are largely offset when considering a 

newly released commercial automated body condition scoring camera. This system is 

mounted and automatically scores and reports body condition of cows passing underneath. 

An automated system largely diminishes the need for labor, time, and training. 

Additionally, the system allows for easily generated reports to help incorporate the practice 

into management decisions. Although the system has been previously validated, additional 

research is needed to ensure that published relationships of manual body condition scoring 

is still evident in this automated system. This thesis aims to investigate those relationships 

and to determine factors affecting future automated body condition. 

OBJECTIVES 

The following lists the objectives for original research described in the thesis. 
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Objective 3.1 

To identify the effect of predisposed automated body condition on the prevalence 

of subclinical ketosis and milk fever, determined from blood measures. 

Objective 3.2 

To investigate the effect of predisposed automated body condition on the incidence 

of metritis, retained placenta, milk fever, ketosis, and milk fever in the transition period. 

Objective 3.3 

To examine the effects of prior automated body condition on reproductive success, 

measured as pregnancy loss incidence, time to conception, and survival of pregnancy. 

Objective 4.1 

To describe observations of factors related to the progression of automated body 

condition score across lactation. 

Objective 4.2 

To develop an equation to assist in the prediction of automated body condition score 

from calving to sample mean nadir, 71 days. 
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CHAPTER TWO 

Review of Literature:  

Management and latest development around body condition scoring of dairy cattle 
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INTRODUCTION 

Body condition scoring (BCS) is one of the most efficient tools to monitor the 

nutritional status of dairy cows, assessing the cows’ fat reserves and energy contents 

(Garnsworthy, 1988, NRC, 2001). The advantage of BCS is that it is not altered by other 

elements which may influence body weight, such as gut or udder fill, and pregnancy stage 

(Roy et al., 2011). Routine observation and maintenance of BCS is an important tool to 

guide decisions regarding the herd’s nutritional status. The BCS of dairy cows can affect 

feed intake, health, and reproduction throughout lactation. At calving, cows in poor body 

condition have increased risk for metabolic disease. Negative impacts ensue to breeding, 

with cows in poor BCS being less likely to have a successful pregnancy. Despite decades 

of literature presence, BCS has been an underutilized practice in farm management 

(Caraviello et al., 2006). The aims of this review are to 1) describe methods to monitor 

body condition, 2) discuss implantation management strategies for body condition, 3) 

examine factors affecting body condition, and 4) evaluate the impacts of body condition. 

OPTIONS FOR BODY CONDITION SCORING 

Manual Body Condition Scoring 

Body condition score (BCS) was developed to attain a visual appraisal of fat deposits 

present on the cow. Body condition scoring is indicative of fatness of the cows and less 

affected by gut fill or empty BW (ARC, 1980; Broster and Broster, 1998). Edmonson et al. 

(1989) developed and evaluated a chart to assess eight locations on the cow to determine 

BCS and showed small interobserver and intraobserver effects. Visually scoring involves 

assessing 8 regions of the rear half of the cow within the areas of the loin, pelvis, and tail 

head and providing a score of 1 to 5, in quarter increments (Edmonson et al., 1989). The 
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9th to 11th rib tissue, a measure of subcutaneous fat, is correlated with BCS (Otto et al., 

1991). As well, BCS has been found to be as accurate as ultra-sounding for fat contents 

(Domecq et al., 1995). When evaluating the factors causing variation in BCS, Evans (1978) 

and Nicoll (1981) found 60 to 70% was due to animal variation, 5% because of evaluator 

variation, and 10% because of animal-evaluator variation. Although BW has been found 

to be highly correlated with BCS for primiparous cows (r = 0.74 to 0.76, P < 0.01) (Meikle 

et al., 2004), Andrew et al. (1994) reported cows of similar BW having variations up to 

40% in body reserves. However, Wildman et al.(1982) found no correlation for BCS and 

BW and findings by West et al. (1990) indicated that body weight change may not be 

indicative of fat stores (West et al., 1990).  

Shemeis et al. (1994) found the partitioning of fat was affected by BCS. In sheep of 

different BCS, differences were found in subcutaneous fat and intermuscular fat (Caldeira 

and Portugal, 2007). Likewise, Shemeis et al. (1994) found that heavier conditioned dairy 

cows had higher abdominal fat (kidney knob and channel fat, omental fat and mesenteric 

fat) and lower other offal proportions. Kidney and intestinal fat was proportionally greater 

for heavier conditioned cows (Shemeis et al., 1994). In a study on sheep, scored on a scale 

0 to 5, ewes with BCS 1 and 2 had high intermuscular fat and ewes BCS 3 and 4 had high 

subcutaneous fat (Caldeira and Portugal, 2007). Caldeira and Portugal (2007) concluded 

that the milking breed ewes put on fat intermuscularly first, followed by omental and 

mesenteric fat, subcutaneous fat, and lastly kidney knob and channel fat. 

Although the method previously described by Edmonson et al. (1989) is the most 

used method and scale in the United States, other countries may use other techniques, such 

as palpation, and various scales for scoring dairy cattle body condition (Roche et al., 2004). 



7 

Bewley and Schutz (2008) reviewed international BCS systems where United States and 

Ireland/United Kingdom systems both scored on a 1 to 5 scale, but differed in their 

increments, 0.25 and 0.50 intervals, respectively. Australian and New Zealand systems 

both score BCS in increments of 0.5 but on scales of 1 to 8 and 1 to 10, respectively.  Roche 

et al. (2004) reported the conversions for international BCS systems from New Zealand 

(NZ) BCS as USA = 1.5 + 0.32 NZ; Ireland = 0.81 + 0.4 NZ, and Australia = 2.2 + 0.54 

NZ. Manual BCS scoring is the most prevalent way of BCS scoring across farms. However, 

all systems are incremental and shown to be related with the fat reserve of the animal.  

Using the average BCS for different feeding groups of cows at key stages in the 

lactation cycle, may be one way to evaluate the effectiveness of the herds’ nutrition 

(Grummer et al., 2004). Late lactation is a critical time to prevent over-conditioned cows 

entering the dry period, it is recommended if over 10% of these cows are fat then 

managerial change may be needed (Varga, 2007). Agreement on optimal BCS at dry-off 

and calving has yet to be reached, although it is accepted that cows should maintain a 

constant condition during dry-off. Recommendations for BCS at dry-off have been for 3.50 

to 3.75 while others recommend targeting as low as 3.00 (Contreras et al., 2004). Butler 

(2014) recommends a 3.00 to 3.25 calving BCS and no higher than 0.5 BCS loss during 

the dry period. This recommendation is supported with evidence of disease risk reduction 

while having sufficient fat stores to support high milk production. Evaluating BCS should 

be done on a routine schedule to fully benefit but the scoring schedule may vary among 

farms depending on economics, time, and the herds BCS status. Important time points to 

consider assessing are dry-off, calving, breeding, 150 DIM, 200 DIM, and 250 DIM 

(Mulligan et al., 2006). If fully automated scoring is practiced the opportunity to monitor 
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the herds’ BCS more frequently is easily available. The need of regularity in evaluating 

automated BCS is dependent on the strategies and application of the scores on that farm. 

Automated Body Condition Scoring 

A more recent opportunity for BCS is scoring using automated technologies. The 

concept has been proven for the possibility to incorporate technology into BCS 

management. Some have used a black background to be able to distinguish the animal from 

the surrounds (Wang et al., 2008). However, commercial conditions can limit the ability of 

an algorithm developed in non-commercial settings to perform accurately (Van Hertem et 

al., 2013). Others have required ≥1 manual labeling procedure (Bewley et al., 2008; 

Halachmi et al., 2008; Azzaro et al., 2011) or selection of best image (Halachmi et al., 

2008). Krukowski (2009) found 100% of predicted BCS to be ≤ 0.5 from the manual BCS 

using a training data set but when using the validation data set only 46% fell within the 

range. One automated scoring option currently available offers multiple options for scoring 

techniques, one option as a hand-held phone mounted scoring device and a moveable 

mounted device (Ingenera SA, Cureglia, Switzerland). The handheld device captures the 

score of the cow and requires the producer to manually record the result. Both systems 

require transfer of the data to a software system manually.  

Other studies have investigated using cameras to automatically monitor BCS, although 

completely automated systems up until recently been unestablished. This has been 

developed into a commercial option, which is a fixed mounted system that automatically 

scores the cows and delivers the scores to the farm management software (DeLaval 

International AB, Tumba, Sweden). This system is fully automated and only requires the 

cow to walk beneath a video camera, resulting in daily BCS scores being available. As 
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cows walk underneath the camera a 3-D video is taken. From the video a single best image 

is selected by the system and a proprietary algorithm determines the automated BCS. 

Scores are taken with each pass under the camera and RFID tags allow for automatic 

delivery of data recording (Hallén-Sandgren and Emanuelson, 2016). Mullins et al. (2018) 

investigated the precision of the automated system and found it to be equivalent to manual 

BCS. The authors also found that the extreme scores, high or low BCS, were less reliably 

evaluated by the automated camera system. As with Mullins et al. (2018), Krukowski 

(2009) reported their algorithm of automated BCS determination, least square solution, 

resulted in a bias for the mean manual score, 3.3 BCS. This process results in over 

estimated BCS for thin cows and under prediction of fat cows. Krukowski (2009) 

hypothesized that increasing the extreme condition scores in the training set would be able 

to improve the accuracy of the system. 

IMPLEMENTATION STRATEGIES 

Body condition score is linked with many important factors affecting cows and 

economics on dairies, such as disease, reproduction, and feeding (Roche et al., 2009). Yet 

the use of BCS on commercial farms is low. Time cost, training, and strategy of 

implementing BCS all limit its practice (Hallén Sandgren and Emanuelson, 2016). In a 

survey study, 33% of the participants indicated BCS was important in making decisions 

regarding the interval of the voluntary waiting period, although there was not much 

information given on the routine for scoring cows (Caraviello et al., 2006). While most 

producers value the information routine BCS of the whole herd may provide, many farms 

do not incorporate routine BCS in their management strategy of their animals. One study 

in Europe found that 36.4 % of producers scored cows (Heuwiser et al., 2010) and another 
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found that 42.6% of the high producing herds surveyed in the United Statesutilized BCS 

(Kellogg et al., 2001). However, in the survey by Kellogg et al. (2001), producers that 

evaluated BCS did so at different time periods; calving (17.4%), peak milk (17.4%), mid-

lactation (19.8%), , dry-off (25.6%), or at other times (19.8%), respectively. Although, 

Heuwieser et al. (2010) found that only 18.5 % of producers recorded their findings from 

examinations, limiting the potential of use. Although farmers may score their herd 

themselves, if a producer does not feel confident in scoring, lacks the time, or expertise, 

veterinarians and nutritionists are routinely on farm and equipped to condition score. This 

allows the producer to discuss proper goals for scores and ways to improve them. On the 

other hand, using an automated scoring system can lessen the time cost, diminish training, 

eliminate manual recording, and allow for easier implementation and use after adoption. 

Kenyon et al. (2014) suggested that if producers were properly trained to use BCS 

that the adoption rates could increase. A study evaluating management factors associated 

with horse BCS found that the owners experience and involvement in a horse organization 

were predictive of BCS. These results may be because of education provided by increased 

experience or an organization, as well outside activity in a membership shows interest 

(Christie et al., 2006). Implementing a BCS strategy into a farm plan can be challenging. 

Use of the scores is highly dependent on the farm BCS status and scoring schedule. A farm 

with a more frequent scoring schedule has a larger application for the scores. Likewise, 

poor BCS may be more prevalent at different times in lactation for various farms, altering 

the way the farm may implement management for proper BCS. Body condition scores 

every 30 days can be frequent enough to offer valuable insight (Hady et al., 1994). Producer 

surveys have indicated the need for systems to be versatile and offer farm specific detection 
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systems that fit their situation (Mollenhorst et al., 2012). Hady et al. (1994) recommended 

a higher proportion of the herd to be scored when cows were more distributed in BCS. 

Weigh scales or automated walk-over weigh scales can be used to evaluate weight changes 

and require less labor than BCS (Roche et al., 2007; Dickinson et al., 2013 ). However, 

Dickinson et al. (2013) determined that an automated weigh scale was unable to distinguish 

minor weight changes within cow. In addition, weight may not be an actual reflection of 

body fat stores as water, feed, and milk content can easily vary affecting live weight. 

Calculating the average per pen or proportion that are over or under conditioned is an 

effective strategy to monitor group rations and nutrition (Mulligan et al., 2006). 

Grouping 

Feed efficiency is evaluated by milk yield vs. dry matter consumption (VandeHaar 

et al., 2012). Grouping cows post-calving to feed properly could limit the effects of 

excessive and rapid BCS loss (Lopez-Gatius et al., 2001). While the ability to group may 

be limited by herd size, it can provide benefits if applicable based on farm limitations. 

Offering one feed ration does not allow for proper feed efficiency by all cows. Cows may 

be underfed or overfed dependent on their nutritional needs, resulting in poorer milk 

performance and adverse effects on disease and reproduction (VandeHaar et al., 2012). 

Grouping within the herd may be affected by many factors such as group space, 

reproductive status, milk production, and BCS. Depending on herd size and the number of 

feeding groups, after freshening the cow will progress to a high production group. 

Reduction in milk production and increased BCS gain are key indicators to move the cow 

to a low production group to prevent over-conditioning. Cows that are already gaining 

weightor decreasing milk production will be allocating excess energy gained from greater 
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feed intake towards fat stores (Linn, 2013). Reduced variability in BCS between cows 

would be the best economic strategy  as a diet formulated to meet the needs of the average 

cow results in underfed and overfed cows, while formatting for the maximum production 

cow leads to overfeeding many cows (Kohn, 2007). Underfed cows will decrease their 

DIM and decrease BCS, typically higher milk production cows are the ones not provided 

enough energy in the ration and are underfed. The opposite occurs for overfed animals 

which will increase their BCS. Kenyon et al. (2014) recommends for sheep producers to 

keep all ewes above the target minimum BCS because setting a goal for an average BCS 

still allows for ewes to be below BCS by feeding for the average ewe. Although feeding to 

maintain this goal will allow some to acquire a much higher BCS, reducing efficiency. 

Throughout lactation and the dry period cows’ nutritional needs vary. Not monitoring all 

individual cows would result in cows with a need of improved nutritional management 

being unnoticed (Kenyon et al., 2014). Evaluating individual cows each month is 

recommended (Garnsworthy, 2006) and a automated system allows for easy reports to 

target potential cows in need of attention. The energy allocation for milk production and 

fetal growth change, requiring a different ration need at different points in lactation. Over-

conditioned cows in late lactation that progress into the dry period maintains their fat levels. 

Over-conditioned dry cows are therefore predisposed to greater transition period issues, as 

a decreasing feed intake greater than their healthy counterparts pre- and post- calving, 

resulting in higher prevalence of metabolic disease in these cows (Putnam et al., 1997; 

Putnam et al., 1999; Waltner et al., 1993). Altering condition in the dry period is difficult; 

therefore the optimum time to modify problem cows is 60 to 45 days pre-dry off.  
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Automated Milking Systems 

Feeding dairy rations as a total mixed ration (TMR) is commonly adopted in the 

United States (NAHMS, 2014). Alternatively, cows being milked in an automated milking 

system (AMS) generally receive their ration split between a partial mixed ration (PMR) at 

the feed bunk and a ration allotment in the AMS. Offering a ration portion in an AMS can 

result in negative effects if not precisely balanced, such as improper rumen fermentation, 

altered feeding behavior, or decreasing milking performance. Yet, having the capacity for 

individual feeding allows for greater accuracy for specific cows’ nutrient needs. Precision 

feeding through utilization of an AMS ration may allow for improved feed allocation, as 

with other individual feeding systems, by allowing the amount of feed and composition of 

the feed to be altered according to each cows’ particular needs (Bach and Cabrera, 2017). 

While feeding dairy cattle using a TMR system has its benefits as a practice, it is 

unable to optimize efficiency and profitability in many cases, especially when feeding one 

ration. The ration is formulated to meet the needs of the highest producers or the mean 

animal of the group, allowing the lower producing cows to eat more than needed. As well, 

vitamins and minerals either must be fed to the entire group or to none, resulting in some 

cows risking either deficiency or many being fed an amount in excess of the daily intake 

recommendation or nutritional need (Vandehaar et al., 2016). There are various reasons a 

farm may choose not to group cows to maximize efficiency. Contreras-Govea et al. (2015) 

proposed that ensuring diets are properly formulated and developing a plan for moving 

cows between groups may deter some of the negative effects towards nutritional grouping. 

Determined from income over feed cost, three groups of lactating dairy cows are the ideal 

management scenario to ensure efficiency benefits, using BCS, parity, yield, and 
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reproductive status as factors involving movement decisions (Contreras-Govea et al., 

2015). Grouping into three groups does increase potential labor associated with 

formulating, preparing, and delivering more diets, yet increases economic potential of the 

cows. Most farmers avoid practicing > 1 diet to allow for simplicity and perceived negative 

milk yield impacts from group moves (Contreras-Govea et al., 2015). Installing concentrate 

feeders may be an alternative strategy to nutritional grouping, allowing higher producing 

cows to get the additional feed intake required and limiting the lower, later lactation cows 

feed costs (Cabrera et al., 2012). 

Concentrate Feeders 

As with grouping, concentrate feeders offer the opportunity to feed cows more 

closely to their individual nutrient needs. Grouping allows for cows in a similar situation 

to be fed according to those needs. Concentrate feeders offer more flexibility allowing for 

increased ration feeding options to individual cows. Concentrate feeders also reduce the 

limitations that grouping creates of group space and current farm set-up. Removing the 

movement while still receiving a more properly balanced ration provides additional 

benefits, but pen moves can also create addition stress from relocation and social changes 

(Nordlund et al., 2006). 

Using concentrate feeders, limits can be placed on a cows’ intake when their 

nutrient needs are lower, to reduce over-conditioning. Likewise, if a cow appears to be 

gaining condition, a restriction can be placed on her concentrate intake to prevent further 

improper gain. During the post-freshening period the demands for cows will change more 

rapidly, requiring more adjustments in the feeding system, while later in lactation fewer 

alterations will need to be made to adhere to the cows’ nutrient requirements (Table 2.1). 
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The feed at the bunk can be balanced for all cows to consume by meeting the needs for the 

low production cows then supplementing the additional needs for higher producing animals 

in the feeder. This allows for higher production animals to consume feed to sustain their 

milk production without losing condition and lower production cows to not overeat 

resulting in over-conditioning (Grant and Bodman, 1995). Implementing ABCS into a 

concentrate system can allow for automatic concentrate allowance when ABCS may be 

decreased or increased beyond a threshold, to alleviate negative ABCS. 

PROJECTION OF BODY CONDITION CHANGE 

Factors Affecting Body Condition Change 

Breed, feeding, time of BCS, and phase of lactation at scoring can all affect BCS 

(Mao et al., 2004). Friggens et al. (2004) defined genetically driven BCS change as, “that 

which would occur in cows kept in an environment that was in no way constraining.” 

Environmentally driven BCS change is from the environment the animal is performing in. 

For example, if feed is limited, the mobilization of condition will increase more than if 

genetically driven. High conditioned cows suffer greater losses of BCS post-calving due to 

decreased DMI (Roche et al., 2007). Others have also hypothesized that increased fat stores 

decrease the rumen area, that which results in the decreased DMI (Grovum and Chapman, 

1988; McCann et al., 1992; Caldeira and Portugal, 2007). Figure 2.1 show a reconstructed 

flow-chart of factors affecting intake ability. Cows that have been forced off their trajectory 

by nutritional challenged respond with compensatory changes in body fatness in early 

lactation (Garnsworthy and Topps, 1982; Broster and Broster, 1998). The accumulation of 

condition in late lactation seems unrelated to energy content in the diet and lowering it 

results in lower milk production (Friggens et al., 1998). 
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The maintenance portion of the diet is the energy needed to function, without gaining 

or losing tissue (NRC, 2001). Although it has been suggested that despite efforts to prevent 

negative energy balance, BCS will still be lost (i.e. maintenance will not be kept) due to 

predetermined genetics. A cow’s needed intake is based on its requirements at a given 

phase of lactation (Roche et al., 2013). Additionally, suggested energy requirements can 

vary, potentially from the various methods of determination (ARC, 1980). Energy 

efficiency can be affected by the feed in the diet (ARC, 1980). Lower BCS cows require a 

higher energy diet (Garnsworthy and Jones, 1987). As well, maintenance efficiency is 

increased if the energy in the ration is higher, requiring less feed intake and less muscle 

exertion and heat production (Reynolds et al., 1991). The energy cost of gaining BCS is 

higher with greater original BCS (ARC, 1980). During the first 30 DIM, 30% of milk yield 

is supplied from body condition (Mishra et al., 2016). Williams et al. (1989) hypothesized 

that, “body tissue mobilized during early lactation has a higher energy density than tissue 

gained under normal growth conditions”. Energy requirements increase during pregnancy 

to account for maintenance and growth of the fetus (Gibb et al., 1992) and can be affected 

by the day of gestation and calf weight (Bell et al. 1995). Gibb et al., (1992) found that at 

week 29% , 0.0029  of the total body energy is used for pregnancy, which increases with 

increasing days in gestation. Gibb et al. (1992) observed cow gains, after 8 weeks in milk, 

even after removal of gains from fetal and uterine tissue. Goats also change their preference 

of delegation at the end of their lactation period from milk production to gaining BCS 

(Kharrat and Bocquier, 2010).  

Although growing cows gain mainly protein tissue, mature cows will focus on fat gain 

(Holmes et al., 2002). Energy needed to synthesize tissue is dependent on whether the 
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tissue is fat or protein and the metabolizable energy used for growth (Geenty and Rattray, 

1987). Whether energy efficiency is different for fat or protein gain has not been resolved 

(ARC 1980; CSIRO, 2007; Mandok, 2013;). Other factors, such as absorption type and 

stage of lactation, do affect the efficiency of use of the energy for gains (ARC, 1980; 

CSIRO, 2007). 

Predicting Body Condition Change Across Lactation 

Koenen and Veerkamp (2001) found cows supplemented excessive energy devoted 

it towards milk production rather than reduction in mobilization of fat. Commonly, energy 

requirement predictions do not incorporate genetically mobilized BCS in addition to 

lactation and maintenance (Friggens, 2003). An important consideration is that while 

changing a certain aspect of genetics, such as increased milk production, it is also important 

to consider the other traits affected by this selection (Veerkamp, 1998). 

Puillet and Martin (2017) used machine learning techniques to predict future BW 

loss or gain to be used in herd management. Predicting BCS change may be useful to 

mitigate the negative effects seen in cows deviating from their genetic pathway. For 

example, excessive BCS change becomes an issue when BCS is lost faster than 

predetermined from genetics, due to poor environment (Friggens et al., 2010). Being able 

to predict the future loss may allow for group managerial changes if groups are affected or 

individual cow attention, allowing for earlier detection systems (Friggens and Lovendahl, 

2008). Body measured parameters to determine energy balance are more precise compared 

to milk measured parameters (Lovendahl et al., 2010). Although milk parameters may be 

less precise, they are advantageous because they can be automated and easily integrated 

(Lovendahl et al., 2010). An automated BCS system would therefore add this benefit to 
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body measures as well and increase its applicability on farm. An issue with evaluating the 

use of BCS as a parameter to detect disease is the lack of high BCS cows to determine a 

threshold (Ruegg and Milton, 1995; Heuer et al., 1999). Although suggested for the 

automated function of the BCS system, having under- or over-conditioned cows sent to a 

second level inspection may be a useful strategy (Vieira et al., 2015). 

Most studies have recommended a target BCS for various stages of lactation or 

acceptable losses between periods of time (Garnsworthy, 2006). Although this method has 

been long accepted and is easily understandable, recommending the same BCS for all 

production systems may not be suitable. European systems may offer pasture access, 

increasing feed variability, whereas that is not typical of a U.S. system (Sato et al., 2005). 

Stockdale (2001) proposed that goal BCS at calving can be affected by genetics, feeding, 

and breeds. Additionally, since BCS is genetically and environmentally driven, and both 

vary extensively farm to farm, proper management can be used to alleviate negative effects. 

The utilization of an automated BCS system would play an important complementary role 

to an already set management strategy and allow for increased accuracy in targeting 

specific  cows for condition adjustment  within individual herds.  

IMPACTS OF BODY CONDITION 

Dry matter intake starts to be reduced and cows start to enter negative energy 

balance pre-calving. This reduction is affected by lactation number, BCS, and 

macronutrient intake. Hayirli et al. (2002) witnessed a 32.2% reduction in DMI 3 weeks 

prior to calving, with 88.9% of the reduction in the last week before freshening. Negative 

energy balance is a result of milk production and maintenance needs exceeding the level 
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of energy intake. If a cow’s negative energy balance is too excessive or decreased for too 

long, negative effects can ensue (Roche et al., 2009). 

Subclinical Disease 

Milk fever. Subclinical milk fever is heavily prevalent in dairy herds and largely 

undiagnosed. Approximately 25 to 54 % of dairy cows have been found to develop 

subclinical milk fever, dependent on lactation number (Reinhardt et al., 2011). Venjakob 

et al. (2017) found 47.6 % of cows diagnosed with subclinical milk fever. It is usually 

diagnosed as calcium concentrations < 8.6 mg/dL (< 2.15 mmol/L) and evaluated close to 

calving (Goff, 2013). Martinez et al. (2012) found no association between calcium and 

BCS, although cows with subclinical milk fever did later lose more BCS. Ribeiro et al. 

(2013) also saw more loss in BCS for cows with subclinical milk fever. Additionally, cows 

with subclinical milk fever had significantly lower BCS across DIM (Ribeiro et al. 2013). 

Ketosis. High concentrations of beta-hydroxybutyrate (BHB) are typically a sign 

of subclinical ketosis occurrence. Levels of BHB for the threshold indicative of subclinical 

ketosis vary, typically ≥ 1.2 mmol/L.  Mobilization of fat stores increases the levels of 

ketones circulating in the bloodstream. Because higher conditioned cows mobilize more 

stores, BHB levels and subclinical ketosis is found increased in these animals. Meikle et 

al. (2004) found BHB concentrations decreased as BCS decreased post-calving. 

Additionally, cows with ≥ 3.75 BCS at dry-off had an increased risk of developing 

subclinical ketosis (OR 5.25) (Garro et al., 2014). Likewise, Bernabucci et al. (2005) 

reported cows with BCS > 3 had higher BHBA and NEFA levels compared to cows with 

≤ 3 BCS. 

Clinical Disease 
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As the fetus begins to develop in the late dry period and then followed by milk 

production prior to calving, the nutrient demands of cows are higher than can be obtained 

in the diet (Bell, 1995; Chilliard, 1999). Higher BCS decreases the DMI, resulting in 

increased mobilization of body reserves which can negatively impact liver functions (Garro 

et al., 2014). Lack of carbohydrates increases NEFAs and ketones in the liver and 

circulating blood (Herdt, 2000). Increased BCS mobilization increases liver NEFA uptake 

and higher levels of fatty acids are accumulated than are broken down (Friggens et al., 

2010). Fatty liver results in reduced metabolism and immune functions (Zerbe et al., 2000). 

Ketone levels are raised when the livers typical functions are impaired (Friggens et al., 

2010). In lipid mobilization, fat stores release NEFAs, which are then used for milk or 

energy. Ketones are increased in greater negative energy balance (NEB) resulting from the 

increased uptake of NEFA (Bell, 1995). Cows in negative energy balance have increased 

inflammatory activity  (Wathes et al., 2009). Around calving, levels of immunoglobulin 

and white blood cells are altered (Rinaldi et al., 2008; Herr et al., 2011). Limiting BCS loss 

post-calving by monitoring and adjusting management for proper condition at dry-off and 

maintenance of that condition until calving can help reduce risk of disease (Roche, 2006). 

Retained placenta. Waltner et al. (1993) found no relationship with retained 

placenta incidence and BCS. Gearhart et al. (1990) also reported no effect of BCS on 

retained placenta, although noted that this could have been caused by a small sample size. 

Additionally, Ruegg and Milton (1995) found no association between calving BCS and 

retained placenta occurrence. Markusfeld et al. (1997) noted a non-significant relationship 

between calving BCS and retained placenta in primiparous cows, although the relationship 

was significant (P < 0.05) in multiparous cows. Multiparous cows with higher calving BCS 
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had lower odds compared to cows with one unit lower BCS, of retained placenta. No 

relationship was found between dry-off BCS or dry-off to calving BCS loss with retained 

placenta occurrence (Markusfeld et al., 1997). 

Milk fever.  Contreras et al. (2004) reported cows with BCS at dry-off ≤ 3.00 had 

a lower incidence of milk fever than those ≥ 3.25, 2.7 and 4.5 %, respectively, although the 

total number of cows developing milk fever was low (n = 10). Chapinal et al. (2012) found 

no relationship between dry BCS ≥ 3.75 and milk fever outcome. Cows that lost 1.0 to 1.5 

BCS from the dry period to calving have been found to have a higher incidence of milk 

fever (Kim and Suh, 2003). Roche and Berry (2006) found significant odds ratios of milk 

fever development of 1.13, 0.56, 1.00, 0.96, and 1.31 for calving BCS of ≤ 2.50, 2.75, 3.00, 

3.25, and ≥ 3.50, respectively. The development of milk fever in over-conditioned cows 

may be due to the decrease in DMI, but also decreasing calcium intake, which is at 

increased demand immediately post-calving (Rukkwamsuk et al., 1999). Heuer et al. 

(1999) also found 3.3 times higher risk for cows ≥ 4 BCS at calving.  

Metritis. Metritis can decrease DMI and affect metabolic disease occurrence (Garro 

et al., 2014). It has been previously reported that cows that lost 1.0 to 1.5 BCS from dry-

off to calving had higher incidence of metritis (Kim and Suh, 2003). Although, Waltner et 

al. (1993) found no relationship with metritis incidence and BCS. Gearhart et al. (1990) 

found higher metritis when cows were ≥ 4.0 BCS at 30 DIM, yet their sample size of over-

conditioned cows was small. Metritis in multiparous cows was significantly (P < 0.05) 

related to calving BCS, with 30% lower odds for the higher adjacent BCS unit, although 

primiparous cows were non-significant (Markusfeld et al., 1997). Additionally, markusfeld 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Rukkwamsuk%20T%5BAuthor%5D&cauthor=true&cauthor_uid=10427630
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et al. (1997) also found 2.2 odds ratio for higher BCS losses in multiparous cows from dry-

off to calving but did not find a relationship with dry-off BCS. 

Ketosis.  Ferguson (2002) reported greater odds of ketosis with increased dry BCS 

and Gillund et al. (2001) observed the same relationship with calving BCS. Body condition 

scores of ≤ 2.75, 3.00 to 3.25, 3.50 to 3.75, and ≥ 4.00 had odds ratios of 1.0, 1.0, 2.4, 2.3, 

and 2.4, respectively. Body condition score recorded between calving and 8 DIM was 

significantly associated with ketosis outcome in a study by (Seifi et al., 2011). Cows that 

were ≤ 3.00, 3.25 to 3.50, and ≥ 3.75 BCS had odds ratios of 7.09, 3.43, and 1.00, 

respectively, although the overall incidence of ketosis was low in the study (3.65 %). 

Higher BCS at calving until 2 weeks in milk for cows diagnosed with ketosis is reported 

to be a significant (P < 0.001) relationship (Shin et al., 2015). Cows with ketosis have been 

reported to lose more BCS by 30 DIM post-calving, yet it was not a statistically significant 

finding (Gearhart et al., 1990). 

Displaced abomasum. In a study by Contreras et al. (2004), the incidence of 

displaced abomasum was higher in cows ≤ 3.00 BCS at calving then their heavier 

counterparts, 2.2 and 1.8 %, respectively. In a Brazilian study done on 7 herds, BCS at 

displaced abomasum diagnosis (mean DIM ± SD; 33.60 ± 46.27) was significantly lower 

(2.32 v. 3.11; P < 0.001) compared to cows without a positive case (Cardoso et al., 2008). 

As Gearhart et al. (1990) found with ketosis, cows with displaced abomasum lost more 

condition from calving to 30 DIM, although this difference was not statistically significant. 

Moreover, it has been reported thatcows that lose > 0.25 BCS by 4 weeks in milk post-

calving had significantly greater displaced abomasum incidence (Hoedemaker et al., 2009). 

Additionally, they found that cows losing no BCS, compared to 0.25 and > 0.25 BCS loss, 



23 

during the same time frame had lower odds, 0.09 and 0.07 respectively, of developing a 

displaced abomasum. Body condition score taken the last 5 weeks pre-calving was 

significantly associated with increased risk (RR: 2.4) of displaced abomasum in higher 

conditioned cows (Cameron et al., 1998).  

Effects on Reproduction 

Reports of condition on reproductive aspects are contradicting. Wildman et al. 

(1982) found higher condition to be related to improved reproduction, yet others have 

found no effect (Bourchier et al. 1987). Many have hypothesized that the genetic aspect of 

BCS is related to presumption of reproduction and its maintenance (Friggens, 2003; Roche 

et al., 2007). Friggens (2003) hypothesizes that cows in lower BCS have less condition and 

are at increased risk, therefore less likely to have a successful pregnancy. In an Italian study 

cows that lost ≥ 20% BCS 10 d pre-calving to 30 d post-calving suffered the greatest 

reproductively, compared to those who lost less BCS (Prandi et al., 1999). Jílek et al. (2008) 

found that cows with > 3.5 BCS one-month post-calving had the shortest calving to first 

service interval, indicative of resumption of cyclitic membranes and ability to demonstrate 

estrus behavior. Although BHB is typically associated with metabolic disease monitoring, 

Walsh et al. (2007) found higher concentrations to be associated with lower probability of 

pregnancy at first service. Successful reproductive programs have high levels of cows 

eligible for breeding and a high conception at breeding (Roche, 2006). 

Heat detection. The number eligible for breeding is affected by both the cows’ 

resumption of ovulation and ability to demonstrate estrus behavior (Roche, 2006). Disease 

occurrence increases the days to observing first estrus post-calving (Roche, 2006). 

Additionally, Markusfeld et al. (1995) found higher calving BCS to improve estrus 
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expression. Likewise, Pryce et al. (2001) found a relationship with calving BCS and days 

to first heat. Although some have found relationships with days to first heat, others have 

found non-significant relationships with its association with calving BCS (Garnsworthy 

and Jones, 1987; Ruegg and Milton, 1995). Many have reported the optimum BCS loss in 

early lactation of ≤ 0.5 for improved reproduction (Overton and Waldron, 2004, Mulligan 

et al., 2006; Roche, 2006,), likely preventing under-conditioned cows at breeding. 

Conception rate. It is argued that lower condition at breeding reduces chances of 

conception because of the decreased likelihood of cow’s survivability and pregnancy 

survivability. In addition, parity, disease, and season also affect ovulation occurrence 

(Beam and Butler, 1997; Opsomer et al., 2000; Wathes et al., 2007). Opsomer et al. (2000) 

found increased time to ovulation for cows that lost more condition. Yamada and others 

(2003) found that cows with high BCS mobilization (1.00 to 1.50 BCS) from 10 DIM to 

30 DIM had a higher conception rate than those with low BCS mobilization (0.25 to 0.75 

BCS). Although, when increasing the time frame of BCS change from 10 DIM to breeding, 

the low BCS mobilizing cows had higher conception rates. The likelihood of conception at 

first service was increased with higher nadir BCS and decreased with increased BCS loss 

(Roche et al., 2007). Cows that were 2.75 BCS or higher at 30 DIM, 40 DIM, and breeding 

had increased conception rates (Yamada et al., 2003).  

Survival of pregnancy. Loss of pregnancy typically occurs in the early embryo 

stage (Diskin et al., 2006; Diskin and Morris, 2008). The quality of oocytes produced can 

be reduced when cows are in negative energy balance (Leroy et al., 2005, Roche, 2006), 

resulting in embryo loss (Sartori et al., 2004, Roche, 2006). Additionally, cows with high 

DMI (typically lower conditioned cows) have lower progesterone concentrations, as well 
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increasing embryo loss risks (Sangsritavong et al., 2002). Silke et al. (2002) reported 

significantly more embryo loss for cows that lost condition, opposed to those who 

maintained or gained, within 4 to 8 weeks post-conception. Although Moreira, et al. (1999), 

found 27 to 48 d past breeding embryo losses were unrelated to low BCS. 

Other Factors Related to BCS change 

Welfare. Across species BCS is considered an effective indicator of criterion 

relating to welfare level. Species such as mice (Ullman-Culleré and Foltz, 1999), beef 

(Ndou et al., 2011), dogs (Yam et al., 2016), buffalo (de Rosa et al., 2005), and horses 

(Pritchard et al., 2005) use BCS as a characteristic of welfare level in evaluations. The 

principle of good feeding and criterion of absence of prolonged hunger has as an important 

indicator the BCS of the animals, being a major component of good health (Welfare 

Quality, 2009). Body condition can be used as an indicator for more than just good feeding 

criterion but also absence of disease (Battini et al., 2014). With cattle it has already been 

shown that poor BCS increases disease risk and downer cows, known to be an issue with 

the public view of animal welfare (Stull et al., 2007). In goats, correlations between cold 

weather and mortality of under-conditioned individual goats (McGregor and Butler, 2008).  

Lameness, also an indicator for other criterion, is shown to increase with low BCS and 

BCS loss (Walker et al., 2008; Lim et al., 2015). BCS is highly correlated with digital 

cushion thickness, higher BCS having greater thickness (Bicahlo, 2009). While there are 

resources to aid in accuracy of scoring, both within and between scorers there is still error 

involved. It can help with subjective data obtained (Banhazi et al., 2012). When trained 

welfare assessors were asked to score the importance of the welfare indicators BCS was 

within the top four (de Graaf et al., 2017).  
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In the United States, 98% of the United States milk supply in 2016 received audits 

from a benchmarking program mandated by most cooperatives (National FARM Program, 

2016). This audit requires 99% of all cattle on the farm to score a BCS 2 or higher (National 

FARM Program, 2016). The accuracy of scoring is necessary when using BCS in welfare 

assessments (Vasseur et al., 2013). Validation of technologies used in welfare assessments 

and assuring their purpose of inclusion is important so that technology use improves 

producers’ life and advance producers’ knowledge of the animal to improve its welfare. 

Automated BCS systems can keep constant recording of animals’ condition and can allow 

for a timelier notice of potentially negative welfare situations (Sassi et al., 2016). 

Genetics. Reducing costs associated with feed, a major proportion of total costs, is 

important to increasing efficiency and profitability. There are genetic differences among 

cows in their ability to reduce feed intake while maintaining milk production (Connor, 

2015). Dry matter intake is difficult to measure individually, especially on a large scale. 

Using traits that are easier to measure and correlated with DMI to help predict feed 

efficiency is an effective strategy (Manzanilla-Pech et al., 2016). Body weight is difficult 

to select for because the separation between cow sizes and BW cannot be made without 

BCS (Köck et al., 2018). Body condition is a conformation trait that has been proved 

predictive of DMI and useful in calculating feed efficiency (Kennedy et al., 1999; 

Manzanilla-Pech et al., 2016). Studies have estimated BCS and BCS change heritability’s 

at 0.27 to 0.37 and 0.01 to 0.10, respectively (Pryce et al., 2001; Dechow et al., 200;Berry 

et al., 2003,). Although, heritability’s vary at different points in lactation, with dry-off 

having estimates of 0.07 to 0.09 (Dechow et al., 2002). Early lactation BCS is negatively 

correlated with BCS change (Heuer et al., 1999; Dechow et al., 2002; Berry et al., 2003,). 
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However, BCS change and not the static BCS may be a more important characteristic. 

Hurley et al. (2016) found that 25% of variation when estimating energy conversion 

efficiency, or energy requirements over energy intake was caused from BCS loss. It is 

likely necessary to ensure the inclusion of BCS loss in efficiency calculations to account 

for early BCS loss (Vallimont et al., 2011). Negative genetic correlations indicated loss of 

BCS increases efficiency (Hurley et al., 2016). Moe et al. (1981) also concluded that BCS 

loss followed by later regain was an efficient means of energy use. Although, feed 

efficiency may have the potential to be selected for by using BCS in mid- to late- lactation, 

while keeping the genetic correlations to energy balance and not reducing energy balance 

in early lactation (Spurlock et al., 2012). Non-diseased cows have higher feed intakes 

during early lactation than their diseased counterparts (Mulligan et al., 2006). Others report 

that over-conditioned cows genetically lose more BCS in early lactation and regain 

condition in mid- to late- lactation, although the genetic relationship of BCS change to BCS 

in mid- to late- lactation is minor (Berry et al., 2003; Hurley et al., 2016). The stage in 

production is important to include in genetic predictions, BCS heritability’s range at 

different stages in production (Spurlock et al., 2012). Higher BCS loss from day 5 to day 

60 is mostly impacted by an increased BCS at calving; therefore reducing BCS at calving 

would also reduce the early lactation BCS loss (Berry et al., 2003). As well, it is suspected 

that when estimating the genetic variances and heritability, some potential is lost being that 

they are measured in quarter points, therefore there is potential for the automation system 

to be used in making genetic predictions more precise (Berry et al., 2002). 

ECONOMICS OF MEASURING BODY CONDITION SCORE 
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When economically modeled, reproductive advancements from improved BCS had 

the greatest financial effect (Bewley et al., 2010). European farms have increasingly 

crossbred with beef bulls to allow for increased cull cow prices or breeding within beef 

herds (Berry et al., 2006). Some have found that calves and culls result in 10 to 20 % of 

income (van der Werf et al., 1998). Carcass value decreases with improper BCS at culling 

(Apple, 1999; Smith et al., 1994; Loeber et al., 2001). Apple (1999) recommended culling 

beef cows at intermediate BCS because higher or lower BCS decreases the economic value 

of the cow. As well, once negative energy balance is decreased too far, resulting in a low 

BCS, cows catabolize muscle to meet physiological needs (Smith et al., 1994). The 

economics of the system investment also depends on action being taken from the provided 

data (Van De Gucht et al., 2017). 

A key point in technology investment is the difference between potential 

improvements from implementation and actual realizations. Using the data provided and 

applying it into practical, useable management decisions must be done to utilize all 

advantages (van Asseldonk et al., 1999).  DeLorenzo and Thomas (1995) notes, 

“experience, knowledge, and constraints,” are difficult to estimate in economic models. In 

a survey of dairy producers, 63.9% indicated that the cost benefit ratio was important when 

considering a technology purchase. As well, 40.4% indicated that the technology must be 

simple and easy to use (Borchers et al., 2015). Determining the economic effects of welfare 

improvement is difficult to measure and therefore automation economics may 

underestimate the full financial benefits (Van de Gucht et al., 2018). Decisions to invest in 

technologies are affected by many factors, such as economics, finances, replacement 

owners, and farm size (Van Asseldonk et al., 1999; Aramyan et al., 2007).  Bewley et al. 
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(2010) also concluded that the automated BCS system investment decision was herd-

specific. Consider factors such as cows’ status of concern and how that will continue and 

affect their management and profitability (Rutten et al., 2013). Using technology can help 

aid in this decision and streamline information that may have not be available without the 

investment (Groenendaal et al., 2004). Specifically, BCS automation investment depends 

on the current status of the herds BCS and their ability to implement changes with the use 

of BCS data (Bewley et al., 2010). 

Using technology on dairy farms provides many useful opportunities for improved 

performance, although it is a change to current practice. Improvement in systems clarity 

and functionality after the data is received is needed. Most data, even if provided as an 

alert, may not be used if the action to respond is unclear (Barkema, et al., 2015). This can 

lead to improper or limited use of the data provided by the system (Jacobs and Siegford, 

2012). A vital part of an effective change is having a support team, to educate and resolve 

issues that arise (Elrod and Tippett, 2002). Harvey (1990) discussed that with every change 

there is a loss associated with it. Technology replaces previous practices, yet information 

is lost from not visually observing the cow (Elrod and Tippett, 2002).  

Ingvartsen and Andersen (2000) suggested that BCS could be useful in revealing 

cows with low intake and therefore metabolic stress. Decision trees or automated alerts for 

certain BCS criteria, such as cows that deviate from a certain static BCS or BCS change at 

a particular time, should be generated from the system to allow for greater functionality. 

Although an automated system has the potential to provide daily BCS, this may be 

unnecessary to evaluate daily to obtain benefits (Hady et al., 1994). For manual scoring 

Mulligan et al. (2006) recommends attaining scores at dry-off, calving, breeding, 150 DIM, 
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200 DIM, and 250 DIM. Average scores per group and the amount they vary should be 

evaluated to ensure proper DMI (Mulligan et al., 2006). Others have proposed potential 

criteria for goals for a cow to be bred and maximum loss of BCS in early lactation (Pryce 

et al., 2001; Buckley et al., 2003). Condition scores are indicative of nutrition and 

correlated with body fat and energy (NRC, 2001). Individual feeding, although ideal, is 

impractical on most farms and proper grouping, with low variation within group, supports 

improved feeding efficiency (McGilliard et el., 1983, Sniffen et al., 1993). Grouping cows 

into separate groups to allow for feeding more precisely improves the overall BCS 

distribution of the herd and is more economical than feeding one TMR for the herd 

(Cabrera and Kalantari, 2016; Kalantari et al., 2016,). The exact integration of a BCS 

protocol should be specific to the herd and developed with the producer to attain the largest 

benefit from the system (Hady et al., 1994).  

Cost: benefit ratio was surveyed to be the most important investment decision by 

producers (Borchers and Bewley, 2015). Although the initial cost of the automated system 

may be large, the cost of a veterinarian, nutritionist, employee, or the producers time 

opportunity cost would be removed from scoring. In addition, utilizing the data provided 

to manage BCS can improve disease, reproduction, and feeding efficiency (Bewley et al., 

2010). Other studies have demonstrated the ability to integrate other traits into automated 

BCS systems, potentially increasing the feasibility of the producers’ investment (Van De 

Gucht et al., 2017; Hansen et al., 2018). Although welfare is difficult to account for in 

economic models, it is important to consider as a positive impact of investment in 

automated BCS systems. Farms are already being required to obtain certain levels of proper 
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BCS (National FARM Program, 2016) and Britt et al. (2018) predicts that welfare scrutiny 

will increase in the future. 

CONCLUSION 

Body condition can provide insight into the cow’s current health status and previous 

management efficiency. Changes in BCS are associated with several factors such as 

metabolic illness, or deficiency in feeding and other management practices in dairy cattle. 

Observation and implementation of intervention strategies can improve body condition and 

potentially reduce negative impacts. Use of body condition scores to evaluate current 

practices can also aid in prevention of improper condition at times when cows are most 

susceptible to BCS change. Establishing a routine BCS practice and application of the 

scores into farm management goals and decisions can improve herd reproduction, health, 

and welfare. Using automated body condition scoring systems can allow for a more 

uniform observation of changes in BCS across time. The objectives of this thesis were to 

1) describe body condition score across lactation, using an automated BCS scoring system

and 2) observe the effects of   body condition on disease and reproduction, using an 

automated BCS scoring system. 
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Table 2.1. Suggested feeding alterations based on weeks in lactation 

Week in Milk Adjustment Frequency 

≤ 6 2x/week 

6 to 12 1x/week 

≥ 12 Monthly 



33 

Figure 2.1. Representation re-illustrated from Forbes (1983) involving the ability of 

cows to maintain feed intake. Beginning at feed intake the factors it affects and what 

vice versa are shown. 
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INTRODUCTION 

Body condition scoring is a practical method to estimate energy balance by visually 

assessing the fat reserves present subcutaneously in the animal. Excess energy is deposited 

as reserves and in periods of negative energy balance (when needs overcome intake) fat is 

mobilized (Butler and Smith, 1989; Edmonson et al., 1989). Extreme body condition score 

has been linked to disease in many species, such as, humans, horses, cats, and dogs 

(Henneke et al., 1984; Scarlett and Donoghue, 1998). Both the static extremes and changes 

between body condition scores (BCS) at different time points can indicate important 

information regarding cows’ health and reproduction. Cows that follow an ideal BCS curve 

throughout lactation, dry period and transition period are at a decreased risk for disease and 

lower reproductive success (Roche et al., 2009; Gomez et al., 2018). 

The linkage of BCS change to disease occurrence has been described as a result of 

elevated proinflammatory cytokines, leading to decreased DMI, decreased nutrient uptake, 

and impaired adipose and liver activity (Ingvartsen and Andersen, 2000; Dandona et al., 

2004; Hotamisligil, 2006; Odegaard and Chawla, 2013). Beta-hydroxybutyrate (BHB), an 

organic compound often measured as an indicator for subclinical ketosis (Mulligan et al., 

2006), has been found in significantly higher concentrations in well-conditioned compared 

to under-conditioned cows at calving (Roche et al., 2015). Rathbun et al. (2017) also found 

that cows that were over conditioned at time of partum or showed a >1 BCS change of 

body condition during the transition period shown higher concentration of beta-

hydroxybutyrate acid (BHBA). Additionally, calcium concentrations can be monitored as 

an indicator of subclinical milk fever (MF) when in reduced levels (Mulligan et al., 2006). 

However, calcium concentrations and milk fever do not have a clear relationship with BCS 
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at calving. For instance, Martinez et al. (2012) reported no effect of calving BCS on 

subclinical milk fever and Chapinal et al. (2012) did not see an effect of precalving BCS ≥ 

3.75 on milk fever. Ribeiro et al. (2013) described a positive correlation between calcium 

concentrations and BCS at 7 DIM, while Valldecabres et al. (2017) reported negative 

correlations with BCS at calving and low calcium concentrations. The current ambiguity 

on the relationship between BCS and calcium concentrations calls for additional research 

to investigate whether more accurate BCS scoring can be used as a precursor for 

hypocalcemia related disease. 

Clinical disease incidence is known to be affected by extreme BCS and BCS change 

around calving (see review by Roche at el., 2009; Koeck et al. 2014; Gomez et al., 2018). 

The most recognized relationship with BCS and clinical disease is ketosis (Duffield, 2000; 

Gillund et al., 2001) as lost body condition during the dry period increases the risk for 

developing ketosis (Kim and Suh, 2003). It has previously been reported that cows with a 

BCS greater than 3.5 around calving are more susceptible to ketosis compared to cows with 

lower BCS (Gillund et al., 2001). The occurrence of milk fever also increases in cows with 

higher BCS, possibly due to decreased calcium intake (Heuer et al., 1999; Ostergaard et 

al., 2003). In addition, Roche and Berry (2006) found that cows with a BCS above 2.5 at 

calving had an increased risk of milk fever. Moreover, LeBlanc et al. (2005) found no 

relationship between prepartum BCS and displaced abomasum occurrence. Another study 

found that displaced abomasum incidence increased as BCS at calving was higher, 

although other disease occurrences were unaccounted for (Shaver, 1997). In agreement, 

others have also found that an increased BCS at calving increases displaced abomasum 

occurrence (Shirley, 1994; Cameron et al., 1998).  Previous studies have shown that poor 
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BCS can increase metritis (Wathes et al., 2009), whereas others have found no relationship, 

potentially because of the actual negative energy balance experienced in the different 

studies or diagnosis of metritis (Kaneene and Miller, 1995; Huzzey et al., 2007). However, 

several studies have concluded that BCS does not have a relationship with the diagnosis of 

retained placenta (Waltner et al., 1993; Ruegg and Milton, 1995; Kim and Suh, 2003). 

Along with disease, reproductive success of dairy cattle is also affected by low or 

high BCS. Chapinal et al. (2012) reported that cows that were thin and moderately 

conditioned prior to calving were less likely to conceive at breeding. Conception rates have 

been found to decline in cows with decreased BCS in early lactation (Domecq et al., 1997; 

Loeffler et al., 1999; Lopez-Gatius et al., 2002; Santos et al., 2009) and at 2 to 4 wks post-

calving (Heuer et al., 1999) and for cows with low BCS at breeding (Moreira et al., 1999). 

Starbuck et al. (2004) found that over-conditioned cows had a higher proportion of 

unsuccessful conceptions compared to normal and under-conditioned cows at their first 

post-conception examination. However, a previous study reported no relationship between 

BCS at calving and conception at first service (Gillund et al., 2001). Differences in findings 

across studies can be possibly attributed to the differences in BCS proportions within the 

herds, especially the lack of heavily under- or over-conditioned cows, various times of BCS 

measurement, differences in BCS categories set by the researchers to evaluate, or lack of 

association.  

Although the importance of proper BCS has been well documented in many studies 

as mentioned above, a survey by Caraviello et al. (2006) reported that over half of the 

participating producers never measure or record BCS routinely from cows in their herds. 

A German fresh cow management survey found similar results, where only 36% of the 
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participants responded that they body conditioned scored their herds routinely (Heuwieser 

et al., 2010). Lack of adoption of routine BCS is in part because of the practicality of when 

to score cows on the farm, and how to address data management of the scores (Hady et al., 

1994). An automated BCS system can provide daily scores and a data recording system to 

help the producer obtain qualitative data. Also, a user-friendly system for analyzing large 

BCS data sets which helps with identification of cows with BCS changes and management 

decisions. On-farm automation is increasing, and dairies will continue to adopt more 

technologies (Britt et al., 2018). However, in a recent survey, only 2.8% of producers 

recorded BCS using automated technology. This was attributed to the lack of commercially 

available options (Borchers and Bewley, 2015). Mazeris (2015) found an automated BCS 

system to be highly accurate in relation to a human scorer, with 98% of scores being within 

a quarter point. Additionally, data reported by Hallén Sandgren and Emanuelson, (2016) 

showed the repeatability of the automated BCS system to be high and increasing after 4 

wks in milk. Anglart (2010) demonstrated a strong correlation between 3D image analysis 

and manual BCS scoring (r=0.84) with 69% of the scores registered within a quarter point 

of the manual scores. The commercially available system used in this experiment was 

included in a recent validation study, which demonstrated that the range of BCS was highly 

in agreement with manual scores (Mullins et al., 2018). Thus, the aim of this study was to 

evaluate the relationship between automated BCS recordings around parturition, and its 

change during the transition period, on metabolic disease and reproductive outcomes on a 

commercial dairy farm. 

MATERIALS AND METHODS 
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This study was conducted at a commercial dairy farm in Indiana. The farm housed 

approximately 3,200 dry and lactating cows. Cows (n=3,243) used in this study were 2.1 ± 

1.1 (mean ± SD) lactation number, 186.1 ± 111.1 DIM, 3.28 ± 0.25 BCS, and 29,432.5 ± 

6,543.2 305-mature equivalent milk yield (305ME). Dairy cows were grouped according 

to parity, DIM, BCS, reproductive status, and milk yield Cows were milked three times 

daily and ABCS one time daily. 

Body Condition Scoring 

The study farm had an exit alleyway on both the north and south ends of the parlor. 

Two BCS cameras (BCS™, DeLaval International AB, Tumba, Sweden)  were used 

andmounted on the sort-gate at each exit, where cows passed through daily post-milking. 

The system automatically records a 3-D video of cows passing under the mounted camera 

and selects the best image for analysis. An algorithm analyzes the image and determines 

an automated body condition score (ABCS) for the cow, which is presented in DelPro Farm 

Manager computer software. The system has been validated and shown accuracy in 

assessing proper BCS of dairy cows (Mullins et al., 2018). Scores from the system were 

reported in the tenth decimal and based on the BCS scoring system described by Edmonson 

et al. (1989). All ABCS data was retrieved from DelPro Farm Manager (DeLaval 

International AB, Tumba, Sweden). 

Subclinical Disease Outcomes 

Subclinical ketosis and milk fever were determined from blood samples evaluated 

for BHB and calcium, respectively. Samples were taken on the same day weekly from 

September 16, 2016 to September 14, 2017. Primiparous and multiparous cows were sorted 

to be sampled if they were ≤ 7 DIM at the day of sample. Samples for BHB and Ca2+ were 
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taken in sodium heparin-coated blood tubes (BD Vacutainer, Becton, Dickinson and Co., 

Franklin Lakes, NJ). Whole blood BHB concentrations were determined using a hand-held 

ketone meter (PortaCheck, Moorestown, NJ, validated by Sailer et al., 2018) within 3 h 

post-sampling. After BHB testing the blood was centrifuged for 20 min (3,200 × g, 25°C). 

Following centrifugation, plasma was separated and stored at −20°C until shipment for 

analysis. Plasma calcium concentrations were determined from lab assay. After 

centrifugation at 3000 g for 20 min, the supernatant was used to measure serum Ca2+ levels 

using the AU Calcium oCPC reagent (Beckman Coulter, Krefeld, Germany). Briefly, 

Ca2+ ions were reacted with o-Cresolphthalein-compex one (oCPC) to form an intense 

purple colored Ca2+-oCPC complex, and the intensity was measured using a Beckman 

Coulter AU480 analyzer (Beckman Coulter, Krefeld, Germany) at the University of Illinois 

Veterinary Diagnostic Lab, Urbana, IL. Subclinical ketosis and milk fever were considered 

positive when concentrations of BHB and calcium were ≥ 1.2 mmol/L and < 8.6 mmol/L, 

respectively (McArt et al., 2012; Rodríguez et al., 2017).  

Clinical Disease Outcomes 

All clinical disease outcomes were diagnosed and recorded by herd personnel or 

the herd veterinarian into a herd management software (DairyComp 305, Valley 

Agricultural Software Inc., Tulare, CA). Data was automatically synced and retrieved 

electronically from a herd software integration program (BoviSync, Dairy LLC, Eden, WI) 

to include data from June 22, 2016 to December 13, 2017. The clinical diseases considered 

were ketosis, milk fever, displaced abomasum, retained placenta, and metritis. Cases of 

milk fever, retained placenta, and metritis were excluded if they occurred > 14 DIM. 
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Ketosis and displaced abomasum cases > 30 DIM were excluded. Clinical disease 

definitions used for diagnosis of the respective diseases considered are listed in Table 3.1. 

Reproductive Outcomes 

Reproductive records were retrieved in the same form as clinical disease data. 

Reproductive outcomes assessed included odds of abortion, time to conception following 

first service, and survival of pregnancy following conception.  

Statistical Analysis 

Statistical analyses were performed using SAS 9.3 (SAS Institute Inc., Cary, NC) 

and significance was declared at P ≤ 0.05. All descriptive statistics were determined from 

PROC MEANS. The relationship between ABCS and positive subclinical disease outcome, 

as a binary response, were analyzed using PROC LOGISTIC and accounted for calving 

month, parity, DIM, and 305ME. Automated body condition score (ABCS) at day of dry-

off, calving, and ABCS change from dry-off to calving (dryCHANGE) were evaluated as 

predictors for positive subclinical ketosis and milk fever outcomes. Automated body 

condition scores effect on positive clinical disease outcome, as a binary response, were 

analyzed using PROC LOGISTIC and accounted for calving month, parity, and 305ME. 

The analysis for milk fever also accounted for a positive ketosis event. The analysis for 

retained placenta also accounted for a positive metritis event. The analysis for metritis also 

accounted for a positive retained placenta and ketosis event. The analysis for ketosis also 

accounted for a positive milk fever, and metritis event within cow. The analysis for 

displaced abomasum also accounted for a positive metritis and ketosis event. Static ABCS 

at day of dry-off, calving, 7 DIM, and 14 DIM were evaluated as predictors to all included 

positive clinical disease outcomes. Score changes of dryCHANGE and change from dry-
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off to 7 DIM (dry7CHANGE) were also evaluated. Odds ratios (OR), with significant P-

values, reported < 1.00, 1.00, and > 1.00 represent decreased odds, no difference, and 

increased odds of the outcome, respectively. All subclinical and clinical data was analyzed 

with ABCS as a continuous predictor. Therefore, odds ratios were as a reported as a one-

unit change, as done in previous studies (Nash et al., 2000; García-Ispierto et al., 2006; 

Roche et al., 2007;), to prevent bias involved in selecting the predictor variables, ABCS, 

thresholds for categorical analysis (Altman and Royston, 2006; Royston et al., 2006; 

Dawson and Weiss, 2012). For example, if the OR of calving ABCS on an investigated 

outcome is 1.25, the interpretation would be the odds of the outcome are 1.25 higher for a 

one-unit (0.1) increase in ABCS. Extra consideration should be given when evaluating 

odds ratio regarding changes in ABCS, which are sensitive to misinterpretation (Gearhart 

et al., 1990). For instance, if the OR of dryCHANGE on an investigated outcome is 1.25, 

the interpretation would be the odds of the outcome are 1.25 higher for a one-unit (0.1) 

increase in dryCHANGE. In other words, a loss of 0.3 ABCS, compared to 0.2 ABS, from 

dry-off to calving increases the odds of the outcome. Conversely, if the OR was 0.75, the 

scenario would be interpreted as a loss of 0.3 ABCS, compared to 0.2 ABS, from dry-off 

to calving decreases the odds of the outcome. 

Automated body condition score’s effect on abortion occurrence, as a binary 

response, was analyzed using PROC LOGISTIC and controlled for calving month, parity, 

disease occurrence, and 305ME. Static ABCS at day of dry-off, calving, 45 DIM, 

conception, and 60 d pregnant were evaluated as predictors. Score changes of 

dryCHANGE, dry7change, and calving to conception (concCHANGE) were also 

considered. 
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The effects of ABCS on time to conception and survival of pregnancy were 

evaluated separately using a Cox proportional hazard regression model (PROC PHREG). 

Both models accounted for conception month, lactation number, disease occurrence, and 

ME305. Cows were only included in the analysis for one lactation. When modeling time 

to conception, cows entered the model if they received a first breeding (n = 2306) and 

outcomes were conception, no conception by 200 DIM, or loss to follow-up. Cows were 

considered a loss to follow-up and censored if at the end of the study period they were ≥ 

100 d pregnant and had not yet conceived at the end of the study period, removed from the 

herd because of culling or death, and recorded do not breed by the farm. Cows were 

removed from the model if they were < 100 DIM at the end of the study period or suffered 

an abortion from the conception considered. Total cows included for the time to conception 

analysis were 599, 1,404, 1,472, and 1,527, for dry-off, calving, 7 DIM, and 45 DIM 

ABCS, respectively. Within the included cows, censored cows accounted for 21.37, 16.74, 

17.60, and 18.86%, respectively, with the remaining cows being followed until conception. 

For the survival of pregnancy, cows entered the model if they conceived and outcomes 

were abortion occurrence, calving, or loss to follow-up. Cows were censored if at the end 

of the study period they were ≥ 100 d pregnant and had not aborted or calved following the 

conception. Cows were removed from the model if they were < 100 d pregnant at the end 

of the study period. Total cows included in the survival of pregnancy analysis were 1140, 

1,797, 1,843, 2,177, and 2,123, for dry-off, calving, 7 DIM, conception, and 60 d pregnant 

ABCS, respectively. Within the included cows, censored cows accounted for 79.04, 82.74, 

81.88, 81.86, and 83.94%, respectively, with the remaining cows being followed until 

conception. Kaplan-Meier survival curves were plotted using PROC LIFETEST for both 
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time to conception and time to pregnancy loss associated with BCS at dry-off, calving, 7 

DIM, 45 DIM, conception, and 60 d pregnant. Because the evaluations were continuous 

the upper 25%, middle 50%, and lower 25% ABCS were plotted. 

RESULTS 

The mean ABCS of cows throughout the study was 3.30 ± 0.25 (Mean ± SD). The 

descriptive data of ABCS at the time points and changes of interest is listed in Table 3.2. 

Scores for dry-off did not include the dry period prior to 1st lactation cows. 

Subclinical Disease Outcomes 

Mean BHBA and calcium of cows was 0.78 ± 0.25 and 8.61 ± 1.22 (Mean ± SD), 

respectively. Prevalence of subclinical ketosis and milk fever was 7.90% and 36.65%, 

respectively. There was no observed relationship between ABCS at calving or 

dryCHANGE and subclinical ketosis cases (P > 0.05; Table 3.3). Dry ABCS and calving 

ABCS were not associated with subclinical milk fever cases (P > 0.05, Table 3.3). 

Although, an increased positive change from dryCHANGE increased subclinical milk 

fever (P = 0.05, Table 3.3). Dry ABCS was significantly associated with subclinical ketosis 

(P = 0.04, Table 3.3). For a one-unit, or 0.1 increase in ABCS from dry-off to calving, there 

is a 23% increase in the odds of developing subclinical ketosis (P < 0.001, Table 3.4). 

Clinical Disease Outcomes 

Within the time evaluated, 23.7% of cows developed ≥ 1 of the five diseases of 

interest. Incidence of MF, RP, metritis, ketosis, and DA were 2.39%, 5.83%, 14.31%, 

11.49%, and 3.32%, respectively. Increased ABCS at dry-off (Table 3.4) was associated 

with decreased odds of milk fever (OR = 0.83; 95% CI: 0.72 to 0.95) and metritis (OR = 
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0.82; 95% CI: 0.73 to 0.92), and increased odds of ketosis (OR = 1.19; 95% CI: 1.09 to 

1.29). Automated BCS at calving and 7 DIM was associated with milk fever and metritis, 

respectively, both having decreased odds with higher calving ABCS. Ketosis odds were 

lower for cows with more positive change from dry-off to calving (OR = 0.88; 95% CI: 

0.81 to 0.94) and dry7CHANGE (OR = 0.79; 95% CI: 0.72 to 0.88) and was the only 

outcome significant for ABCS changes. Automated BCS was not a significant predictor 

for retained placenta or DA occurrence at any of the evaluated times or changes (Table 

3.4). 

Reproductive Outcomes 

When evaluating the ABCS at dry-off, calving, 7 DIM, dryCHANGE, and 

dry7CHANGE relationships with abortion occurrence using logistic regression, none were 

significant predictors for abortion (Table 3.5). The other factors assessed for abortion were 

conception ABCS, 60 d pregnant ABCS, and concCHANGE, all significant predictors. 

Odds for abortion were estimated for a higher ABCS at conception (OR = 0.92; 95% CI: 

0.86 to 0.99) and 60 d pregnant (OR = 0.91; 95% CI: 0.85 to 0.98). Further, greater positive 

concCHANGE decreased the odds (OR = 0.90; 95% CI: 0.83 to 0.97). For time to 

conception, no effect was found between any BCS time considered, dry-off, calving, 7 

DIM, or 45 DIM ABCS (P > 0.05, Table 3.6). On the plotted time to conception figures 

(Figure 3.1), time to conception varies based on the ABCS quartile for that ABCS time 

considered, yet this plot does not consider the other related factors affecting the outcome. 

When considering survival of pregnancy, Figure 3.2 shows all the ABCS time points 

considered and the time to pregnancy loss for each previously described quartile. The 

incidence of pregnancy loss in the studied data was 18.70%, similar to the herd level of 
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18.18%. Multiparous cows had higher pregnancy loss by 7.11% (21.36% v. 14.25 %). Only 

60 d pregnant ABCS was significantly associated with the time to pregnancy loss (P-value 

= 0.03; Table 3.6).  

DISCUSSION 

Many previous studies have evaluated the effects of BCS on disease and 

reproduction (Waltner et al., 1993; Morrison et al., 1999; Bedere et al., 2018; Roche et al., 

2018). However, to date, to the authors’ knowledge, no studies have utilized automated 

BCS technology in connection with the evaluated parameters in this study. The outcomes 

of this study for BCS and disease relationships were similar to other studies (see review by 

Roche et al., 2009), where extreme BCS and high degree of change in BCS were associated 

with a number of negative conditions. Briefly, we found that an increased positive change 

in BCS from the time of drying to calving increased subclinical milk fever and that an 

extreme ABCS at dry-off was significantly associated with subclinical ketosis, milk fever, 

metritis, and ketosis. Automated BCS at calving and at 7 DIM was also associated with 

milk fever and metritis, respectively, with decreased odds with higher calving ABCS.  

In contrast, there have been many conflicting findings regarding specific aspects of 

disease (Roche et al., 2006). The present herd had an overall low prevalence of subclinical 

ketosis, which could have affected the outcomes of the analysis, although dry ABCS was 

still a significant predictor. Our study did not find a relationship between dry-off BCS, 

calving BCS, or dryCHANGE and reduced calcium concentrations or subclinical milk 

fever occurrence. This could be a result of only testing cows one time, resulting in a 

prevalence rather than incidence level, although prevalence levels were comparable to 

other findings (Suss et al., 2016; Tiberio et al., 2016). More specifically, Suss et al. (2016) 
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found a similar 10.4% prevalence of subclinical ketosis when testing once within 21 DIM 

and using the same threshold cut-off value. Tiberio et al. (2016) found higher prevalence 

levels, 19.7%, when examining incidence of subclinical ketosis, testing four times from 5 

to 18 DIM. Cows with a dry BCS ≥ 4.0 had significantly higher maximum calcium 

concentrations compared to cows with a lower BCS. Additionally, subclinical ketosis 

occurrence was not related to calving BCS or dryCHANGE but was significantly affected 

by dry-off BCS. Cows with a dry BCS ≥ 4.0 had significantly higher maximum calcium 

concentrations compared to cows with lower BCS. Finally, Tiberio et al. (2016) reported 

that higher maximum calcium concentrations were found in cows that lost > 0.75 BCS 

post-calving compared to cows that had a stable BCS post-calving. Future research might 

benefit from increasing sampling times for subclinical ketosis and milk fever. 

In this study, calving BCS was unrelated to retained placenta, which agrees with 

earlier work by Pedron et al. (1993) and Heuer et al. (1999) but disagrees with findings by 

Markusfeld et al. (1997) who found that under-conditioned cows were of higher risk of 

contracting retained placenta. Displaced abomasum was also not associated with BCS, a 

finding like Contreras et al. (2004) who did not detect any differences in the occurrence of 

displaced abomasum between cows with a BCS lower than 3.0 or higher than 3.25. This 

contrasted findings by (Dyk, 1995) who reported a higher risk of displaced abomasum for 

over-conditioned cows. Moreover, Heuer (1999) reported that half of all cows that are 

diagnosed with displaced abomasum, are found to be in negative energy balance, a state 

commonly associated with the transition period around calving (Butler and Smith, 1989; 

LeBlanc et al., 2005).  
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In our study, greater BCS dry-off, calving, and 7 DIM decreased the odds of milk 

fever, which contrasts with earlier studies where a high BCS increased the odds of milk 

fever (Heuer et al. 1999; Neave et al., 2018) and partially contrasts with findings in grazing 

systems where both over and underconditioned cows were at higher risk of MF (Roche and 

Berry, 2006). It has been shown that decreased DMI is present prior to diagnosis in cows 

with metritis (Huzzey et al., 2007). Although decreased DMI is typical of an over-

conditioned cow, metritis had decreased odds of occurrence for heavier conditioned cows 

at dry-off and 7 DIM. Beta-hydroxybutyrate, markedly known in literature for increased 

risk in developing ketosis, did have greater odds in higher conditioned cows at dry-off. 

This agrees with many studies and warrants the results found from the subclinical ketosis 

data. As well, an increased positive change from dry to calving period decreased the odds 

of ketosis. Future research should attempt to incorporate ABCS into management for 

clinical diseases and work to use ABCS to reduce clinical disease. 

This study did not find any relationship between BCS and conception rates. 

Previous studies have shown conflicting results regarding the relationship between BCS 

and conception rates. When considering conception, it’s been found cows with > 3.5 BCS 

within 30 DIM had the shortest calving to first service interval (Jilek et al., 2008). However, 

the same study found that BCS prior to calving was not associated with time of calving to 

conception or first service to conception and number of services (Jílek et al., 2008). For 

instance, Domecq et al. (1997) found that a decrease in BCS during the first 4 wk post-

calving significantly decreased conception rates while Buckley et al. (2003) saw the same 

relationship during the first 90 d post-calving. However, our results contrast with older 

studies by Garnsworthy and Jones (1987) and Jones and Garnsworthy (1988) as well as a 
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study by Gillund et al. (2001) who did not find any differences between cows with different 

BCS at calving on the number of days to first estrus, number of days to conception, or the 

number of inseminations needed to conceive.  

Reproductive success is affected by both the number of cows available to be 

inseminated and the number of cows observed in heat (Roche, 2006). Heavier cows have 

demonstrated lower heat intensities (Markusfeld et al., 1997) and longer time to begin 

ovulation and conception (Berry et al., 2003), although this aspect of reproduction was not 

considered in this study because of a timed artificial insemination program. The increased 

positive change in BCS from calving to conception was related to lower odds of pregnancy 

loss, suggesting that cows gaining condition during this time were more able to maintain a 

conception. Lopez-Gatius et al. (2002) had similar findings within the change for dry-off 

to 30 DIM, as pregnancy loss increased (OR 2.4; P < 0.05) with a 1 unit decreased change 

in BCS. Body condition scoring immediately preceding the day of AI is considered a 

reliable predictor of pregnancy at day 39 post-AI (Gomez et al., 2018). Gomez et al. (2018) 

showed that body condition change from −10 d to AI did not predict the likelihood of a 

cow being pregnant day 39 post-AI and previous studies have shown that greater BCS loss 

in early lactation resulted in lower reproductive success (Domecq et al., 1997, Pryce et al., 

2000). Ruegg and Milton (1995) reported that calving BCS and BCS loss from calving to 

first breeding was unrelated to any reproductive measures. This study did however find a 

relationship with BCS and reproductive outcomes. Time to pregnancy loss was affected by 

the BCS at 60 d pregnant, with lower conditioned cows having a lower proportion of cows 

maintain pregnancy.  
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One potential reason for the inconsistencies found in linking BCS to diseases or 

reproduction is that previous work has used grouping factors of BCS when evaluating the 

effects, such as ≤ 3.00, 3.25 to 3.50, and ≥ 3.75. Hossein-Zadeh and Akbarian (2015) 

hypothesized that the various findings of the effects of BCS on reproduction may be due 

to the different stages in and the diverse reproductive parameters used when BCS was 

evaluated. The authors have chosen to evaluate BCS as a continuous variable because of 

the increased sensitivity of the camera evaluation and to avoid bias when setting thresholds. 

The newly commercially available technology allows for an increased number of 

cows to be scored in a short period of time and scoring days due to automation. 

Additionally, reducing the amount of labor needed to evaluate cows BCS. In addition to an 

increased number of continuous BCS records available in this study, the technology also 

allows for increased precision of BCS points appointed. The BCS technology is based off 

the 1 to 5 scale, with 0.25 increments the system reports the scores with 0.1 values, which 

allows for increased precision when evaluating the data but makes it difficult to compare 

data to other studies evaluating BCS effects. For example, an automated BCS of 3.10 is 

challenging to determine if it is relatable to a manual 3.00 or 3.25. This alone may be the 

cause of some inconsistences seen in this study as with previous literature. In a study on 

sheep, Kenyon et al. (2014) hypothesizes that an optimal BCS to recommend to producers 

is improper because of the large amount of variability between herds. Variability is allotted 

to similar commonly considered aspects within dairy cattle, in addition to production 

system and level and quality of feed. Regular surveying of parameters is needed to identify 

issues and distinguish abnormalities early. Body condition score, traditionally taken 

manually, may be more limited on its applications on farm, depending on the frequency of 
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scoring. The biological benefit to the cow from improved or proper condition has been 

demonstrated in countless studies yet the integration of routine BCS on farm is low. 

Automated BCS warrants increased utilization of BCS in management (Hansen et al., 

2018). Despite poor BCS being indicative of increased disease occurrence and lower 

reproductive success, it is not itself prognostic of a certain illness or outcome. Therefore, 

developing a strategy to utilize BCS data remains difficult and can be more complex than 

other technology data to incorporate. As with rumination monitoring, incorporating BCS 

into standard protocols of disease detection may improve the current detection alerts 

(Beauchemin, 2018). Yet, the potential to use the ABCS for indication of future disease or 

poor reproductive metrics was demonstrated and shows use for future research. 

Although the study found significant results, various factors could have been 

changed to improve the study. Subclinical evaluations could have been taken various times 

throughout the first 2 weeks of lactation to receive incidence levels and more accurate 

measures of subclinical status within cow and across the herd. Clinical diseases were 

evaluated using farm recorded data as well as the ABCS values. While the performed 

statistical analyses captured all available aspects of this data, statistically evaluating the 

data in different ways may have allowed for more results. In the future, studies may look 

at other ABCS collection time periods and factors, such as feed rations or treatment 

decisions, not included in this study. 

CONCLUSIONS 

Body condition scores can provide useful information about individual cows, 

groups, and herd nutritional status. Body condition score as a routine practice is 

underutilized and should be evaluated and managed on dairy herds and can now be done 
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automatically with a commercially available 3D camera. We found that poor body 

condition score at different times during the transition period is associated with increased 

disease occurrence and lower reproductive success. Automated BCS allow for frequently 

recorded and accessible scores, easing the establishment of BCS into a herd protocol or 

herd management and can be a useful tool to monitor transition cows. 
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Table 3.1.  Farmer diagnosis definitions for clinical disease measures used in the study 

at a commercial dairy farm in Indiana, USA.  

Clinical Disease Definition 

Retained placenta Fetal membrane ≥ 12 h post-calving 

Metritis Fever and watery, foul smelling vaginal discharge 

Milk fever Weak, muscle tremors, down cows 

Ketosis Reduced feed intake and milk production, depression, urine ketones 

Displaced abomasum Reduced feed intake and milk production, “pinging” 
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Table 3.2. Descriptive statistics of automated body condition scores of lactating dairy 

cattle collected using a 3-D camera system at different lactation times and changes of 

interest when evaluated for disease and reproductive effects at a commercial dairy in 

Indiana, USA. 

Lactation Time n ABCS Mean SD Minimum Maximum 

Static Dry-Off 1587 3.47 0.20 2.70 4.30 

Calving 2832 3.41 0.22 1.40 4.00 

7 DIM 1396 3.40 0.21 2.60 4.00 

Conception 1533 3.16 0.24 2.10 3.90 

60 d Pregnant 1477 3.24 0.24 1.80 4.00 

Change dryCHANGE1 1490 -0.06 0.22 -1.40 0.90 

dry7CHANGE2 1368 -0.06 0.17 -1.00 0.90 

concCHANGE3 1170 -0.24 0.26 -1.40 1.10 

1dryCHANGE = Calving BCS – dry BCS 

2dry7CHANGE = 7 DIM BCS – dry BCS 

3concCHANGE = conception BCS – calving BCS 
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Table 3.3. Evaluation for positive cases of subclinical ketosis (BHBA ≥ 1.2) and milk 

fever (calcium < 8.6) using logistic regression of lactating dairy cattle automated body 

condition scores collected using a 3-D camera system at different lactation times and 

changes of interest at a commercial dairy in Indiana, USA. 

Comparison 
n Odds ratio2,3 95% CI4 P - value 

Positive case BCS 

Subclinical 

ketosis 

Dry 345 1.23 1.01 – 1.50 0.04 

Calving 775 1.06 0.93 – 1.21 0.35 

dryCHANGE1 345 0.93 0.78 – 1.10 0.39 

Subclinical 

milk fever 

Dry 339 0.91 0.78 – 1.06 0.22 

Calving 750 1.04 0.96 – 1.13 0.35 

dryCHANGE1 339 1.16 1.00 – 1.35 0.05 

1dryCHANGE = Calving BCS – dry BCS 

2Odds ratio for BCS units of 0.1 

3Adjusted for month of calving, lactation number, DIM, and 305 mature-equivalent 

495% confidence intervals for odds ratio 
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Table 3.4. Effect of automated body condition and change in automated body 

condition on the odds ratios of clinical disease occurrence evaluated utilizing logistic 

regression of lactating dairy cattle automated body condition scores collected using a 

3-D camera system at different lactation times and changes of interest at a commercial

dairy in Indiana, USA.

Time Clinical Disease Odds ratio4,5 95% CI6 P - value 

Dry-Off MF3 0.83 0.72 – 0.95 < 0.01 

RP3 1.06 0.92 – 1.21 0.44 

Metritis 0.82 0.73 – 0.92 < 0.01 

Ketosis 1.19 1.09 – 1.29 < 0.01 

DA3 0.94 0.79 – 1.13 0.52 

Calving MF3 0.85 0.75 – 0.96 < 0.01 

RP3 0.99 0.87 – 1.13 0.90 

Metritis 0.91 0.82 – 1.01 0.06 

Ketosis 1.00 0.92 – 1.08 0.97 

DA3 0.88 0.72 – 1.04 0.14 

7 DIM MF3 0.77 0.67 – 0.89 < 0.01 

RP3 0.94 0.82 – 1.08 0.37 

Metritis 0.77 0.69 – 0.86 < 0.01 

Ketosis 1.02 0.93 – 1.11 0.73 

DA3 0.86 0.71 – 1.04 0.13 

dryCHANGE1 MF3 0.98 0.86 – 1.12 0.79 

RP3 0.99 0.86 – 1.14 0.92 

Metritis 1.06 0.94 – 1.19 0.32 

Ketosis 0.88 0.81 – 0.94 < 0.01 

DA3 0.96 0.80 – 1.16 0.66 

dry7CHANGE2 MF3 0.93 0.77 – 1.11 0.40 

RP3 0.92 0.78 – 1.08 0.29 

Metritis 0.89 0.78 – 1.02 0.10 

Ketosis 0.79 0.72 – 0.88 < 0.01 

DA3 0.98 0.78 – 1.23 0.86 
1dryCHANGE = Calving BCS – dry BCS 

27CHANGE = Day 7 BCS – dry BCS 

3MF = milk fever; RP = retained placenta; DA = displaced abomasum 

4Odds ratio for BCS units of 0.1 

5Adjusted for month of calving, parity, and 305 mature-equivalent 

695% confidence intervals for odds ratio 
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Table 3.5. Effect of automated body condition and change in automated body 

condition on the odds ratios of abortion occurrence evaluated utilizing logistic 

regression of dairy cattle automated body condition scores collected using a 3-D 

camera system at different lactation times and changes of interest at a commercial 

dairy in Indiana, USA. 

Time of BCS n Odds ratio4,5 95% CI6 P - value 

Dry 
1026 1.02 0.94 – 1.12 0.59 

Calving 
1027 1.02 0.94 – 1.11 0.58 

7 DIM 
1038 1.01 0.93 – 1.11 0.78 

Conception 
1046 0.92 0.86 – 0.99 0.03 

60 d Pregnant 
1023 0.91 0.85 – 0.98 0.01 

dryCHANGE1

1003 1.00 0.92 – 1.08 0.91 

dry7CHANGE2

1014 0.96 0.86 – 1.07 0.44 

concCHANGE3

698 0.90 0.83 – 0.97 < 0.01 

1dryCHANGE = calving BCS – dry BCS 

27CHANGE = Day 7 BCS – dry BCS 

3concCHANGE = conception BCS – calving BCS 

4Odds ratio for BCS units of 0.1 

5Adjusted for month of BCS, lactation number, disease occurrence, and 305 mature-

equivalent 

695% confidence intervals for odds ratio 
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Table 3.6. Effect of automated body condition score on time to event occurrence for 

conception and abortion estimated from Cox proportional hazard models of lactating 

dairy cattle automated body condition scores collected using a 3-D camera system at 

different lactation times and changes of interest at a commercial dairy in Indiana, 

USA. 

Analysis BCS at Time 
P - Value 

0.1 Quartiles 

Time to Conception Dry-Off 0.61 1.00 

Calving 0.62 0.60 

7 DIM 0.56 0.83 

45 DIM 0.97 0.77 

Survival of Pregnancy Dry-Off 0.95 0.55 

Calving 1.00 0.66 

7 DIM 0.50 0.82 

Conception 0.08 0.08 

60 d Pregnant 0.03 0.14 
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Figure 3.1. Kaplan-Meier survival curves displayed for time to conception in 

comparison to (A) Automated body condition (ABCS) at time off dry-off (n = 599), 

(B) ABCS at day of calving (n = 1404), (C) ABCS at 7 DIM (n = 1472), and (D) ABCS

at 45 DIM (n = 1667) of lactating dairy cattle automated body condition scores

collected using a 3-D camera system at a commercial dairy in Indiana, USA. Mean

time to conception for all BCS was 24 d (95% CI: -10 to 58).
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Figure 3.2. Kaplan-Meier survival curves displayed for survival of pregnancy from 

conception in comparison to (A) Automated body condition (ABCS)1 at time off dry-

off (n = 1140), (B) ABCS at day of calving (n = 1797), (C) ABCS at 7 DIM (n = 1843), 

(D) ABCS at day of conception (n = 2176), and (E) ABCS at 60 d pregnant (n = 2122)

of lactating dairy cattle automated body condition scores collected using a 3-D camera

system at a commercial dairy in Indiana, USA. Mean time to pregnancy loss for all

BCS was 66 d (95% CI: 28 to 105).
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CHAPTER FOUR 

Study Two: 

Body Condition Score Change Throughout Lactation Utilizing an Automated BCS 

Scoring System: A Descriptive Study 

C.M. Truman* and J.H.C. Costa*

*Department of Animal and Food Sciences, University of Kentucky, Lexington 40546
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INTRODUCTION 

Body condition scoring (BCS) allows for an instantaneous appraisal of fat reserves 

of the cow. Fat reserves and changes in fat reserves over time are indicative of cows’ energy 

balance (Edmonson et al., 1989). Body condition score has been evaluated as a factor 

affecting many aspects on farm and used to make managerial changes. Traditionally, BCS 

is determined visually by staff or caretakers, leaving the accuracy of the scoring up to the 

training and experience of the individual scorer. Thus, accurate scoring requires time and 

training to provide qualitative data with limited influence of subjectivity (Edmonson et al., 

1989; Ferguson et al., 1994). 

The time around parturition influences BCS of dairy cattle. Commonly cows 

around parturition reduce their fat reserves by 30% to 40% (Chilliard et al., 2000). Negative 

energy balance, or when the cows nutritional demands exceed intake, is experience by over 

80% of dairy cows during each lactation (i.e. Reid et al., 1966, Coppock et al., 1974). In 

the beginning of lactation cows lose condition, followed by a slow gain of condition 

thereafter (Broster and Broster, 1998). Grummer and Rastani (2003) found that on average 

cows reached positive energy balance by 45 DIM and 90% of cows at 63 DIM. The greatest 

BCS loss occurs in the first 30 DIM, thereafter cows tend to maintain their condition up 

until 90 DIM, when they start to regain BCS (Hady, 1994). Gallo et al. (1996) found cows 

to have their lowest BCS by 100 DIM while Mao et al. (2004) found the lowest BCS to be 

reached between 60 to 80 DIM. Cows tend to exert resources towards milk production until 

the next pregnancy whereas body reserves begin resumption (Yan et al., 2006).  

 Body condition can be affected by parity, DIM, and previous BCS score (Meikle 

et al., 2004). Parity influences BCS of dairy cattle. Previous studies have shown that first 
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and second lactation cows have higher BCS compared to older cows (Frood and Croxton, 

1978). Likewise, in a recent study it was found that first lactation cows tended to have a 

higher BCS than multiparous (Shin et al., 2015). Others have reported similar results of 

either BCS decreasing with parity (Enzanno et al., 2003) or declining to a certain parity 

then increasing (Berry et al., 2011). In addition, it has been reported that second lactation 

cows lost significantly less BCS within 7 weeks post-calving compared to older cows (Mao 

et al., 2004). Although, Sakaguchi (2009) found multiparous cows tended to have greater 

losses in BCS from dry to nadir than primipirous cows. Moreover, in a study done by 

Ruegg and Milton (1995), primiparous cows lost less BCS than multiparous cows during 

the first months after parturition. Meikle et al. (2004), found that while primiparious cows 

lost condition quicker they put on condition faster afterwards and primiparous cows 

reached nadir sooner than multiparous cows (Sakaguchi, 2009). In contrast, Berry et al. 

(2007) found BCS change and parity to be unrelated and Mao et al. (2004) reported BCS 

prior to calving was lower cows during their second lactation compare to their older 

counterparts. 

Cows that develop transition disease have metabolic changes and decreased dry 

matter intake (DMI), both influential to BCS (Bareille et al., 2003). Cincovic et al. (2012) 

found that diseased cows lost more points on their BCS compared to healthy cows by 4 

weeks post-calving. Cows that experienced ketosis had an extended period of BCS loss 

and cows with ketosis had higher BCS in the first 2 weeks in milk prior or during the 

disease bout (Shin et al., 2015). Although Ruegg and Milton (1995) found no difference in 

BCS between diseased and healthy cows, most evidence supports an association between 

BCS in dairy cows and disease occurrence. Selection for milk production has been strongly 
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associated with increased body reserves mobilization (Koenen et al., 2001; Dechow et al., 

2002; Berry et al., 2003). Although Koenen and Veerkamp (1997) reported lower BCS to 

be related to higher milk production, Holter et al. (1990) found that full lactation milk 

production was not correlated with BCS. Grummer and Rastani (2003) concluded that 

energy balance was affected by more than solely milk production because of the low 

correlation between time to positive energy balance and milk production.  

The condition of cows at the start of lactation can impact their future progression 

and curve of BCS. It has been observed that higher conditioned cows have decreased DMI 

in the start of the lactation period resulting in greater loss of condition as lactation 

progresses (Broster and Broster, 1998). Moreover, Gheise et al. (2017) observed the loss 

to be quicker in fat cows compared to less conditioned cow. Additionally, cows with higher 

calving BCS have been described to reach maximum DMI later in the lactation period 

compared to lower BCS cows (Garnsworthy and Jones, 1987) and higher conditioned cows 

maintained the highest BCS while low conditioned cows maintained low BCS within 4 to 

5 months post-calving (Jílek et al., 2008). It has been assumed that the smallest change in 

BCS, 0.25 BCS, would not be possible to detect using manual visual observation 

techniques for > 3 weeks in lactation (Grummer and Rastani, 2003). Other researchers have 

modeled BCS across DIM using manual BCS data (Friggens et al., 2004; McCarthy et al., 

2007; Roche et al., 2007). However, the limitation of time and labor reduce the frequency 

of data collected per animal. Utilizing an automated body condition scoring (ABCS) 

system allows for a more sensitive measure to more quickly notice BCS changes and 

estimate a more precise BCS change. Thus, the aim of this study was to determine the 
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different trajectories of ABCS according to various cow factors and the factors affecting 

ABCS. 

MATERIALS AND METHODS 

Data was collected from a commercial dairy farm in Southern Indiana. The farm 

and methods previously detailed in the last thesis chapter follow through into this study 

chapter. Although the farm set-up and data collection followed the prior descriptions, this 

study used the collected data to evaluate ABCS across time stratified by various factors. 

The farm housed approximately 3,200 dry and lactating cows. Holstein cows (n = 2,343) 

used in this study were 2.1 ± 1.1 (mean ± SD) lactation number, 186.1 ± 111.1 DIM, 3.42 

± 0.24 calving BCS, and 12,720 ± 2028 Kg of predicted milk yield (305PMY). The farm 

had two automatically recording BCS cameras (DeLaval International AB, Tumba, 

Sweden), one mounted on each of the two sort-gates at parlor exits (n = 2). The technology 

operated by filming a 3-D video, automatically selecting the best image, and generating a 

BCS score based on the classified algorithm based on Edmonson et al. (1989). All BCS 

were viewed and downloaded from DelPro Farm Manager (DeLaval International AB, 

Tumba, Sweden). Scores were reported on a 1 to 5 scale, in 0.1 increments. All lactating 

cows passed under the camera one time per day and their BCS was obtained. Daily 

automated body conditions scores were matched on the related DIM of the animal for 

analysis.  

Statistical Analysis 

Statistical analyses were performed using SAS 9.3 (SAS Institute Inc., Cary, NC, USA). 

All descriptive statistics used to stratify factors related to ABCS were determined utilizing 

PROC MEANS and PROC UNIVARIATE. Body condition score data was used from DIM 
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0 to 300 because of limited cows available to score after this threshold. Only one lactation 

period per cow was included in the dataset, the lactation chosen was the one with more 

scores. Lactation, DIM, and disease status were obtained from a data integration software 

(Bovisync, Dairy LLC, Eden, WI), which synced data entered by farm personnel from the 

on-farm computer. Milk production data was gathered from DelPro Farm Manager 

software (DeLaval International AB, Tumba, Sweden). Outlying ABCS were identified 

and removed. Scores ≤ 2.3 and ≥ 4.1 represented 0.11 and 0.13 % of the total scores, 

respectively, and were not used. Of all scores collected, 99.76 % were plotted. 

Additionally, mean daily BCS were stratified and modeled by lactation number (1, 2, 3, 4 

and ≥ 5), calving ABCS (≤ 3.2, 3.3, 3.4, 3.5, or ≥ 3.6), and disease status (“diseased” or 

“non-diseased”). Positive diseased status was determined if cows developed metritis, 

retained placenta, or milk fever within 14 DIM or ketosis or displaced abomasum within 

30 DIM. Lastly, mean daily BCS was plotted against mean daily milk yield. Data was 

evaluated to determine future BCS to nadir. All data after the mean nadir, 71 DIM, was 

removed. Separate univariate linear regression models were created using the PROC GLM 

for each evaluated explanatory variable. The variables included were DIM, lactation 

number, calving ABCS, calving month, diseased or non-diseased, and 305-d predicted milk 

yield (305PMY). Variables with P < 0.05 in the univariate models were offered to the 

multivariable model. The relationship of ABCS with all combined factors was analyzed 

using the MIXED procedure, where cow was used as a repeated subject. Variables were 

retained in the multivariable model if P < 0.05. The following describes the function from 

the final multivariable mixed model: 

yijklm = β0 + β1 × DIMi + β2 × LACTj + β3 × CABCSk + β4 × DISl + β5 × PMYm + eijklm 
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where Yijklm is the response variable of automated body condition; β0 is the intercept; β1 is 

the regression days in milk; DIMi is effect of days in milk; β2 is the regression coefficient 

of lactation number; LACTj is the effect of lactation (lactation = 1, 2, 3, 4, 5 and ≥ 6); β3 is 

the regression coefficient of calving automated body condition score; CABCSk is the effect 

of calving automated body condition score; β4 is the regression coefficient of disease status; 

DISl is the effect of disease status (positive or negative); β5 is the regression coefficient of 

305-d predicted milk yield; PMYm is the effect of 305-d predicted milk yield and ehijklm is

the residual error. 

RESULTS 

Descriptively, the distribution of collected body condition scores (n = 561,228) are 

displayed in Figure 4.1, with a 2-period moving average trendline. Mean ABCS for all 

scores collected was 3.29 (± 0.25 ABCS; 1.50 to 5.00) and mean calving BCS was 3.42 (± 

0.22 ABCS; 1.55 to 5.00). The range of BCS at calving was 2.2 to 4.0 (3.42 ± 0.24 ABCS). 

The curves showed a decrease in ABCS until nadir followed by an increase in condition. 

After the loss of BCS post-calving, cows reached their calving ABCS in average by day 

256, 3.42 ABCS (± 0.23 ABCS). On average, cows lost 0.24 ABCS (± 0.25 ABCS) by 71 

DIM (Figure 4.2). Thereafter cows regained condition and were at 3.47 ABCS (± 0.22 

ABCS) at 300 DIM. As DIM progressed the number of records per day decreased which 

is agreeable with previous work (Banos et al., 2004), increasing the variability in the dataset 

in later DIM. Additionally, a spike is shown in the dataset from calving day through the 

first week (Figure 4.1). This is most likely because of the increase in records available, as 

seen by Banos et al. (2004). When stratified by lactation number a similar ABCS path is 

seen across lactation in all lactations (Figure 4.2). Mean calving BCS was 3.43 (± 0.21), 
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3.38 (± 0.25), 3.44 (± 0.29), 3.45 (± 0.26), 3.42 (± 0.30 ABCS) for lactation numbers 1, 2, 

3, 4, and ≥ 5, respectively. Cows in their first lactation had markedly less loss and 

consistently stayed heavier across lactation. Cows in their ≥ 5 lactation lost more condition 

and remained lower conditioned across lactation. When separated into primiparous and 

multiparous, primiparous cows reached their nadir score sooner and with less BCS loss 

(Table 4.1). Multiparous cows lost more than twice  the  the calving body condition 

percentage compared to primiparous cows by nadir although they reached nadir 16 days 

later. Yet multiparous cows had dipped to 3.13 ABCS by 38 DIM, primiparous cows nadir 

(Table 4.1). 

While average calving BCS for cows that remained healthy or developed a disease 

was similar, 3.42 (± 0.21 ABCS) and 3.41 (± 0.23 ABCS), respectively, the loss thereafter 

was not. Healthy cows reached nadir at 65 DIM at 3.18 ABCS (± 0.23 ABCS). Cows that 

acquired a disease reached 3.12 ABCS nadir (± 0.25 ABCS) at 59 DIM. Loss to nadir was 

0.24 and 0.29 for healthy and diseased cows, respectively. By 300 DIM, healthy cows were 

at 3.48(± 0.22 ABCS) and diseased cows were at 3.44 ABCS (± 0.20 ABCS). Cows 

stratified by their initial calving ABCS of ≤ 3.2, 3.3, 3.4, 3.5, and ≥ 3.6 had similar paths 

of ABCS across lactation and maintained their levels in difference from their counterparts. 

Nadir ABCS was reached at 46, 76, 69, 53, and 56 for calving ABCS of ≤ 3.2, 3.3, 3.4, 3.5, 

and ≥ 3.6, respectively. Additionally, their nadir BCS were 3.05 (± 0.25), 3.10 (± 0.25), 

3.13 (± 0.24), 3.21(± 0.27), and 3.29 (± 0.30), respectively. When plotted against milk 

yield, the negative energy balance associated with ABCS mobilization can be observed 

(Figure 4.3). As milk production began to increase, ABCS decreased to attain the energy 

needed for maintenance and milk production. Once cows become pregnant, milk 
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production decreases to divert energy to develop the pregnancy and next lactation, and 

ABCS begins to regain. 

The multivariate model that best explained the ABCS curve through lactation was 

found as: 

ABCSijk = 1.4838 + -0.00452 * DIMi + -0.03851 * Lactation numberj + 0.5970 * Calving 

ABCSk + 0.02998 * Disease Status (negative)l + -1.52E-6 * 305-d predicted milk yieldm + 

eijklm 

Mean and SD of all parameters used in individual univariate analysis are included 

in Table 2. Days in milk, lactation number, calving ABCS, calving month, disease status, 

and 305PMY were all significant predictors of ABCS in each of their individual univariate 

models (P < 0.0001; Table 4.3).  Both DIM and calving ABCS had higher R2 values, 0.11 

and 0.16 respectively (Table 4.3). When entered into the full multivariate model, calving 

month was not significant (P > 0.05) and removed from the model. All variables remaining 

in the multivariate model were significant (P < 0.001; Table 4.4). 

DISCUSSION 

The BCS curve through the lactation found in this study utilizing an automated BCS 

system was like recent descriptions of BCS curves measured manually (Koeck et al. 2014; 

Gomez et al., 2018). Descriptively, mean calving BCS for all cows in this study was higher 

than generally found, which may have affected the relative BCS found across lactation, 

although changes may of not be affected. Others have found calving BCS of similar to the 

found in this study (Horan et al., 2004; Kennedy et al., 2007). Additionally, the same 

studies found the nadir BCS to be much larger losses to nadir than was seen in this study. 

Body condition score loss of ≥ 0.25 by 6 weeks post-calving was found in one-third of 
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cows, with no difference between primiparous and multiparous cows by Hoedemaker et 

al., 2009. Conflicting BCS results could be due to the diet fed in the trial and that some 

studies use pastures as a source of the diet, which affects DMI and energy intake (Tilahun, 

2016). Ferguson (2002) argued that a quarter point change in BCS cannot be accurately 

evaluated by the difference in 2 observations, instead recommending 2 observations at each 

time point. As well, genetic accuracy has been markedly higher (53 v. 28 %) for daily 

rather than single measured BCS (Banos et al., 2004).  The modeled ABCS curves allow 

for observations to be made regarding factors potentially affecting the progression of 

ABCS throughout lactation. Investigating these effects can provide useful information to 

incorporate into predictive models for ABCS or to assist in management on farm. 

The initial univariate models provided that all individual parameters used were 

originally associated with the predictive outcome, ABCS. Calving month was not 

significant when entered the full multivariate model, likely because the other parameters 

accounted for this variability in calving month. This study chose to use the initial drop in 

ABCS after parturition as the predictor phase only. It has been noted that three different 

periods within lactation have different uses and applications of BCS, early lactation for 

disease risk, middle lactation for breeding, and late lactation and dry for next lactation 

preparation (Emmans, 1994; Lovendahl et al., 2010). The single phase chosen for this herd 

incorporated both disease risk and initial breeding time periods. When using ABCS, all 

cows are automatically scored on a daily basis and by incorporating a predictor function to 

the system, this would allow for an accurate individual on-farm management strategy for 

specific cows of interest. For example, Gomez et al. (2018) recommends only inseminating 

cows with a BCS > 2.5, an alert ABCS program could determine individual cow breeding 
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preparation needs. Additionally, Mansouryar et al. (2018) reported increased prediction of 

disease detection when combining all monitored parameters, including calving BCS, a 

possibility with ABCS. Body weight has been used to predict a disease prior to a milk yield 

decrease 50% of the time, with BCS being more accurate than body weight (Maltz, 1997). 

A potential issue with managing ABCS is the genetic predetermination of BCS. The 

importance of the early lactation monitoring revolves around the lack of the environment 

to allow the cow to reach its full genetic potential. In later lactation, cows are less energy 

stressed and can biologically attempt to re-establish their genetic path, although attention 

does need to focus on over conditioning (Friggens, 2007; Friggens and Newbold, 2007). 

The Wilmink function, described by McCarthy et al. (2007), incorporated 3 phases, 

involving the curve height, initial lactation phase, final phase, and DIM. As a result, the 

equation represented the majority of BCS variation, higher than found in this study. Roche 

et al. (2007) also developed a function to describe BCS, Roche-Berry-Boston (RBB) 

function, which has an additional phase included in the total function model. 

Although reliable genetic records were unavailable in this study, Friggens et al. 

(2004) hypothesizes an improvement in BCS prediction when incorporating genetics. 

Many have discussed the idea that body tissues have predetermined genetic trajectories 

such as milk production potential or BCS (Waddington, 1957; Emmans, 1988; Friggens et 

al., 2004). The cow will try to maintain this predetermined BCS trajectory by control 

nutrient intake, unless the environmental factors do not allow, thus upon availability of 

resources to increase or decrease BCS to obtain the trajectory (Wright and Russel, 1991; 

Friggens et al., 2004).  This control of BCS is theorized to have an evolutionary advantage, 

where Friggens et al. (2003) argued that increased condition raises energy costs and 
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reduces the ability to evade predators. Some have discussed an ultimate low of BCS for 

cows to obtain (Wildman et al., 1982; Neilson et al., 1983; Oldham & Emmans, 1989). 

Others have hypothesized that cows would merge towards the same BCS by 16 weeks in 

milk ( Forbes, 1977; Forbes, 1983). Body condition and mobilization have genetic aspects, 

affecting the cows predisposed BCS path, while environment affects the ability to stay on 

that path. Garnsworthy and Jones (1987) have reported that cows with lower BCS at 

calving direct more DMI than body mobilization towards milk production, resulting in 

increased efficiency. Genetic merit also affects the condition lost from calving to AI, with 

high merit cows losing more BCS (Kennedy et al., 2003). Cows with higher genetic merit 

achieved their nadir BCS later in DIM (Dillon et al., 2004). 

Although this study was able to find various factors within cow that can impact 

future ABCS, incorporating this into farm management is still far from possible. The model 

estimates a small portion of the entire factors that influence the future ABCS of the cow. 

In the future, studies should include other factors that can improve the accuracy of the 

model would increase its applicability on farm. Additionally, using the ABCS scoring 

model in a study set instead of the modeling set, to predict future ABCS scores would help 

to conclude the usefulness of the model. 

CONCLUSIONS 

Body condition score can vary depending on many aspects relative to a specific cow. 

Incorporating genetics into the newly available automatic and constant BCS data may 

allow for equations to be formed to alleviate negative energy balance symptoms associated 

with the transition period. Although other studies have evaluated and observed the impact 

and progression of BCS across lactation, this study aimed to determine these effects with 
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a new, commercially available automated body condition scoring system. The 

automatization of BCS may provide additional information from the advantage of constant 

BCS monitoring that previous studies may have lacked from using only manual BCS. 

Descriptively, the BCS curve trough lactation was like other studies utilizing manual 

scoring. Merging automated body condition scoring into future studies on commercial 

dairies may assist in providing protocols regarding management of an automated BCS 

system. 
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Figure 4.1. Distribution of all automated body condition scores (n = 561,237)1 

collected at a commercial dairy in Indiana2. 

1 From 2,345 cows 

2 Plotted with a 2-period moving average trendline 
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Table 4.1. Calving automated body condition scores (ABCS) and loss to nadir1 

averages for lactating dairy cows, overall and stratified by primiparous (lactation = 

1) and multiparous (lactation ≥ 2) of ABCS collected using a 3-D camera system at a 

commercial dairy in Indiana, USA. 

Parameter Primiparous Multiparous Total 

Calving BCS 3.40 3.40 3.42 

Nadir BCS 3.26 3.10 3.17 

Days to Nadir 38 54 71 

% of BCS Loss 4.12 8.82 7.31 

1 Defined as the 1st lowest day by the hundredth decimal place 
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Table 4.2. Descriptive statistics of automated body condition scores (ABCS) of 

lactating dairy cows collected using a 3-D camera system at a commercial dairy in 

Indiana, USA.  

Parameter Mean SD Minimum Maximum 

DIM 158.10 110.22 0 505 

Lactation number 2.07 1.11 1 7 

Calving ABCS1 3.42 0.24 1.55 5.00 

Calving month 6.2 4.4 1 12 

Disease status2 0.174 0.37 0 1 

305PMY3 12,720 2028 7,418 22,621 
1 ABCS = Automated body condition score 
2 Disease status = Positive if cows developed metritis, retained placenta, or milk fever ≤ 

14 DIM, or ketosis or displaced abomasum ≤ 30 DIM 
3 305PMY = 305-d predicted milk yield 
4 16.5 % of data were from disease status positive cows 
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Table 4.3. Results of individual variable univariate model’s associations with 

automated body condition score (ABCS) lactation curve of dairy cattle using a 3-D 

camera system at a commercial dairy in Indiana, USA. 

Parameter Intercept Estimate4 SE5 R2 P-Value6

DIM 3.38 -0.0038 < 0.0001 0.11 < 0.0001 

Lactation number 3.33 -0.043 0.00054 0.040 < 0.0001 

Calving ABCS1 1.74 0.44 0.0026 0.16 < 0.0001 

Calving month 0.16 0.00015 < 0.0001 0.0064 < 0.0001* 

Disease status2 3.20 0.062 0.0016 0.0095 < 0.0001 

305PMY3 3.34 -0.327E-5 < 0.0001 0.0090 < 0.0001 
1 ABCS = Automated body condition score 
2 Disease status = Positive if cows developed metritis, retained placenta, or milk fever ≤ 

14 DIM, or ketosis or displaced abomasum ≤ 30 DIM 
3 305PMY = 305-d predicted milk yield 
4 Estimate for disease status refers to no negative disease status, positive disease status 

estimate is zero 
5 Standard error is for parameter estimates 
6 Significance declared for parameter estimates 
* Non-significant intercept
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Table 4.4. Results of individual variables in a multivariate model association with 

automated body condition score (ABCS) lactation curve of dairy cattle using a 3-D 

camera system at a commercial dairy in Indiana, USA. 

Parameter Estimate4 SE P-Value

Intercept 1.48 0.054 < 0.0001 

DIM -0.0045 < 0.0001 < 0.0001 

Lactation number -0.038 0.0029 < 0.0001 

Calving ABCS1 0.60 0.015 < 0.0001 

Disease status2 0.030 0.0083 0.0003 

305PMY3 -1.52E-6 0.00 < 0.0001 

1 ABCS = Automated body condition score 
2 Disease status = Positive if cows developed metritis, retained placenta, or milk fever ≤ 

14 DIM, or ketosis or displaced abomasum ≤ 30 DIM 
3 305PMY = 305-d predicted milk yield 
4 Estimate for disease status refers to no negative disease status, positive disease status 

estimate is zero 
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Figure 4.2. Mean (95% CI) automated body condition score (ABCS) of dairy cattle 

collected using a 3-D camera system at a commercial dairy in Indiana, USA. Data 

presented across days in milk to 300 days in milk (DIM) stratified by: (A) Overall1, 

(B) Lactation number, (C) Calving ABCS2, and (D) Disease status3. 
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(B) 
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(D) 

 

1 From 2,345 cows 
2 ABCS = Automated body condition score 
3 Disease status = Positive if cows developed metritis, retained placenta, or milk fever ≤ 

14 DIM, or ketosis or displaced abomasum ≤ 30 DIM 
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Figure 4.3. Mean automated body condition score (ABCS) and mean daily milk yield 

of dairy cattle collected using a 3-D camera system at a commercial dairy in Indiana, 

USA. Data presented across days in milk to 300 days in milk (DIM).
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CHAPTER FIVE 

Summary of Results: 

Automated body condition scoring: progression across lactation and its association 

with disease and reproduction in dairy cows 
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CONCLUSIONS 

The potential of managing dairy herds using automated body condition scoring may 

increase producer adoption rates, in comparison to manual body condition scoring. While 

previous relationships of manual body condition and disease and reproduction have varied, 

this system may allow for a more uniform scoring compared to studies comparing other 

manual scoring results. The first original research study presented found similar results as 

those found with manual body condition scoring. The second original research study found 

similar related factors as those seen with manual scoring research. Investing in automated 

body condition scoring systems may allow for easier integrated into management decisions 

and practices.  

FUTURE RESEARCH 

Future studies should focus on producer decision making regarding the potential 

implementation of the technology based on the effect of regular body condition scoring on 

management protocols and herd management and cost-benefit calculations on an individual 

herd level. Projects using body condition score as a practice versus not should be done to 

examine the impact of automated body condition score usage on disease, reproduction, and 

feeding economics. In addition, farm practices that are practical for producers should be 

investigated so proper practice recommendations can be made. Examples are suggested 

monitoring of feed rations to manage body condition or the incorporation of automated 

body condition into concentrate feeder usage, to automatically adjust concentrate intake 

based on body condition. 
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