OPSET Program for Computerized Selection of Watershed Parameter Values for the Stanford Watershed Model

Digital Object Identifier: https://doi.org/10.13023/kwrri.rr. 34
Earnest Yuan-Shang Liou
University of Kentucky
L. Douglas James

University of Kentucky
Click here to let us know how access to this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/kwrri_reports
Part of the Computer Sciences Commons, Hydrology Commons, Statistical Models Commons, and the Water Resource Management Commons

Repository Citation

Liou, Earnest Yuan-Shang and James, L. Douglas, "OPSET Program for Computerized Selection of Watershed Parameter Values for the Stanford Watershed Model" (1970). KWRRI Research Reports. 164.
https://uknowledge.uky.edu/kwrri_reports/164

OPSET
PROGRAM FOR COMPUTERIZED SELECTION OF WATERSHED PARAMETER VALUES FOR THE STANFORD WATERSHED MODEL

Earnest Yuan-Shang Liou

WAShington waten RESEARCH CENTER milRARY

Part 1 of a completion report describing work supported in part by the Office of Water Fesources Research, Department of the Interior, under provisions of Public Law 88-379, as Project Number C-1282 under Title II Research Grant No. 14-01-0001-1964.

Dr. L. Douglas James, Principal Investigator
University of Kentucky Water Resources Institute Lexington, Kentucky 1970

INTRODUCTION

Land use control in the tributary watershed as well as in the flood plain has been receiving increased attention as a method for reducing flood damage. One of the most complex technical questions which has to be resolved in structuring the appropriate use of this alternative is how downstream flood hazard varies with tributary watershed conditions. The approach to this problem in this research sponsored through the University of Kentucky Research Foundation and supported in part by funds provided by the United States Department of the Interior as authorized under Title II of the Water Resources Research Act of 1964, Public Law 88-379, revolved around using the Stanford Watershed Model as a tool for correlating runoff patterns with land use through model parameters as intermediate variables. The completion report for the project is in three parts.

1. Liou, Earnest Y : OPSET: Program for Computerized Selection of Watershed Parameter Values for the Stanford Watershed Model. Lexington: University of Kentucky Water Resources Institute, Research Report No. 34, 1970.
2. Ross, Glendon A. The Stanford Watershed Model: The Correlation of Parameter Values Selected by a Computerized Procedure with Measurable Physical Characteristics of the Watershed. Lexington: University of Kentucky Water Resources Institute, Research Report No. 35, 1970 .
3. James, L. Douglas. An Evaluation of Relationships Between Streamflow Patterns and Watershed Charecteristics Through Use of OPSET: A Self-Calibrating Version of the Stanford Watershed Model Lexington: University of Kentucky Water Resources Institute, Research Report No, 36: 1970,

The first of the reports describes the development of OPSET, a version of the Stanford Watershed Model programmed to estimate best-fit values of watershed parameters directly from climatological and streamflow data, and contains a program listing. The second report describes the application of OPSET to 17 rural watersheds and correlations derived between model parameters and watershed characteristics. It also describes and examines the significance of changes noted in parameter values with urbanization in three other watersheds. The third report applies the findings of the first two to flood control management problems. The results on all three levels have been highly encouraging. The three reports need to be read together for a complete understanding of the research approach.

The study is indebted to many besides the sponsors, Considerable use was made of the facilities of the Water Resources Institute and of the Computing Center at the University of Kentucky. Much of the data was obtained through A.B.Elam, Ir., Kentucky State Climatologist and the Louisville Office of the U.S. Geological Survey, Miss Nancy Crewe and Miss Patricia Miller prepared the reports.

Abstract

The advent of high-speed electronic computer made it possible to model complex hydrologic processes by mathematical expressions and thereby simulate streamflows from climatological data. The most widely used program is the Stanford Watershed Model, a digital parametric model of the land phase of the hydrologic cycle based on moisture accounting processes. It can be used to simulate annual or longer flow sequences a.t hourly time intervals. Due to its capability of simulating historical streamflows from recorded climatological data, it has a great potential in the planning and design of water resources systems. However, widespread use of the Stanford Watershed Model has been deterred by difficulties in understanding and finding a computer sufficiently large to run the bulky program. More important, the estimation of values for key parameters was both time-consuming and subjective as it had to be done by trial and error.

The objective of this study is to develop a computerized parameter optimization procedure, a self-calibrating watershed model, based on the FORTRAN version of the Stanford Watershed Model known as the Kentucky Watershed Model. This computerized procedure is named OPSET because its objective is to determine an optimum set of parameter values. The basic approach of OPSET is to match synthesized flows with recorded flows. The first step is by sensitivity studies to determine which key watershed parameters are sensitive in the simulation of flows and are difficult to measure or estimate directly. The second step is to devise a scheme for adjusting numerical estimates of the selected key parameters systematically improving flow simulation until the best possible matching is achieved

and to program this scheme into a streamlined Kentucky Watershed Model. Independent adjustment schemes are used for parameters associated with simulating runoff volumes, recession flows and flood hydrograph. The third step is to empirically test and improve this self-calibrating watershed model by applying it to a number of watersheds in Kentucky. OPSET estimates selected watershed parameters on a one water year basis, and the values of parameters best describing the watershed characteristics should be averaged from several OPSET-selected one-year-based values.

In applying OPSET to over 20 Kentucky watersheds which represent quite a wide range of topographic and soil conditions, this model was found to be rather successful. It is able to simulate streamflows and find more consistently estimated parameter values than the trial-and-error approach. The time spent on calibrating the watershed parameters is greatly reduced. The user does not have to spend so much time familiarizing himself with the program before he can properly use the Model. The program uses standardized criteria which reduce the subjectivity of estimating parameter values.

The recommendation is made that OPSET should be applied to areas where the climatological setting and geographical conditions differ from Kentucky in order to refine and modify it for a wider range of applicability. Also, the Model itself needs periodic updating in order to take advantage of subsequent empirical relationships or roojsture accounting procedures.

TABLE OF CONTENTS
Page
INTRODUCTION iii
ABSTRACT v
LIST OF TABLES xiii
LIST OF ILLUSTRATIONS xv
CHAPTER
I. HYDROLOGIC MODELING 1
The Modeling Concept 1
The Stanford Watershed Model 3
The Physical Significance of Parameters 4
Computerized Optimization of Parameter Values 6
Study Outline 7
II. THE DEVELOPMENT OF OPSET 9
The Basic Model 9
Starting Issues 10
Seasonal Parameters 10
Channel Routing 11
Watershed Segmentation 13
The Basic Strategy 14
Rearrangement of the Model 17
The Objective Function 19
Evaluation of Two Recession Constants 20
Evaluation of Six Runoff Volume Parameters 21
Evaluation of One Interflow Volume Parameter 25
Evaluation of Four Channel Routing Parameters 28
Adjustments of Climatological Data 29
Initial Parameter Values 32
Time Period Covered by Calibration Run 34
Summary 36
III. PROGRAM DESCRIPTION 37
MAIN Program 37
Trip 1 39
Initial Moisture Conditions 40
Page
Trip 2 43
Trip 3 44
Arrangement of Subroutine Programs 45
Accounting Subroutines 45
Subroutine READ 45
Context 45
Purpose 48
Procedure 48
Subroutine DAYNXT 49
Context 49
Purpose 49
Procedure 49
Subroutine DAYSUM 50
Context 50
Purpose 50
Procedure 50
Discussion 50
Subroutine DAYOUT 51
Context 51
Purpose 51
Procedure 52
Subroutine EVPDAY 52
Context 52
Purpose 55
Procedure 55
Discussion 56
Subroutine PRECHK 56
Context 56
Purpose 57
Procedure 57
Discussion 60
Subroutine FREPRD 61
Context 61
Purpose 62
Procedure 63
Discussion 65
Recession Constant Subroutines 65
Subroutine RECESS 65
Context 65
Purpose 66
Procedure 66
Page
Subroutine SET2RC 69
Context 69
Purpose 69
Procedure 69
Discussion 71
Subroutine SET1RC 72
Context 72
Purpose 73
Procedure 73
Discussion 73
Land Phase Parameter Subroutines 74
Subroutine SETFVP 74
Context 74
Purpose 78
Procedure 78
LZC 82
SUZC 88
ETLF 90
BUZC 94
SIAC 96
Discussion 98
Subroutine SETFDI 99
Context 99
Purpose 100
Procedure 100
Discussion 102
Subroutine SETBMI 102
Context 102
Purpose 106
Procedure 106
Discussion 109
Subroutine SETRBF 109
Context 109
Purpose 110
Procedure 110
Discussion 112
Subroutine SETBIV 113
Context 113
Purpose 115
Procedure 115
Discussion 117
Page
Channel Routing Subroutines 118
Subroutine STRHRS 118
Context 118
Purpose 118
Procedure 118
Discussion 121
Subroutine ADJHYD 121
Context 121
Purpose 123
Procedure 123
Subroutine SETHRP 124
Context 124
Purpose 126
Program Developnient 126
Optimization Rules and Procedure 131
Rule 1 132
Rule 2 135
Discussion 137
Subroutine FIXTRI 187
Context 137
Purpose 138
Procedure 138
Discussion 139
Subroutine TEMERT 139
Context 139
Purpose 140
Procedure 140
Discussion 141
Subroutine STORRT 142
Purpose 142
Procedure 142
Subroutine SETSRP 143
Context 144
Purpose 14.
Discussion of Storage Routing 14 손
Procedure 146
Conclusion 15 :
1V. OPERATION AND APPLICATIONS 142
Operation of the OPSET Program 152
Selection of Water Years 155
Pa.ge
Averaging Method Studies 156
Questions 1 and 2 157
Question 3 162
Averaging Recommendations by Parameter 168
A Closer Look at Modeling Base Flow Recession 170
Number of Water Years to Use in Averaging 173
V. CONCLUSIONS AND RECOMIMENDATIONS 177
APPENDIX 181
A. LISTING OF KWM 182
B. LISTING OF OPSET 226
C. DICTIONARY OF VARIABLES USED IN THE KENTUCKY WATERSHED MODEL AND OPSET 279
BIBLIOGRAPHY 296

LIST OF TABLES

Table Page1. Effects of Eliminating Seasonal Variation inModeling Upper Zone Storage Capacityand Infiltration12
2. Parameters Estimated by OPSET 16
3. Effect of Interval Used in Inner Loop on Simulated Monthly Flow Volumes: Elkhorn Creek near Frankfort, Kentucky, 1964 Climatological Data 26
4. Effect of Interval Used in Inner Loop on Numberof Adjustments to Convergence, OptimalParameter Values, and the Monthly FlowDeviations: Elkhorn Creek near Frankfort,Kentucky, 1964 Data27
5. Studies on Sensitivity to Starting Parameter Values:Cave Creek near Lexington, Kentucky . . 33
6. Summary of Subroutine Programs Showing Mnemonic Definitions, Program Listing Locations, and Abbreviated Names 46
7. Table Printed by Subroutine DA YOUT 53
8. Number of Adjustments Made for RainfallAnamolies for Tested Watersheds.59
9. Adjustment of Flow Volume Parameters: SouthFork Beargrass Creek, Lousiville, Kentucky194779
10.11.Sensitivity Studies: Elkhorn Creek Watershed(1964) with LZC $=3.50, \mathrm{BIMIR}=0.65$,$S U Z C=0.10, E T L F=0.20, B U Z C=0.75$,$S I A C=3.0$83
12. Elkhorn Creek Watershed Sensitivity Studies: Monthly Synthesized Flow Volumes as a Fraction of Volumes with LZC $=3.50$ 84
Table Page
13. Elkhorn Creek Watershed Sensitivity Studies: Monthly Synthesized Flow Volumes as a Fraction of Volumes with SUZC $=1: 0$ 89
14. Elkhorn Creek Watershed Sensitivity Studies:Monthly Synthesized Flow Volumes as aFraction of Volumes with ETLF $=0.2$. . 92
15. Elkhorn Creek Watershed Sensitivity Studies:Monthly Synthesized Flow Volumes as aFraction of Volumes with $\mathrm{BUZC}=0.75$95
16. Elkhorn Creek Watershed Sensitivity Studies:Monthly Synthesized Flow Volumes as aFraction of Volumes with SIAC $=3.0$. . 97
17. Elkhorn Creek Watershed Sensitivity Studies: Monthly Synthesized Flow Volumes as a Fraction of Volumes with BMIR $=0.65$. 105
18. Estimation of NCTRI and SRX for Pond Creek, Kentucky, 1968 Storm Hydrographs 133
19. Parameter Values Used for Studying AveragingMethods: Cave Creek Near Fort Spring,Kentucky
Averaging Method Studies: Cave Creek 1955- The Winter Flood Year (W) 159
21. Averaging Method Studies: Cave Creek 1958- The Summer Flood Year (S) 160
22. Averaging Method Studies: Cave Creek 1965 - The Driest Year (D) 161
23. Parameter Values with Different Types of Averaging 164
24. Deviations of Monthly Simulated Flows with Different Types of Averaging 166
25. Parameter Values with Different Numbers of Years Averaged: Cave Creek Watershed 174
26. Summary of Results with Different Numbers of Years Averaged: Cave Creek Watershed 175

LIST OF ILLUSTRATIONS

Figure Page1. Schematic Diagram of Parameter OptimizationProcedure 18
Distribution of 1-hour Rainfall for Area Eastof 105° Meridian64
3. Determination of Beginning and Ending Times of a Recorded Hydrograph 120
4. Elimination of Recorded Hydrograph Overlapping 122
5. Response of a Given Elood Hydrograph (ElkhornCreek, March, 1964) to Changing the TwoHydrograph Routing Parameters NCTRI andSRX. (RHPF $=23200 \mathrm{cfs}$, upper number isSHPF, lower number is NIRTS). 127
6. Rules Used to Find Optimal Set of NCTRI and SRX for Each Flood Hydrograph 130
7. Relationship Between SRX and Synthesized Streamflow 146
8. Determination of FSRX by Trial and Error Method 148
9. Relationship Between BFRC and Initial Base Flow, Helton Branch Watershed 171
10. Relationship Between BFRC and Initial Base Flow, McDougal Creek Watershed 172

CHAPTER I

HYDRCLOGIO MODELING

THE MODELING CONCEPT

The high-speed electronic computer is revolutionizing hydrology. The capacity of the computer to store large volumes of datiz and to perform repetitious ealculations has made hydrologic modeliag a viable tool for the quartitative estimation of runoff. Chov (5*, pp, 29-1 to 29-2) points out
"that hydrologic analysis end design necessitate processing a large amount of quantitative data which has been accumulating at a rapid rete, and that theoretical approaches have been gainfully introduced into raodern quantitative hydrology and such approaches involve complicated mathematicai procedures and models which can be solved practically only by high-speed computers."
A hydrologic micdel uses some analogous system to estimate the outcome of hydrologic processes. A model may represent only an individual hydrologic phenomenon(e.g., ground-water movement), or it may attempt to capture all the interacting processes determining catchment behavior. Sorne irodel builders have used a reduced seale laboratory replice of the natural system or an arrangement of analog components. Others have used mathematical expressions in digital computer programs. Hach ty je of model seeks to simulate the physical response of a netural system to stimulation by climatologica? syents and to study variation in the response as man changes the system.
*This number refers to the iist of references at the end of this report.

In 1964, Amorocho and Hart (1) classified the methodologies used in hydrologic research into two broad categories. One is devoted to scientific research into physical hydrology in an attempt to better understand the mechanisms and interactions within each component of the hydrologic cycle. The other has been motivated by the pressing need to solve practical problems and has therefore concentrated on establishing quantitative relationships between precipitation and streamflow from data describing the functioning of the runoff system as a whole.

The distinction is found in the two aspects of modeling: the overall model and the component model. The overall model lumps the combined effects of component hydrologic processes occurring at rates varying with time and over an area into a single analogy. If the entire runoff cycle is lumped together, the generation of streamflow from runoff is modeled by one transform which makes no pretense of representing physical processes. Overall models are largely empirically derived from observed patterns of inputs and outputs from the lumped system.

On the other hand, the component model attempts to portray the overall reaction of a system by summing the functioning of its component physical processes. The modeling is shifted from the system as a whole to a series of individual processes and becomes less empirical and more theoretical. As fewer processes are lumped in a given equation, the representation becomes more complex and computationally more time-consuming. The component processes used in any model can conceptually be further subdivided into a group of lesser processes, but experience with the overall results is needed to judge which lines of additional refinement are most productive.

The Stanford Watershed Model developed by Crawford and Linsley (10) is the pioneering effort modeling the runoff cycle from precipitation to streamflow by dividing overall watershed response into individual components each representing a known hydrologic process by an empirical expression. Each transform lumps the outcome of a process occurring at varying rates over a watershed segment and over a 15 -minute period into a single estimate. Without lumping, even the most rapid computer could not simulate streamflow. With process-oriented lumping, a model makes the best use of information on process functioning.

The digital computer program models the whole of the land phase of the hydrologic cycle. The model utilizes a moisture accounting process to synthesize continuous streamflow from climatological data, measurable physical watershed characteristics, and a set of numerical values estimated for selected critical watershed parameters which govern key components of the runoff cycle (25, p. 15).

The Stanford Watershed Model has made a marked contribution to hydrologic research and water resources planning. The major obstacle to even wider use is the difficulty new users experience in estimating the numerous watershed parameter values required as input data. Some can be measured or approximated from raw data sources (25 , pp. 40-4.7). A trial-and-error process has been used to estimate the other parameter values by adjusting them until achieving an acceptable matching between synthesized and recorded streamflows (10, 14). The calibration process is time-consuming, and each adjustment is subjective. Different investigators may end up with substantially different sets of parameter values for the same data.

In addition to these practical problems, use of a large number of parameters creates a conceptual difficulty. While a large number of
parameters are required to index the large number of component hydrologic processes active between precipitation and runoff, one has to be cautious because any increase in the number of parameters increases the power of a model to match recorded flows irrespective of whether or not the parameters have any physical significance. Even though the model is designed on the basis of a conceptual representation of hydrologic processes, once one decides to estimate hydrologicprocess oriented parameters by an essentially numerical test of best matching between recorded and simulated flows, he cannot be sure that the value resulting for a specific parameter retains its meaning in terms of the process as originally conceived. Carried to an extreme, one has no concrete assurance that the model actually represents real hydrologic processes; perhaps any complicated series of equations with a large number of variable parameters could do as well.

These two difficulties suggest two needs. The practical difficulty suggests the need for a computerized process for estimating parameter values in a consistent and an objective manner. The conceptual difficulty suggests the need to examine relationships between paired parameter estimates and the measured watershed characteristics known to relate to the relevant hydrologic process.

THE PHYSICAL SIGNIFICANCE OF PARAMETERS
The potential contribution of the Stanford Watershed Model to hydrologic teaching and research and to water resources engineering design, planning, and management can only be fully realized as the practical and theoretical difficulties associated with having a large number of parameters are overcome. Let us look more closely at what these parameters represent. Hydrologic processes are continually going on at rates varying in time and by location over a real watershed. The movement of moisture at any point is in response to
acting forces (principally gravity) counteracted by the resistance to moisture movement along a given flow path and the resultant moisture queueing in low resistance zones because of high resistance areas ahead. Moisture movement would ideally be estimated from the physical factors known to govern saturated and unsaturated flow processes (including the size and shape of the particles; the porosity, orientation, and moisture content of the media; and the viscosity and surface tension of the water) and information on how these factors vary over the surface of the watershed and how the spatial patterns change with time.

Practically, the model builder must use lumped estimation. The parameters indexing the physical factors must reflect the attributes of a large area of watershed surface. In the Stanford Watershed Model (SWMi), the user has the option of using the whole watershed of subdividing it into a limited number of segments, Area lumping does not require the factors to be taken as uniform over the area. The SWM uses assumed distributions between extreme values without specifying relative locations of different values on the watershed. The estimates must also be lumped over a finite interval of time (15 minutes in the SWMI). They also often can be lumped to represent a group of related hydrologic processes (interception storage is added to depression storage in the SWM). Base flow recession constants represent the cumulative effect of moisture movement along a large number of routes.

Lumped estimates imply that watershed parameters somehow a.ggregate the effects over space, time, and process of spot parameters. Pragmatically, the best values are those that best model the flow. However, the set of parameter values best matching simulated to recorded flows will vary for a watershed among data covering different time periods with data measurement errors, spatial patterns of major
storm sequences over the watershed, size of the area and length of time represented, etc. Furthermore, the best estimate of a parameter for use in modeling with 15 -minute time increments is not necessarily the best estimate for use with 60 -minute increments. The art of hydrologic modeling comes in being able to choose combinations for lumping which closely approximate known events with an acceptable computational effort. Two tactics come to mind for making the SWM parameters more closely match measurable watershed characteristics. One is to use a finer grid in space and time and a more thorough separation of hydrologic processes. Such an approach is limited by the cost of program execution and by our understanding of the processes. The other tactic is to make estimation of values for the lumped parameters as objective as possible in the hope that the resulting values will correlate with measurable watershed parameters and hypothesized hydrologic process divisions in a meaningful way. This is the goal of the study.

COMPUTERIZED OPTIMIZATION OF PARAMETER VALUES

Given the Stanford Watershed Model as a computational scheme operating on precipitation and evaporation data under the control of the values assigned for a set of lumped parameters, the estimation problem is to find the best set of values for these parameters. Mathematically, the problem can be visualized as a search in an n-dimensional vector space for the best set of values for the n parameters. The search requires an explicit definition of "best" and an ordered procedure for considering various points.

The mathematics of the search is complicated by the impossibility of analytically taking the partial derivative of any objective function with respect to each parameter and by physical limitations to acceptable parameter values. Dawdy and O'Donnell (12) adapted a computer-
ized technique developed by Rosenbrock (24) to find best fit values for a set of nine parameters in a hydrologic simulation model using a coarser process grid than the SWM. They tested their optimization technique by simulating a sequence of flows, changing the parameter values to something else, and determining whether their optimization approach would return to the original set of values. Their major conclusion was that "the greater the sensitivity of the model response to a parameter, the closer and sooner will that parameter be optimized" (12, p. 133). They did not at that time report how their model or the aptimization worked in the context of measured data for real watersheds. No other self-calibrating model could be found in the literature.

Thus the effort to program a computerized procedure for selecting the optimum set of parameter values for the Stanford. Watershed Model began from a minimum contribution from the experience of others. The research turned into a long process of gradually expanding the program to work in a wider variety of situations.

STUDY OUTLINE

The Stanford Watershed Model was originally written in a digital computer language (BALGOL) used by the Stanford Computing Center. James translated it into FORTRAN IV and called his translated, revised, and expanded version the Kentucky Watershed Model (KWM). The objective of this study is to develop a self-calibrating watershed model based on the KWM. This model is named as OPSET because its objective is to determine the optimum set of parameter values in the watershed model.

The processes used to develop the self-calibrating model are given in Chapter II. Chapter III describes the structure of OPSET and the principles contained in its subroutine programs. Recommended procedures for use in applying the program are presented in Chapter IV.

Chapter V reviews the results and recommends further research.
Listings of the most recent version of the Kentucky Watershed Model, OPSET, and a dictionary defining and giving units for all parameters and all the other variables used in either program are provided in Appendices A, B, and C respectively. The reader should consult Appendix C for information defining all mnemonics used in the subsequent text.

Two companion reports supplement this study and provide background information which this report will reference rather than repeat. Ross (25) describes the details of collecting input data and discusses how OPSET-estimated parameter values vary with watershed characteristics such as soil depth and permeability and with urban change. James (16) reviews the accomplishments of the overall research project and makes specific applications to flood control hydrology.

CHAPTER II

THE DEVELOPMENT OF OPSET

THE BASIC MODEL

The Stanford Watershed Model has not been and in fact no regularly used large computer program can be a single fixed entity. It is continually changing. At Stanford, Crawford and Linsley designated five versions by number, and Crawford has continued updating the Model in his work at Hydrocomp International (14). Other users have made their own changes (6,19). A number of different people are simultaneously using a number of diffenent versions, each adapted to meet their own modeling requirements (2, 4, 15),

Some choice had to be made on a specific version to use in the development of OPSET; The version selected was the Fortran version of the Kentucky Watershed Model (KWM) which had previously been used to model runoff from several Kentucky watersheds (8, 13, 22). Each parameter was taken as defined by the programming in this version. Any change in the simulation programming which changes the flows simulated from a given deck of input data changes the relationship between the simulation parameters and physical watershed characteristics. A program estimating optimum parameter values would make compensating adjustments in the estimates to match a fixed set of measured flows.

Minor reprogramming to increase computational efficiency, to introduce some new options, and to revise output format were made to the KWM during the development of OPSET. The final KWM version (dated June 6, 1970) is listed in Appendix A. Ross (25) lists
typical input data for the KWM in his Appendix A and outlines the moisture accounting process used in the Model and the role of each parameter in that accounting. The reader unfamiliar with the Model and the parameters should read his Chapter II before continuing through this report.

STARTING ISSUES

The use of the above version of the KWM as a basis for developing OPSET required certain decisions which need to be brought out for discussion. Three major differences exist between the Kentucky Watershed Model and the current Hydrologic Simulation Program (14) used by Crawford. Each is discussed in the following paragraphs. Seasonal Parameters: Two parameters have been retained from Stanford Watershed Model III to control seasonal variation in infiltration (SIAC) and in upper zone storage capacity (SUZC). Physical factors supporting seasonal variation in infiltration include differences in soil temperature and hence viscosity of infiltrating water, changes in vegetation and tillage and organic content of the soil surface, and a tendency for fine grained soils to shrink and crack during warm dry periods (23). All of these factors favor higher infiltration rates in the summer than in the winters. Upper zone storage capacity would logically increase with the growth of vegetation and summer cultivation.

The decision to keep these two parameters turned out to be wise in light of the results obtained when OPSET was developed and applied. OPSET was free to pick zero values for these parameters if it could not use positive values to better match recorded flows. In fact, it selected positive values in virtually every case (25, Table 11). For two watersheds (Cave Creek near Lexington, Kentucky, and the Clemson University Experimental Watershed near Clemson, South Carolina), OPSET was also run to determine the best set of values
for all the other parameters with the two seasonal parameters arbitrarily forced to zero. The modeling, as demonstrated by the summary of the results on Table 1, was significantly worse (more so for Cave Creek than the Clemson Watershed). Even though it is dangerous to generalize from one comparison, the tabulated figures suggest a physically reasonable trend toward greater seasonal variation as one goes from South Carolina to the more northerly and continental climate of Kentucky.

Table 1 also illustrates how the values of other parameters change in an attempt to take up the slack as certain parameters are removed from the modeling. Strictly speaking, such variables as LZC and BMIR have become different entities. It is not correct to take a value for LZC as estimated by OPSET and use it literally in any other version of the Stanford Watershed Model other than that listed in Appendix A. Those wishing to use another version should adjust OPSET accordingly.

Channel Routing: The modified Muskingum routing approach used in Stanford Watershed Model IV (10) was retained instead of being replaced by the kinematic wave approach used in the HSP (14). Several factors influenced this decision. The programming from Model IV is less complex and hence consumes less computer time in execution. In the cycling which was anticipated to be necessary for estimating parameter values in OPSET, time would be an essential factor determining computational feasibility. More important, the greatest need for OPSET is to better estimate and interpret values of the parameter associated with the land phase of the runoff cycle. A program which used much time in routing computations would not be appropriate.

In practice, parameters controlling the fraction of precipitation becoming runoff are relatively independent of parameters controlling
'TABLE 1
EFFECTS OF ELIMINATING SEASONAL VARIATION IN MODELING UPPER ZONE STORAGE CAPACITY AND INFILTRATION

Cave Selected Values for Parameter		Creek 1	964	Clemson Watershed 1966		
		Seasonal Variation		Seasonal Variation		
		Yes	No		Yes	No
LZC*		1.26	. 1.65		10.12	5.55
BMIR		10.77	3.71		7.40	4. 64
SUZC		1.21	0.00		0.46	0.00
ETLF		0.04	0.50		0.14	0.19
BUZC		0.59	3.38		0.81	0.35
SIAC		0.66	0.00		0.74	0.00
Minimum		0.186	1.047		0.099	0.329
Comparison of Monthly Flow Totals						
Recorded		Simulated		Recorded	Simulated	
October	0.9	0.4	0.3	37.1	49.9	48.7
November	2.6	0. 2	0.0	24.8	22.9	22.6
December	1.8	2.8	0.0	18.1	15.9	13.4
January	59.5	70.0	43.9	34.9	26.8	23.2
February	117.4	88.3	75.9	82.3	77.2	67.6
March	536.0	634.9	606.4	67.4	79.0	80.8
April	30.4	34.5	59.8	25.8	29.1	43.5
May	14.1	13.7	21.0	28.8	27.3	34.5
June	7.6	6.4	0.8	17.4	19.1	21.2
July	5.5	0.7	0.1	12.1	12.4	14.9
August	1. 2	0.4	0, 0	16.0	10.2	15.3
September	10.6	10.8	24.1	10.5	10.0	10.2

*All mnemonics with units are defined in Appendix C. Parameters are defined on Table 2.
routing. The land phase parameters can be estimated first and applied with either routing scheme. OPSET continues by fitting the parameters associated with the Muskingum approach to guide those wishing to use them and to make the modeling complete.

The emphasis of OPSET is on land surface rather than channel routing processes because this is where the greater modeling problem lies. Routing parameters based on the kinematic wave approach can already be directly estimated from measurable channel characteristics without resorting to trial and error (14).

Watershed Segmentation: The KWN does not provide the option of subdividing a watershed into segments and modeling runoff as the sum of segment totals. Eiven the older SWM versions provide this option, but it is not included in the KWM principally because none of the watersheds used were of such nature that modeling by segment was appropriate and hence no data were collected that were suitable for debugging a translation into Fortran of this feature. The two main advantages of segmenting are the greater ability to handle spatial variation in precipitation and the greater ability to handle spatial variation in watershed characteristics.

Spatial variation in precipitation can be either associated with consistent, usually orographical, rainfall patterns or with random differences from storm to storm. Orographic segments could be assigned individual precipitation multipliers (RGPMB) to precipitation at a single gage. Segmenting to better cope with random precipitation patterns requires several rain gages. For the small Kentucky watersheds to which OPSET was applied (25, Table 9) rain gage spacing was too large with respect to basin size to permit segmenting to reflect random precipitation patterns and orographic patterns were minor.

Segmenting to handle spatial variation in watershed characteristics
is not practical for a self-calibrating model seeking parameters giving the best fit. One must work with recorded flows undifferentiated by watershed source area. The parameters cannot be subdivided on a finer grid than the data. Ross minimized this problem by working with normally more homogeneous small watersheds. If they revealed a pattern between parameter values and watershed characteristics, derived correlations could be used to estimate parameter values from the characteristics of segments of larger watersheds; and the KWM could be revised to simulate flows by segment and accumulate the results. Some revision in the structure of OPSET may be necessary to improve results for watersheds for highly orographic rainfall patterns.

THE BASIC STRATEGY

The Kentucky Watershed Model simulates a sequence of streamflows from input climatological data through a defined computational procedure based on equations containing parameters. The goal is to estimate for the parameters the set of values which simulates the streamflows most closely matching gaged values. The general strategy is to define the difference between simulated and recorded flows as a scalar quantity and vary parameter values to minimize this objective. Direct analysis making use of the partial differential of the objective function with respect to each parameter is infeasible because of the complexity of the simulation algorithm and the large number of conditional routes through it. Some systematic pattern of selecting trial sets of values and making appropriate adjustments must be substituted.

One issue which had to be resolved early was which parameters to estimate by use of OPSET, Parameters were ruled out if they were amenable to direct measurement (drainage area) or if the simulated streamflows proved to be insensitive to large fluctuations
in parameter magnitude. Estimating through matching disintegrates when the simulated flow variation associated with parameter value changes is less than that associated with model inadequacies and data difficulties. As Dawdy and O'Donnell discovered (12, p. 133), the process is already becoming imprecise and time consuming when the sensitivity range is slightly greater than the difficulty range. Parameters passing both tests are listed on Table 2. Ross (25) recommends means for estimating the other parameters.

The next issue was whether the parameter values should be estimated individually, simultaneously, or simultaneously by groups. individual estimation requires independent parameters. In OPSET, some defined characteristic of the total flow pattern must correlate closely with that parameter and be relatively independent of all the others. Interdependent parameter groups must be estimated simultaneously because a change in the value of any one changes the values of the others. Cyclic single parameter optimization sometimes converges, but more than one cycle is always needed.

The 13 parameters listed on Table 2 fall into three groups. The first six land phase parameters form a subgroup called runoff volume parameters because they control the volume and distribution over the year of simulated runoff. The recession constants can be estimated directly from recorded flows. The parameters within each of the other two groups were found through sensitivity studies to be so interdependent that simultaneous parameter adjustment by group would be required. The two groups as a whole were sufficiently independent for adjusting the first after estimating the second to be unnecessary. Each cycle requires (1) a simulation unit to synthesize flows for comparison with recorded flows for a given set of parameter values, (2) establishment of adjustment rules for selecting a new set of

TABLE 2
PARAMETERS ESTIMATED BY OPSET

Recession Constants
IFRC - interflow recession constant
BFRC - base flow recession constant
Land Phase Parameters
Runoff Volume Parameters
LZC - lower zone storage capacity
BMIR - basic maximum infiltration rate within watershed

SUZC - seasonal upper zone storage capacity factor
ETLF - evapotranspiration loss factor
BUZC - basic upper zone storage capacity factor
SIAC - seasonal infiltration adjustment constant
Interflow Volume Parameter
BIVF - basic interflow volume factor

Channel Routing Parameters

NCTRI - number of current time routing increments
CSRX - channel storage routing index
FSRX - flood plain storage routing index
CHCAP - channel capacity - indexed to basin outlet
parameter values, and (3) a scalar objective function for judging goodness of matching.

The optimization procedure used in each cycle is shown schematically in Figure 1. The simulation unit for the first cycle (TRIP 1) is a streamlined version of the portions of the inner loop of the KWM which simulate surface runoff. The simulation unit for TRIP 2 is a streamlined version of the portions of the inner loop of pertaining to channel routing. Whenever a new set of flows is simulated, the parameters are saved if the matching is better than any found previously but the adjustment continues until hope of finding a still better matching is lost. Various sensitivity studies were made and were used to guide the adjustment rules.

REARRANGEMENT OF THE MODEL

The first step in the development of OPSET was to rearrange the programming from the order efficient for proceeding directly from given input data to a single simulated flow sequence as found in the KWM to an order efficient for executing the optimization strategy of Figure 1. Because of the large number of times it would have to be called, all programming preforming computations identical for all simulation runs was pulled out of the simulation unit and placed earlier in the program. All climatological data were placed in fixed arrays so they could be held constant for each parameter set. Constants representing combinations of parameters not included in the 13 were developed so they would not have to be formed within the inner loop. Programming to provide supplementary output was dropped.

The KWM contains a hierarchy of daily, hourly, and period loops, The inner-most or 15 -minute loop simulates rapid hydrologic processes such as interception, infiltration, upper and lower zone moisture storages, overland flow, interflow, etc. Slower processes are

FIG. 1. Schematic Diagram of Parameter Optimization Procedure.
simulated hourly (for example, stream evaporation and base flow). The outer or day loop orders the calculations and sums the flows in daily totals.

THE OBJECTIVE FUNCTION

The true flow in a stream varies continuously throughout the year. Flows are simulated by the KWM by discrete 15 -minute periods. Recorded flows can be estimated from recorder charts or punched tape on a comparable time base, but published flows represent calendar day average values. The logical objective function would minimize some measure of the difference between recorded and simulated flows taken at some appropriate time interval and summed over the year. With parameters placed in three groups, an appropriate objective function had to be found for each one.

The objective used to estimate the two recession constants was to minimize the sum of the squares of the differences between recorded and simulated average daily flows during selected recession sequences. The objective used to estimate the first six land phase parameters was to minimize the sum of the squares of normalized ratios relating simulated to recorded monthly flow totals. The objective used to estimate BIVF was to minimize the difference between total simulated and total recorded interflow summed over selected three-day periods. The objective used to estimate the channel routing parameters minimized the difference between recorded and simulated flow peaks within specified timing constraints.

The monthly time grid used for the objective function for estimating the runoff volume parameters reduced interdependence between the land phase and channel routing parameter groups. The channel routing parameters, for small watersheds, may significantly change the distribution of flows among days. Months are long enough for the
channel routing of direct runoff to have minimal effect on the month it reaches the gage and short enough to reflect seasonal runoff patterns. Monthly totals are published and are units with which most hydrologists are familiar (see Subroutine DAYSUM). The use of time periods divided at low flows between storms was considered but rejected because of added programming complexity and problems associated with different seasons being represented by different numbers of periods.

More precise definitions of each objective are given in the descriptions of Subroutines SET2RC, SETFDI, SETFVP, and SETHRP.*

EVALUATION OF TWO RECESSION CONSTANTS

Both a base flow recession constant and an interflow recession constant are needed in the Model. Traditional graphical techniques for estimating appropriate values take too much time, often require flows subdivided by a finer time grid than a day, and are somewhat subjective; therefore, a computer procedure was sought to make data preparation easier for the user and minimize any effect caused by subjectively estimated values on subsequent parameter estimation.

The first approach tried to evaluate the base flow recession constant (BFRC) by averaging flow ratios for successive days on which neither direct runoff nor interflow were synthesized, and to estimate the interflow recession constant (IFRC) from the ratio of the sum of interflows (total recorded flow minus simulated base flow) of the second to the first day after the major recorded streamflow rises. The approach was later abandoned in favor of the least squares method to estimate the two recession constants developed by James and Thompson (18). This approach uses selected recorded daily

[^0]streamflow data and assumes that each sequence contains two linear recession flow components. Much more consistent and reasonable results were obtained. The approach as adopted in OPSET is presented in greater detail in the discussions of Subroutines RECESS, SET2RC, and SET1RC.

EVALUATION OF SIX RUNOFF VOLUME PARAMETERS

The task most critical to the success of OPSET was development of a workable algorithm for estimating the six runoff volume parameters (LZC, BMIR, SUZC, ETLF, BUZC, and SIAC). ${ }^{1}$ A least squares approach to simultaneously estimate these six parameter values was tried first. The approach postulates a model

$$
\left.\left(\begin{array}{l}
\mathrm{q}_{1} \tag{1}\\
\mathrm{q}_{2} \\
\vdots \\
\mathrm{q}_{12}
\end{array}\right)=\frac{\mathrm{q}}{12 \times 1}=\begin{array}{r}
\\
\hline
\end{array}\right)\left(\begin{array}{c}
1 \\
\mathrm{x}_{1} \\
\mathrm{x}_{2} \\
\vdots \\
\dot{x}_{6}
\end{array}\right)
$$

where $q_{1}, q_{2}, \ldots, q_{12}$ are the simulated monthly flows with six parameter values $x_{1}, x_{2}, \ldots, x_{6}$, and Γ is a 12×7 matrix of constants. Assuming the model is correct and there are no data or modeling difficulties, a unique set of parameter values, say \tilde{x}_{i}, would synthesize a set of monthly flows which exactly match the recorded monthly flows $\eta_{1}, \eta_{2}, \ldots, \eta_{12}$. If the matrix Γ can be estimated, then the approach would obtain the best set of x^{\prime} s by some sort of inverse relationship by substituting η for q.

However, Γ^{*} is unknown and furthermore it is not square. To formulate the model so that an inverse of the matrix of constants can be obtained, seven functions of the simulated annual hydrograph, say
${ }^{1}$ For discussion on the grouping of parameters see 16, pp. 27-32.
$f_{1}, f_{2}, \ldots, f_{7}$, were chosen. The model is then

$$
\left.\left(\begin{array}{c}
f_{1}(\underline{q}) \tag{2}\\
f_{2}(\underline{q}) \\
\vdots \\
f_{7}(q)
\end{array}\right)=\frac{f}{7 \times 1}=\begin{array}{r}
7 \times 7 \\
x_{1} \\
x_{2} \\
x_{6} \\
7 \times 1
\end{array}\right)
$$

By redefining the model as Equation $2, \Gamma$ is square; and if it is nonsingular, its inverse can be used to estimate the parameter values $\tilde{\mathrm{x}}_{\mathrm{i}}$.

The seven functions of the q^{\prime} 's chosen for this purpose were the annual runoff volume, the peak monthly volume, the minimum monthly volume, the total volume in selected summer months, the total volumes in selected winter months, the total volume in selected low flow months, and the sum of squares of monthly flow deviations. After the seven functions $\left\{f_{i}(\underline{q})\right\}$ were defined, eight sets of parameter values $\left\{\underline{x}_{i}\right\}$ which were systematically arranged by high and low combinations were used to establish the relationships in the following equations:

$$
\begin{align*}
& \underline{f}_{1}=\Gamma \underline{x}_{1} \quad \underline{f}_{-1}^{\prime}=\underline{x}_{1}^{\prime} \Gamma^{\prime} \\
& \underline{f}_{2}=\Gamma \underline{x}_{2} \Rightarrow \frac{f}{2}^{\prime}=\underline{x}_{2}^{\prime} \Gamma^{\prime} \Rightarrow F=X \Gamma^{\prime} \tag{3}\\
& \vdots \\
& \underline{f}_{8}=\Gamma \underline{x}_{8} \quad \underline{f}_{8}^{\prime}=\underline{x}_{8}^{\prime} \Gamma^{\prime}
\end{align*}
$$

where f_{i} and x_{i} were 7×1 vectors as defined in Equation 2. The least squares estimate of Γ is

$$
\begin{equation*}
\hat{\boldsymbol{\Gamma}}=\left(X^{\prime} X\right)^{-1} X^{\prime} F \tag{4}
\end{equation*}
$$

With the estimated Γ, Equation 2 was used to obtain the estimated parameter values $\left\{\tilde{x}_{i}\right\}$ by substituting the recorded monthly flows η for q; that is

$$
\left(\begin{array}{c}
1 \tag{5}\\
\hat{\widetilde{x}}_{1} \\
\vdots \\
\hat{\tilde{x}}_{6}
\end{array}\right)=\begin{array}{ll}
\hat{\Gamma} & -1 \quad\left(\begin{array}{c}
f_{1}(\underline{\eta}) \\
f_{2}(\underline{\eta}) \\
\vdots \\
f_{7}(\underline{\eta})
\end{array}\right), ~
\end{array}
$$

This approach did not prove successful. The parameter values did not converge well and were inconsistent from run to run. This failure may have been caused by the variance of $\hat{\Gamma}$ being too large or the linear approximation being too gross. The approach was finally abandoned and was later replaced by another approach which produced better results.

The second and more successful method adjusted the estimate of each parameter according to rules based on the deviations between recorded and simulated flows which were known to be most sensitive to that parameter. The sensitivity was determined by varying each of the six parameters one at a time with a selected set of climatological data (see Subroutine SETFVP) as checked by what seemed reasonable from qualitative knowledge of the hydrologic cycle.

The method was refined as it was applied to 69 station-years on 20 Kentucky watersheds. Through detailed analysis of synthesized flows and comparison of parameter estimates among runs for different years, the method was continually modified to improve the correlation between synthesized and recorded flows closer and closer, to estimate computer selected parameter values within the physically reasonable range, and to improve the consistency of the parameter values from year to year. Safeguards were built in to keep the program from becoming severely upset by faulty precipitation data. Highlights of the adjustment process include

1. Some adjustment rules not only examine monthly total flows, but also component flows. Some parameters affect one component
flow, say overland flow, in a quite different pattern than other components of the total flow.
2. Alternative adjustment rules are set up for use when the initial adjustment rules do not work well.
3. Upper and lower limits on parameter values were established by reviewing the experience others have had with the model, and attempts to adjust values outside this range are taken to suggest that an alternate adjustment procedure should be tried.
4. Limitations on the size of a given adjustment are made to prevent estimates for one parameter from being kept from convergence by rapid fluctuation in the values of other parameters.

The estimation of the runoff volume parameters starts with an initial set of trial values which are judged to be near the median encountered in modeling watersheds. A year of flows are simulated, and the parameters are adjusted according to the established rules. The value, SSQM, of the objective function for these parameter values is estimated. Using the adjusted parameter values, a new year of flows is simulated, and SSQM is again calculated. The set of parameter values with the smaller SSQM is judged as the better set, and both the value of SSQM and the parameter value are saved to compare with the next run. The process is continued until the number of trials since the last improvement suggests that the best possible set has been found.

In order to save computer time, channel routing is by-passed while estimating runoff volume parameters. This means that synthesized land phase runoff is taken as the simultaneous outflow at the mouth of the watershed. Unless the watershed is large or an unusually large storm occurs on the last day of the month, the above assumption will not materially affect the distribution of monthly flow volumes. A second strategy to save computer time is to increase
the time period represented by the inner loop. Table 3 shows the effect of changing the length of this time period on synthesized monthly flows. A 15 -minute loop (i. e., the number of loops equals 4) is used as a base, and the entries of Table 3 are the volume ratios. Inspection of Table 3 reveals that hourly looping gives only a coarse underestimation of the 15 -minute looping flows while 20 -minute looping provides a much closer approximation. Table 4 shows the effect of the number of loops within an hour on the number of adjustments required to converge on a best set of parameter values, and the monthly flow deviations. Use of a shorter inner loop period increases the computer time required to simulate a year of flows and increases the number of times a year flows must be simulated to estimate a set of parameters.

Significant computer time can be saved by first adjusting runoff volume parameter values by hourly looping to bring the estimates in range. Then, 20 -minute looping can be used to refine the best estimates obtained in hour looping. Use of 20 rather than 15 minutes saves lots of time at a small sacrifice in accuracy. The first stage of adjustment which uses hour looping to simulate streamflows is called the "Rough" adjustment cycle, and the 20 -minute looping is called the "Fine" adjustment cycle. The best set of parameters obtained by the fine adjustment cycle is taken as the optimal set of parameter values. Detailed description of the two adjustment cycles is presented in Chapter III.

EVALUATION OF ONE INTERFLOW VOLUME PARAMETER

Crawford and Linsley recommend that the interflow volume parameter be adjusted by matching the simulated hydrograph shape to the recorded shape (10, p.69). If recorded flows were readily available on hourly intervals, a possible objective would be to minimize hourly

TABLE 3
EFFECT OF INTERVAL USED IN INNER LOOP ON SIMULATED MONTHLY FLOW VOLUMES: ELKHORN CREEK NEAR FRANKFORT, KENTUCKY 1964 CLIMATOLOGICAL DATA

		Numbe	of Loop	within	Hour	
	1	2	3	4	5	6
Oct.	0.990	0.995	1.000	1.000	1.000	1.005
-Nov:	0. 976	0.976	1.000	1.000	0.976	0.976
Dec.	0.628	0.868	0.953	1.000	1.010	1.028
Jan.	0.931	0.977	0.992	1.000	0.997	0.999
Feb.	0. 902	0.972	0.992	1.000	0.989	0.988
Mar.	0.997	1. 000	1.000	1.000	1.001	1.000
Apr.	1.021	0.991	0.996	1.000	1. 002	0.997
May	0.930	0.963	0.988	1.000	1.012	1.022
June	0.642	0.845	0. 942	1.000	1.045	1.078
July	0.795	0.934	0.979	1.000	1.024	1.047
Aug.	0.839	0. 950	0. 994	1.000	1.025	1.037
Sep.	0.915	0.969	0.992	1.000	1. 004	1.007

Note: All volumes are expressed as ratios to volumes with 4 loops. See right hand column of Table 11 for absolute units.

TABLE 4

EFFECT OF INTERVAL USED IN INNER LOOP ON NUMBER OF ADJUSTMENTS TO CONVERGENCE, OPTIMAL PARAMETER VALUES AND THE MONTHLY FLOW DEVIATIONS: ELKHORN CREEK NEAR FRANKFORT, KENTUCKY 1964 DATA

No. of loops within an hour	1	2	
Cycles to convergence	8	13	15^{*}
Optimal parameter values			
LZC	4.89	4.74	4.72
BMIR	4.00	4.00	3.47
SUZC	1.96	1.92	1.81
ETLF	0.10	0.10	0.12
BUZC	1.16	1.23	1.10
SIAC	0.75	1.51	2.53
Monthly flow deviations			
Oct.	-1.847	-1.046	-1.065
Nov.	-1.097	-0.828	-0.804
Dec.	-0.146	0.022	-0.314
Jan.	-0.375	-0.489	-1.060
Feb.	-0.109	-0.127	-0.255
Mar.	-0.049	-0.059	-0.073
Apr.	-0.018	0.040	0.063
May	-1.923	-1.314	-1.040
June	-0.338	-0.043	0.005
July	-0.600	-0.282	0.300
Aug.	0.071	0.244	0.207
Sep.	0.738	0.713	0.549
SSQM**	9.513	4.416	4.594

*Optimization procedure still improving flows.
**Index defined in presentation of Subroutine SETFDI (pp. 40-43)
differences. The required data, however, is not published by the USGS and may be difficult to obtain. Rather than let this become an obstacle discouraging use of OPSET, a criterion based on daily flow totals was substituted. The daily flow totals most sensitive to interflow are those immediately following major peaks. The first method was tried to adjust BIVF by multiplying the parameter value by the ratio of the sum of the estimated recorded interflows to the sum of the synthesized interflow volumes. The estimated recorded interflow is obtained by subtracting the simulated base flow from the recorded daily total flow. The results were not stable.

Later, the method was improved by using interflow in the first three days after a peak flow. The recorded interflows were estimated by the method used in estimating the recession constants (see Subroutine SETRBF), and instead of using a ratio of sums, the average of the daily ratios was used for adjusting the parameter value. The new method proved to be more consistent, and the values were more reasonable. A more detailed description is given under Subroutine SETBIV. The adjustment of BIVF occurs in the Fine adjustment cycle for the six runoff volume parameters.

EVALUATION OF FOUR CHANNEL ROUTING PARAMETERS

The estimation process for the channel routing parameters like that for the runoff volume parameters follows the optimization scheme shown in Figure 1. The simulation unit in optimizing runoff volume parameters is the inner loop. In optimizing hydrograph parameters, it is the channel routing unit. By using different sets of trial parameter values, the routed hydrographs are compared with the recorded hydrographs in the timing and magnitudes of the peaks. The set of parameter values which gives the best match is accepted.

The channel routing parameters are estimated after values for
the other nine parameters have been determined. The nine estimated values are used in simulating an annual hydrograph with 15 -minute looping. Synthesized land phase runoffs during the periods contributing to read recorded hydrograph peaks (the beginning and ending hours of the runoff periods estimated as contributing to the recorded hydrograph are estimated by Subroutine STRHRS) are saved. In order to overcome the bias caused by using different volumes in estimating hydrograph routing parameters, the synthesized runoff volumes are adjusted to match the recorded volumes (See Subroutine ADJHYD). The adjusted land phase hydrograph is used as the input data shown in Figure 1. Two channel routing subroutines (Subroutine TIMERT performs channel time routing, and Subroutine STORRT performs channel storage routine) serve as a. simulation unit. Trial parameter values are used to route the adjusted inflow hydrographs, and the routed outflow hydrographs are compared with the recorded hydrographs in flow peaks and in times. The parameters are adjusted until the best set of parameter values are found.

Early in the development of the optimization procedure for the hydrograph parameters, the number of time routing increments (NCTRI) was found to be the primary parameter governing the flood peak timing, and the storage routing index (SRX) was found relatively more influential in controlling the magnitude of hydrograph peak. First, they were adjusted separately, but a later and better procedure combined the two adjustment procedures into Subroutine SETHRP.

ADJUSTMENTS OF CLIMATOLOGICAL DATA

The simulation takes input precipitation and evaporation data, operates on it in a manner dictated by a set of parameter values, and produces a synthesized annual hydrograph. OPSET estimates the set of parameter values which operate on given climatological data to
most closely match given streamflow data. In order for the estimates to truly represent the watershed and correlate well with physical watershed characteristics, the climatological data must truly reflect watershed experience and the streamflow data must truly measure actual flows. Otherwise, the estimated parameters will contain components which are nothing more than mathematical attempts to compensate for faulty data.

Precipitation falls in a pattern which varies continuously with time and at a given time varies in rate over the area of the watershed. A precipitation gage network samples this variation in time and space by measuring rainfalls at selected spots. Some error is associated with incorrect measurement of spot rainfall. A larger problem is subdividing measured totals over time. Storage gages are read daily at times which vary from gage to gage. Recording gages provide a record of accumulated totals from which clock hour totals are published. A great deal of work is involved in going to the original records to obtain totals on a finer time grid. A still larger problem is estimating precipitation over larger areas from spot values. Where orographic influences are minimal, one normally assumes that spot precipitation represents areal precipitation on a probability if not on an historical basis.

Streamflow varies continuously with time. A stream gage measures this flow by indicating a water surface elevation and converting it to flow through a stage-discharge curve. Some error is caused by inadequacies in the stage-discharge curve, particularly where the relationship changes with calendar time or flows must be estimated for stages significantly higher than that for the largest measured discharge. The largest errors are normally associated with very high or very low flows. Continuous stage measurements
are integrated to daily flow totals in the published record. Very large flood peaks are also given. A great deal of work is required to obtain flows on a finer time grid.

WASHINGTON WATER

OPSET had to be designed to handle constant errors, random errors, and grid errors. Constant errors can be handled by a rainfall multiplier (RGPMB) and an additive streamflow (DIV). Random errors can only be handled by using a long enough record for positive and negative effects on parameter estimates to cancel. The larger these errors are the longer the record has to be. Therefore, an effort to filter records for obvious precipitation-streamflow anomalies can significantly reduce required computer time.

The selected strategy for dealing with hydrologic data was to design OPSET to use published data sources rather than require the user to analyze original records to subdivide totals over a finer time grid. A finer time grid has some merit for better estimating the channel routing parameters and better matching recorded flood peaks but it is not much help with respect to the primary research goal of estimating the land phase parameters. Better estimation of runoff volume from precipitation is lagging research on better channel routing.

The input data thus consists of hourly precipitation totals, daily evaporation totals, and daily streamflow totals.* Procedures used by the Stanford Watershed Model for doing such things as allocating daily evaporation totals by hour, taking watershed rainfall as a weighted average of amounts gaged at two points, and providing for streamflow diversions are retained and are described by Ross. Several new features were added for OPSET:

1. The adjustment of precipitation data where there are precipitation-streamflow anomalies. A subroutine was made to check
*For more detailed information see Ross (25, pp. 25-35, 56).
for anomalies and to adjust the recorded precipitation where necessary (see Subroutine PRECHK).
2. Provision for non-uniform distribution of rainfall within the hour for small watersheds where the time of concentration is comparatively short to better match flood peaks. A subroutine was developed to divide the hourly rainfall totals among 15 -minute periods using an average distribution (see Subroutine PREPRD). Hydrocomp International (14) has an option for directly reading 15-minute precipitation, and the same option could be readily added to OPSET.
3. Provision for handling situations where changes in precipitation gage location or storage gage reading time occurs during the year.
4. Addition of provision for an approximate approach to estimate the daily evaporation data from estimated total annual evapotranspiration. A subroutine was developed to distribute an annual total among the days of the year (see Subroutine EVPDAY).

INITIAL PARAMETER VALUES

The parameter estimation scheme shown on Figure 1 begins with some initial set of parameter values. The initial set of values can only be chosen arbitrarily if the procedure will converge on the same final set from any beginning. Because the cost of computer time is an important factor in trial-and-error estimation, the initial trial values should be reasonably close to the final ones most often encountered.

A study was made to see how much difference variation in the initial set made on the final estimated set of parameter values. The approach used low, middle, and high starting values and three years of data for Cave Creek near Lexington, Kentucky. Table 5 shows the results and reveals that the parameter values have a tendency to converge toward common values but exhibit certain degree of variation.

TABLE 5

STUDIES ON SENSITIVITY TO STARTING PARAMETER VALUES: CAVE CREEK NEAR LEXTNGTON, KENTUCKY

[^1]In later versions of OPSET this amount was reduced by increasing adjustment jumps for such sluggish parameters as BUZC. Comparing the results from the three sets of starting values shows the speed of convergence (numbers of Rough and Fine cycles) and the matching of synthesized to recorded flows (SSQM, annual totals, and maximum flood peaks) to be quite close to each other. For the consistent estimate of reasonable parameter values the medium starting values work best because they have the best chance of being close to the final estimate and less chance to produce out-of-range adjusted values which may cause the program to stop before the optimum point is reached. The value to be gained by rerunning the computations for Table 5 with the final version of OPSET did not seem worthwhile and thus the results shown are only a tool for program improvement and are not indicative of the sensitivity of the final program to initial values.

TIME PERIOD COVERED BY CALIBRATION RUN

The ordering of computations in the KWM is to read and store values which remain fixed for a given watershed, read values of initial moisture storage by storage category, read and store climatological data for a water year, simulate a year of flows, take the ending moisture storages as the initial moisture storages for the next year, read and store climatological data for the next year, and continue this cycle for as many years of simulated flows as are desired. In designing OPSET, one question was how long a period of flows should be used in a run to estimate parameter values. Selection of a long enough period to dampen out parameter estimating errors caused by random data measurement problems did not prove practical because too many years would be required. Storage requirements to simultaneously hold all the data for such a long period are excessive.

Computer time requirements to simulate so many flows per trial set of parameter values are also excessive. The decision was to design OPSET to estimate parameters from one year of record. Chapter IV discusses means for estimating appropriate values for a watershed from a group of OPSET estimates for different water years.

With only one year of flows to be used, it was necessary to estimate appropriate initial moisture storages. The best estimate of these values would come from the ending moisture storages from a. simulation run for the previous year using the optimum set of parameter values. However, the optimum set of values would not be known in advance, and it was impractical in light of storage and computing time constraints to simulate blocks of flow longer than one year. The decision was to make the best possible estimate of each initial storage as of October 1, base that estimate on the context of the corresponding set of parameter estimates, but leave October matching out of the least squares criterion to minimize bias caused by initialization error (pp. 40-43, 102).

One advantage of designing OPSET to estimate parameters from one year of flows is that it permits one to select the years of record which by inspection seem to be relatively free of data problems capable of upsetting the estimating process.* More important, it permits selection of years with diverse flow patterns so that OPSET can be tried under as diverse a range of conditions as possible.

In selecting years to use, years with certain types of initial conditions should be avoided. A year following a large storm late enough in September for surface runoff and significant upper zone storage to continue into the next water year is undesirable. So is
*These problems are discussed in more detail on p. 155.
a year with very low October and November rainfalls. The effects of initial conditions dampen more quickly in wet months.

SUMMARY

OPSET is built around a streamlined inner loop of the KWM. Watershed parameters are estimated simultaneously by group and three separate trip sequences are devised. Since the two recession constants can be estimated from the recorded streamflows by a least squares method, they are evaluated before the first trip begins. In the first trip (TRIP 1), the six runoff volume parameters are approximated in Rough adjustment cycles with hourly looping, and then the six estimates are refined and the one interflow volume parameter is estimated in Fine adjustment cycles with 20 -minute looping. The optimization of the six volume parameters is based on matching synthesized to recorded monthly totals, and the adjustment of the one interflow volume parameter is based on matching the interflow volumes for the first three days after the major floods. In TRIP 1 , channel routing is by-passed to save computer time.

The second trip (TRIP 2) uses 15 -minute looping to synthesize land phase runoff hydrographs based on the values for the first nine parameters as estimated in TRIP 1. These hydrographs are then used in trial-and-error estimation of the four channel routing parameters.

Using all 13 parameter values as estimated, a final trip (TRIP 3) is made to simulate a year of streamflows with 15 -minute looping so that the effectiveness of the whole optimization process can be observed and evaluated.

CHAPTER III

PROGRAM DESCRIPTION

OPSET is composed of one master program (MAIN) and 22 subroutine programs. MAIN controls operations as directed by coded control options by reading the required input data, setting up the parameter estimating processes, controlling the streamflow simulation and calling subroutine programs. Subroutine programs calculate statistics used in the adjustment of parameters, adjust the parameters according to established rules, check and if necessary adjust input data, read the coded data in a free format, and print the requested output.

This chapter describes the programming in detail. Because of the length of the program, statement-by-statement analysis is not practical; however, it is hoped that the reader will find the discussion herein sufficient for him to comprehend, understand the reasoning behind, and properly use the program.

MAIN Program

MAIN has three major parts. The first part (MAIN0005-0238)* initiates the computer run. The second part (MAIN0239-0746) is basically the streamlined inner loop of KWM and is used to simulate streamflows. The third part (MAIN0747-0834) sequences the calling of the subroutines used in parameter estimation.

In the first part, MAIN reads the control options and data required

[^2]for a computer run, calculates other values which will remain constant no matter what parameter values are chosen later. Control options include the number of station-years included in a given computer run (NSYT), three input data control options (CONOPT), and three operational control options (MNRC, NFTR, NLTR). All will be discussed in detail in Chapter IV. The data required for a computer run include a time-area histogram, values for the parameters estimated by the user, evaporation data, recorded daily streamflows storm hydrographs, and precipitation data. Sample data are listed in Appendix B of the report by Ross (25). He also described methods of collecting data and for estimating fixed parameters. The two recession constants (BFRC and IFRC) are estimated. Precipitation data are checked for anamolies and adjusted äs necessary. Climatological data are converted from the form in which it is read into the arrays needed for flow simulation. A title read from alphanumeric input, the recorded daily streamflows, and the recorded storm hydrographs are printed out for visual comparison.

The second part contains the essence of the streamflow synthesis of KWM. It performs the moisture accounting process to synthesize flows. Depending on the particular run, it can simulate a year of continuous streamflows with 15 -minute, 20 -minute, or hourly looping. No detailed description of this part of the program will be given in this report. It is amply covered in the description of the Stanford Watershed Model by Crawford and Linsley (10) the HSP Manual by Hydrocomp International (14), and the report of an evaluation study of the Model based on KWM by Ligon et al. (19).

The third part with all its associated subroutine programs is the essence of OPSET. Except for the two recession constants which are evaluated in the first part of MAIN, the remaining eleven of the 13
selected critical parameters are estimated here.

TRIP 1

The trip number denotes the conditions pertaining when the program passes through the streamflow simulation process in MAIN. During TRIP 1, streamflow routing is bypassed. The procedure starts with the initial middle set of assigned parameter values and simulates a year of continuous streamflows using hourly looping (Rough Cycle). Then Subroutine SETFVP is called to adjust LZC, SUZC, ETLF, BUZC, and SIAC and Subroutine SETBMI is called to adjust BMIR. Using adjusted parameters, another year of streamflow is simulated. SSQM is computed in Subroutine SETFDI and compared with that found previously. The set of parameter values associated with the smaller SSQM is considered as the better one, and its values are saved. The Rough adjustment cycle continues, each time using the last simulation to adjust parameter values for the next simulation cycle until the value of SSQM is less than 0.15 (MAINO801), or the number of the Rough adjustment cycles exceeds the preassigned minimum number of Rough adjustment cycles (MNRC) and the SSQM values are found to have consecutively worsened at least twice (MAIN0788). In other words, the process continues as long as simulated flows continue to improve. The "twice" enters because sometimes the flows get worse and then start to improve again with the next adjustment. The minimum number of adjustment cycles is necessary because estimates often jump around a lot at first before they settle into a groove converging on a best value.

The optimization procedure then shifts to the Fine adjustment cycle which uses a 20 -minute looping interval, and starts with the saved best set of parameter values from the Rough adjustment cycle. The optimization process of the Fine adjustment cycle is essentially
the same as that of the Rough adjustment cycle except for the termination of the adjustment procedure. In the Fine adjustment cycle, the only criterion for termination is for a new set of adjusted parameters to have a larger SSQM than the previous set. The six volume parameter values from the run in the Fine adjustment cycle with the smallest SSQM are taken as the optimal values. A numerical example is given in the description of Subroutine SETFVP (Table 9).

In the Fine adjustment phase, the interflow volume parameter (BIVF) is adjusted if the program finds that the interflow recession constant (IFRC) exceeds 0.30 (MAIN0222-0226, 0769). The adjustment of BIVF is based on matching the first three days of interflow volumes after major streamflow rises, and the best value of BIVF is taken as the adjusted value of the last run instead of the best run of the Fine adjustment cycle (See Subroutine SETBIV). If the value of IFRC is less than 0.3 , the interpretation is that a division between base flow and direct runoff is sufficient for that station-year data, and the value of BIVF is set as 0.0 (MAIN0222-0226) w ithout calling Subroutine SETBIV.

INITIAL MOISTURE CONDITIONS

OPSET estimates a set of values for the parameters for a particular watershed from one year of data (p.35). The year starts with some amount of water stored on the land surface, stored in the upper zone, stored in the soil, stored below the water table, etc. (25, p. 24). An appropriate procedure had to be devised for estimating each initial moisture storage within the basin at the start of the water year because computer storage and time restraints made it impractical to simulate several months at the end of the previous water year for the sole purpose of establishing initial conditions. The drier the late summer weather, the further back it would be necessary to go, and the more
trouble this approach would cause.
Fortunately, in fact purposefully, the water year begins at a time (October 1) when moisture storages on an average annual basis are near minimum levels because of the long summer of evaporation excess. Since the user of OPSET can exercise discretion in selecting which years to use, he can avoid years known to immediately follow a large storm in late September. The overland flow unrouted storage (OFUS), the overland flow unrouted storage on impervious surfaces (OFUSIS), the unrouted direct runoff in the channel (URHF), the upper zone storage (UZS), and the interflow storage (IFS) are set to be zero (MAIN0255-0272).

The groundwater storage (GWS) is estimated by substituting estimated October 1 baseflow (OCT1BF) and the base flow recession constant into the simulation equation (MAIN0289). One twentieth of the total recorded October flow is taken as a first estimate of the October 1 base flow. If less than one twentieth of the total recorded October flow occurs on October 1, it is assumed that there was minimal direct runoff that day, and the flow recorded on October 1 is taken as the October 1 base flow. OCT1BF may still exceed the true base flow value. For example, the October 1 flow may contain appreciable direct runoff or interflow but be less than five percent of the total runoff during a wet October. Much of this moisture will have run off two days later. If the recorded October 3 daily flow is less than the calculated third day base flow, OCT1BF is taken as the October 3 recorded flow brought forward in time by twice dividing by BFRC (MAIN0286-0288). After OCT1BF is estimated, the initial groundwater storage (GWS) is estimated by solving the groundwater simulation equation (MAIN0519):

$$
\begin{equation*}
\mathrm{GWS}=\frac{\left(\mathrm{OCT}^{2} \mathrm{BF} / \mathrm{BFRC}^{0.5}\right)}{\mathrm{WCFS} * \mathrm{BFRL}} \tag{6}
\end{equation*}
$$

[^3]where the numerator is the base fiow at the beginning of October 1 (adjusted by one half day from the daily average value), BFRL is the logarithm of the houriy base flow recession constant, and WCFS is a factor to convert cfs into watershed inches.

The lower zone storage (LZS) at the beginning of the year is most difficult moisture storage to initiailize. Its value depends on the lower zone capacity (LZC). Since in TRIP 1, LZC is adjusted from cycle to cycle, the value of LZS (unlike the value of all the other initial moisture storage values) needs to be kept in harmony with the value of LZC.

LZS is taken as 6.00 for the first adjustment cycle to be commensurate with the starting trial value for LZC of 12.0 . The initial values of LZS for all subsequent adjustment cycles are adjusted by the following rules gradually evolved through trial-and-error experience,

1. LZS is estimated as the end-of-year LZS of previous cycle multiplied by the ratio of the adjusted LZC to the previous cycle multiplied by the ratio of the adjusted LZC to the previous value of LZC. LZS increases with LZC, and this ratio assumes direct proportionality. If the end-of-September value of LZS is greater than the end-of-August value, then the end-of-August value is taken as the end-of-year value of LZS (MAIN0278-0279) under the assumption that an abnormally wet September has raised the value of LZS above a best estimate.
2. In the case when LZC is adjusted by annual runoff (See SETFVP), the initial LZS is estimated by subtracting from the adjusted LZC an amount which is the product of the difference between the adjusted LZC and the previous end-of-year value of LZS and the ratio used to adjust LZC (MAIN0280 and 0781). Subtraction eliminated the possibility of LZS exceeding LZC in the case when the two were of nearly equal value.
3. If after five Rough adjustment cycles the synthesized monthly flows for November and December are way too high or too low, it is taken as a sign that the starting value of LZS may be bad. The "fall trouble index" (FTX) is used to indicate these cases and to adjust LZS as well. When the sum of the two monthly deviation indices is greater than 2.0% (synthesized flow too high), FTX is set to be 0.90 ; and when the sum is less than $-2.0 *$ (synthesized flow too low), FTX is set to be 1.10 (STFV0009-0010). The adjustment of starting value of LZS is (MAINO282)

$$
\begin{equation*}
\mathrm{LZS}=\mathrm{FTX} * \mathrm{BBYLZS} *\left(\frac{\mathrm{LZC}}{\mathrm{BLZC}}\right) \tag{7}
\end{equation*}
$$

where BBYLZS $=$ initial value of LZS used in the previous adjustment cycle which had the smallest value of SSQM (MAIN0799),

BLZC $=$ saved value of LZC used in the previous best adjustment cycle (MAIN0792).
Equation 7 is particularly helpful when LZS is getting out of line from the first adjustment rule because the previous year ended with significantly different moisture storage than the current one.

The saved best starting value (BBYLZS) of the best Rough adjustment cycle is used (MAIN0284) when the program enters fine adjustment or later trips. When the computer run starts from TRIP 2 or TRIP 3, the starting value of LZS is needed as input data. (See Chapter IV). TRIP 2

The purpose of TRIP 2 is to estimate the four channel routing parameters CHCAP, CSRX: FSRX, and NCTRI to best match the time and peak flow of synthesized to recorded hydrographs. CHCAP

[^4]and NCTRI are first read as input data while both CSRX and FSRX are initially taken to be 0.98. Up to five recorded hydrograph peaks and times of peak are read as input data. Within TRIP 2, a year of streamflows is synthesized using the other nine parameter values, the preliminary estimates for these four values, and a 15 -minute looping interval. During the periods contributing to the recorded hydrographs, synthesized land surface runoffs are saved. Then Subroutine ADJHYD adjusts the total runoff volume to match the recorded volume. The adjusted synthesized runoff provides the inflow hydrograph to be routed through the channel system and compared with the corresponding recorded hydrograph, The estimation procedure calls Subroutine SETHRP to find the best pair of NCTRI and SRX values to match each recorded hydrograph. The optimum value of NCTRI is determined in Subroutine SETHRP, while the SRX values are regressed on the magnitudes of hydrograph peaks to determine how much they really vary with flow by calling Subroutine SETSRP.

When the watershed is small (iime of concentration is less than 1.5 hours) and the streamflow routing is done every 15 minutes (CONOPT 92) $=0$), Subrouine PREPRD is called at the beginning of TRIP 2 to distribute the hourly rainfails into the four periods according to a typical unequal distribution so as to better match hydrograph peak MAIN0377). Feak intensities for periods shorter than one hour are needed to simulate flood peaks from small watersheds. When called, this same unequal distribution is also carried into TRIP 3 ,

TRIP 3

Within TRIP 3, the final set of estimated parameter values and 15-minute inner looping are used to simulate a year of streamflows for comparison of "best" synthesized and recorded streamflows, The purpose is simply to provide information needed to observe the effectiveness of the optimization procedure.

ARRANGEMENT OF SUBROUTINE PROGRAMS

There are 22 subroutine programs used in OPSET. Each subroutine performs its own function a.s an independent unit; however, some subroutines are closely related to one another in program execution. Such subroutines are grouped together in the presentation in order to make the repori more readable and minimize confusion. The subroutines are put into four groups and presented within the group in an order designed to help the reader follow the programed approach. Table 6 gives the arrangement of the 22 subroutine programs in the following sections. It should be noticed, however, that the subroutines are listed alphabetically in Appendices A and B for the convenience of the reader.

Subroutine READ
 (First Accounting Subroutine)

CONTEXT

Large amounts of climatological data are required in streamflow simulation. OPSET, as does the KWM, uses a specially developed Subroutine READ to read unformatted data and thereby make data preparation easier. With this subroutine, it is not necessary to check to make sure the data is punched in specific columns, one can use data obtained from others but punched in a different format without repunching, and one has greater freedom to punch explanatory notes directly on the cards as a means of remembering or conveying certain points to others. This subroutine is written in computer machine language and is available on the University of Kentucky Computer Center's IBM system 360/65. A listing is presented by Cline (9, pp. 249253). The subroutine cannot read alphanumeric data therefore all alphanumeric data is formatted as usual. An alphanumeric data card

TABLE 6
SUMMARY OF SUBROUTINE PROGRAMS SHOWING
MNEMONIC DEFINITIONS, PROGRAM LISTING LOCATIONS, AND ABBREVIATED NAMES

	Subroutine Name	Mnemonic Definition	Program Listing Location	Abbreviated Name
A.	Accounting Subroutines			
	READ	Reads numerical input data	$\begin{aligned} & \text { Cline }(9, \\ & \text { pp. } 249-253) \end{aligned}$	3)
	DAYNXT	Determines next day of the yr	Appendix A	A DYNX
	DAYSUM	Sums daily values to get monthly and annual totals	Appendix B	B DYSM
	DAYOUT	Prints out daily values in tabular form	Appendix A	A DYOT
	EVPDAY	Determines dated pan evaporation totals	Appendix A	A EVDY
	PRECHK	Checks precipitation-streamflow anomalies and adjusts precipitation where necessary	Appendix B	B PRCK
	PREPRD	Divides hourly precipitation totals among periods for small basins	Appendix A	A PREP
B.	Recession Constant Subroutines			
	RECESS	Establishes recession sequences	Appendix B	- RCSS
	SET 2 RC	Sets 2 recession constants	Appendix B	- ST2R
	SET1RC	Sets 1	Appendix B	B ST1R
C.	$\frac{\text { Land Phase }}{\text { SETFVP }}$	$\frac{\text { Parameter Subroutines }}{\frac{\text { Sets new values of flow }}{\text { volume parameters }}}$	Appendix B	B STFV
	SETFDI	Sēts values of flow deviation indices	Appendix B	3 STFD
	SETBMI	Sets new value of basic maximum infiltration rate within watershed	Appendix B	B STBM
	SETRBF	Sets values of interffiow and base flow at recession beginning	Appendix B	3 STRB
	SETBIV	Sets new value of basic interflow volume factor	Appendix B	B STBV

TABLE 6 (cont'd.)

must follow a card containing numerical data; it cannot follow a card containing only a comment.

PURPOSE
Subroutine READ is employed to read numerical input data (real or integer) from the punched data cards. The input data can be coded and punched onto computer cards without format and with explanatory messages.

PROCEDURE

The following two examples illustrate the use of Subroutine READ. One may want to read the values of real variables ALPHA and BETA and integer variable IOTA from one or more punched cards without worrying about the specific locations of these values on the cards. The instruction CALL READ (ALPHA, BETA, IOTA) would cause the data cards to be scanned consecutively from left to right with the first value found being stored as ALPHA, the second as BETA, and the third as IOTA, regardless of the spacing of the values on the card or how many blank cards are passed before the data is found. However, it is necessary that there be at least one blank column between any two values. As a second example, the instruction CALL READ (DATA (I), $I=1,27$) will cause the first 27 values encountered to be stored in array DATA (27). The 27 values may be placed on a single card or may be spread over any desired number of cards.

Variable values should be punched on the cards in the calling order of the corresponding variable names, and the type of values (real or integer) should agree with the specification of the variable names. An integer number read for a real variable will usually cause floating point underflow in program execution. A floating point number read for an integer variable will usually disrupt program execution by misdirecting program control.

When an asterisk ($\%$) is encountered in scanning a card, READ skips on to the next card, ignoring all notes punched on columns to the right of the asterisk. This feature makes it very convenient to place identifying data labels, which may be several cards long, throughout the data list. Many examples of such labeling can be found in Appendices A and B in the report by Ross (25).

Subroutine DAYNXT

(Second Accounting Subroutine)

CONTEXT

Frequently within the program, it is necessary to begin at the first day of the water year and loop through the subsequent days in chronological order. The numbers assigned the days of the year within the program go from 274 for October 1 to 365 for December 31, from 1 for January 1 to 59 for February 28, 366 for February 29 in leap years, and from 60 for March 1 to 273 for September 30 .

PURPOSE

Because the required order of days cannot conveniently be prescribed by a Fortran DO loop, Subroutine DAYNXT is used to determine the number of the next day of the year with the number of the current day given.

PROCEDURE

The number of the next day of the year is the number of current day of the year plus 1 , unless:
(1) the current day is February 28 in a leap year, then the number of the next day is set equal to 366 , and the following day is set equal to 60 .
(2) the current day is December 31, then the number of the next day is set equal to 1 .

Subroutine DAYSUM
(Third Accounting Subroutine)

CONTEXT

The estimation of the runoff volume parameters is based on an objective function matching synthesized to recorded flow volumes on a monthly time grid (pp. 19-20). By comparing the twelve recorded and synthesized monthly flows, one can observe patterns in seasonal variance and make adjustments in search of a better set of parameter values.

PURPOSE

Subroutine DAYSUM sums monthly and annual flow volumes from daily values. The monthly and annual totals are used in the printed tabulations and in the process estimating five runoff volume parameters.

PROCEDURE

DAYSUM first sums daily values to get cumulative flows through the end of each month in the calendar year. The annual runoff is the amount accumulated through December. Monthly flows are then calculated from the excess of the cumulative flows at the end of each month over that at the end of the previous month. Finally, the monthly flows are converted to a water year order. Both recorded and synthesized daily streamflows are summed to obtain the annual and monthly flow volumes. (MAIN0127, 0686).

DISCUSSION

The real issue associated with Subroutine DAYSUM is deeper than the need to sum daily values to get long-term totals. OPSET is seeking to estimate the set of watershed parameter values minimizing the * deviation between recorded and synthesized flow totals. The issue is
how many flow periods should be used (p. 19). Toc few will not properly test the distribution of syrithesized flows over the year. Too many will require routing to simulate runoff at the watershed mouth during the right period, The quick simulation of flow volumes for trial sets of parameter values requires that the routing be bypassed. Therefore, the flow periods must be long enough so that the shift of runoff volumes from a later to an earlier period by ignoring channel routing delay will have a relatively small effect on total period volumes. Monthly periods provide a convenient compromise between the effects of rainfall in one period producing runoff in the next period and the need to consider the seasonal distribution of runoff. The OPSET user needs to be wary, however, of selecting years of data in which major storms occur the last day of any month, particularly when both that month and the following month otherwise have low flows because severe cases can badly upset the estimating procedure。 If OPSET is to be applied to larger watersheds, it may be advisable to add an automatic delay feature moving the precipitation timing later by a number of hours indexed to watershed size to reduce the boundary problem without taking time to route.

Subroutine DAYOUT

(Fourth Accounting Subroutine)

CONTEXT

It is desirable to be able to print out a complete listing of daily values of various items in a neatly labelled table. As this requires about 40 lines of programming, it is convenient to have a single subroutine for this purpose.

PURPOSE

Subroutine DAYOUT prints a table of daily values given the magnitude of each desired value, the day of the year of the last day of each
month, and the number of days in the year.

PROCEDURE

The tabulation process converts values arranged by calendar-year day (VDCY) into values arranged by month day (VDMD) and then prints the daily values arranged by month in the water-year month order-as shown on Table 7. Provision is made for leap year and the irregular number of days per month.

Subroutine EVPDAY

(Fifth Accounting Subroutine)

CONTEXT

One of the aspects of data collection for the Stanford Watershed Model which has been most troublesome to users has been the development of suitable evaporation data. Evaporation pans are much fewer and more scattered than either precipitation or stream gages, and their operation is often discontinued during periods of subfreezing weather.

According to the quality of the data he has available, the user of OPSET can choose from among three approaches to reading the necessary information. These in order of decreasing refinement and as specified by control option 1 (25, pp. 29-35) are:

0 . Individual values for every day of the year. These should be taken directly from a nearby record and reflect the weather conditions on that day.

1. Average values over 10 -day periods. Where actual recorded values are available for the same days for which flows are to be synthesized, it is both more work and less accurate to average the numbers by 10-day periods. The primary purpose of this approach is to serve other situations. A user may have to estimate evaporation

TABLE 7
TABLE PRINTED BY SUBROUTINE DAYOUT
1967-68 WATER YEAR STREAMFLOWS: POND CREEK, LOUISVILLE, KY.

Recorded Flows												
Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept
1	8.5	104.0	106.0	28.0	155.0	18.0	314.0	18.0	160.0	14.0	20.0	6.2
2	8.5	72.0	499.0	28.0	684.0	18.0	145.0	17.0	370.0	19.0	15.0	7.4
3	8.5	37.0	294.0	29.0	184.0	17.0	169.0	15.0	198.0	26.0	42.0	8.8
4	8.5	56.0	94.0	28.0	119.0	17.0	2840.0	14.0	134.0	24.0	24.0	9.0
5	8.5	28.0	63.0	27.0	91.0	22.0	493.0	12.0	104.0	22.0	11.0	17.0
6	23.0	18.0	51.0	24.0	74.0	25.0	246.0	10.0	87.0	20.0	12.0	15.0
7	11.0	16.0	46.0	21.0	66.0	24.0	166.0	12.0	71.0	18.0	17.0	15.0
8	29.0	12.0	31.0	19.0	57.0	24.0	131.0	12.0	57.0	14.0	30.0	15.0
9	31.0	10.0	23.0	17.0	51.0	31.0	93.0	16.0	48.0	18.0	32.0	14.0
10	11.0	7.6	30.0	18.0	36.0	63.0	69.0	60.0	39.0	27.0	298.0	14.0
11	11.0	64.0	102.0	20.0	32.0	98.0	56.0	138.0	30.0	33.0	310.0	14.0
12	10.0	50.0	80.0	22.0	30.0	566.0	41.0	68.0	21.0	18.0	290.0	13.0
13	24.0	19.0	49.0	23.0	26.0	174.0	27.0	46.0	20.0	14.0	240.0	13.0
14.	94.0	18.0	89.0	25.0	24.0	113.0	297.0	42.0	20.0	15.0	190.0	14.0
15	16,0	16.0	125.0	24.0	24.0	93.0	340.0	38.0	20.0	31.0	160.0	12.0
16	12.0 .	12.0	69.0	22.0	24.0	25.1 .0	128.0	34.0	102.0	39.0	135.0	10.0
17	59.0	11.0	164.0	23.0	21.0	166.0	115.0	30.0	68.0	19.0	110.0	7.3
18	28.0	9.0	221.0	27.0	19.0	116.0	119.0	31.0	40.0	16.0	90.0	12.0
19	13.0	7.6	101.0	43.0	20.0	96.0	88.0	15.0	24.0	27.0	76.0	16.0
20	13.0	6.7	84.0	70.0	28.0	134.0	177.0	9.1	15.0	18.0	62.0	13.0
21	12.0	5.8	285.0	169.0	31.0	1180.0	88.0	8.0	14.0	12.0	50.0	13.0
22	12.0	5.8	615.0	207.0	28.0	991.0	60.0	8.0	13.0	13.0	41.0	12.0
23	12.0	7.5	120.0	204.0	21.0	488.0	65.0	101.0	15.0	20.0	34.0	6.8
24	55.0	16.0	79.0	120.0	16.0	499.0	51.0	160.0	15.0	16.0	29.0	8.1
25	120.0	13.0	68.0	77.0	15.0	497.0	36.0	85,0	20.0	32,0	44.0	13.0

TABLE 7 (cont'd.)

Recorded Flows												
Day	Oct.	Nov.	Dec.	Jan.	Feb。	Mar.	Apr.	May	June	July	Aug.	Sept.
26	20.0	10.0	57.0	55.0	16.0	324.0	31.0	1190.0	18.0	44.0	33.0	10.0
27	16.0	8.2	42.0	50.0	16.0	191,0	29.0	674.0	20.0	74.0	25.0	11.0
28	15.0	6.4	37.0	56.0	16.0	146.0	25.0	246.0	18.0	87.0	17.0	8.2
29	13.0	30.0	32.0	64.0	17.0	126.0	22.0	160.0	15.0	24.0	13.0	6.1
30	11.0	460.0	29.0	406.0		112.0	20.0	116.0	13.0	18.0	6.7	5.9
31	12.0		28.0	207.0		207.0		81.0		22.0	5.8	

from other climatological data because no, or an incomplete, pan record is available and evaporations must be estimated from other climatological data (21, pp. 99-108). A lot of time can be saved by only going to the charts for one day out of ten. In other cases, the user may want to synthesize many years of record but have to rely on a. few years of pan data. He can take 10-day period averages for the recent years as reasonable estimates for corresponding 10-day periods in earlier years.
2. Total average annual lake evapotranspiration (EPAET) and the average annual number of days of measurable rain recorded per year (MNRD). Where one desires to synthesize a large number of flow records in the same general area and has only fragmentary evaporation data, it is convenient to be able to use the model without having to work up an entire data set for each location. Subroutine EVPDAY uses regional data to distribute a total annual evaporation over the days of the year. Rainy days enter into the distribution because more evaporation usually occurs on clear than on rainy days. The distribution programmed in OPSET was developed from Kentucky data in the manner described by Ross (25, p. 35), but a check against California data showed that it did not work badly there either. The distribution seems fairly good for central United States but should be slightly more summer peaked for northern latitudes or higher elevations and slightly flatter for areas further south.

PURPOSE

Subroutine EVPDAY distributes the estimated annual evapotranspiration at a particular location among the days in the water year based on the Kentucky distribution of daily fractions of the average annual total.

PROCEDURE

The sequence of computations required to estimate daily potential evapotranspiration totals from EPAET using Subroutine EVPDAY is
relatively straightforward. First, the annual potential evapotranspiration (EMAET) which would occur during the year if no rain were recorded is estimated by using the equation (MAIN0109):

$$
\begin{equation*}
\text { EMAET }=\operatorname{EPAET}\left(\frac{365+\text { MNRD }}{404}\right) \tag{8}
\end{equation*}
$$

where EPAET and MNRD are the estimated potential annual evapotranspiration and the mean annual number of rainy days respectively and are read as input data (25, pp. 31-33). If rain were equally likely to occur any day of the year, Equation 8 would have $365+0.5 *$ MNRD in the denominator to offset the reduction of evaporation by one half on rainy days (MAIN0186). The value of 404 worked a little better for Kentucky where rainy days are slightly more likely to occur during times of the year when evaporation is low.

Within Subroutine EVPDAY, EMAET is multiplied by each of the 366 daily evaporation fractions derived in the method described by Ross (25, p. 35). Later each value is multiplied, by one half if rain is recorded during the day (MAIN0186, 0358).

DISCUSSION

The concept behind Subroutine EVPDAY is very helpful for use in locations where evaporation data is sparse; however, one of the other two approaches to input data should be used when more extensive data is available. The precise numbers used in apportioning the total annual evaporation among the days should be adjusted if Subroutine EVPDAY is to be used in a climatic setting much different than that of Kentucky.

Subroutine PRECHK
 (Sixth Accounting Subroutine)

CONTEXT

In streamflow simulation and particularly where one must rely on precipitation gages located at a distance from the watershed, one must continually cope with the problem of the gaged record inaccurately
representing average precipitation over the basin. For years containing major storms when the input data deviates significantly from precipitation actually experienced within the basin, OPSET will adjust the watershed parameters in an attempt to compensate. For example, data specifying far too little rainfall for a given runoff volume will suggest parameter values which greatly understate the ability of the watershed to store moisture. Such distorted parameter estimates can cause wildly fluctuating estimates of parameter values and greatly increase the number of years whose results must be averaged to get a good set of values (pp. 173-176).

Early in the development of OPSET, no check was made for major precipitation anomalies; and a great deal of difficulty was experienced with fluctuating parameter estimates. Therefore, it became necessary to develop a subroutine to filter out the worst storms, mostly spotty summer thunder showers. As examples, storms with runoff volumes exceeding recorded rainfall volumes or with no recorded runoff from very large rainfalls simply do not make hydrologic sense.

PURPOSE

Subroutine PRECHK is used to check for precipitation-streamflow anomalies and adjust precipitation where necessary.

PROCEDURE

In a study on the effect of rainfall variability on streamflow simulation, Dawdy and Bergmann (11) discussed errors caused in estimation of parameter values by errors in measurement of storm volume and intensity over the basin. In the application of OPSET, cases were found when recorded rainfall was simply not commensurate with recorded streamflow. Improper estimation of parameter values is inevitable if there are data errors in either the recorded flow or the recorded precipitation. The most severe problem is caused by the raingage being too far from the watershed or by trying to represent too large a watershed with too few gages.

In order to balance the effects of positive and negative errors, one may use many years of data on the same watershed. However, it was found that the same goal can be achieved by checking the data for precipitation-streamflow anomalies and adjusting the rainfall data at a significant savings in the time and cost of data compilation and computer execution. As a result, the required number of data years are much fewer.

Rainfall adjustments were made in cases where the recorded streamflow rises significantly exceed the volume of recorded rainfalls, or where very large rainfall but small or no streamflow rises are recorded. For most station-years in the OPSET triai runs of Kentucky watersheds, only two or three summer thunderstorm rainfalls are adjusted. Table 8 summarizes the number of adjustments made by watershed.

Two items were used to check for discrepancies between recorded streamflows and recorded rainfalls. One was daily recorded flow rise (RFRISE), and the other was the recorded watershed rainfall on the corresponding day (RWRAIN). RFRISE is the net increase in flow volume during the current day over the previous day in inches. RWRAIN is the rainfall recorded for that day as estimated from the accumulated recorded hourly rainfalls in inches. Inspection of the results when Subroutine PRECHK was not used showed the primary difficulty to occur during the summer months. Therefore, the checking and adjusting processes were made from the end of March through the end of September (i.e., days of the year 90 through 273).

If on any day, RFRISE exceeds 0.1 inch and RWRAIN is less than 0.05 inch, an indication that there was a significant streamflow rise but very little (if any) rainfall was recorded, the adjustment is made by adding an amount of rainfall which was set after comparing the results of a series of runs with OPSET to make the total be 1.0

TABLE 8
NUMBER OF ADJUSTMENTS MADE FOR RAINFALL ANAMOLIES FOR TESTED WATERSHEDS

inch plus twice the streamflow rise (PRCK0026). If RFRISE exceeds 0.1 inch, and RWRAIN is less than RFRISE yet greater than 0.05 inch, an indication that there was a significant streamflow rise which exceeded a significant recorded rainfall, the recorded rainfalls are multiplied by twice the ratio of RFRISE to RWRAIN (PRCK0031,0039).

In the situation of a large recorded rainfall but little recorded streamflow rise, the precipitation is reduced by multiplication by ten times of the ratio of RFRISE to RWRAIN, if 1) RWRAIN exceeds a preassigned maximum value of rainfall without runoff (RMWR) and RFRISE is less than two percent of RWRAIN, or 2) RWRAIN exceeds three inches and RFRISE is less than five percent of RWRAIN (PRCK 0022, 0023, 0033). The value of RMWR varies with watershed size and soil surface conditions. One would expect RMWR to be largest for a larger watershed following dry weather conditions. A value of 1. 25 inches is used in late spring and early summer, while 2.00 inches is used in later summer (day of the year greater than 200) when the expected soil moisture is less. For watersheds with areas over 28 square miles, a value of 2.00 for RMWR is always used since more rainfall is required to produce a significant streamflow rise from larger watersheds.

DISCUSSION
As OPSET had previously been run for a number of watersheds without checking for rainfall-runoff anamolies, the process used to establish the adjustment rules for Subroutine PRECHK began by inspecting the output to find storms causing difficulty. Recorded rainfalls, runoffs, and dates for these storms were tabulated as were like statistics for the storms OPSET was able to handle without undue distortion of parameter estimates. While the decision on what is or is not undue distortion is subjective, a distinct boundary could be seen
between the two types of events as tabulated; and this boundary provided the basis for the dates and volumes programmed into PRECHK to separate out storms requiring rainfall adjustment. The goal of PRECHK is to reduce the number of years of record required to estimate a set of parameter values, and one can argue that the quality of the adjustment rules used affects the standard deviation of estimates among years more than the mean of estimates from many years of record. Furthermore, the subroutine will seldom sel ect any storms for adjustment in a well instrumented watershed.

The multipliers or additive rainfalls used for adjusting the selected storm rainfalls were selected by trial and error for representative years. Trial results were compared to minimize SSQM and provide estimates of parameter values commensurate with those estimated from other years of record for the same watershed. Those using OPSET in climatic settings where thunderstorms or other highly localized precipitation events frequently occur outside the months from April through September or where prevailing soil moisture conditions vary radically from those in Eastern United States may be able to improve their results by adjusting some of the empirical constants used in PRECHK.

Subroutine PREPRD (Seventh Accounting Subroutine)

CONTEXT

The Kentucky Watershed Model employs hourly precipitation data. but moisture movement is simulated by 15 -minute periods. While 15-minute rainfalls could just as well be read from the point of view of the Model (this may be done optionally by the HSP Model, 14), this information may be difficult to obtain without time-consuming analysis
of the original records. Hours are the shortest time periods for which precipitation data are available on a continuous basis in published sources. Hourly totals are used in the Model, and 15 -minute values are simply taken as one quarter of the hour totals.

The assumption of precipitation uniformly distributed over the hour is not correct, but it does not make much difference for watersheds having routing lags over two or three hours. Precipitation never falls at a constant rate for periods anywhere near an hour; however, the flows at the mouth of a larger watershed so blend rain falling at different times that hourly precipitation can be evenly distributed for streamflow simulation.

The problem comes with smaller watersheds. Fifteen-minute rainfall data would be desirable; but since it may not be readily available, the question is whether the results could be improved by using some pattern of unequal rather than equal distribution of hourly totals among 15 -minute periods. The problem is most significant in connection with underestimation of flood peaks from short intense rainstorms on small watersheds.

PURPOSE

Two basic approaches to unequal distribution of hourly rainfalls among 15-minute periods are possible. One would be to employ a stochastic process randomly selecting from observed hourly rainfall patterns according to their observed frequency of occurrence. This approach was not used because it is complicated to program, expensive in terms of computer time to execute, and requires extensive data collection and analysis to construct. Furthermore, the difference in distributions which happen to be randomly selected for the various hours in the storms used to estimate the channel routing parameters, may well have an adverse influence on parameter estimation.

Randomly selected distributions are likely to differ sharply from a particular historical experience and introduce a new source of parameter estimation error.

The second approach is to utilize an average distribution. The largest 15 -minute precipitation would be the portion of the hourly rainfall occurring on the average during the wettest of the first, second, third, and fourth quarter hours. The second largest would be the portion during the second wettest, etc. Subroutine PREPRD divides hourly precipitation among the 15 -minute periods using the average distribuion approach.

PROCEDURE

The average distribution curve used is shown in Figure 2 and taken from a similar curve (26, p. 32) developed by U. S. Bureau of Reclamation for the area in the Thited States east of 105° meridan. This cumulative distribution curve of rainfall within an hour gives four incremental fractions for successive 15 -minute periods: namely $0.46,0.28,0.16,0.10$. Because of the lack of data and likelihood of a negligible effect, the difference between peak consecutive 15 minutes and peak clock 15 minutes was neglected.

The next issue was how to arrange these fractions in an order that gives a reasonable approximation of patterns of hourly precipitation. For example, the rainfall distribution within an hour when the precipitation total exceeds both the previous and the succeeding hour may be quite different from that within an hour when the total is less than either the previous or the succeeding hour.

PREPRD uses four patierns of hourly precipitation rainfall fractions and selects from among them by comparing current hourly precipitation with that during previous and succeeding hours. They are:

1. If the current hourly precipitation exceeds both the previous

FIG. 2. Distribution of 1-hour Rainfall for Area East of 105° Meridian.
and the next hour, the four 15 -minute period precipitations are taken as $0.10,0.28,0.46$, and 0.16 of the hourly total.
2. If the current hourly precipitation is less than both the previous and the next hour, the order is $0.28,0.10,0.16$, and 0.46 .
3. If the current hourly precipitation exceeds the previous hour but is less than the nexi hour, the order is $0.10,0.28,0.16$, and 0.46 .
4. If the current hourly precipitation is less than the previous hour but exceeds the next hour, the order is $0.46,0.16,0.28$, and. 0,10 .

PREPRD is called only during TRIFS 2 and 3 and oaly then when stream routing is being done on a 15 -minute basis and the intsial estimate of the time of concentration is less than 90 minutes (MATN 0047, 0377).

DISCUSSION

While consistent use of the average distribtuion of hourly precipitation among 15 -minute periods and the arbitrary selection of order for the four periods within the hour does not duplicate actual historical storm patterns, it does simulate higher peaks from small watersheds. The approach thus reduces the systematic simulating bias toward low flow peaks from small watersheds: and this is the primary justification for its use.

Subroutine RECESS

(First Recession Constant Subroutine)

CONTEXT

The Stanford Watershed Model required base flow and interflow recession constants as input data. Crawford and Linsley (10. p. 68) recommend the graphical approach suggested by Barnes (3) io estimate these two values. It requires ploting the logarithm of recession flow
against time and measuring the slopes of two straight lines on the plot. More recently, James and Thompson (18) developed a least squares method to estimate these two recession constants from daily flow totals in an attempt to avoid the human randomness of graphical curve fitting and the time spent in obtaining and plotting complete hydrographs.

Subroutine RECESS selects recession flow sequences from recorded daily streamflows and then calls Subroutines SET2RC and/or SET1RC to evaluate the recession constants from each selected sequence. It estimates average values of the two recession constants by weighting sequence values proportional to sequence length because longer sequences were found to give more reliable results.

For sequences with both baseflow and interflow, the first day values of these two flow components are estimated by a least squares method for use in estimating the basic maximum infiltration rate (BMIR) and basic interflow volume factor (BIVF). Subroutine SETRBF is called from RECESS (RCSS0110) to make these estimates.

PURPOSE

Subroutine RECESS is used to examine daily flows throughout the year to pick out recession sequences for determining the two recession constants (BFRC and IFRC) and to establish volumes of base flow and interflow as a first step in estimating BMIR and BIVF.

PROCEDURE

The sequence selection procedure described by James and Thompson (18) is programed in RECESS. For each station-year, up to 20 flow sequences are selected, and the lengtri of each sequence has the maximum limit of 50 days.

The minimum number of days required for an estimate of a single recession constant is two. For two constants, the minimum
is four days. However, longer sequences provide better estimates from both models as the estimating procedure goes from a forced solution to an estimate minimizing random observation error by statistical methods. An analysis of the consistency of results among estimates from sequences of different lengths showed sequences at least 8 days long to be desirable. As the first or peak runoff day should not be included in the data because it usually contains a large percentage of direct runoff, the first pass through the daily flows has a minimum acceptable number of recession sequence days (MRSL) equal to 9 . If three or fewer such sequences are found, MRSL is reduced to 6 ; and a second pass is made. Thus recession sequences as short as 5 days are used where longer sequences do not exist. If the data do not contain a single recession sequence as long as 6 days in the 365 daily values, OPSET will be halted; but this situation was never encountered in any real data.

As recessions from very small flow peaks seldom give good results (possibly because measurement errors in flow differences from day to day tend to be relatively larger with low flows) a criterion that the second-day flow should be either greater than 10 cfs or greater than $0.4 *$ AREA (where AREA is the watershed area in square miles) is used. Here, the second day is defined as the day after the peak or the first day whose flow is actually used in estimating the recession constants. The AREA criterion is used to increase the number of accepted sequences from small watersheds. The recession sequence is terminated by a flow rise exceeding $0.1 * S Q R T$ (AREA) cfs. A small positive value is used to avoid ending the sequence at very small rises stemming from channel precipitation or non-kydrologic causes. The magnitude of these effects also tend to vary with tre size of the watershed (RCSS0011).

After the recession sequences are established and printed, Subroutine SET2RC and SET1RC are used to estimate IFRC and BFRC. Subroutine SET2RC is always called first to try to estimate values for both recession constants (RCSS0076) from each recession sequence unless the sequence is found to begin with a relatively low flow and flat recession. In this case, the low probability of significant interflow being present made it advisable to assume only base flow was present from the beginning and use Subroutine SET1RC. If Subroutine SET2RC cannot produce two estimates in the range preselected as being reasonable (See Subroutine SET2RC), the data sequence is next used in Subroutine $\operatorname{SET} 1 R C$ to estimate a single recession constant (BFRC). If Subroutine SET1RC does not come up with a value of BFRC between 0.6 and 1.2 , the sequence is entirely discarded.

The sequence estimates for BFRC and IFRC are then used to obtain average values by weighting each sequence value proportional to the length of the sequence. In the weighting, the base flow days include the length of all accepted sequences while the interflow days count only days in those sequences with acceptable IFRC values.
Also, a maximum of 20 days is used in the interflow weighting. Interflow estimation is not significantly improved from longer sequences (also 95 percent of sequences with interflow are shorter than 20 days).

The annual average values are then inspected for reasonableness. If BFRC is greater than 0.99 , it is set equal to 0.99 ; and if BFRC is less than 0.70 , it is set equal to 0.70 . ($\mathrm{RCSS} 0105,0106$). If IFRC is less than 0.30 , it is assumed that the watershed can be satisfactorily modeled by using only direct runoff and base flow. Interflow is either minimal or so rapid it can just as well be classified with direct runoff. IFRC is nominally set equal to 0.10 , and this value is subsequently used throughout the program as a test to exclude interflow from the
flow simulation (MAIN0222, 0225).
Finally, given the weighted average values of $B F R C$ and IFRC, the sequences with interflow and base flow are used to estimate values of interflow and base flow at the beginning of each recession sequence by calling Subroutine SETRBF (RCSS0110).

Subroutine SET2RC (Second Recession Constant Subroutine)

CONTEXT

Subroutine RECESS selects from the complete water year tabulation of recorded daily flows those sequences sufficiently long to provide an adequate basis for estimating recession constants. Separation of subsurface flow into interflow and base flow requires two recession constants; however, a given recession sequence may contain only one of the two flow types. The approach was to try to estimate both constants if possible but revert to the estimation of only one where that is all the data allows.

PURPOSE

Subroutine SET2RC is used to estimate two recession constants (BFRC and IFRC) for each recession sequence. It returns to Subroutine RECESS either with both values or the message that data at hand does not yield two real solutions.

PROCEDURE

The subroutine follows the approach of James and Thompson (18) of fitting the recession sequence $q_{0}, q_{1}, q_{2} \ldots q_{n}$ into the model

$$
\begin{equation*}
q_{t}=K_{b} Q_{b, t-1}+K_{i} Q_{i, t-1}+\epsilon_{t}(t=1,2, \ldots n) \tag{9}
\end{equation*}
$$

where $q_{t}=$ the recorded daily flow on $t^{\text {th }}$ day of the sequence under consideration;
$Q_{b, t-1}=$ the base flow on the $t-1{ }^{\text {th }}$ day:
$Q_{i, t-1}=$ the interflow on the $t-1{ }^{\text {th }}$ day;
$K_{b}=$ base flow recession constant, BFRC;
$K_{i}=$ interflow recession constant, IFRC;
$\epsilon_{t}=$ a random error on the $t^{\text {th }}$ day.
By assuming that both base flow and interflow follow a linear model, they derived the expression:

$$
\begin{equation*}
q_{t}=\left(K_{b}+K_{i}\right) q_{t-1}-K_{b} K_{i} q_{t-2}+\eta_{t} \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\eta_{t}=\epsilon_{t}-\left(\mathrm{K}_{\mathrm{b}}+\mathrm{K}_{\mathrm{i}}\right) \epsilon_{\mathrm{t}-1}+\mathrm{K}_{\mathrm{b}} \mathrm{~K}_{\mathrm{i}} \epsilon_{\mathrm{t}-2} \tag{11}
\end{equation*}
$$

For convenience, let

$$
\begin{equation*}
\alpha=K_{b}+K_{i} \tag{12}
\end{equation*}
$$

and $\beta=-\mathrm{K}_{\mathrm{b}} \mathrm{K}_{\mathrm{i}}$
then the model (Equation 10) became

$$
\begin{equation*}
q_{t}=\alpha q_{t-1}+\beta q_{t-2}+\eta_{t} \tag{14}
\end{equation*}
$$

The least squares estimates of α and $\beta(\hat{\alpha}$ and $\widehat{\beta})$ were found by solving the "normal equations"

$$
\left[\begin{array}{llll}
n-1 & & & \tag{15}\\
\sum q_{t}^{2} & \sum & q_{t} q_{t+1} \\
t=1 & & t=0 & \\
\sum_{t=0}^{n-2} & q_{t} q_{t+1} & \sum_{t=0}^{n-2} & q_{t}^{2}
\end{array}\right]\left[\begin{array}{l}
\hat{\alpha} \\
\hat{\beta}
\end{array}\right]=\left[\begin{array}{cc}
n-1 & \\
\sum & q_{t} q_{t+1} \\
t=1 & \\
n-2 & \\
\sum & q_{t} q_{t+2} \\
t=0 &
\end{array}\right]
$$

Combining equations 12,13 , and 14 , and bearing in mind that K_{b} is always greater than K_{i} because the base flow receeds slower, the estimated K_{b} and K_{i} were shown to be

$$
\begin{align*}
& \hat{\mathrm{K}}_{\mathrm{b}}=\frac{\hat{\alpha}_{+} \sqrt{\hat{\alpha}^{2}+4 \hat{\beta}}}{2} \tag{16}\\
& \hat{\mathrm{~K}}_{i}=\frac{\hat{\alpha}-\sqrt{\hat{\alpha}^{2}+4 \hat{\beta}}}{2} \tag{17}
\end{align*}
$$

if the discriminant $\hat{\alpha}^{2}+4 \hat{\beta}$ is non-negative. If the discriminant is negative (Equation 13 shows β to be negative), the complex estimates of K_{b} and K_{i} have no physical meaning. There also has to be at least four q's for the matrix of coefficients in Equation 15 to be non-singular.

DISCUSSION
If the recession sequence data can be represented by two distinct flow categories, each with a fixed linear recession constant, Subroutine SET2RC will provide a least squares estimate of two constants and designate the larger BFRC and the smaller IFRC. However, observed recession data will deviate from the model because of nonlinear recession of subsurface runoff, the presence of small quantities of direct runoff from storms too small to cause a flow rise, flow measurement errors, or other reasons (18). If Subroutine SET2RC is applied to a recession sequence which is best modeled by a single recession constant, it will estimate a value for that constant. The estimate for the other constant will be based on error term residuals and have no physical meaning. When either K_{b} or K_{i} falls outside the reasonable range or can only be estimated as a complex number, the results with Subroutine SET2RC are discarded, and Subroutine RECESS shifts to Subroutine SET1RC to try to estimate a single value. The single constant is assumed to represent base flow as
it is difficult to picture a prolonged period of time when all flow is interflow.

The reasonable ranges were taken as 0.6 to 1.2 for K_{b} and -0.4 for 0.8 for K_{i}. These ranges are broadly defined in order to include sequences producing estimates with positive and negative random estimating error. As many sequences are averaged in Subroutine RECESS to get an overall estimate, the positive and negative estimating errors tend to cancel. The range of acceptable estimates of BFRC and IFRC becomes much narrower (p. 68). Use of such a limited range at this point would bias the averaged estimate.

Subroutine SET1RC (Third Recession Constant Subroutine)

Abstract

CONTEXT The recession sequences selected by Subroutine RECESS potentially have two flow components. When attempts were made to estimate two constants with SET2RC from flow sequences with a small beginning flow and slow recession, the results were usually bad because base flow usually predominated. As a cutoff which gave the best results, the sequences with a first flow less than $0.4 *$ AREA and a second flow greater than 80 percent of the first flow were filtered out and were fitted into a model to evaluate a single recession constant (RCSS0073, 0074).

Some other flow sequences yielded physically unreasonable values for either one or both of the two recession constants. These also were considered to be base flow sequences. In both cases, the need was for an estimating procedure to evaluate a single recession constant (RCSS 0076-0078).

PURPOSE

Subroutine SET1RC is used to estimate the base flow recession from sequences of daily flow totals determined to be essentially base flow.

PROCEDURE
Given a sequence of base flows $q_{0}, q_{1}, \cdots q_{n}$ following the linear model

$$
\begin{equation*}
q_{t}=K_{b} q_{t-1}+\epsilon_{t} \quad(t=1,2, \ldots n) \tag{18}
\end{equation*}
$$

the least squares estimator for the coefficient K_{b} (BFRC) as developed by James and Thompson (18) can be expressed as

$$
\begin{equation*}
K_{b}=\frac{\sum_{t=0}^{n-1} q_{t} q_{t+1}}{\sum_{t=0}^{n-1} q_{t}^{2}} \tag{19}
\end{equation*}
$$

Equation 19 was programed into Subroutine SET1RC (STIR 0006-0010) and used to estimate BFRC for each base flow sequence. The values of BFRC for all the flow sequences (including those estimated by SET2RC for sequences with interflow) were then used in RECESS to estimate an average BFRC for that station-year.

DISCUSSION

The value of BFRC estimated by OPSET proved to be consistent among sequences and among years. Close inspection of the results, however, revealed a trend toward larger estimates of BFRC from sequences of relatively lower flows than from sequences beginning with higher flows. This trend is the very reason for use of a second base flow recession parameter (BFNLR) in the Kentucky Watershed Model to make the base flow recession relatively more rapid during
periods of high groundwater storage and then progressively less rapid as the sequence continues (10, pp. 68-69). Recommendations for estimating BFNLR are presented on pp. 170-173.

Subroutine SET FVP
(First Land Phase Parameter Subroutine)

CONTEXT

The most important single function of OPSET is to estimate an optimum set of values for the six parameters which the sensitivity studies revealed to govern the month by month distribution of flow volume synthesized from a precipitation record. In order of decreasing sensitivity, these are

1. LZC - An index of the moisture storage capacity of the lower zone or soil,
2. BMIR - An index of infiltration rate,
3. SUZC - An index of the degree to which the moisture storage capacity of the upper zone or watershed surface and soil cover increases into the summer season because of vegetation changes, cultivation practices, and other factors,
4. ETLF - An index to the rate of moisture loss through evapotranspiration from the soil,
5. BUZC - An index of the degree to which the upper zone moisture storage capacity decreases with increasing lower zone moisture content because of the development of better surface drainage during wetter conditions,
6. SIAC - An index of the degree to which the infiltration rate increases into the summer.

Each parameter is described in more detail by Ross (25, pp. 47-55) and was originally developed under different names for the Model by Crawford and Linsley (10).

In order to see how and to what degree each parameter affects runoff (annual total as well as distribution over the year), a sensitivity study was made with the data for Elkhorn Creek near Frankfort, Kentucky, for the 1964 water year. First, a best set of parameter values was selected by trial-and-error. Then for each of the six parameters, two more computer runs were made by varying that parameter while all the other parameters were held constant. Each parameter was found to have its own effect on the simulated volumes, and this effect varies by type of flow and with the time of the year. This sensitivity study helps translate each parameter from a variable in an equation to a term with hydrologic meaning and thereby provides very useful guidelines for establishing rules for adjusting each parameter value in a fashion likely to lead to the synthesis of better matching flows.

The adjustment rules for five of these six volume parameters are based on observing differences between synthesized and recorded flows during the months when the synthesized monthly flows are most sensitive to variation in that variable. These five are grouped in Subroutine SETFVP. Better adjustment for BMIR was found to be indexed to matching the recorded and the synthesized base flows during the first three days of selected recession sequences (See Subroutine SETBMI). However, in the process of estimating the flow volume parameters, these two subroutines function as a unit to adjust the six parameters simultaneously between trial flow simulations.

The optimization process begins by simulating a year of streamflows with a set of initial trial values for the six parameters. Then
each parameter is adjusted by its adjustment rule. The new set of six values is used to simulate another year of streamflows, and the process continues until the adjustments no longer are able to achieve simulated flows which have a smaller value of SSQM as computed by Subroutine SETFDI.

If estimation of the six volume parameters functioned in an ideal manner, each adjustment would improve the match between recorded and simulated flows until the final adjustment achieved exact duplication. Of course, an exact match is impossible with real data and a model which cannot reflect the full complexity of the runoff process. Somewhere, the adjustment will have to be stopped because it can no longer improve the matching.

Perfect matching is prevented by data difficulties and by modeling difficulties. Better data will yield better matching and increase the relative difficulty with the model. No matter which difficuity predominates for a given run with OPSET, it is certain to be monthly asymmetrical. For example, measured precipitation will depart from true watershed precipitation in some months more than in others. If a parameter is indexed on a month with data difficulty. repeated adjustment will overcorrect. Synthesized flows for the other months will worsen. A worsening for many months will overshadow an improvement for an index month, and a. larger SSQM will halt the process. If the data difficulty in the index months is large, the worsening may begin early in the adjustment process; and OPSET will be prevented from making a good estimate. For this reason, an alternate adjusting index is developed for each parameter. If overcorrection is leading a parameter into wild values and resulting
in poor matching, the index suggested by the sensitivity studies is abandoned, and the alternate adjustment is tried.

A number of specific observations about this process are useful.

1. The smaller the largest data difficulty, the better will be the final matching.
2. If all the data were accurate and the only difficulty lay with the model, OPSET would adjust the parameters in an attempt to compensate for model imperfections and cause the process to halt as matching worsened in months where the model worked better.
3. Data difficulties in months used to index adjustments to the parameters to which the flows as a whole are the most sensitive are the most likely to quickly terminate the process and produce poor estimates for all six parameters. This suggests indexing these parameters on larger groups of months to minimize susceptibility to this difficulty.
4. These more "sensitive" parameters are estimated by OPSET with greater precision because faulty estimates are more likely to upset the entire annual pattern of simulated flows.
5. Data difficulties in months used to index adjustments to the parameters to which the flows as a whole are least sensitive will more slowly terminate the process. If the index is leading this paramater to bad values but the other parameters are improving, the matching as a whole will likely improve too.
6. These less "sensitive" parameters are estimated by OPSET: with less precision. This may in part explain the greater difficulty Ross had in correlating the values estimated for these parameters with his measured watershed characteristics (25, pp.103-118).
7. Simultaneous adjustment of six parameter values leads to interactions as faulty estimates for one parameter upsets the adjust-
ment index for and hence the selected value of another parameter. The sensitivity tables show flows in some months to be more sensitive to the value of a given parameter than are the flows in other months, but flows in all months are to some degree sensitive to all parameters.
8. Months more likely to have data difficulties provide less desirable adjustment indices. October is a poor month for indexing because of the difficulty in estimating initial contitions. Summer months are worse than winter months because the greatest data problems are associated with convective precipitation.

PURPOSE

Subroutine SETFVP adjusts the values of five flow volume parameters LZC, SUZC, ETLF, BUZC, and SLAC during the process of estimating the best set of values for the six flow volume parameters.

PROCEDURE

The values of the five flow volume parameters are adjusted in Subroutine SETFVP by examining the monthly flow indices determined in Subroutine SETFDI. The specific indices examined were based for a given parameter on months with flows known from the Elkhorn sensitivity studies to be particularly sensitive to that parameter and adjusted as experience was gained with OPSET.

A numerical example of the estimation process is shown on Table 9 based on South Fork Beargrass Creek near Louisville, Kentucky, for 1947 water year. Table 10 provides supplemental information illustrating how overland flow and base flow months were defined in the adjustment of LZC. The information on these tables will be gradually explained as the parameter adjustments are individually presented.

TABLE 9
ADJUSTMENT OF FLOW VOLUME PARAMETERS：
SOUTH FORK BEARGRASS CREEK，LOUISVILLE，KENTUCKY，1947

PARAMETER VALUES＊							
Cycle		LZC	BMIR	SUZC	ETLF	BUZC	SIAC
1		12.00	1． 20	1.30	0.25	1.50	0.90
2		10.16	4.35	0.74	0.19	2.14	0.45
3		8． 63	4.37	0.49	0.18	2.72	0.22
4		7.90	3.29	0.47	0.21	4.61	0.11
5		7． 53	2.73	0.42	0.24	6.54	0.06
6	界	7.13	2.83	0.37	0.26	5.42	0.03
7	\bigcirc	7.06	3.19	0.33	0.27	4.60	0.02
8	\bigcirc	6.56	3.55	0.31	0.27	4.45	0.01
9	近	6.02	3.73	0.31	0.28	4.59	0.01
10		5.37	3.94	0.31	0.29	4． 49	0.01
11		4.67	4.19	0.31	0.29	4.31	0.01
12		3.97	4.49	0.32	0.29	4.05	0.01
13		3.36	4.79	0.32	0.28	3.74	0.01
1		4.67	4． 19	0.31	0.29	4.31	0.01
2	Y	4.45	4.64	0.36	0.31	4.37	0.01
3	宸	3.90	5.43	0.44	0.31	4．37	0.02
4	近	$\overline{3.37}$	$\overline{6.14}$	$\overline{0.52}$	$\overline{0.30}$	3.99	0.02

＊For this station－year，the basic interflow volume factor（BIVF） is 0.0 because no interflow was encountered in Subroutine RECESS． For station－years where interflow is appreciable，BIVF in the Rough cycles is set at 0.90 ，and its value is adjusted in the Fine cycles by Subroutine SETBIV．

TABLE 9 （cont＇d．）

MONTHLY FLOW DEVIATIONS							
Cycle	Oct．	Nov．	Dec．	Jan．	Feb．	Mar．	Apr．
1	－0．12	0.98	0.19	－0．09	-3.58	－0．22	－0．16
2	－0．07	0.45	0.27	－0．20	－1．00	－0．35	－0．16
3	0.05	1.02	0.74	－0．11	－0．73	－0．18	－0．08
4	－0．03	0.92	0.73	－0．06	－0．78	－0．17	－0．04
5 －	－0．09	0.50	0.48	－0．08	－0．88	－0．17	－0．04
6 岂	－0．11	0.18	0.28	－0．11	－0．84	－0．18	－0．04
7 P	－0．12	0.04	0.14	－0．17	－0．76	－0．20	－0．05
8 发	－0．12	0.11	0.17	－0．16	－0．69	－0．18	－0．04
9	－0．12	－0．05	0.18	－0．15	－0．65	－0．15	－0．02
10	－0．13	－0．11	0.22	－0．12	－0．61	－0．12	－0．00
11	－0．13	－0．15	0.32	－0．08	－0．56	－0．08	0.02
12	－0．13	－0．17	0.49	－0．04	－0．51	－0．03	0.05
13	－0．13	－0．09	0.72	－0．01	－0．47	0.01	0.07
1 全	－0．05	－0．09	0.34	－0．08	－0．53	－0．08	0.04
2 号	－0．05	－0．23	0.24	－0．08	－0．47	－0．08	0.03
3 荎	－0．05	－0．23	0.37	－0．06	－0．37	－0．06	0.04
4	－0．05	－0．15	0.58	－0．02	－0．31	－0．02	0.05
Cycle	May	Jun．	Jul．	Aug，	Sep．		SSQM
1	－0．61	－1．09	－0．70	－0．76	－0．11		16．49
2	－0．17	－0．42	－0．21	－0．18	－0．05		1． 72
3	0.03	－0．30	0.73	－0．01	－0．01		2.78
4	0.06	－0．35	0.65	－0．13	－0．06		2.59
5 －	0.09	－0．39	0.65	－0．19	－0．09		1.91
6 岛	0.11	－0．36	0.68	－0．19	－0．09		1.51
70	0.13	－0．29	0.72	－0．15	－0．09		1.31
8 近	0.15	－0．22	0.71	－0．12	－0．10		1.16
9	0.16	－0．19	0.63	－0．13	－0．10		0.99
10	0.18	0.18	0.52	－0．16	－0．11		0.83
11	0.19	－0．16	0.39	－0．20	－0．11		0.71
12	0.21	－0．15	0.24	－0．26	－0．12		0.73
13	0.23	－0．13	0.10	－0．31	－0．12		0.94
1 国	0.23	－0．09	0.45	－0．13	0.03		0.70
2 穵	0.19	－0．11	0.28	－0．16	0.03		0.50
3 臣	0.16	－0．14	0.11	－0．21	0.02		0． 44
4	0.13	－0．14	－0．01	－0．28	0.02		0.58

TABLE 10
DIVISION OF SIMULATED FLOWS: S. FK. BEARGRASS CREEK, LOUISVILLE, KY. 1947

Recorded Recorded Esti- mated Monthly Rainfalls Evapo- Totals trans- piration (in) (in) (in)				Synthesized Flows							
				Overland flow (in)	ycle 1 Interflow (in)	itial) Baseflow (in)	Total* flow (in)	Over- land flow (in)	Cycle Interflow (in)	Base flow (in)	Total* flow (in)
Oct.	0.099	2.16	3.03	$0.079^{\text {a }}$	0.000	0.011	0.084	$0.079^{\text {a }}$	0.000	0.019	0.090
Nov.	0.279	4.33	1.48	$0.306^{\text {a }}$	0.228	0.068	0.597	0.178	0.084	0.170	0.426
Dec.	0.695	2.92	0.85	0.258	0.265	0.306	0.825	0.119	0.126	$0.645^{\text {b }}$	0. 886
Jan.	3.540	5.30	0.64	$2.217^{\text {a }}$	0.563	0.487	3.264	0.633	1.042	1.289	2.960
Feb.	1.042	0.40	0.71	0.000	0.018	$0.181^{\text {b }}$	0.199	0.000	0.043	$0.464^{\text {b }}$	0.504
Mar.	0.636	2.19	0.96	0.167	0.226	0.127	0.516	0.071	0.112	$0.282{ }^{\text {b }}$	0.461
Apr.	3.660	6.26	2.05	$1.911^{\text {a }}$	0.731	0.533	3.165	0.458	1.248	1.473	3.168
May	2.110	6.04	4.03	0.500	0.446	0.380	1.306	0.292	0.615	$0.922^{\text {b }}$	1.809
Jun.	1. 390	4.03	5.76	0.205	0.131	$0.337^{\text {b }}$	0.646	0.149	0.138	$0.711^{\text {b }}$	0.972
Jui.	0.472	4.22	6.08	$0.142^{\text {a }}$	0.034	0.111	0.260	0.149	0.120	$0.338^{\text {b }}$	0.578
Aug.	0. 158	1.75	6. 88	$0.054^{\text {a }}$	0.000	0.033	0.071	0.054	0.000	$0.103{ }^{\text {b }}$	0.128
Sep.	0.108	2.86	4.74	$0.089^{\text {a }}$	0.000	0.010	0.094	$0.089^{\text {a }}$	0.000	0.025	0.102

*Total flow is the sum of overland flow, interflow, and base flow less stream evaporation.
a. Overland-flow month
b. Base-flow month

Subroutine SETFVP calls Subroutine SETFDI to calculate the monthly flow deviation indices (STFV0008) and then adjusts the five parameters one by one according to the rules which follow.

LZC: LZC is an index of soil-moisture storage capacity. The bigger its value, the more water can be stored in soil. It directly or indirectly controls the simulated rates of infiltration, evapotranspiration, and percolation to groundwater.

The response of different flow components to the variation of LZC can be seen in the results of the Elkhorn Creek sensitivity studies (Tables 11 and 12). Increasing LZC reduces overland flows with the greatest decrease coming toward the end of the wet months when precipitation is less apt to saturate the available storage capacity. The overland flows decrease sharply in those wet months right after long dry season because more water infiltrates into the soil and is stored.

Increasing LZC decreases interflows and base flows in wet winter months but increases them in dry summer months. When the soil storage capacity is increased, more water is stored in the soil during the wet season so that less is available to contribute to interflows and base flows, but the greater soil moisture contributes to base flow in dry months and contributes indirectly to interflow because the soil is wetter during storm periods (Equation 35).

The consistency with which overland flows decrease when LZC increases suggests that the adjustment of LZC be tied to overland flow. Recorded overland flow cannot be readily estimated on a monthly basis, so direct matching is not possible. The next best approach was to use total flow in months where overland flow is known to predominate. An "overland-flow month" is defined as a month in which more than half of the simulated total flow is overland flow. Such months are selected in MAIN0732 to 0746 and tagged by

TABLE 11
SENSITIVITY STUDIES: ELKHORN CREEK WATERSHED (1964) with $\mathrm{LZC}=3.50$, $\mathrm{BMIR}=0.65, \mathrm{SUZC}=0.10, \mathrm{ETLF}=0.20$, $\mathrm{BUZC}=0.75, \mathrm{SIAC}=3.0$

	Precipitation (in)	Potential Evapotranspiration (in)	Overland flow less stream evaporation (in)	Interflow (in)	Baseflow (in)	Total Flow (in)
Oct.	0.46	4.68	0.028	0. 000	0.015	0.043
Nov.	1. 71	2.42	0.039	0.000	0.001	0.040
Dec.	1.14	0.22	0.034	0.067	0.022	0.123
Jan.	2.75	0.45	0.438	0.809	0.176	1. 423
Feb.	2.68	0.32	0.244	0.979	0.279	1. 502
Mar.	11.22	0.61	7.031	2.509	0.680	10.220
Apr.	3.32	1.60	0.365	0.570	0.307	1. 242
May	1. 49	4.12	0.062	0.070	0.153	0. 295
June	3.19	5.77	0.063	0.061	0.059	0.183
July	4.03	5.27	0.070	0.015	0.039	0.124
Aug.	2.66	6.50	0.052	0.001	0.010	0.063
Sept.	4.53	5.52	0.068	0.053	0.015	0.136

TABLE 12
ELKHORN CREEK WATERSHED SENSITIVITY STUDIES: MONTHLY SYNTHESIZED FLOW VOLUMES AS A FRACTION OF VOLUMES WITH LZC $=3.50$

	Overland Flow		Interflow		Base Flow		Total Flow	
	$\begin{aligned} & \text { LZC= } \\ & 7.0 \end{aligned}$	$\begin{aligned} & \mathrm{LZC}= \\ & 24.0 \end{aligned}$	$\begin{aligned} & \mathrm{LZC}= \\ & 7.0 \end{aligned}$	$\begin{aligned} & \text { LZC= }= \\ & 24.0 \end{aligned}$	$\begin{aligned} & \mathrm{LZC}= \\ & 7.0 \end{aligned}$	$\begin{aligned} & \mathrm{LZC}= \\ & 24.0 \end{aligned}$	$\begin{aligned} & \mathrm{LZC}= \\ & 7.0 \end{aligned}$	$\begin{aligned} & \text { LZC }= \\ & 24.0 \end{aligned}$
Nov.	1.00	0.97	1.00	1.00	1.00	2.00	1.00	1.02
Dec.	1.03	1.03	0.48	1. 45	0.50	1.41	0.63	1.32
Jan.	0.64	0.60	0.78	0.78	0.49	0.56	0.70	0.70
Feb.	0. 52	0.41	0.82	0.68	0.52	0.39	0.72	0.58
Mar.*	0.95	0.86	0.99	0.98	0.61	0.37	0.93	0.85
Apr.	0.87	0.79	0.85	0.68	0.65	0.36	0.81	0.60
May	0.94	0.87	0.93	0.67	0.72	0.39	0.82	0.56
Jun.	1. 00	0.97	1.03	0.79	0.92	0.54	0.98	0.77
Jul.*	0.99	0.99	1.33	1.20	1.31	1.03	1.13	1.03
Aug.*	1.00	0.98	3.00	4.00	1.80	1.80	1.15	1.16
Sep. ${ }^{*}$	0. 93	0.87	1.32	1. 72	1.53	2.00	1.15	1.32

* Overland flow month in which synthesized overland flow is more than one-half of total flow (See Table 11).
setting XMPFT for that month equal to 2.0. If there are at least three overland-flow months during the water year, the following steps are used to adjust the value of LZC:

1) Sum the monthly flow deviation indices into SOFMD for the FNOFM overland flow months.
2) Calculate the adjustment factor (FLZC) for LZC as

$$
\begin{equation*}
\mathrm{FLZC}=\frac{\text { SOFMD }}{0.75 * F N O F M} \tag{20}
\end{equation*}
$$

3) If $F L Z C$ is positive (the synthesized flow averages greater than the recorded flow in the overland-flow months), increase LZC by multiplying by ($1+\mathrm{FLZC}$) so that the synthesized flow may be decreased. If FLZC is negative, decrease the value of LZC by dividing by the factor ($1-\mathrm{FL} Z \mathrm{C}$) to make the flows bigger.

The constant 0.75 in Equation 20 (STFV0041) was established in conjunction with values for a set of like constants, one per parameter. The other values are 1.0 for SUZC (STFV0089), 1.2 for ETLF (STFV0134), 0.4 for BUZC (STFV0147), and 1.5 for SIAC (STFV0177). The overall and relative magnitude of these constants were established by trial-and-error. The overall magnitude was adjusted downward as needed to prevent the trial estimates from varying so much that they never stabilized to a good match. It was adjusted upward as needed to prevent excessive computer time from being used. The relative magnitude of the constant for a given parameter was increased as needed to make that parameter arrive ait its optimum value about the same time the others did. If a constant was too small, the parameter would not reach an equilibrium value before the process was halted. A single parameter being adjusted in increments too large would upset the estimation process by changing flows faster than changes in the other parameters could bring them in line.

Sometimes, the value of FLZC may be quite large (positive or negative) because of data difficulties in some months or because of the initial trial set of values being far from optimal. If so, the adjusted value would be either so big (when FLZC is positive) or so small (when FLZC is negative) as to upset the whole optimizing process from the very beginning. In order to prevent this, FLZC is limited to the range between -1.0 and 1.0 . When the calculated FLZC exceeds 1.0 , it is set equal to 1.0 ; and when $F L Z C$ is less than -1.0 , it is set equal to $\mathbf{- 1 . 0}$. This limitation confines the adjusted LZC to between one-half and twice the previous value.

Even with the limitation on FLZC, the adjusted value of LZC may eventually become too big or too small if there are data difficulties which cause overcorrection. For example, if an over-land-flow month happens to have recorded streamflows too small to be commensurate with the recorded rainfalls, the program would increase the value of LZC time after time in an attempt to decrease the synthesized flows until an unreasonably large value of LZC resulted. As a control, LZC is restricted to values between 30.0 and 2.0 inches.

For a year with many overland-flow months, the above method works well. When there are only one or two, the process may be severely upset by data difficulties in these months. The danger is particularly great when a low flow summer month is an overlandflow month because of overland flow from one summer thunderstorm. When there are no overland flow months, the process breaks down completely. For these reasons, when there are less than three overland-flow months, the average of the monthly flow deviation indices of the two largest runoff months is taken as the adjustment factor FLZC. The two largest total flow months are sensitive to LZC and are less likely than low flow months to be associated with rainfall
measurement problems.
For the example of Tables 9 and 10, the first adjustment of LZC is based on seven overland-flow months (October, November, January, April, July, August, and September) and changes LZC from 12.0 to 10.16 by using Equation 20. The second adjustment is based on the two largest runoff months (April and January) instead of the two overland-flow months (October and September), changes LZC from 10.16 to 8.63 instead of 9.41 , and thereby speeds convergence on a final value of 3.90 .

The alternate procedure for adjusting LZC is invoked when after six adjustments during the Rough phase LZC exceeds 29.0 (MAIN0777). A value this large hints that something else should be tried. An alternate procedure is not adopted sooner than this because wild values may occur before the program has a chance to recover from initial parameter values which may be quite poor for the watershed at hand. Adjustments by the alternate procedure are handled in MAIN by setting the logical variable LLZC to be TRUE, and the Subroutine SETFVP adjustment is skipped (STFV0030).

The alternate procedure adjusts LZC based on the total annual runoff volume according to the equation (MAIN0781):

$$
\begin{equation*}
\mathrm{LZC}=\operatorname{PLZC}\left(\frac{\mathrm{SATFV}}{\text { RATFV }}\right) \tag{21}
\end{equation*}
$$

where PLZCC = previous trial value of LZC;
SATFV = synthesized annual total flow volume;
RATFV = recorded annual total flow volume.
One special case in adjusting LZC comes when there is "Fall trouble" (See Subroutine SETBMI) caused by difficulty in establishing initial soil moisture conditions. If the adjustment is in Rough adjustment cycle and the adjusted value of LZC is less than the
associated estimate of initial soil moisture (LZS) plus 2.0, the value of LZC is set to be LZS + 2.0 (MAIN0283). This step was found to eliminate wild adjustment patterns caused by starting the water year with a saturated watershed.

In the Fine adjustment cycle, the limitation on extreme values (30.0 and 2.0) is removed because a reasonable set of values is estimated during the Rough cycle. If adjustment outside this range can now improve the overall matching, the adjusted value should be accepted for LZC. If during the Rough adjustment, annual runoff volume has been invoked to adjust LZC, then Equation 21 is retained for the Fine adjustment.

SUZC: This parameter is used in the Model to account for the growing season increase in upper zone storage capacity (25, pp. 47-48). The sensitivity studies (Tables 11 and 13) show increases in SUZC to 1) reduce total runoff during summer months, particularly those with significant shower activity, and 2) reduce base flow by an amount which becomes progressively larger through the summer. Each trend makes hydrologic sense. If the watershed surface is able to hold more moisture, summer storms are likely to be adsorbed on the surface (thus reducing runoff from larger rains and eliminating it from smaller rains), and the water will stay near the surface until it evaporates. Summer infiltration will decrease, and groundwater will gradually drain. If little or no rain occurs in August and September, flows in these months will be quite low.

The adjustment of SUZC is based on the monthly flow deviation indices during the two months between April and November inclusive with the greatest recorded rainfall plus indices for August and September when more than half of the flow synthesized for the months during the last trial was base flow. The adjustment is executed in the following steps:

TABLE 13
ELKHORN CREEK WATERSHED SENSITIVITY STUDIES: MONTHLY SYNTHESIZED FLOW VOLUMES AS A FRACTION OF VOLUMES WITH SUZC $=1.0$

	Overland Flow		Interflow		Base Flow		Total Flow	
	$\begin{gathered} \text { SUZC }= \\ 0.5 \end{gathered}$	$\begin{gathered} \text { SUZC }= \\ 2.0 \end{gathered}$	$\begin{gathered} \text { SUZC }= \\ 0.5 \end{gathered}$	$\begin{gathered} \text { SUZC= } \\ 2.0 \end{gathered}$	$\begin{gathered} \text { SUZC }= \\ 0.5 \end{gathered}$	$\begin{gathered} \text { SUZC }= \\ 2.0 \end{gathered}$	$\left\lvert\, \begin{gathered} \text { SUZC }= \\ 0.5 \end{gathered}\right.$	$\begin{gathered} \text { SUZC }= \\ 2.0 \end{gathered}$
Nov.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Dec.	1.00	0.97	1.22	0.75	1.09	0.82	1.13	0.82
Jan.	0.99	0.95	1.00	0.96	0.99	1.03	0.99	0.97
Feb.	0.96	0.76	1.00	0.96	1.00	1.14	1.00	0.97
Mar.	1.00	0.98	1.00	1.00	1.00	1.04	1.00	0.99
Apr.	1.47	0.49	1.24	0.76	1.04	0.99	1. 26	0.74
May ${ }^{*}$	1.13	0.92	2.39	0.63	1.10	0.95	1. 42	0.87
Jun.	1.60	0.94	4.49	0.15	1.39	0.71	2.50	0.60
Jul.	1.01	0.99	7.27	0.13	2.10	0.49	2.12	0.73
Aug.	1.00	1.00	1. 70	0.00	3.00	0.30	1. 56	0.87
Sep.	0.63	1.19	3.42	0.11	3.07	0.00	1. 98	0.64

[^5]1. Determine the two months in the period of April through November with the greatest recorded precipitation (STFV0071-0083). For the example given in Table 10, April and May are the two wettest.
2. Check the synthesized flows for August and September to determine whether base flow is over one-half of the total. The example in Table 10 shows August in Cycle 2 to be a base flow month.
3. Sum the monthly flow deviation indices of the two wettest summer months (STFV0084) plus those for Augusts and Septembers which are base flow months (STFR0086, 0089) to get FSUZC.
4. If FSUZC exceeds 1.0 , set it equal to 1.0 ; if it is less than -1.0 set it equal to -1.0 .
5. If FSUZC is positive, increase SUZC by multiplying by ($1+$ FSUZC) to decrease the index month flows. If FSUZC is negative, decrease SUZC by dividing by a factor (1 - FSUZC) to increase index month flows.

The extreme accepted values of SUZC are 0.3 and 3.0 during Rough adjustment cycle. However, the limitation is again removed for the Fine adjustment cycle. The ust of both wet and dry summer months in the adjustment as described made it unnecessary to develop a secondary adjustment such as those used for the other volume parameters. No further trouble with SUZC was noted once the base flow months were brought in to check unwise adjustments caused by rainy month data difficulties.

ETLF: This parameter is used in estimating the volume of evapotranspiration from the lower zone. Since the Model assumes lower zone evapotranspiration only occurs after the upper zone has dried out and this usually does not occur during winter periods of low evaporation, larger values of ETLF are primarily associated with more thorough drying of the soil during the summer. A larger value of ETLF should reduce runoff from summer rain by an amount which
progressively increases through the season and continues on through the fall period of soil moisture replenishment. The sensitivity studies (Tables 11 and 14) show that when ETLF increases, flows decrease throughout the year, but the most drastic decreases are experienced in summer month flows. The decrease becomes progressively severe until the first major winter storm and is least noticeable during months where most of the flow is from moisture previously stored within the watershed.

The adjustment of ETLF is based on matching the flows in summer months when the rainfall exceeds an aribtrary two inches. When necessary, ETLF is increased to prevent moisture buildup at the end of the water year. The summer months are defined as the months ending with the month beginning the wet season (MBWS) and beginning with the month beginning the dry season (MBDS). MBWS is the first of the months of November and afterwards when the precipitation total exceeds the potential evapotranspiration. MBDS is the month following the first month when the potential evapotranspiration exceeds precipitation (STFV0052-0064). Skipping to the second month allows a month for the upper zone moisture to dry. For the example given in Table 10, MBWS is November, and MBDS is March. Actually, July would probably have been a better choice for this example, but a provision to prevent triggering of the dry season by an extremely dry winter month was not worked into OPSET. The effect on the final estimate of ETLF was minimized by preventing use of an MBDS earlier than June (STFV0111).

If at least one month in the period beginning with MBDS and ending with MBWS has over two inches of recorded precipitation, ETLF is adjusted as follows.

1. Sum the monthly flow deviation indices of WSM wet summer months to get SWSMD. In the example in Table 10 , the months are October, November, June, July, and September.

TABLE 14
ELKHORN CREEK WATERSHED SENSITIVITY STUDIES: MONTHLY SYNTHESIZED FLOW VOLUMES AS A FRACTION OF VOLUMES WITH ETLF $=0.2$.

	Overland Flow		Interflow		Base Flow		Total Flow	
	$\begin{gathered} \text { ETLF }= \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ETLF }= \\ 0.4 \end{gathered}$	$\begin{gathered} \text { ETLF }= \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ETLF }= \\ 0.4 \end{gathered}$	$\begin{gathered} \text { ETLF }= \\ 0.1 \end{gathered}$	$\begin{gathered} \mathrm{ETLF}= \\ 0.4 \end{gathered}$	$\begin{gathered} \text { ETLF }= \\ 0.1 \end{gathered}$	$\begin{gathered} \text { ETLF }= \\ 0.4 \end{gathered}$
Nov.	1.00	0.97	1.00	1.00	1.00	1.00	1.01	0.99
Dec.	1.00	0.91	1.96	0.43	1.91	0.45	1.68	0.57
Jan.	1.09	0.92	1.05	0.95	1.31	0.77	1.10	0.91
Feb.	1.05	0.86	1.02	0.98	1.15	0. 88	1.06	0.95
Mar.	1.00	1.00	1.01	0.99	1.05	0.95	1.01	0.99
Apr.	1.01	0.99	1.01	0.99	1.03	0.97	1.02	0.99
May	0.98	1.00	1.16	0.89	1.05	0.97	1.06	0.96
Jun.	1.02	0.97	1. 52	0.54	1.68	0.64	1. 40	0.72
Jul.	1.00	0.99	2.13	0.33	2.64	0.33	1.66	0.71
Aug.	0.98	1.04	6.00	0.00	4.30	0.00	1.58	0.84
Sep.	0. 72	1. 12	2.53	0.45	3.87	0.20	1. 77	0.76

2. Calculate the ETLF adjustment factor, FETLF, by the equation

$$
\begin{equation*}
\text { FETLF }=1.2\left(\frac{\text { SWSMD }}{\text { WSM }}\right) \tag{22}
\end{equation*}
$$

3. If FETLF exceeds 1.0, set it equal to 1.0 ; if it is less than -1.0 , set it equal to -1.0 .
4. If FETLF is positive, which means the synthesized flows in the index months are too high, increase ETLF by the factor ($1+$ FETLF). If FETLF is negative, decrease the value of ETLF by dividing the factor (1 - FETLF) in order to increase flows in wet summer months.

Since summers may be so dry that no month has more than two inches of precipitation, an alternate adjustment procedure is provided for this case using the deviation index for the month with the largest runoff volume to adjust ETLF. The following relationship replaces Equation 22:

$$
\begin{equation*}
\text { FETLF }=5.0 * \operatorname{MFDP}(\mathrm{M} 1 R) \tag{23}
\end{equation*}
$$

where $\operatorname{MFDP}(\mathrm{M} 1 \mathrm{R})$ is the deviation index for the month with the largest runoff volume. The relatively high constant of 5.0 is dictated by a low sensitivity.

In the Rough adjustment cycle, the adjusted value of ETLF is bounded by the minimum and maximum values of 0.05 and 0.60 . If after six cycles the adjusted ETLF exceeds 0.59 , an indication that one wet summer month may have a large positive deviation caused by a precipitation data problem which forces the adjustment to choose a still higher value of ETLF, the largest positive deviation month is thereafter excluded in evaluation of the adjustment factor (STFV0123-0134) for both the remaining Rough cycles and the Fine adjustment cycles.

At the other extreme, circumstances adjusting ETLF to a very low value may cause the soil moisture to build up through the water year. In order to prevent such moisture buildup, the value of ETLF is doubled whenever the end-of-month soil moistures (EMLZC) of both August and September exceed the value of LZC, and annual precipitation is less than 1.5 times annual potential evapotranspiration (STFV0101-0102). Usually this will bring the trial estimates back into line.

BUZC: The basic upper zone storage capacity factor (BUZC) indexes the capacity of the soil surface to hold moisture as interception or depression storage. Sensitivity studies (Tables 11 and 15) show that by increasing BUZC: 1) simulated flows in the spring months slightly increase, and 2) flows in the summer and fall become much smaller with the most severe decrease coming in September through December when these months have significant rainfall. The hydrologic explanation is much the same as it is for SUZC with the added factor of increased late winter or spring runoff caused by a wetter soil surface during this period of low evaporation.

The adjustment of BUZC proceeds as follows.

1. Calculate the adjustment factor (FBUZC) as the product of 0.4 and the sum of monthly flow deviation indices for September. November, and December. The constant 0.4 was found to provide the best adjustment step size. October is omitted to minimize problems caused by poor estimates of initial soil moisture conditions.
2. If FBUZC exceeds 1.0 , set it equal to 1.0 ; if it is less than -1.0 , set it equal to -1.0 .
3. Adjust BUZC by multiplying the factor $(1+\mathrm{FBUZC})$, if FBUZC is positive. If FBUZC is negative, divide the value of BUZC by the factor (1 - FBUZC).

In the Rough adjustment, the value of BUZC is limited to the

TABLE 15
ELKHORN CREEK WATERSHED SENSITIVITY STUDIES: MONTHLY SYNTHESIZED FLOW VOLUMES AS A FRACTION OF VOLUMES WITH BUZC $=0.75$

	Overland Flow		Interflow		Base Flow		Total Flow	
	$\begin{gathered} \text { BUZC }= \\ 0.25 \end{gathered}$	$\begin{gathered} \mathrm{BUZC}= \\ 4.0 \end{gathered}$	$\begin{gathered} \text { BUZC }= \\ 0.25 \end{gathered}$	$\begin{gathered} \text { BUZC }= \\ 4.0 \end{gathered}$	$\begin{gathered} \text { BUZC }= \\ 0.25 \end{gathered}$	$\begin{gathered} \text { BUZC }= \\ 4.0 \end{gathered}$	$\begin{gathered} \mathrm{BUZC}= \\ 0.25 \end{gathered}$	$\begin{gathered} \text { BUZC= }= \\ 4.0 \end{gathered}$
Nov.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Dec.	1.00	0.94	1. 48	0.00	1.18	0.05	1.29	0.27
Jan.	0.99	0.62	0.99	0.62	0.97	0.82	0. 99	0.64
Feb.	0.96	1. 20	1.00	1.03	0.99	1.38	1.00	1.13
Mar.	1.00	1.00	1.00	1. 01	1.00	1.16	1.00	1.01
Apr.	1.06	0.93	1.03	1.01	1.00	1.10	1.03	1.01
May	0.98	1.00	1.07	0.81	1.01	1.05	1. 02	0.98
Jun.	1.00	0.95	1.18	0.43	1.03	0.88	1.07	0.76
Jul.	1.00	1.00	1.27	0.27	1.10	0.67	1.07	0.81
Aug.	1.00	1.02	3.00	0.00	1.20	0. 40	1.05	0.89
Sep.	0.94	1.18	1.38	0.09	1.27	0.00	1.15	0.63

range between 0.2 and 4.0. If after six Rough cycles the value exceeds 3.9, it is taken to mean that the three months (September, November, and December) do not provide a suitable adjustment index. Three other months (June, July, and August) are substituted in Step 1 for the remaining Rough cycles and all the Fine cycles. SIAC: The seasonal infiltration adjustment constant (SIAC) relates infiltration rates to antecedent evaporation to account for more rapid infiltration during warmer periods. A zero value implies a seasonally constant infiltration rate. As the value is made larger, infiltration rates are reduced in the winter and increased in the summer. The sensitivity studies (Tables 11 and 16) show that when SIAC increases, the flows in winter months increase ant the flows in summer months decrease.

The adjustment of SIAC uses both summer and winter monthly flow deviation indices. If the previous SIAC value exceeds 1.0 , the adjustment is based only on summer months. Table 16 shows winter flows to be almost completely insensitive to changes of SIAC in this range. The particular summer months used are the first three months of the year when rainfall is less than potential evapotranspiration. The procedure is as follows.

1. Average the monthly deviation indices of these three months to get the summer flow deviation index (SFDX).
2. Calculate the adjustment factor FSIAC as 1.5 times SFDX.
3. Confine the value of FSIAC between -1.0 and 1.0 .
4. If FSIAC is positive, increase SIAC by multiplying by $(1+$ FSIAC $)$ to decrease the synthesized flows in these months. If FSIAC is negative, decrease SLAC by dividing by (1-FSIAC).

When the value of SIAC is less than one, winter flows as well as summer flows are sensitive to value changes and the adjustment:

TABLE 16
ELKHORN CREEK WATERSHED SENSITIVITY STUDIES: MONTHLY SYNTHESIZED FLOW VOLUMES AS A FRACTION OF VOLUMES WITH SIAC $=3.0$

[^6]rule is modified to include winter months. First, the winter flow deviation index (WFDX) is taken as the average deviation index of the first three months in which rainfall exceeds potential evapotranspiration. The value of WFDX is further modified by multiplying the factor ($1.0-$ SIAC) $/ 0.4$, if the value of SIAC is between 0.6 and 1.0. This factor provides a smooth transition gradually increasing the weight placed on winter deviations as winter flows become more sensitive to differences in SIAC. Because changing the value of SiAC changes simulated flows in the opposite direction in winter from what it does in summer, the adjusiment factor FSIAC is calculated as
\[

$$
\begin{equation*}
\text { FSIAC }=1.5(S F D X-W F D X) . \tag{24}
\end{equation*}
$$

\]

The example given in Table 10 is of this case, and the adjustment is based on the morths of November, December, January, February, March, and April.

In the Rough adjustment cycle, if SIAC is adjusted to less than 0.02 , it is taken as 0.00 ; if the adjusted SIAC is greater than 4.0 , it is set equal to 4.0. The implication is that if SIAC is less than 0.02 , infiltration does not vary by season; however, the value is again set back to 0.02 before each subsequent adjustment to make it possible for the adjusting multipliers to increase the value if the flows so indicate.

DISCUSSION

The purely empirical approach used to adjust the values of the flow volume parameters in the trial-and-error search for the best match between record and synthesized monthly flow volumes was necessitated by a breakdown in the more formal search procedures tried earlier in the development of OPSET (pp. 21-23). The scheme of indexing the adjustment of each parameter to particular types of
deviations preselected by examining sensitivity studies was used in OPSET because of a better overall performance. The scheme has the following advantages.

1. It stabilizes on a reasonable set of parameter estimates within far less computer time than any other method tried.
2. Single factor variation from the chosen point did not improve the results by changing the values of any of the parameters in either direction.
3. The finally selected set of parameter estimates are relatively independent of the initial set of estimates (p. 33).
4. The method has remarkable recuperative powers when started from or led into bad values by data problems. The other types of adjustment were often not able to recover from such circumstances.
5. Adjusting parameter values based on rules derived from their hydrologic meaning proved far superior to any other method which did not directly use this knowledge.

The chief limitation to Subroutine SETFVP is that it was developed and tested only on 20 Kentucky watersheds. Other watersheds may have flow sequences which the trial-and-error procedure can not handle or handles inefficiently. The user will find many opportunities for programing improvement.

Subroutine SETFDI

(Second Land Phase Parameter Subroutine)

CONTEXT

The adjustment of the flow volume parameters seeks to improve the seasonal distribution as well as the total magnitude of simulated runoff volume over the water year. Monthly flow totals are
obtained by summing the synthesized and recorded daily values. Their comparison has two aspects. Indices of differences between recorded and synthesized monthy munff volumes are lesd to determine how much each parameter needs to be adjusted. Where its flows are found to be sensitive to a particular parameter and the comparison reveals poor matching to occur that month, that parameter is adjusted in Subroutine SETFVP. The second aspect is the need to incorporate all monthly differences in a scalar value 10 use as an objective function

PURPOSE

Given recorded and synthesized monthly flow totals, Subroutine SET FDI is used to index the twelve monthly flow differences for adjusting the flow volume parameters and to establish a single statistic used to evaluate alternative parameter sets.

PROCEDURE
The monthly flow deviation index (MFDP) was defined as

$$
\mathrm{MFDP}=\frac{\mathrm{TMSTF}+20}{\mathrm{TMRTF}+20}-1 \quad(\mathrm{TMSTF}>\mathrm{TMRTF})(25)
$$

or

$$
\text { MFDP }=1-\frac{\text { TMRTF }+20}{\text { TMSTF }+20}
$$

(TMSTF<TMRTE) (26)
where TMSTF is the synthesized monthly total flow volume and TMRTP is the recorded monthly total flow volume, both in second-foot-days. When the synthesized monthly flow volume exceeds the recorded, Equation 25 is used, and the index is positire. When the synthesized monthly total is smaller, Equation 26 is used, and the index is negative. When the recorded and the synthesized flows are identical, both equations are made to indicate zero deviation by using the factor I.

The simple difference between recorded and the synthesized monthly totals is not used as the monthly flow deviation index because it is too biased toward achieving closeness for a high flow month a.t the expense of low flow months (6, p. 96). For example, if the recorded monthly flows had a low of 120 sfd and a high of 13200 sfd and the synthesized flows were 20 and 13000 sfd respectively, the differences would be 100 sfd for the low flow month, and 200 sfd for the high flow month. The adjustment would stress further improvement for the high flow month even though that month was really already much better than the low flow month. The above equations attempt to minimize this difficulty by dividing to look at a ratio.

When a ratio index is used, another problem exists when the monthly flow is comparatively small. For example, if the recorded low flow month is 40 sfd , the high flow month is 2000 sfd , and the synthesized low and high flow months are 10 and 500 sfd respectively, the ratios are the same (i.e., 4); but the synthesized high flow is much poorer than the low flow. In order to dampen this effect and prevent an undefined ratio when either flow is zero, an arbitrary 20 is added to the recorded and synthesized monthly totals before taking the ratios. In the example, this makes the low flow monthly deviation index much smaller (changed from 3 to 1) while the high flow index remains high (changed from 3 to 2.88).

The reason for using two rather than a single equation stems from a third effect. If simple ratios are used and the synthesized flow was twice the recorded flow, the ratio would be 2.00. If the synthesized flow was half the recorded flow, the ratio would be 0.50 . The deviations from a perfect match of 1.00 would be +1.00 and -0.50 ; however, in both cases, the appropriate parameter adjustment would be one which changes the flows by a factor of 2 . As deviations for several
months are usually averaged in making parameter adjustments, the average is biased toward increasing the flows. Equations 25 and 26 attempt to restore symmetry to the deviations and thereby speed convergence on optimal parameter sets. Indices which exceed 8 or are less than -8 are set to be 8 and -8 respectively to prevent months with severe data problems from completely upsetting the estimation process.

Monthly flow deviation indices are calculated from Equation 25 or 26 , and the minimum sum of the squares of the deviations for 11 months, SSQM, is used to indicate which set of volume parameter values gives the best synthesis of flow volume. October is excluded because flows in the first month of the water year are too dependent on unknown initial conditions (moisture storages entering the water year). To include it will cause the adjustment of parameters when the adjustment of initial moisture storage is really needed.

Subroutine SETFDI is called from Subroutine SETFVP (STFV0008) which uses the monthly flow deviation indices to adjust five flow volume parameters.

DISCUSSION

The formulation of Equations 25 and 26 was essentially a trial-and-error process in program development seeking the most rapid convergence toward consistant estimates of flow volume parameter sets.

Subroutine SETBMI
(Third Land Phase Parameter Subroutine)

CONTEXT

The basic maximum infiltration rate (BMIR) is the parameter used within the Model to control the rate of infiltration of moisture
from the watershed surface into the soil. The parameter represents a concept which is a maximum in two senses. It is a maximum (or capacity) rate which could occur, considering current soil conditions, if moisture supply were no limitation. It is also a maximum in that it represents a rate at the most pervious point in the watershed. More specifically, infiltration over the total watershed is modeled by assuming a linear variation of point infiltration capacity with fraction of the basin area from zero to this maximum value ($25, \mathrm{p} .54$). The maximum value is adjusted with season of the year and current soil moisture storage (MAIN0418). As the basic index of watershed infiltration, BMIR governs the volume of runoff synthesized during storms by controlling basin recharge and governs the volume of base flow by controlling percolation to groundwater.

In order to determine how to adjust BMIR to bring simulated flows more in line with the corresponding recorded flows, it is necessary to develop some feel for the changes in simulated flows caused by a given change in BMIR. For this purpose, three computer runs were made with data for Elkhorn Creek near Frankfort, Kentucky, for the 1964 water year. All parameters were held constant at a trial-and-error (not an OPSET selected) best fit value except BMIR which was varied from 0.2 to 2.5 in three runs. By inspecting the results, certain synthesized flows were found to vary significantly with changes in BMIR while others were more insensitive. The approach to adjusting BMIR was to single out several of the more sensitive flow categories (specified by time of the year and flow type) and use the differences between their recorded and simulated values as an index for setting the next trial value of BMIR. Several rather than single categories were used to dampen bad estimates caused by poor data particularly affecting a single category.

The degree to which BMIR affects simulated overland flow, interflow, and base flow volumes is illustrated in the summary from the Elkhorn Creek sensitivity studies on Table 17, Increasing the value of BMIR was seen to sharply reduce overland flow during winter low flow months by converting direct runoff to basin recharge, to more moderately reduce overland flow from major flow months because a fixed amount of infilitration is a smaller portion of the precipitation total, and to increase synthesized overland flow from storms following prolonged dry periods by increasing soil moisture storage. Increasing BMIR reduced interflow in low flow moniths by pushing the interflow triangle (25, p. 54) to the left so that less of its area was below the residual precipitation line and increased interflow in high flow months where higher residual precipitation lines produced opposite results. Increasing BMIR increased hase flow by an amount which was largest immediately after major recharge periods and then progressively reduced through low flow months.

The process used in estimating BMIR is basically the same as that used for and is performed simultaneously with the estimation of the other five volume parameters. An initial trial estimate is made for each of the six variables (1.2 for BMIR, MAIN0210). A year of flows is simulated. Each parameter is adjusted by looking at preselected index differences of simulated from recorded flows. A new year of flows is simulated and the process continues until a set of parameter values is accepted. Subroutine SETBMI looks at the index differences for and then adjusts BMIR. Subroutine SETFVP looks at the index differences and then adjusts LZC, SUZC, ETLF, BUZC, and SIAC. BMIR adjustments are performed in a separate subroutine because the adjustment is indexed to a different sort of flow information.

TABLE 17
ELKHORN CREEK WATERSHED SENSITIVITY STUDIES:
MONTHLY SYNTHESIZED FLOW VOLUME AS A FRACTION OF VOLUMES WITH BMIR $=0.65$

	Overland Flow			Interflow			Base Flow			Total Flow		
	BMIR=			BMIR $=$			BMIR $=$			BMIR $=$		
	$\begin{gathered} 0.2 \\ \text { Ratio } \end{gathered}$	$\begin{aligned} & 0.65 \\ & \text { Inch } \end{aligned}$	$\begin{gathered} 2.5 \\ \text { Ratio } \end{gathered}$	$\begin{gathered} 0.2 \\ \text { Ratio } \end{gathered}$	$\begin{aligned} & 0.65 \\ & \text { Inch } \end{aligned}$	$\begin{gathered} 2.5 \\ \text { Ratio } \end{gathered}$	$\begin{gathered} 0.2 \\ \text { Ratio } \end{gathered}$	$\begin{aligned} & 0.65 \\ & \text { Inch } \end{aligned}$	$\begin{gathered} \hline 2.5 \\ \text { Ratio } \end{gathered}$	$\begin{gathered} 0.2 \\ \text { Ratio } \end{gathered}$	$\begin{aligned} & 0.65 \\ & \text { Inch } \end{aligned}$	$\begin{gathered} 2.5 \\ \text { Ratio } \end{gathered}$
Dec.	1.38	0.034	0.91	2.76	0.067	0.19	0.50	0.022	1.41	1.97	0.123	0.61
Jan.	2.36	0.438	0.15	0.93	0.809	0.57	0.42	0.176	2.07	1.31	1.423	0.63
Feb,	3.68	0.244	0.21	0.69	0.979	0.47	0.35	0.279	2.56	1.12	1.502	0.82
Mar.	1.31.	7.031	0.40	0.41	2.509	1.88	0.31	0.680	3.06	1.02	10.220	0.94
Apr.	1.90	0.365	0.21	0.68	0.570	0.96	0.34	0.307	2.78	0.95	1. 242	1.19
May	0.87	0.062	0.90	1.07	0.070	0.61	0.37	0.153	2.56	0.65	0.295	1. 72
Jun.	1.13	0.063	0.97	1.82	0.061	0.34	0.32	0.059	2.53	1.10	0.183	1.26
Jul.	1.00	0.070	1.00	2.47	0.015	0.33	0.41	0.039	2.18	1.00	0.124	1. 29
Aug.	1.02	0.052	0.98	4.00	0.001	0.00	0.30	0.010	2.40	0.95	0.063	1.19
Sep.	0.65	0. 068	1.10	3.26	0.053	0.28	0.47	0.015	1.80	1.65	0.136	0.86

Adjustment of BMIR indexed on total monthly flows was considered first. Table 17 suggests that a reasonable rule might be to increase BlidR if total synthesized flows in midwonter were too high and total synthesized flows in mid"summer were foo low; however, the results were not good. The close tie of BMIR to base flows suggested shifting to adjusting BMIR to better match recorded base flows. Subroutine SETBMI is based on this concept.

PURPOSE

Subroutine SETBMI adjusts the value of the parameter controlling infiltration rate (BMIR) by inspecting the match between synthesized and recorded base flows during the search for the best set of six values for the flow volume parameters.

PROCEDURE

The distinctive feature of the adjustment of BMIR is that it is indexed on base as conirasted with total flows. Since base flows are not distinguished within the total flows in the raw data, some technique for hydrograph separation is necessary. The technique employed calls on Subroutine SETRBF to estimate a least squares base flow recession line and thereby provide daily base flow totals. The base flows estimated are for the first three days following a flow peak in each recession sequence selected by Subroutine RECESS. The use of every sequence provides the broadest available data base. Three days are enough to minimize the effects on the adjustment of data peculiarities for individual days. More days could be used, but computational time is increased and the index begins to be weighted according to the recession sequence length.

Actually, only the first of each series of three "recorded" base flows needs to be saved in RSBBF because each later value in the linear recession is BFRC times the previous value. The symhesized
base flow totals for each of the same set of days are saved in SBFRS at MAIN0595. The overall relationship between recorded and synthesized base flows is found by dividing each synthesized by the corresponding recorded base flow (STBM0010) checking the ratio for a maximum of 3.0 to dampen the harm caused by sequences with data problems, and averaging the results (STBM0019). An average greater than one indicates BMIR needs to be reduced to decrease synthesized base flows. An average less than one suggests an increase in BMIR.

The data in Table 17 also provide some idea as to the amount of adjustment of BMIR required to achieve a given change in synthesized base flow. The increase of BMIR by a factor of 3.25 from 0.2 to 0.65 increased the average of the ten monthly base flows by a factor of $2.64(1 / 0.379)$. The increase by a further factor of 3.85 to 2.5 increased the average base flow by a factor of 2.34 . If the relationship between the two ratios is assumed to be of the form

$$
\begin{equation*}
\frac{\mathrm{BMIR}_{2}}{\mathrm{BMIR}_{1}}=\left(\frac{\mathrm{BF}_{2}}{\mathrm{BF}_{1}}\right)^{\mathrm{n}} \tag{27}
\end{equation*}
$$

the two estimates of n from the tabulated data would be 1.22 and 1.59 respectively. From the viewpoint of quickly converging on a best estimate of BMIR in the context of all the watersheds tested, 1.3 gave the best results.

One of the major problems encountered in OPSET was the development of a satisfactory method for handling estimates of initial (October 1) moisture conditions (pp. 40-43). Despite the rather elaborate procedure developed for adjusting the initial LZS to match LZC (MAIN0274-0285) in the context of the values being used for the six other parameters, difficulty was still occasionally
encountered. The estimates of initial LZS were close enough so that the problem would be minor after the first major storm; but in some situations, the synthesis of the first storm and subsequent recession would be so poor as to corrupt the adjustment of BMIR.

An index called FTX was established to handle this situation. Its value is set to be 1.0 when no problem was encountered. During the first five rough adjustments, the program is left free to try to bring the synthesized flow volumes in line. If the sum of the second and the third (November and December) monthly flow deviation indices exceeds 2.0 or is less than -2.0 after this (p. 43) the first recession sequence is skipped (STBM0018) by changing the value of IFT from 1 to 2 (MAIN 0075).

Some cases were encountered where the method outlined above for adjusting BMIR using an index estimated from base flows just did not work properly. For example, one may encounter a year with only a few well-defined recession sequences and when each of these happens to be associated with a storm where the recorded rainfall is significantly less than what actually fell. The simulated base flow may then well be less than the recorded values until one makes BMIIR so big that all simulated flow is base flow and the true storm hydrograph disappears. The programing is handled by developing a second or alternate adjustment rule to be used whenever the first rule is not working properly.

The shift to the alternate rule for adjusting BMIR comes when BMIR exceeds 20.0 after the fifth rough adjustment (MAIN0785). As 20.0 is an unreasonably large value, the alternate adjustment is to reduce BMIR in a sequence of ten-percent reductions (MAIN0773), The overall synthesis is usually much better during this reduction period than it was during the initial increase of BIMIR from 1.2 to
over 20.0 because the other parameters have had time to adjust to better values and the increments are smaller. No problem was encountered with faulty data causing an unmanageably'small BMIR during operation of the first adjustment rule because the programing in Subroutine RECESS prevents acceptance of recession sequences with very low base flow.

DISCUSSION

The adjustment of BMIR based on an index keyed to differences between recorded and synthesized base flows supplemented by an alternate adjustment scheme of retreating from very large values when necessary (actually programed in MAIN rather than Subroutine SETBMI) proved to work well and produce reasonable and consistent (from year to year) results. The user, however, does need to beware of the possibility of encountering data which the programed rules cannot handle. The programing in OPSET was developed and refined until it worked for the over 20 tested watersheds, but this does not mean that further refinement will not be necessary.

Subroutine SETRBF
(Fourth Land Phase Parameter Subroutine)

CONTEXT

The volume of simulated interflow is controlled by the basic interflow volume factor (BIVF). The basic maximum infiltration rate (BMIR) controls infiltration and thereby the volume of base flow by limiting the amount of moisture entering the ground. Consequently, the adjustment of BIVF in Subroutine SETBIV is designed to improve the match between recorded and simulated interflow volumes. The adjustment of the BMIR in Subroutine SETBMI is designed to improve the match between recorded and simulated
base flow volumes. Since recorded flows are not tagged by category, a technique for separating the recorded flows is required.

Recession sequences are selected from the recorded daily streamflows. After the sequences are used to estimate the two recession constants (See Subroutines RECESS, SET2RC, and SET1RC), the volumes of interflow and base flow on the second day of the recession (first or peak days are omitted because they normally include too much direct runoff) can be estimated from the average recession constants and the individual sequences. A least squares method was developed based on assumptions that the two flow components follow linear recession models and the two recession constants are known.

For cases when no interflow is found, an abbreviated least squares method was developed for estimating base flow on the second day. The estimate slightly differs from the recorded total on that day because observed values will not fall exactly on a linear recession line.

PURPOSE

Subroutine SETRBF is used to estimate volumes of interflow and base flow during the first day after direct runoff becomes minimal, given the two recession constants and a sequence of recorded recession daily flow volumes beginning with a volume for the day for which an estimate is desired.

PROCEDURE

Subroutine RECESS provides a sequence of recession flows $q_{1}, q_{2}, \ldots q_{n}$ which are assumed to follow the two-component non-linear model

$$
\begin{equation*}
q_{t}=q_{b, o} K_{b}^{t}+q_{i, o} K_{i}^{t}+\epsilon_{t} \quad(t=1,2, \ldots n) \tag{28}
\end{equation*}
$$

where $q_{b, o}$ and $q_{i, o}$ are the base flow and interflow components one day before the day for which volumes are to be estimated. K_{b} and K_{i} are base flow and interflow daily recession constants, and ϵ_{t} is the random error of the $t^{\text {th }}$ day. If K_{b} and K_{i} are known, an approximate solution for $q_{b, o}$ and $q_{i, o}$ can be obtained by a least squares method. After rewriting the model of Equation 28 in matrix form as

$$
\left[\begin{array}{c}
q_{1} \tag{29}\\
q_{2} \\
\vdots \\
q_{n}
\end{array}\right]=\left[\begin{array}{cc}
K_{b_{2}} & K_{i_{2}} \\
K_{b}^{2} & K_{i} \\
\vdots & \vdots \\
K_{b}^{n} & K_{i}^{n}
\end{array}\right]\left[\begin{array}{l}
q_{b, o} \\
q_{i, o}
\end{array}\right]+\left[\begin{array}{c}
\epsilon_{1} \\
\epsilon \\
\vdots \\
\epsilon_{n}
\end{array}\right]
$$

then the least squares estimates of $q_{b, o}$ and $q_{i, o}\left(\hat{q}_{b, o}\right.$ and $\left.\hat{q}_{i, o}\right)$ are the solutions of the "normal equations"

$$
\left[\begin{array}{l}
\hat{q}_{b, o} \tag{30}\\
\hat{q}_{i, o}
\end{array}\right]=\left[\begin{array}{ccc}
n & & \\
\sum_{t=1}^{t} & K_{b}^{t} & q_{t} \\
n & & \\
\sum_{t=1}^{n} & K_{i}^{t} & q_{t}
\end{array}\right]
$$

Application of Equation 30 requires at least two flows in any sequence. The maximum number of flows used is preassigned to be 12 to avoid extensive calculations which have little effect on the results.

With $\hat{q}_{b, o}$ and $\hat{q}_{i, o}$ estimated, the base flow and interflow at the recession beginning day ($\hat{q}_{b, 1}$ and $\widehat{q}_{i, 1}$) can be readily obtained as

$$
\begin{align*}
& \hat{q}_{b, 1}=\hat{q}_{b, o} \cdot K_{b} \tag{31}\\
& \hat{q}_{i, 1}=\hat{q}_{i, o} \cdot K_{i} \tag{32}
\end{align*}
$$

When a recession sequence has an interflow recession constant less than 0.3, which was taken (Subroutine RECESS) as meaning that the interflow in that sequence is negligible, a one-component (base flow only) model is used to estimate the first day base flow, and the first day interflow is set equal to zero. The one-component model can be written as

$$
\begin{equation*}
q_{t}=q_{b, o} K_{b}^{t}+\epsilon_{t} \quad(t=1,2, \ldots n) \tag{33}
\end{equation*}
$$

The least squares estimate of $q_{b, o}$, denoted as $\widehat{q_{b}}, 0$ is

$$
\begin{equation*}
\hat{q}_{b, o}=\frac{\sum_{t=1}^{n} K_{b}^{t} \cdot q_{t}}{\sum_{t=1}^{n} K_{b}^{2 t}} \tag{34}
\end{equation*}
$$

The base flow on the recession sequence beginning day is obtained by using Equation 31.

DISCUSSION

The results revealed flow sequences with an interflow recession constant greater than 0.3 to yield estimates of interflow and base flow which total very close to the recorded flow. Estimates for sequences with interflow recession constants less than 0.3 indicate slightly less base flow than the recorded total flow. This might be expected because the interflow is neglected.

Subroutine SETBIV

(Fifth Land Phase Parameter Subroutine)

CONTEXT

The basic interflow volume factor (BIVF) controls the division of moisture not infiltrating into the soil between interflow and direct runoff and thus indirectly governs the time distribution of storm hydrographs. Crawford and Linsley (10, p. 69) defined BIVF (their name was CC)" as an index to the ratio of the increment added to interflow detention to the increment added to surface runoff detention'. They recommended trial-and-error adjustment of its value in an effort to better match recorded with simulated hydrograph shape. A larger value of BIVF reduces the hydrograph peak and increases later flows to net a flatter crested hydrograph.

In exploring for a means of estimating BIVF within OPSET, several factors had to be considered. Hydrograph shape is not a very viable criterion for mathematical testing and relates to direct runoff routing as well as to interflow delay. If some other means could be found for estimating BIVF, information on hydrograph peaks and volumes could be reserved for estimating the streamflow routing parameters.

A review of the procedure used in estimating the interflow and base-flow recession constants suggested an independent method. Subroutine SETRBF was developed to estimate the volume of interflow the first day after the peak preceding each recession sequence. These estimates from the recorded flows could then be compared with synthesized interflow volumes, and BIVF could be adjusted to bring the simulated total in line.

Another factor to be considered was the proper timing within OPSET of the adjustment of BIVF. The program first sets six
parameters based on matching the recorded distribution of total runoff among the months of the year and then sets four parameters based on achieving the recorded hydrograph peaks and times. BIVF is an intermediate parameter between the six volume parameters and the four channel routing parameters. It cannot be estimated during the initial adjustment of the six flow volume parameters because simulated interflow volume also depends on these other parameters and their values are being adjusted in increments too large for BIVF to stabilize on a reasonable estimate. BIVF could be estimated in a special TRIP between that for setting the flow volume parameters and that for setting the routing parameters; however, this approach would add significantly to the required computer time.

The compromise was to combine the estimation of BIVF with the final fine adjustment phase of the six flow volume parameters. In the early rough adjustment of the volume parameters, BIVF is taken as 0.90 (MAIN0215). During fine adjustment, the flow volume parameters are not changing in large enough increments from one trial to the next to create major problems in estimating BIVF. Neither do changes in BIVF change the simulated flows from one month to another enough to upset the criterion used to estimate the other parameters. In fact, the small movement of simulated flow among months which does occur is probably beneficial in terms of estimating a better set of all seven parameters taken together.

The fine adjustment of the flow volume parameters is terminated by criteria devised to indicate that the search cannot find a better fit of recorded monthly flow volumes (pp, 39-40). Even though BIVF is being estimated simultaneously, the procedure is seeking the best match of simulated to recorded interflow volumes on
selected days. Each adjustment gives a better match, and the number of fine adjustments required to determine whether the best possible set of volume parameters has been estimated is . enough for the adjustment of BIVF to converge on an acceptable value. Therefore, the estimate of BIVF is taken as the final one and not that associated with the minimum value of SSQM.

When the analysis of flow recession data does not detect any appreciable interflow, BIVF is set to 0.00 (MAIN0226) and Subroutine SETBIV is skipped (MAIN0769).

PURPOSE

Subroutine SETBIV adjusts the value of the parameter controlling the portion of the moisture which does not infiltrate into the soil that does go into interflow (BIVF) in order to achieve a better match between synthesized and recorded interflow volumes. This match is used as the sole criterion of the adjustment as BIVF does not alter the distribution of simulated flows among months to a degree which warrants basing goodness of fit on SSQM.

PROCEDURE

The adjustment of BIVF is based on matching simulated to recorded interflows during the first three days of each recession sequence selected by Subroutine RECESS. It is assumed that interflow and base flow comprise the total flow beginning on the second day of the recession (See Subroutine SET2RC), and the interflow phases out more quickly than baseflow. By using the first three days, the effects of data difficulties on individual days are damped to give a reasonable estimate of the volume ratio between the recorded and the synthesized interflows while largely avoiding the problem of getting a good ratio between two very small values later in the sequence.

The recorded interflow at the recession beginning is determined by Subroutine SETRBF, and the second and third day interflows are determined by multiplying the first day interflow by the estimated interflow recession constant (IFRC) once and twice respectively. The synthesized interflows are saved on the first three days during the simulation process (MAIN0325-0328, 05930594) by keeping track of the recession beginning date (RCSS0025, 0120-0122).

A timing differential must be handled before synthesized are compared with recorded interflows. Flows are recorded at the mouth of the watershed while interflows are simulated for points all over the watershed and not separately (from direct runoff) routed to the mouth. In order to compensate for the simulated interflows within the watershed reaching the mouth of the watershed at a later time, the synthesized interflows are adjusted backward in time by the duration estimated for flow to travel from the centroid to the mouth of watershed (STBV0010).

The ratio of the adjusted synthesized interflow to the recorded interflow is calculated for each of the first three days, and an averaged ratio is used to adjust BIVF. Because too small an estimate of recorded interflow will cause the adjustment factor to be unreasonably large, the ratio for each day is limited to a maximum of 3.0 in computing the average.

BIVF enters the streamflow simulation through the equation (MAIN0411, 0419):

$$
\begin{equation*}
\mathrm{CIVM}=\mathrm{BIVF} * 2^{(\mathrm{LZS} / \mathrm{LZC})} \tag{35}
\end{equation*}
$$

In order to prevent simulation of negative interflows, CIVM must be held to a minimum of 1.0 (25, p. 54). No interflow is simulated except when CIVM exceeds unity. Equation 35 thus shows how
with BIVF and LZC held constant, interflow will not be simulated during periods when the watershed is very dry (LZS is smali). The smaller the value of BIVF, the larger LZS has to be for interflow to commence. However, other simulation controls prevent LZS from becoming much larger than LZC (actual soil moisture storage cannot pass some upper limit). The upper limit on the multiplier of BIVF in Equation 35 is about 2.5. Therefore no interflow will be simulated when BIVF is less than 0.40.

The adjustment of BIVF assumes synthesized interflow to be proportional to (BIVF - 0.40). For example, if the old value of BIVF is 0.90 , and the averaged ratio is 0.25 (synthesized interflow volume is one-fourth of recorded interflow), then (by STBV 0023) the new BIVF is

$$
0.40+\frac{(0.90-0.40)}{0.25}=2.40
$$

DISCUSSION

Generally speaking, flow recession becomes more complex as the size of the watershed increases. Two distinct recession constants could be developed from the data for the larger watersheds, but the best modeling for the smaller watersheds came by dividing all flows between direct runoff and baseflow. Consequently, Subroutine SETBIV was not called for most of the small watersheds used to test and develop OPSET because BIVF had already been set equal to zero. Thus, this subroutine, probably more than any other in the program, needs further testing and refinement using additional data.

Subroutine STRHRS
(First Channel Routing Subroutine)

CONTEXT

The channel routing parameters are estimated by comparing recorded with simulated times and peaks of selected flood hydrographs. As no more than five points on the total annual hydrograph are compared, it would be very inefficient to route all flows throughout the year to try to match so few points. A great deal of computer time is saved by going through the entire annual hydrograph in TRIP 2, storing all channel inflows contributing to the specified peaks, and then performing the repetitive routing on these selected inflows.

In order to use this approach, it is necessary to determine when to start and stop saving channel inflows for each hydrograph peak. The saved inflows should include all runoff contributing to the peak as well as to the rapid rise just before the peak. The saved inflows should continue long enough to make sure that the flows are receding toward base values with no chance of a subsequent rise from the same runoff event producing a new and higher peak for any combination of trial routing parameters.

PURPOSE

The purpose of STRHRS is to set the beginning and ending times of channel inflows anywhere in the basin contributing to selected flood peaks so that simulated inflows between these two times may be saved for the trial routings necessary for selecting an optimal set of channel routing parameters.

PROCEDURE

The day of the year (RHPD) and the hour of the day (RHPH) for each selected hydrograph peak are specified in the input data. The
interval for saving inflows extends both ways from this point in time. Typical hydrograph shapes have recession limbs about three times as long as rising limbs. (21, pp. 197-206). The length of the interval is based on the value of the read parameter INHPT. The flexibility provided by reading this value gives the user an opportunity to adjust the length of this period for any reason. INHPT also represents the number of hours between points printed on the simulated outflow hydrograph. Normally, prescribed values should increase with the size of the watershed.

The method of specifying the total storm period is shown in Figure 3 and takes the following steps.

1. Specify the number of hours from beginning of saved runoff to recorded hydrograph peak (IBTPR) and the number of hours from recorded peak to the end of saved runoff (IPTE). IBTPR is taken as the maximum number of hours (MXTRH) used by OPSET in any time routing (twice the estimated number of time routing hours MAIN0203) plus five times INHPT, and IPTE is taken as 15 times INHPT. MXTRH is included in determining the beginning hour to take into account the time lag from the far end of the watershed. Use of a maximum value ensures that enough inflows will be saved to include flows from the far end of the watershed with the maximum value of NCTRI the program is allowed to use. (SHRS0009, 0010).
2. Convert the points in time IBTPR hours before the peak and IPTE hours after the peak into dates and hours by counting backward and foreward respectively from the recorded peak day and peak hour for each recorded hydrograph (SHRS0012-0042).
3. Check the calculated dates and hours of all recorded hydrographs for two types of overlapping. First, flows

FIG. 3. Determination of Beginning and Ending Times of a Recorded Hydrograph.
contributing to the first recorded flood peak may begin before the start of the water year, or the last recorded hydrograph may extend into the following water year. These cases are handled by confining the beginning and ending to the current water year (SHRS0055-0065). These situations are illustrated in Figures 4(a.) and 4(b). Actually, because of the problem of establishing initial conditions, the user should avoid using early October storms unless they represent extraordinarily large events. Second, the ending time of one hydrograph may overlap the beginning time of the next (Figure 4(c)). In this case, the cutoff point of the first hydrograph is shortened to the beginning time of the second (SHRS0051, 0052). A recession limb is arrested by the subsequent rise.

DISCUSSION

In choosing INHPT, one should inspect the published daily streamflow data to obtain a general idea of the time base for a typical hydrograph for the watershed. Too large a value of INHPT adds to the computer time, and too small a value may cause the program to drop part of the synthesized inflow which contributes to the peak. If this occurs, the simulated peak will be too low, and OPSET will be biased toward selecting smaller values of NCTRI and SRX in an attempt to compensate by producing a sharper peak.

Subroutine ADJHYD
(Second Channel Routing Subroutine)

CONTEXT

The criteria for selecting the best set of channel routing parameters seek to minimize differences between recorded and synthesized hydrograph peaks. Differences between recorded

FIG. 4. Elimination of Recorded Hydrograph Overlapping.
peaks and peaks synthesized with the best set of land phase parameters selected in TRIP 1 stem from two causes. First, the set of values for the land phase parameters selected on the basis of providing the best overall estimate of the magnitude and monthly distribution of the annual runoff volume may simulate a volume that is either too high or too low for a given flood. Second, the set of routing parameters may not produce the proper hydrograph shape.

The objective of Subroutine ADJHYD is to adjust each simulated channel inflow hydrograph by a constant multiplier to make the simulated equal the recorded hydrograph volume in order to eliminate differences caused by using an incorrect volume. The goal of TRIP 2 is to select parameters which will do the best job of channel routing, and the results will be distorted if the routing parameters are forced to take on inappropriate values to match a recorded peak having some different total volume. For example, if the peaks selected for fixing the routing parameters happen to be associated with volumes which are too small, the routing parameters selected would produce too sharp a flood hydrograph in an attempt to match the specified peaks.

PURPOSE

Subroutine ADJHYD adjusts flow volumes of synthesized channel inflow hydrographs to match the flow volumes of recorded hydrographs in order to overcome bias caused by using different volumes in estimating the two channel routing parameters NCTRI and SRX.

PROCEDURE

The flow volume adjustment is accomplished by multiplying each synthesized runoff during the storm period (excluding base
flow which is not modeled by use of channel routing) by a factor equalling the ratio of the recorded to the synthesized storm period runoff volume. This procedure takes three steps:

1. Calculate the recorded and the synthesized direct runoff including interflow) volumes during the specified storm duration (See Subroutine STRHRS). Hydrograph average base flows are subtracted from daily total flow volumes, and the difference is multiplied by the fraction of the day included within the storm period. Results are summed over all days within the total period, but zero values are added for days with negative differences (i.e. having daily average total flow less than the storm average base flow).
2. Calculate a synthesized hydrograph multiplier (SHM) equal to the ratio of total recorded hydrograph volume (TRHV) to total synthesized hydrograph volume (TSHV).
3. If SHM is less than 8 and greater than $1 / 8$, then adjust each value of synthesized storm runoff (SSR) by multiplying by SHM. If SHM is greater than 8 or less than $1 / 8$, the hydrograph is discarded for use in estimating routing parameters by setting the logical variable LSHA true. The cutoff of 8 is arbitrary, but some value was needed to avoid estimating erroneous routing parameters caused by storms where the direct runoff volume was simulated very poorly, usually because of watershed precipitation measurement problems.

Subroutine SETHRP
 (Third Channel Routing Subroutine)

CONTEXT

The channel routing process incorporated into the earlier versions of the Stanford Watershed Model (10) employs a time-
delay histogram to account for the time required for runoff originating throughout the watershed to reach the mouth and then uses storage routing through a theoretical reservoir to account for the effect of channel storage on the hydrograph (21, p. 304). The time lag routing is based on NCTRI fractions in array CTRI. The storage routing uses the equation

$$
\begin{equation*}
O_{2}=\overline{\mathrm{I}}-\mathrm{SRX}\left(\overline{\mathrm{I}}-\mathrm{O}_{1}\right) \tag{36}
\end{equation*}
$$

where $\mathrm{O}_{2}=$ routed outflow at the end of the time interval;
$\overline{\mathrm{I}}=$ average inflow during the time interval;
$O_{1}=$ outflow at the beginning of the time interval;
$S R X=$ a storage routing index less than unity in which smaller values imply less storage dampening.

Conceptually, both NCTRI and SRX should vary during the course of a flood hydrograph. NCTRI decreases with increasing flow because the associated faster flow velocities reduce travel time. SRX increases by more closely approaching unity with increasing flow because of greater hydrograph dampening as more water is stored in the channel system, an increase becoming most rapid when large volumes of water begin to spill into the flood plain.

The experience gained by applying the Model to a number of watersheds has shown the variation in SRX to be more pronounced than that in NCTRI. In traditional hydrologic terms, the storage routing coefficients vary more than does the time base of the unit hydrograph. Even though the KWM provides the option of varying. NCTRI (25, pp. 23-24), OPSET only considers variation in SRX. The analysis attempts to distinguish a value of SRX for low flows (CSRX) from another one for flood flows (FSRX). The strategy is to estimate one at a time the values of NCTRI and SRX (taken as
independent of flow in the first pass) best matching the times and peak flows of up to five specified hydrograph peaks.

PURPOSE

Subroutine SETHRP estimates single best values for NCTRI and SRX for each of the up to five hydrographs specified in the input data. It then averages the hydrograph values of NCTRI to make a single overall best estimate. It calls on Subroutine SETSRP with the hydrograph values of SRX to regress on hydrograph peaks to determine whether the data at hand substantiate the expected tendency for higher values to be associated with higher peaks.

PROGRAM DEVELOPMENT:

For each station-year, and for up to five flood hydrographs, the flood peak day of the year, the flood peak hour of the day, and flood peak magnitude are read. Subroutine STRHRS is used to determine the beginning and ending hour of runoff contributing to the recorded flood hydrograph, and all synthesized channel inflows between these two times are saved in the pass of TRIP 2 through MAIN. In order to prevent the estimates of NCTRI and SRX from being biased by any difference between recorded and synthesized flood volumes, Subroutine ADJHYD is used to adjust the magnitude of each synthesized flow entering the channel to make the synthesized flow volume equal the recorded volume. Subroutine SETHRP is then called to estimate the two hydrograph routing parameters for each flood hydrograph.

The first step in developing a procedure for this purpose was to study how the magnitude and timing of the synthesized flood peak change with these two variables. Figure 5 shows how NCTRI and SRX affect a simulated flood hydrograph. Two values are shown. The upper one is the synthesized hydrograph peak flow (SHPF), and lower one is the number of time intervals from the recorded to the synthesized

FIG. 5. Response of a Given Flood Hydrograph (Elkhorn Creek, March, 1964) to Changing the Two Hydrograph Routing Parameters NCTRI and SRX. (RHPF = 23200 cfs, upper number is SHPF; lower number is NIRTS).
peak (NIRTS). A negative NIRTS means the synthesized hydrograph peak comes sooner than the recorded; a positive value means it comes later.

Figure 5 reveals what Equation 36 and the time-area routing procedure already imply, namely that 1) with constant NCTRI, SHPF increases and NIRTS decreases as SRX decreases because a smaller storage effect produces a quicker and higher peak, and 2) with constant SRX, SHPF decreases and NIRTS increases as NCTRI increases because longer flow times produce a later and lower peak.

Line A represents the combinations of values of NCTRI and SRX for which the synthesized hydrograph peak (SHPF) equals the recorded hydrograph peak (RHPF). Above line A, SHPF is smaller than RHPF; below line $A, S H P F$ is larger than RHPF. Line B represents the combinations for which the synthesized hydrograph peak hour is identical to recorded hydrograph peak hour, i.e., NIRTS is equal to zero. To the left of line B, NIRTS is negative; and to the right, NIRTS is positive. Point C, at the intersection of lines A and B, indicates the values of NCTRI and SRX for which the synthesized hydrograph would have its time and magnitude equal to the recorded time and magnitude. The consistency with which both lines slope from the upper left to the lower right because of the two rules stated above suggests use of a search procedure for Point C following this same basic pattern. Once it has been established that a better match lies to the right, no further need exists to search to the left. Once it has been established that a better match lies below, no further need exists to search above.

Subroutine SETHRP seeks the combination of values for NCTRI and SRX which produces a synthesized hydrograph with a flood peak most closely matching the recorded peak in magnitude and time. If gaged rainfall closely represents watershed rainfall in amounts and
timing and synchronizes with streamflow measurements and if land surface runoff is adequately simulated, one would expect to always find the solution point (C on Figure 5). Unfortunately, poor quality data may produce lines which do not cross or a solution point outside reasonable limits.

The major difficulty experienced was caused by a difference in timing between the watershed and gaged rainfall. If a storm was slowly moving from the watershed toward the gage and the runoff peak were recorded soon after the gaged rain began, point C might indicate a time of concentration of 15 minutes (NCTRI=1) for a large watershed. With the storm moving the other way, a very long time might be indicated for a small watershed. The consistency of the error depends on the prevailing storm movement pattern.

Subroutine SETHRP is programmed to find the solution point if one exists within the range of reasonable values for NCTRI and SRX. While one might take all solution points, whether or not they are individually reasonable, and average them over many flood peaks to cancel errors in scattered directions and get a reasonable overall best estimate, too few distinct hydrographs normally occur in any given year. More consistent estimates can be found in fewer runs by discarding unacceptable solutions than by saving them and hoping they average out. Thus, Subroutine SETHRP looks for solution points or approximate solution points in a predetermined "reasonable" range and rejects the data when it cannot find one.

Two rules and four boundary limits are used in Subroutine SETHRP. Figure 6 shows the area bounded by the four limits for a typical flood hydrograph. Definitions of lines A and B and Point C are the same as those in Figure 5. Arrows indicate the directions and circled numbers indicate the rule numbers used in converging on Point C .

FIG. 6. Rules Used to Find Optimal Set of NCTRI and SRX for Each Flood Hydrograph.

The maximum acceptable value of NCTRI (MXTRI) is twice the number of basic time routing increments (NBTRI) and the minimum value of NCTRI (MNTRI) is one-half NBTRI. The assumption is that the user should be able to estimate the time of concentration (NBTRI) of a basin from topographic information within a factor of two, one way or the other.

The upper limit of SRX is set to 0.995, slightly less than the theoretical upper limit of unity. This is the maximum value which could be used and still avoid computer rounding which increases the volume of the storm during routing unless one resorts to double precision computations. Sensitivity studies show that the effectiveness of SRX in damping the flood peak becomes rapidly more pronounced the closer the value gets to unity. When SRX is decreased to 0.900 or lower, changes in SRX cause rather small changes in simulated flood peak magnitude and time. Therefore, the increments of change in SRX are made smaller for higher values but larger for lower values, and 0.900 is the lower limit of SRX.

The scatter of solution points among storms on a given watershed caused by differences in data quality also suggests that little can be gained by seeking the exact mathematical solution for each of the recorded hydrograph peaks. Computationally, it is much quicker to search among discrete points for the combination of NCTRI and SRX providing a synthesized peak closest to the recorded peak. Six values were chosen for $\operatorname{SRX}(0.995,0.99,0.98,0.96,0.93$, and 0.90). One is already confined to searching among integer values for NCTRI by the way the variable is defined in the program.

OPTIMIZATION RULES AND PROCEDURE
As shown in Figure 6, the estimation procedure starts in upper left hand corner and moves down looking for Line A. After Line A
is found, it moves to the right to find Line B and then moves down to find Line A again. The pattern is repeated until Point C is found.

Examining the process in more detail by using the hydrographs illustrated in Table 18 as numerical examples, it starts with values of NCTRI equal to MNTRI and SRX equal to 0.995 . Subroutine FIXTRI is called to establish values of the fractional individual time routing increments (CTRI) to match MNTRI. Then Subroutines TTMERT and STORRT are called to execute channel time routing and channel storage routing of the saved channel inflows. The synthesized flood hydrograph peak (SHPF) and the flood peak time(ITBTS) are used to calculate 1) NIRTS--the number of time routing intervals from the recorded to the synthesized peak and 2) DRSP~-the difference in cfs between the recorded and synthesized hydrograph peaks.

The search procedure then chooses between two rules in selecting the discrete point in the field of acceptable points to try next. One rule moves downward by reducing SRX; the other moves to the right by increasing NCTRI. SRX is reduced when it is desirable to increase the synthesized peak flow to more closely match the recorded. NCTRI is increased when it is desirable to more closely match the recorded peak timing.
Rule 1: Hold NCTRI constant and decrease SRX through the series of discrete points until

1. SHPF exceeds RHPF / 1.2. If the synthesized flood peak is more than 20^{\prime} percent too low, a. reduction in SRX to improve the matching by increasing the peak flow is preferred over an increase in NCTRI to improve the timing since that can only further reduce the peak. If NIRTS is negative, the adjustment shifts to Rule 2 in an attempt to improve the timing (See trial 6 for the storm of December 22 on Table 18). If NIRTS is zero or positive, the search ends; and SRX

TABLE 18
ESTIMATION OF NCTRI AND SRX FOR POND CREEK, KY. 1968, STORM HYDROGRAPHS

Trial No.	$\frac{\text { Trial }}{\text { NCTRI }}$	$\frac{\text { alues }}{\text { SRX }}$	NIRTS	DRSP	Make Next Estimate by Rưle
Storm of December 2			Recorded Peak $=1330.0 \mathrm{cfs}$		
1	2	0.995	-1	1112.0	1
2	2	0.990	-1	1029.6	1
3	2	0.985	-2	957.6	1
4	2	0. 980	-2	891.1	1
5	2	0.960	-3	687.3	- 1
6	2	0.930	-4	427.8	1
7	2	0.900	-4	221.8	
Storm of December 22			Recorded Peak $=1550.0 \mathrm{cfs}$		
1	2	0.995	-3	1275.4	1
2	2	0.990	-3	1126.4	1
3	2	0.985	-3	993.2	1
4	2	0.980	-3	872.7	1
5	2	0. 960	-4	428.8	1
6	2	0.930	-4	$78.4{ }^{\text {a }}$	2
7	6	0.930	-2	304.7	1
8	6	0.900	-2	$109.9{ }^{\text {a }}$	2
9	8	0.900	-1	295.6	
Storm of March 21			Recorded Peak $=3320.0 \mathrm{cfs}$		
1	2	0.995	-12	2615.4	1
2	2	0.990	-12	2056.9	1
3	2	0.985	-13	1547.3	1
4	2	0.980	-13	1065.6	1
5	2	0.960	-13	531.5	2\&1
6	8	0.930	-10	505.3 ${ }^{\text {b }}$	1
7	8	0.900	-11	$1016.6{ }^{\text {b }}$	

Storm of April 4	Recorded Peak $=4320.0 \mathrm{cfs}$				
1	2	0.995	-1	3002.6	1
2	2	0.990	-2	2026.4	1
3	2	0.985	-2	1155.2	1
4	2	0.980	-2	$384,5^{\mathrm{a}}$	2
5	4	0.980	-1	480.2^{a}	2
6	5	0.980	-1	562.2	1
7	5	0.960	-1	$1672.3 \mathrm{a}, \mathrm{b}$	2
8	6	0.960	-1	1462.6 b	

TABLE 18 (cont'd.)

Trial No.	Trial Values				Make Next NCTRI Estimate by Rule
Storm of May 26		NIRTS	DRSP		
1	2	0.995	Recorded Peak $=1820.0$ cfs		
2	2	0.990	-2	1380.5	1
3	2	0.985	-2	1162.4	1
4	2	0.980	-3	1008.8	1
5	2	0.960	-20	877.0	1
6	8	0.930	-20	$\frac{203.2}{249.8}$	$2 \& 1$

a. DRSP not saved in Rule 2 because the rule seeks smaller NIRTS.
b. Synthesized peak is greater than recorded peak. (In all other cases, the synthesized is less than the recorded peak.)
and NCTRI are taken as their trial values.
2. SRX reaches the lower limit of 0.90 with a value of SHPF which is still too small even though increasing (See the storm of December 2, in Table 18). For such a storm event, SRX is taken as 0.90 , and NCTRI is taken as the last value selected for this parameter (MNTRI if Rule 2 was never applied during the search). While SRX could be reduced to lower values, this did not prove wise because a low sensitivity makes a large reduction in SRX required to significantly raise the synthesized peak and averaging the low value (usually caused by a data inconsistency anyway) with those from other storms did not yield a good overall parameter estimate for the watershed. Rule 2: Hold the value of SRX and adjust NCTRI by subtracting NIRTS. As NIRTS is usually negative (Table 18), the subtraction will lengthen the time base to produce the desired later peak. After each change of NCTRI, Subroutine FIXTRI is called to fix the time routing increments. Then Subroutines TIMERT and STORRT are used to simulate another hydrograph peak, and new values of NIRTS and DRSP are calculated. The adjustment of NCTRI is repeated until

1. NIRTS is reduced to zero or as close to zero as is possible with integer variation of NCTRI. The test for this latter case is whether NIBRS, the absolute value of NCTRI, is decreasing.
2. NCTRI is increased past the maximum acceptable value.
3. NCTRI is increased to the point where the synthesized flood peak is too low to make a larger NCTRI and hence a further reduction in SHFP wise.

Each case needs to be described in further detail.

1. Here, the search has arrived at the best possible estimate of NCTRI associated with the held value of SRX. One of two things is done next: 1) if DRSP is greater than it was for the previously
held value of SRX, the search is interpretted as having passed the solution point. NCTRI and SRX are taken as their trial values for the best point using the previous value of SRX. An example occurs as the program returns from trial 8 to 6 during the tabulated storm for April 4; 2) if DRSP is less than what it was for the previously held value of SRX, return to Rule 1 in an attempt to find a still better value. An example occurs as the program goes from trial 6 to 7 during the April 4 storm.
2. Here, the search is prevented from trying a value of NCTRI outside the acceptable range. The search uses the same criteria as in Case 1 to decide whether to return to Rule 1 and further reduce SRX with NCTRI equal to MXTRI or take a solution from a previous trial value. The tabulated storm of March 21 truncated NCTRI from 15 to 8 and continued the search with trials 6 and 7. In this case to save computer time, the search goes to Rule 2 and back to Rule 1 without performing a routing under Rule 2 (March 21, trial 5).
3. Here, the search returns immediately to Rule 1 to increase the peak (See trial 7 for the storm of December 22).

Close inspection of these rules reveals that they produce an approximate solution point without specifying an explicit criteria for weighting the relative importance attached to peak and time. Operationally, the rules stress peak flow rate when synthesized flows miss by over 20 percent and the time of peak when they do not. Thus, for December 22, trial 9 is preferred over trials 6 or 8 . Admittedly, such a search procedure is coarse, but most data do not permit greater precision.

If the highest hydrograph peak synthesized for a given storm is less than one-half of the recorded peak, the set of values of NCTRI and SRX are rejected and that storm is excluded in estimating the parameters.

The average value of NCTRI for a given station-year is taken as the mean of the storm weighted by recorded hydrograph peak flow because a larger flood hydrograph gives a better estimate of NCTRI. The subroutine then calls Subroutine SETSRP to estimate CSRX and FSRX.

DISCUSSION

Subroutine SETHRP uses a coarse search procedure to estimate a pair of values which simply cannot be estimated with any precision with the quality of data normally encountered by the model. The procedure relies on the mean of a series of estimates to dampen a large random estimating error likely to be encountered in a particular hydrograph. Fifteen estimates may be available in the three years of record recommended in Chapter IV.

Subroutine FIXTRI
(Fourth Channel Routing Subroutine)

CONTEXT

OPSET is supplied input data describing the shape of the watershed in the form of a time-area histogram. Read are a specified number (NBTRI) of time-area elements (BTRI) and a specification in Control Option 2 as to whether the elements are estimated on a $15-$ minute or on an hourly basis. However, during the channel routing parameter optimization, it is necessary to perform routings with a value of NCTRI different from NBTRI; therefore, the values of the individual elements must also be adjusted.

For example while data is being collected, a basin may be estimated to have a time of concentration of three hours, and the fractions of the basin from which runoff reaches the mouth of the basin during the first, second, and third hours respectively as
estimated from topographic maps provide the numerical values of the three elements. When a routing is to be done using 2 hours for the time of concentration (NCTRI), a numerical procedure is needed for estimating appropriate values for two elements from the values of three elements.

PURPOSE
Subroutine FIXTRI is used to fix values of the individual time routing elements to match the required total number of values. FIXTRI is called whenever there is a change of NCTRI since the last channel time routing.

PROCEDURE

For a given watershed, a base number of time routing increments (NBTRI) and the values of increments (BTRI) are read as input data and represent a histogram derived from a topographic map of the watershed. (10, pp. 21-26; 25, pp. 36-39). For purposes of explaining the procedure used in Subroutine FIXTRI, consider a hypothetical basin having three read time-area elements of 0.42 , 0.32 , and 0.26 and where a two-element array is needed. The following procedure is used.

1. Divide each of the base time routing increments (BTRI) by the number of current time routing increments (NCTRI); thus there will be (NBTRI) x (NCTRI) elements. For the given example, NBTRI is 3, NCTRI is 2; therefore, the resulting six elements will be 0.21 , $0.21,0.16,0.16,0.13$, and 0.13.
2. In the order of time intervals in time-area histogram, place the elements into NCTRI groups with NBTRI elements in each group. In the example, the six elements are grouped into two groups as ($0.21,0.21,0.16$) and ($0.16,0.13,0.13$).
3. Sum the values of elements in each group, and the values of group sums are assigned to be the values of the current time routing increments. In the example, the resulting two elements are 0.58 and 0.42 .

DISCUSSION
The above procedure will produce the required NCTRI increments. However, the results are approximate because it is assumed that the sub-areas in the base time-area histogram are uniformly distributed in each time interval. In the example, the second original increment of 0.32 was assumed to divide equally between its first and second half hours when in fact a larger share of the basin might be in one of the two. For watersheds with a large NBTRI, this assumption gives better results.

Subroutine TIMERT
 (Fifth Channel Routing Subroutine)

CONTEXT

Two groups of equations are used within the Model to simulate the process whereby the stream channel system translates patterns of runoff from the land surface to an outflow hydrograph. The MAIN program accounts for the time lag from the time runoff enters the channel to when it reaches the mouth by use of a time area histogram (MAIN0484-0498). It then follows with programing to account for the effect of channel storage on hydrograph attenuation (MAIN0500-0504).

During the process wherein OPSET estimates the length of the time-area histogram (NCTRI) and the storage routing index (SRX), a large number of routings with trial values are required. Because the trial routings differ from those in MAIN in that they must save the channel inflow hydrographs for later trials, require some
adjustment in terminology, and are repetitious, special subroutines were developed for both procedures. Subroutine TIMERT is an adaptation of the time routing programing in MAIN for use by Subroutines SETHRP (STHP0035) and SETSRP (STSP0076). Subroutine STORRT is an adaptation of the storage routing programing in MAIN called in Subroutines SETHRP (STHP0038) and SETSRP (STSP0077).

PURPOSE

Subroutine TIMERT is used to perform the repetitious trial routing required in the search for the channel routing parameter values which best account for the time lag it takes runoff to pass through the channel system.

PROCEDURE

The channel time routing technique originally used by Crawford and Linsley (10, p. 44) can be expressed as

$$
\begin{equation*}
I_{t}=\sum_{x=0}^{x=z-1} R_{t-x} C_{x+1} \tag{37}
\end{equation*}
$$

where $I_{t}=$ storm runoff in period t routed to the mouth of the channel (SRR);
$R_{t-x}=$ unrouted synthesized overland flow plus interflow runoff (SSR) x time periods ago;
$C_{x+1}=$ the $x+1$ time routing increment value (CTRI), expressed as a fraction of the watershed area;
$z=$ number of time routing increments in the time-area histogram (NCTRI).

For example, given a series of unrouted synthesized runoffs and a time routing histogram, the routed runoff at the end of the third time interval will be the sum of 1) channel inflow in the first (closest to
the gage) time routing incremental area during the most recent time interval, 2) channel inflow in the second time routing incremental area during the previous time interval, and 3) channel inflow in the third time routing incremental area during the second previous time interval.

DISCUSSION
In their reports describing the adaption of the method developed by Clark (7) to simulate channel time routing, Crawford and Linsley suggested using a modified time-delay histogram (10, pp. 24-27) rather than the time-area histogram derived in the method described by Ross (25, pp. 36-39) and used in developing the input data for testing OPSET. The time-delay histogram is a time-area histogram slightly delayed to account for the finite time required for flows to traverse the width of the histogram band. The difference between the two histograms decreases as one deals with watersheds divided into an increasingly large number of bands.

The modified or time-delay histogram was not used in gathering the test data for OPSET because it is more difficult to construct. More importantly, it is doubtful that the time-area bands can be plotted sufficiently accurately to justify the refinement as really adding to the precision of the results. Even more importantly, OPSET adjusts the length of the originally read histogram to best match simulated with recorded hydrographs. If a delayed hydrograph produces a better fit, OPSET will automatically provide one by calling Subroutine FIXTRI with a larger optimum value of NCTRI.

Subroutine STORRT
 (Sixth Channel Routing Subroutine)

PURPOSE

Subroutine STORRT serves as a companion to Subroutine TIMERT and is used to perform the repetitious trial routing required in the search for the routing parameter values which best account for observed storage attentuation effects as runoff moves through the channel system.

PROCEDURE

The time-routed synthesized storm runoff (SRR) from Subroutine TIMERT is taken as the inflow to a hypothetical "reservoir." The storage routing is based on Equation 36 and starts at the beginning of the saved synthesized runoff and continues throughout the Subroutine STRHRS selected hydrograph duration. When CONOP2 is specified in the input data as zero, 15 -minute routing is used; when CONOP2 $=1$, a $60-$ minute period is used. Base flow is not routed (MAIN0468, 0481-0482); however, a fixed uniform base flow is estimated for each storm hydrograph (MAIN0521, 0664) and added to each routed runoff to determine total flow (SRRT0027). The time (IBTPS) from the beginning of saved runoff to the synthesized hydrograph peak (SHPF) is recorded. SHPF and IBTPS are used in Subroutine SETHRP in the selection of optimum values for NCTRI and SRX.

When Subroutine STORRT is called from Subroutine SETHRP, a single value of $S R X$ is used throughout the entire routing (i.e., FSRX = CSRX) in an attempt to find a value which produces the best estimate of the recorded hydrograph peak flows. However, when it is called from Subroutine SETSRP, SRX is varied as a function of the synthesized total flows in the manner shown on Figure 5 (SRRT00210024).

In order to provide information on the shapes of the synthesized storm hydrographs, 21 points from the channel-routed hydrograph (5 points before the time of the recorded hydrograph peak, and 15 points after that time) are tabulated. The interval of printing points (INHPT) is chosen to make the total time base long enough to cover the storm hydrograph (See Subroutine STRHRS). The 21 values are for visual inspection only, and those other than the peak do not enter into parameter estimation. While the recorded hydrographs are set up to all peak at the sixth point, the synthesized peak will not necessarily fall at this time and in fact may not fall at any of the preselected time points. The synthesized peak value is printed below the hydrograph.

Subroutine SETSRP

(Seventh Channel Routing Subroutine)

CONT EXT

The first pass at estimating a watershed value for SRX begins as presented in Subroutine SETHRP. For each of up to five flow peaks specified in the input data, a value of SRX is found which when used throughout the entire routing produces the best estimate of the recorded flow peak values. The remaining issue is whether the watershed SRX should be taken as the mean of the storm values or whether two values should be used, CSRX when flows are confined to the channel and FSRX when flow enters the flood plain.

Resolution of this issue requires a test. The one used was to regress storm values of SRX against storm flow peaks. If the regression shows SRX to increase with flood peak, the trend to be expected from qualitative analysis of the physical problem, the data is further evaluated to see if separate values of CSRX and FSRX can
be estimated. If the regression shows no (or a reverse) trend, the storm values of SRX can be averaged for a single overall watershed value; CSRX equals FSRX.

PURPOSE

Subroutine SETSRP estimates two channel routing parameters. CSRX is the confined flow channel storage routing index and FSRX is the flood flow channel storage routing index.

DISCUSSION OF STORAGE ROUTING

In their earlier versions of the Stanford Watershed Model (10, p. 46), Crawford and Linsley used a single value for SRX ${ }^{*}$ in Equation 36 for all routing through the theoretical reservoir used to account for the effect of channel storage on streamflow. More recently they have used a more sophisticated but computationally more complicated kinematic wave routing in a program capable of simultaneously simulating flows at a large number of points within a given watershed. In developing OPSET, emphasis was placed on estimating the parameters which control the volume and seasonal distribution runoff rather than flood hydrograph shape. The strategy of retaining the theoretical storage reservoir concept provides good results for simulating runoff at the mouth of a single small watershed. Anyone desiring more comprehensive storage routing can readily combine estimates for the other parameters made by OPSET with the routing features of the more recent versions.

While the theoretical reservoir concept was retained, the single parameter approach was modified. Streamflow is often better modeled by varying SRX with stream flow rate in order to incorporate the effectiveness of flood plain storage in dampening flood hydrographs
*
*SRX is equivalent to KS1 as used by Crawford and Linsley.
to a.greater degree than can storage in the channel alone. Therefore, the Kentucky Watershed Model selects the value for SRX it uses at any given time according to the magnitude of the streamflow synthesized for the previous routing period (Figure 7). CHCAP is used to index the flow rate at which flood plain, as contrasted with natural channel storage, becomes the predominate influence on storage routing.

When the synthesized streamflow is less than one-half of CHCAP, CSRX is used for routing. If the synthesized flow exceeds twice CHCAP, FSRX is used. When the synthesized flow is between these values, SRX is interpolated from the cubic curve expressed mathematically by the equation

$$
\begin{equation*}
\operatorname{SRX}=\operatorname{CSRX}+(\mathrm{FSRX}-\operatorname{CSR} X) \times\left(\frac{\mathrm{Q}-0.5 \mathrm{CHCAP}}{1.5 \mathrm{CHCAP}}\right)^{3} \tag{38}
\end{equation*}
$$

where Q is the synthesized streamflow.

PROCEDURE

In order to determine whether the hydrographs used in a given run of OPSET exhibit a trend toward higher values of SRX for larger flows, the values of SRX selected by Subroutine SETHRP (which estimates one value of SRX for use in routing the entire hydrograph) were regressed on the corresponding recorded hydrograph peak flows. An increase of SRX with peak flow suggests flood plain damping. In other words, for smaller hydrographs, flows are confined to the main channel, the damping of the hydrograph is limited, and the result is a low SRX. On the contrary, large floods overflow the channel bank. The much greater flood plain storage damps the flood peaks more drastically, and the value of SRX is higher.

FIG. 7. Relationship Between SRX and Synthesized Streamflow.

If the coefficient from the regression of the estimates of SRX on the corresponding recorded hydrograph peaks is positive, the first step is to estimate CSRX (Figure 7) as

$$
\begin{equation*}
\operatorname{CSRX}=a+b(\operatorname{CHCAP} / 2) \tag{39}
\end{equation*}
$$

where the coefficients a and b are the least squares estimates of α and β in the linear model

$$
\begin{equation*}
\mathrm{SRX}=\alpha+\beta \cdot \operatorname{RHPF}+\epsilon \tag{40}
\end{equation*}
$$

If CSRX turns out less than $0.8, \operatorname{CSRX}$ is set equal to 0.8 to prevent the selection of physically unreasonable values caused by hydrographs with nearly equal peak flows having comparatively large differences in estimated SRX.

For floods peaking at a flow less than one-half of CHCAP, CSRX is used for all storage routing throughout the hydrograph. For larger storms, SRX is varied with flow in the manner depicted in Figure 7. FSRX cannot be estimated by substituting twice CHCAP for CHCAP/2 in Equation 39 because the data were derived by routing the entire hydrograph with a fixed SRX. The value of FSRX is instead estimated by trial-and-error adjustment between the values of CSRX and 0.99 used as the upper limit to minimize the effect of rounding errors on flood volume.

Figure 8 illustrates the scheme used to estimate FSRX based on the criterion of minimizing SQPKD, the sum of the squares of the differences between recorded and synthesized hydrograph peaks. The adjustment uses two sizes of increments for FSRX. The big increment (BISRX) is used to rapidly locate the low region in the U-shaped curve whose minimum point indicates the optimal value of FSRX, and the small increment (SISRX) is used to backtrack once

$\geqslant 0.8$
Trial Value of FSRX

FIG. 8: Deternination of ESRX by Trial and Error Method.
the minimum is passed to more closely estimate FSRX. BISRX is taken as one-fifth of the difference between 0.99 and CSRX. SISRX is one-fifth of BISRX.

The iterative procedure starts with FSRX $=$ CSRX to route the selected flood hydrographs. The optimized NCTRI (calculated in Subroutine $S E T H R P$) is used for channel time routing and the trial values of CSRX and FSRX are used for channel storage routing. Then the difference between each pair of recorded and synthesized hydrograph peaks (DRSP), the accumulated sum of DRSP (ADRSP), and the sum of the squares of DRSP (SQPKD) are calculated by the following equations:

$$
\begin{align*}
& \operatorname{DRSP}_{i}=\operatorname{SHPF}_{i}-\text { RHPF }_{i} \quad(i=1,2, \ldots \text { NRHP }) \tag{41}\\
& \text { ADRSP }=\sum_{i=1}^{N R H P} \operatorname{DRSP}_{i} \\
& \text { SQPKD }=\sum_{i=1}^{N R H P}\left(\text { SHPF }_{i}-\text { RHPF }_{i}\right)^{2} \tag{42}
\end{align*}
$$

where SHPF and RHPF are the synthesized and recorded hydrograph peaks respectively.

When SQPKD is plotted against the first trial value of FSRX (Point A in Fig. 8), the point usually has a rather high value of SQPKD. The next point (Point B in Fig. 8) is obtained as the trial value of FSRX is set equal to the previous value plus BISRX. If SQPKD becomes smaller, the new values of SQPKD and FSRX are saved before going on to try a larger FSRX. The process continues until 1) the new value of SQPKD exceeds the previous one (Point E in Fig. 8), or 2) the minimum value of SQPKD is found at the maximum value for FSRX of 0.99.

The first case indicates that the minimum point of SQPKD has been passed. The direction of search is reversed by determining the next value of FSRX by subtracting the small incremental SRX (SISRX) from the last value. The reverse adjustment of FSRX continues until a new value of SQPKD exceeds the last value, then the last value of FSRX is selected as its best estimate (Point H in Fig. 8).

The case where the smallest SQPKD is for an FSRX of 0.99 may be associated with an ADRSP either larger or smaller than zero. If ADRSP is negative, the search backtracks within the last big increment to find a minimum point in the manner described above. If ADRSP is positive, the synthesized flood peaks are too big but further reduction by increasing FSRX is not practical. In order to make the synthesized peaks smaller, the curve in Fig。 8 is moved to the left by reducing CHCAP to 80 percent of its previous value. Smaller peaks are simulated because a higher value of SRX will now be used for any given flow. The estimate provided in the data is assumed to be in error. With the new values of CSRX (estimated by substituting the new CHCAP in Equation 39) and CHCAP, the procedure of Fig. 8 is again used to estimate FSRX. However, to prevent the program from hanging in a loop, the number of adjustments to CHCAP is limited to four. At this point, OPSET sets the values of both CSRX and FSRX to their upper limit of 0.99 to reduce synthesized flood peaks in a situation where a better estimate is taking too much computer time. A review of the estimated CHCAP as an index of the flow at which flooding begins is recommended. The user may wish to rerun the program starting with a lower estimate.

The two cases in which the above method cannot be applied must be considered separately. They are:

1. Less than two hydrographs may be accepted by Subroutine SETHRP. Subroutine SETSRP is not called and OPSET terminates if no hydrographs are accepted. The user should try another run with better data. Since a slope cannot be estimated from one point, both CSRX and FSRX are set equal to SRX when jusi one hydrograph is accepted.
2. The estimate of b in Equation 40 may be negative. Since such a value does not make physical sense, a single estimate is made for both parameters. A mean weighted by the recorded hydrograph peaks is used because the arithmetic mean may be too biased by SRX values arising from a hydrograph with a small magnitude. Small hydrograph peaks are more subject to anomalies between recorded flood peaks and recorded precipitation.

CONCLUSION

A great many arbitrary sounding empirical rules have been presented in this chapter. Few can be quantitatively verified theoretically. Their merit can best be judged by the results they produce. Space does not permit extensive analysis of results in this report. Ross (25) discusses the results with respect to estimating parameter values by watershed. James (16, pp. 34-36) tabulates the success of estimated parameters values when used in the Model in matching simulated to recorded stream flow. The tables in the following chapter also provide information which can be used in evaluating the results.

CHAPTER IV

OPERATION AND APPLICATIONS

The use of OPSET to estimate a set of parameter values for a given watershed is enhanced by a well-planned strategy. Water years of record need to be selected to give the best results. A technique is needed for obtaining the best overall estimate from estimates from individual years. Options are provided in the program to meet the needs of individual users. These topics are discussed in this chapter.

OPERATION OF THE OPSET PROGRAM

Even though parameter estimation by OPSET is on a stationyear basis, many station years can be handled in a single computer run. The variable NSYT specifies the number of station years included in a given computer run. Since each station year is an independent operational unit, the total number of station years will not affect the result for any station year.

For each station year, a title card for identification and the following six data and operation options are read as input data:

1. CONOPT(1) -- evapotranspiration data option. This is identical to CONOPT(3) in the KWM control options (25, p. 29). When read as 0, daily evaporation data (DPET) and monthly evaporation pan coefficient data (EPCM) are used and read in MAIN0098 and MAIN0103. When read as 1, then 10-day average evaporation data as well as the monthly evaporation pan coefficient data are used. When read as 2 , then estimated potential annual evapotranspiration (EPAET) and mean annual number of days with more than
0.01 inch of rain (MNRD) are read and Subroutine EVPDAY is called to estimate daily evapotranspiration values (MAIN0108-0110). The user should choose his option according to the availability of evaporation data. More detailed descriptions are given by Ross (25, pp. 2935) and in the discussion of Subroutine EVPDAY.
2. CONOPT(2) -- channel routing option. This is identical to CONOPT(12) in the KWM control options (25, p. 23). For larger watersheds, the channel routing in optimizing the hydrograph routing parameters is done hourly so as to save computer time. CONOPT(2) is read as 1, and the input time-area histogram is constructed on an hourly basis. For small watersheds, fifteen-minute routing periods are used in OPSET by setting Option 2 equal to 0 , and the input timearea histogram is constructed in 15-minute time intervals.
3. CONOPT(3) -- rain gage moving option. This is identical to CONOPT(8) in the KWM control options. The option specifies whether some event occurred during the water year which would alter the procedure used in combining recording and storage gage amounts to estimate hourly rainfalls on the basin. If it has, CONOPT(3) should be read as 1, and the new storage gage weighting factor (WSG2), the new storage gage reading time (SGRT2), and the day of the change (SGMD) should be read (MAIN0153). If no such event occurred in that station-year, CONOPT(3) should be read as 0 , and the other data are not needed. A more detailed description is given by Ross (25, pp. 25-29).
4. MNRC -- minimum number of Rough cycles. In the Rough adjustment of the six volume parameters in TRIP 1, a minimum number of cycles is preassigned to provide the user flexibility to make a more thorough search of parameter value combinations for use in cases where the estimating procedure is experiencing difficulty
in finding a path toward a reasonable solution. Unless the process first finds a set of parameters for which SSQM is less than 0.15 (rough looping cannot be more precise), the estimation requires at least MNRC times of Rough adjustment. Although the last few cycles sometimes get consistently worse, experience has shown that the process may reverse. The opportunity to increase MNRC provides the power to find the best possible combination of the six parameter values without being halted by difficulties in the initial trials which may start from a bad set of values. Smaller values of MNRC will save computer time where the estimation is quicker. A value of 12 was used in most of the studies reported by Ross (25, p. 87).
5. NFTR -- number of the first TRIP to be run for a given station-year of data. If NFTR is 1, the input data is as shown by Ross (25, Appendix B). Sometimes, the user may not want to start with TRIP 1. For example, if the parameter values estimated in TRIP 1 have been established in a previous computer run, and it is desired to repeat the optimization procedure for the channel routing parameters because the hydrograph data was punched incorrectly the first time, the program can be started with TRIP 2 by setting. NFTR equal to 2 and adding eight parameter values on punched cards right after the end of hourly precipitation data (MAIN0227):

For the example of the best run of the Fine adjustment cycle for the 1956 Wood Creek data (25, pp. 82-87), the cards would be:
$11.14 *$ LZC, lower zone storage capacity
4. 23 * BMIR, basic maximum infiltration rate within watershed
0.65 * SUZC, seasonal upper zone storage capacity factor
$0.15 *$ ETLF, evapotranspiration loss factor
$1.04 *$ BUZC, basic upper zone storage capacity factor
$0.45 *$ SIAC, seasonal infiltration adjustment constant
$0.00 * B I V F$, basic interflow volume factor
$8.58 * \mathrm{LZS}$, current lower zone storage.
If it is desired to run the program with the final trip alone, the value of NFTR should be set equal to 3 and six more parameter values should be placed right after the eight parameter values on punched cards as follows:
$0.935 *$ CSRX, channel storage routing index
0.935 * FSRX, flood plain storage routing index

3 * NCTRI, number of current time routing increments
100.0 * CHCAP, channel capacity - indexed to basin outlet
$0.100 *$ IFRC, interflow recession constant
$0.895 *$ BFRC, base flow recession constant
6. NLTR -- number of the last trip to be run for a given station year. This value can be 1, 2, or 3 but must equal or exceed NFTR. The complete run of OPSET will have NFTR equal to 1 and NLTR equal to 3 .

SELECTION OF WATER YEARS

Data from 20 watersheds in Kentucky were used in developing OPSET. Ross (25, pp. 58-78) describes the criteria followed in selecting the watersheds and gives detailed information on those watersheds selected. Seventeen of the 20 watersheds were classified as rural in that physical change within the watershed was judged not extensive enough to change the value of the parameters with time. The other three were classified as urbanizing as urban development has been changing the face of the watershed. From the published record for each rural watershed, three water years were chosen to represent a wide range of flow patterns. They were (1) the year with largest winter (December-May) flood, (2) the year with the largest summer (June-November) flood, and (3) the year with the
least summer runoff. For each urbanizing watershed, the first four and the last four years of record were obtained to represent both ends of the urbanizing experience.

AVERAGING METHOD STUDIES
OPSET estimates parameters from the data for a given water year. If the hydrologic simulation model were perfect, the parameters estimated directly from watershed characteristics were measured correctly, and the climatological data represented watershed experience, OPSET would estimate the same set of parameter values from any year of data (p. 76). The exception would be estimates for parameters which relate to processes that do not occur in a year of record. For example, the parameter for routing major floods cannot be estimated from data years when the flow does not leave the banks of the channel, and the parameters best estimated from their effect on summer flows are difficult to estimate from years with very little summer rainfall.

Because parameter estima suitable method for averaging the results is needed. The issues considered were:

1. Should one use an arithmetic or a geometric mean?
2. Should years with certain extreme flow characteristics be excluded from the averaging?
3. Should parameter estimates obtained from years when simulated flows closely match recorded flows be weighted more heavily than estimates from years when the matching is not so good?
4. How much is the estimate improved by including more years in the averaging?

These issues were resolved through a series of studies. It was recognized ahead of time that the best averaging procedure would
probably vary by parameter. It was also recognized that the available computer time would not permit exhaustive analysis. The studies would have to be exploratory and the conclusions tentative。 Questions 1 and 2: The first study used the Cave Creek watershed where a recording rain gage is located quite close to a small watershed. OPSET was applied to the data for each water year to estimate three sets of parameter values. From these estimates, four different mean values were calculated for each parameter (Table 19). Because of the parameters more sensitive to summer storms, if any year were to be excluded, a year with a dry summer seemed to be the most logical. In all, there were four different means, namely, the arithmetic mean of all three years (A_{m}), the geometric mean of all three years (A_{g}), the arithmetic mean of two wet years ($A_{m w}$), and the geometric mean of two wet years (A_{gw}).

In order to examine how parameter estimates based on one water year work on data for another water year, a series of runs were made. For each water year, the set of parameter values obtained from each OPSET run and the four sets of mean values were used to simulate an annual hydrograph (TRIP 3 only). The results of these three computer runs are shown on Tables 20,21 , and 22.

Inspection of the three tables reveals the following features which lend insight useful in choosing the best possible means of averaging parameter values:

1. The best set of parameter values (smallest SSQM) for a given water year is the one obtained from the OPSET run based on that water year. The estimating procedure is doing its job.
2. Averaged parameter values give better simulation results than a set of values based on any other water year (Table 21).
3. The averaged mean values based on all three years are superior to those based on two of the three years. Table 20 shows

TABLE 19
PARAMETER VALUES USED FOR STUDYING AVERAGING METHODS: CAVE CREEK NEAR FORT SPRING, KY.

	1955 $\left(\mathrm{~W}^{*}\right)$	1958 $\left(\mathrm{~S}^{*}\right)$	1965 $\left(\mathrm{D}^{*}\right)$	Am	$\mathrm{Ag}_{\mathrm{*}}^{*}$	Amw	Agw
LZC	$5 . .77$	1.86	1.37	3.00	2.45	3.81	3.27
BMIR	3.92	4.66	6.06	4.88	4.80	4.29	4.27
SUZC	0.77	0.25	0.94	0.65	0.57	0.51	0.44
ETLF	0.21	0.25	0.17	0.21	0.21	0.23	0.23
BUZC	3.02	1.46	0.65	1.71	1.42	2.24	2.10
SIAC	0.26	0.09	0.40	0.25	0.21	0.18	0.15
BIVF	0.00	0.00	0.00	0.00	0.00	0.00	0.00
BFRC	0.877	0.836	0.877	0.863	0.863	0.857	0.856
IFRC	0.100	0.255	0.128	0.161	0.148	0.178	0.160
CSRX	0.970	0.970	0.984	0.975	0.975	0.970	0.970
FSRX	0.977	0.994	0.984	0.985	0.985	0.986	0.985
NCTRI	2	3	6	4	3	3	2
LZS	3.33	0.95	0.04	1.44	0.50	2.14	1.78

$$
\begin{aligned}
* \mathrm{~W} & =\text { Winter flood year values } \\
\mathrm{S} & =\text { Summer flood year values } \\
\mathrm{D} & =\text { Driest year values } \\
\mathrm{Am} & =(\mathrm{W}+\mathrm{S}+\mathrm{D}) / 3 \\
\mathrm{Ag} & =(\mathrm{W} \cdot \mathrm{~S} \cdot \mathrm{D})^{1 / 3} \\
\mathrm{Amw} & =(\mathrm{W}+\mathrm{S}) / 2 \\
\mathrm{Agw} & =(\mathrm{W} \cdot \mathrm{~S})^{1 / 2}
\end{aligned}
$$

TABLE 20
AVERAGING METHOD STUDIES: CAVE CREEK 1955 THE WINTER FLOOD YEAR (W)

[^7]TABLE 21
AVERAGING METHOD STUDIES: CAVE CREEK 1958 THE SUMMER FLOOD YEAR (S)

		Synthesized Flows (monthly deviation indices)						
		W	S	D	Am	Ag	Amw	Agw
Monthly flows (sfd)								
Nov.	72.0	-0.064	0.932	0.712	0.358	0.389	0.287	0.418
Dec.	293.9	-0.366	-0.107	-0.025	-0.187	-0.169	-0.254	-0.226
Jan.	136.1	-0.130	0.001	0.015	-0.066	-0.049	-0.102	-0.082
Feb.	150.5	-0.464	-0.306	-0.258	-0.327	-0.306	-0.377	-0.351
Mar.	79.8	-0.672	-0.363	-0.465	-0.446	-0.420	-0.483	-0.455
Apr.	160.0	-0.326	-0.036	-0.250	-0.180	-0.121	-0.141	-0.108
May	160.8	0.341	0.569	0.380	0.433	0.467	0.462	0.488
Jun.	12.6	-0.342	-0.523	-0.462	-0.424	-0.455	-0.387	-0.399
Jul.	250.7	-0.813	-0.238	-1.286	-0.859	-0.759	-0.644	-0.587
Aug.	115.4	-1.163	-0.643	-0.948	-1. 106	-1.021	-1.096	-0.991
Sep.	7.9	-0.177	-0.208	-0.280	-0.229	-0.224	-0.203	-0.203
SSQM		3.206	2.217	3.842	2.886	2.570	2.573	2.339
Annual total (sfd)	1442	1051	1411	1233	1183	1219	1183	1225
Flood peaks (cfs)								
Nov. 18	44.0	47.2	73.3	65.3	65.7	70.5	72.6	82.4
Dec. 7	53.0	50.6	58.2	46.3	51.3	52.3	56.0	57.1
Dec. 26	43.0	95.7	70.1	70.3	85.5	86.8	92.3	94.0
Jul. 24	87.0	128.3	89.0	64.2	106.6	111.9	121.2	127.1

TABLE 22
AVERAGING METHOD STUDIES: CAVE CREEK 1965 THE DRIEST YEAR (D)

		Synthesized Flows (monthly deviation indices)						
		W	S	D	Am	Ag	Amw	Agw
Monthly flows (sfd)								
Nov.	4.8	-0.210	-0.143	-0.122	-0.204	-0.204	-0.210	-0.210
Dec.	236.1	-0.781	0.093	0.166	-0. 196	-0.095	-0.350	-0.234
Jan.	187.5	-0.601	-0.334	-0.244	-0.409	-0.363	-0.501	-0.451
Feb.	156.4	-0.595	-0.288	-0.251	-0.387	-0.348	-0.453	-0.409
Mar.	305.7	-0.241	-0.081	-0.096	-0.127	-0.109	-0.150	-0.131
Apr.	99.1	0.008	0.188	0.022	0.081	0.128	0.113	0.149
May	21.4	-0.266	-0.251	-0.310	-0.314	-0.310	-0.318	-0.298
Jun.	5.2	-0.235	-0.254	-0.248	-0.241	-0.248	-0.241	-0.241
Jul.	3.2	-0.069	-0.126	-0.149	-0.126	-0,132	-0.105	-0.110
Aug.	0.6	-0.025	-0.030	-0.030	-0.030	-0.030	-0.030	-0.030
Sep.	1.3	-0.060	-0.060	-0.065	-0.065	-0.065	-0.060	-0.065
SSQM		1.562	0.413	0.359	0.597	0.512	0.833	0.673
Annual total (sfd)	1032	701	945	958	836	874	794	830
Flood peaks (cfs)								
Dec. 4	18.0	13.0	96.4	66.6	39.1	56.6	29.1	42.6
Dec. 12	33.5	19.6	46.5	38.5	31.8	36.4	30.8	35.6
Dec. 26	16.5	14.8	20.3	22.4	17.8	18.7	16.9	18.0
Ma.r. 17	14.0	81.1	80.4	52.9	71.6	72.5	81.3	82.2
Mar. 26	40.0	94.6	92.3	74,9	88.1	88.6	93.2	93.8

how bringing the dry year into the average even improves the simulation for the wet years.
4. The results do not give much grounds for choosing the geometric mean.

Two conclusions came from this study. The first was to prefer the arithmetic mean over the geometric mean because it gives equally good results with less computational effort. The exception was for SIAC where use of the geometric mean seemed intuitively more reasonable because that parameter is an exponent in the modeling equations (MAIN0308, 0551). The second was to include years in the averaging regardless of their flow patterns. Question 3: The second study examined the merit of weighting the averaged flow volume parameters on SSQM based on the hypothesis that the ability to better match recorded flows is an index of a better estimate. Three types of weighting were tried. Type A takes the arithmetic mean of the parameter values obtained from the various years. That is

$$
\begin{equation*}
\bar{X}_{A}=\frac{\sum_{i=1}^{n} X_{i}}{n} \tag{44}
\end{equation*}
$$

where the X_{i} are the parameter values obtained from \underline{n} single year OPSET runs. Type B weights the parameter values on the reciprocal of SSQM. The mathematical expression is

$$
\begin{equation*}
\bar{X}_{B}=\frac{\sum_{i=1}^{n}\left(\frac{1}{S S Q M_{i}}\right) X_{i}}{\sum_{i=1}^{n}\left(\frac{1}{S S Q M_{i}}\right)} \tag{45}
\end{equation*}
$$

where SSQM_{i} is the value of SSQM for the year. Type C weights the parameter values on the portion of the grand total SSQM not pertaining to the year. The expression is

$$
\begin{equation*}
\bar{X}_{C}=\frac{\sum_{i=1}^{n}\left[\left(\sum_{i=1}^{n} \operatorname{SSQM}_{i}\right)-i \operatorname{SSQM}_{i}\right] X_{i}}{(n-1) \sum_{i=1}^{n} \operatorname{SSQM}_{i}} \tag{46}
\end{equation*}
$$

In all three averaging methods, the logarithms of SLAC were used in keeping with the decision to use its geometric mean. For this study, the parameters other than the land phase parameters were averaged in manners independently developed from reviews of the estimating procedures and presented later.

To test the three types of weighting, three watersheds whose values of SSQM differed substantially from one year to another were selected. Weighting would have no effect if all values of SSQM were equal. The values based on individual years and the averages according to each of the three equations are tabulated in Table 23.

For each of the nine station years, the three types of averaged parameter values were used to run TRIP 3 of OPSET. The monthly flow deviations for each station year are summarized on Table 24. The evidence is not very conclusive for selecting a type of averaging. Type B averaging did the relatively best job for the most months, but it also did the relatively worst job most often. Type A averaging also ranged from one extreme to the other. Type C averaging usually produced a result that was not the best matching or the worst either. The verdict was to recommend unweighted averaging on the grounds that it gave equally good results from much less effort.

TABLE 23
PARAMETER VALUES WITH DIFFERENT TYPES OF AVERAGING

	Water Year			Type of Averaging		
West Bays Fork near Scottsville, Kentucky						
	1956	1957	1961	A	B	C
LZC	8.88	9.96	17.13	11.99	15.69	13.01
BMIR	7.75	5. 28	4.96	6.00	5.32	5.96
SUZC	0.40	0.83	0.30	0.51	0.34	0.43
ETLF	0.18	0.14	0.28	0.20	0.26	0.22
BUZC	1.09	0.20	0.79	0.69	0.79	0.78
SIAC	0.00	0.00	0.85	0.07	0.42	0.12
BIVF	0.40	0.40	0.80	0.439	0.727	0.590
BFRC	0.870	0.888	0.939	0.905	0.905	0.905
IFRC	0.234	0.117	0.516	0.332	0.332	0.332
NCTRI	4	4	4	4	4	4
CSRX	0.900	0.880	0.900	0.893	0.893	0.893
FSRX	0.900	0.990	0.900	0.930	0.930	0.930
CHCAP	750	750	750	750	750	750
LZS	5.05	3.51	10.90	--	--	--
SSQM	3.783	7. 362	0.560			
McDougal Creek near Hodgenville, Kentucky						
	1954	1958	1966	A	B	C
LZC	9.16	2. 18	2.55	4.63	7.67	5.53
BMIR	8.03	2.59	4. 20	4.94	6.97	5.14
SUZC	0.20	0.19	0.65	0.35	0.23	0.29
ETLF	0.21	0.16	0.10	Q. 16	0.19	0.17
BUZC	0.27	0.93	0.23	0.48	0.36	0.48
SIAC	0.02	0.57	0.61	0.19	0.04	0.12
BIVF	0.00	0.00	0.00	0.00	0.00	0.00
BFRC	0.882	0.901	0.923	0.908	0.908	0.908
IFRC	0.100	0.100	0.100	0.100	0.100	0.100
NCTRI	5	5	5	5	5	5
CSRX	0.930	0.925	0.914	0.920	0.920	0.920
FSRX	0.930	0.925	0.914	0.921	0.921	0.921
CHCAP	440	440	440	440	440	440
LZS	4.76	1.77	1.98	--	--	--
SSQM	0.277	1. 544	2.802			

TABLE 23 (cont'd.)

Elkhorn Creek near Frankfort, Kentucky						
	1948	1960	1964	A	B	C
LZC	2.64	2.00	1.46	2.03	2.32	2.17
BMIR	10.63	12.24	20.00	14.29	12.28	13.15
SUZC	0.92	0.30	1.30	0.84	0.81	0.78
ETLF	0.10	0.60	0.34	0.35	0.26	0.33
BUZC	2.50	0.20	0.78	1.16	1.75	1.33
SIAC	0.02	4.00	1.29	0.10	0.12	0.31
BIVF	6.48	2.66	1.03	3.39	4.76	3.99
BFRC	0.880	0.864	0.894	0.877	0.877	0.877
IFRC	0.430	0.336	0.442	0.403	0.403	0.403
NCTRI	19	15	17	17	17	17
CSRX	0.874	0.941	0.983	0.927	0.927	0.927
FSRX	0.874	0.941	0.983	0.927	0.927	0.927
CHCAP	1000	1000	1000	1000	1000	1000
LZS	0.97	0.54	0.33	--	--	--
SSQM	1.479	3.407	6.878			

TABLE 24(a)
DEVIATIONS OF MONTHLY SIMULATED FLOWS WITH DIFFERENT TYPES OF AVERAGING

TABLE 24(a) (cont'd.)

TABLE 24(b)
SUMMMARY STATISTICS

No. Type of A B C of monthly Ayerage			
Flow simulations			
Best	41	44	14
Second Best	16	12	71
Worst	42	43	14

AVERAGING RECOMMENDATIONS BY PARAMETER

From the previously described studies and examination of the OPSET estimating programing by parameter, the following procedures are recommended for averaging parameter estimates obtained year by year from OPSET.

1. LZC: Take the arithmetic mean of the annual estimates.
2. BMIR: Take the arithmetic mean of the annual estimates.
3. SUZC: Take the arithmetic mean of the annual estimates.
4. ETLF: Take the arithmetic mean of the annual estimates.
5. BUZC: Take the arithmetic mean of the annual estimates.
6. SIAC: Take the geometric mean of the annual estimates. In taking the mean, use a value of 0.02 for years where a smaller value was estimated. This rule prevents one zero estimate from causing a zero geometric mean and follows the rules used in estimating SIAC within the program (STFV0185).
7. BIVF: Hinge the estimate on the estimated value of IFRC. If the estimate of IFRC is less than 0.3 , take BIVF as 0.0 . This is the rule used by OPSET in making as estimate for an individual year. If the estimate exceeds 0.3 , take the arithmetic mean of the annual estimates; however, use 0.40 as the annual estimate for years when the OPSET estimate is less than that value (p.116).
8. BFRC: Weight the mean of the annual estimates on the number of days OPSET used within the year to make an estimate. The number of days (ABFSL) is printed out by the program. The weighting formula

extends the type of weighting used within the year to weight estimates from the various recession sequences to a multiyear context.
9. IFRC: Take the mean of the annual estimates weighted by the same procedure used for BFRC with the difference that the weighting factor is AIFSL, also printed in the OPSET output. The two weighting factors vary because the program may not detect interflow in some recession sequences and uses a cutoff to exclude tails of very long sequences in the interflow weighting (pp. 68-69). The raw estimate of IFRC should be used for each year. This value is printed before noting a change to a value of 0.1 where the raw value was smaller than 0.3 . If $\overline{I F R C}$ is less than 0.3 , it should be taken as 0.1.
10. NCTRI: Take the mean of the annual estimates weighted on the number of read historical hydrograph peaks accepted by Subroutine SETHRP and round to the nearest integer. The number can be counted from the output data. This procedure is another extension of the method used by OPSET for averaging within the year. Once an estimate of NCTRI has been accepted, it is also necessary to fill the array of time-area increments with the specified number of values. The user has his initial array, and OPSET prints an array corresponding to the best estimate of NCTRI for each year. Usually, one of these arrays will have a correct number of elements. If none do, the user can return to his watershed map and form a new array.
11. CSRX: Take the mean of the annual estimates weighted on the number of read historical hydrograph peaks accepted by Subroutine SETHRP.
12. CHCAP: Take the median of the annual estimates. This prevents extreme estimates caused by timing discrepancies between recorded precipitation and recorded streamflow from causing problems.
13. FSRX: Take the mean of the annual estimates weighted on the number of read historical hydrograph peaks accepted by Subroutine SETHRP and whose simulated peak exceeds CHCAP as estimated above. This eliminates the impact of smaller events on a parameter which does not pertain to them.

A CLOSER LOOK AT MODELING BASE FLOW RECESSION

In the KWM as in the Stanford Watershed Model, base flow is modeled by two parameters, BFRC and BFNLR. In OPSET, only BFRC is used, and only BFRC is estimated. The second parameter, BFNLR, provides a recession rate which is more rapid at first and gradually becomes slower as flows diminish. The question to be considered here is the value of OPSET in estimating BFNLR.

One way to test whether a watershed has nonlinear baseflow recession is to plot the least squares estimate of sequence recession rate against the initial base flow in the sequence. These values are printed in the output from OPSET. Values for the Helton Branch watershed, for which the OPSET estimate of BFRC was 0.915 , are plotted on Figure 9 . If the points are randomly scattered around a horizontal line estimated by the method recommended above, BFRC should be taken as estimated and BFNLR should be taken as 1.00 . If a distinct trend toward lower points is noted as one moves toward the right on the plot, BFRC should be increased and BFNLR should be reduced. While Figure 9 exhibits some downward trend, it is not strong enough to warrant this modification.

The same type plot for McDougal Creek follows on Figure 10. Here, the trend is distinctly downward to the right. A closer inspection showed the scatter to be reasonably homogeneous around the best estimate for flows less than about 10 cfs but for values of BFRC to be significantly smaller for recessions beginning with

FIG. 9. Relationship Between BFRC and Initial Base Flow, Helton Branch Watershed.

FIG. 10. Relationship Between BFRC and Initial Base Flow, McDougal

Creek Watershed.
larger base flows. Using a division line at $10.68 \mathrm{cfs}(2.0 \mathrm{csm})$, BFRC from points to the left is estimated as 0.915 by applying Equation 47 to all the relevant recession sequences. In cases like this, it is recommended that a dividing line be selected and BFRC be estimated in this manner. A good first estimate for BFNLR is 0.97 . The value may be varied by trial-and-error as desired, but the modeling is not too sensitive.

NUMBER OF WATER YEARS TO USE IN AVERAGING

Intuitively, one would expect the estimates of parameter values to improve as more years are used. However, the computer cost is directly proportional to the number of years. The purpose of this section is to use the Cave Creek example as a case study for developing some feel for how much the results improve as more years are used.

First, nine water-year-based parameter values were estimated by running TRIP 1 for each of six water years. Then, the arithmetic mean for each parameter and LZS was calculated for three-year, four-year, five-year, and six-year periods. The calculated mean parameter values are shown in Table 25. The channel routing parameters were held at the three-year means since the other three years were run on TRIP 1 alone.

Using the 14 values shown on Table 25, the six water years were run on TRIP 3 of OPSET alone, and Table 26 shows the results. This table shows the degree to which the use of more water years yields better estimates of the annual volume as well as the seasonal distribution (SSQM was used as an index). On the other hand, the highest flood peak seemed to be getting worse. This is probably caused by using the M3 values of the four hydrograph routing parameters for M4, M5, and M6.

TABLE 25
PARAMETER VALUES WITH DIFFERENT NUMBERS OF YEARS AVERAGED: CAVE CREEK WATERSHED

	Water Year						Averaged Values			
	1955	1958	1965	1964	1967	1968	M3 ${ }^{*}$	M4 ${ }^{\text {* }}$	M5 ${ }^{*}$	M6 ${ }^{*}$
LZC	6. 73	2.24	1.89	1.08	3.67	1.91	3.62	2.99	3.12	2.92
BMIR	5.87	13.88	20.86	7. 70	18.05	10.71	13.54	12.08	13.27	12.85
SUZC	0.90	0.20	0.49	1.09	0.63	0.21	0.53	0.67	0.66	0.59
ETLF	0.23	0.21	0.14	0.05	0.14	0.15	0.19	0.16	0.15	0.15
BUZC	2.18	1.88	0.38	0.68	0.31	0.59	1.48	1. 28	1.09	1.00
SIAC	0.54	0.08	0.77	0.62	2.30	0.09	0.32	0.38	0.54	0.40
BIVF	0.00	0.00	0.00	0.00	0.00	0.83	0.00	0.00	0.00	0.00
BFRC	0.877	0.836	0.877	0.895	0.876	0.890	0.863	0.871	0.872	0.875
IFRC	0.100	0.100	0.100	0.100	0.100	0.413	0.100	0.100	0.100	0.100
NCTRI	2	4	5	--	--	--	4	4	4	4
CSRX	0.97	0.94	0.98	--	--	--	0.96	0.96	0.96	0.96
FSRX	0.98	0.99	0.98	--	--	--	0.98	0.98	0.98	0.98
CHCAP	50	16	50	--	--	--	39	39	39	39
LZS	4.64	1.46	0.27	0.25	3.12	0.96	2.12	1.66	1.95	1.78
${ }^{*} \mathrm{M} 3=(1955+1958+1965) / 3$										
$\mathrm{M} 4=(1955+1958+1965+1964) / 4$										
M 5 5 $=(1955+1958+1965+1964+1967) / 5$										
$\mathrm{M} 6=(1955+1958+1965+1964+1967+1968) / 6$										

TABLE 26
SUMMARY OF RESULTS WITH DIFFERENT NUMBERS OF YEARS AVERAGED:

CAVE CREEK WATERSHED

Water Year	Recorded Flows	Synthesized Flows				
		OPSET	M3	M4	M5	M6
1955 (F)						
Annual						
(sfd)	1051	1010	1204	1215	1229	1257
SSQM		0.192	0.940	0.803	0.951	1. 221
Largest Peak (cfs)	117	164	182	182	180	183
1958 (W)						
Annual (sfd)	1442	1415	1195	1213	1225	1253
SSQM		1. 008	1. 804	1. 950	1.906	1.673
Largest Peak (cfs)	87	82	133	137	135	136
1965 (D)						
Annual (sfd)	1032	960	802	847	849	862
SSQM		0.237	0.894	0.581	0.553	0.555
Largest Peak (cfs)	40	80	74	87	90	87
1964						
Annual						
SSQM		0.186	2.112	1.322	1.184	1.179
Largest Peak (cfs)	132	152	152	170	174	169
1967						
Annual						
SSQM		1.447	2.859	2. 274	1. 952	2.026
Largest Peak (cfs)	135	174	141	140	139	143
1968						
Annual						
SSQM		1.661	5.757	4.176	5.464	3.295
Largest Peak (cfs)	49	63	75	82	89	83
Summary						
Annual $\Sigma($	Rec. -Sim		824	677	621	495
Σ SSQM			14.106	11.106	12.010	9.949
Flood Peak	\% \sum (Rec.	Sim.)	-177	-238	-247	-251

More years give better estimates of parameter values, but economy should be taken into consideration. The cost of collecting additional years of data plus the computer time might not make it worthwhile to increase the number of water years. The study verified that the three years of record selected by Ross (25, p. 62) should give fair estimates, although the user might want to use more water years to obtain a closer estimate. Ross found this greater precision helped in studying the effects of urban change on parameter estimates.

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Digital hydrologic simulation as exemplified by the Stanford Watershed Model has great potential. Its success at simulating historical stream flows from historical climatological records makes it possible for the planning and design of water resources systems to proceed from a much broader data base. The same ability can be applied to estimate flows for reservoir operation decisions during the time lag between rainfall and runoff. Model success at simulating stream flows with empirical equations representing hydrologic processes provides a challenge and a framework for new research to develop better equations. The ability to simulate changes in flow patterns from changes in parameter values is a powerful tool contributing to a better understanding of the interactions within the runoff process to the student and practitioner of hydrology alike.

Despite this great potential, a number of factors have deterred widespread use of the Stanford Watershed Model. Those most frequently mentioned include:

1. Programing in a little used computer language (6, p. 46).
2. Difficulty in obtaining access to a computer with enough core storage to make modeling feasible and to be able to handle the program without time-consuming adjustments.
3. Difficulty in understanding the program as complicated by its bulk and an unfamiliarity of many hydrologists with digital modeling processes.
4. Disagreements over the appropriateness of specific modeling equations.
5. The inability to directly relate key model parameter values with physical watershed characteristics (6, p. 46).
6. The time and acquired skill required to estimate values for these key parameters by trial and error, the lack of an explicit test for deciding on a best flow matching, and doubts about the Model as a whole caused by difficulties in matching certain flows.

This research has been directly addressed to these factors. A Fortran listing of the Model is provided. The subjective trial-anderror parameter estimating process is standardized. The ability to relate key model parameter values to physical watershed characteristics is improved. The gains are achieved at some sacrifice. The program is bigger and bulkier and hence more imposing to the uninitiated who try to follow its logic. The modeling equations are submerged more deeply into the inner workings of the program and are hence more difficult to change.

In applying OPSET to over 20 Kentucky watersheds which represent a wide range of topographic and soil conditions, it was found to do as good a job of simulating flows and a more consistent job of estimating parameter values than the past trial-and-error approach. Except for summer thunderstorm flood peaks, the simulation was even quite good for watersheds located at a distance from the nearest precipitation gage. The time spent calibrating watershed parameters is greatly reduced. The user does not have to spend so much time familiarizing himself with the program before he can properly use the Model. The program uses standardized criteria to test adequacy of matching and systematic optimization procedures which not only eliminate much of the subjectivity of
choosing which parameters to adjust and determining how large an adjustment to make but also obtain consistent convergence on reasonable parameter values.

The adjustment rules have been thoroughly tested on small watersheds in the climatological setting of Kentucky. However, the extent of the testing done in this research should not be taken as an excuse not to apply OPSET to larger watersheds or locations in another climatological setting. On the contrary, OPSET should be tested in those areas in order to refine and modify it for a wider range of applicability. Likewise, the Model itself needs periodic updating in order to take advantage of better empirical relationships or moisture accounting procedures. Significant changes to the Model will require changes to OPSET to better estimate parameter values in the revised context. The rules used in OPSET to estimate parameter values are not to be taken as the last word and should be modified whenever it would be helpful.

Changes to which special attention is needed include:

1. Expansion of OPSET to estimate parameter values for watersheds where appreciable runoff comes from snowmelt.
2. Checking and adjustment of OPSET to better handle climatological patterns remote from Kentucky.
3. Consideration of alternate equations or combination of equations within the Model and derivation of an objective approach for selecting among these.
4. Refinement of procedures for estimating BFNLR, GWETF, OFSL, and several other parameters which are still not handled by OPSET.
5. Adjustments for simulating flows from climatological data estimated on a different time grid and with a different level of precision.
6. Expansion of the Kentucky Watershed Model to incorporate the power of the Stanford Watershed Model to simulate runoff from watersheds divided into parts and adjustment of OPSET to handle cases where orographic rainfall patterns require simulation by parts.

```
    IF(CONOPTIT) NE. 11.GOTO 110 MAINOO3O
    -104 KRD = 1.15
MAINOOS1
104 CALL READ(FIRR(KRO)
    DO 105 KRD =1,37
    105 CALL READ{RICY{KRD\1
    DO:106 KRD = 274,360,10
MAINOO33
MAINOO34
MAINOO35
06 CALE READ(DPSE(KRD)
    DO 107 KRD = 1,273,10
    107 CALL READADPSEIKRDI
    DO 109 IDAY2 = 1;9
    DO 108 IDAY1 = 274.360.10
    DAY = IDAY1 + IDAY2
    108 DPSE(DAY) = DPSE(IDAYI)
    DO 109 IDAYL = 1,273,10
    DAY = IDAY1 * IDAY2
    IFIDAY .GT. 273) GO TO 109
    OPSE(DAY) = DPSE(IOAYL)
    109
    DPSE(366) = DPSE(59)
    DPSE(365)= OPSE(363
    DPSE(364) = DPSE(363)
    CALL READIBDOFSM,SPBFLW,SPTWCC,SPM,ELDIF,XONFS,FFOR,FFSI,MRNSM,
    1 DSMGH,PXCSA)
110 CALL READ(RMPF)
CALL READ (RGPMB,AREA,FIMP,FWTR)
CALL READ {VINTMR,BUZG,SUZC,LZC,ETLF,SUBWF,GWETF,SIAC,BMIR,BIVF)
CALL READ (OFSS,OFSL,OFMN,OFMNIS,IFRC)
CALL :READ (CSRX,FSRX,CHCAP,EXQPV,BFNLR,BFRC)
BFHRC = BFRC**(1.0/24.0)
BFRL=-ALQG(BFHRC)
BFNRL = 0.0
IFIBFNLR .LT. 0.00001.OR. BFNLR .GT. 0.9999) GO TO 111
BFNHRR = BFNLR**(1.0/24.0)
BFNRL = -ALOG(BFNHR)
111 IFPRC = IFRC*** 1.0/96.01
IFRL= -ALDG(IFPRC)
MAINOO36
MATNOO3
c
```

```
    CALL READ (GWS,UZS,LZSS,BFNX,IFS)
        CALLREAD (GWS,UZS,LZS,BFNX,IFS: MAINOOG6.
        IF(CONOPT(13) NE. II GO TO 113
    NBTRI = NCTRI
    FNTRI = NCTRI
    MXTRI = (10.0**EXQPV)*FNTRI + 0.5
        IFIMXTRI GE. 98) WRITE(6,1)
    1 FORMAT(29HWARNING: EXQPV ARRAY OVER RUNI: MAINOOT3
        NCSTRI=99
        DO 112 KIA:= 1, NBTRI
    112 BTRI(KIA) = CTRI(KIA)
        TFCFS = 1.0 MAINOOT7
        CALETRTVARY (CTRI,SATRI,BTRI,CHCAP,NBTPI, MXTRI NCSTRI, SXOPV, LSHFT MAINOOT7
    1: TFCFSI
    113 EPAET = 0.0
    FPER:1.0-FIMP - FWTR MAINOO8I
        IFIFPER GGT: 0.01)GOTO L14 MAINOOB2
        TPLR = 100.0 M MAINOOR3
# FPER = 0.01
~ FPER = 0.01
    # 114 TPLR = \1.0 - FWTRU/FPER M MAINOOB55
    115 VINTCR = 0.25*VINTMR
    HSE=0.0
        NRTRI = 0
        PEAI = 0.0
        SPIF = 0.0
        CBF"=GWS*BFRL*(1.0 * BFNRL*BFNX)
        SPDR = 0.0
        OFUS = 0.0
        OFUSIS = 0.0
        OFR=0.0
        OFRIS =0.0
        PEIS = 0.0
        RHFO =0.0
        URHF = 0.0
    AMIF=0.0: MAINOIOL
        CALLREAD (GWS,UZS,LZS,BFNX,IFS): MAINOOG6.
        MAINOO67
        NBTRI = NCTRI
        MAINOO68
    MAINOO69
    MAIN0070
    MAINOOT1
    MAINOOT2
    MAINOO74
    MAINOO75
    TFCES CIMANKLAJ
    MAIN
        CALUURTVARY (CTRI,SATRI,BTRI,CHCAP,NBTRI,MXTRT,NCSTRI,EXOPV,ISHFT,MAINOOTQ
    I TFCFSIN MATNOOTS
    MAINOO8O
    MAINOO84
    MAINOOB5
    MAINOO87
    MAINOO88
    MAINOO89
    MA INOO90
    MAlNOO91
    MAINOO91
    MAINOOG2
    MAINOO93
    MAINOO.94
    MAINOOO5
    MAINOO96
    MAIN0097
    MAINOO98
    MAINOO99
    MAINOLOO
```

```
    AMNET = 0.0. MALNOLOL
    AMPET = 0.0
    AMSNE =0.0
    AMFSIL=0.0
    SASFX = 0.0
    SARAX = 0.0
    SRX = CSRX
    VWIN = 26.8888*AREA
    WCFS = 24.0%VWIN
    RHFMC = 0.025/WCFS
    TFCFS = CBF#WCFS
    SSRT = SQRT(OFSS)
    OFRF = 1020.0*SSRT/(OFMN*OFSL)
    OFRFIS = 1020.0*SSRY/(OFMNIS*OFSL)
    EODF = 0.00982*((OFMN*OFSL/SSRT)**0.6)
    EQDFIS = 0.00982*((OFMNIS*OFSL/SSRT)***.6)
    SOFRF = OFRF
    SOFRFI = OFRFIS
    SOEPTH = 0.0
    ASM = 0.0
    IF(CONOPT(7) .EQ. O) GO TO 116
    WT4AM = 60.0
    WT4PM = 60.0
    SAX = 15.0
    TANSM = 0.0
    SPTW = 0.0
    STMD = 0.7
    SFMD = 0.7.
    ASMRG = 0.0
    116 READ(5,2) TITLE
    TITLE
    2 FORMAT (20A4)
C BEGIN NEW YEAR
117 BYLZS = LZS
    BYUZS = UZS
    BYGWS = GWS
    BYIFS = IFS MAINOL37
```

```
        DO 118 K1A = 1,22
        SERR(KIA) = 0.0
        SERA(KIA) = 0.0
    118 SQER(KIA)=0.0
        RGPM = RGPMB
        DO119 KIA = 1,21
        T200FH(KIA) = 0.0
    119 T2OPRHIKIA) =0.0
    DO 120 KIA = 1,12
    120 EPCM(KIA):= 1.0
    RDPT = 0.0
    PDAY = 274
    CALL READ (YR1,YR2)
    READ (5,2)YTITLE
    DPY = 365
    IF(MOD(YR2,4).EQ. O) DPY = 366
    IF(CONOPT{1).EQ. 1) CALL READICDSDR,NDSDR)
    NDSDP = 0
    MEDWY(5)=59
    IF(DPY .EQ. 366) MEDWY(5)=366
C READ EVAPORATION DATA
    IFICONOPTI 31.NE. 11 GO TO 125
    DO 121 KRD = 274,360,10
    121 CALL READ{DPET(KRDI)
    DO 122 KRD = 1,273,10
122. CALL READ(DPET(KRD))
    DO 124 IDAY2 = 1,9
    DO 123 IDAY1 = 274,360,10
    DAY = IDAY1 + IDAY2
123 DPET(DAY): = DPET(IDAY1)
    DO 124 IDAY1 = 1,273,10
    DAY = IDAY1 + IDAY2
    IF(DAY .GT. 273) GO TO 124
    DPET(DAY) = DPET(IDAYI)
```

 CRFMI(KIA) \(=0.0 \quad \therefore\) MAINOIS
 SESF(KIA) \(=0.0 \quad\) MAINOL40
 MAINO 138
 MAINOL40
 MAINOl4l
 MAINO142
 MAINO143
 MAINO144
 MAINO145
 MAINO 148
 MAINO147
 MAINOI48
 MAINO149
 MAINOI50
 MAINOI51
 MAINOI 52
 MAINOI 53
 MAINOI54
 MAINO 155
 MAINOl5s
 MAINOI57
 MAINO158
 MAINO159
 MAINO160
MAINOI 61
MAINO 162
MAINO163
MAINO 164
MAINOL65
MAINOI66
MAINO 167
MAINO168
MAINO169
MAINO 170
MAINOLT1
MAINO 17.2
MAINOI73

```
124 GONTINUE. MAINOIT4
    DPET(366) = DPET459) MAINOIT5
    DPET(365) = DPET(363) MAINOIT6
    DPET(364)= DPET(363): MAINO177
    GO.TO 127
125:IFICONOPT( 3):EQ. 21GOTO 130
    OAY = 274
126 CALL READ IDPET(DAY))
    IFIDAY EQ. 2731 GO TO 127
    CALL DAYNXTIDAY, DPY)
    GO"TO 126
127 DO 128 MONTH=1,12
128 CALL READ(EPCMIMONTH):
    IF\EPAET.NE.O.O1:GOTO.133
    DO 129 DAY = 1,DPY
129 EPAET = EPAET + DPET(DAYI
    IF(EPCM(6) .NE. 1:0) EPAET = 0.7*EPAET
    GO.TO 131
130 CALL READ(EPAET,MNRD)
    EMAET = EPAET* (365.0. + MNRD)/404.0
    CALL EVPDAY(DPET,EMAET)
131 AETX = 24.0*EPAET/365.0
    AEX96 = 1.2*AETX
    AEX90=0.3*AETX
    SIAM = 1.2**SIAC
    UZC = SUZC*AEX9O + BUZG*EXP(-2.7*LZS/LZC)
    IF(UZC .LT. 0.25)UZC = 0.25
    SGRT = 0
    DO 132 DAY = 1,366
    DDIW(DAY) =0.0
    DRSF(DAY) = 0.0
    DRGPM(DAY)=RGPMB
    ORSGP(DAY) =0.0
    OO 132 HOUR =1.24
132 DRHP(DAY,HOUR: = 0.0
133 IF(CONOPT(9).NE. I) GO TO 135 MAINO2O9
MAINO178
MAINOLT9
MAINOI8O
MAINOL81
MAINO182
MAINO183
MAINO184
MAINO185
MAINO186
MAINO187
MAINO188
MAINO189
MAINOI90
MAINO191
MAINO192
MAINO193
MAINO194
MAINOL95
MAINOLIGG
MAINO197
MAINOI98
MAINO199
MA INO20O
MAINO2O1
MAINO2O2
MAINO203
MAINO204
MAINO205
MAINO2O6
MAINO207
MAINO208
```

```
        DAY = 274
        DRSF(366)=0.0
    134 CALL READ(DRSF(DAY))
        CALL DAYNXT(DAY, DPY)
        IF(DAY .NE. 274) GO TO 134
    135 IFICONOPT(11) .NE. 1) GO TO 137
        DAY = 274
        DDIW(366) = 0.0
    136 CALL READIDDIW(DAY))
        CALL DAYNXTGDAY, DPY)
        IFIDAY .NE. 274) GO TO 136
    137 IF(CONOPTI7).EQ. O1 GO TO 139
        DAY = 274
    138 CALL READ(DMXT(DAY), DMNT(DAY))
        CALL DAYNXT(DAY, DPY)
        IF{DAY .NE. 274) GO TO 138
    139 CALL READ(NSGRD) GO TO 141
        CALL READ(WSG,SGRT)
        IF(CONOPT( 8).EQ. 1) CALL: READ(WSG2,SGRT2,SGMD)
        DO 140 KRD = 1,NSGRD
        CALL READ(ISGRO)
    140 CALL READIDRSGP (ISGRD3. )
C READ RECORDING RAIN GAGE HOURLY TOTALS
    141 CALL READ(IWBG,YEAR,MONTH,DATE,CN)
c PUNCH NO NUMBER AFTER CN ON YEAR.EQ. GB CARD.
            IF(YEAR .GE. 98) GO TO 144
            HRF=12*(CN - 1) + 1
    HRL = 12*(CN - 1)+12
        DAY = MEOCY(MONTH) + DATE
        DO : }142\mathrm{ HOUR = HRF, HRL
    142 CALL READ(DRHP(DAY,HOUR))
        IFIDPY .NE: 366 .OR. MONTH .NE. 2 .GP. DATE .NE. 29) GO TM 141
        DO : }143\mathrm{ HOUR = HRF; HRL
        DRHP (366, HOUR) = DRHP(60,HOUR)
    143 DRHP(60,HOUR) = 0.0
```

MAINO210
MAINO211
MAINO212
MAINO213
MAINO214
MAINO215
MAINO216
MAINO217
MAINO218
MA INO219
MAINO220
MAINO221
MAINO222
MAINO223
MAINO224
MAINO225
MAINO228
MAINO227
MAINO228
MAINO229
MAINO230
MAINO231
MAINO232
MAINO233
MAINO234
MAINO 235
MAINO236
MAINO237
MAINO238
MAINO239
MAINO240
142 CALL READ(DRHP(DAY,HOUR))
TFIDPY. -NE. 366 .OR. MONTH .NE 2 . GR . DATE .NE. 29) GO TO 141
MAINO241
MAINO242
MA INO 243
MAINO 244
MAINO245

GO TO 141
C. CALEULATE PRECIPITATION WEIGHTING FACTORS MAINO246

144 DAY = 274 MAINO247
IFINSGRD.EQ. 0) GO TO 151 MAINO248
PDAY $=274$
RDPT $=0.0$
MAINO249
MA INO250
MAINO251
145 EHSGD $=$ SGRT
MAINO252
IFISGRT.EQ. OL EHSGD $=24$
EHSGDF $=$ EHSGD
146 CONTINUE
DO 150 HOUR $=1.24$
RDPT $=$ RDPT + ORHP (DAY, HOUR)
IF(HOUR - NE. EHSGD) GO TO 150
IFIRDPT .LE. O.OI GO TO 147
IFISGRT .EQ. 0) PDAY = DAY
DRGPM (PDAY) $=($ DRSGP(DAY)*WSG + RDPT* $(1.0-W S G) / / R D P T$
[F(CONOPT(3) .NE. O) DPET(PDAY) :=0.5*DPET(PDAY)
IF (SGRT . NE, 0) PDAY = DAY
RDPT $=0.0$
GO TO 150
147 IFIDRSGP(DAY) LEE 0.01 GO TO 149
DO 148 KHOUR $=1$, EHSGD
148 DRHP (DAY, KHOUR) $=$ (WSG*DRSGP(DAY))/EHSGDF
149 IF (SGRT. NE. 0) PDAY $=$ DAY
150 continue
CALL DAYNXT (DAY, DPY)
IFIDAY.EQ. 274) GO TO 151
MAINO253
MAINO254
MAINO255
MA INO256
MAINO257
MAINO258
MAINO259
MAINO260
MAINO261
MA INO 262
MAINO263
MA INO264
MAINO265
MAINO266
MAINO267
MA INO 268
MAINO269
MAINO270
MA1NO271
IFICONOPT(8).EQ. 0) GO TO 146
IFIDAY. NE. SGMDI GO TO 146
WSG $=$ WSG2
SGRT $=$ SGRT2
GO TO 145
151 MONTH $=1$
MDAY $=273$
AMRPM $=0.0$
AMPREC $=0.0$
MAINO272
MA INO 273
MAINO274
MAINO275
MA INO 276
MAINO277
MAINO278
MA INO279
MAINO280
MAINO281

```
            AMBF=0.0
            AMSE =0.0 MAINO283
            AMSTF = 0.0
            AMRTF}=0.
            WRITE(6,3) (TITLE(KTA); KTA = 1,20)
            3 FORMAT (1HI, 10X, 20A4)
            WRITE{6,4} IYTIFLE(KTA): KTA = 1, 201,YR1,YR2
            4 FORMAT (1HO,20A4,2X,13HWATER YEAR 19,12,1H-,I2)
            WRITE(6,5)
            5.FORMAT(8H OCTOBER)
    C BEGIN DAY LOOP
    152 TOSF=0.0
        PET: EPCM(NONTH)*DPET(OAY)
        PETU= PET
        TFMAX = 0.0
    C EVAPOTRANSPIRATION ADJUSTMENTS
            IFICONOPT(7) .NE. I) GO:TO 153
            IF(DMXT(DAY)-4.0*ELDIF.LT.40.0)PET=0.0
            IFISPTW.GT. SPTWCCI PET= FFOR*PET
C CALCULATION OF SNOW EVAPORATIGN
    IF(DMNT(DAY) .GT. 32.0.OR. SPTW .LE. DPSE(DAY))GOTO 153
    SE = DPSE(DAY)
    AMSNE = AMSNE + SE
    SPTW = SPTW - SE
    IFISFMD GT. O.O1 SDEPTH = SDEPTH - SE/SFMB
    MAINO284
    MAINO285
    MAINO286
    MA1NO287
    MAINO288
    MAINO289
    MAINO290
    MAINO291
    MAINO292
    MAINO293
    MAINO294
    MAINO295
    MAINO296
    MA INO297
    MAINO298
    MA INO299
    MAINOSOO
    MA1NO301
    MAINO302
    MAINO303
    MAINO3O4
    MAIN0305
    MAINO306
    153 DO 202 HDUR = 1,24 MAINO3O?
    IF(INSGRD.EQ. O) .AND. (DRHPIDAY,HOUR) .NE. O.OI .ANO. (DFT .FG.MAINOZO8
    1 PETUI AND. (CONOPT(3).EQ. 1))PET = O.5*PET MAINOZOQ
    154 IF(HDUR EQ. SGRT + . 1) RGPM = DRGPM(DAY)
        IF(HOUR .EQ. 9) HSE = (FWTR*PET)/12.0
        IF(HOUR.EQ.21).HSE = 0.0
        PRH = RGPM*DRHP (DAY,HOUR)
        AMPREC = AMPREC + PRH
C ENTER SNOWMELT SUBROUTINE
    IFYCONOPT\T) EQ. 1) CALL SNOMELIBODFSM,SPTWCG,SPM,ELDIF,OAY,
    1 SPBFLW, XDNFS,FFGR,FFSI,MRNSM,DSMGH,SDEPTH,STMD, PXCSA,HOUR,
```

MAlNO282
MAINO283
MAINO284

MAINO286
MAINO287
MAINO28.8
MAINO289
MAINO290
MAINO291
AINO292
MAINO293
INO 294
MA INO295
MA1NO297
MAINO298
MAINO299
MAINO300
MA1NO301.
MAINO302
MAINO303
MAINO304

MAINO30?

MAINO309
MAINO310
MAINO311
MAINO 312
MAINO 313
MAINO 314
MAINO315
MAINO316
MA1NO317

```
            2 SAX,SOFRF,OFRFIS,SOFRFI,AMFSIL,PRH,SPTW,TANSM,SPLW,SFMD,OFRF, MAINOS18
            3 WT4AM,WT4PM,ASM,ASMRG,SASFX,SARAX,OMXT,OMNT,RICY,FIRRI: MAINO319
    155 AMRPM = AMRPM * PRH MAINO32O
    156}\cdotTOFR=0.
            ARHF=0.0
C 15 MINUTE ACCOUNTING AND ROUTING LOOP
            DO 187 PRD = 1,4
            PEBI=0.0
            PPI=0.0
            OFR = 0.0
            OFRIS = 0.0
            WI=0.0
            WEIFS = 0.0
            PMEUZS = 0.0
            PMELZS = 0.0
            PMEIFS =0.0
            PMEOFS =0.0
            PEP = 0.25*PRH
            IF(CONOPT(2) EQ. 1) CALL PREPRDIRGPM,DRHP,DAY,HOUR,OPY,PRD,PEP,
            1. PRH)
            IF(PEP .GT. 0.0IGO TO 157
            IFIOFUS GT. 0.0) GO:TO 159
            IF(IFS GT. 0.0) GO TO 170
            IFINRTRI.GT. O) GOTO 172
            TRHF = 0.0
            IF(RHFO.GT. 0.0) GO TO. 181
            GO TO 184
C. RAINFALL UPPER ZONE INTERACTION
    157 IF(PEP GE. VINTCR) GO.TO 158
        UZS = UZS + PEP*TPLR
        VINTCR = VINTCR - PEP
        PPI = 0.0
        PEBI =0.0
        PMEUZS = PEP
        IF(OFUS GT. 0.0) GO TO. 159
        GO TO 170
        MAINO32I
        MAINO322
        MA1NO323
        MAINO324
    MAINO325
    MAINO326
    MAINO327
    MAINO328
    MAINO329
    MAINO330
    MAINO331
    MAINO332
    MA1NO333
    MAINO334
    MAINO3345
    MAINO336
    MAINOS37
    MAINO}33
    MAINO339
    MAINO3.40
    MAINO341
    MAINO342
    MAINO343
    MAINO}34
    MAINO345
    MAINO346
    MAINO347
    MAINO348
    MAINO349
    MAINO350
    MAINO351
    MAINO352
    MAINO353
```

```
    158 PPI = PEP - VINTCR
        UZS = UZS + VINTCR*TPLR
        VINTCR =0.0
        LZSR= LZS/LLCC
        UZC = SUZC*AEX90 + BUZC*EXP(-2.7*LZSR)
        IF(UZC .LT. 0.25) UZC =0.25
        UZRX = 2.0*ABSSUZS/UZC - 1.01+1.0
        FMR = (1.0/(1.0 + UZRX))**UZRX
        IFIUZS GGT. UZCI FMR = 1.0-FMR
        PEBI = PPI*FMR
        PMEBZS = PEP - PEBI
        UZS = UZS + PPI - PEBI
    C LOWER ZONE ANO GROUNDWATER INFILTRATION
    159 L2SR= LZS/LZC
        EID = 4.0*LISR
        IFILZSR .LE. 1.0) GO TO 160
    EID=4.0+2.0*(L.2SR - 1.0)
    IFILZSR .LE. 2.0) GO TO 160
    EID = 6.0
160 PEBI = PEBI + OFUS
    CMIR = 0.25*SIAM*BMIR/(2.0**EID)
    CIVM = BIVF*2.0**LISSR
    IF(CIVM.lT: 1.0)CIVM = 1.0
    PEAI = PEBI*PEBI/(2.0*CMIR*CIVM)
    WI = PEBI*PEBI/(2.0*CMIR)
    IF(PEBI GE. CMIRI WI = PEBI - 0.5*CMIR
    IF(PEBI .GE. CMIR*CIVM) PEAI = PEBI - 0.5*CMIR*CIVM
    WEIFS = WI - PEAI
    IF(PEBI -LE. OFUS) GO TO 161
    PMELZS = (PEBI - WI}*(FPEBI - OFUS)/PEBI)
    PMEIFS = WEIFS*((PEBI - OFUS)/PEBI)
    PMEOFS = PEAI*((PEBI - OFUS)/PEBI)
    161 CONTINUE
    IF(IPEAI - OFUS) .GT. 0.01 GO TO 162
    EQD = (OFUS + PEAI\/2.0
    GO TO 163
```

MAINO354
MAINO355
MAINO356
MAINO357
MAINO358
MAINO359
MA INO 360
MAINO361
MAINO 362
MAINO363
MAINO364
MAINO365
MAINO366
MAINO367
MAINO368
MAINO369
MA INO370
MAINO371
MAINO372
MAINO373
MAINO374
MAINO3.75
MA INO 376
MA [NO377
MAINO378
MA INO379
MA INO 380
MAINO381
MAINO 382
MA INO383
MAINO384
MA INO385
MAINO386
MAINO387
MAINO388
MA1NO389

```
    l62\mp@code{EQD=EQOF*((PEAI-OFUS)**O.6)}
    l62\mp@code{EQD=EQOF*((PEAI - OFUS)**O.6)}
    l62\mp@code{EQD=EQOF*((PEAI - OFUS)**O.6)}
```



```
    l62\mp@code{EQD=EQOF*((PEAI - OFUS)**O.6)}
    AMIF=AMIF + SPIF MAINO425
```



```
    l62\mp@code{EQD=EQOF*((PEAI - OFUS)**O.6)}
    l62\mp@code{EQD=EQOF*((PEAI - OFUS)**O.6)}
```



```
C
```

```
            IFS = IFS - SPIF
            IFIIFS.GE. 0.0001) GO TO 171
            LZS = LZS + IFS
            IFS = 0.0
        171 UHFAT1): = FPER*OFR + PPI*FWTR + FIMP*OFRIS + SPIF
        SPDR = UHFAM11
    C ROUTING
172 IF(CONOPT(12).NE. 1) GOTO 173
        URHF = URHF + 0.25*UHFA111
        IFIPRD.NE. 4)GO TO 181
        UHFA(1):= URHF
    173. TRHF = 0.0
        KTRI = NCTRI
        IF(CONOPT(13) EQ. 1) KTRI = NCSTRI
    17.4 URHF:= UHFA(KTRI)
        IFIURHF LEE. 0.O1 GOTO 176
    175 TRHF = TRHF + URHF*CTRI(KTRI)
        IF(CONOPT(13), EQ. 1 .AND. LSHFT. AND. KTRF.GE. 2) TRHF = TRHFF + MAINO443
        l URHF*SATRI(KTRI - I)
        UHFAIKTRI + 1) = URHF
        GO TO:177
    176 UHFA(KTRI+ 1) = 0.0
    177 KTRI = KTRI - 1
    IFIKTRI GE. II GO TO 174
    178 IFIURHF ILE. 0.01 GO TO 179
    NRTRI = NCTRI
    IF(CONOPT(13)}\cdot\mathrm{ EQ. 1) NRTRI = MXTRI
179 NRTRI = NRTRI -1
    UHFAl11 =0.0
    IF(CONOPT(13) .NE. 1) GO TO 180
    NNSTRI = NCSTRI + 1
    UHFAENNSTRII:=0.0
    180 URHF:= 0.0
    181 IF(SRX .LE. CSRX) SRX = CSRX
    RHF1 = TRHF - SRX*(TRHF - RHFO)
    RHFO = RHF1
MAINO426 MAINO427
MAINO 428
MAINO429
MAINO430
MAINO431
c ROUTI
172 IF (CONOPT(12). NE. 1) GOTO 173
MAINO432
. 25*UHFA!1
MAINO433
MAINO 434
MAINO435
MA INO 436
MAINO437
MAINO438
MAINO439
MAIN0440
MAINO441
MAINO442
MA INO443
MAINO444
MAINO 445
MAINO446
MA INO 447
MAIN0448
MA INO449
MAINO450
MAINO451
MAINO452
MA INO 453
MAIN0454
MAINO 455
MAIN0456
MAINO457
181 IF(SRX .LE. CSRX) SRX = CSRX
MA INO 458
MAIN0459
MA INO 460
MAINO461
```

```
        IF(RHFO.LT. RHFMC1 RHFO = 0.0 MAINO462
        TFCFS = (4.0*RHFI + CBF - HSE)*WCFS MAINO463
        IFICONOPTH13) .NE.11 GOTO 182 MAINO464
        IF(CONOPTT12) EEQ: 1 AND. PRD .NE. 4) GO TO 182: MAIN0465
        CALL RTVARY (CTRI,SATRI,BTRI,CHCAP,NBTRI,MXTRI,NCSTRI,TEXQPV,LSHFT,MAINO466
        1:TFCFSI MAINO46?
        DATE =MODIDAY,MDAY): MAINO468
        DATE = MODIDAY,MDAY): MAINO468
        IF(LSHFT) WRITE{6,6) DATE,HOUR,PRD,NCSTRI
    MAINO469
    6 FORMATI 2X,I2, 2X,I2, 2X,I2, 2X,2OHHISTGGRAM CHANGES TD, 1X, 12, LX, MAINO47O
    I BHELEMENTSI
182 CONTINUE
    MAIN0471
    MAINO472
        IF(TFCFS.LE. 0.5*CHCAPI SRX = CSRX MAINO473
        IFITTFGFS .GT. 0.5*CHCAP).AND. {TFCFS .LT. 2.0*CHCAPI) SRX = CSRXMAINO474
        1 +(FSRX - CSRX)*(ITFCFS - 0.5#CHCAP)/(1.5#CHCAP)I**3 MAIN0475
        IF(TFCFS .GT: 2.0*CHCAPI SRX = FSRX MAINO476
        IF(TFGFS .LE. TFMAX) GO TO. 183 MAINO477
        PRDF = PRD
        TDFP24= HOUR
        IFIPRD 1E 3I TDFP24 ITDFP24 - 1.01 + 0.15*PRDF MAINOC4OO
        IF(PRD .LE. 3) TDFP24 = (TDFP24 - 1.0): 0.15*PRDF: MAINO480
        TFMAX = TFCFS
    183 ARHF = ARHF + RHF1
C STORM OUTPUT REQUESTED BY CONOPT(1)
184 IF(CONOPTII) .NE. 1) GO TO 186
    IF(DAY .NE. CDSDR) GO TO 186
    IF(HOUR.EQ. 1.AND. PRD.EQ. 1) WRITE{6,7)
    IF.(HOUR:EQ: 1 AND.PRD .EQ. II WRITEIG,7) MAINNO48G
    7 FORMAT(1H//,21X,19HRAINFALL DEPOSITION, 12X,1GHMOISTURE STORAGE, MAINO487
    1.14X,17HSTREAMFLOW ORIGIN,6X,14HSTREAM OUTFLOW/2X,116HDY HR PD RAMAINO488
    ZIN EUZS ELZS EIFS EOFS UZS LZS IFS OFS SMAINO489
    3POF SPIF SPBF: SPTF INCHES CFS) MAINO490
        DATE = MOD(DAY,MDAY)
        OFS = OFUS*FPER + DFUSIS*FIMP
        SPOF = OFR*FPER + OFRIS*FIMP + PPI*FWTR
        S*FIMP + PPI*FWTR
        SPBF=0.25$(CBF-HSE) MAINO494
        SPTF=SPDR + SPBF MAINO495
        SPDR=0.0
        IF(RHFO .LE. O.O) TFCFS = (CBF- HSE)%WCFS MAINO497
```

```
            RSPTF = 0.25*TFCFS/WCFS
            WRITE(6,8) DATE,HOUR,PRD,PEP,PMEUZS,PMELZS,PMEIFS,PMEOFS,UZS,LIS
            1,IFS,OFS,SPOF,SPIF,SPBF,SPTF,RSPTF,TFCFS
        8. FORMAT (2X,12,1X,12,1X,11,5(1X,F6.4),2X,4(F7.4),2X,5(1X,F6.4),1X,
            1: F7.1)
            IFIHOUR.EQ. 24.AND. PRD .EQ. 4) GO TO 185
            GO TO 186
        185 NDSDP = NOSDP +1
            IFINOSDR .EQ. NDSDPI GO TO 186
            CALL :DAYNXT(COSDR,DPY)
    186 CONTINUE
        IF(VINTCR .LT. O.25*VINTMRI VINTCR = VINTCR + DPET(DAYI/96.0
    187 CONTINUE
    C ENO OF 15 MINUTE LOOP
            IF(CONOPT(5).NE. I) GOTO 197
    c. HOURLY OVERLAND FLOW AND RAINFALE SORTING
            IFITOFR .LE. 0.01 GO TO 193
            KT20=20
    188 IFIKT20 .LT. 1) GO TO 1.92
        IF(TOFR .GT. T2OOFHIKT2O)X GO TO 189
        GO TO 190
    189 T200FH(KT20+1)=T200FH(KT20)
    GO TO 191
    190 T2ODFH(KT20+1)= TOFR
    GO TO 193
    191 KT20 = KT20-1
    GO.TO 188
    192 T200FH(1) = TOFR
    193. IFPPRH .LE. 0.01 GO TO 197
    KT20=20
    194 IFIKT20 .LT. 1) GO TO 196
    IF{PRH .GT. T2OPRH(KT20)) GO TO 195
    T2OPRH(KT2O+1)= PRH
    GO TO-197
    195 T2OPRH(KT20+1):= T2OPRH(KT20)
    KT20 = KT20-1
```

MAIN0498
MAIN0499 MAIN0500 MAINO501 MAIN0502 MAINO503 MAINO504 MA INO 505 MAINO506 MAINO507 MAINO5O8 MAINO509 MAINOSTO MAINOSII MAINO 512 MAINO513 MAINO514 MAINO515 MAINO516 MAINO517. MAINO518 MAINO519 MAINO520 MALNO521 MAINO522 MAINO523 MAINO524 MAINO525 MAINO 526 MAINOS27 MAINO528 MAINO529 MAINO530 MA INO 531
MAINO532 MAINO533

```
        GO TO 194
    196.T2OPRH(1)=PRH MAIN0534
    C: ADDING GROUNDWATER FLOW
    197.CBF:=GWS*BFRL*(1.0 + BFNRL*BFNX)
        GWS = GWS - CBF
        AMBF=AMBF +CBF
        THGR=ARHF}+CB
        IF(HSE,GGT. THGR) HSE F THGR
        AMSE = AMSE + HSE
        IHSF(HOUR):= {THGR - HSEI*WCFS
        TDSF=TDSF + THSF(HOUR)
    C DRAINING OF UPPER ZONE STORAGE
        UZINFX = (UZS/UZC) - (LZS/LZC)
        IFIUZINFX .LE. 0.O)GOTO-198
        LZSR=LZS/LZC
        UZINLZ = 0.003*BMIR*UZC*UZINFX**3.0
        IFPUZINLZ.GT.UZS! UZINLZ = UZS
        UZS = UZS - UZINLZ
        LZRX = 1.5*ABS(LZSR - 1.0) + 1.0
        FMR = (1.0/(1.0 * LZRX)]**LZRX
        IF(LZS .LT. LZC) FMR = 1.0-FMR*LZSR
        PGW = (1.0-FMR)*UZINLZ*(1.0 SUBWF)*FPER
        PLZS = FMR*UZINLZ
        LZS = LZS +PLZS
        GWS = GWS +PGW
        BFNX = BFNX t PGW
    C 4 PM ADJUSTMENTS OF VARIOUS VALUES
    198 IF(HOUR *NE. 16) GO TO 202
        AEX90=0.9*(AEX90 + PET)
        AEX96 = 0.96*{AEX96 *PET}
C INFILTRATION CORRECTION
        SIAM = (AEX96/AETX)**SIAC
        IFISIAM.LT.0.33) SIAM=0.33
        BFNX=0.97*BFNX
        IFIPET .EQ. 0.01 GO T0 202
C EVAP-TRANS LOSS FROM GROUNDWATER
```

MAINO534
MAINO535
MAINO536
MAINO537
MAINO538
MAINO539
MAINO540
MAINO541
MAINO542
MAIN0.543
MA INO 544
MAINO545
MAIN0546
MAINO547
MA INO548
MAINO549
MAINO550
MAINO551
MA1NO552
MAINO553
MAINO554
MAINO555
MAINO 556
MAINO557
MAINO558
MAINO559
MAINO560
MAINO561
MAINO562
MAINO563
MAINO564
MAINO565
MAINO566
MA1NO567
MAINO568
C. EVAP-TRANS LOSS FROM GROUNDWATER

```
        GWET = GWS*GWETF*PET*FPER MATNOS70
        GWS = GWS - GWET
        BFNX = BFNX - GNET
        IF!BFNX LT. 0.01 BFNX = 0.0
        AMPET = AMPET + PET
        IF(PET GE. UZS)GO:TO\199
        UZS = UZS - PET
        AMNET:= AMNET + PET
        GO TO 202
    199 PET = PET - UZS
    AMNET = AMNET + UZS
    UZS = 0.0
    LZSR = LZS/LZC
    IF(PET:GE. ETLF*LZSR).GO TO 200
    SET = PET*(1.0-PET/(2.0*ETLF*LZSR.)
    G0 T0 201
    200 SET:= 0.5*ETLF*LZSR
    201 LZS = LZS - SET
    AMNET = AMNET + SET
    202 CONTINUE
C END DF HOUR LOOP
            DSSF(DAY) = TDSF/24.0
    IF(CONOPT(11).EQ. 1) DSSF(DAY) = DSSF(DAY) + DDIW(DAY)
    203 AMRTF = AMRTF + DRSF(DAY)
    AMSTF = AMSTF + DSSF(DAY)
    IF(CONOPT(6).EQ. [1) EDLZS(DAY) = LZS
C STORE ERRORS AND FLOW DURATION
    IF(CONOPT(4).NE. 1) GO TO 204
    ERR = DSSF(DAY) - DRSF(DAY)
    IF(DRSF(DAY).LT. 1.0) KRFMI = 1.0
    IF(DRSF(DAY) OGT. 1.0) KRFMI= 2.0*ALOG(DRSF(DAY)) +2.0
    CRFMI (KRFMI) = CRFMI(KRFMI) + 1:0
    SERR(KRFMI) = SERR(KRFMI) + ERR
    SERA(KRFMI) = SERA(KRFMI) + ABS(ERR)
    SQER(KRFMI) = SQER(KRFMI) + ERR&ERR
    SESF(KRFMI) = 0.0
```

MAINO570 MAINO571 MAINO572 MA INO573 MAINO 574
MAINO575 MAIN0576 MAINO577 MAINO578 MAINO579 MAINO580 MAINO581 MAINO582 MAINO583 MAINO584 MA INO 585 MAINO586 MAINO587 MAINO588 MAIN0589 MAINO590 MAINO591 MAINO592 MAINO593 MAIN0594 MAIN0595 MA INO596 MAIN0597 MAINOS98 MAIN0599 MAINO600 MA INO601 MAINO602 MA IN0603 MAIN0604 MAIN0605

```
        IF(CRFMIIKRFMI).GT. 1.0) SESF(KRFMIF=SQRT(ABSIISQERIKRFMI) - MAINOGO6
        1. SERR(KRFMI)**2/CRFMI(KRFMI)I/(CRFMIIKRFMI)-1.0)N1) MAINOSOT
    204 IF(DAY EQ. 366) MDAY = 337 MAINO6OB
        DATE = MOD(DAY,MDAY)
        IFITFMAX .LE. RMPFI GO TO 206
        WRITE(6,9) DATE, IHSF(HOUR), HOUR=1,12)
    9 FORMATU1H/,1X/, 1X,14,2X,2HAM, 1X,6F8.1,3X,6F8.11
        WRITE (6;10) (THSF(HOUR),HOUR=13,24); DSSF(DAY)
    10.FORMAT(IHJ;6X,2HPM,1X,6F8.1;3X,7F8,1)
        IFITDFP24 LT.12.01 GO TO 205
        TDFP12 = TDFP24-12.0
        WRIFE(6,11) TFMAX, TDFP12
    11 FORMAT I IH/. 10X, 8HMAXIMUM=,F8.1; 2X,6HC.F.S.,5X,4HTIME, 3X,F5.2,2X,
        1.4HP.M.J
        GO:T0 206
        205 WRITE(6,12),TFMAX,TDFP 24
    12 FORMATILH/, 10X, BHMAXIMUM=,F8.1,2X,6HC,F.S.,5X,4HTIME, 3X,F5.2,2X,
        1 4HA.M.)
    206 IFICONOPTET EQ. 1 AND. SDEPTH .GT. 0.0) WRITE{6,13IDATE,
        I SDEPTH,STMD,SAX,TANSM,SPLW
    13 FORMAT ( }3X,14,2X,7HSDEPTH=,F8.2,2X,5HSTMD=,F6.2,2X,4HSAX=,F6.2,
        1. 2X,6HTANSM=,F6.2,2X,5HSPLW=,F6.2)
C MONTHLY SUMMARY STORAGE
        IF(DAY -NE. MEDWYIMONTHII GO TO 220
        TMSTF(MONTH)= AMSTF
        AMSTF = 0.0
        TMRTF{MONTH)=AMRTF
        AMRTF=0.0
        EMBFNX(MONTH):= BFNX
        TMPREC(MONTH)=AMPREC
        AMPREC = 0.0
        TMRPM(MONTH):= AMRPM
        AMRPM =0.0
        TMBF4MONTHY:= AMBF
        AMBF=0.0
        TMIF(MONTH)= AMIF
        MA INO6O9
        MAINO610
        MAINOSII
        MAINO6I1
        MAINO612
        MAINO613
        MAINO614
        MAINO615
        MAINO616
        MAINOSIT
        MAINOGIB
    MAIN0619
    MAINO620
    MAINO621
    MAINOG22
    MAINO623
    MAINO624
    MAINO625
    MAINO626
MAINO627
MAINO628
MAINO629
MAINO630
MAINO631
MAINO632
MAINO633
MAINO634
MAINO635
MAINO636
MAINO637
MAINO638
MAINO639
MAINO640
MAINO641
```

```
            AMIF=0.0. MAINOG42
            TMSE(MONTH):=AMSE. MAINO643
            AMSE = 0.0
            TMPET (MONTH)= AMPET
                                    MAIN0644
                            MAINO645
            AMPET:=0.0
            TMNET(MONTH)= AMNET
            AMNET:}=0.
            TMSNE(MONTH) = AMSNE
            AMSNE =0.0
            TMFSIL(MONTH):= AMFSIL
            AMFSILL = "0.0
            EMGWS(MONTH):= GWS
            UZC = SUZC*AEX90 + BUZC*EXP{-2.7*LZS/EZC 
            IF(UZC LT: 0.25) UZC:= 0.25
            EMUZC (MONTH)=UZC
            EMUZS(MONTH)=UZS
            EMSIAM(MONTH) = SIAM
            EMLZS(MONTH) = LZS
            EMIFSIMONTHI = IFS
                            IF(MONTH.EEQ. 5) MEDWY(5)=59
                            MDAY = MEDWY (MONTH)
                            MAINO646
                            MAIN0647
                            MAINO648
                            MAINO649
                            MAINO650
                            MAINO651
MAINO652
MA1NO653
MAINO654
MAINO655
MAINO656
MAINO657
MAINO55B
MAINO659
MAINO660
MAINO661
MAINO662
207 IFIMONTH.NE.O1 GO TO.1208,209,210,211,212,213,214,215,216,217.
    1 218,219),MONTH
208 WRITE(6,14) MAINO665
    14 FORMAT(1H/, BHNDVEMBER)
        GO TO 219
209 WRITE{6,15)
    5 FORMAT(1H/; 8HDECEMBER)
        GO TO 219.
210 WRITE(6;16)
    16 FORMAT(1H/,7HJANUARY)
        GO TO 219
211 WRITE(6,17)
17 FDRMAT(1H/,8HFEBRUARY)
    GO TO 219
212 WRITE(6,18)
MAINO663
MAINO664
MANO6G5
MAINO666
MAINO6S7.
MAINO6S8
MAINO669
MAIN0670
MAINO671
MA INO672
MAIN0673
MAIN0674
MAIN0675
MAIN0675
MAINO676
MAIN0677
```

```
        18 FORMAT (LH/ SHMARCH) MAINO6.78
        GO TO 219
    213 WRITE(6;19)
    19. FORMAT (1H/;5HAPRIL)
        GO TO 219
    214 WRITE16,20)
    20 FORMAT (1H/; 3HMAY)
    GO TO 219
    215 WRITE(6;21)
    21 FORMAT(1H/,4HJUNE)
    GO. TO'219
    2160 WRITE(6,22)
    22 FORMAT(1H/ 4HJULY)
    GO: TO 219
    217 WRIFE{6,23)
    23 FORMAT (1H/; 6HAUGUST)
        GOTO 219
~
N 218 WRITE(6;24)
    219 MONTH = MONTH + 
    220 CALE DAYNXT(DAY,DPY)
        IF{DAY NE. 274) GO TO. 152
    C END OF DAY LOOP
    221 CONTINUE
    222 WRITE(6,25) (TITLE(KTA); KTA=1,20,1)
        25 FORMAT(1H1;10X,20A4)
            WRITE(6;26) (YTITLE(KTA),KTA=1,15,1),YR1,YR2
    26 FORMAT(1H/,15A4,3X,14HWATER YEAR 19,I2,1H-,I2,7X,
        1. 29H'KENTUCKY WATERSHED MODEL )
C: ANNUAL SUMMARY
SATFV =0.0
RATFV:=0:0
APREC = 0.0
ABFV=0.0
ARPM=0.0
ASEV = 0.0
MAIN0679
MAIN0680
MAINO681
MA IN0683
MAIN0684
MAINO685
MA IN0686
MAINO687
MAIN0688
MAIN0689
MAINO690
MAINO691
MAINO692
MAINO693
MAINO694
MATNO695
MAINO695
MAINO696
MAIN0697
MAIN0697
MAIN0699
MAINO7OD
MAINOTOL
MAINOTO2
MAlN0703
MAINO704
MAINOTO5
MAINO706
MAINOTO7
MAINOTO8
MAINOTO9
MAINOT1O
MAINOT1L
MAINOZ12
MAINOTI3
```

```
        ANET = 0.0 MAINOT14
        APET=0.0. MAINOT15
        AIFV =0.0
        ASE = 0.0
        AFSIL: = 0.0
        OO:223 MONTH = 1,12
        SATFV = SATFV + TMSTF(MONTH!
        RATFV = RATFV + TMRTF(MONTH)
        APREC = APREC + TMPREC(MONTH)
        ABFV =ABFV + TMBF(MONTH)
        ARPM =ARPM + TMRPM(MONTH)
        ASEV = ASEV + TMSE(MONTH)
        ANET = ANET + TMNET(MONTH)
        APET = APET + TMPET(MONTH)
        AIFV = AIFV + TMIFIMONTH:
        ASE = ASE + TMSNE (MONTH)
223 AFSIL:= AFSIL + TMFSIL(MONTH)
IF(CONOPT(14).NE. I) GO TO 224
WRITE(6,27)
    27 FORMAT (1H///44X,2OHRECORDED: FLOWS;
        CALL DAYOUT (DRSF,MEDWY,DPYI
        WRITE(6,28)
    28 FORMAT:IH///44X,23HSYNTHESIZED FLOWS)
224. CALL DAY DUT&DSSF, MEDWY, DPY)
    FORMAT (1X, 9HSYNTHETIC, 3X,12F8.1, 2X,F10.1, 2X,3HSFD,
        DD. 225 MONTH = 1,12
225 TMSTFI(MONTH) = (TMSTF(MONTH)|/VWIN
        SATFVI= SATFV/VWIN
        WRITE(6,30: (TMSTFIIKWD), KWD=1,121,SATFVI
    30 FORMAT (1X,5HTOTAL,8X,12F8. 3, 4X,F7.3,2X,6HINCHES)
        DO 22.6 MONTH = 1,12
        TMOF(MONTH) = TMSTFI(MONTH) - TMIF(MONTH) - TMBF(MONTH) +
    l TMSE(MONTH)
226 IF(TMOF(MONTH) - LT. 0.0) TMOF(MONTH) = 0.0
    AOFV = SATFVI - AIFV - ABFV + ASEV
MAINO715
MAINOT16
MAINOTI?
MA INOT18
MAINO719
MAINOT20
MAINOT21
MAINOT22
MAINOT23
MAINOT24
MAIN0725
MAINOT26
MAINOT27
MAINO728
MAIN0729
MA INO730
MAINOT31
MAINOT32
MAINOT33
MAINO734
MAINO735
MAINO736
MAINOT37
MAINOT38
MAINO739
MAINO74O
MAINOT41
MAINOT42
MAINOT43
MAIND744
MAINOT45
MAINO745
MAINO747
MAINO748
MAINOT49
```

 IF (AOFV: LT: 0.0\()\) AOFV \(=0.0\) MAINO750
 WRITE \((6,31)\) (TMOF(KWD), KWD=1,121, AOFV
 31 FORMAT \(1 X, 8\) HOVERLAND, \(5 X, 12 F 8.3,4 X, F 7,3,2 X, 6 H I N C H E S\))
 WRITE \((6,32)\) (TMIF (KWD) ; KWD=1,12); AIFV
 32 FORMATIIX,9HINTERFLOW, \(4 X, 12 F 8.3,4 X, F 7.3,2 X, 6 H I N C H E S)\)
 WRITE \((6 ; 33)\) (TMBF (KWD), KWD=1,12), ABFV
 33 FORMAT (\(1 X ; 4\) HBASE, \(9 X, 12 F 8,3 ; 4 X ; F 7,3,2 X, 6 H I N C H E S)\)
 WRITE 6,34) (TMSE(KWD), KWD=1,12), ASEV
 34 FORMAT (1X,9HSTRM EVAP; \(4 X, 12 F 8: 3 ; 4 X, F 7.3,2 X, 6 H I N C H E S\))
 IF(CONOPT(9).EQ. O) GOTO 227
 WRITE(6,35) ITMRTF\{KWD), KWD=1,12), RATFV
 35 FORMAT(1X,8HRECORDED, $4 \times, 12 F 8.1,2 X, F 10.1,2 X, 3 H S F D)$
RATFVI = RATFV/VHIN
WRITE $(6,36)$ RATFVI
36 FORMAT(II $2 X, F 9.2,2 X, 6 H I N C H E S)$
227 WRITE (6,37) (TMPREC(KWD), $K W D=1,12)$, APREC
37 FORMAT $1 X, 6 H P R E C I P, 7 X, 12 F 8.2,3 X, F 8.2,2 X, 6 H I N C H E S)$
IF (CONOPT(7).EQ.1) WRITE 6,38) (TMRPM(KWD); KHD=1, 12), ARPM
38 FORMAT (IX, 9 HRAIN + MELT, $4 X, 12 F 8.2,3 X, F 8.2,2 X, 6 H I N C H E S)$
IF (CONOPT(7) EQ.1) WRITE 6,39) (TMSNE (KWD), KWD=1,12), ASE
39 FORMAT(1X,11HSURSNOWEVAP, $3 X, 12 F 8,3,3 X, F 7.3,2 X, 6 H I N C H E S)$
IF(CONOPT(7) EQ.1) WRITE(6,40) (TMFSIL(KWD), KWD=1,12);AFSIL
40 FORMAT (1X, 11HINTSNOWLOSS, $3 X, 12 F 8: 3,3 X, F 7.3,2 X, 6 H I N C H E S)$
WRITE(6,41) (TMNETIKWD); KWD=1,12), ANET
41 FORMAT (1X; 12 HEVP/TRAN-NET, $2 X, 12 F 8: 3,3 X, F 7.3,2 X, 6 H I N C H E S$)
WRIFE(6;42) (TMPET (KWO): KWD=1, 121,APET
42 FORMAT $(3 X ; 10 H-P O T E N T I A L, 2 X, 12 F 8,3,3 X, F 7.3,2 X, 6 H I N C H E S)$
WRITE (6,43): (EMUZS (KWD) ; KWD=1,12)
43 FORMAT ($1 \times, 12 H S T Q R A G E S-U Z S ; 2 X, 12 F 8: 3,12 X, G H I N C H E S I$
WRITE 6,44$):(E M L Z S(K W O) ; K W O=1,12)$
44 FORMAT (10X, 3HLZS; $2 X, 12 F 8.3,12 X, 6 H I N C H E S)$
WRITE 6,45) (EMIFS (KWD), $K W D=1,12$)
45 FORMAT ($10 \mathrm{X}, 3$ HIFS, $2 \mathrm{X}, 12 \mathrm{FB}, 3,12 \mathrm{X}, 6 \mathrm{HINCHES}$)
WRITE $6 ; 46$) (EMGWS (KWDI, KWD $=1,12)$
46 FORMAT ($10 X, 3$ HGWS, $2 X, 12 F 8.3,12 X, 6 H$ INCHES)
WRITE\{6,47), (EMUZC(KWD\}; KWD=1,12)

MAINO750
MAINO751
MAINO752
MAINOT53
MAINOT54
MAINOT55
MA INO 756
MAINO 757
MAINO758
MAINO 759
MAIN0760
MAINOT61
MAINO 762
MAINO763
MAINO764
MA INO 765
MAINO766
MAINOT67
MA1N0768
MAINO769 MAINO770 MAINOT71 MAINO772 MAINO773 MAINOT74 MAINO775 MAINOT76 MA INOT77 MAINOT78 MAINO77.9 MAINO780 MAINO781 MAINO782 MAINOT83 MAINO784 MAINO785
47. FORMAT (1X,12HINDICES- UZG, $2 \mathrm{X}, 12 \mathrm{~F} 8.3$) WRITE(6;48) (EMBFNX (KWD), KWD=1,12) 8 FORMAT ($9 \mathrm{X}, 4 \mathrm{HBFNX}, 2 \mathrm{X}, 12 \mathrm{~F} 8.3$) WRITE 16,49) (EMSIAM(KWD), KWD $=1,121$

MAINOT86 MAIN0787
MAINOT88
MAINOT89
MAINO790
MAIN0791
MA IN0792
MAINOT93
MAINOT94
MAIN0795
MAIN0796
MAINO797
MAINO798
MAINOT99
MAINO800
MAINO801
MAINO802
MA INO8O3
MAINO8O4
MAINO805
MAINO806
MAINO807
MA IN0808
MAINO809
MAIN0810
MAINOB11
MAINOB12
MAINOB13
MAINOB14
MAINOS15
MAINO816
MAINOB17
MAINOS18
MAIN0819
MAINO8 20
MAIN0821

```
            SERAV = SERAIKRFMII/CCRFMI
            SERRV = SERR(KRFMII/CCRFMI
            IFICCRFMI:.EQ. 1) WRITE (6,54) ETIBFF,CGRFMI,SERRV,SERAV
            IFICCRFMI .NE. 1) WRITE(6,54) ETIBF;CCRFMI,SERRV,SERAV,
1SESF(KRFMI)
229 ACRFMI = ACRFMI + CRFMI(KRFMI)
IF(ACRFMI-.EQ. 0.0) GO TO 230
    SSERR=SSERR: + SERR(KRFMI)
    SSERRY= SSERR/ACRFMI
    SSERA = SSERA + SERAIKRFMII
    SSERAV = SSERA/ACRFMI
    230 SSESF = SSESF + SESF{KRFMI)
    WRITE(6,55). ACRFMI,SSERRV,SSERAV,SSESF
    55 FORMAT(1H/, 22X,F9.1,F12.1,5X,F8.2,5X,F8.2)
    FDPY"= DPY
    SADF = SATFV/FDPY
    RADF = RATFV/FDPY
    RA1 = 0.0
    RA2 = 0.0
    RA3 = 0.0
    DD 231 DAY = 1,DPY
    DRAF = DRSF(DAY) - RADF
    DSAF:= DSSF(DAY)- SADF
    RAL = RAI + ORAF*DRAF
    RA2 = RA2 + DSAF*DSAF
    231 RA3 = RA3 + DRAF*DSAF
    DFCC= RA3/SQRT(RA1*RA2)
    WRITE(6;56) DFCC
    56 FORMAT(1H/,10X,31HCORRELATION COEFFICIENT (DAILY),3X,F10.4)
    232 CONTINUE
    IF(CONOPT(5)..NE. 1) GO TO 233
C OUTPUT MAXIMUM RUNOFF; PRECIPITATION AT END OF YEARS
    WRIFE(6,57)
    57 FORMAT (1H/, 10X,58HTWENTY HTGHEST CLOCKHOUR RAINFALL EVENTS IN THE MAINO855
    IWATER YEAR)
    WRITE(6,58) (T2OPRH(KT20), KT20=1,20)
MAINO856
```

MAINOB22 MA INO823 MAINO824 MAINO825 MA INO826
MAIN0827
MAINO828
MAIN0829
MAINO830
MAINOB31
MAINO832
MAINO833
MAINO834
MA INO835
MAIN0836
MAINO837
MAIN0838
MAINO839
MA INO840
MAINO841
MAINO842
MAINO843
MAINO844
MAINOB45
MAINO846
MA INO 847
MAIN0848
MAINO849
MAINO850
MAIN0851
MAINO852
MAINO853
MAINO854
MAINO855
MAINO856
MAIN0857


```
    WRITE(6,59), FORMAT IIH/,10X,7OHTWENTY HIGHEST CLOGKHOUR OVERLAND FLOW RUNOFF EVMAINOBGO
    IENTS IN THE HATER YEAR)
    MAINO861
        WRIFE(6,58) (T2OOFH(KT2Q); KT20=1.20): MAINO862
    233 CONTINUE
        IF(CONOPT(B) :EQ. 0) GO:TO 234
        WRITE(6,60)
    MAINO863
    MAINO863
    MAIN0864
        WRITE(6,60) MAINO865
    60.FORMATILHI,30X,27HDAILY: SOIL MOISTURE DUTPUT ; MAINO866
        CALL DAYOUTYEDLZS,MEDWY,OPY)
    MAINOB67
    MAINO867
    234 CONT INUE
        IF(CONOPT(10):.EQ. 1%GO TO:100
        GO TO 117
    MAINO868
    MAINO869
        END
    MAINO870
    END MAINO871
'
SUBROUTINE DAYNXTIDAY,DPY
    DYNX0001
C DETERMINES NUMBER DF NEXT DAY OF THE YEAR DYNXOOOZ
        INTEGER DAY,DPY
        DAY = DAY + 1
        IF(DAY EEQ. 366) DAY = 1
        IFIDAY EQ 60-AND DPY
    DYNX0OO6
        IF(DAY .EQ. 367) DAY = 60 DYNXOOO7
        RETURN
    DYNXO008
    END DYNXOOO9
        SUBROUTINE DAYOUT(VDCY,MEDWY,DPY) DYOTOOOL
C PRINTS TABLE OF DAILY VALUES
C PRINTS TABLE OF DAILY VALUES 
    DYOT0002
    DYOTOOO3
    INTEGER DATE.DAY,DPY
    DYOTOOO4
    100 WRITE{6,1)
    DYNX0003
    DYNXOOO4
    DYNX0005
OYOTOOOS
```

N

```
```

```
    1 FORMATY }7X,3HDAY,7X,3HOCT,5X,3HNOV,5X, 3HDEC,5X,3HJAN,5X, 3HFEB,5X, DYOTOOO6
```

```
    1 FORMATY }7X,3HDAY,7X,3HOCT,5X,3HNOV,5X, 3HDEC,5X,3HJAN,5X, 3HFEB,5X, DYOTOOO6
    L}\mathrm{ 3HMAR,5X,3HAPR,5X,3HMAY; 5X,3HJUN,5X,3HJUL, 5X,3HAUG,5X,4HSEPT,
    L}\mathrm{ 3HMAR,5X,3HAPR,5X,3HMAY; 5X,3HJUN,5X,3HJUL, 5X,3HAUG,5X,4HSEPT,
        MEDWY(3)=0
        MEDWY(3)=0
        DO 104 DATE = 1,28,1
        DO 104 DATE = 1,28,1
        IF(MOD(DATE,5).NE. 1) GO TO 102
        IF(MOD(DATE,5).NE. 1) GO TO 102
        DO 101 KMO =1,12
        DO 101 KMO =1,12
        DAY = MEDWY(KMO) & DATE
        DAY = MEDWY(KMO) & DATE
101 VDMD(KMO) = VDCY(DAY)
101 VDMD(KMO) = VDCY(DAY)
        WRITE(6,2):DATE,VDMD(12),(VDMD(KWD); KWD=1,11)
        WRITE(6,2):DATE,VDMD(12),(VDMD(KWD); KWD=1,11)
    2 FORMAT(1HO, 3X,16,3X,12F8.1)
    2 FORMAT(1HO, 3X,16,3X,12F8.1)
        GO TO 104
        GO TO 104
102 00 103 KMO = 1,12
102 00 103 KMO = 1,12
        DAY:= MEDWY(KMOI + DATE
        DAY:= MEDWY(KMOI + DATE
103 VOMD(KMO):= VDCY(DAY)
```

```
103 VOMD(KMO):= VDCY(DAY)
```

```


```

```
    3 FORMAT(1X,3X,I6;3X,12F8.11
```

```
    3 FORMAT(1X,3X,I6;3X,12F8.11
104 CONTINUE
104 CONTINUE
        IF(DPY:NE. 366) GO TO:106
        IF(DPY:NE. 366) GO TO:106
        DATE = 29
        DATE = 29
        VDCY(60)= VDCY(366)
        VDCY(60)= VDCY(366)
        DO 105 KMO = 1,12
        DO 105 KMO = 1,12
        DO 105 KMO = 1,12 
        DO 105 KMO = 1,12 
105 VDMD(KMO)= VDCY(DAY)
105 VDMD(KMO)= VDCY(DAY)
    WRITE(6,3) DATEGVDMD(12), (VDMD(KWD),KWD=1,11)
    WRITE(6,3) DATEGVDMD(12), (VDMD(KWD),KWD=1,11)
        GO TO 107
        GO TO 107
106 CONTINUE
106 CONTINUE
        WRITE(6;4) VDCY(3021, VDCY(333), VDCY(363),VDCY(29),VDCY(88),
        WRITE(6;4) VDCY(3021, VDCY(333), VDCY(363),VDCY(29),VDCY(88),
        IVDCY(119),VDCY(149),VDCY(180),VDCY(210),VDCY(241),VDCY(272)
        IVDCY(119),VDCY(149),VDCY(180),VDCY(210),VDCY(241),VDCY(272)
    4 FORMAT ( }1X,7X,2H29,3X,4F8.1.8X,7F8.1
    4 FORMAT ( }1X,7X,2H29,3X,4F8.1.8X,7F8.1
107 CONTINUE
107 CONTINUE
108 WRITE(6,5) VDCY(303), VDCY(334), VOCY(364),VDCY(30), VDCY(89),
108 WRITE(6,5) VDCY(303), VDCY(334), VOCY(364),VDCY(30), VDCY(89),
        1VDCY(120),VDCY(150),VDCY(181), VDCY(2111, VOCY(242),VDCY(273)
```

```
        1VDCY(120),VDCY(150),VDCY(181), VDCY(2111, VOCY(242),VDCY(273)
```

```


```

```
        WRIFE(6,6) VDCY(304),VDCY(365), VDCY(31);VDCY(90),VDCY(151);
```

```
        WRIFE(6,6) VDCY(304),VDCY(365), VDCY(31);VDCY(90),VDCY(151);
        IVDCY(212); VDCY(243)
        IVDCY(212); VDCY(243)
    6 FORMAT(1H/, 7X,2H31,3X,F8.1,8X,2F8.1, BX,F8.1,8X,F8.1,8X,2F8.1)
    6 FORMAT(1H/, 7X,2H31,3X,F8.1,8X,2F8.1, BX,F8.1,8X,F8.1,8X,2F8.1)
DYOT0007
DYOT0007
DYOTOOO8
DYOTOOO8
DYOT0009
DYOT0009
DYOTOO1O
DYOTOO1O
DYOTOOII
DYOTOOII
DYOTOO12
DYOTOO12
DYOT0013
DYOT0013
DYOT0014
DYOT0014
DYOT00,15
DYOT00,15
DYOT0016
DYOT0016
DYOT0017
DYOT0017
OYOT0018
OYOT0018
0yOT0019
0yOT0019
Dyoroozo
Dyoroozo
DYOTOO21
DYOTOO21
0yoroo22
0yoroo22
DYOT0023
DYOT0023
DYOT0024
DYOT0024
DYOT0025
DYOT0025
DYOT0026
DYOT0026
DYOTOO27
DYOTOO27
YOT0028
YOT0028
```

DYOT0029

```
DYOT0029
DYOTOO30
DYOTOO30
DYOTO031
DYOTO031
DYOTOO32
DYOTOO32
DYOTOO33
DYOTOO33
DYOTOO34
DYOTOO34
DYOT0035
DYOT0035
DYOTOO36
DYOTOO36
DYOT0037
DYOT0037
DYOTO038
DYOTO038
DYOTOO39
DYOTOO39
DYOT0040
DYOT0040
DYOTOO41
```

DYOTOO41

```

MEDWY(3) \(=365\)
DYOTOO42
RETURN
END
DYOTOO43
DYOTOO4.4

SUBROUTINE EVPDAY(DPET, EMAET)
C DETERMINES DATED PAN EVAPORATIGN TOTALS
DIMENSION DPET (366)
INTEGER DAY
DO 100 DAY \(=1.5\)
100 DPET(DAY) \(=0.00060\) *EMAET
DPET(: 6) \(=0.00059 * E M A E T\)
DPET( 7 ) \(=\) DPET( 6 )
DO 101 DAY \(=8,10\)
101 DPET(DAY) \(=0.00058 * E M A E T\)
DO 102 DAY \(=11,16\)
102 DPET(DAY) \(=0.00057 * E M A E T\)
DPET (17) = DPET( 81
DO 103 DAY \(=18: 20\)
103 DPET(DAY) = DPET( 6)
DO 104 DAY \(=21,32\)
104 DPET(DAY): DPET(: 1)
DPET( 33):=0.00061*EMAET
DO 105 DAY \(=34.38\)
105 DPET(DAY) \(=0.00062\) *EMAET
DPET \((39)=0.00063 * E M A E T\)
DPET ( 40 ) = DPET( 39)
DPET(41) \(=0.00064 * E M A E T\)
DPET( \(421=0.00065 * E M A E T\)
DPET \((43)=0.00066 * E M A E T\)
DO 106 DAY \(=44,50\)
106 DPET(DAY) \(=0.00067 * E M A E T\)
DO 107 DAY \(=51,55\)
1.07 DPET(DAY) \(=0.00068 * E M A E T\)

DPET( 56) \(=0.00069 * E M A E T\)

EVOYOOO1
EYDY0002
EVDY0003
EVDY0004
EVDYOOO5
EVDYO006
EVDY 0007
EVDY0008
EVDY0009
EVDYOOLO
EVDYOOII
EVDYOO12
EVOYOO13
EVDY0014
EVDYOO15
EVDYOO16
EVOYOOL7
EVDYOO.18
EVDYOO19
EVOYOO20
EVDYOO21
EVDY0022
EVDYOO23
EVDYOO24
EVDY0025
EVDY0026
EVDYOO27
EVDYOO28
EVDYO029
EVDYO030
```

DO 108 DAY = 57,61

```

EVDY0031
108 DPET(DAY) \(=0.00070 * E M A E T\) DPET ( 62) \(=0.00071 * E M A E T\) DPET( 63) \(=0.00072 * E M A E T\) DPET ( 64) = DPET(63) DPET \(651=0.00073 *\) EMAET DPET \(661=0.00074\) *EMAET DPET ( 67) \(=0.00075 * E M A E T\) DPET \((68)=0.00076 * E M A E T\) DPET ( 69) \(=0.00077 * E M A E T\) DPET (70) = DPET( 69) DPET ( \(711=0.00078 * E M A E T\) DPET( 72) \(=\) DPET(71)
DPET( 73 ) \(=0.00079\) \#EMAET
DPET (74) = DPET(73)
DPET( 75) \(=0.00080\) *EMAET
DPET (76) \(=0.00081\) EEMAET
DPET( 77) \(=0.00082 * E M A E T\)
DPET 78 ) \(=0.00084\) *EMAET
DPET 79) \(=0.00086 * E M A E T\)
DPET \(801=0.00088 * E M A E T\)
DPET( 81) \(=0.00090 * E M A E T\)
DPET \((82)=0.00092 * E M A E T\)
DPET( 83) \(=0.00094 * E M A E T\)
DPET \(841=0.00097 * E M A E T\)
DPET \((85)=0.00099 * E M A E T\)
DPET( 86) \(=0.00102 * E M A E T\)
DPET \((87):=0.00106 * E M A E T\)
DPET( 88): \(=0.00109 * E M A E T\)
DPET 89 ) \(=0.00113 * E M A E T\)
DPET( 90) \(=0.00118 * E M A E T\)
DPET \((91)=0.00122 \#\) EMAET
DPET 92 ) \(=0.00128 * E M A E T\)
DPET (93) \(=0.00132 *\) EMAET
DPET( 94) \(=0.00137 * E M A E T\)
DPET \((95)=0.00142 * E M A E T\)
EVDY0032
EVDY0033
EVDY0034
EVDY0035
EVDY0036
EvDYO037
EVDY0038
EVDY0039
EVDY0040
EvDYo041
EVDY0042
EVDY0043
EVDY0044
EVDYOO45
EVDY0046
EVDY0047
EVDY0048
EVDYOO49
EvDY0050
EVDY0051
EVDY0052
EVDY0053
EVDY0054
EVDY0055
EVDY0056
EVDY0057
EVDY0058
EVDY0059
EVDY0060
EVDY0061
EVDYO062
EVDY0063
EVDY0064
EVDY0065
evoro066

\begin{tabular}{|c|c|c|}
\hline & DPET 1132\()=0.00365 *\) EMAET & EVDYO103 \\
\hline & DPET (133) \(=0.00370 *\) EMAET & EVDY0104 \\
\hline & DPET (134) \(=0.00374 * E M A E T\) & EVDYO105 \\
\hline & DPET(135) \(=0.00378 * E M A E T\) & EVOYOIO6 \\
\hline & DPET(136) \(=0.00382 * E M A E T\) & EVDYO107 \\
\hline & DPET(137) \(=0.00387 * E M A E T\) & EVDYO108 \\
\hline & DPET (138) \(=0.00391 * E M A E T\) & evorolag \\
\hline & DPET(139) \(=0.00394 * E M A E T\) & EVDYOL10 \\
\hline & DPET(140) \(=0.00399 * E M A E T\) & Evoralil \\
\hline & DPET(141) \(=0.00402 * E M A E T\) & EvDroil2 \\
\hline & DPET (142) \(=0.00407 * E M A E T\) & EVDYO113 \\
\hline & DPET(143) \(=0.00411\) EMAET & EVDYOI14 \\
\hline & DPET(144) \(=0.00417 * E M A E T\) & EvoYolls \\
\hline & DPET(145) \(=0.00420 * E M A E T\) & EVDYO116 \\
\hline & DPET(146) \(=0.00426 * E M A E T\) & EvDYol17 \\
\hline & DPET(147) \(=0.00430 * E M A E T\) & EVDYO118 \\
\hline & DPET(148) \(=0.00436 * E M A E T\) & EVDYO119 \\
\hline & DPET (149) \(=0.00440 * E M A E T\) & EVDYO120 \\
\hline & DPET (150) \(=0.00446\) *EMAET & EVDYO121 \\
\hline & DPET(151) \(=0.00450 * E M A E T\) & EVDYO122 \\
\hline & OPET(152) \(=0.00455\) EMAET & EVDYO123 \\
\hline & DPET(153) \(=0.00460\) *EMAET & EVDYO124 \\
\hline & DPET (154) \(=0.00466\) *EMAET & Evoyol25 \\
\hline & DPET(155) \(=0.00470\) *EMAET & EVDY0126 \\
\hline & DPET(156) \(=0.00473 * E M A E T\) & EvDY0127 \\
\hline & DPET 1157\()=0.00478\) *EMAET & EvDYOI28 \\
\hline & DPET 158 ) \(=0.00482 * E M A E T\) & EVOYO129 \\
\hline & DPET(159) \(=0.00487 * E M A E T\) & EVDYO130 \\
\hline & DPET \((160)=0.00491 * E M A E T\) & EVDYO131 \\
\hline & DPET(161) \(=0.00495 * E M A E T\) & EVDYO132 \\
\hline & DPET(162) \(=0.00500 * E M A E T\) & EVDY0133 \\
\hline & DPET(163) \(=0.00504\) *EMAET & EVDYO134 \\
\hline & DPET(164) \(=0.00508 * E\) MAET & EVDYO135 \\
\hline & DPET(165) \(=0.00510 * E M A E T\) & EVDYO136 \\
\hline & DPET(166) \(=0.00512\) EMAET & EVDYO137 \\
\hline & DPET(167) \(=0.00514\) EEMAET & EVDYO138 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & DPET(168) \(=0.00515 * E M\) \\
\hline & DPET(169) \(=0.00517 *\) EMAET \\
\hline & DPET(170) \(=0.00519 * E M A E T\) \\
\hline & OPET(171) \(=0.00520 * E M A E T\) \\
\hline & DPET (172) \(=0.00521 * E M A E T\) \\
\hline & DPET(173) \(=\) DPET(172) \\
\hline & DPET(174) = DPET(172) \\
\hline & DPET 175\()=0.00522\) EEMAET \\
\hline & DPET (176) \(=0.00523\) *EMAET \\
\hline & DPET(177) \(=0.00524\) EMAET \\
\hline & DPET(178) \(=0.00525 * E M A E T\) \\
\hline & DPET 179\()=0.00527 * E M A E T\) \\
\hline & DPET(180) \(=0.00528 * E M A E T\) \\
\hline & DPET(181) = DPET(180) \\
\hline & DPET 182\()=0.00529 *\) MAET \\
\hline & DPET(183) \(=0.00530\) \#EMAET \\
\hline & DPET (184) \(=\) DPET(183) \\
\hline  & DPET(185) \(=0.00531 *\) MMAET \\
\hline & DPET(186) \(=0.00532 * E M A E T\) \\
\hline & DPET(187) \(=0.00533\) *EMAET \\
\hline & DPET (188) \(=0.00534\) *EMAET \\
\hline & DPET (189) \(=\) DPET(188) \\
\hline & DPET(190) \(=0.00535 * E M A E T\) \\
\hline & DPET(191) \(=0.00536 * E M A E T\) \\
\hline & DPET \(1921=0.00537\) \%EMAET \\
\hline & DPET(193) \(=0.00538 *\) EMAET \\
\hline & DPET(194) = OPET(193) \\
\hline & DPET(1.95) \(=0.00539 * E M A E T\) \\
\hline & DPET(196) \(=0.00540\) *EMAET \\
\hline & DPET(197) = DPET(196) \\
\hline & DPET(198) \(=0.00541\) \#EMAET \\
\hline & DPET(199) \(=0.00542\) EMAET \\
\hline & \(\operatorname{DPET}(200)=0.00543 * E M A E T\) \\
\hline & DPET(201) \(=0.00545 * E M A E T\) \\
\hline & DPET(202) \(=0.00546 * E M A E T\) \\
\hline & DPET(203) \(=0.005474\) M MA \\
\hline
\end{tabular}

EVDYO139
EVDYO140
EVDYO141
EVDYO142
EVDY0 143
EVDYO144
EVDYO145
EVDYO146
EVDYO147
EVDYO148
EVDYO149
EVDYO 150
EVDYO151
EVDY0.152
EVDYO153
EVDYO154
EVDYO155
EVDY0156
EVDYO157
EVDYO158
EVDYO159
EVDYO160
EVDY0161
EvDYO162
EVDY0163
EVDYO164
EVDY0165
EVDYol66
EVDY0167
EVDY0168
EVDY0169
EVDYO170
EVDYO171
EVDYO172
EVDYO173
EVDYO174
\begin{tabular}{|c|c|c|c|}
\hline & & DPET 204\()=0.00548 * E M A E T\) & EVDY0175 \\
\hline & & DPET(205) \(=0.00549 *\) EMAET & EVOYO176 \\
\hline & & DPET (206) \(=0.00550 * E M A E T\) & EVDYO177 \\
\hline & & DPET 207\()=0.00551 * E M A E T\) & EVDY0178 \\
\hline & & DPET \((208)=0.00552 * E M A E T\) & EVDYO179 \\
\hline & & DPET 209\()=0.00553 * E\) MAET & EVDY0180 \\
\hline & & DPET \((210)=0.00555 * E M A E T\) & EvDYo181 \\
\hline & & DPET(211) \(=0.00557 * E M A E T\) & EVDYO182 \\
\hline & & DPET(212) \(=0.00558 * E M A E T\) & Evoyol 83 \\
\hline & & DPET(213) \(=0.00560 * E M A E T\) & EVDYO184 \\
\hline & & DPET (214) = DPET(213) & EvDYol85 \\
\hline & & DPET(215) \(=0.00561 * E M A E T\) & EvOY0186 \\
\hline & & DPET \((216)=0.00562 * E M A E T\) & EVOYO187 \\
\hline & & DPET 217\()=0.00563\) *EMAET & EVDYO1 88 \\
\hline & & DPET(218) \(=0.00565\) \#EMAET & EVDYO189 \\
\hline & & DPET(219) \(=0.00567\) *EMAET & EVDYO190 \\
\hline ' & & \(\operatorname{DPET}(220)=\operatorname{DPET}(219)\) & EvDYol91 \\
\hline N & & DO 109 DAY \(=221,226\) & EVDYO192 \\
\hline \(\omega\) & 109 & DPET(DAY) \(=0.00568\) *EMAET & EvDY0193 \\
\hline , & & DO 110 DAY \(=227.229\) & EVDYO194 \\
\hline & 110 & DPET(DAY) = DPET \((2191\) & EvDY0195 \\
\hline & & DPET (230) \(=0.00566 * E M A E T\) & EVDYO196 \\
\hline & & DPET(231) \(=0.00564 *\) EMAET & EVDY0197 \\
\hline & & DPET(232) \(=\) DPET(217) & EVDYO198 \\
\hline & & DPET(233) \(=\) DPET(216) & EvDY0199 \\
\hline & & DPET(234) = DPET(213) & EVDYO200 \\
\hline & & DPET 235\()=0.00559 * E M A E T\) & EVDYO201 \\
\hline & & \(\operatorname{DPET}(236)=\operatorname{DPET}(211)\). & EvDYoz02 \\
\hline & & DPET(237) \(=\) DPET(210) & Evoyozo3 \\
\hline & & DPET(238) = DPET(209) & EVDYO204 \\
\hline & & DPET(239) \(=\operatorname{DPET}(206)\) & EVDY0205 \\
\hline & & DPET(240) = DPET(203) & EVDY0206 \\
\hline & & DPET(241) \(=\operatorname{DPET}(199)\) & EVDY0207 \\
\hline & & DPET(242) = DPET(193) & EVDY0208 \\
\hline & & \(\operatorname{DPET}(243)=\operatorname{DPET}(190)\) & EvDYO209 \\
\hline & & DPET (244) = DPET(185) & EVDY0210 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & DPET(245) \(=\operatorname{DPET}(179)\) & EVDYO211 \\
\hline & DPET(246) \(=\operatorname{DPET}(175)\) & EvDYoz12 \\
\hline & DPET(247) = DPET(169) & EVDYO213 \\
\hline & DPET 248\()=0.00511\) *EMAET & EVDYO214 \\
\hline & DPET(249) \(=\) DPET(163) & EVDYO215 \\
\hline & DPET \(2501=0.00497 *\) EMAET & EVDY0216 \\
\hline & DPET 251 ) \(=0.00490 * E M A E T\) & EVDYO217 \\
\hline & DPET(252) \(=\) DPET(158) & EVDY0218 \\
\hline & DPET 253 ) \(=0.00476\) \#EMAET & EVDYO219 \\
\hline & DPET(254) \(=0.00468 * E M A E T\) & EVDY0220 \\
\hline & DPET(255) \(=0.00461 * E M A E T\) & EvDYoz21 \\
\hline & DPET(256) \(=0.00454 * E M A E T\) & EVDYO22? \\
\hline & DPET(257) \(=\) DPET(150) & EVOYO223 \\
\hline & DPET \((258)=0.00437 * E M A E T\) & EVDYO224 \\
\hline & DPET(259) \(=0.00427 * E M A E T\) & EVDYO225 \\
\hline & DPET 260\()=0.00418 * E M A E T\) & EVDYO226 \\
\hline & DPET(261) = DPET(142) & EvDY0z2? \\
\hline N & DPET(262) \(=0.00397 *\) EMAET & EVDYD228 \\
\hline + & DPET(263) \(=\) DPET(137) & EVDY0229 \\
\hline & DPET(264) \(=0.00377 * E M A E T\) & Evoroz30 \\
\hline & DPET \((265)=0.00367\) *EMAET & EvDYo231. \\
\hline & DPET \((266)=0.00356 * E M A E T\) & Evoyoz32 \\
\hline & DPET 267\()=0.00347 *\) EMAET & EVDYO233 \\
\hline & DPET (268) \(=0.00337 * E M A E T\) & EVDY0234 \\
\hline & DPET(269) \(=0.00329 *\) EMAET & EVDYO235 \\
\hline & DPET(270) = DPET(124) & EVOYO236 \\
\hline & DPET \(2711=0.00315 *\) EMAET & Evoyo 237 \\
\hline & DPET 272\()=0.00308 * E M A E T\) & EVOY0238 \\
\hline & DPET(273) \(=0.00303 * E M A E T\) & EVDY0239 \\
\hline & DPET 274 ) \(=0.00300 * E M A E T\) & EVDY0240 \\
\hline & DPET \((275)=0.00298 * E M A E T\) & EVDYO241 \\
\hline & DPET(276) \(=0.00294 * E M A E T\) & EVOYO242 \\
\hline & DPET(277) \(=0.00290\) EMAET & EVDYO243 \\
\hline & DPET \(2781=0.00286 * E M A E T\) & EVDY0244 \\
\hline & DPET \((279)=0.00283\) *EMAET & EVDY0245 \\
\hline & \(\operatorname{DPET}(280)=0.00279 * E M A E T\) & EVDY0246 \\
\hline
\end{tabular}

```

 DPET(317)=0.00138*EMAET
 DPET(318):=0.00135*EMAET
 DPET(319) = 0.00131*EMAET
 DPET(320) = 0.00127*EMAET
 DPET(321) = 0.00124*EMAET
 DPET(322)=0.00120*EMAET
 DPET(323) = DPET(90)
 DPET(324) = 0.00116*EMAET
 DPET(325):= DPET(89)
 DPET(326) = 0.00110*EMAET
 DPET(327) = 0.00107*EMAET
 DPET(328)=0.00104*EMAET
 DPET(329) = DPET(%86)
 DPET(330) = 0.00100*EMAET
 DPET(331) = 0.00098*EMAET
 DPET(332)=0.00097*EMAET
 DPET(333) = 0.00095*EMAET
 DPET(334) = 0.00093*EMAET
 DPET(335):= DPET(81)
DPET(336) = DPET(80)
DPET(337)=0.00087*EMAET
DPET(338) = DPET(79)
DPET(339)= DPET(78)
DPET(340)= DPET(77)
DPET(341) = DPET(75)
DPET(342)= DPET(73)
DPET(343)= DPET(.71)
DPET(344) = DPET(71)
DPET(345)= DPET(69)
DPET(346)= DPET(68)
DPET(347) = DPET(66)
DPET(348)= DPET(63)
DPET(349)= DPET(62)
DPET(350)= DPET(57)
DPET(351)= DPET(57)
DPET(352)= DPET(56)

```

EVDY0283
EVOYO284
EVDY0285
EVDY0286
EVDY0287
EVDY0288
EVDYO289
EVDYO290
EVDY0291
EVDY0292
EVDY0293
EVDY0294
EVDY0295
EVDYO296
EVDYO297
EVDY0298
EVDY0299
EvDY0300
EVDY0301
EVDY0302
EVDY0303
EVDY0304
EVDY0305
EvDYo306
EVDY0307
EVDY0308
EVDYO309
EVDY0310
EVDYO311
EVDYO312
EVDYO313
EVDY0314
EVOY0315
EVDY0316
EVDYO317
EVDY0318
```

 DO.111 DAY = 353,355 EVDYO319
 111 DPET(DAY) = DPET(511
 DPET(356)= DPET(44)
 DPET(357)= DPET(44)
 DPET(358)= DPET(42)
 DPET(359):= DPET(41)
 DPET(360):= DPET(39)
 DPET(361) = DPET(34)
 DPET(362) = DPET(33)
 DO 112 DAY = 363;365
 112 DPET(DAY) = DPET\ 1)
 DPET(366) = DPET(57)
 RETURN
 END
 SUBROUTINE PREPRRD(RGPM,DRHP,DAY;HOUR,DPY,PRD,PEP,PRH)
 PREP0001
 PREPODO2
 PREPO003
 PREPO004
PREP0005
PREPOOO6
PREP0007
PREPOOO8
PREP0009
PREPOOLO
PREPOOII
PREPOO12
PREPOO13
PREPOOI4
PREP0015
PREP0016
PREP0017
PREP0018
PREP0019

```
```

 NDAY = DAY
 IFINHOUR .LE. 241 GO TO 102 PREP0020
 NHOUR = 1
 CALL:DAYNXT(NDAY,DPY)
 102 PRNH = RGPM*DRHP(NDAY,NHOUR)
IF(PRH .GT. PRLH .AND. PRH .GT. PRNH) GO TO 103
GO TO 104
103 PE4P(1) = 0.10
PE4P(2) =0.28
PE4P(3) = 0.46
PE4P(4) = 0.16
GOTO 108
104 IFIPRH. LT. PRLH .AND. PRH .LT. PRNH) GO TO 105
GO TO }10
105. PE4P{1)=0.28
PE4P(2):= 0.10
PE4P(3) =0.16
PE4P(4)=0.46
GO TO 108
106 IF(PRNH .GE. PR(H) GO TO: 107
PE4P(1):=0.46
PE4P(2) = 0.16
PE4P(3)=0.28
PE4P(4)=0.10
GO TO 108
107 PE4P(1)=0.10
PE4P(2) = 0.28
PE4P(3):=0.16
PE4P(4)=0.46
108 00:109 KPRD:=1,4
109 PE4P(KPRD) = PE4P {KPRD)*PRH
PEP = PE4P{1)
RETURN
END

```

PREP0020
PREPOO21
PREP0022
PREP0023
PREPOO24
PREPOO25
PREP0026
PREP0027
PREP0028
PREP0029
PREP0030
PREPOO31
PREP0032
PREP0033
PREP0034
PREPOO 35
PREP0036
PREP0037
PREP0038
PREP0039
PREP0040
PREPOO41
PREPO 042
PREP0043
PREP0044
PREPO045
PREP0046
PREP0047
PREP0048
PREP0049
PREPOO50
PREP0051
PREP0052
PREPOO53
```

 SUBROUTINE RTVARY(CTRI,SATRI,BTRI,CHCAP,NBTRI,MXTRI,NCTRI,EXQPV, RTVYOOOI
 1. LSHFT,TFCFS)
 RTVY0002
 DIMENSION AWSBIT(99),BTRI(99),CTRI(99),SATRI199)
 LOGIGAL: LSHFT
 DO 100 KIA = 1,MXTRI
 SATRI(KIA) =0.0
 100 AWSBIF(KIA):=0.0
LSHFT = -FALSE.
FMXTRI = MXTRI
FNBTRI = NBTRI
FNPTRI = NCTRI
TFX = TFCFS
TFMRT:= 0.1 *CHCAP
IFITFX -LT. TFMRTI TFX = TFMRT
IF(FNPTRI .EQ. FMXTRI . AND. TFX .EQ. TFMRT) RETURN
FNTRI = FNBTRI*(CHCAP/TFX)**EXQPV + 0.5
IFIFNTRI .LT. 1.0I FNTRI = 1.01
NCTRI = FNTRI
FNSTRI = NCTRI
IF(FNSTRI .NE. FNPTRI) LSHFT:=.TRUE.
IF(:NOT. LSHFT) RETURN
IFIFNPTRI .GT. 98.5) GO TO 101
FCNTRI = ABSIENSTRI - FNPTRII
IFIFCNTRI OLE. 1.1) GO TO 101
IF(FNSTRI .GT. FNPTRI) FNSTRI = FNPTRI + 1.0
IFIFNSTRI -LT: FNPTRI) FNSTRI = FNPTRI - 1.0
NCTRI = FNSTRI
101.KB1 = 0
KB2 =1
KB3 = 0
102 KB1 = KB1 +1
IFIKB1 GT: NBTRI):GO TO 105
KB4 = 0
WSBIT = BTRI(KBI)/FNSTRI.
103 KB4 = KB4 + 1

```

RTVY0002 RTVY0003 RTVY0004 RTVYOOOS RTVY0006 RTVY0007 RTVY0008 RTVY0009 RTVYOOLO RTVYooll RTVYO012 RTVYOO13 RTVYOOL 4 RTVY0015 RTVYOO16 RTVY0017 RTVY0018 RTVY0019 RTVY0020 RTVYOO21 RTVY0022 RTVY0023 RTVY0024 RTVY0025 RTVY0026 RTVY0027
101 KB1 \(=0\)
\(\mathrm{KB3}=0\)
\(102 K B 1=K B 1+1\)
IFIKBI GT: NBTRII GO TO 105
WSBIT = BTRI(KBI)/FNSTRI.
\(103 \mathrm{KB4}=\mathrm{KB4}+1\)

```

 KB3 = KB3 +1
 IFIKB3 ET. NBTRI} GO TO 104
 KB3 =.0
 KB2 =KB2 * 1
 104 GO TO 103
 105 IF(FNPTRI.GT. 98.5).GO.TO 108
 DO 107 KB6 = 1.NCTRI
 DO 106 KB7 = 1,KBG
 106 SATRI{KB6)=SATRI(KB6) + AWSBIT(KB7):CTRI(KB7)
107 CONTINUF
108 DO 109 KB5 = 1.MXTRI
109 CTRI(KB5) = AWSBIT(KB5)
RETURN
END
N
N
SUBROUTINE SNOMELIBDDFSM,SPTWCC,SPM,ELDIF,DAY,SPBFLW,XONFS,FFOR, SNOWOOOL
1 FFSI, MRNSM, DSMGH, SDEPTH, STMD, PXCSA, HOUR, SAX, SOFRF, OFRFIS, SOFRFI, SNOWOOO2
2 AMFSIL, PRH, SPTW, TANSM,SPLW, SFMD, OFRF, WT4AM,WT4PM, ASM, ASMRG, SNOWOOO3
3 SASFX,SARAX, DMXT, DMNT,RICY,FIRR) SNOWOOO4
C SNOWMELT COMPUTATION
DIMENSIGN DMNT (366), DMXT(366),FIRR(15), RICY(37)
INTEGER DAY, HOUR
SNOW0005
REAL MHSM, MRNSM
IF(CDAY .NE. 274) OR. HOUR .NE. I) GOTO 100
SPLW $=0.0$
XELR $=0.0$
SDSC $=0.0278$
FDSC $=0.0$
$F T A=0.0$
RICD $=0.0$
KRIA $=0$

```
    C: CALCULATION OF HOUREY AIR TEMPERATURE SNOWOOI8
C. DMXT CURRENT DAY, DMNT NEXT DAY SNOWOO19
        IF{HOUR .NE. 4) GO TO 101
        FDSC = 0.0
        FTA = FDSC
        WT4PM = DMXT(OAY) - 4.0*ELDIF * (XELR/4.0)*0.7*ELDIF
    101 IFIMOUR .EQ. 101 SDSC = -0.0278
        IF(HOUR .EQ. 22) SDSC = 0.0278
        IFIHOUR .NE. 161 GO TO 102
        NDAY = DAY + 1
        IF(NDAY .EQ. 366) NDAY = 1
        IF(NDAY .EQ. 60 .AND. DMXT(366) .NE 0.01 NDAY = 366
        IF(NDAY .EQ. 367) NDAY = 60
        WT4AM = DMNT(NDAY) - (XELR/4.0)*3.3*ELDIF
    102 IFIPRH.LE. 0.0 .OR. XELR .GE. 4.01 GO TO 103
        WT4AM = WT4AM - 0.825*ELDIF
        WT4PM:= WT4PM + 0.175*ELDIF
        XELR = XELR + 1.0
    103 IF(PRH.NE. O.0 .OR. XELR .LE. 0.01 GO TO 104
        WT4AM = WT4AM + 0.825*ELDIF
        WT4PM =WT4PM - 0.175*ELDIF
        XELR = XELR - 1.0
    104 TEH = WT4AM + FTA*(WT4PM - WT4AM)
        FDSC:= FDSC + SDSC
        FTA = FTA + FDSC
        IF(PRH#SPTW .EQ. 0.0) GO TO 128
        IF(HOUR.NE. 24) GO TO 105
c calculation of time aging of the snohpack
        SAX = SAX + 1.0
        IFISAX .GT. 15.01 SAX = 15.0
    105 IFITEH GT 32.01 GO TO 110
C PRECIPITATION IN FORM OF SNOW - CALCULATE INTERCEPTION DENSITY OF NEWSNOWOO49
C SNOW COMPACTION, AND SETTLING SNOW PACK AND THE EFFEGT ON ALBEDO SNOWOO5O
        SNOW COMPACTION, AND SETTLING SNOW PACK AND THE EFFECT ON ALBEDO SNOWOO5O
        -
```



```
        ASM = ASM + HSF
        PRH=(1.0- (FFSI*FFQR)N*PRH
        HSFRG:= PRH
        ASMRG = ASMRG + HSFRG.
        FSIL:=FFSI*FFGR*HSF
        AMFSIL = AMFSIL +FSIL
        IFITEH .LE. 0.01 GO TO 106
        DNFS = XDNFS + ((0.01*TEH)**2)
        GO TO 107
    106 DNFS = XDNFS
        SPTH) SDEPTH = SDEPTH - ((PRH* SNOW0064
        1 SDEPTH/SPTW)*((0.10*SDEPTH)**0.25)) SNOWOOS5
        SPTW = SPTW + PRH
        SDEPTH = SDEPTH * (PRH/DNFS)
        SASFX = SASFX + PRH
        IF(SASFX:GE. PXCSA) GO TO 108
        G0.T0-109
    108 SAX"= SAX - 1.0
        IF(SAX LTT: 0.0) SAX=0.0
        SASFX = SASFX - PXCSA
    109 PRH =0.0
    110 CONTINUE
        IFISPTW .LE. 0.01 G0 TO 127
C SEASONAL :MELT FACTOR ADJUSTMENT
        FDAY = DAY
        KAAO = KRIA
        KRIA = 1.0 + (FDAY/10.0)
        IF(KAAO NE. KRIA) RICD = RICY(KRIA)
        IF(TEH .LE. 32:0) GO TO 111
        GO'T0.114
C calculation of negative melt
    111 IF(TANSM.LE. 11.5*MRNSM) GO TO 112
    IF(TANSM .LT. 1.01 TANSM = TANSM + (85.0*MRNSM)** (3.3 + 2.0*
        1. TANSM)]
            GO TO 113
112 TANSM = TANSM + MRNSM
SNOW0054 SNOWOOS5 SNOWOO56 SNOW0.057
SNOW0058
SNOW0059
SNOWOO60
SNOW006 1
SNOW0062
106 DNFS \(=\) XDNFS SNOWOO63
SNOW0064
SNOWOOS5
SNOW0066
SNOWOO67
SNOW0088
SNOW0069
SNOW0070
SNOW0071
SNOWOOT2
SNOW0073
SNOW0074
SNOW0075
SNOW0076
C SEASONAL MELT FACTOR ADJUSTMENT
SNOW0077
SNOWOOT8
SNOW0079
SNOWOOBO
SNOW0081
SNOHOOB2
SNOWOO83
C calculation of negative melt
SNOWOO84
111 IF (TANSM. LE. \(11.5 *\) MRNSM) GO TO 112
SNOW0085
1 TANSM)
SNOW0086
SNOW0087
112 TANSM \(=\) TANSM + MRNSM
SNOWOO88
SNOW0089
```

```
    113 IFITANSM .GT. 0.08*SPTWI TANSM = 0.08*SPTW SNOW0090
        GO TO 127
C EFFECT OF RAIN ON ALBEDO
114 SARAX = SARAX + PRH
        IFISARAX .LT. PXC5A/2.0) GO TO 115
        SAX = SAX + 1.0
        IF(SAX .GT. 15.0) SAX = 15.0
        SASFX = 0.0
        SARAX = SARAX - (PXCSA/2.0)
    115 IFITEH .GT. 32.0) HSM = (TEH -32.0)*BDDFSM
        IF(TEH .LT. 32.0) HSM = 0.0
        HSM:= HSM*RICD
        KAA = 1.0 + SAX
        IF(SAX .LT. 15.0) HSM = HSM*(1.0 - (11.0 - FFOR)*FIRR(KAA)))
        IF(SAX .EQ. 15.0) HSM = HSM*(1.0 - (1.0 - FFOR)*FIRR(15)))
        IF(PRH .GT. 0.0) HSM = HSM + ({TEH - 32.0)*(PRH/144.0))
        IF{STMD .GT, 0.3 .AND. SPTW .LT. SPTWCC) GO TO 116
        GO TO }11
116 MHSM = HSM
        HSM = (SPTW/SPTWCCI*HSM
        IF(HSM .LT. 0.1*MHSM) HSM = 0.1*MHSM
    117 IFIHSM .LT. SPTWI GO TO 118
    HSM = SPTW
    SDEPTH = 0.0
    SPTW = 0.0
    SPLW = 0.0
    RICD = 0.0
    TANSM = 0.0
    SAX = 15.0
    OFRF = SOFRF
    OFRFIS = SOFRFI
    GO TO 122
118 SPTW = SPTW - HSM
    IFISFMD..LE. 0.0) GO TO:122
    IF(SAX.GE. 15.0) GO TO 121
    IF(SAX .GE. 6.0) GO TO 119
```

SNOWOO91
SNOW0092
SNOW0093
SNOW0094
SNOW0095
SNOW0096
SNOW0097
SNOW0098
SNOW0099
SNOWO 100
SNOWO101
SNOWOIO2
SNOWO103
SNOWO104
SNOWO 105
SNOWO 106
SNOW0107
SNOWO 108
SNOWO109
SNOW0110
SNOWO 111
SNOW0112
SNOWO113
SNOWO114
SNOW0115
SNOWOL16
SNOWOLIT
SNOW0118
SNOWO119
SNOWO 120
SNOWO121
SNOWO 122
SNOWO 123
SNOWO124
SNOWO125

```
        SDEPTH = SDEPTH - (HSM/ (0.5*SFMD))
        GO TO 122
    119 IF(SAX .LE. 10.0) G0 T0 120
        SDEPTH = SDEPTH - (HSM/C0.9*SFMDI)
        GO TO }12
    120 SDEPTH = SDEPTH - (HSM/(0.7*SFMD))
        GO TO 122
    121 SDEPTH = SDEPTH - (HSM/SFMD)
    122 CONTINUE
        IFISPTW.LT: 0.00001) SPTH = 0.0
    C CALCULATION OF LIQUID-WATER-HOLDING CAPACITY
        SPLWC = SPBFLW*SPTW
        IF(SFMD.GT. 0.6) SPLWC = SPBFLW*(3.0-3.33*SFMD)*SPTW
        IF(SPLWC .LT. 0.0) SPLWC=0.0
    C ACCOUNTING DF MELT WATER AND RAIN
        IFI(SPLW + HSM + PRH).GT. (SPLWC + TANSMI):GO TO 123
        GO TO 124
    123 PRH = HSM + PRH + SPLW - SPLWC - TANSM
        SPLW = SPLWC
        SPTW = SPTW + TANSM
        TANSM = 0.0
        GO TO 127
    124 IFIYHSM + PRH: LEE. TANSMI GO TO 126
    125 SPTW = SPTW + TANSM
        SPLW = SPLW + HSM + PRH - TANSM
        PRH = 0.0
        TANSM = 0.0
        GO TO 127
    126. TANSM = TANSM - HSM - PRH
        SPTW = SPTW + HSM + PRH
        PRH =0.0
    127 CONTINUE
        HSM = 0.0
C CALGULATION OF DENSITY AND ADJUSTMENT OF OVERLAND FLOW TIME
        IFISDEPTH .LE. O.O .OR. SPTW .GE. SDEPTHI GO TO 128
        STMD = (SPTW + SPEW)/SDEPTH
```

SNOWO126
SNOWO 127
SNOWOI28
SNOWO129
SNOWO 130
SNOWO131
SNOW0132
SNOWO 133
SNOWOI. 34
SNOWO135
SNOWO 136
SNOWO137
SNOW0138
SNOWO 139
SNOWO140
SNOWOL41
SNOWO142
SNOWO. 43
SNOWO144
SNOWO145
SNOWO146
SNOWO 14 ?
SNOWO148
SNOWO 149
SNOWO 150
SNOWO: 51
SNOWO 152
SNOWO 153
SNOWO154
SNOWO 155
SNOWO156
SNOWO 157
SNOWOL58
SNOWO159
SNOWO160
SNOW0161

```
```

 SFMD = SPTW/SDEPTH
    ```
```

 SFMD = SPTW/SDEPTH
 OFRF = 0.33*SOFRF
 OFRF = 0.33*SOFRF
 SNOWO1.63
 SNOWO1.63
 SNOW0164
SNOW0164
IFISDEPTH .LE. 0.01 OFRF = SOFRF
IFISDEPTH .LE. 0.01 OFRF = SOFRF
OFRFIS = SOFRFI*OFRF/SOFRF
OFRFIS = SOFRFI*OFRF/SOFRF
C CALCULATION OF GROUNDMELT
C CALCULATION OF GROUNDMELT
IF(HOUR .NE. I2 .OR. SPTW .LE. D.O) RETURN
IF(HOUR .NE. I2 .OR. SPTW .LE. D.O) RETURN
IF(SPTW .LE. DSMGH) GO TO 129
IF(SPTW .LE. DSMGH) GO TO 129
PRH = PRH + DSMGH
PRH = PRH + DSMGH
SNOW0171
SNOW0171
IFISTMO .LT. 0.50 .AND. SDEPTH .GT. 2.O*DSMGH) SDEPTH = SDEPTH - SNOWO172
IFISTMO .LT. 0.50 .AND. SDEPTH .GT. 2.O*DSMGH) SDEPTH = SDEPTH - SNOWO172
1. 2.0*DSMGH
1. 2.0*DSMGH
RETURN
RETURN
SNOWO173
SNOWO173
SNOWO174
129.PRH = SPTW + PRH + SPLW SNOWO175
129.PRH = SPTW + PRH + SPLW SNOWO175
TANSM = 0.0
TANSM = 0.0
RICD = 0.0
RICD = 0.0
SPLW = 0.0
SPLW = 0.0
SDEPTH = 0.0
SDEPTH = 0.0
SPTW = 0.0
SPTW = 0.0
SAX = 15.0
SAX = 15.0
DFRF:= SOFRF
DFRF:= SOFRF
OFRFIS = SOFRFI .
OFRFIS = SOFRFI .
RETURN
RETURN
END
END
SNOW0176
SNOWOI7T
SNOW0178
SNOW0179
SNOW0180
SNOWO181
SNOWO182
SNDWO183
SNOWO184
SNOWO1. 85

```
```

SNOWO162

```
SNOWO162
SNOW0163
SNOW0163
SNOWO165
SNOWO165
SNOWO166
SNOWO166
SNOWO167
SNOWO167
SNOW0168
SNOW0168
NOWO169
NOWO169
SNOWO170
SNOWO170
SNOWO171
SNOWO171
SNOW0174
```

SNOW0174

```

\section*{APPENDIX B}

\section*{LISTTNG OF OPSET}
```

C OPSET MAINOOOI
C A SELF-CALIBRATING VERSION OF THE STANFORD WATERSHED MODEL. MAINOOOZ
C BASIC LOGIC OF INNER LOOP BASED DN STANFORD WATERSHED MODELS YIY \& IVMAINOOOS
C VERSION OF NOVEMBER 12,1970
MAINOOO4

```

```

 1 ORSGP{366%, DPET(366), DRSF(356), DSSF(356), EMGWS(12%: MATNOOOG
 EMIFS(I2%, EMEZS(12), EMSIAM\\2), EMUZC(12%, EMUZSI12%% MAINOOOT
    ```

```

 LSHA(5). MEDCY(12), MEDWY(12): RHPD(5), RHPF{5}, RHPH(5): MATNOOOQ
    ```

```

 THSF(24), TITYE(20), TMBF(12), TMIF(12), TMNET(12), TMOF(HE), MAYNOOIl
 TMPET (12), TMPRECT12%. TMRTF(12). TMSE{12); TMSTF{12!. MATNOO12
 8 TMSTFI(12., UHFA{99), XMPFT(12)
 LOGICAL LBMIR, LBUZC, EETLFO LLZC, LNPR, LRCg LSHA, LSHP
 MA INOOI3
 INTEGER CN, CONOPT, DATE, DAY, DPY, EHSGO, HOUR, HRF, HRL& POAY, MAINOOIS
 1. PRD, RHPD, RHPH, RSBD, SGMD, SGRT, SGRT2, TRIP, YEAR, YRI.
 MAINOOL6
    ```

```

 MAINOO17
 REAL IFPRC, IFRC# IFRL, JFS, LZC, LZRX, LZS, LZSR, MNRD, NHPT MAINOOIB
 DATA MEDCY/ O, 31,59,90,120,151,181,212,243,2.73,304,334/ MAINOO19
 DATA MEDWY/304,334,365.31.59,90.120.151.181,212.243.273 / MATNOO20
 C SPECIFY NUMBER OF STATION-YEARS INCLUDED IN COMPUTER RUNN MAINOOZI
MA INOO211
NSYC = O
CALL READINSYT:
100 NSYC = NSYC * 1
C READ TITLE TO COMPUTER RUN
READ (5,1) TITLE
MAINOO23
MAINOO24
MA INOO25
l FORMAT (20A4)
MAINOO26
C READ CONTROL OPTIDNS MAINOO28
MAINOO27
DO 101 KRD = 1.3
MA INO029

```
```

 101 CALL READICONOPTOKRDH)
 CALL READ(MNRC,NFTR,NLTR)
 C READ BASIC TIME-AREA HISTOGRAM
 DO 102 KIA = 1.99
 BTRI(KIA) =0.0
 102 UHFA(KIA) =0.0
 CALL READ(NBTRI)
 DO:103 KRD = 1,NBTRI
 103 CALL READ(BTRI(KRD))
 SETINITIAL CONDITIONS
 IFT: = 1
 LRC:=.TRUE.
 LLZC=.FALSE.
 LBUZC:=.FALSE.
 LBMIR = .FALSE.
 LETEF=.FALSE.
 LNPR = .FALSE.
 IFICONOPTI2) .EQ. 0 .AND. NBTRI -LE. 6) LNPR = .TRUE.
 KRC=1
 KBRC =0
 KFFC = 0
 SSSQM=950.0
 SGRT = 0
 C READ fIXED PARAMETERS
104 CALL READ(RMPF,CHCAP)
CALL READ(RGPMB,AREA,FIMP,FWTR)
CALE READ(VINTMR,SUBWF,GWETF,OFSS,OFMN, OFMNIS,OFSL,DIV)
C CALCULATE CONSTANTS SET BY FIXED PARAMETERS
FPER = 1.0 - FIMP - FWTR
IF{FPER .GT. 0.011 GO TO 105
TPLR =100.0
FPER = 0.01
GO TO 106
105 TPLR = (1.0 - FWTR)/FPER
106 VWIN = 26.8888*AREA
WCFS = 24.0*VWIN

```

MAINOO30 MA INOO31 MAINOO32 MA INOO33 MAINOO34 MAIN0035 MA INOO36 MA'INOO37
C. SETINITIAL CONDITIONS

IFT: \(=1\)
LRC: = TRUE.
LRZC - FALSE.
CBMIR \(=\) FALSE LETLF \(=\).FALSE. IF (CONOPTI \(21 . E Q .0\).AND. NBTRI -LE. 6) LNPR = . TRUE. \(K R C=1\) KBRC \(=0\)

C READ fixED PARAMETERS
104 CALL READ (RMPF, CHCAP)
CALL READ(RGPMB, AREA,FIMP,FWTR)
CULATE CONSTANTS SET BY FIXED PARAMETERS
IF\{FPER.GT. 0.011 GO TO 105
TPLR \(=100.0\)
FPER \(=0.01\)
MA INOO38
MAINOO39
MAINOO40
MAINOO41
MAINOO42
MAIN0043
MAINOO44
MAINOO45
MAINOO46
MA INOO47
MAIN0048
MAINOO49
MAINOO50
MAINOO51 MAINOO52 MA INOO53 MAINOO54 MAINOO55 MAINOO56 MAINOO57 MAINOO58 MAINOO59 MAIN0060 MAINOO61 MAINOO62 MAINO063 MA INOO64
MAIN0065
```

 RHFMC = 0.025/WCFS
 SSRT = SQRTIOFSSI
 OFRF = 1020.0*SSRT/(OFMN*OFSL)
 OFRFIS = 1020.0*SSRT/IOFMNIS*OFSL)
 EQDF = 0.00982*((OFMN*OFSL/SSRT)**0.0)
 EQDFIS = 0.00982*((OFMNIS*OFSL/SSRT)**O.6)
 RGPM = RGPMB
 C READ HATER YEAR
CALLE READ(YR1,YR2)
DPY = 365
IF(MOD(YR2.4) .EQ. OI DPY = 366
C READ EVAPGRATION DATA
IFICONOPTY 11. NE H GO TO 111
DO 107 KRD = 274,360.10
107 CALLEREADIDPET(KRDJ)
DO:108 KRD = 1, 273,10
108 CALL READPDPET(KRDI):
DO 110 IDAY2 = 1.9
DO 109 IDAYL = 274,360,10
DAY = IDAYI + IDAY2
109 DPET(DAY) = DPET (IDAYI)
DO 110 IDAY1 = 1,273,10
DAY = IDAY1 + IDAY2
IF(DAY .GT: 273) GO TO 110
DPET(DAY) = DPET(IDAYI)
110 CONTINUE
DPET(366) = DPET(591
DPET(365) = DPET(363)
DPET(364)= DPET(363)
GO TO 113
111 IFICONOPTR 1% EEQ. 21 GO TO 116
DAY = 274
112 CALL READ (DPET(DAY))
IFIDAY .EQ. 273)G0 TO 113
CALE DAYNXTTDAY, DPY)
GO TO 112

```

MAIN0066
MAIN0067
MA INOO6B
MA INOO69
MAIN0070
MAIN0071
MAIN0072
MAINOOT3
MA IN0074
MAINOO75
MA IN0076
MA INOOTT
MA IN0078
MAIN0079
MA INOO8O
MAIN0081
MAINOO8 2
MA INOO83
MAINOO84
MAINOOB5
MAINOOB6
MA INOO87
MAINOOB8
MAIN0089
MAINOO90
MAINOO91
MA IN0092
MAINOO93
MAINOO94
MAIN0095
MA INOO96
MA IN0097
MAINOO98
MAINOO99
MAINOLOO
MAINOLOI
```

 113 DO 114 MONTH=1,12
 113 DO L14 MONTH = 1,12
 DO 115 DAY = 1%DPY
 115 EPAET = EPAET + DPET(DAY)
 IF(EPCM(6) :NE. 1.0) EPAET = 0.7*EPAET
 GO TO 117
 116 CALL READ(EPAET,MNRDI
 EMAET = EPAET*(365.0 * MNRD)/404.0
 CALE EVPDAY(DPET, EMAET)
 C READ DAILY FLOW DATA.}\mathrm{ MAINOIII
117 DRSF(366)=0.0
118 DAY = 274.
119 CALL READ(DRSF(DAY))
CALL DAYNXTEDAY,DPY)
IFIDAY .NE 274) GO TO 119
IFIDIV.EQ. O.0):GOTO 122
DO 121 DAY = 1,DPY
IF(DRSF(DAY):GT. DIV: GO TO:120
DRSF(DAY) = 0.0
GO TO 121
120 DRSF(DAY) = DRSF(DAY) - DIV
121 CONTINUE
122 WRITE(6,2) (TITLEIKTA), KTA = 1,20).
2 FORMAT(1H1,25X,20A4)
C WRITE DAILY FLOWS
CALL DAYSUMPDRSF,MEDCY,DPY,RATFV,TMRTF:
WRIFE(6,3)
3 FORMATT1HO,42X, 'RECORDEO FLOWS:I
CALL DAYOUT (DRSF,MEOWY,BPY)
WRITE(6,4) (TMRTF(KWD), KWD = 1,12),RATFV
4 FORMAT (6X, TOTAL, 2X,12FB.1, 2X,F1O.1, 2X,3HSFD)
C READ STORM HYDROGRAPH DATA
CALL READ (NRHP,NHPT)
IF\NRHP .EQ. O: GO TO:124
DO 123 KRD = 1,NRHP
CALL READ(RHPD(KRD);RHPH(KRD);RHPF(KRD))
MAINO102
MAINOIO3
MAINO1.O4
MAINOIOS
MAINO106
MAINOIOT
MAINOIOB
MAINOIO9
MAINOL1O
MAINOIl2
MAINO113
MAINOI14
MA INO115
MAINO116
MAINOL17
MAINO118
MAINO119
MAINO120
MAINOL21
MAINOL22
MAINOI23
MAINO124
MAINO125
MAINO125
MAINOL26
MAINO127
MAINOI28
MAINO129
MAINO130
MAINO131
MAINO132
MAINO133
MAINO134
MAINO135
MAINO136
MAINO137

```
```

 123 WRITE (6,5), KRD,NHPT, RHPD(KRD),RHPH(KRD),RHPF(KRD): MAINO138
 5 FORMATY//5x,"RECORDED HYDROGRAPH',I3/10X, HYDROGRAPH INTERVAL =%, MAINOI39
 1F5.2,1X,5HHOURS/10X, CALENDAR DAY OF PEAK =',I5,5X,'HOUR OF DAY = MMINO140
 2,14,5X;PPEAKFLOW=',F8.1,1X,3HCFS: MAINO141
 C INITIALIZE PRECIPITION DATA ARRAYS:M
124 DO 125: DAY =1,366 MAINOI43
DRGPM(DAY) = RGPMB
DSSF(DAY) = 0.0
DRSGP(DAY)}=0.
DO 125 HOUR = "1,24
125 DRHP(DAY,HOUR)}=0.
C READ AUXIEIARY RAIN GAGE DAILY TOTALS: MAINOI49
CALL READANSGRD: MAINOIL49
IF\NSGRD.EQ:01 GO TO 127
CALL READ(WSG;SGRT)
IF (CONDPT(3).EQ. 1) CALL READ(WSG2,SGRT2,SGMD)
DO 126 KRD = 1,NSGRD
CALL READ(ISGRD)
126 CALL READ(DRSGP(TSGRD))
C READ recording raln gage mourly totals
127. CALL READ(IWBG, YEAR,MONTH,DATE,CN)
C PUNCH NO NUMBERS AFTER CN ON YEAR.EQ. }98\mathrm{ CARD
IF(YEAR .GE.:98) GO TO 130
HRF=12*(CN-1)+1
HRL:=12*(CN-1)+12
DAY = MEDCY(MONTH) + DATE
DO 128 HOUR = HRF,HRL
128. CALLE READ (DRHP (DAY,HOURH)
IFPDPY .NE. 366.OR. MONTH .NE. 2 .OR. DATE .NE. 291 GD TO 127
DO 129 HOUR = HRF,HRL
DRHP(366,HOUR):= ORHP(60,HOUR)
129 DRHP{80,HOURI=0.0
GO TO 127
C CALCULATE PRECIPITATION WEGHTING FACTORS
130 IFINSGRD.EQ. OI GO TO 137
PDAY = 274
MAINO144
MAINO145
MAINO146
MAINO146
MAINO148
MAINOL50
MAINOI52
MAINO153
MAINOL54

```
1
0
0
0
0
```

 RDPT = 0.0 MA.INO174
 DAY = 274
 131 EHSGD = SGRT
 IF(SGRT,EQ.0) EHSGD=24
 EHSGDF = EHSGD
 132 CONTINUE
 DO 136 HOUR =1,24
 RDPT = RDPT - DRHP(DAY,HOUR)
 IF(HOUR .NE. EHSGD) GO TO 136
 IF(RDPT .LE. 0.0) GO TO 133
 IF{SGRT .EQ. 0) PDAY = DAY
 ORGPM (PDAY):= (ORSGP(DAY)*WSG + RDPT* (1.0-WSG):/RDPT
 IF(CONOPTL1).NE. O) DPET(PDAY):= 0.5*DPET(PDAY)
 IFISGRT.NE. OI PDAY = DAY
 RDPT = 0.0
 GOTO 136
 133 IFIDRSGP(DAY) 1E 0.03 GO TO 135
 DO 134 KHOUR = 1, EHSGD
 134 DRHP(DAY,KHOUR) = (WSG*DRSGP(DAY))/EHSGDF
 135 IF\SGRT.NE. O) PDAY = DAY
 136 CONTINUE
 CALL:DAYNXT(DAY,DPY)
 IFPDAY EQ. 2741 GO TO 137
 IF(CONOPT(3) .EQ. 0) GO TO 132
 IFIDAY .NE. SGMD) GO TO 132
 WSG:= WSG2
 SGRT = SGRT2
 G0 T0 131:
 C. ADJUST:RAINFALL ANOMALIES
137 MXTRH = 2*NBTRI
IF(CONOPT(2).EQ. O) MXTRH = (2*NBTRI - 11/4 + 1
NATRH = MXTRH/2
IF(NFTR .GE. 2) GO TO 138
IF(NATRH .LT. 12) CALE PRECHK IDRGPM;DRHP,DRSF,VWIN, SGRT,NATRH)
C SET INITIAL valueS of variable parameters to be dPtimized
LZC = 12.0
MAINO174
I\&Z
MAINOLT6
MAINOLTZ
MAIN017.8
MAINO179
MAINOL8O
MAINOI81
MAINO182
MAINO183
MA1NOl84
MAINOI.85
MAINO186
MAINOIB7
MAINO187
MAINO188
MAINO189
MAINO190
MAINOI91
MAINOI92
MAINO193
MAINO194
MAINO195
MAINO196
MAINO1.97
MA INO198
MAINO199
MAINO200
MAINO2O1
MAINO202
MA INO203
MAINO204
MAINO205
MAINO206
MAINO207
MAINO208
MAINO209

```
```

 BMIR =1.2. MUIN = MANO210
 SUZC=1.3 M, MAINO211
 EILF =0.25 MOC MANOLIL
 BUZC = 1.50
 SIAC =0.90
 BIVF=0.90
 138 IFINFTR .EQ. 3) GO TO 139
 SRX = 0.98
 NCTRI= NBTRI
 CSRX = SRX
 FSRX = SRX
 CALE RECESSIDRSF,DPY,BFRC,IFRC,AREA,RSBD,RSBIF,NRS,RSBBF)
 IF(IFRG ©GE. O.3) GO TO 139
 WRITE(6,6) IFRC
 6 FORMAT(/10X,*REJECTED IFRC =0,F8.41
 IFRC =0.1
 BIVF=0.0
 139 IF(NFTR .GE. 2) CALLIREADILZC,BMIR,SUZC,ETLF,BUZC,SIAC,BIVF,LZSY
 IF(NFTR .EQ. 3) CALL READ(CSRX,FSRX,NCTRI,GHCAP,IFRC,BFRC)
 140 BFHRC = BFRC**{1.0/24.0)
 BFRL = -ALOG(BFHRG)
 CALL FIXYRI(CTRI,BTRI,NBTRI,NCTRI)
 TRIP= NFTR
 SRX = CSRX
 KHYD = 1
 LSHP = .FALSE.
 DO 141 KIA = 1,5
 KPSH(KIA) = 0
 141 HBF(KIA):= 0.0
 C POINT OF RETURN FOR NEW TRIP
142 1FIKRC .LE. 5) FTX = 1.0
IFIDPY .EQ. 366) MEDWY(5):= 366
PPH}=1.
IFI.NOT. (RC) PPH = 3.0
IFITRIP.NE. 1) PPH = 4.0
IPPH = PPH
MAINO213
MAINO214
MAINO215
MAINO216
MAINO217
MAINO218
MAINO219
MAINO220
MAINO221
MA INO222
MAINO222
MAINO223
MAINO224
MAINO225
MAINO226
MAINO227
MAINO228
MAINO229
MAINO230
MAINO231
MAINO232
MAINO233
MAINO234
MAlNO235
MAINO236
MAINO237
MAINO238
MAINO239
MA INO240
MAINO241
MAINO242
MAINO243
MAINO244
MAINO245

```
```

 FHPP = 1.0/PPH
 IFPRC = IFRC**(FHPP/24.0)
 IFRL:= -ALOG(IFPRC)
 VINTGR = FHPP*VINTMR
 NCTRH = NCTRI
 IFICONOPT(2).EQ. 0) NCTRH = (NCTRI - 11/4+1
 C DETERMINE STORM HOURS FDR ADJUSTING HYDROGRAPH SHAPE VARIABLES
IFINRHP .NE. O.AND. TRIP.EQ. 2) GALL STRHRSIRHPD,RHPH,IDYB,
1. IDYE,IHRB,IHRE,NHPT,MXTRH,DPY,NRHP,IBTPR)
HSE:=0.0
NRTRI=0
PEAI = 0.0
SPIF = 0.0
OFUS = 0.0
OFUSIS = 0.0
RHFO =0.0
URHF =0.0
AMIF = 0.0
AMNET =0.0
AMPET = 0.0
AMPREC = 0.0
AMBF = 0.0
AMSE =0.0
KRS = 1
KDRS = 400
UZS =0.0
IFS = 0.0
IFINFTR .GE. 2) GO TO 145
IFIKRC.NE. Il GO TO 143
BYLZS = 6.00
LZS = BYLZS
G0 TO 145
143 IF(EMLZS(111 .LT. LZS) LZS = EMLZSS(11)
LZS = LZS*LZC/PLLZC
IF(LLZC) LZS = LZC - (LZC-LZS)*(SAFFV/RATFV)
IF(ABS(FTX - 1.0).LT. 0.02) GO TO.144
MAINO246
MAINO247
MAINO248
MAINO249
MAINO250
MAINO251
MA INO252
MAINO252
MAINO253
MAINO254
MAINO2.55
MAINO256
MAINO256
MAINO258
MAINO259
MAINO260
MAINO261
MAINO262
MA INO263
MAINO264
MAINO265
MAINO266
MAINO2.67
MAINO268
MAINO269
MAINO270
MAINO271
MAINO2.72
MAINO273
MAINO274
MAINO275
MAINO276
MAINO277
MAINO278 MAINO279 MAINO280 MAINO281

```
```

 LZS = FTX*BBYLZS*LZZ/BLZC
 IF(LRC.AND.LZC-LZS LT: 2.0):LZC=LZS + 2.0 MAINO282
 MAINO282
 144 IFITRIP.EQ. 3.OR.KFFC.EE. 11ILZS = BBYLZS
 MAINO2B4
 KFFC=:0
 OCT1BF:=0.05*TMRTF(1)
 IF(DRSF(274) <.0.05*TMRTF(1):OCT1BF:= DRSF(274)
 BYGWS = OCTLBF/(WCFS*BFRL*SQRT(BFRC))
 GWS = BYGWS
 BYLZS = LZS
 BFNX = GWS*BFRL
 TFCFS = BFNX*WCFS
 WRIFE(6,7) TRIP,LZC,BMIR,SUZC,ETLF,BUZC,SIAC,BIVF,BFRC,IFRC,
 1CSRX;FSRX,NCTRI,CHCAP
 7 FORMATIIHL, 3X, TRIAL;RUN NUMBER*, 13/5X, PARAMETER VALUES:/1OX,
 SHLZC =, 3X,F8.4.2X,6HBMIR =, 2X,F8.4,2X,6HSUZC =, 2X,F8.4,2X,
 GHETLF =, 2X,F8.4,2X,6HBUZC =, 2X,F8.4, 2X,6HSIAC =, 2X,F8.4/10X,
 6HBIVF =, 2X,F8.4,2X,6HBFRC:=,2X,F8.4,2X,6HIFRC:=,2X,F8.4,2X,
 6HCSRX =, 2X,F8.4,2X,6HFSRX =, 2X,F8.4,2X,7HNCTRI =, 1X,I8/10X,
 5.7HCHCAP =,1X,F8.01
 WRIFE (6,8) LZS,GWS
 8 FORMATI/5X, "INITIAL MOISTURE STURAGES, LZS =*,F9.4,5X, 'GWS =',
 1 F9:4)
 AETX = 24.0*EPAET/365.0
 AEX96 = 1.2*AETX
 AEX90 = 0.3*AETX
 SIAM=1.2**SIAC
 UZC: = SUZC*AEX90 + BUZC*EXP(-2.7*LZS/LZC)
 IFIUZC.LT. 0.25):UZC:=0.25
 MONTH = 1
 MDAY = 273
 IF(TRIP.EQ. 11 GO TO 147
 146 WRITE(6,9):(TITLE(KTA), KTA=1,20)
9 FORMAT(25X,20A4)
WRIFE(6,10) YR1,YR2

```

```

 10
    ```
```

 IR YEAR 19,12,1H-,121 MAINO318
 WRITE(6,11) ,
 11 FORMAT&8H OCTOBER: MAINOB2O
 C. BEGIN DAY LODP
147 DAY = 274
148 CONTINUE
IFITRIP.NE. II GO TO 149
KDRS = KDRS + 1
IF(RSBD(KRS) .NE. DAY) GO TO 149
KDRS = 1
KRS = KRS + 1
149 CONTINUE
ADIF=0.0
ADBF = 0.0
TDSF = 0.0
PET = DPET(DAY)
IF(CONOPT(1) .NE. 2) PET = PET*EPCMIMONTH)
PETU = PET
TFMAX=0.0
DO 190 HOUR = 1,24
IF(TRIP.NE. 2) GO TO 15.2
C LOGICAL variable 'lSHP' SET TRUE during duratION of RECORDED.HYDRO-
C GRAPH SO SYNTHESIZED DATA MAY bE SAVED DURING CORRESPONDING PERIOD
IF(KHYD -GT. NRHP) GO TO 152
IF(IDYB(KHYD) .EQ. DAY.AND. [HRBIKHYDI .EQ. HOURI LSHP:= .TRUE.
IF(KHYD.GG. NRHP) GO TO 150
IF(IDYB(KHYD*1).EQ. DAY .AND. IHRB{KHYD*1) .EQ. HOUR) KHYD =
1 KHYD + 1
150 IF(IDYE(KHYD) .NE. DAY .OR. IHRE(KHYD) .NE. HOUR) GD TO 151
KHYD = KHYD + 1
LSHP = .FALSE.
151 IFA.NOT. LSHP) GO TO 152
KPSH(KHYD)=KPSH{KHYD) + 1
IFIKPSHIKHYDI. .LT. 1711 GO TO 152
WRITE(6,12)
12 FORMATY 5X,'FLOOD HYDROGRAPH ARRAY EXCEEDED, SHORTEN NHPT OR SHIFT MAINO353

```
```

 1TO HOURLY ROUTING:1
 G0.10 228
 152 CONTINUE
 MAINO355
 IF(INSGRD EQ 0). AND (BRHPIDAY,HOUR) NE 0.0)
 1 PETU) ANO ICONOPTAII NESOIT
 IF(HOUR : EQ ,) HSE (HUTR*PET) IDO
 9) HSE = {FWTR*PET\/12.0
 IFIHOUR .EQ. 21) HSE = 0.0
 PRH= RGP\G#DRP(DAY HOUR)
 AMPREC: = ANQPREC - PRH
 ARHF=0.0
 C 15 MIN ACCOUNTING AND ROUTING LOOP 16O MLNUTES USEO FOR ROUGH
ADJUSTMENT, AND 20 MINUTES FGR FINE ADJUSTMENT IN TRIP 1)
DO 182 PRO = 1,IPPH
IFILSHP .AND. CONOPTIRI EQ.O.AND. PRO .NE. II KPSH(KHYOI=
1 KPSH(KHIYD) + 1
PEBI =0.0
PPI=0.0
OFR = 0.0
OFRIS = 0.0
WI=0.0
WEIFS = 0.0
PEP = FHPPWPRH
MAINO375
PEP = FHPP\&PRH MAINO376
IFITRIP.GE: 2, AND. LNPRI CALL PREPRDIRGPM,DRHP,DAY,HOUR,DPY,PRD,MAINO377
I:PEP%PRHI MAINO378
IFIPEP GT. O.OI GO TO 155 MAINO379
IFIOFUS GT. O.0) GO TO:157 MAINO38O
IFIIFS.GT:0.0YGO TO 167. MAINO381
IFITRIP .EQ. 11 GO TO 181
MA INO382
IFINRTRI GT. O) GO TO. 169
TRHF = 0.0
IF(.NOT.LSHP) GOTO.154
KHPT = KPSHIKHYDI
SSR(KHYD.KHPT)=0.0
MAINO383
MAINO384
MAINO385
MAINO386
SSR(KHYD,KHPT)=0.0 MAINO387
154 CONTINUE
IFIRHFO .GT. O.01 GO TO:178 MAINO389
MA INO388

```

GO TO 181
C RAINFALL UPPER ZONE INTERACTION MAINO390
155. IFIPEP.GE. VINTCRI GO TO 156 MAINO391

UZS = UZS + PEP*TPLR
MAINO392
VINTCR = VINTCR - PEP.
PPI: \(=0.0\)
PEBI \(=0.0\)
IFIOFUS .GT. 0.01 GO TO 157
GO TO 167
156 PPI = PEP - VINTCR
UZS = UZS + VINTCR*TPLR
VINTCR \(=0.0\)
LZSR = LZS/LZC
UZC : = SUZC*AEX90 + BUZC*EXP(-2.7*2ZSR)
IFIUZC .LT. 0.25 ) UZC \(=0.25\)
UZRX \(=2.0 * A B S(U Z S / U Z C-1.01+1.0\)
FMR \(=(1.0 /(1.0+U Z R X) \| * U Z R X\)
IF(UZS .GT. UZC) FMR \(=1.0 .-\) FMR
PEBI \(=\) PPI*FMR
UZS = UZS + PPI - PEBI
C LDWER ZONE ANO GROUNDWATER INFILTRATION
157 LZSR \(=\) LZS/LZC
\(E I D=4.0 * L 2 S R\)
IFILZSR .LE. 1.01 GO T0 158
\(E I D=4.0+2.0 *(12 S R-1.0)\)
IFILZSR .LE. 2.0) GO TO 158
\(E I D=6.0\)
158 PEBI \(=\) PEBI + DFUS
CMIR \(=\) FHPP*SIAM*BMIR/(2.0**EIDI
CIVM \(=\) BIVF*2.0**LZSR
IFICIVM .1T. 1.0) CIVM \(=1.0\)
PEAI \(=\) PEBI*PEBI/(2.0*CMIR*CIVMI
\(W I=P E B I * P E B I /(2.0 * C M I R)\)
IF(PEBI -GE. CMIR) WI = PEBI - 0.5*CMIR
IF(PEBI .GE. CMIR*CIVM) PEAI \(=\) PEBI - \(0.5 *\) CMIR*CIVM
WEIFS = WI - PEAI

MAINO393
MAINO394
MAIN0395
MAINO396
MAIN0397
MAINO398
MA1N0399
MAINO400
MAINO401
MAINO. 402
MAINO403
MAIN0404
MA INO405
MAIN0406
MAINO407
MAINO408
MAINO409
MA INO4 10
MAINO.411
MAINO 412
MAIN0.413
MA INO414
MA INO415
MAINO416
MAINO417
MAINO418
MAINO419
MA1N0420
MAINO 421
MAINO 422
MAINO423
MAINO424
MAINO 425
```

 IF((PEAI-.OFUS) .GT. 0.0) GO TO.159 MAINO426
 EQD = {OFUS + PEAI)/2.0 MAINO427
 GO TO 180
 159 EQD = EQDF*(IPEAI - OFUS)**0.6)
180 IF(IOFUS + PEAI) GT. (2.0*EQD)) EQD = 0.5*(OFUS + PEAI)
IFIIDFUS + PEAI) .LE. 0.001) GO TO 161
OFR = FHPP*OFRF*(10FUS + PEAI)*0.5)**1
1 PEAI)/(2.0*EQD))**3.0)**1.67)
IFIOFR.GT. (0.7.5*PEAI)) OFR = 0.75*PEAI
161 IFIFIMP.EQ. 0.0) GO TO 165
162 PEIS = PPI + OFUSIS
IF((PEIS - OFUSIS) .GT. O.0) GO TO 163
EQDIS = IOFUSIS + PEISI/2.0
GO TO 184
163 EQDIS = EQDFIS*({PEIS - OFUSI5)**0.6)
164 IF({OFUSIS + PEIS).GT. (2.0*EQDIS)) EQDIS = 0.5*(OFUSIS + PEIS)
IFIIOFUSIS + PEIS) LEE. 0.011 GO TO 185
OFRIS = FHPP*OFRFIS*((10FUSIS + PEIS)*0.5)**1.67)*(1.0.0 + 0.8*(1
1 OFUSIS + PEIS\#/(2.0*EQDFISI)**3.0)**1.67)
IFIOFRIS GT. PEISA DFRIS = PEIS
165 OFUSIS = PEIS - OFRIS
DFUS = PEAI - OFR
IFIDFUS .GE. 0.001) GO TO 166
LZS = LZS + OFUS
OFUS = 0.0
OFRIS = OFRIS + OFUSIS
OFUSIS = 0.0
166 LLRX = 1.5*ABSLLZSNLZC - 1.01 + 1.0
FMR = (1.0/(1.0 + LZRX))**LZRX
IF(LZS :LT. LIC) FMRR=1.0-FMR*(LZS/LZC)
PLZS = FMR*(PEBI - WI)
PGW = (1.0 -FMR)*{PEBI - WI)*(1.0 - SUBWF)*FPER
GWS = GWS + PGW
LZS = LZS + PLZS
IFS = IFS + WEIFS*FPER MAINO460
167: SPIF= IFRL\#IFS

```

MAINO427
MAINO 428
MAINO429
MAINO 430
MAIN0431
Malno432
MAINO433
MAINO434
MA INO 435
MAINO435
MA INO 437
MAINO 438
MAINO439
MAINO440
MAINO441
MA INO442
MAINO443
MAINO44.4
MAINO.445
MAINO446
MAIN0447
MAINO448
MA INO449
MAINO450
MAINO451
MAINO452
MAINO453
MAINO454
MAINO455
MAINO456
MAINO457
MAINO458
MAINO459
MA INO 460
MAIN0461
```

 AMIF = AMIF + SPIF MAINO462
 ADIF=ADIF SPIF
 IFS = IFS - SPIF
 IFIIFS GE. 0.00011 GO TO.168
 LZS LZS+IFS
 IFS =0.0
 168 UHFA*1)= FPER*DFR + PPI*FWTR + FIMP*OFRIS + SPIF
 IF\TRIP,NE. 1\ GO TO 169
 ARHF:=ARHF + UHFA(1)
 GO.TO 181
 C ROUTING
169 IF\CONOPTI 21 NE. 1) GO TO 170
URHF=URHF:0.25*UHFAF11
IFPPRD .NE. 4) GO TO:178
UHFAI1)= URHF
C SAVE SYNTHESIZED DIRECT RUNOFF AND INTERFIOW ENTERING STREAM DURING
DURATION OF RECORDED HYDROGRAPH
170 IF(ONOT, LSHP) GO TO 171
KHPY = KPSH(KHYDI
IFICONOPT(2) EQ. 1) SSRPKHYD.KHPT:=4.O*URHF*WCFS
IF(CONOPT(2) EQ. O) SSR(KHYD.KHPT):=4.0*UHFA(1)*WCFS
171 CONTINUE
TRHF=0.0
KTRI:= NCTRI
172 URHF = UHFAOKTRII
IFOURHF LE: 0.01 GO:TO 174
173.TRHF = TRHF + URHF*CTRI (KTRI)
UHFAIKTRI + 1%=URHF
GO:TO 175
174. UHFA(KTRI+1)=0.0
175 KTRI=KTRI - 1
IFIKTRI GE 11 GO TO 172
176 IFGURHF LE. O.OIGOTO I77
NRTRI= NCTRI
177 NRTRI=NRTRI-1
UHFA(1):=0.0
MAINO463
MAINO464
MAINO465
MA INO466
MA 1NO467
MAINO468
MAIN0469
MAINO470
MAINO471
MAINO472
MAINO473
MAINO474
MA1NO475
MAINO476
C
MA INO477
MAINO478
MAINO479
MAINO47O
MAINO480
MAINO481
MAlNO482
MAINO483
MAINO484
MAINO485
MAINO486
MAINO487
MAINO488
MAINO489
MAINO490
MAINO491
MAINO492
MAINO493
MA1N0494
MAINO.495

```
            URHF = 0.0
    178 IFITRIP.LE. 21 GO TO 179. MANO498
```



```
        IFITFCFS.LEE. 0.5*CHCAPI SRX = CSRX MAINO5OO
        IFATTFCFS GT. O.5*CHCAP).AND. (TFCFS.LLT. 2.0*CHEAP)] SRX = CSRXMAINO5OI
        1. +(FSRX - CSRX)*(ITFGFS - 0.5*CHCAP)/(1.5*CHCAP):**3 MAINO502
        IF(TFGFS .GT. 2.0*CHCAP):SRX = FSRX MAINO5O3
    179 RHF1 = TRHF - SRX*TTRHF= RHFOI
        RHFO = RHFI
        IF(RHFO LT. RHFMC) RHFO = 0.0
        TFGFS = {4.0*RHF1 + CBF-HSE}*WCFS
        IF(TFEFS.LE. TFMAXI GO TO 180
        PRDF = PRD
        TDFP24 = HOUR
        IFPPRD .LE. 3) TDFP24 = (TDFP24 - 1.0) + 0.15*PRDF
        TFMAX = TFCFS
    180 ARHF = ARHF + RHFI
    181. IFIVINTCR .LT. FHPP*VINTMR) VINTGR = VINTGR + DPET(DAY)/(24.0/
    1:- FHPP1
    182 CONTINUE
    C END OF 15 MINUTE LOOP
C ADDING GROUNDWATER FLOW
    183 CBF = GWS*BFRL
        IFFKHYD GT. NRHP) GO TO 184
        IF(LSHP AND. (HBF(KHYQ) EQ 0.0)1 HBF(KHYD) = CBF*HCFS
    184 GWS = GWS - CBF
        AMBF=AMBF+CBF
        THGR = ARHF + CBF
    C EVAPORATION FROM STREAM SURFACE
    185 IF(HSE .GT. THGRI.HSE = THGR
        IF(CBF GT. HSE) ADBF = ADBF + CBF - HSE
        AMSE = AMSE + HSE
        THSF(HOUR) = (THGR - HSE)*WCFS MAINO528
        MAINO529
        IFITFMAX.LE. 0.01 TFMAX = THSF{HOUR! MAINO530
        TOSF = TDSF + THSF(HOUR)
C DRAINING DF UPPER ZONE STORAGE
    UZINFX = (UZS/UZC) - (LZS/LZC) MAINO533
    MAINO531
    MAINO532
```

```
    IFIUZINFX .LE. O.0) GO TO 186
    L2SR = LZS/LZC
    UZINLZ = 0.003*BMIR*UZC*UZINFX**3:0
    IFIUZINLZ .GT. UZS) UZINLZ = UZS
    UZS = UZS - UZINLZ
    LZRX = 1.5*ABS(LZSR - 1.01 + 1.0
    FMR = (1.0/{1.0 +LZRXI)**LZRX
    IFILZS .LT. LZCIFMRR =1.0-FMR*LZSR
    PGW =(1.0-FMM)*UZINLZ*(1.0-SUBWF)*FPER
    PLZS = FMR*UZINLZ
    LZS = LZS + PLZS
    GWS = GWS + PGW
C 4 PM :ADJUSTMENTS OF VARIOUS VALUES
    186. IFIHOUR ONE 16)GO TO 190
    AEX90: 0.9*(AEX90 + PET1
    AEX96 = 0.96*(AEX96 + PET)
C INFILTRATION CORRECTION
    SIAM = (AEX96/AETX)**SIAC
    IFISIAM LT& 0.33) SIAM = 0.33
    IFIPET.EQ. O.0) GO T0 190
C EVAP-TRANS LOSS FROM GRDUNDWATER
    GWET:= GWS*GWETF*PET*FPER
    GWS = GWS - GWET
    AMPET = AMPET + PET
    IF(PET,GE. UZS) GO TO 187
    UZS = UZS - PET
    AMNET = AMNET + PET
        GO TO 190
    187. PET = PET - UZS
    AMNET = AMNET + UZS
    UZS = 0.0
    LZSR = LZS/LZC
    IF(PET .GE. ETLF#LZSR) GO T0 188
    SET:= PET*(1.0 - PET/42.0*ETLF*LZSRM)
    GO TO 189
    188 SET = 0.5*ETLF*LZSR
```

MAINO534
MAINO535
MAINOS36
MAINO537
MAINO538
MAINO539
MA INO540
MAINO.541
MAINO542
MAINO543
MAINO544
MAINO545
MAINO546
MAINO547
MAINO548
MAINO549
MAINO550
MAINOS51.
MA INO552
MAINO553
MAINO554
MA INO555
MAINO556
MAINO557
MAINO558
MAINO559
MAIN0560
MAIN0561
MAINO562
MAINO563
MAINO564
MAINO565
MA.INO566
MAINO567
MAINO56B
MA INO569

```
    189 LZS = LZS - SET
        AMNET = AMNET + SET
    190 CONTINUE
C END OF HOUR LOOP
            DSSFIDAY)= TDSF/24.0
            IFETRIP.EQ. 1) GO TO 192
            IF(TFMAX -LE. RMPF) GO TO 192
            IF(DAY EQ. 366) MDAY = 337
            DATE = MOD(CDAY,MDAY)
            WRITE (6,13). DATE, (THSF{HOUR),HOUR=1,12)
    13 FORMATILH/,IX/,IX,I4,2X,2HAM,IX,6F8.1,3X,6F8.11
            WRITE(6,14) (THSF(HOUR), HOUR=13,24), DSSF(DAY)
14 FORMAT{1HJ,6X,2HPM,IX,6F8.1,3X,7F8.1) MAINO582
            IFPTDFP24 .LT. 12.01 GOTO 191
            TDFP12 = TDFP24-12.0
            WRITE (6,15),TFMAX, TOFP12
    15 FORMAT(IH/, 1OX, BHMAXIMUM=,F8.1,2X,6HC.F.S.,5X,4HTIME,3X,F5.2,2X,
            1 4HP.M.l
            GO TO 192
    191 WRITE{6,16) TFMAX,TDFP24
    16 FORMATILH/, 10X,8HMAXIMUM=,FB.1, 2X,6HC.F.S.,5X,4HTIME, 3X,F5.2,2X,
    1.4HA.M.)
    192 CONTINUE
        IFITRIP EQ. 1 AND. .NOT. LRC.AND. KDRS .LE. 3.AND. IFRC.GT.
        1.0.1ISIFRS\KDRS;KRS-1)= ADIF*VWIN
            IFITRIP.EQ. 1.ANO. KDRS .LE. 3):SBFRSPKDRS,KRS-I)= AOBF%VWIN
C MONTHLY SUMMARY STORAGE
        IFIDAY -NE. MEDWY(MONTHII GO. TO 206
        TMPREC{MONTH} = AMPREC
        AMPREC = 0.0
        TMBF(MONTH) := AMBF
        AMBF=0.0
        TMIF(MONTH)=AMIF
        AMIF=0.0
        TMSE(MONTH):= AMSE
        AMSE =0.0
        MAINO570
        MAINO571
MAINO572
MAINO573
            IFITRIP MAINOS74
            MANNO575
```



```
MAINO.577
MAINO578
MAINO579
MAINO580
MAINO581
MAINO582
MAINO584
MAINO585
MAINO586
MAINO587
MAINO588
MAINO589
MAINOS90
MAINOS91
MAINO592
MAINO593
MAINO594
MAINO595
MAINO596
MAINO597
MAINO597
MAINO598
MAINO599
MAINO6OO
MAINO601
MAINO6O2
MA INO603
MAINO604
MAINO605
```

```
    TMPET(MONTH) = AMPET: MA.INO.606
    AMPET = O.0 - MMNET
MAINO607
    AMPET = O.0 - AMNET
    AMNET =0.0
    EMGWS(MONTH)=GWS
    UZC = SUZC*AEX90 + BUZC*EXP(-2.7*LZS/LZC)
    IFIUZC .LT. 0.25) UZC = 0.25
    EMUZC(MONTH):= UZC
    EMUZS(MONTH)=UZS
    EMSIAM(MONTH)= SIAM
    EMLZS(MONTH)= LZS
    EMIFS(MONTH) = IFS
    IFIMONTH.EQ. 5) MEDHY(5)=59
    MDAY = MEDWY(MONTH)
        IFITRIP.EQ. IL GO TO 205
193 GO TO:1194,195,196,197,198,199,200,201,202,203,204,
    1 2051,MONTH
194 WRITEI6,17)
    17 FORMAT(1H/;8HNOVEMBER)
        GO T0 205
195 WRITE(6,18)
    18 FDRMAT(1H/,8HDECEMBER)
        GO TO 205
196 WRITE(6,19)
19 FORMAT(IH/,THJANUARY)
        GO'TO 205
197 WRITE(6,20)
20 FORMATT1H/;8HFEBRUARY)
        GO TO 205
198 WRITE(6,21)
    21 FORMAT(1H/,5HMARCH)
        GO T0.205
199.WRIFE(6,22)
    22 FORMAT(1H/,5HAPRIL)
        GO TO 205
200 WRITE(6,23)
    MAIN0609
MAIN0610
MAINO611
MAINO612
MAINO6I3
MAINO614
MAINO615
MAINO.616
MAIN0617
MAIN0618
MAIN0619
MAINOS20
MAINO621
MAINO622
MAINO623
MAIN0623
MAINO624
MAINO625
MAIN0626
MAINOS27
MAINO628
MA INO630
MAINO631
MAINO632
MAINOB33
MAIN0634
MAINO635
MAIN0636
MAINO637
MAIN0638
MAINO639
MAINO640
MAINO641
```

```
        23. FORMAT(1H/:3HMAY) MAINO642
        GO.TO 205: MAINO643
    201:WRITE{6,24)
    24 FORMAT(1H/, 4HJUNE)
        GO TO:205
    2020 WRIFE(6,25)
    25 FORMAT(1H/4.4HJULY)
        GO TO:205
    203 WRITE(6,26)
    26 FORMATULH/,6HAUGUST:
        GO TO 205
    204 WRITE(6;27)
    27 FORMAT 1H/ 9HSEPTEMBER 
    MAINO654
    205 MONTH = MONTH * 1
    : END OF DAY LOOP MAINO656
206 CALL DAYNXT(DAY,DPY
        IF(DAY NE. 274) GO TO 148
        IFITRIP.NE 2) GO.TO 208
C ADJUST BASE FLOW FOR AVERAGE VALUE DURING STORM
        DO 207 KHYD = L NRHP
        DAY = IDYB(KHYO)
        IF(DSSF(DAY) GT. HBF(KHYD)I GO TO 207
        HBFIKHYDI= (HBFIKHYDI* OSSFIDAYIT/2.0
    207. CONTINUE
    208 IF(TRIP .NE. 1) WRITE(6,28) (TITLE{KTA), KTA=1, 20.1)
    28 FORMAT(1HI,25X,20A4)
C ANNUAL SUMMARY
APREC =0.0
ABFV=0.0
ASEV =0.0
ANET = 0.0
APET =0.0
AIFV =0.0
DO 209 MONTH = 1.12
APREC = APREC + TMPREC{MONTH}
ABFV = ABFV + TMBF(MONTH) MAINOG7T
```

```
        ASEV = ASEV TMSE\MONTHI: MAINO678
        ANET: ANET + TMNET(MONTH) MAINO679
        APET = APET + TMPET(MONTH): MAINO68O
    209 AIFV = AIFV + TMIFIMONTHY: MAINOG8I
    WRITE (6;29)
    29 FORMATILH///44X,23HSYNTHESIZED FLOWS)
210 IFITRIP.EQ. 1) WRITE(6,30)
    30 FORMAT\//5X,'SUMMARY WHILE OPTIMIZING VOLGME VARIABLES')
211 CALL DAYSUMIDSSF,MEDCY,OPY,SATFV,TMSTF:
    IF(TRIPG.EQ. 1) GOTO 212
    CALL:DAYOUTIDSSF,MEDWY,DPYI
    212 WRITE(6,31) (TMSTF(KHD);KWD=1,12);SATFV
    DO:213:MONTH = 1;12
    31 FORMAT (1XX, 9HSYNTHETIC, 3X,12F8.1,2X,F10.1,2X,3HSFD)
213 TMSTFI(MONTH)= TMSTF(MONTH)/VWIN
    SATFVI = SATFV/VWIN
    WRITE(6,32) (TMSTFI(KWD),KWD=1,12), SATFVI
AY,5HTOTAL,8X,12FB,3,4X,F7,3,2X, 6HINCHES
DO 214 MONTH = 1,12
    TMOF(MONTH)= TMSTFI(MONFH) - TMIF(MONTH) - TMBF(MONTH): *
    1 TMSE(MONTH)
214.IF(TMOF(MONTH).LT. O.OT TMOF(MONTH) = 0.0
    AOFV = SATFVI-AIFV - ABFV + ASEV
    IF(AOFV .LT.O.0) AOFV = 0.0
    WRITE(6,33) (TMOF(KWO), KWD=1,12), AOFV
        FORMAT(1X, 8HOVERLAND 5X,12F8.3;4X,F7.3,2X,6HINCHES)
        WRIFE (6,34) (TMIF(KWD), KWD=1,12),AIFV
    34 FORMATILX;9HINTERFLOW; 4X,12F8.3.4X,F7.3,2X,6HINCHES)
    WRITE(6,35) (TMBF(KWD); KWD=1,12);ABFV
    35 FORMAT(IX;4H8ASE,9X,12F8.3;4X,F7.3,2X,GHINCHES)
    WRITE(6,36) (TMSE(KWD), KWD=1,12), ASEV
    6 FORMAT (1X,9HSTRM EVAP, 4X,12F8:3;4X,F7.3,2X,6HINCHES)
    WRIFE(6;37) (TMPREC(KWD); KWD=1,12);APREC
    37 FORMAT(: 1X,6HPRECIP.7X,12FB.2,3X,F8.2,2X,GHINCHES!
    WRITE(6,38). (TMNET(KWD); KWD=1,12), ANET
    8 FORMAT (1X,12HEVP/TRAN-NET, 2X, 12F8.3,3X,F7.3.2X,6HINCHES)
38
```

MAINO678
MAINO679
MA IN0680
MAIN068I
MAINO682
MAINO. 683
MAINO684
MAIN0685
MAIN0686
MAINO687
MAIN0688
MATNO689
MAINO691
MA IN0690
MAIN0692
MAINO693
MAINO694
MAINO695
MAIN0696
MAINO697
MAINO698
MAIN0699
MAINOTOO
MAINOTOL
MAINOTO2
MAINOTO3
MAINOTO4
MAINOTO5
MAINOTOG
MAINOTO7
MA INOTO8
MAINOTO9
MAINOTIO
MAINOT11
MAINOT12
MAINOT13

```
        WRITE(6,391):(TMPET(KWD), KHD=1,12), APET
    39 FORMAT ( 3X,1OH-POTENTIAL, 2X, 12F8. 3, 3X,F7, 3, 2X,6HINCHESI
    WRITE(6,40) (EMUZS(KWD); KWD=1,12),
```



```
    WRITE(6,41) (EMLZS(KWD); KWD=1,12)
    41 FORMAT(10X,3HLZS,2X,12F8.3,12X,GHINCHES)
    WRIFE(8,42) (EMIFS(KWDI, KWD=1,12)
    WRIFE(8,42) (EMIFS(KWDI, KWD=1,12)
        42 WRITE(6,43) (EMGWS(KWD), KWD=1,12).
    43 FORMAT(10X,3HGWS,2X,12F8.3,12X,6HINCHES)
        WRITE (6,44):(EMUZC (KWD).; KWD=1,12)
    44 FORMAT (1X,12HINDICES-UZC, 2X,12F8,3)
        WRITE(6,45) (EMSIAM(KWDI, KWD=1,12)
    45 FORMAT(9X,4HSIAM; 2X;12F8.3)....
    MAIN0715
    Ma}N071
    MA[N071.7
    MAINOT18
    MAINOT19
    MAINOT2O
    MAINOT21
    AMBER = (LZS - BYLZS)*FPER + (UZS + IFS + GWS - BYGHS)*(1.0 - FWTRMAINOT27,
        AMBER = SATFVS + AYLZSI*FPER + (UZS + IFS + GWS - BYGWS)*(1.0 - FWTRMAINOT28
        WRITE(6,46) AMBER MSNOTNOT29
        46 FORMAT (1H/7HBALANCE,5X,F10.4,2X,6HINCHES)
    C ESTABLISH WHETHER MONTH IS PREDOMINATELY BASE FLOW OR OIRECT RUNOFF
        NOFM = 0
        MONTH1 = 1
        IFFFTX .LT. 0.951:MONTH1=4
        DO 216 MONTH = 1,12
        XMPFT(MONTH)}=0.
        IF(MONTH .LT. MONTHI) GO TO 216
        IF(TMSTFI(MONTH) OGT. 0.001) GO TO 215
        XMPFT(MONTH) = 1.0
        G0 10 216
    215 IF(TMBF(MONTH)/TMMSTFI(MONTH).GT. 0.5) XMPFT(MONTH):= 1.0
        IF(TMOF (MONTH)/TMSTFI(MONTH) LT. 0.5) GO:TO 21S
        NOFM = NOFM + 1
        XMPFT(MONTH):=2.0
    216 CONTINUE
c. NATURE OF TRIPS
C TRIP 1 OPTIMIZE VOLUME;VARIABLES WHILE, BYPASSING ROUTING
        TRIP 2 SET FLOOD HYDROGRAPH VARIABLES: CSRX,FSRX,NCTRI,CHCAP
    MA INO722
    ..
    MA1N0723
    MAINO724
    MAINO730
    MAINOT31
    MAINDT32
    MAINOT33
    MAINOT34
    MAINOT35
    MAINOT36
    MAINOT37
    MAINOT38
    MAINOT39
    MAINO739
    MAINO741
    MAINOT42
    MAINO743
    MAINOT44
    MAINOT45
    MA INOT46
    MA IN0747
    MAINO748
    MAINO7.49
```

```
C:TRIP:3 FINAL RUN WITH OPTIMIZED VALUES: MAINOT5O
    217 IFITRIP.EQ.11 GO TO 218 MAINOT51
    KRC:=MNRC + 1
    IF(TRIP.EQ. 2):GO TO 226: MAINOT53
    GO 10 228
    MAINO752
    MAINO754
C SYSTEMATIG ADJUSTMENT OF VOLUME VARIABLES CONVERGING ON OPTIMUM VALUESMAINOT5S
    218 KRC = KRC + 1
    KBRC = KBRC +1
    MAINO756
    MA INOT57
    PLZC = LZC
    PBMIR = BMIR
    PSUZC = SUZC
    PETLF = ETLF
        PBUZC = BUZC
        PSIAC = SIAC
C ADJUST FIVE VOLUME VARIABLES: LZC,SUZC,ETLF,BUZC,SIAC
    CALL SETFVPILZC,SUZC, ETLF,BUZC,SIAC,TMSTF,TMRTF,TMPREC,TMPET,
        1 EMLZS,SSQM,LRC,XMPFT,FTX,NOFM,LBUZC,LETLF,LLZC,APRES,APET)
C: ADJUST INTERFLOW VOLUME CONSTANT DURING FINE ADJUSTMENT PHASE
            FNCTRH = NCTRH
```



```
        1.SIFRS;FNCTRHI
    MAINOT70
C ADJUST:INFILTRATION RATE CONSTANT: BMIR MAINOT7L
            IF(.NOT: LBMIR) GO TO 219
            BMIR = 0.9*BMIR
            GO TO 220
                                    MA INOT72
        219 IF{ABS(FTX-1.0):GT. 0.02.AND.KRC.GT. 5} IFT = 2
        MAINOT74
        MAINO775
        CALL SETBMITBMIR,NRS,BFRC,RSBBF,SBFRS,FNCTRH,IFTI
        MAINOT75
        220 IF(|KRG.GT. 6).AND. (LZC.GT. 29.0)| LLZC=.TRUF
    IFIIKRC.GT. 6).AND. IETLF.GT.0.591) LETLF=.TRUE. MAINO778
        MAINO777.
    IF((KRC.GT. 6) AND. FBUZC.GT. 3.9)I &BUZC=,TRUE. MANO779
    IFI.NOT.LLZCI GO TO 221.LNATNOT8O
    IZC=PLZC#SATFV/RATFV MAINO781
    WRITE(6,47) LZC MAINOT82
    47 FGRMATI/2X; LZC WAS GHANGED TO:,F6.2,: BASED ON ANNUAL RUNOFF WOIUMAINO783
    1ME!)
    221.IFRKRC.LT. 6.OR.BMIR IT. 20.0.GOTO.222 MAINO785
    MAINO784
```

```
        LGMIR = .TRUE.
        BMIR =20.0, MAINOT86
        MAINOT86
222 IFISSSQM &LE.SSQM AND. (IKRC.GE. MNRC - AND. KBRC.GE. 21:OR. MAINOT88
        1. I.NOT-LRCHI) GO T0 224
        IFISSSER .LE. 5SOM) GO TO 142
        MAINOT89
        IFIKRC MAE. SSOM GOTO 142 MANOT9O
        IFIKRE GEE MNRE: KRC = KRC - 1
        BLZC:= PRLC
        BBMIR = PBMIR
        BSUZC = =SUZC
        BETLF=PETEF:
        BBUZC: PBUZC
        BSIAC =FSIAC
        SSSQM = SSQM
        BBYLZS = BYLZS
        KBRC = 
        1F\SSOM .LT. 0.25..{ND. LRC) GO TO 223
        G0 10 142
223 LRC = FALSE.
HRITE{SAB)
        MAINOT91
        MA IN0792
        MAINO7.93
        MAlN0794
        MAIN0795
        MAINOT96
        MAINOT.97
        MAINOT98
        MAINOT99
        MA INO800
        MAINOBO4
MAINO803
MAINO804
48 FORMATR 55X,'SHIFT TO FINE ADJUSTMENT BEGINNING AT BEST ROUGH ADJUSMAINOBOS
    1TMENT PEINT:'
        SSSQM =1000.0
    GO TO 225
    MAINO806
    MAINO8O7
    IFILRCY=60 TO 223
    IFITRIF.GE.NLTRI GO TO 228
    TRIP = TRIP + 1
225 LZC = RE2C
    BMIR = BBMIR
    SUZC = ESUZC
    ETLF= BETLF
    BUZC = OBUZC
    SIAC:= BSIAC
    KFFC = 1
    GO TO 142
    MAINOBOB
224 CDNTINUE
    MAINOBO9
    MAINOB1O
    MAINO811
    MAINO812
    MAINO813
    MAINOB14
    MAINOB15
    MAINO816
    MAINOB17
    MAINOS18
    MAINOS1.9
    226. IF{NRHP.EQ. O) GO TO 227 M M MAINOB2O
    MAINO821
```

```
C : CORRECT SYNTHESIZED RUNOFF TO RECORDED VOLUMES MAINO822
            CALL ADJHYDIIOYB,IDYE,IHRB,IHRE,KPSH,DPY,HBF,NRHP,DSSF,DRSF,SSR, MAINO823
            l LSHA)
                                    MAINO824
C:ESTABLISH STORM AND OVERALE OPTIMUM VALUES FOR SRX AND NCTRI MAINO825
                CALL SETHRPICTRI,BTRI,WCFS,CONOPT\2),HBF,LSHA,SSR,NHPT;KPSH, MAINO826
            I IBTPR,SRX,CSRX,FSRX,CHCAP,NRHP,RHPF,NCTRI,NBTRII: MAINO827
                IFINCTRI-EQ. O)GO TB 228 MAINO828
227 IFITRIP GE. NLTRIGO TO 228 MAINO829
                TRIP=TRIP:1 MAINO830
                GO:TO 142
                MAIN0831
2 2 8 \text { CONTINUE. MAINO832}
IF(NSYC LT.NSYT) GO TO:100: MAINO833
END MAINO834
            SUBROUTINE ADJHYDIIOYB,IDYE,IHRB,IHRE,KPSH,DPY,HBF,NRHP,DSSF, ABJHOOOL
            1 DRSF,SSR,LSHA)
                                    ADJHOOO2
C ADJUSTS SYNTHESIZED FLOW VOLUME TO MATCH:RECORDED VOLUME FOR SETTYNG ADJHOOOS
C HYOROGRAPH:ROUTING PARAMETERS ADJHOOO4
    DIMENSION IDYB(5),IDYE(5),IHRB(5);IHRE(5),KPSH(5),SSR(5,170), ADJHOOO5
    1. DSSF(366),DRSF(366),HBF(5),LSHA(5). ADJHOOO6
        LOGICAL LSHA,LSHP: ADJHOOOT
        INTEGER DAY,DPY ADJHOOO8
        LSHP = FALSE. ADJHOOO9
        KRHP=1
        DAY = 274
    ADJHOO1O
    ADJHOOI1
    100. CONTINUE
        IF(LSHP)GO TO 102
        101.HTH = IHRB(KRHP)
        HBFM = 1.0
        IF(DSSF(DAY) LT. HBF(KRHP)) HBFM =:0.0
        ADJHOO12
        ADJHOO13
    ADJHOO14
    ADJHOO16
    TSHV = (24.0-HTH)*(DSSF(DAY) - HBF(KRHYP))*HBFM/24.0 ADJHOO18
```

```
```

 HBFM = 1.0
    ```
```

 HBFM = 1.0
 ADJHOO19
 ADJHOO19
 IF(DRSF(DAY) LT. HBF(KRHP)) HBFM=0.0 ADJHOO2O
 IF(DRSF(DAY) LT. HBF(KRHP)) HBFM=0.0 ADJHOO2O
 TRHV = (24.0-HTH)*(DRSF(DAY)- HBF(KRHP)*HBFM/24.0 ADJHOO21
 TRHV = (24.0-HTH)*(DRSF(DAY)- HBF(KRHP)*HBFM/24.0 ADJHOO21
 IF(IDYE(KRHP) \thereforeEEQ. DAYI GO TO 104
 IF(IDYE(KRHP) \thereforeEEQ. DAYI GO TO 104
 LSHP:= -TRUE.
 LSHP:= -TRUE.
 GO TO 107.
 GO TO 107.
 102 IF(DSSF(DAY) &T. HBF(KRHPI) GO TO 103
 102 IF(DSSF(DAY) &T. HBF(KRHPI) GO TO 103
 TSHV = TSHV + DSSF(DAY)-HBF(KRHP)
 TSHV = TSHV + DSSF(DAY)-HBF(KRHP)
 103 [F(DRSF(DAY). LT. HBF(KRHP)\ GO TO 104
103 [F(DRSF(DAY). LT. HBF(KRHP)\ GO TO 104
TRHV = TRHV + DRSF(DAY)-HBF(KRHP)
TRHV = TRHV + DRSF(DAY)-HBF(KRHP)
104 CONTINUE
104 CONTINUE
IF(IOYE(KRHP) NE DAYIGGOTO 107
IF(IOYE(KRHP) NE DAYIGGOTO 107
HTH = IHRE(KRHP)
HTH = IHRE(KRHP)
TSHV = TSHV - (24.0-HTH)*(DSSF(DAY) - HBF(KRHP))/24.0
TSHV = TSHV - (24.0-HTH)*(DSSF(DAY) - HBF(KRHP))/24.0
TRHV = TRHV - (24.0-HTH)*(DRSF(DAV) - HBF(KRHP)%/24.0
TRHV = TRHV - (24.0-HTH)*(DRSF(DAV) - HBF(KRHP)%/24.0
LSHP = FALSE.
LSHP = FALSE.
SHM:= TRHV/TSHV
SHM:= TRHV/TSHV
LSHA(KRHP)=.TRUE.
LSHA(KRHP)=.TRUE.
IF(SHM..GT. 8.0 .OR. SHM .LT. 0.125) LSHA(KRHP):= .FALSE.
IF(SHM..GT. 8.0 .OR. SHM .LT. 0.125) LSHA(KRHP):= .FALSE.
[FT.NOT. LSHA(KRHP)] GO TO 106
[FT.NOT. LSHA(KRHP)] GO TO 106
KPCH=KPSH(KRHP)
KPCH=KPSH(KRHP)
OO 105 KHPT = 1,KPCH
OO 105 KHPT = 1,KPCH
105 SSR(KRHP,KHPT) = SHM*SSR(KRHP,KHPT)
105 SSR(KRHP,KHPT) = SHM*SSR(KRHP,KHPT)
106 WRITE{6,1) KRHP,SHM
106 WRITE{6,1) KRHP,SHM
1.FORMATI//1OX,'VOLUME ADJUSTMENT FACTOR FOR HYDROGRAPH',I2,
1.FORMATI//1OX,'VOLUME ADJUSTMENT FACTOR FOR HYDROGRAPH',I2,
1 EQUALS',F10.4)
1 EQUALS',F10.4)
KRHP = KRHP +1
KRHP = KRHP +1
IFIKRHP .GT* NRHPI:RETURN
IFIKRHP .GT* NRHPI:RETURN
IF(IDYB(KRHP) EQ. IDYE(KRHP-1)) GO TO 101
IF(IDYB(KRHP) EQ. IDYE(KRHP-1)) GO TO 101
107. CALL DOAYNXT(DAY,DPY)
107. CALL DOAYNXT(DAY,DPY)
107. CALLEDAYNXT(DAY,DPY)
107. CALLEDAYNXT(DAY,DPY)
RETURN
RETURN
END
END
ADJHOO22
ADJHOO22
ADJHOO23
ADJHOO23
AOJHOO24
AOJHOO24
ADJHOO25
ADJHOO25
ADJHOO26
ADJHOO26
ADJHOO27
ADJHOO27
ADJHOO28
ADJHOO28
AD JHOO29
AD JHOO29
ADJHOO30
ADJHOO30
ADJHOO31
ADJHOO31
ADJHOOS2
ADJHOOS2
ADJHOO33
ADJHOO33
ADJHOO34
ADJHOO34
ADJHOO35
ADJHOO35
ADJHOO.36
ADJHOO.36
ADJHOO37
ADJHOO37
ADJHOO38
ADJHOO38
AD JH0039
AD JH0039
ADJHOO4O

```
ADJHOO4O
```

```
ADJHOO41
```

ADJHOO41
ADJH0042
ADJH0042
ADJHOO42
ADJHOO42
*
*
ADJHOO44
ADJHOO44
ADJHOO45
ADJHOO45
ADJH0046
ADJH0046
ADJHOO47
ADJHOO47
ADJHOO48
ADJHOO48
ADJHOO49
ADJHOO49
ADJHOO5O
ADJHOO5O
ADJHOO51

```
ADJHOO51
```

```
    SUBROUTINE DAYSUMIDRSF,MEDCY,DPY, ATFV,TMTFWY:
    DYSMOOOL
C SUMS DAILY VALUES TO GET MONTHLY AND ANNUAL TOTALS DYSMOOOZ
        DIMENSIGN DRSF(366), EMATF(13), MEDCY(12),TMTFGYI12),TMTFWY(12) DYSMOOO3
        -INTEGER DAY,DPY
    UMATFII: O.O MONTHLY FLOWS
    ENATFW11:=0.0
    ATF = 0.0
    DO 101 DAY = 1,365
    ATF = ATF + DRSF{DAY}
    DO 100 KMO = 2,12
    100 IF(DAY .EQ. MEDCY(KMO)\ EMATF(KMO) = ATF
    101 CONTINUE
    ENATF{13) = ATF
    ATFV = ATF + ORSF(366)
C CALCULATE'MONTHLY FLOWS
    DO. }102\textrm{KMO}=1.1
    102 TMTFCY(KMO) = EMATF(KMO + 11 - EMATF{RMO)
        TMTFCY(2)=TMTFCY(2) * DRSF(366)
C CONVERT MONTHLY FLOWS TO A HATER YEAR ORDER
    DO 103: KMO}=1,
103 TMTFUY(KMO*3):= TMTFCY(KMO)
    DO 104 KMO = 10.12
    104 TMTFWY(KMO-9) = TMTFCY(KMO)
        RETURN
        END
        SUBROUTINE FIXTRIICTRI,BTRI,NBTRI,NCIRI)
    EXTIOOO1
C FIX VALUES OF THE TIME ROUTING INCREMENTS TO MATCH REQUIRED TOTAL
C NUMBER OF VALUES
    DIMENSION AWSBIT199),BTRI(99),CTRI(99)
    IF(NNCTRI .GT:991:G0 T0:101
        IF(NBTRI NE. NCTRI) GO TO 102
        DO 100 KRD = 1,99
    100(TRI(KRD) = BFRI(KRD)
FXT10002
FXT10003
FXTI0004
FXT10005
FXTIOO06
FXT10007
FXTIOOO8
```

RETURN
101 WRITEIG,1) NCTRI FXTIO009
1 FORMAT SX, 'NCTRI OF', 15, IX, 'EXCEEDS MAXIMUM VALUE OF 99 , 99 USED FXTIOO10
NCTRI = 99 :
102 DO $103 \mathrm{KIA}=1.99$ FXTIO012
103 AWSBIT(KIA) $=0.0$ FXTI0013
FNTRITKIA) $=0.0$
FXTIOO14
FNTRI = NCTRI
$K B 1=0$
FXTIOO15
$\mathrm{KB1}=0$
$\mathrm{KB2}=1$
$K B 3=0$
FXTIOO16
FXTI 0017
$104 \mathrm{KBI}=\mathrm{KBI} * 1$
FXTI0018
IFIKBI.GT. NBTRI) GO TO 107 FXTIOO19
$\mathrm{KB4}=0$
WSBIT:= BTRI(KBI)/FNTRI
$105 \mathrm{KB4}=\mathrm{KB}_{4}+1$
IFEKB4.GT. NCTRII GO TO 104
AWSBIT (KB2) $=$ AWSBIT(KB2) + WSBIT
$\mathrm{KB3}=\mathrm{KB3}+1$
IFIKB3 。LT. NBTRI) GO TO 108
$K B 3=0$
$K B 2=K B 2+1$
106 GO:T0. 105
107 DO 108 KB5 $=1,99$
$108 \operatorname{CTRI}(K B 5)=$ AWSBIT(KB5)
RETURN
END
FXTIOO20
FXT10021
FXT10022
FXTIOO23
FXT10024
FXTIOO25
FXTIOO26
FXTIOO27
FXTI 0028
FXTI0029
FXTIOO30
FXTIOO31
FXTI003?
FXT10033
FXTI 0034
SUBROUTINE PRECHK (DRGPM, DRHP , DRSF,VWIN, SGRT, NATRH)
PRCKOOOL
CHECKS PRECIPITATION-STREAMFLOW ANOMALIES AND ADJUSTS PREGTPITATIOA PRCKOOO2
WHERE NECESSARY
DIMENSION DRGPM(366), DRHP 366,241 , DRSF (366) PRCKOOO4
PRCK0003
INTEGER DAY, HOUR,SGRT
$A H P=0.0$
PRCK0005
$\begin{array}{ll}\text { AHP }=0.0 & \text { PRCK0006 } \\ \text { NRHA }=24-\mathrm{NATRH} & \text { PRCK0007 }\end{array}$
PRCK0006

```
    RGPM = ORGPM(90) PRCK0008
    DAY = 90
    RMWR = 1.25
100 DAY = DAY + 1
IFIDAY GT. 200 .OR. VWIN .GT. 750.0) RMWR = 2.00
    RFRISE = (DRSF(DAY) - DRSF(DAY-1H/VWIN
    DO 101 HOUR = 1,24
    IFIHOUR .EQ. SGRT+1I:RGPM = DRGPM(DAY)
    AHP = AHP + DRHP(DAY,HOUR)*RGPM
    IF(HOUR.NE. NRHA) GO TO 101
    RWRAIN: = AHP
    AHP}=0.
101 CONTINUE
    IFTRFRISE.GT. RWRAIN.AND. RFRISE.GT. 0.11 GO TO 102
    IF(IRWRAIN .GT. RMWR .AND. RFRISE .LT. O.O2*RWRAIN) .OR. (RWRAIN
    1.GT. 3.00.AND. RFRISE.LT. 0.05*RWRAINII GO TO 104
        GO TO 108
102 IF(RWRAIN .GT. 0.05) GO TO 103
    RAA = RFRISE*2.0-RWRAIN + 1.0
    DRHP(DAY,13)= RAA
    WRITE(6,1) DAY, RAA
    1. FORMAT(/10X,'FOR DAY',14,1X,'RAIN ADDED OF',FT.2)
    GOTO 108
103 RAM = 2.0*RFRISE/RWRAIN
    GO TO 105
104 RAM = 10.0*RFRISE/RWRAIN
105 IFIRAM .LT. 0.01 GOTO 108
    WRITE(6,2) DAY,RAM,RWRAIN
    2 FORMAT//5X,'FOR DAY,,14,1X,'RAIN ADJUSTMENT MULTIPLIER IS',F8.4;
    1 1X,'RECORDED RAIN IS',F7.2)
        DO 106 HOUR = 1,NRHA
106 DRHP(DAY,HOUR) = DRHP(DAY,HOUR)*RAM
    IFINATRH .EQ: 0) GO TO 108
    NFRHA = NRHA + +1
    DO 107 HOUR = NFRHA,24
107 DRHP(OAY-1,HOUR)= DRHP(DAY-1,HOUR)*RAM: PRCKOO43
PRCK0008
PRCKOO09
PRCK0010
PRCK0011
    PRCK0012
    PRCK0013
    PRCK0014
    PRCKOO15
    PRCK0016
    PRCK0017
    PRCKOO18
    PRCK0019
    PRCK0020
    PRCK0021
    PRCK0022
    PRCK0023
    PRCK0024
PRCK0025
PRCK0026
PRCK0027
PRCK0028
PRCK0029
PRCK0030
PRCK0031
PRCK0032
PRCK0033
PRCK0034
PRCK0035
PRCK0036
PRCK0037
PRCK0038
PRCK0039
PRCK0040
PRCK0041
PRCK0042
```

```
108 IF(DAY NE. 273) GO TO 100
RETURN
END
PRCKOO44
PRCKOO45
PRCK0046
```

SUBROUTINE RECESSIDRSF, DPY, BFRG, IFRC, AREA,RSBO,RSBIF,NRS,RSBBF
RCSS0001
C: ESTABLISHES RECESSION SEQUENCES
DIMENSION DRSF(366), LBFO(20), NDRS(20), RSBBF(20), RSBD(20), RCSS0002

1. RSBFRC(20);RSBIF(20), RSIFRC(20);RSTF(50,20)

LOGIGAL: LBFO
RCSSOOO3
CSSO004
INTEGER DAY,DPY,RSBD,RSL
REAL IFRC
MRSL $=9$
BFRC $=0.9$
IFRC $=0.05$
FRERS $=0.1 * S Q R T(A R E A)$
100 DO $101 \mathrm{KSD}=1,50$
DO 101 KRS $=1,20$
RCSS0005
RCSS0006
RCSS0007
RCSS0008
RCSS0009
RCSS0010
RCSSOO11
RCSS0012
RCSS0013
101 RSTF(KSD,KRS) $=0.0$
KRS $=0$
DAY $=274$
C BEGIN NEW SEQUENCE
102 IFIKRS .GE. 201 GO TO 109
KRS $=$ KRS +1
$K S D=1$
RSF1 $=$ DRSF (DAY)
CALL DAYNXT (DAY,DPY)
IF(DAY EQ. 274) GO TO 107
RSF2 $=$ DRSF (DAY)
RSBD(KRS) $=$ DAY
IFIRSF2 .LT. RSFI+FRERS -AND. (RSF2 GT . $0.4 * A R E A$. OR RSF2 GT RCSSOO2S
1 10.01) GO TO 103 RCSS0027
KRS $=$ KRS -1
GO TO 102
RCSS0028
RCSS0029

```
103 RSTF(1,KRS):= RSF2
```

```
        RSFM=RSF2 1 R N N NSOO31
    104 KSD=KSD + 1
    CALE DAYNXT(DAY,DPY)
        IF(DAY .EQ. 2741. GO TO:107
        RSFN= DRSF(DAY)
    IF(RSFN .LT: IRSFM + FRERS).AND. RSFN .GT. 0.0) GO TO 108
        IF(KSD .GE.MRSL) GO TO 102
        NDRS(KRS)=0;
    NDRS(KRS)=0;
    105 RSTF(KSD,KRS)=0.0
        KRS = KRS - 1
        GO TO 102
    106 IFIRSFN LT. RSFMI RSFM= RSFN
        RSTF(KSD,KRS) = RSFN
        NDRS(KRS)=KSD
        IF{KSD .GE. 503 GO TO 102
        GO TO 104
    107 IFIKSD.GE. MRSLI GO TO 109
        NTRS = KRS - 1
        DO 108 KSD = 1,MRSL
    108 RSTF(KSO,KRS):=0.0
        GO TO 110
    109 NTRS = KRS
    110 CONTINUE
        IF(NTRS.GE: 3) GOTO 111
        IFIMRSL LT. 7) RETURN
        MRSL=6
        GO TO:100
C WRITE OUT ESTABLISHED ARRAY OF FLOW SEQUENGES RCSSOO5S
    111 WRITE(6,1) RCSSOO6O
    111 WRITE(6,1): FLOW SEQUENCES USED TO ESTIMATE RECESSION CONSTANTSV, RCSSOOGI
        DO 113 KRS = 1,NTRS RCSSO062
        NDRSC:= NDRS(KRS)
        DO 112 KSD=2,NDRSC
    112.RSTF(KSD-1,KRS)=RSTF(KSD,KRS)
        NDRS(KRS) = NDRS(KRS) - 1
        RCSSO032
    RCSSO033
    RCSSOO34
    RCSSOO35
    RCSS0036
    RCS50037
    RCSSO038
    RCSS0039
    RCSS0040
    RCSS0041:
    RCSSO042
    RCSS0043
    RCSSOO44
    RCSS0045
    RCSS0046
    RCSSO047
    RCSS0048
    RCSSO049
    RCSS0050
    RCSS0051
    RCSS0052
    RCSS0053
    RCSS0054
    RCSSO055
    RCSSO056
    RCSS0057
    RCSS0063
    RCSS0064
    RCSSO066
```

```
            NDRSC = NDRSC - 1
            WRITE(6,2) KRS,(RSTF(KSD,KRS);KSD=1,NDRSC)
            2 FDRMAT(/10X;12,5(10F8.1/12X))
    11.3 CONTINUE
C DETERMINE RECESSION CONSTANTS FROM EACH SEQUENCE
    114 DO 116 KRS = 1,NTRS
            IF((RSTF(1,KRS).LT. 0.4*AREA) .AND. (RSTF(2,KRS) .GT, 0.8*
            1)(RSTFI1,KRSII):1G0 TO 115
            LBFO(KRS):= FALSE.
            CALE SET2RC(RSTF;KRS,NDRS(KRS),RSIFRC(KRS),RSBFRC(KRS, , LBFO(KRS)
            IF(LBFQ(KRS) OR. RSBFRC(KRS) GT: I OR PSBFRCIKRSI IT O
            RCSS0077
            1.OR. RSIFRC{KRS) .GT. 0.8 .OR. RSIFRC{KRSI LT. -0.4) GO TO 115 RCSSOO78
            GO TO 116
    115 LBFO(KRS) = .TRUE.
            CALL SETIRCIRSTF,KRS,NDRS(KRSS),RSBFRC(KRS):
    116 canfinue
C CALCULATE WEIGHTED AVERAGE RECESSION CONSTANTS
            BFRC=0.0
            IFRC =0.0
            ABFSL=0.0
            AIFSL:= 0.0
            DO 118 KRS = 1,NTRS
            IFARSBFRC(KRS) GT. 1.2 .OR. RSBFRC(KRSS: .LT. 0.6) GO TO 117
            RSL:=NDRS(KRS)
            BFRC= BFRC + RSBFRC(KRS)*RSL
            ABFSL:= ABFSL + RSL
            IF(LBFO(KRS)) GOTO 118
            IF\RSL.GE. 20.0! RSL = 20.0
            IFRC:IFRC + RSIFRC(KRS)#RSL
            AIFSL = AIFSL + RSL
            GO TO 118
    117 WRITE(6;3):KRS
    3 FORMATPIOX,'SEQUENCE',13,1X,'GMITTED IN AVERAGINGY) RCSSO099
    118 CONTINUE
            WRITE(6,4) ABFSL,AIFSL
                    RCSS0100
                            RCSSO101
    4. FORMAT(10X,'BASE FLOW DAYS =, F55.0, 2X, INTERFLOW DAYS = , F5.0)
RCSS0067 RCSS0068 RCSS0069 RCSS0070
-114 DO 116 RES 1 NTRS CANTS FROM EACH SEQUENCE RCSS0071 RCSS0072 RCSS0073 RCSSOOT4 RCSS0075 RCSS0076 RCSS0077 RCSSOOT8
RCSS0079
RCSS0080
RCSS0081
RCSS0082
RCSSOO83
RCSSOO84
RCSS0085
RCSS0086
RCSS0087
RCSSOO88
RCSS0089
RCSS0090
RCSS0091
RCSS0092
RCSS0093
RCSSOO94
RCSS0095
RCSS0096
RCSS0097
RCS50098
RCS50099
RCSS0100
RCSSO101
4 FORMAT (10X, BASE FLOW DAYS \(=, \quad, F 5.0,2 X\), INTERFLOW DAYS \(=9, F 5.01\)
RCSSO102
```

1
G

```
```

```
    BFRC = BFRC/ABFSL: RCSSO1O3
```

```
    BFRC = BFRC/ABFSL: RCSSO1O3
    IFRC = IFRC/AIFSL : RCSSSO104
    IFRC = IFRC/AIFSL : RCSSSO104
    IFIBFRC.GT: 0.9.9) BFRC=0.99 RCSSO105
    IFIBFRC.GT: 0.9.9) BFRC=0.99 RCSSO105
    IF(BFRC:LT.0.70):BFRC=0.70 RCSSO106
    IF(BFRC:LT.0.70):BFRC=0.70 RCSSO106
    KSQ = 0
    KSQ = 0
    DO 119 KRS = 1,NTRS
    DO 119 KRS = 1,NTRS
    IFILBFO(KRS)IGOTO 119
    IFILBFO(KRS)IGOTO 119
    CALL SETRBF(RSTF,NDRS,KRS,BFRC,IFRC,CRSBIF,CRSBBFI:-
    CALL SETRBF(RSTF,NDRS,KRS,BFRC,IFRC,CRSBIF,CRSBBFI:-
    IFICRSBIF.GT. 95000.0.OR. CRSBBF.LT. 0.0) GOTO 119
    IFICRSBIF.GT. 95000.0.OR. CRSBBF.LT. 0.0) GOTO 119
    IFICRSBIF LLT. 0.0) CRSBIF =0.0
    IFICRSBIF LLT. 0.0) CRSBIF =0.0
    KSQ = KSQ + 1
    KSQ = KSQ + 1
    RSBD(KSQ)=RSBD(KRS):
    RSBD(KSQ)=RSBD(KRS):
    RSBIF(KSQ) = CRSBIF
    RSBIF(KSQ) = CRSBIF
    RSBBF(KSQ): CRSBBF
    RSBBF(KSQ): CRSBBF
    119 CONTINUE
    119 CONTINUE
    NRS = KSQ
    NRS = KSQ
    DO 120 KSQ = 1.NRS
    DO 120 KSQ = 1.NRS
    DAY = RSBD(KSQ)
    DAY = RSBD(KSQ)
    CALL DAYNXT (DAY, DPY)
    CALL DAYNXT (DAY, DPY)
    120 RSBD(KSQ) = DAY
    120 RSBD(KSQ) = DAY
    DO 121 KSQ = 1,NRS
    DO 121 KSQ = 1,NRS
    CRSBTF = RSBIF(KSQ) + RSBBF(KSQ)
    CRSBTF = RSBIF(KSQ) + RSBBF(KSQ)
    121 WRITE(6,5) KSQ,RSBO(KSQ),RSBIF(KSQ),RSBBF(KSQQ,GRSBTF
    121 WRITE(6,5) KSQ,RSBO(KSQ),RSBIF(KSQ),RSBBF(KSQQ,GRSBTF
    5 FORMATO/10X, REVISED FLOW SEQUENCE:,I 3, 1X,IX,'BEGINS ON DAY:,I4,
    5 FORMATO/10X, REVISED FLOW SEQUENCE:,I 3, 1X,IX,'BEGINS ON DAY:,I4,
        1. IX,'AT INTERFLOW =',F7.2,1X,'CFS, BASE FLOW =',F7.2,1X,'CFS,
        1. IX,'AT INTERFLOW =',F7.2,1X,'CFS, BASE FLOW =',F7.2,1X,'CFS,
        1 TOTAL:=',F7.2,1X,'CFS!)
        1 TOTAL:=',F7.2,1X,'CFS!)
        RETURN
        RETURN
        END
        END
    RCSSO107
    RCSSO107
    RCSSO108
    RCSSO108
    RCSSO109
    RCSSO109
    RCSSO110
    RCSSO110
    RCSSOI11
    RCSSOI11
    RCSSO112
    RCSSO112
    RCSSO113
    RCSSO113
    RCSS0114
    RCSS0114
    RCSSO115
    RCSSO115
    RCSS0116
    RCSS0116
SUBROUTINE SETBIV(BIVF,NRS, IFRC, RSBIF,SIFRS,FNCTRH)
STBV0001
\(C\) SETS BEST VALIE OF BASIC INTERFLOW VOLUME FACTOR STBVOOO2 , STB
DIMENSION RSBIF(20), SIFRS13,20)
REAL IFRC
STBV0003
STBV0004
\(A R S T R=0.0\) STBVOOO5
```

```
    IFRC= IFRC/AIFSL 
```

 IFRC= IFRC/AIFSL
 RCSSO114
 RCSSO114
 RCSSO117
 RCSSO117
 RCSSO118
 RCSSO118
 RCSSO119
 RCSSO119
 RCSSO120
 RCSSO120
 RCSSO121
 RCSSO121
 RCSSO122
 RCSSO122
 RCSSO123
 RCSSO123
 RCSSO124
 RCSSO124
 RCSSO125
 RCSSO125
 RCSSO126
 RCSSO126
 RGSSO127
 RGSSO127
 RCSSO128
 RCSSO128
 RCSSO129
 RCSSO129
 RCSSO130

```
RCSSO130
```

```
        DO.101.KRS = 1,NRS STBVOOOG
        RIF:= RSBIFIKRSI/IFRC: STBVOOOT
        DO 100 KDY = 1,3
        RIF=RIF*IFRC
        SIF = SIFRS(KDY,KRS)/IFRC**(FNCTRH/48.0)
        RSTR = 0.0
        IF(RIF.GT. O.O):RSTR=SIF/RIF
        IFORSTR.GT. 3.0.OR. (SIF.GT. 0.0.AND. RIF.EE. 0.0)\RSTR=3.0
        ARSTR = ARSTR + RSTR
        WRITE(6,1) KRS,KDY,SIF,RIF
        FORMATH:OX, KRS =, I3,2X,KDY =, I2, 2X, SIF, FT.1,
    1 F7.1)
    100 CONTINUE
    101 CONTINUE
        TIRD=NRS*3
        PBIVF= BIVF
        BIVF = 0.40
        IF(ARSTR.GT. 0.0) BIVF = (PPBIVF-0.40)*IIRD)/ARSTR + 0.40
        WRITE (6,2) PBIVF, BIVF
    2 FORMAT (5X,'BIVF CHANGED FROM',F6.2,2X,:TO',F6.2/1)
        RETURN
        END
        SUBROUTINE SETBMI, BMIR,NRS,BFRC,RSBBF,SBFRS,FNCTRH,IFT)
        C SETS BEST VALUE OF BASIC MAXIMUM INFILTRATION RATE WITHIN WATERSHED
    DIMENSION RSBBF(20);SBFRS{3,20)
    ARSTR =0.0
    DO 101 KRS = IFT,NRS
    RBF= =RSBBF(KRS)/BFRC
    DO 100 KDY = 1,3
    RBF=RBF*BFRC
SBF:= SBFRS(KOY,KRS)/BFRC**(FNCTRH/48.0)
    RSTR = SBF/RBF
    IFIRSTR GT. 3.0) RSTR = 3.0
    TBM0001
    STBMODO2
BMOOO2
STBMOOO3
STBM0004
STBMOOO5
STBMOOO6
STBMOOO7
STBMOOOB
STBMOOO9
STBMOO10
STBMOO11
```

```
            ARSTR = ARSTR + RSTR STBMOO12
            WRITEIG,11 KRS,KDY,SBF,RBF.. STBMODI3
            1 FORMAT(10X,'KRS =',13,2X,'KDY =',12,2X,'SBF =4,F7.1,5X,'RBF =', STBMO014
            1.F7.1)
    100 CONTINUE
    101 CONTINUE
    TBRD = (NRS + 1-IFT)*3
    ARSTR = ARSTR/TBRD
    ARSTR = ARSTR**1.3
    PGMIR = BMIR
    BMIR = PBMIR/ARSTR
    WRITE(6,2) PBMIR,BMIR
    2 FORMATI 5X,'BMIR CHANGED FROM',F6.2,2X,'TO',F6.2//1
        RETURN
    END
    SUBROUTINE SETFBI(MFDP,TMSTF,TMRTF,SSQM)
STFD0001
C SETS VALUES OF FLOW DEVIATION INDICES 
C SETS VALUES OF FLOW DEVIATION INDICES 
    REAL: MFDP
    DO:101 MONTH = 1,12
    IFIMONTH .LE: 2I SSQM =0.0
    SMFX = TMSTFIMONTH:+20.0
    RMFX = TMRTF(MONTH) + 20.0
    MFDP(MONTH) = SMFX/RMFX - 1.0
    IF(MFDP(MONTH).GT: 8.0) MFDP(MONTH) = 8.0
    IF(MFDP(MONTH) LT. 0.0) MFDP(MONTH)=1.0-RMFX/SMFX. STFDOOL1
    IF(MFDP(MONTH) LT, -8.0) MFDP (MONTH) = -8.0 STFDOO12
    100 SSQM = SSQM + MFDP(MONTH) #MFDP(MONTH)
    101 CONTINUE
    WRITE (6,1): (MFDP(MONTH); MONTH=1,12), SSQM
    1 FORMATI//2X,"MONTHLY DEVIATIONS:,/16X,12(F7.3,1X:,'SSQM = ',F7.3)
    RETURN
    END
STFD0002
STFD0003
STFDO004
STFD0005
STFD0006
STFDO0067
STFD0007
STFDOOOB
STFDOOO9
STFDOOIO
STFDOO13
STFDO014
STFQ0015
STr00016
STFD0017
STFDOO18
```

```
        SUBROUTINE SETFVPILZC,SUZC,ETLF, BUZC,SIAC,TMSTF,TMRTF,TMPREC, STFVOOOI
        1 TMPET,EMLZS,SSQM,LRC,XMPFT,FTX,NOFM,LBUZC,LETLF,LLZC,APREC,APET, STFVOOOR
    C
    C
ADJUSTMENT OF LZC.BASED ON MONTHS WHERE OVER HALF OF TOTAL
    SYNTHESIZED RUNOFF.IS DVERLAND FLOW. MINIMUM OF TWO MONTHS
    WITH GREATEST RUNOFF USED
    PLZC= LZC
    FNOFM = NOFM
    IF(NOFM.GT. 2) GOTO 1.03
    M1R = 2
    M2R=1
    IF(TMRTF(2).GT. TMRTF(1))G0:TO100
    M1R=1
    M2R = 2
100
    DO:102 MONTH = 3.12
    IF(TMRTF(MONTH) LT. TMRTF(M2R)):GO TO 102 STFVOO23
    IF(TMRTF(MONTH) .GT. TMRTF(MIR)).GO TO 101 STFVOO24
    M2R = MONTH
    GO TO 102
101
    1 M2R = M1R
    M1R = MONTH
102
    IFILLZCI GO TO 106
    FLZC = (MFDP(MLR) + MFDP(M2R)\/2.0
    GO TO 105
1 0 3
        DIMENSION EMLZS(12);MFDP(12);MXA(12),TMPET(12),TMPREC(12), STFVOOO4
        1:TMRTF(12),TMSTF(12),XMPFT(12)
STFV0003
    SETS BEST VALUES OF FLOW VOLUME PARAMETERS
    STFVOOO4
        LOGICAL LBUZC,LETLF,LLZC,LRC
                            STFVOOOS
        REAL LZC,MFDP
STFVOOO6
        STFVOOOT
        CALL SETFDI IMFDP,TMSTF,TMRTF,SSQMI
        STFVOOO8
        IF((MFDP(2):MFDP(3)}.GT. 2.0.AND. FTX .LT. 1.05) FTX = 0.9
        STFVO009
    IF((MFDP(2) + MFDP(3)) -LT. -2.0.AND. FTX .GT.0.95)FTX= l.1
STFVOO10
C
STFVORIL
STFVOO12
C
STFVOO13
STFVOO14
STFVOO15
STFVOO16
STFVOO17
    STFVOO18
STFVOO19
STFVOO20
STFVO021
STFVOO22
STFVOO25
STFV0026
STFVOO27
STFVOO28
STFVO029
FV0030
STFVO031
    SOFMD =0.0
STFV0032
STFVOO33
```

```
    KM1 = 0 STEV0034
    DO 104 MONTH = 1;12
    IFEXMPFTEMONTHI LF. 1.5) GOTO 104
    SOFMD = SOFMD + MFOP(MONTH)
    KML = KMI +1
    MXA(KM1): = MONTH
    104 CONTINUE
    FLZC=SOFMD/(FNOFM*0.75)
    105 IF{FLZC.GT,1.0) FLZC:=1.0
    IF(FLZC.LT. -1.0) FLZC=-1.0
    IF&FLZC.GT. 0.0)LZC=(FLZC 1.0)#LZC
    IF(FLZC .LE. 0.O)LZC= LZC/(1.0-FLZC)
    IF(NOFM LE 2) WRTTE G,I) LZC,MIR,M2R
    1 FORMAT(/5X, 'LZC WAS CHANGED TO',FG.2," BASED ON MONTHS*,2I3)*
    IF(NOFM .GT, 2) WRITE(6,2) LZC, (MXA(KWD), KWD = 1, NOFM)
    2 FORMAT (/5X, 'LZC WAS CHANGED TO*,F6.2,* BASED ON MONTHS',12I3)
    IFILZC:LT: 2.0.AND. LRCI LZC=2.0
    IF(LZC.GT. 30.0.AND. LRC) LZC = 30.0
C SELECTIGN OF MONTHS BEGINNING WET AND BEGINNING DRY SEASONS
    106 MBWS = 0
    MBDS =0
    DO }109\mathrm{ MONTH = 2,10
    IF(TMPET(MONTH) GT. TMPREC(MONTH)) GO TO 108
            IFIMBWS .NE. O) GO TO 107
            MBWS = MONTH
            GO TO 109
    107 MBDS = MONTH +1
            GO TO 109
    108 IF&MBDS .NE 0):GO TO 110
    109 CONTINUE
    110 MBDS = MBDS +1
C ADJUSTMENT OF SUZC BASED ON TWO WETTEST SUMMER MONTHS AND LAST TWD
C BASE FLOW MONTHS
    M11 =0
    M12=0
    PRM1 =0.0
```

STFV0034
STFV0035
STFVO036
STFVOO37
STFV0038
STEV0039
STFV0040
STFV0041
STFVOO42
STFV0043
STFV0044
STFV0045
STFVOO46
STFV0047
STFVO048
STFV0049
STFV0050
STFV0051
STFVQ052
STFV0053
STFV0054
STFV0055
STFV0056 STFV0057 STFVOQ58 STFVOO59 STFVOO60 STFV0061 STFV0062 STFVOO63 STFV0064 STFV0065 STFV0066 STFV0067 STFV0068 STFV0069

60 T0 120
115 SWSMD $=0.0$
KWSM $=0$
DO 116 MONTH $=1,12$
IF (IMONTH GT. MBWS OR. MONTH GT. 2). AND. IMONTH . LT. MBDS
1 . AND. MONTH . LT. 9) GO TO 116
IF(TMPREC (MONTH) ©LT. 2.01 GO TO: 116
SWSMD $=$ SWSMD + MFDP (MONTH)
KWSM $=$ KWSM +1
MXA(KWSM) $=$ MONTH
116 CONTINUE
IFIKWSM.GE. 1) GO TO 117
MXAII $=$ MIR
KWSM $=1$
FETLF $=5.0 * M F O P(M 1 R)$
GO TO 120
117 WSM $=$ KWSM
IFI:NOT. LETLF .OR . KWSM .EQ. 1) GO TO 119
EMFDP $=0.0$
DO 118 MONTH $=1, K W S M$
$K M 1=M X A(M O N T H)$
IF(MFDP(KMI) LT. EMFDP) GOTO 118
$E M F D P=M F D P\{K M 1)$
$\mathrm{KM2}=\mathrm{MONTH}$
118 CONTINUE
MXA(KM2) $=0$
SWSMD $=$ SWSMO - EMFDP
WSM $=W S M-1.0$
119 FETEF $=1.2 * S W S M D / W S M$
120. IF(FETLF.GT. 1.01 FETLF $=1.0$

IF(FETLF .LT. -1.01 FETLF $=-1.0$
IF\{FETLF GT. 0.0) ETLF $=\{F E T L F+1.0$) \#ETLF
IF(FETLF .LT. 0.0) ETLF =ETLF/(1.0-FETLF)
WRITE 6.4) ETEF, (MXAUKWD), KWD $=1$, KWSM)
STFVO106 STFVO107
STFVO 108
STFVO109
STFVO110
STFVO111
STFVOL12
STFVOL13
STFVOII4
STFVO115
STFVOI16
STFVO117
STFVO118
STEVOL19
STEVOL20
STFVO121
STFVO122
STFVO123
STFVO124
STFVO125
STFVOI26
STFVO127
STFVO128
STFVO129
STFVO130
STFVO131
STFVO132
STFVOl. 33
STFVO134
STFVO135
STFVO136
STFVO137
STFVO138
STFVO139

IFPETLF .LT. 0.05 .AND. LRCF ETLF $=0.05$
STFV0141

```
        IFfETLF.GT. 0.6 .AND. LRCI ETLFF = 0.6
C ADJUSTMENT OF BUZC BASED ON SEPTEMBER, NOVEMBER, AND DECEMBER
        KM1:= 12
        KM2 =2
    KM3 = 3
    FBUZC:=0.4*(MFDP(12) + MFDP(2) + MFDP(3))
    IFY:NOT. LBUZCI GO 10 121
    FBUZC = 0.4*(MFDP(9):+MFDP(10) + MFDP(11))
    KM1 = = 
    KM2 = 10
    KM3 = 11
    121 IFIFBUZC .GT. 1.01 FBUZC = 1.0
    IF&FBUZC.LT. -1.01 FBUZC:=-1.0
    IFIFBUZC:.GT.0.0) BBUZC = (FBUZC + 1.0)*BUZC
    IF(FBUZC .LE. 0.0) BUZC = BUZC/(1.0-FBUZC)
    WRIFE{6,5} BUZC,KMI KMZ,KM3
        5 FORMATI4X,'BUZC WAS CHANGED TO',FG.2;' BASED ON MONTHS*,3131
            IF(BUZC.LT. 0.2.AND. LRC) BUZC = 0.2
            IF{BUZC..GT. 4.0.AND. LRC) BUZC = 4.0
    ADJUSTMENT OF SIAC BASED ON THREE FIRST MOISTURE EXCESS AND THREE
    FIRST MOISTURE DEFICIENT MONTHS
    KML = MBDS
    KM2 = MBDS + 1
    KM3 = MBDS - 1
    KM4 = 0
    KM5 =0
    KM6 =0
    WFDX = 0.0
    IFISIAC.GT. 1.01 GO TO:122
    WFDX = (MFDP(MBWS) + MFDP(MBHS+11+MFDP(MBWS+2.))/3.0
    IF(SIAC.GF. 0.6) WFDX = WFDX*(1.0-SIAC)/0.4
    KM4 = MBWS
    KM5 = MBWS + 1
    KM6 =MBWS +2
122 SFDX = (MFDP(MBDS) + MFDP(MBDS+1) + MFDP(MBDS-11)/3.0
    FSIAC = 1.5*(SFDX - WFDX)
```

STFVOL42 STFVO143 STFVOI44 STFVO145 STFVO146 STFV0147 STFV01.48 STFV0149 STFVOI 50 STFV0151 STFVO152 STFVOI53 STFVO1.54 STFVO155 STFVO156 STFV015? STFV0158 STFVO159 STFV0160 STFVO161 STFVO162 STFVO163 STFV0164 STFVO165 STFVO166 STFVO167 STFVO168 STFVO169 STFV0170 STFV0171 STFVO172 STFVO173 STFVO174 STFV0175 STFVO176
STFVO177


```
        SUBROUTINE SETHRP(CTRI,BTRI,WCFS,CONOP2,HBF,LSHA,SSR,NHPT,KPSH,
        1. IBTPR,SRX,CSRX,FSRX,CHCAP,NRHP, RHPF,NCTRI &NBTRI!
    C SETS BEST VALUES DF HYDROGRAPH ROUTING PARAMETERS
        DIMENSION BTRI(99),CTRI(99),HBF(5),HSRX(5),KPSH(5),LSHA(5),
    1.HNTRI 45);RHPF(5),SRR(5,170),SSR(5,170),TSRX(7)
        LOGICAL LSHA
        INTEGER : CONOP2,HNTRI,SNTRI
        REAL NHPT
        MHTP = 1
        IFICONOP2 .EQ. OI MHTP=4
        MXTRI = 2*NBTRI
        MNTRI = NBTRI/2
        TSRX(1) =0.995
        TSRX(2) = 0.99
        TSRX(3):= 0.985
        TSRX(4):=0.98
        TSRX(5):=0.96
        TSRX(6) := 0.93
        TSRX(7):=0.90
        LNIBRS = 0
        DO 112 KHYO = 1,NRHP
        [FI.NOT. LSHA(KHYDI) GO TO 112
    STHP0021
STHP0022
```

```
        KPCH = KPSH(KHYD)
        NCTRI = MNTRI
        STHP0023
    CALEFIXTRICCTRI,BTRI,NRTRINNCTRIL
    KH1 = 1
    KH2 =1
    STHPOO25
    STHP0026
    STHP0027
    KH3 = 1
    STHP0028
    SDRSP:= 80.0*CHCAP
    SNTRI = MXTRI
STHPOO29
00 SRX = TSRX(KHI)
IFIKH2.EQ. 2) LNIBRS = NIBRS
WRITE(6,1) NCTRI,SRX
FORMAT(//15X,'TRIAL VALUE OF NCTRI =',I3,', SRX = ',F6.31
CALLTIMERT(SSR,SRR,CTRI,NCTRI,KHYD;KPCH)
CSRX=
FSRX = SRX
    SRXTISRR,CSRX,FSRX,CHCAP,CONOP2,IBTPS,
    , FSRX,CHCAP,CONOP2,IBTPS,SHPF,KHYD,HBF(KHYD),
    NHPT,KPCH,IBTPR
    STHP0038
    LNTRI = NCTRI 
    STHP0039
    STHP0040
    NIRTS = IBTPS-IBTPR*MHTP STHP0041
    NIBRS = IABS(NIRTS)
    DRSP = ABSTSHPF - RHPF(KHYD))
    IFINIRTS .EQ. 0.OOR. (KH2 .EQ. 2 .AND. NIBRS .GE. LNIBRS) .OR.
    1. RHPF(KHYD):GT: 1.2#SHPF)GO TO 103
    STHP0044
STHP0045
101 NCTRI = NCTRI 1HGOTO 109
STHP0046
STHP0047
IF(NCTRI .LT. MNTRI) NCTRI:= MNTRI STHP0048
IF(NCTRI .GT. MXTRI) GO TO 106
STHP0049
102
    CALE FIXTRI\CTRI,BTRI,NBTRI,NCTRI)
    KH2 = 2
    GOTO 100
03 IF(DRSP .GT. SDRSP) GO TO 108
    SNTR1 = LNTRI
STHPOO50
STHP0051
IFIDRSP.GT. SDRSPI GO TO 108 STHPOO5
STHP0054
SDRSP = DRSP
KH3 = 2
104 KH1 = KHI + 1
STHPO
04 KHI = KHI + 1
IF(KHI -FQ. 8):GO TO 105
STHP0058
```

N

```
```

```
        KH2 =1 
```

```
        KH2 =1 
STHP0060
STHP0060
105. HNTRI (KHYD) = LNTRI
105. HNTRI (KHYD) = LNTRI
        HSRX(KHYDI:= SRX
        HSRX(KHYDI:= SRX
        GO TO 111
        GO TO 111
106.IFIKH1".GE. 2 .AND. KH3.EQ. 2 .AND. DRSP .GE. SDRSPY GO TO 108
106.IFIKH1".GE. 2 .AND. KH3.EQ. 2 .AND. DRSP .GE. SDRSPY GO TO 108
NCTRI = MXTRI
NCTRI = MXTRI
    CALLEFIXTRIICTRI,BTRI,NBTRI,NCTRI)
    CALLEFIXTRIICTRI,BTRI,NBTRI,NCTRI)
    IF&KH2.EQ. 2.AND. KH1 .EQ. 1 .AND. SHPF .GT. RHPF(KHYDI) GO
    IF&KH2.EQ. 2.AND. KH1 .EQ. 1 .AND. SHPF .GT. RHPF(KHYDI) GO
    1:T0 107
    1:T0 107
    IFEKH2 .EQ. 2 .OR. KH1 OGE. 21 GO TO 109
    IFEKH2 .EQ. 2 .OR. KH1 OGE. 21 GO TO 109
    GO TO 102
    GO TO 102
107. HNTRI(KHYD) = MXTRI
107. HNTRI(KHYD) = MXTRI
    HSRX(KHYD) = 0.995
    HSRX(KHYD) = 0.995
    gO TO 111
    gO TO 111
108. HSRX(KHYD):= TSRX(KH1-1)
108. HSRX(KHYD):= TSRX(KH1-1)
    HNTRI(KHYD) = SNTRI
    HNTRI(KHYD) = SNTRI
    GO TO 111
    GO TO 111
109. IFINCTRI.GT. MNTRI .AND. NGTRI LT. MXTRI) GO TO 10I
109. IFINCTRI.GT. MNTRI .AND. NGTRI LT. MXTRI) GO TO 10I
    IF(DRSP.GT. SDRSP) GO TO 110
    IF(DRSP.GT. SDRSP) GO TO 110
    SDRSP = ORSP
    SDRSP = ORSP
    SNTRI = LNTRI
    SNTRI = LNTRI
    GO TO 104
    GO TO 104
110 HNTRI(KHYD):= NCTRI
110 HNTRI(KHYD):= NCTRI
    HSRX(KHYD)=0.995
    HSRX(KHYD)=0.995
    IF(KHI .GE. 2) HSRX(KHYD):= TSRX(KHI - 1)
    IF(KHI .GE. 2) HSRX(KHYD):= TSRX(KHI - 1)
    STHP0061
    STHP0061
111 IFHHSRX(KHYDI.LT. 0.91. AND. SHPF.LT. O.5*RHPF(KHYDI) LSHA\KHYOISTHPOO.S5
111 IFHHSRX(KHYDI.LT. 0.91. AND. SHPF.LT. O.5*RHPF(KHYDI) LSHA\KHYOISTHPOO.S5
    1: = .FALSE.
    1: = .FALSE.
        IF(.NOT. LSHA(KHYD)) GO TO 112 STHPOO87
        IF(.NOT. LSHA(KHYD)) GO TO 112 STHPOO87
        WRITE(6,2) KHYO,HNTRI (KHYD), HSRXP(KHYD)
        WRITE(6,2) KHYO,HNTRI (KHYD), HSRXP(KHYD)
    2 FORMATH10X,'FOR STORM *I2,' NCTRI =',I3,'SRX=0,F6.3)
    2 FORMATH10X,'FOR STORM *I2,' NCTRI =',I3,'SRX=0,F6.3)
112. CONTINUE
112. CONTINUE
    KPA = 1
    KPA = 1
113 ARHPF =0.0
113 ARHPF =0.0
    APOKP: 0.0
    APOKP: 0.0
    DO 114 KHYD = 1,NRHP
    DO 114 KHYD = 1,NRHP
    STHPOO63
    STHPOO63
    STHP0063
    STHP0063
    STHPOO64
    STHPOO64
    STHP0065
    STHP0065
    STHPOOSG
    STHPOOSG
    STHP0067
    STHP0067
    STHP0067
    STHP0067
    STHP0068
    STHP0068
    STHP0069
    STHP0069
    STHP0070
    STHP0070
    STHP0071
    STHP0071
    STHP0072
    STHP0072
    STHP0073
    STHP0073
    STHP007.4
    STHP007.4
    STHP0075
    STHP0075
    STHP0076
    STHP0076
```

 *P0062
    ```
    *P0062
    STHP0077
    STHP0077
    STHP0078
    STHP0078
    STHP0079
    STHP0079
    STHP0080
    STHP0080
    STHP0081
    STHP0081
    STHP0082
    STHP0082
    STHP0083
    STHP0083
    STHP0084
    STHP0084
    STHP008S
    STHP008S
    STHP0087
    STHP0087
    STHP0088
    STHP0088
    STHP0089
    STHP0089
    STHP0090
    STHP0090
    STHP0091
    STHP0091
STHPOOS2
STHPOOS2
    ST
    ST
    STHP0094
```

 STHP0094
    ```
```

 IFA.NOT. LSHAIKHYDII GO TO 114 STHP0095
 CHPV = HNTRIKKHYDI * STHPOOOG
 IFCKPA .EQ. 2)CHPV:= HSRX(KHYD) STHP0007
 APPKP = APPKP + CHPV*RHPFIKHYDI: STHP0098
 ARHPF = ARHPF + RHPF(KHYO) STHPOOO
 114 CONTINUE
 WAPV = APPKP/ARHPF
 IFIKPA.EQ. 2) GO TO 115
 NCTRI = WAPV + 0.5
 WRITE (6,3) NCTRI
 3 FORMAT(//10X;'OPTIMUM NCTRI = , I3)
 IF(NCTRI .EQ.O) RETURN
 CALETFIXTRI\CTRI,BTRI,NBTRI,NCTRI!
 WRITE(6,4) (CTRI(KTRI); KTRI = 1,NCTRI)
 4 FORMAT(18X,'CTRI ARE'/9(16X,11F8.41))
 WRITE (6;5)
 5 FORMAT(18X, WARNING: THE USER MAY HAVE TO ADJUST THESE VALUES TO
 1MAKE THEM ADD TO ONE TO COMPENSATE FOR RDUNDING.')
 KPA = 2
 G0 10 113
 115 SRX:= WAPV
 CSRX = SRX
 FSRX= SRX
 CALL SETSRPICONOP2,NRHP,ESHA,RHPF,HSRX,CHCAP,SSR,SRR,CTRI,CSRX,
 1. FSRX,KHYD,IBTPS,SHPF,NCTRI,HBF,NHPT,KPSH, IBTPRI
 SRX = CSRX
 RETURN
 END
 SUBROUTINE SETRBFIRSTF,NDRS,KRS,BFRC,IFRC,CRSBIF,CRSBBF)
 STRB0001
 C SETS VALUES OF INTERFLOW AND BASE FLOW AT RECESSION BEGINNING
STRB0002
DIMENSION "RSTF(50,20);NDRS(20)
STRB0003
REAL*8 RA1,RA2,RA3,RA4,RA5,RA6
STRB0004
REAL IFRC
STRB0005

```
```

 RAI = 0.0. STRB0006
 RA2 = 0.0
 RA3 = 0.0
 RA4 = 0.0
 RA5 = 0.0
 MNDRS = . }1
 IF(NDRS (KRS):LT. 12)MNDRS = NDRS(KRS)
 IF(IFRC.GE. 0.3) GO T0:101
 CRSBIF = 0.0
 DO 100 KSO = 1,MNDRS
 RA1 = RAI + BFRC**(2*KSD)
 100 RA4 = RA4 + RSTF(KSD,KRS)*(BFRC**KSD)
CRSOBF=RA4/RA1
CRSBBF = CRSOBF*BFRC
RETURN
101 CRSBIF = 100000.0
DO 102 KSD = 1,MNDRS
RA1 = RA1 + BFRC** (2*KSD)
RA2 = RA2 + IFRC**(2*KSD)
RA3 = RA3 + (BFRC*1FRC)**KSD
RA4 = RA4 + RSTF(KSD,KRS)*(BFRC**KSD)
RA5 = RA5 + RSTF(KSD,KRS)*(IFRC*\#KSD)
102 CONTINUE
RAG = RA1*RA2 - RA3**2
IF(RAG:.EQ. 0.0) RETURN
CRSOIF = -(RA3/RA6)*RA4 + (RA1/RA6)*RA5
CRSBIF =: CRSOIF*IFRC
CRSOBF=(RA2/RA6)*RA4-(RA3/RA6)*RA5
CRSBBF = CRSOBF*BFRC
RETURN
END
SUBROUTINE SETSRPICONOP2,NRHP,LSHA,RHPF,HSRX,CHCAP,SSR,SRR,GTR咅, STSPOOOI
1 CSRX,FSRX,KHYD,IBTPS,SHPF,NCTRI,HBF,NHPT,KPSH,IBTPRI
STSP0002

```
```

C SETS BEST VALUES OF STORAGE ROUTING PARAMETERS STSPOOO3
DIMENSION CTRI(99),HBF(5),HSRX(5),KPSH(5),LSHA(5),RHPF(5), STSPOQO4
1.SRR(5,170),SSR(5,170)
LOGICAL: LSHA
INTEGER CONOP2
REAL: NHPT
KLCCA =
SRX = CSRX
EPS = 0.000001
NORHP = NRHP
OO 100 KHYO = 1,NORHP
IFI.NOT. LSHAIKHYDII SNRHP = NRHP - 1
100 CONTINUE
IF(NRHP ILE = 2) GO TO 103
C FIND REGRESSION LINE FOR DETERMINING CSRX, WHEN NRHP EXCEEDS 3
RA1 = 0.0
RA2 = 0.0
RA3 =0.0
RA4 = 0.0
C. FNRHP = NRHP
DO 101 KHYO =1.NORHP
IFT NOT. LSHA\KHYDII GO TO 101
RA1 = RAI + RHPF(KHYD)
RA2 = RA2 + HSRX(KHYD)
RA3 = RA3 + RHPF(KHYD)*HSRX{KHYD)
RA4 = RA4 + RHPF(KHYD)**2
101 CONTINUE
AVRHPF = RAI/FNRHP
ASRX = RA2/FNRHP
RSLP = (RA3 - RAI*ASRX)/(RA4 - RAI**2/FNRHP)
IF(RSLP LE. EPS) GO TO 106
RINT:= ASRS - RSLP*AVRHPF
102 CSRX = RINT + RSLP*(0.5*(HHCAP)
IF(CSRX GE. 0.99) RETURN
IF(CSRX LE. 0.8) CSRX=0.8
GO.TO 107

```

STSP0003
STSPOQO4
STSP0005
STSPOOO6
STSP0007
STSPOOO8
STSP0009
STSP0010
STSPOOI1
STSPOO12
STSPOO13
STSPOO14
STSPOO15
STSP0016
STSPOO17
STSPO018
STSP0019
STSP0020
STSPOO21
STSPOO22
STSPOO23
STSPOO24
STSPOO25
STSP0026
STSPOO27
STSPOO28
STSP0029
STSP0030
STSPOO31:
STSPO032
STSP0033
STSPOO34
STSPO035
STSPOO36
STSP0037
STSP0038
```

 103 K1AH=0
 DO 104 KHYD:=1,NORHP
 IFI. NOT. LSHA(KHYDI) GO TO 104
 IF(KIAH EQ. O) KIAH = KHYD
 IF(K1AH.GT.O).K2AH=KHYD
 104 CONTINUE
 IFONRHP .EQ. 1) GO TO 105
 C FIT THE STRAIGHT LINE WHEN NRHP = 2
RSLP=(HSRX(K1AH)-HSRX(K2AH))/(RHPF(K1AH):- RHPFFK2AH)
IFIRSLP .LE. EPSI GO TO 106
RINT = HSRX(KLAH)-RSLP\&RHPF(KLAH)
GO TO 102
105 CONTINUE
CSRX=HSRXIKLAH)
FSRX = CSRX
GO TO 115
106 CONTINUE
CSRX = SRX
FSRX = CSRX
WRITE{6,1)
1 FORMAT///10X, "REGRESSION LINE HAS NEGATIVE SLOPE')
GO TO 115
107 CONTINUE
BISRX = 0.2*(0.99-CSRX)
SISRX = 0.04*(0.99 - CSRX)
TFSRX = CSRX
KISRX = 0
108KISRX = KISRX + I
FSRX = TFSRX
WRITE(6,2) KISRX,CSRX,FSRX,CHCAP
2 FGRMAT///15X,"TRIAL',13,', CSRX =',F8.5,', FSRX =',F8.5,
1 * CHCAP = F10.0)
SQPKD = O.O
ADRSP = 0.0
DO: 109 KHYO =1,NORHP
IFY.NOT. LSHA\&KHYDII:GOTO 109 STSPOO74
STSP0039
STSPO040
STSP0041
STSP0042
STSP0043
STSPO044
STSP0045
STSP0046
STSP0047
STSP0048
STSP0049
STSP0050
STSP0051
STSP0052
STSPOO53
STSPOO54
STSP00.55
STSP0056
STSP0057
STSPOO59
STSP0059
STSP0060
STSP0061
STSP0062
STSPO063
STSPO064
STSP0065
STSP0066
STSPO067
STSP0068
STSP0069
STSP0070
STSPOOTI
STSPOOT2
STSP0073

```
```

 KPCH = KPSH(KHYD)
 GALL TIMERT(SSR,SRR,CTRI,NCTRI,KHYD,KPCH)
 STSP0075
 SAL TIMERFFSSR,SRR,CTRI,NCTRI,KHYD,KPCH)
 CALE STORRT (SRR,CSRX,FSRX,CHCAP,CONOPZ,IBTPS,SHPF,KHYD,HBFIKHYDI, STSPOOT7
 1. NHPT,KPCH, IBTPRI
 STSP0078
 DRSP:= SHPF - RHPF(KHYD): STSP0079
 SQPKD = SQPKD + DRSP**2 STSPOO8O
 ADRSP:= ADRSP + DRSP: STSPOO81
 109 CONTINUE
WRITE(6,3):SQPKD
STSP0082
STSP0083
3 FORMATT/25X;:SQPKD =',F14.0): STSP0084
IFEKISRX.NE. H GO TO 110 STSP0085
TFSRX = CSRX + BISRX STSP0086
SSQPKD:= SQPKD
SSQPKD:= SQPKD STSP0087
BFSRX = FSRK
GOTO 108 STSPOOB9
STSPOQ88
110 IF(SQPKD -GT. SSQPKD):GO TO 113
IFIKISRX .EQ. 6 .AND. ADRSP .GT. O.OI.GO TO 111 STSP0091
SSQPKD = SQPKD STSP0002
BFSRX = FFSRX
IFIKISRX.GE. 111 GO TO 114. STSPOOO4
IFIKISRX .LE. 5I:TFSRX = TFSRX + BISRX
STSP0093
IFIKISRX .LE. 5):TFSRX = TFSRX + BISRX STSP0005
IFIKISRX.GE. 6) TFSRX = TFSRX - SISRX STSP0096
GO TO 108
111 KLCCA = KLGCA + 1
IFIKLCCA:.GE. 5) GOTO 112
CHCAP = O.8*CHCAP
CSRX = RINT + RSLP*(0.5*CHCAP)
GO TO 107
112.CSRX = 0.990
FSRX = 0.990
GO TO:115
113 IF(KISRX .GT. 6) GO TO 114
KISRX = 6
SSQPKD = SQPKD
BFSRX = FSRX
TFSRX = TFSRX - SISRX STSPO110
STSPO109

```










```

 MOM
    ```





















```

N

```
```

100. CRSTF(KSD):= RSTF(KSD.KRS)
ST2R0008
```

```

 RA2 =0.0
 RA3 = 0.0
 DO 101'KSD = 1.NDRSC2
 RAI = RA1 * CRSTFIKSDI**2
 RA2 = RA2 + CRSTF(KSD)*CRSTF(KSO+1)
 101 RA3 = RA3 * CRSTF(KSD)*CRSTF(KSD+2)
 RA4 = RA1 + CRSTF(NDRSC-1)**2 - CRSTFAIJ**2
 RA5 = RA2 + CRSTF(NDRSC-1)*CRSTF(NDRSC)-CRSTFI1H*CRSTF(2): ST2R0018
 RAG = RA4*RA1 - RA2**2
 IF(RAG.EQ.0.0) GO TO 102
 RA5 = RA5/RA6
 RA3 = RA3/RAG
 RA =-RA1*RA5 - RA2*RA3
 RB = RA4*RA3 - RA2*RA5
 RD=RA**2+4.0*RB
 IFIRD - LT. 0.01 GOTO 102
 DBFRC = (RA + RD**0.51/2.0
 DIFRC= RA-DBFRC
 BFRC = DBFRC
 IFRC'= DIFRC
 WRITE(6,1):KRS,BFRC,IFRC
 1.FORMAT(15X,'KRS =, 13,5X, BFRC =',F8.4,5X,'IFRC=, F8.41
 GO TO 103
 102 LBFO=.TRUE.
WRITE{6,2) KRS
ST2ROOLI
ST2R0012
ST2R0013
ST2ROO14
ST2R0014
ST2R0015
ST2R0016
ST2R0017
ST2R0018
ST2R0019
ST2R0020
ST2R0021
RAB = RA3/RAG
ST2ROO21
ST2RO023
ST 2RO024
ST2R0025
ST2ROO26
ST 2R0027
ST2R0028
ST2R0029
ST2R0029
ST2R0030
ST2R0031.
ST2R0032
ST2R0033
ST2R0034
FORMAT ST2RO035
2 FORMAT (/15X, IMAGINARY VALUES ENCOUNTERED IN SET2RC, SEQUENCE =: ST 2RO036
1. 13)
ST2R0037
103 RETURN
ST2ROO37
ST 2R0038
END
ST2R0039

1. CHBF, NHPT,KPCH,IBTPR)

DIMENSION ASRR $(5,21)$, SRR $(5,170)$
SRRT0002
C. PERFORMS CHANNEL STORAGE ROUTING

SRRT0003
INTEGER CONOPZPRD
REAL: NHPT
SRRT0004

WRITE 6,11 CHBF

TFCES $=\mathrm{CHBF}$
INHPT $=$ NHPT
MHTP $=1$
IF (CONOPZ.EQ. O) MHTP $=4$
INHPT $=$ MHTP*INHPT
SHPF $=0.0$
RHFO $=0.9 *$ SRR(KHYD.1)
$K A F H=0$
DO $102 \mathrm{KHPT}=1, \mathrm{KPCH}$
$\mathrm{PRD}=0$
100 PRD $=P R D+1$
TRHF $=$ SRR(KHYD, KHPT)
IFTTFCFS :LE. 0.5*CHCAP) $S R X=$ CSRX
SRRT0005
SRRTT0006
SRRT 0007
SRRT0008
SRRT0009
SRRT0010
SRRT0011
SRRTOO12
SRRTOO13
SRRTOO14.
SRRTOO15
SRRT0016
SRRT0017
SRRTOO18
SRRTOO19
SRRT0020
SRRT0021
-LT. 2.OFCHCAP) $S R X=$ SRRT0022
1 CSRX + (FSRX-CSRX)*(TFGFS - 0.5*CHCAP) ((1.5*CHCAP))**3 SRRTOO23
IFITFCFS. GE. 2.0*CHCAP):SRX = FSRX
RHFI $=$ TRHF-SRX*(TRHF-RHFO)
SRRT0024
RHFO $=$ RHF1
TFCFS = RHF1 + CHBF
SRRT0025

IFITFCFS .LT. SHPFI GO TO 101
SHPF = TFCFS
IBTPS $=$ KHPT
101 IF 1 PRD . LE. 3 .AND. CONOP2 .EQ. 11 GO TO 100
KAHP $=$ KHPT $-I B T P R * M H T P+5 * I N H P T$
IF (KAHP LLT: O) GB TO 102
IFIMOD(KAHP, INHPT).NE. O) GO TO 102
$K A F H=K A F H+1$
ASRR (KHYD,KAFH) $=$ TFCFS
SRRT0026
SRRT0027
SRRT0028
SRRT0029
SRRT0030
SRRT0031
SRRT0032
SRRT0033
SRRT0034 SRRT0035

22 CONTINUE SRRT0036

```
        IFIKAFH .EQ. 21)GO:TO 104: SRRTOO38
        KAFH = KAFH +1
    103 DQ 103 KIA:= KAFH,21
    103 DO 103 KIA:= KAFH;21
104 WRITE(6,2) KHHYD,NHPT, IASRRYKHYD,KWDI, KWD = 1,21)
    2 FORMAT\/25X, SYNTHESIZED HYDROGRAPH:,I3,' INTERVAL =%,F5.2,
        1. HOURS 1/3(22X,7F10.1/1)
        WRITE(6,3):SHPF
    3 FORMATE 25X, FLOOD PEAK = ,F10.1," CFS')
RETURN
END
SUBRDUTINE STRHRSIRHPD,RHPH,IDYB,IDYE,IHRB,IHRE,NHPT,MXTRH,DPY,
        1 NRHP, [BTPR)
C SETS BEGINNING AND END TIMES OF RUNOFF ENTERING RECORDED HYDROGRAPHS
            DIMENSIEN RHPD(5),RHPH(5),IDYB(5),IDYE(5),IHRB(5),IHRE(5)
            INTEGER DAY,DPY,RHPD,RHPH
            REAL NHPT
C ESTIMATE HOURS EACH WAY FROM PEAK
            INHPT = NHPT
            IBTPR = 5*INHPT + MXTRH
            IPTE = 15*INHPT
C DETERMINE TIME OF BEGINNING AND ENDING FOR EACH STORM
            DO 106 KRHP = 1,NRHP
            KHBCK = IBTPR - RHPH(KRHP)
            IFIKHBCK .LT. OI GO TO 101
            KDBCK = KHBCK/24+1
            IHRB(KRHP) = 24*KDBCK - KHBCK
            DAY = RHPD(KRHP)
100 DAY = DAY - 
    IF(DAY ©EQ. 59.AND. DPY EQ. 366) DAY = 366
    IF&DAY UEQ. 3651 DAY = 59
    IF(DAY .EQ* D) DAY = 365
    KDBCK = KDBCK - 1
                                    SRRT0039
        KAFH = KAFH +1 
SRRT0040
SRRTOO41
SRRTOO42
SRRT0043
SRRT0044
SRRT0045
SRRT0046
SRRT0047
SRRT0048
SHR 50001 1 NRHP, IBTPR)
SHRS0002
C SETS BEGINNING AND END TIMES OF RUNOFF ENTERING RECORDED HYDROGRAPHS SHRS0003 SHRSOOO4 SHRS0005 SHRS0006
C ESTIMATE HOURS EACH WAY fROM PEAK
INHPT \(=\) NHPT SHRS0007 SHRSOOOB SHRS0009 SHRS 0010
C: DETERMINE TIME OF BEGINNING AND ENDING FOR EACH STORM
DO 106 KRHP \(=1\), NRHP
SHRSOOI1
SHRS0012
SHRSOO13
SHRS0014
SHRSOO15
SHRS0016
SHRSOO17
SHRSOO18
SHRSOO19
SHRSOO20
SHRS 0021
KDBCK \(=\) KDBCK -1
```

```
            IFIKDBCK,GT:OI GO TO 100, SHRSOO23
            IOYB{KRHP)= DAY SHRSOO24
            G0 TO 102
                                    SHRS0025
        101.IDYB(KRHP):= RHPD(KRHP)
            IHRB{KRHP):= RHPH(KRHP)-IETPR
                                    SHRS0026
            SHRSOO27
    102 KHFOR = IPTE & RHPH(KRHP)
            IFIKHFOR -LE. 24) GO TO 105
            KDFDR = KHFOR/24
            IHRE(KRHP):= KHFOR - 24*KDFOR
            IFFIMRE(KRHP:NE. O) GO TO 103
            KDFOR = KDFOR - 1 % N
        103 DAY = RHPD (KRHP)
104 CALE DAYNXTTDAY,DPY)
            KDFDR=KDFDR - 1
    IF(KDFOR .GT. O) GO TO 104
            IDYE(KRHP) = DAY SHRSOO38
            G0.70 106
        105 IDYE(KRHP) = RHPD (KRHP)
N (HNE(KRHP) = RHPH(KRHP) + IPTE
N IHRE(KRRHP) = RHPH(KRHP) + IPTE
C ELIMINATE HYDRDGRAPH OVERLAPPING
NRHP1 = NRHP-1 
NRHP1 = NRHP-1 
DO 108 KRHP = 1,NRHP1,
                            SHRSOO2%
SHRS0028
                            SHRS0029
                            SHRS0030
                                SHRS0031
                            SHRS0032
SHRS0033
SHRSO034
SHRS0035
    SHRS0036
    GO 104: SHRSO037
                SHRS0038
SHRSO039
SHRSO040
    SHRSO040
SHRS0042
SHRSOO43
SHRS0044
```



```
IF((IDYE(KRHP) GT. IDYB{KRHP+1) .AND. (.NOT. (CIDYE{KRHP) .GE. SHRS0047
1 274. AND. IDYB(KRHP+1).LE. 273). DR. IDYE(KRHP) EQ. 366)%).DR.SHRSOO48
2 (IDYE(KRHP).EQQ. IDYB(KRHP+1).AND.IHRE(KRHP).GT. IHRS(KRHP+1)SHRS0049
3 1/G0TO 107% SHRSOO5O
GD TO 108. SHRSOO51
107 IDYE(KRHP) = IDYB(KRHP+1) SHRSOO52
    IHRE(KRHP)=IHRB(KRHP+1) SHRSOO53
108 CONTINUE: SHRSOO54
109 IF(IDYBII).LE. 273.AND. RHPD(1).GE. 274.AND. RHPD(1).NE. 366)SHRSOO55
1.GOTO110 SHRSOO56
GO TO 111 SHRSOO5?
110 1DYB(1):= 274 SHRSO058
```

```
        IHRB(1)=1
    SHRS0059
    111 IF(IDYE(NRHP).GE. 274.AND. RHPD(NRHP).LE. 273.AND. IDYE(NRHP) SHRSOOSO
        1.NE. 366) GO TO:112 SHRSOO61
        GO TO 113
    112 IDYE(NRHP):= 273
        IHRE(NRHP) = 24
    113. CONTINUE
        DO 114 KRHP:= 1,NRHP SHRSOOS6
        WRITE{G,I) KRHP,IDYB(KRHP),IHRB(KRHPI,IDYE(KRHP),IHRE(KRHP) SHRS006T
    1 FORMATI5X,'RUNOFF CONTRIBUTING TO RECORDED HYDROGRAPH',I2/10X, SHRSOO68
    1. 'BEGINS ON DAY',I4,' AT HOUR',I3/10X,"AND ENDS ON DAY',I4, SHRSOO69
    2 *AT HOUR*,I3)
    114 CONTINUE
        RETURN
        END
        SUBROUTINE TIMERT(SSR;SRR,CTRI,NCTRI,KRHP,KPCH)
    C PERFORMS CHANNEL TIME ROUTING
        DIMENSION SSR(5,170),SRR(5,170),CTRI(99)
        DO : 100 KHPT = 1,KPCH
100 SRR(KRHP,KHPT):=0.0 TMRTOOO5
    KTRI = 1
    101 CONTINUE
    DO 102 KHPT:= KTRI,KPCH
    NRTRI=KHPT - KTRI +1. TMRTOOOG
    102 SRR(KRHP,KHPT):= CTRI(KTRI)*SSR(KRHP,NRTRI) + SRR(KRHHP,KHPT): TMRTOOIO
        KTRI = KTRI + 1
        IF(KTRI -LE. NCTRI) GO TO 101
        RETURN
    END TMRTOO14
TMRTOOOL
TMRT0002
TMRT0003
TMRT0004
TMRT0005
TMRT0006
TMRT000?
TMRT0008
    TMRTOOII
    TMRTOO12
    RETURN TMRTOOI3
```

APPENDIX C

DICTIONARY DF VARIABLES
 USED IN

THE KENTUCKY WATERSHED MODEL AND OPSET

```
ITEM 1 - VARIABLE.NAME
ITEM 2 - WHETHER VARIABLE IS REAL, INTEGER, OR LOGIGAL
ITEM 3 - VARIBLE DIMENSIONS
ITEM 4 - UNITS
ITEM 5 - DEFINITION OF THE VARIABLE
```


| | $\begin{aligned} & \text { EHSGDF } \\ & \text { EID } \end{aligned}$ | R | | - | ENDING HOUR OF STGRAGE GAGE DAY - Floating point |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | R | 1 | - | EXPONENT OF INFILTRATION RATE DECAY WITH INCREASED SOIL MOISTURE CONTENT |
| | ELDIF | R | 1 | 1000FT | ELEVATIGN DIFFERENCE BETHEEN BASE THERMDMETER AND BASIN MEAN ELEVATION |
| | EMAET | R | | | ESTIMATED MAXIMUM ANNUAL EVAPOTRANSPIRATION |
| | EMATF | R | 13 | SFD | END OF MONTH ACCUMULATED TOTAL FLOWS |
| | EMBFNX | R | | | END OF MONTH BASE FLOW NONLINEAR RECESSION INDEX |
| | EMFDP | R | | | EXTREME MONTHLY FLOW deviation parameter |
| | EMGWS | R | | | END OF MONTH GROUNDWATER STORAGE |
| | EMIFS | R | | | END OF MONTH INTERFLOW STORAGE |
| | EMLZS | R | | | END OF MONTH LOWER ZONE STORAGE |
| | EMSIAM | R | 12 | | END OF MONTH SEASONAL INFILTRATION ADJUSTMENT MULTIPLIER |
| | EMUZC | R | | | END OF MDNTH UPPER ZONE STGRAGE CAPACITY |
| | EMUZS | R | | | END OF MONTH UPPER ZONE STORAGE |
| | EPAET | R | | IN | ESTIMATED POTENTIAL ANNUAL EVAPOTRANSPIRATION |
| | EPCM | R | 12 | | EVAPGRATION PAN COEFFICIENT FOR MONTH |
| | EPS | R | | | MAXIMUM REQUIRED ESTIMATING TOLERANCE |
| No | EQD | R | | IN | EQUILIBRIUM DEPTH OF OVERLAND FLOW |
| ω | EQDF | R | | - | EQUILIBRIUM DEPTH FACTOR FQR OVERLAND FLOW |
| | EQDF IS | R | | - | EQUILIBRIUM DEPTH FACTOR FOR OVERLAND FLOW, IMPERVIOUS SURFACES |
| | EQOIS | R | 1 | | EQUILIBRIUM DEPTH OF OVERLAND FLOW IMPERVIOUS SURFACES |
| | ERR | R | 1 | CFS | DIFFERENCE BETWEEN RECORDED AND SYNTHESIZED DATED STREAMFLDW |
| | ETIBF | R | 1 | CFS | ERROR TABLE INIERVAL BOUNDARY FLOODS |
| | ETLF | R | 1 | - | EVAPOTRANSPIRATION LOSS FACTOR |
| | EXQPV | R | | - | EXPONENT OF FLOW PROPORTIONAL TO VELOCITY |
| | FBUZC | R | 1 | - | ADJUSTMENT FACTOR FOR BUZC |
| | FCNTRI | R | | - | FLOATING POINT CHANGE IN NUMBER DF TYME ROUTING I NCREMENTS |
| | FDAY | R | 1 | | FLOATING POINT CURRENT DAY OF THE YEAR |
| | FDPY | R | | - | FLOATING POINT DAYS PER YEAR |
| | FDSC | R | | - | FIRST DIFFERENTIAL OF SINE CURVE Magnitude |
| | FETLF | R | | - | ADJUSTMENT FACTOR FOR ETLF. |
| | FFOR | R | | - | FRACTION OF THE WATERSHED BEING FOREST |


```
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{HRL il} & 1 & LAST HOUR OF LOOP \\
\hline & HSE & R & 1 IN & CURRENT HOURLY STREAM EVAPGRATION \\
\hline & HSF & R & 1 IN & HOURLY SNOWFALL \\
\hline & HSFRG & R & 1 IN & HOURLY SNOWFALE REACHING GROUND \\
\hline & HSM & R & 1 IN & HOURLY SNOWMELT RATE \\
\hline & HSRX & R & 5 & HYDROGRAPH STORAGE RDUTING:INDEX \\
\hline & HTH & R & 1 & HOURS INTO DAY WHEN HYDROGRAPH STOPS OR STARTS \\
\hline & IBTPR & I & 1 HR & TIME FROM BEGINNING OF SAVED RUNOFF TO RECORDED HYDROGRAPH PEAK \\
\hline & IBTPS & I & 1- & TIME FROM BEGINNING OF SAVED RUNOFF TO SYNTHESIZED HYDROGRAPH PEAK \\
\hline & IDAY1 & 1 & 1 & INDEX TO 10-DAY PERIOD \\
\hline & IDAY2 & I & 1 & INDEX WITHIN 10-DAY PERIOD \\
\hline & IDYB & 1 & 5 & DAY OF ROUTING HYDROGRAPH BEGINNING \\
\hline & IDYE & 1 & 5 & DAY OF ROUTING HYDROGRAPH. ENDING \\
\hline & IFPRE & R & 1 & INTERFLOW PERIOD RECESSION CONSTANT \\
\hline & IFRC & R & 1 & INTERFLOW RECESSION CONSTANT \\
\hline & IFRL & R & 1 & INTERFLOH RECESSION LOGARITHM \\
\hline & IFS & + & 1 IN & INTERFLOW STORAGE \\
\hline 0 & IFT & I & 1 - & INDIGATOR OF IFALL TROUBLE ISKIP FIRST RECESSION IN EVALUATION OF BMIRI \\
\hline & IHRB & 1 & 5 & HOUR OF DAY OF ROUTING HYDROGRAPH BEGINNING \\
\hline & IHRE & I & 5 & HOUR OF DAY OF ROUTING HYDROGRAPH ENDING \\
\hline & INHPT & 1 & \(1 . H R\) & INTEGER NUMBER OF HOURS BETWEEN HYDROGRAPH PRINTING POINTS \\
\hline & IPPH & 1 & 1 & INTEGER PERIODS PER HOUR \\
\hline & IPTE & I & 1 HR & TIME FROM PEAK OF RECORDED HYDROGRAPH TO END OF SAVED RUNOFF \\
\hline & ISGRD & I & 1 - & CURRENT STORAGE GAGE RAINFALL DAY \\
\hline & IWBG & I & 1 - & INDEX NUMBER OF WEATHER BUREAU PRECIPITATION GAGE \\
\hline & KAA & 1 & 1 & COUNTER OF APPROPRIATE ELEMENT FROM ALBEDD ARRAY \\
\hline & KAAO & I & 1 - & PRECEDING VALUE OF KAA \\
\hline & KAFH & I & 1 & COUNTER FOR ABSTRACTED FLOW HYDROGRAPH \\
\hline & KAHP & 1 & 1 & COUNTER FOR ABSTRACTING HYDROGRAPH POINTS \\
\hline & KBRC & I & 1 & COUNTER OF ROUGH CYCLES SINCE BEST ONE \\
\hline & KBI-7 & I & 1- & COUNTERS FOR COMBINING WATERSHED BITS \\
\hline
\end{tabular}
```



```
\begin{tabular}{|c|c|c|c|}
\hline PEP & R & IN & PRECIPITATION ESTIMATED FGR PERIOD \\
\hline PET & R & IN & CURRENT DAILY POTENTIAL EVAPOTRANSPIRATION \\
\hline PETLE & R & 1 & PREVIOUS ESTIMATE OF EVAPOTRANSPIRATION LOSS FACTOR \\
\hline PETU & R & 1 IN & UNADJUSTED CURRENT DAILY PGTENTIAL EVAPOTRANSPIRATION \\
\hline PE4P & R & 4 IN & PRECEPITATIGN ESTIMATES FOR 4 PERIODS \\
\hline PGW & R & IN & PERCOLATION TO GROUNO WATER \\
\hline PLZC & R & \(1 . \mathrm{IN}\) & Previous estimate of lzc \\
\hline PLZS & R & 1 IN & PERCOLATION TO LOWER ZONE STORAGE \\
\hline PMEIFS & R & IN & PERIOD MOISTURE ENTERING INTERFLOW STORAGE \\
\hline PMELZS & R & IN & PERIOD MOISTURE ENTERING LOWER zone Storage \\
\hline PMEOFS & R & 1. IN & PERIOD MOISTURE ENTERING OVERLAND FLOW Stopage \\
\hline PMEUZS & R & 1 IN & PERIOD MOISTURE ENTERING UPPER ZONE STORAGE \\
\hline PPH & R & 1 & PERIODS PER HOUR \\
\hline PPI & R & \(1 . \mathrm{N}\) & PRECIPITATION PASSING INTERCEPTION \\
\hline PRD & I & 1 & CURRENT PERIOD DF THE HOUR \\
\hline PRDF & R & 1 & CURRENT PERIGD OF THE HOUR-Floating point \\
\hline PRH & R & 1 IN & PRECIPITATION RECORDED FOR HOUR \\
\hline PRLH & R & 1 IN & PRECIPITATION RECORDED FOR LAST HOUR \\
\hline PRM1 & R & 1 IN & PRECIPITATION DURING WETTEST MONTH \\
\hline PRM2 & R & 1 IN & PRECIPITATION DURING SECOND WETTEST MONTH \\
\hline PRNH & R & 1 IN & PRECEPITATION RECORDED FOR NEXT HOUR \\
\hline PSIAC & R & 1 - & Previous estimate of seasonal inflltration andustment \\
\hline PSUZC & R & 1 - & PREVIOUS ESTIMAED OF SEASONAL UPPER ZONE STORAGE CAPACIT: FACTOR \\
\hline PXCSA & R & 1 IN & Precipitation index for changing snow albedo \\
\hline RA & R & 1 - & RECESSION ALPHA \\
\hline RAA & R & 1 IN & RAINFALL ADJUSTMENT ADDITION \\
\hline RADF & R & 1 CFS & RECORDED AVERAGE DAILY FLOW \\
\hline RAM & R & 1 & RAINFALE ADJUSTMENT MULTIPLIER \\
\hline RATFV & R & 1 SFD & RECORDED ANNUAL TOTAL FLOW VOLUME \\
\hline RAI-6 & R & 1 & REGRESSION ACCUMULATORS \\
\hline RB & R & 1 - & RECESSION BETA \\
\hline RBF & R & 1 CFS & RECORDED BASE FLOW \\
\hline RD & R & 1 & RECESSION OISCRIMINANT \\
\hline RDPT & R & 1 IN & RECORDED DAILY PRECIPITATION TOTAL \\
\hline RFRISE & R & 1 IN & RECORDED FLOW RISE \\
\hline
\end{tabular}
```

```
\begin{tabular}{|c|c|c|c|}
\hline RGPM & R & 1 & - \\
\hline RGPMB & R & 1 & - \\
\hline RHFMC & R & 1 & IN \\
\hline RHFO & R & 1 & IN \\
\hline RHFI & R & 1 & IN \\
\hline RHPD & 1 & 5 & - \\
\hline RHPF & R & 5 & CFS \\
\hline RHPH & I & 5 & - \\
\hline RICD & R & 1 & - \\
\hline RICY & R & 37 & - \\
\hline RIF & R & 1 & CFS \\
\hline RINT & R & 1 & - \\
\hline RMFX & R & 1 & - \\
\hline RMPF & R & 1 & CFS \\
\hline RMWR & R & 1 & IN \\
\hline RSBBF & R & 20 & CFS \\
\hline RSBD & 1 & 20 & - \\
\hline RSBFRC & R & 20 & - \\
\hline RSBIF & R & 20 & CFS \\
\hline RSFM & R & 1 & CFS \\
\hline RSFN & R & 1 & CFS \\
\hline RSF1 & R & 1 & CFS \\
\hline RSF2 & R & 1 & CFS \\
\hline RSIFRC & R & 20 & - \\
\hline RSL & I & 1 & bay \\
\hline RSLP & R & 1 & - \\
\hline RSPTF & R & 1 & IN \\
\hline RSTF & R & 50,20 & CFS \\
\hline RSTR & R & 1 & - \\
\hline RWRAIN & R & 1 & IN \\
\hline SADF & R & 1 & CFS \\
\hline SARAX & R & 1 & IN \\
\hline SASFX & R & 1 & IN \\
\hline SATFV & R & 1 & SFD \\
\hline SATFVI & R & 1 & IN \\
\hline SATRI & R & 99 & - \\
\hline
\end{tabular}
RECORDING GAGE PRECIPITATION MULTIPLIER
RECORDING GAGE PRECIPITATION MULTIPLIER - BASIC
ROUTED HYDROGRAPH FLOW AT MINIMUM CUTOFF
PRECEDING ROUTED HYDROGRAPH FLOW
CURRENT ROUTED HYOROGRAPH FLOW (EXCLUDING BASE FLON)
RECORDED HYDROGRAPH PEAK DAY
RECORDED HYDROGRAPH PEAK FLOW
REGORDED HYDROGRAPH PEAK HOUR
Radiation incidence for the current day
RADIATION INCIDENCE OVER THE CALENDAR YEAR
RECORDED INTERFLOW
REGRESSION INTERCEPT
RECORDED MONTHLY FLOW INDEX
REQUESTED MINIMUM DAILY PEAK FLDW TD be printed
RAINFALE MAXIMUM WITHOUT RUNOFF
ESTIMATED BASE FLOW AT BEGINNING OF RECESSION SEQUENCE RECESSION SEQUENCE BEGINNING DAY
recession sequence base flow recession constant
ESTIMATED INTERFLOW AT BEGINNING OF RECESSION SEQUENCE
RECESSION SEQUENCE FLOH MINIMUM
RECORDED STREAMFLOW ON NEW DAY
RECORDED STREAMFLOW ON DAY 1
RECORDED STREAMFLOW ON DAY 2
RECESSION SEQUENCE INTERFLOW RECESSIDN CONSTANT CURRENT RECESSION SEQUENCE LENGTH
REGRESSION SLOPE
ROUTED SYNTHESTZED PERIOD TOTAL FLOW
RECESSION SEQUENCE TOTAL FLOWS
RATIO OF SYNTHESIZED TO RECORDED FLOW
RECORDED WATERSHED RAINFALL
SYNTHESTZED AVERAGE DAILY FLOW
SNOW ALBEDO RAINFALL AGING INDEX
SNOU ALBEDO SNOWFALL FRESHENING INDEX
SYNTHESIZED ANNUAL TOTAL FLOW VOLUME
SYNTHESIZED ANNUAL TOTAL FLOW VOLUME IN INCHES
SHIFT ADJUSTMENTS FOR TIME ROUTING INCREMERTS
```



```
\begin{tabular}{|c|c|c|c|}
\hline SOFRFI & R & & - \\
\hline SPBF & R & & IN \\
\hline SPBFEW & \(R\) & & - \\
\hline SPDR & R & & IN \\
\hline SPIF & R. & 1 & IN \\
\hline SPEW & R & 1 & IN \\
\hline SPLWC & R & 1 & IN \\
\hline SPM & R & & - \\
\hline SPOF & R & & CFS \\
\hline SPTF & R & 1 & IN \\
\hline SPTW & R & 1 & IN \\
\hline SPTWCC & R & 1 & \\
\hline SQER & R & 22 & CFS \\
\hline SQPKD & R & 1 & - \\
\hline SRR & R & 5,170 & CFS \\
\hline SRX & R & & - \\
\hline SSERA & R & & CFS \\
\hline SSERAV & \(R\) & 1 & CFS \\
\hline SSERR & R & 1 & CFS \\
\hline SSERRV & R & 1 & CFS \\
\hline SSESF & R & 1. & CFS \\
\hline SSQM & R & 1 & - \\
\hline SSQPKD & R & 1 & - \\
\hline SSR & R & 5,170 & CFS \\
\hline SSRT & R & & - \\
\hline SSSQM & R & & - \\
\hline STMD & R & & - \\
\hline SUBWF & \(R\) & & - \\
\hline SUZC & R & & - \\
\hline
\end{tabular}
SNOW OVERLAND FLOW ROUTING FACTOR IMPERVIOUS SURFACES SYNTHESIZED PERIOD BASE FLOW
SNOW PACK BASIC MAXIMUM FRACTION IN LIQUID WATER
SYNTHESIZED PER 100 DIRECT RUNOFF
SYNTHESIZED PERIOD INTERFLOW
SNOW PACK LIQUID WATER CONTENT
SNOWPACK LIQUID WATER HOLDING CAPACITY
SNOW PRECIPITATION MULTIPLIER
SYNTHESIZED PERIOD OVERLAND FLOW IINCLUDING CHANNEL PRECIPIFATIONI
SYNTHESIZED PERIOD TOTAL FLOW
SNOW PACK TOTAL WATER CONTENT
SNOWPACK MINIMUM TOTAL WATER FOR COMPLETE BASIN COVERAGE ACCUMULATED SQUARES OF DIFFERENCES BETHEEN RECORDED AND SYNTHESIZED DAILY STREAMFLOWS
SUM OF SQUARED PEAK DIFFERENCES
STORM RUNOFF ROUTED DOWN CHANNELS CURRENT STORAGE ROUTING INDEX
accumulated absolute differences between recorded and SYNTHESIZED FLOWS OVER INTERVALS
OVERALL AVERAGE ABSOLUTE DIFFERENCE BETWEEN RECORDED AND SYNTHESIZED FLOWS
ACCUMULATED DIFFERENCES BETWEEN REGORDED AND SYNTHESIIED FLOWS OVER INTERVALS
OVERALL AVERAGE DIFFERENCE BETWEEN RECORDED AND SYNTHESIZED FLOWS
ACCUMULATED STANDARD ERROR OF SYNTHESIZED FLDW OVER INTERVALS
sum of the squares of the monthly flow deviations
SMALEEST VALUE OF SQPKD
SYNTHESIZED STORM RUNOFF INOT CHANNEL ROUTED
SQUARE ROOT OF OVERLAND FLOW SURFACE SLOPE
CURRENT SMALEEST ESTIMATE OF SSQM
SNOW TOTAL MOISTURE DENSITY
SUBSURFACE WATER FLOW OUT OF THE BASIN
SEASONAL UPPER ZONE STORAGE CAPACITY FACTOR
```


| | TRIP | I | 1 :- | COUNTER SPECIFYING PROGRAM PORTIONS |
| :---: | :---: | :---: | :---: | :---: |
| | TSHV | R | - | TOTAL SYNTHESIZED HYDROGRAPH VOLUME |
| | TSRX | R | 7 - | array of trial istorage routing indices |
| | T200FH | R | 21 IN | TOP : 20 Values during the year of hourly overland flow |
| | T20PRH | R | 21 IN | TOP 20 VALUES DURING THE YEAR OF HOURLY PRECIPITATION |
| | UHFA | R | 99 IN | UNROUTED HYDROGRAPH FLOW ARRAY |
| | URHF | R | 1 IN | CURRENT UNROUTED HYDROGRAPH FLOW |
| | UZC | R | 1 IN | UPPER ZONE STORAGE CAPACITY |
| | UZINFX | R | 1 - | UPPER ZONE INFILTRATION INDEX |
| | UZINLI | R | IN/HR | CURRENT UPPER ZONE INFILTRATION TO LOWER ZONE |
| | UZRX | R | 1 - | UPPER ZONE MOISTURE RETENTION INDEX |
| | UZS | R | 1 IN | CURRENT UPPER ZONE STORAGE |
| | VDCY | R | 366 - | VALUE DATED BY CALENDAR DAY |
| | VDMD | R | 12 | VALUE DATED BY MONTH DAY |
| | VINTCR | R | 1 IN | vegetative interception - Current rate per period |
| | VINTMR | R | 1 IN/HR | VEGETATIVE INTERCEPTION - MAXIMUM RATE |
| | VWIN | R | 1 SFD | VQLUME DF AN INCH OF RUNOFF FROM WATERSHED |
| | WAPV | R | 1 - | Weighted average parameter value |
| | WCFS | R | 1 CFS | WATERSHED CFS EQUALLING ONE INCH PER HOUR |
| \bigcirc | WEIFS | R | 1 IN | WATER ENTERING INTERFLOW STORAGE |
| , | WFDX | R | 1 - | WINTER FLOW DEVIATION INDEX |
| | WI | R | $1.1 N$ | WATER INFILTRATION |
| | WSBIT | R | 1 - | WATERSHED BIT FOR RESTRUCTURING TIME-AREA HISTOGRAM |
| | WSG | R | 1 - | WEIGHTING FACTOR FOR STORAGE RAIN GAGE |
| | WSG2 | R | 1 - | SECOND WEIGHTING FACTOR FOR STORAGE RAIN GAGE |
| | WSM | R | 1 - | NUMBER OF WET SUMMER MONTHS |
| | WT4AM | R | 1 DEGF | AVERAGE 4 A.M. TEMPERATURE OVER WATERSHED |
| | WT4PM | R | 1 DEGF | AVERAGE 4 P.M. TEMPERATURE OVER WATERSHED |
| | XDNFS | R | - | INDEX DENSITY OF NEW-FALLEN SNOW |
| | XELR | R | | RAIN INDEX FOR ESTIMATING LAPSE RATE $0.0=$ DRY, $4.0:=$ RAIN |
| | XMPFT | R | 12 - | INDEX OF MONTHLY PREDOMINATE FLOW TYPE |
| | YEAR | I | 1. | LAST TWO DIGITS OF CURRENT YEAR |
| | YR 1 | I | , | LAST TWO DIGITS OF FIRST CALENDAR YEAR IN WATER YEAR |
| | YR2 | 1 | | LAST TWO digits of second calendar year in water year |
| | Ytitle | | | year title |

\square

BIBLIOGRAPHY

1. Amorocho, J. and Hart, W.E. "A Critique of Current Methods in Hydrologic Systems Investigations, " Transactions: American Geophysical Union. Vol. 45, (June, 1964), pp. 307-321.
2. Balk, Everett L. "Application of the Stanford Watershed Model to the Coshocton Hydrologic Station Data, " Unpublished Master's Thesis, Department of Civil Engineering, The Ohio State University, 1968.
3. Barnes, B.S. "Discussion of Analysis of Runoff Characteristics," Transaction A.S.C.Ec, Vol. 105, 1940, p. 106.
4. Briggs, Dana L. "Application of the Stanford Streamflow Simulation Model to Small Agricultural Watersheds at Coshocton, Ohio, "Unpublished Master's Thesis, Department of Civil Engineering, The Ohio State University, 1969.
5. Chow, Ven Te, "Application of Electronic Computers in Hydrology, "Handbook of Applied Hydrology, Ven Te Chow (ed.), New York: McGraw-Hill Book Co., 1964, pp. 29-1 to 29-2.
6. Claborn, B.J., and Moore, Walter L. Numerical Simulation of Watershed Hydrology. Austin: University of Texas, Department of Civil Engineering, Technical Report HYD 14-7001, August, 1970.
7. Clark, C.O. "Storage and the Unit Hydrograph," Transaction A.S.C.E. , Vol. 110, 1945, pp. 1419-1488.
8. Clarke, K.D. Application of Stanford Watershed Model Concepts to Predict Flood Peaks for Small Drainage Areas. Lexington, Kentucky: Kentucky Department of Highways, Division of Research, HPR-1(3): KYHPR-64-23, 1968.
9. Cline, James N. Planning Flood Control Measures by Digital Computer. Lexington: University of Kentucky, Water Resources Institute Research Report No. 11, 1968, pp. 249-253.
10. Crawford, Norman H., and Linsley, R。K. Digital Simulation in Hydrology: Stanford Watershed Model IV. Stanford, California: Stanford University, Department of Civil Engineering, Technical Report No. 39, July, 1966.
11. Dawdy, David R. and Bergmann, J.M. "Effect of Rainfall Variability on Streamflow Simulation," Water Resources Research, Vol. 5, No. 5, October, 1969, pp. 958-966.
12. Dawdy, David R. and O'Donnell, T. "Mathematical Models of Catchment Behavior, " Proceedings of the A.S. C. E. , Vol. 91, No. HY4, July, 1965, pp. 123-137.
13. Dempsey, Clyde R. The Effects of Geographical and Climatic Setting on the Economic Advantages of Alternative Flood Control Measures. Lexington: University of Kentucky, Water Resources Institute, Research Report No. 10, 1968.
14. Hydrocomp International. "HSP Operations Manual," Palo Alto, California, 1969.
15. Hydrocomp International. "Simulation of Continuous Discharge and Stage Hydrographs in the North Branch of the Chicago River," Palo Alto, California, 1970.
16. James, L. Douglas. An Evaluation of Relationships Between Streamflow Patterns and Watershed Characteristics through the Use of OPSET: A Self-Calibrating Version of the Stanford Watershed Model, Lexington: University of Kentucky, Water Resources Institute, Research Report No. 36, 1970.
17. James, L. Douglas. "Using a Digital Computer to Estimate the Effects of Urban Development on Flood Peaks,! Water Resources Research, Vol. 1, (Second Quarter, 1965), pp. 223-233.
18. James, L. Douglasıand Thompson, William O. "Least Squares Estimation of Constants in a Linear Recession Model," Water Resources Research, Vol. 6, (August, 1970), pp. 1062-1069.
19. Ligon, James R., Law, Albert G., and Higgins, Donald H. Evaluation and Application of a Digital Hydrologic Simulation Model. Clemson, South Carolina: Clemson University, Water Resources Research Institute, Report No. 12, November, 1969.
20.. Linsley, Ray K. discussion on "Urban Runoff by Road Research Laboratory Method" by Terstriep and Stall, Proceedings of the A.S.C.E., Vol. 96, HY4, April, 1970, pp. 1100-1102.
20. Linsley, Ray K., Kohler, Max A., and Paulhus, Joseph L. H., Hydrology for Engineers. New York: McGraw-Hill Book Co., 1958.
21. Miller, Carlos F. Evaluation of Runoff Coefficients from Small Natural Drainage Areas. Lexington: University of Kentucky, Water Resources Institute, Research Report No. 14, 1968.
22. Musgrave, G.W. "How Much of the Rain Enters the Soil?" Water: The Yearbook of Agriculture, 1955. Washington: U.S. Government Printing Office: 1955, pp. 151-159.
23. Rosenbrock, H. H. "An Automatic Method of Finding the Greatest or Least Value of a Funcion," The Computer Journal, Vol. 3, 1960, p. 175.
24. Ross, Glendon A. The Stanford Watershed Model: The Correlation of Parameter Values Selected by a Computerized Procedure with Measurable Physical Characteristics of the Watershed. Lexington: University of Kentucky, Water Resources Institute, Research Report No. 35, 1970.
25. U.S. Bureau of Reclamation, Design of Small Dams. Washington: USGPO, 1960.

[^0]: *Each Subroutine is presented individually in Chapter III.

[^1]: ${ }^{1}$ A preliminary version of OPSET' was used for this study.

[^2]: *This designation locates the referenced statements within the program listings of Appendix B.

[^3]: *The asterisk (*) is used in all equations of this report as denoting multiplication in the convention of Fortran IV.

[^4]: *These numbers are defined in Subroutine SETFDI.

[^5]: * Base-flow month in which synthesized base flow is more than one-half of total flow (See Table 11).

[^6]: * December is the month beginning wet sea.son (MBWS)
 ***June is the month beginning dry sea.son (MBDS)

[^7]: * Synthesized flow less than the preassigned minimum value (MINH) which is 10 cfs for this station year.

