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PART I 



ABSTRACT 

A technique for controlling the soil moisture potential in the root zone 

of transpiring plants was developed. The method uses the principles of 

unsaturated flow through a porous media to develop the desired moisture 

potential. In the case of non-steady state transpiration, the maximum possible 

fluctuation in the soil moisture potential can be determined by the techniques 

presented. 

KEY WORDS: Transpiration, soil moisture. 
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PARTJ 

CONTROLLING THE SOIL MOISTURE ENVIRONMENT 
OF TRANSPIRING PLANTS 

C. T. Haan, Principal Investigator 

B. J. Barfield, Assistant Professor 

Controlling the soil moisture environment of transpiring plants at 

specified levels of moisture potential is a problem that has bothered scientists 

for several decades. The soil moisture potential is commonly termed suction, 

tension or negative pressure. There are presently three methods being used 

for controlling soil moisture potential at relatively constant levels. 

The first and most commonly used of these methods is to wet the soil 

to a certain moisture content, allow the soil to dry from the water abstraction of 

the plant and then to rewet the soil. This procedure is repeated for the duration 

of the experiment. The major disadvantage to the method is that the water 

potential of the soil is always changing and may vary between wide limits 

unless carefully monitored. 

A second method of controlling the moisture potential is to saturate 

the soil with an osmotic agent made up of water and a solute. The osmotic 

solution simulates a negative soil-water potential. One commonly used solute 

is polyethylene-glycol (PEG). One disadvantage of this method is the 

possibility of toxic effects of the solute on plants (Jackson, 1962; Greenway et al. 



1968). A second disadvantage is that plants are now growing in a saturated 

media so that water movement through the media cannot limit transpiration as 

it can in natural conditions and aeration of the roots is greatly hampered. 

To overcome the disadvantages of growing plants in a soil saturated 

with an osmotic agent, Painter (1966) and Cox and Boersma (1967) have 

developed soil cells that use the osmotic potential of (PEG) to create a negative 

soil water potential in the soil by surrounding the soil with a semipermeable 

membrane. The membrane separates the soil from the PEG solution so the 

soil is not saturated. The membrane must be permeable to water but not to 

PEG which means the water potential of the soil will come to equilibrium with 

the osmotic potential of the PEG solution. One major disadvantage of this 

method is the semipermeable membranes tend to deteriorate with time due to 

the biologic activity in soil so that the moisture potential of the soil can be 

controlled for only about 12 days. This problem may be solved by using 

bactericide or by changing the membrane periodically. 

In conj unction with some research on the effect of soil moisture 

potential on evapotranspiration another method for controlling soil moisture 

was developed. This method uses the principle of unsaturated flow through a 

porous media to control the soil moisture potential. 

Operating Principles of Cell 

A single plant cell and its water supply is shown in Figure L The 

purpose of the cell is to maintain a constant water potential ~ at the interface 

between the soil and the porous media. The design variables are the distance 
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d tl:tat tl:te water level is below tl:te soil and tl:te relationships between tl:te water 

content, moisture potential and conductivity of tl:te porous media ( 9 - ip- K 

relationsl:tip). 

It is assumed tl:tat tl:te moisture content in tl:te soil surrounding tl:te 

plant roots is uniform. For tl:tis assumption to be valid, evaporation from the 

soil surface must be prevented and the soil cannot be too deep. Tl:te plant roots 

will tend to grow toward tl:te most readily available water and will thus distribute 

along tl:te soil-porous media interface. To prevent tl:te roots from penetrating 

tl:te porous media a fine screen is placed between the soil and the porous media. 

A number 400 screen 'IVith 0. 037 mm openings l:tas been found satisfactory for 

this purpose. 

Tl:te water level in tl:te porous media is controlled by a bubble tube 

arrangement. The bubble tube is adjustable to permit raising or lowering tl:te 

water level in tl:te porous media. Tl:te rate water is being used can be determined 

from successive readings on tl:te burette. 

From Figure 1 it can be seen tl:tat predicting tl:te movement of 

moisture from tl:te water level to the plant is a problem in unsaturated flow. 

The relationsl:tip governing tl:te movement of moisture in unsaturated soil is 

o9 = _o [K(8) tl - K(G) J at oz az (1) 

and the rate of flow is given by 

Vz = -K (9) [~ -1] (2) 

-3-



where the z direction is taken as positive downward and V is the velocity of 
z 

flow in the z direction. 

Equations (1) and (2) c:i.n be solved by taking as boundary conditions 

constant moisture contents at Z = 0, the soil-porous media interface and at 

z = d, the water level in the porous media. 

In general, numerical techniques such as described by Hanks and 

Bowers (1962) must be used to solve equations (1) and (2). Swartzendruber (1969) 

discusses the special case of steady state evaporation from a soil surface with 

a constant water table height when the hydraulic conductivity is defined by the 

following empirical relationship proposed by Gardner (1958). 

m 
K(9) =K/(cT +l) 

s 

where K is the saturated hydraulic conductivity, Tis the suction head ( - ip ), 
s 

and c and m are constants. 

Using this notation, equation (2) bGcomes 

V =K(9)[1+
0

T/ ] 
z "z 

which can be rewritten as 

z = - J dT 
1-V/K 

In these relationships V is positive downward. 

Gardner (1958) presents the solution for equation (5) for values of 

m equal to 1, 3/2, 2, 3 and 4. Swartzendruber presents the solution for the 

-4-

(3) 

(4) 

(5) 



case m equal to 2 and the boundary condition that T equals O at z equals d as 

Z=d-
K 

s 
J./2 

[-cV(K -V)J 
s 

arctan -rv .. _ 
K - V 

s 

1./2 

For a given V, equation (6) specified the distribution of Twith z. 

(6) 

For example if a porous media 30 cm deep is found to have m equal 2, c equal 

-2 
. 003 (cm water\ , and K equal 5 cm per day, the curves of Figure 2 result. 

' s 

Swartzendruber also shows that for these conditions the maximum rate of flow 

can be determined from the equation 

-V (K -V ) = 
m s m 

2 2 
K 11 

s 

4c d
2 

(7) 

If the porous media is such that equation (3) is not valid, numerical 

techniques can be employed on equation (1) to obtain curves like those shown 

in Figure (2). 

Figure (2) sh6ws that the moisture potential at the soil-porous media 

interface is a function of the transpiration rate and the depth to the water table. 

The depth to the water table is easily controlled. Thus for a given transpiration 

rate, the moisture potential in the soil can be controlled at selected values. 

For example for the porous media used to get Figure 2, if the transpiration 

rate is 2. 8 cm per day and a moisture potential of 400 cm is desired, the water 

level would have to be 29. 4 cm below the soil-porous media interface. If a 

tension of 200 cm was desired, the depth to the water level would be only 27. 5 

cm. 

- 5 -



If the transpiration rate is 1 cm per day and a tension of 400 cm is 

desired, the cell of Figure 2 will not work since the maximum tension at 1 cm 

per day is only 45 cm. This means a coarser porous material such as used to 

produce Figure 3 would have to be employed. Here 400 cm of tension is 

reached when the depth to the water table is 19. 5 inches. For high transpiration 

rates the depth to the water table would be quite small. 

Discussion 

The method presented here enables one to control the soil moisture 

potential at a constant level as long as the transpiration rate of the plant is 

constant. If the transpiration rate is varying, the upper and lower limits of 

moisture potential can be determined. For example for the situation used to 

produce Figure 2, if the water table depth is 25 cm and the transpiration rate 

is varying between O and 2 cm per day, the soil moisture potential will always 

be greater than 22 cm and less than 55 cm. 

Figures 2 and 3 show that at relatively high tensions, the slope of 

the potential versus water table depth becomes very steep for these two soils 

indicating that a slight change in water table depth produces a large change in 

the moisture potential. If a finer porous media had been used, the slope would 

have been less steep; however, the depth to the water table for a tension of 

1000 cm would have been very large. To overcome these difficulties a two 

layer porous media can be used with a fine material on top of a coarser 

material. The flow characteristics of the two materials, the moisture potentials 
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desired and the total allowable depth to the water table would determine the 

depths of the individual layers of material. 
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ABSTRACT 

Two implicit leaf temperature prediction equations were derived from 

the energy balance approach. The equations define sensible and latent heat 

transfer from a plant population as a two step process: 

1. Transfer between the plant leaf and the canopy bulk air and 

2. Transfer between the canopy bulk air and the atmosphere. 

Boundary layer concepts were applied to leaf heat transfer in both 

equations. Turbulent atmospheric transfer by free and forced convection were 

considered. 

Measurements of leaf temperature and wind velocity, temperature and 

humidity profiles for a cucumber plot were taken during ten tests. Richardson 

numbers to classify atmospheric stability were determined. The neutral wind 

velocity profile parameters, roughness height and zero displacement height 

were determined by a computerized least squares technique using data from the 

ten tests. Calculated Richardson's numbers indicated transfer by free 

convection. Comparison of predicted and measured leaf temperatures revealed 

the forced convection prediction equations considerably over estimated leaf 

temperature while the free convection predictions was much more accurate. 

KEY WORDS: Leaf temperature, transpiration, mist irrigation, micrometeorology. 

iii 



TABLE OF CONTENTS 

Page 
PART II 

ABSTRACT iii 

LIST OF TABLES vii 

LIST OF FIGURES ix 

CHAPTER 

I. 

II. 

III. 

INTRODUCTION 

LITERATURE REVIEW 

A. Heat Transfer from an Individual Leaf 

1. Early Work 
2. Sensible Heat Transfer 
3. Latent Heat Transfer 
4. Radient Heat Transfer . 
5. Total Energy Budget of an Individual Leaf 

B. Heat Transfer From the Plant Canopy 

1 

3 

3 

3 
4 
6 
7 

7 

10 

1. Stability Criteria 10 
2. Heat Transfer With Forced Convection Conditions . 11 
3. Heat Transfer With Free Convection Conditions 13 

THEORETICAL DEVELOPMENT 

A. The Energy Balance 

B. Derivation of Prediction Equations 

1. Leaf Heat Transfer . 
2. Transfer in the Atmosphere 

a. 
b. 

Transfer with a Neutral Atmosphere 
Transfer with an Unstable Atmosphere 

v 

16 

16 

18 

18 
22 

22 
27 



IV. 

V. 

VI. 

APPENDIX 

C. Working Approximations . 

1. Roughness and Zero Displacement Heights 
2. Boundary Layer Resistance 
3. Leaf Stomata! Resistance . 

EXPERIMENTAL EQUIPMENT AND PROCEDURES 

A. Plot Cb.aracteristics . 

B. Experimental Procedure 

RESULTS AND DISCUSSION . 

A. Richardson Number and Stability 

B. Roughness Height and Zero Displacement Height . 

C. Vapor Pressure Gradient 

D. Aerodynamic Prediction Equation . 

1. Sensitivity of Aerodynamic Prediction Equation To 
Inputs 

a. 
b. 
c. 

Sensitivity to Roughness Height 
Sensitivity to Stomata! Resistance 
Sensitivity to Boundary Layer Resistance . 

E. Free Convection Prediction Equation . 

F. Statistical Analysis of the Results 

l. Statistical Analysis of the Aerodynamic Prediction 

28 

29 
29 
30 

31 

31 

31 

39 

39 

41 

41 

42 

43 

49 
49 
49 

50 

52 

Equation Results . 52 
2. Statistical Analysis of the Free Convection 

Prediction Equation Results 52 
3. Soil Heat Loss 52 

SUMMARY AND CONCLUSION 56 

58 

Symbols and Abbreviations 63 

BIBLIOGRAPHY 66 

vi 



LIST OF TABLES 

Table Page 

1 Richardson Number Results 40 

2 Aerodynamic Prediction Results 40 

3 Sensitivity of Aerodynamic Prediction Equation to Roughness 
Height 48 

4 Free Convection Prediction Results 48 

5 Results of Statistical Analysis 53 

6 Experimental Results 59 

7 Experimental Results 61 

vii 



LIST OF FIGURES 

Figure Page 

1 The Daytime Energy Balance of Bare Ground 17 

2 Theoretical Model of a Leaf 21 

3 Log Linear Velocity Profile 24 

4 Plot Area Characteristics . 32 

5 Vertical Cross Section of Instrument Layout 33 

6 Top View of Plot . 35 

7 Detail of Equipment Design 36 

8 Wavelength Response Characteristics of Thornthwaite 601AA 
Net Radiometer 38 

9 Aerodynamic Prediction Results 44 

10 Aerodynamic Prediction Results 45 

11 Sensitivity of Aerodynamic Prediction Equation to Stomatal 
Resistance 46 

12 Sensitivity of Aerodynamic Prediction Equation to Boundary 
Layer Resistance 47 

13 Free Convection Results 51 

14 Analysis of Soil Heat Loss - Soil Temperature at Two Times 54 

viii 



CHAPTER I 

INTRODUCTION 

Modification of agricultural plant environment to increase productivity 

and net economic return holds promise for farmers. Because of the cost 

involved and possible detrimental effects of most modification methods it is 

advantageous to have a thorough knowledge of the natural processes 

influencing plant growth and to be able to predict the parameter modified 

under naturally varying environmental conditions. With this understanding, 

an efficient method for modification of plant environment may be selected 

and the desired results obtained. The modified parameter must limit plant 

growth in order for modification to be desirable. 

Plant growth is very much a function of leaf temperature. Obviously, 

temperatures near freezing and those that cause heat damage are detrimental 

to growth. However, even more moderate temperatures may be a limiting 

growth factor because most biological reactions are temperature dependent. 

An optimum growth temperature has been shown to exist for most plants (11). 

In order to selecta method to modify plant tempe·rature, it is desirable to 

understand the interrelationship between environment and plant temperature. 



In the natural environment leaf heat transfer occurs primarily in 

three forms: (1) radiant, (2) latent and (3) sensible. Since the recognition 

of these processes in 1875, they have received considerable study and their 

relative importance has been subject to much controversy (2). Quantitative 

expressions have been developed and tested by previous workers for these 

three transfer processes, for heat transfer from individual plant leaves and 

from plant canopies under natural atmospheric conditions (11, 9, 12, 15, 17, 

1, 7, 14). 

The purpose of this investigation was to develop a prediction relation­

ship for leaf temperature under natural conditions and to test its validity 

under field conditions. This was accomplished by combining the transfer 

terms from the leaf and from the plant canopy to obtain an equation for the 

heat balance of a crop. The resulting equation is a transcendental function 

of leaf temperature in terms of meteorological and morphological variables. 

Data required to test the equation and to classify atmospheric stability 

was taken during the summer of 1969 over a cucumber plot on the University 

of KentuckY Horticultural Farm. 
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CHAPTER II 

LITERATURE REVIEW 

HEAT TRANSFER FROM AN INDIVIDUAL LEAF 

Early Work 

The study of leaf temperature dates back to the second quarter of the 

19th Century when Van Beek and Bergsma in 1838 found on one occasion a 

plant temperature to be 22°C warmer than the air (4). Askenasy in 1875 

observed that thin leaves in sunshine were 4-5° C warmer than the air, while 

the thick leaves of succulent plants were some 20°C warmer than the air (2). 

Askenasy in the same paper attributed the cooling of leaves to back radiation, 

air movement over the leaf and transpiration. The main concerns of 

investigations following the recognition of these three transfer processes 

have been the relative importance of transpiration and the development of 

quantitative expressions to describe heat transfer processes. 

Seemingly contradictory results were obtained regarding the 

importance of transpiration. Brown and Escombe calculated leaf temperature 

from the dispersal of available energy to the leaf and concluded that 

transpiration accounted for 80% of the heat transfer (21). Clum measured 

leaf temperatures only 2 to 4°C warmer on leaves whose transpiration had 

been checked by coating with vasoline or whose soil was dry and concluded 

that transpiration played a much less significant role in leaf heat transfer ( 4). 
- 3 -



Radiant heat transfer was the subject of an early investigation by 

Curtis (8). His study was one of the first to focus attention on the infra-red 

wavelengths. Noting the transparency of atmospheric gases to infra-red 

radiation he stated that leaves may become cooler than the ambient air due 

to radiation to cooler objects or to space. Leaves may be warmer than 

surrounding air due to the receipt of radiant energy from warmer objects. 

Curtis sites as an example the condensation of water vapor onto plant leaves 

at night under clear skies. 

In an extensive literature review and theoretical discussion written 

in 1960, Raschke established a sound basis for the analysis of heat transfer 

between an individual leaf and a well defined environment close to the leaf (15). 

Quantitative terms adopted from physics and micrometeorlogy were used to 

describe the three heat transfer processes. 

Sensible Heat Transfer 

Raschke used the "boundary layer" concept developed in 1904 by 

Pradtl to describe convective heat transfer. Transfer of heat, moisture, 

and momentum occurs within this boundary layer. Measurement of the 

temperature gradient and temperature field around the leaf confirmed the 

values calculated for the thickness of the leaf boundary layer. The boundary 

layer thickness varies inversely with wind velocity. According to Raschke, it 

is generally smaller than one centimeter and may be reduced to a fraction of 

a millimeter in a strong wind. Although the thickness of the boundary layer is 

- 4 -
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' 

small tne air witnin tne layer is constantly being replaced and large quantities 

of neat are transferred. Tne volume of environment influenced by tnis neat 

transfer process is very small. 

Convective neat transfer is proportional to tne temperature difference 

between tne plant leaf and tne ambient air. Tne effectiveness of tne leaf 

boundary layer as a neat conductor defines tne constant of proportionality 

known as tne neat transfer coefficient. Tne tnickness of the boundary layer 

increases with the distance from the leading edge of the leaf along the air-

stream. As a result the neat transfer coefficient is not constant over tne leaf 

surface. Raschke states, however, that it is practical to assign to a body 

one mean representative heat transfer coefficient. Substituting a diffusion 

resistance term whicn is equivalent to the reciprocal value of tne heat transfer 

coefficient, convective heat transfer was defined by Raschke as: 

where H 
s 

p 

c 
p 

H 
s 

sensible heat transfer 

density of dry air 

specific heat of dry air at constant pressure 

(1) 

Tb temperature of the air at the top of tne boundary layer 

TL = temperature of the leaf 

r = boundary layer resistance 
a 

Heat transfer between the plant and environment by conduction normally 

involves only the plant roots. 

- 5 -



Latent Heat Transfer 

Transpiration has been assumed to occur from saturated surfaces • 

inside the plant leaf stomata normally called the substomatal cavity. Ignoring 

the vapor pressure depression caused by dissolved substances in plant water, 

the temperature of the plant determines the saturation vapor pressure of the 

moisture emitting surface. The gradient between the saturation vapor 

pressure and the partial pressure of the water vapor in the air initiates water 

vapor transfer. The liquid water within the leaf changes physical state and 

the transfer of water vapor is a form of heat transport. The movement of 

water vapor meets resistance to flow within the leaf stomata and a series 

resistance while moving through the leaf boundary layer. By using the above 

assumptions, Raschke showed that the flux of latent heat may be expressed by 

the equation: 

Hl 
L (es - eb) 

(2) 
RT (r + r ) 

a s 

where Hl = latent heat transfer 

L = latent heat of vaporization 

T = average boundary layer temperature, OK 

R natural gas constant for water vapor 

e = saturation vapor pressure of the substomatal cavity 
s 

eb = vapor pressure of the free air 

r stomatal resistance 
s 

- 6 -



Radiant Heat Transfer 

The volume of environment which influences radiation exchanges is 

extremely large. Short wave radiation comes directly from the sun and is 

reflected from the ground and other reflecting surfaces. Long wave radiation 

environment includes the leaf and all bodies that are visible from it. Even 

the carbon dioxide and water vapor of the air absorb and emit from and to 

the leaf at certain wavelengths. The environment of radiation transfer may 

extend a short distance to the ground or into the higher atmosphere with clear 

skies. Brooks has given a good summary of the radiation exchange processes 

occurring in the atmosphere (3). 

Radiant heat transfer increases with the fourth power of the absolute 

temperature as expressed by the well known Stefan-Boltzmann equation 

(3) 

where = radiant heat transfer 

= emissivity of the leaf 

CJ = Stefan-Boltzmann constant 

TL temperature of the leaf, "K 

Total Energy Budget of an Individual Leaf 

Plant heat transfer processes occur concurrently, therefore, a total 

treatment of the energy budget must be considered. A heat balance equation 

for studying energy exchange must consider net radiation and latent and 

sensible heat transfer. 

- 7 -



Tb.e total b.eat transfer from a leaf is a non-linear function of leaf 

temperature as evidenced by equations 2 and 3. Hence tb.e energy budget 

equation is a transcendental function of leaf temperature. 

Gates, in a number of papers and in a book published in 1962, b.as 

pointed out the importance of energy budget concepts in biology and increased 

tb.e understanding of leaf b.eat transfer processes in relation to leaf mor-

pb.ological and meteorological parameters (10, 11, 12). Tb.e book Energy 

Exchanges in the Biosphere, gives a very tb.orough explanation of radiant 

energy, radiation instruments, convective heat transfer and the influence of 

the energy balance on biological systems. Gates in 1968 showed that leaf 

temperature could be determined from an energy balance equation for a leaf 

in a well defined air stream. Response with variation of several meteoro-

logical and morphological parameters were simulated. Tb.e energy budget 

equation for a flat leaf used by Gates was: 

where QABS net short wave radiation 

kl, k 
2 

= constants 

u = wind speed 

D* = leaf dimension in wind direction 

w = leaf dimensions transverse to the wind 

r. h. relative humidity of the free air 
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= latent heat, a function of leaf temperature 

saturated concentration of water vapor at the leaf 
temperature 

saturated concentration of water vapor at free air 
temperature 

and other terms as previously defined. 

The coefficients, k
1

, k
2 

and other powers assigned to D*' W, and u 

were determined by wind tunnel experiments on individual leaves. Equation 4 

applied to forced convection. Gates considered free convection to occur at 

wind speeds less than 10 cm/ sec, a rare event in nature. Based on the 

theoretical analysis Gates showed that: 

1) with conditions that are common in warm, sunny, humid areas 

during the summer at midday: (a) a decrease in stomatal 

resistance by a power of ten in still air decreases leaf 

temperature 8°C and in a light wind (2. 2 MPH) decreases leaf 

temperature less than 5° C; (b) at a certain stomatal resistance 

increasing wind speed has no effect on transpiration, at a 

larger stomatal resistance increasing wind speed decreases 

transpiration, at a smaller resistance increasing wind speed 

increases transpiration. 

2) Given conditions typical of warm, humid, cloudy summer days at 

midday an increase in wind speed always produces an increase in 

transpiration rate. 
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The results given by Gates point out the complexity of energy balance 

relationship. More detailed review of the results reveal many seemingly 

inconsistent relationships between transpiration, leaf temperature and 

morphological and meteorlogical parameters. It is easily understood why the 

results of experiments through the years have lacked conformity. Variation 

in one parameter may influence the energy balance enot1gl:t to produce first 

positive and then negative correlations between a second parameter and 

transpiration rate. 

HEAT TRANSFER FROM THE PLANT CANOPY 

Stability Criteria 

Vertical transport of heat or any otl:ter atmospheric property commonly 

occurs in two ways, free and forced convection. Free convection occurs 

when the temperature gradient is such that buoyancy forces predominate. 

Forced convection occurs wl:ten forces causing movement (such as pressure 

gradient) predominate over buoyancy forces. Stability criteria have been used 

to define buoyant air properties. A stable air profile has buoyant properties 

retarding vertical motion of air, a neutral air profile has no buoyant 

properties and an unstable air profile l:tas buoyant properties promoting 

vertical motion. Quantitatively, a neutral atmospl:tere is defined by a decrease 

in temperature with l:teight or lapse rate of 1 °C/lOO meters or 5. 4°F/lOO 

feet. Smallet lapse rates indicate a stable atmospl:tere and larger lapse 

rates indicate an unstable atmosphere. Comparing tl:te modes of convection 

- 10 -
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with the states of buoyancy or stability one finds that forced convection occurs 

at or near neutrality and free convection occurs after some critical value of 

instability. Richardson's number has been used to define the stability state. 

It is a dimensionless parameter that expresses the ratio between buoyant and 

inertial forces of the atmosphere, or 

where = 

g 

T 

R = 
* 

g(/iT/liZ) 
- 2 
T ( Ii u/ Ii Z) 

Richardson number 

acceleration of gravity 

average temperature within the layer, °K 

OT /a Z = temperature gradient of the layer 

Ou/ o Z = wind velocity gradient of the layer 

(5) 

A Richardson number of zero denotes neutrality. A negative Richardson 

number indicates ·enhanced mixing due to instability and a positive Richardson 

number indicates supressed mixing due to st~bility. A detailed discussion 

of the Richardson number criteria is given by Sutton (19). 

Heat Transfer with Forced Convection Conditions 

Transport in the atmosphere is normally caused by the presence of 

eddys in turbulent flow. Tb.is transport can be measured in some idealized 

cases by a process known as the eddy correlation technique (17). It can also 

be calculated from aerodynamic relationships assuming a similarity between 

momentum, heat and mass transfer (17). These aerodynamic equations 

are: 
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momentum T = PK a / a z (a) (6) 
m u 

heat H = -pK C aT/az (b) 
s h p 

mass E -PK aip/oz (c) 
v 

where T = shear 

H sensible heat transfer 
s 

E = evaporation 

Ip = concentration of water vapor 

K , Kh, K turbulent transfer coefficients for momentiun, heat m v 
and mass respectively 

and other terms as previously defined. 

Early work in turbulent transport argued that the transfer coefficients 

of all entities are equal (1 7). With this assumption the transfer coefficient 

can be determined from the wind speed profile and used with the vapor 

pressure gradient and temperature gradient to compute transfer. Attempts 

to express the momentum transport coefficient and the wind velocity profile 

in terms of measurable quantities produced a logarithmic variation of wind 

speed with height. Thornthwaite assumed the logarithmic profile and 

assumed (1) surface properties that can be expressed through a roughness 

constant Z and/ or a zero plane displacement d and (2) vertical wind shear 
0 

as invariant with height (17). Based on the Thornthwaite's analysis the 

following assumptions and deductions were made: 
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ASSUMPTIONS DEDUCTIONS 

2 . Z-d 
K = uk (Z-d) I ln ( -- ) 

m Z TI p = T Ip = K a u/ oz 
o m 

0 

l _ T 1/2 
u=k [; J ln(Z-d)/Z

0
) E = Pk

2 
(I/J

1 
- I/J

2
) u/ [ln ( ~-d) j 2 

(5) 

E = - OK a 1/J/ o Z 
v 

H =-PC KhoT/oZ s p 

K =K =K 
v m h 

where T = shear at the surface 
0 

k = Von Karman constant 

and the other terms as previously defined. 

'° 

The log linear velocity profile extrapolated to zero velocity defines 

the roughness height or roughness constant (1 7). 

The resulting equation for the calculation of evaporation was first 

proposed by Thornthwaite and Holzman in 1942 and is known as the Thornth-

waite-Holzman equation or the aerodynamic equation. With additional work 

Thornthwaite and Kaser observed that the plot of height versus wind velocity 
c 

changes with the stability of the air. During periods with neutral or near 

neutral lapse rates the log linear plot holds true but is concave downward 

during stable conditions and concave upward in unstable conditions (17). 

Heat Transfer with Free Convection Conditions 

The Thornthwaite equation discussed previously assumes a log 

linear velocity profile. This assumption has been shown to be valid only 

with neutral and near neutral atmospheric conditions (17). The prevalence 

of unstable conditions and the necessity of defining other atmospheric 
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profiles has led workers to study other relationships. 

Independent work by Priestly and Monin and Obukhov has resulted in 

an expression for sensible heat transfer in the free convection regime (14). 

Reasoning that a suitable expression would not contain wind speed or wind 

shear explicitly from the definition of free convection, Priestly used a 

dimensional analysis approach to derive his equation. By including seven 

independent variables on which the heat flux may depend, Priestly defined 

the free convection sensible heat transfer equation as: 

(7) 

* where H ~ constant and other terms as previously defined. 

The argument was made that purely thermal turbulence is self 

patterning because there is no scale length provided by the independent 

* parameters in the atmosphere. The H term in equation (7) is the non-

dimensional sensible heat flux and has a value between 1. 32 and 1. 40 (14, 7). 

Crawford has derived an analogous equation for latent heat transfer 

in the free convection regime as: 

* 

* E = E 

where E = constant 
q - specific humidity 

and the other terms as previously defined. 

(z-d/ o qi oz (8) 

The critical value of Richardson number at which free convection becomes 

the dominate mode of convection has been determined as negative 0. 02-0. 03. 

The transition from the forced convection regime to the free 
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convection regime is gradual (14). The validity of equations (7) and (8) has 

been tested by experimentation (14, 7). 

The work accomplished by previous workers can be summarized as 

follows: (1) Raschke and Gates have developed quantitative expressions for 

latent, sensible and latent heat transfer from a single leaf, (2) expressions 

for latent and sensible heat transfer from the canopy with forced convection 

conditions have been developed from aerodynamic considerations and 

(3) Priestly and Crawford have developed expressions for the transfer of 

sensible and latent heat from the canopy with free convection conditions. 
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CHAPTER III 

THEORETICAL DEVELOPMENT 

THE ENERGY BALANCE 

The first step in the derivation of any energy balance equation is to 

define all the significant terms. Components for the energy balance equation 

of a bare ground surface are shown diagramatically in Figure 1. 

Short wave radiation is received at the earth's surface as two forms: 

direct and diffuse radiation. Diffuse radiation is solar radiation that has 

been scattered by atmospheric particles and arrives at the earth's surface 

indirectly. A portion of the shortwave radiation arriving at the earth's 

surface is reflected by the ground and other reflecting surfaces. Net solar 

radiation is equal to the algebraic sum of direct, diffuse, and reflected solar 

radiation. All objects emit long wave radiation in an amount proportional to 

the fourth power of their absolute temperature. Net radiation is the algebraic 

sum of net solar and long wave radiation, and as the name implies, it is the 

net amount of radiation received at the earth's surfacie. In the energy 

balance equation net radiation is balanced by heat transfer with the ground 

and evaporation and convection with the earth's surface. 
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The energy budget of a plant community is somewhat more complicated. 

Incoming solar radiation is reflected, absorbed and transmitted by the plant 

leaves. In addition, radiant energy is used by the plant in photosynthesis. 

Receipt of radiation at the soil surface occurs from diffused solar radiation 

and long wave radiation from the plant leaves (18). In general, over time 

periods of several days changes in soil heat are relatively small (18). Also 

over time periods of an hour or less there is relatively small variation in 

soil heat content (18). Photosynthetic energy use seldom exceeds 2-3% of 

total heat received by incident radiation (18). Therefore, net radiant energy 

is dissipated in plant communities predominately by convection and transpir-

ation for short time periods. 

DERIVATION OF PREDICTION EQUATIONS 

Leaf Heat Transfer 

The equations of Raschke, Gates and others in leaf heat transfer 

expressions contain a transfer coefficient term and a temperature or humidity 

gradient term. Basic expressions applicable for the transfer of latent and 

sensible heat in laminar flow are known as Fick's and Fourier's Laws, 

respectively, and may be written: 

Fick's Law 

Fourier's Law 
oT 

H =-PC D --
s p o Z 

- 18 -
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in which Hl = the flux of latent heat 

Dt = diffusivity of water vapor 

L = latent heat of vaporization 

R = specific gas constant for water 

T = average temperature, 'K 

oelo·Z = vapor pressure gradient 

H sensible heat flux 
s 

c = specific heat of dry air at constant pressure 
p 

D = diffusivity of sensible heat 

oT/o z = temperature gradient 

If one adopts Prandtl's boundary layer concept and assumes it has a 

constant thickness ( 6), the steady state flux of vapor can be written as: 

in which water vapor pressure at the top of the boundary layer 

e.L = water vapor pressure at the leaf surface. 

An air resistance to vapor transfer can be defined as r a= 6/Dt' 

hence equation (9) becomes 

H1 = -L (eb - eL) RT ra 

in which T = the average of the temperature of the leaf (TL) and the 

temperature of the canopy bulk air (T ), 'K. 
b 

(11) 

For thin leaved plants the leaf surface temperature is approximately the same 

as that of the leaf interior. 
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'The terms included in equation (11) are shown schematically in 

Figure 2. Equation (11) describrs the transfer of water vapor between the 

leaf surface and the bulk air of the canopy. A similar equation can be 

obtained by considering water vapor transfer from the evaporating surface 

inside the leaf stomata to the leaf surface, or 

H = 
1 

L 
(lla) 

where e is the saturation vapor pressure at temperature TL. The term r 
s s 

refers to the leaf stomatal resistance which is a function of the stomatal area 

and the shape of stomatal opening. Equation (12) may be obtained by solving 

equation (11) for eL, substituting into equation (lla) and solving for H
1

. 

H
1 

= - L (eb - e ) /RT (r + r ) 
s a s 

(12) 

An air resistance to the flow of sensible heat can be defined in a manner 

similar to that of water vapor using the concept of air resistance to heat flow, 

the sensible heat flux from the leaf canbe,written: 

H = - PC (Tb - T )/r 
s p L a 

(13) 

Since the leaf surface temperature is approximately the same as that 

of the leaf interior, there is negligible sensible heat flow from inside the 

stomata to the leaf surface. 

Radiant heat transfer from a leaf surface that "views" an open sky 

can de defined by the stefan-Boltzmann equation as: 

H = Ea (T ) 
4 

R L 
(14) 
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in which = the flux of radiant heat 

= emissivity of the leaf surface 

O' = Stefan-Boltzmann constant 

Transfer in the Atmosphere 

Quantitative determination of transfer from a surface to the atmosphere 

requires definition of all sources and sinks as a function of height. Transfer 

from bare surfaces presents no problem as the ground itself is the source 

with the height of the ground defined as being zero. Also, the gradient of 

physical quantities such a momentum, moisture concentration, and heat 

within the plant canopy are complex functions of many variables. Error in 

assigning a value to an effective crop surface is related to crop height. Canopy 

resistance to transport is also directly related to crop height. The equations 

developed in this study apply to a short crop which fully covers the ground 

surface. The roughness height will be taken as the effective crop surface. 

Transfer with a Neutral Atmosphere - A neutral atmosphere is one in which 

thermal gradients have little effect on mixing. The transfer of latent and 

sensible heat in the atmosphere may be expressed in a manner similar to 

Fick's and Fourier's laws. However, flow during most daylight hours is 

turbulent rather than laminar. The equations for the turbulent transfer of 

latent and sensible heat are expressed as (17): 

-LKae/oZ 
= RT v 

- 22-
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and 

(16) 

Wb.ere Kv and Kb. are tb.e turbulent transfer coefficients for water vapor and 

sensible b.eat, respectively. Tb.e turbulent transfer coefficients are no 

longer properties of tb.e fluid as in laminar flow but are variables th.at depend 

upon wind speed and tb.e presence of buoyancy forces. Tb.e variation of wind 

sh.ear with. b.eight can be defined for two dimensional flow as (17) 

wb.ere T 

rip= K au/oz 
m 

= wind s b.e ar 

K turbulent transfer coefficient for momentum 
m 

u = wind velocity 

(17) 

The velocity distribution with. b.eight b.as been found to be log-linear 

for a neutral atmospb.ere as depicted in Figure 3. Tb.is logarithmic velocity 

profile can be written as (1 7) 

u 
u = ~ ln f(Z - d)] 

z k L z 
(18) 

0 

in which. u = wind velocity at some heigb.t Z 
z 

u* = ( T/P,1/ 2
, shear velocity 

k = Von Karman constant 

d = zero displacement b.eigb.t 

z = rougb.nes s height. 
0 
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If equation 18 is differentiated with respect to Z, one obtains 

a u I a z = k ( z-d) 

This result can be substituted into equation (1 7) to obtain a value for the 

momentum transfer coefficient as 

K 
m 

u* k(Z-d) (19) 

For a turbulent neutral atmosphere the assumption can be made that the 

momentum, mass and heat transfer coefficients are equal (17). Hence, one 

can substitute the value for K obtained in equation (19) into equations (15) 
m 

and (16) to obtain: 

and 

H = -Pc u k(Z-d) oT/oZ 
s p * 

Equation (21) can be integrated and simplified to obtain 

T - T ) 
H = - Pc u*k ( a b /ln ((Z-d)/Z ) 

S p O 

u* can be eliminated from equation (21) by integrating the equation 

2 
u* = k(Z-d)u* du/dZ 

to obtain 
u* = ku/ln (Z-d ) 

Zo 

This can be substituted into equation (21) to obtain a final equation for 

heat flux in a neutral atmosphere, 

(20) 

(21) 

(22) 

H = - PC uk
2 

(T - Tb)/ [ln((Z-d)/Zo)] 
2 

(23) 
s p a 

- 25 -



A similar expression can be obtained for latent heat transfer. For steady 

state conditions eb and Tb of equations (12) and (13) can be equated to eb and Tb 

of the equations for latent and sensible heat transfer described above to obtain 

the results 

in which 

H 
s 

-f(Z ) PC u (T - T ) 
o p a L 
l+f (Z )ur 

o a 

Hl ~ RT 1 + (r + r ) uf ( Z ) 
a s o 

-L (e -e )f(Z )u 
a s o 

f(Z) = k
2

/ [ln((Z-d)/Z )f 
0 0 

These equations are similar to those developed by Rijtema for daily 

estimation of transpiration (16). 

An energy balance equation for neutral atmospheric conditions can be 

obtained by combining equations (24) and (25), an expression for long wave 

radiant heat, and the incoming solar radiation to obtain 

R 
_ T 4 + f (Z ) P C u(TL - T ) 

i-rn·L o p a 
1 + f (Z ) ur 

o a 

L 
+ RT 

(e - e ) f (Z )u 
s a o 

Ll+(r + r )f(Z )u] 
a s o 

in which R. = incoming solar radiation and the terms as previously defined. 
I 

Net radiation is equal to the algebraic sum of the first two terms of 

(24) 

(25) 

(26), 

equation (26). The latent heat of vaporization is a function of leaf temperature(13). 

Since the water vapor pressure of the stomata! evaporating surface and the free 

air are functions only of leaf and air temperature and air relatively humidity 

equation (26) can be solved implicitly for the leaf temperature (19). Equation (26) 

is the proposed model for a neutral atmosphere. 
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Transfer with an Unstable Atmosphere - An unstable atmosphere is one in 

which thermal gradients are the primary cause of mixing. The transfer of 

sensible and latent heat in the atmosphere under unstable conditions have 

been expressed quantitatively by Priestly and Crawford (14, 7). These 

atmospheric transfer terms can be combined with the sensible and latent heat 

transfer terms from a leaf surface to define transfer from a leaf surface to 

the unstable atmosphere. Priestly's and Crawford's expressions for the 

transfer of sensible and latent heat are 

and 

Where 

* [..ILJ 1/:? (Z-d)2 
H = HPC - 4 s p T 

* H 

g = 

T = 

q 

* E = 

(Z-d)
2 

4 

1. 32 

[
Tb-Tar/2 [qb - qa] 

Z-d [ Z-d 

acceleration of gravity 

average temperature in the layer, OK 

specific humidity 

Equations (28) and (29) can be combined with equations (12) and
1 

(13) 

(28) 

(29) 

in a manner similar to that for the neutral atmosphere to obtain the fpllowing 

relationships (assuming r = 0): 
a 

* t ] 1/2 H = HPC 4-
s p T 
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and 

* tgJ 1/2 
H = EPL = 

1 T 

where f
1 

* [ J 1/2 = EP -&­
T 

(Z-d)
2 

4 

(Z-d)
2 

4 

An energy balance equation can be formed for unstable conditions by 

(31) 

combining equations (30) and (31), an expression for long wave radiant heat 

and the incoming solar radiation 

4 * [gJ 1/2 (Z-d)2 
Ri = ('7TL +pHCP LTJ 4 [

TL - Ta 13/2 * r..!LJ 1/2 (Z-d)2 
Z-d :J + EPL[T 4 

[
T - T J 1/2 [ q - q J 
Z~d a z-~+f: 

1 s 

The first two terms of equation (32) can again be combined to give the 

net radiation. Specific humidity of the stomata! evaporating surface and the 

air can be approximately expressed as functions of atmospheric pressure 

assumed constant standard conditions, leaf and air temperature and air 

relative humidity. Equation (32) can be solved implicit~y for the leaf 

temperature. It is the proposed model for an unstable atmosphere. 

WORKING APPROXIMATIONS 

Implicit solution of the prediction equations for leaf temperature 

requires suitably accurate values for leaf and boundary layer resistances and 

roughness and zero displacement heights. 
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Roughness and Zero Displacement Heights 

The roughness and zero displacement heights are most accurately 

obtained with wind velocity profiles taken at neutral atmospheric conditions. 

Collecting such data requires continuous readout or, as a close approximation 

used by some investigators the averaging of the two near neutral profiles 

taken on either side of neutrality. In the absence of either the continuous 

profile data or the averaged profile data the same analysis may be made but is 

susceptible to error due to deviations of the wind "elocity profile from a log 

linear relationship under non-neutral conditions. The zero planedis_placemertt 

and roughness height vary with wind speed, as wind speed increases flexible 

crops are bent down by the wind resulting in a smaller surface roughness. 

Variation of the zero displacement height with wind speed is proprotionally 

much less than the corresponding change in roughness height (20). Roughness 

height has been shown by Szeicz et al to be equal to one-tenth of crop height(20). 

Boundary Layer Resistance 

Boundary layer or aerodynamic resistance is dependent upon leaf 

dimensions, leaf surface characteristics and wind velocity. Measurement is 

usually accomplished in a wind tunnel with normal or simulated wetted leaves. 

Boundary layer resistance is inversely proportional to wind velocity. At 

high wind velocities boundary layer resistance becomes small. Gates states 

that boundary layer resistance becomes negligible at wind speeds greater 
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than 2 mph (89, 4 cm/ sec). Neglecting the boundary layer resistance 

term can be justified either by the criteria stated by Gates and/ or finding 

that the prediction equation is insensitive to neglecting it. 

Transfer in the free convection regime is considered to be independent 

of wind velocity and aerodynamic resistance of the boundary next to the leaf 

has been neglected. 

Leaf Stomatal Resistance 

With moderate light intensities, little or no moisture stress, moderate 

temperature and carbon dioxide levels stomatal resistance is relatively 

,constant (18). Stomatal resistance is generally evaluated with representative 

leaves in a wind tunnel (18). Literature contains numerous summaries of 

leaf stomata! resistance for different plants (18, 12). Stomatal resistance 

values can be chosen from literature and inserted into the equation for 

analysis, Moisture stress can be accounted for by changes in stomatal 

resistance. 
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CHAPTER N 

EXPERIMENT AL EQUIPMENT AND PROCEDURE 

A plot of cucumbers was grown in the summer of 1969 on the 

horticultural farm at the University of Kentucky to test the validity of the 

equations proposed in Chapter III. Cucumbers are a low growing crop with 

thin leaves that adequately shade the entire ground area. 

PLOT CHARACTERISTICS WASHINGTON WATWI 
RESEARCH CENTER L .. RARY 

A 50 ft. by 50 ft. plot of SMR-17 cucumbers was grown. The plot was 

surrounded by grassland and stubble that varied from 2-4 inches in height 

(see Figure 4). The shortest reach was 150 ft. to a cornfield to the west. 

The topography was gently rolling with a low ridge to the south. The cucumber 

canopy height varied from about 8-10 inches and provided fairly complete 

ground cover. Cucumbers were picked 9 days before the first observation. 

Damage to the vegetation was minor. 

EXPERIMENTAL PROCEDURE 

A telephone pole 15 feet high was erected in the center of the plot to 

support temperature and wind velocity profile sensors (Figure 5). Wind 

velocity was measured by *Disa 55Dol constant temperature anemometer with 

*Disa- S&B, Inc., 779 Susquehanna Ave., Franklin Lakes, New Jersey. 
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a standard 55A22 hot wire sensor, The calibration curve for the se:1sor used 

was supplied by the company. The wind velocity sensor was held in a 

directionally sensitive transient vane on a metal rod mounted 3 feet tc lhe 

southwest of the main pole. Seven dry and wet bulb temperature sensers were 

mounted on 2.5 foot supports, they were logarithmically spaced ver:1ca!ly ,md 

were oriented toward the northeast. The temperature sensors were copper-

constantan thermocouples pushed into 3/8 inch clear plastic tubing. The wet 

bulb temperature sensor was covered by a wick moistened with distilled w2ter 

supplied from a small glass jar. Required aspiration of the wet fu'1d dry bulb 

thermocouples was accomplished by a small exhaust fan connected to ,he 

plastic tubing (5). The temperature sensors were shaded from solar 1·adi2.tior., 

Leaf temperature was measured by fifteen 40-gauge copper constantan 

thermocouples inserted into leaves. Care was taken during leaf thermocouple 

placement to obtair. readings throughout the plot tc avoid edge infiuence 

(Figure 6). Leaf thermocouples were checked daily for proper insertion a.n,d 

normal leaf qua] ity. Soil temperature readings were taken at three locations 

(Figure 6) at depths of 1/2, 2, 4 and 6 inches with copper constantan thermo-

couples. Details of equipment design are shown in Figure 7. 

Net radiation was measured by a Thornthwaite model 601AA net 

radiometer. The radiometer is essentionally two thermopile 1:;nits moun;;ed 

back to back covered by two polyethylene hemispheres. The wavelength 

absorption and wavelength transmission characteristics of the thermopile 

C. W. Thornthwaite Associates, Route 1, Centerton, Elmer, New Jersey. 
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and polyethylene are shown in Figure 8. The radiometer provided a 

continuous recording of net radiation. 

Net radiation measurements were taken for each profile by averaging 

the output of the net radiometer. 

During each of ten tests made in the experiment, temperature 

recording was continuously cycled through the individual temperature readings. 

Tape punch recording provided means for Iater analysis. Wind velocity profile 

measurement required: 

1. averaging numerous readings due to the wind's turbulent nature, 

2. total time of test less than approximately one hour so steady state 
conditions could be assumed, 

3. wind velocity reading at each height representative of the total 
time of observation. 

To meet the requirements established, multiple profiles were taken for each 

test. A minimum of four profiles was taken for each test and all but two 

tests contained a composite of six profiles. Three wind velocity readings 

were taken at each of the six heights above the canopy for each profile. 

This procedure permitted: (1) 12 to 18 readings for each height, (2) total 

time of observation of about 48 minutes and (3) three readings for each height 

that were within 8 minutes of start or stop time. A net radiation measurement 

was recorded for averaging at each height of each profile measurement. 

Frequent rainfall and irrigation supplied sufficient moisture so plants 

showed no signs of soil mositure,- stress. 
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CHAPTER V 

RESULTS AND DISCUSSION 

Ten tests were taken by the procedure described in Chapter IV 

to test the proposed prediction relationships. Wind velocity, temperature 

and net radiation measurements were averaged to obtain the most representative 
J 

values. The averaged data for each observation are presented in T31!les 6 

and 7 in the Appendix. Data from measurements at 457. 5 cm, (15 ft.,) were 

inconsistent with lower profile measurements and were not used in analysis. 

RICHARDSON NUMBER AND STABILITY 

Wind velocity and dry bulb temperature profile data were used to 

calculate Richardson number as expressed by equation (5). A localiz.ed 

Richardson number was calculated for each layer of the profile. Richardson 

numbers are summarized in Table 1. The values are all negative ranging 

from O. 04 to 8. 27. Detailed interpretation of the results is difficult because 

of the range of values. Variation of results can be attributed to the measure-

ment error in relatively small wind velocity and height gradients and even 

smaller temperature gradients. The Richardson numbers are, however, 

below the O. 03 value which is the upper limit of free convection as given by 

Crawford and Priestly (7, 14). 
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TABLE 1 

MEASURED RICHARDSON NUMBER 

TEST RICHARDSON NUMBER TEST RICHARDSON NUMBER 

1 -8.27 6 -1. 02 

2 -0.04 7 -0.09 

3 -0.61 8 1-.08 

4 -0.12 9 -1.14 

5 -0.29 10 -0.43 

TABLE 2 

AERODYNAMIC PREDICTION RESULTS 

Predicted TL' C 

OBSERVED z 1. 7 z ~ 2.5 
0 0 

TEST TL 'C r = 1. 2 2.0 r = 1. 2 2.0 
s s 

1 29.5 39.7 42.3 38. 6 41.1 
2 31.l 39.6 42. 5 38.6 41. 4 
3 25.1 33.6 36.2 32.6 35.0 
4 28. 5 37.7 40.7 36.7 39.5 
5 29.3 37.3 40.0 36. 3 39.0 
6 26.7 35.1 37.7 34.0 36.5 
7 30.1 37.7 40.4 36.7 39.6 
8 28.9 36. 3 39.0 35.3 37.8 
9 31. 3 41.1 44.3 39.9 43.1 

10 30.7 36.8 39.5 36.0 38.6 
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ROUGHNESS HEIGHT AND ZERO DISPLACEMENT HEIGHT 

The inputs of roughness height and zero displacement Ii.eight 

were obtained by a least squares regression given by Covey (6). Results are 

presented in Table 7. Average values were calculated for both the roughness 

Ii.eight and the zero displacement Ii.eight. Tb.e average roughness b.eigb.t, 1. 7 

centimeters, was close to one-tenth. of tb.e minimum crop heigb.t of 20 centimeters. 

(8 inch,es). The value fo;r one-tenth of the. maximum crgp .height of 10 

inches,· 2. 5,centirheters,"was also evaluated intb.e analysis. Zero 

displacement Ii.eight was considered conservative with stability. The average 

value of zero displacement Ii.eight, 35 centimeters, was used in the analysis. 

It should be pointed out again that the values of roughness and zero displace-

ment height are best obtained at neutral or near neutral conditions when tb.e 

logarithmic wind velocity profile approaches linearity. 

VAPOR PRESSURE GRADIENT 

Saturation vapor pressure can be expressed as a function of 

/ 
temperature by a log linear version of the Kirchhoff-Rankine-Dupre formula (19) 

as 

ln e 
s 

B 
= A+ 

T 

2 
The vapor pressure gradient expression in dynes/cin derived for use 

in the analysis as 

-5.29xl0
3 

e - e 
s a 

= l.626xlo12 
(e TL + 373 -r.h.e 
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in which e 
s 

e 
a 

= 

= 

saturation vapor pressure (dynes/ cm
2

) of the stomata! 

evaporating surface at leaf temperature TL 

saturation vapor pressure (dynes/cm
2

) of the air at 

some reference height whose temperature is T and 
a 

relative humidity is r. h. 

AERODYNAMIC PREDICTION EQUATION 

where 

Equation (26) in the form used for evaluation is 

L 
= f(Z )PC u(T - T )60+RT o p L a 

k2 
f(Z ) 2 = 

(1.n((Z-d)/Z )] 0 
0 

r = net radiation, cal/cm
2
min 

n 

k = Von Karman's constant, O. 40 

z = reference height, 320. 5 cm 

d = zero displacement height, cm 

z - roughness lteight, cm 
0 

p density of dry air, 1. 2 x 10-
3 

gm/cm 
3 

= 

c specific heat of dry air, O. 24 cal/gm °C 
p 

u = wind velocity at reference height, cm/sec 

TL temperature of the leaf, °C 

T = temperature of the air at reference height, 
a 

'C 

L latent heat of vaporation 597. 3 - 0. 56 TL cal/ gm 
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R 
6 

natural gas constant of water vapor, 4. 615 x 10 dyne cm/gm°K 

T 

r 
s 

= (T + T )/2+273 
L a 

stomata! resistance, sec/ cm 

e and e have been defined in the previous section. 
s a 

The above equation was solved implicitly for leaf temperature. Results 

are presented in Table 2 and graphically in Figure 9 and 10. 

Predicted leaf temperature values are larger than observed values 

6-12 'C. The large error in prediction is probably due to the neglect of 

buoyant forces in the derivation of heat transfer equations for a neutral 

atmosphere. The large negative Richardson numbers indicate that buoyant 

forces are significant. By including the effects of buoyant forces, one WJuld 

predict higher heat transfer rates for the same temperature gradient. 

Sensitivity of Aerodynamic Prediction Equation to Inputs 

The influence of roughness height, stomata! resistance and boundary 

layer resistance on predicted leaf temperature was tested by conducting the 

analysis with several combinations of representative values of these inputs. 

Techniques used in the experiment prohibited selection of any one value as 

absolute. Table 3 and Figures 11 and 12 demonstrate the variation of predicted 

leaf temperature with changes in roughness height, stomata! resistance and 

boundary layer resistance values. The tests selected for presentation 

(using meteorological parameters from Tests 3 and 9) are the tests with the 

lowest and highest predicted leaf temperatures. 
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TABLE 3 

Sensitivity of Aerodynamic Prediction Equation to Roughness Height (Z ) 
0 

r = 0, r = 1. 2 sec/cm a s 

#9 Z (cm) 
0 

1. 7 
2.5 

Test 

1 

2 
3 
4 
5 
6 
7 
8 
9 

10 

Predicted Predicted 
TL (OC) #3 z (cm) TL (OC) 

0 

41.1 1. 7 33.6 
39.9 2.5 32.6 

TABLE 4 

Free Convection Prediction Results 

Observed Prediction 

TL oc r = 1. 2 2.0 
s 

29.5 28.3 28.5 
31.1 30.9 31. 2 
25.1 25.1 25.3 
28.5 28.6 28.9 
29.3 29.2 29. 5 
26.7 24.7 24.9 
30.1 29.3 29.6 
28. 9 27.2 27.5 
31. 3 30.2 30.5 
30.7 30.4 30. 9 
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Sensitivity to Roughness Height - Leaf temperature is relatively insensitive 

to the range in roughness height. Increasing Z lowered predicted leaf 
0 

temperature to some extent. Values for rougtmess height that would lead to 

approximation of observed leaf temperature do not meet the one-tenth value of 

crop height noted in the literature. 

Sensitivity to Stomatal Resistance - Leaf temperature increased with 

increasing stomata! resistance. The sensitivity to stomatal resistance would 

be smaller if boundary layer resistance were different from zero. Lowering 

leaf stomatal resistance much below the 1. 2 sec/cm minimum value used would 

be inconsistent with reported values in the literature and nearly eliminate 

plant influence on the heat transfer process. 

Sensitivity to Boundary Layer Resistance - Leaf temperature increased with 

increasing boundary layer resistance. As mentioned previously Gates has 

stated that at wind speeds of 2 mph (89. 4 cm/ sec) or greater boundary layer 

resistance could be neglected (11). Observed wind velocities at 45. 3 centi-

meters were generally larger than 89. 4 cm/ sec. Although this value did 

not occur at the leaf surface it was felt that boundary layer resistance could 

be assumed to be approximately equal to zero. Boundary layer resistance 

could not be varied to yield predicted leaf temperatures approximating 

observed leaf temperatures. 

The analysis of predicted leaf temperature with changes in the values 

of input parameters whose absolute values were unknown showed that a 
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predicted leaf temperature either could not be obtained by variation of a 

given input or the value of the necessary input was not consistent with 

literature. 

FREE CONVECTION PREDICTION EQUATION 

Equation (32) in the form used for evaluation is 

* [C (TL-T) L(qL -qa) J 
R 

PH .K.. 1/2 (Z-d)3/2(T -T //2 p a 
= -- + 

n 4 T L a Z-d Z-d+f1 rs 

* * were H = E = 1. 32 

g = acceleration of gravity 

T = (T + T )/ 2 + 273 
c L a 
o; 612 e 

0,612 
(1, 626x10

12
) 

3 
s -5. 29x 10 

qL = = e p p TL+ 273 

0.162 0.612 
(1. 626 x 10

12
) 

3 
(r. h.) e 

-5.29xl0 
qa = e = p a p T + 273 

a 

p 6 2 
= 1. 013 x 10 dynes/ cm 

and the other terms as previously defined. 

The results from the implicit solution of the above free convection 

equation are presented in Table 4 and shown graphically in Figure 13. 

Predicted leaf temperatures are slightly lower than observed leaf temper-

atures. However, results are easily within range of experimental error. 

Two reasonable values for leaf stomata! resistance are reported. The equation 

predicted a O. 2-0. 5 ° C increase in leaf temperature with stomata! resistance 

varying from 1. 2-2. 0 sec/ cm. Best fit was obtained by the 2. 0 value. The 

reference height used was 320. 5 cm. The use of such a high value for Z 

decreased the sensitivity of both equations to zero displacement height. 
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STATISTICAL ANALYSIS OF THE RESULTS 

The Student t-test was used on the paired values to test the null 

hypothesis that the difference between the predicted and observed temperature 

was zero. standard procedures were used to establish confidence intervals. 

Results are shown in Table 5. 

Statistical Analysis of the Aerodynamic Prediction Equation Results 

The null hypothesis of zero difference between measured and 

predicted leaf temperatures can be rejected at the 0. 01 level of significance 

for all combinations of variables. Confidence limits indicate that 99 percent 

of the time predicted leaf temperature was at least 4. 3 ° C above the measured 

leaf temperature. 

Statistical Analysis of the Free Convection Prediction Equation Results 

The null hypothesis of zero difference between measured and predicted 

leaf temperature for r equals 2. 0 sec/cm. cannot be rejected at the 0. 05 
s 

level. When r equals 1. 2 sec/ cm. the null hypothesis can be rejected at the 
s 

0, 05 level. Confidence intervals for the two stomatal resistance values 

indicate that 99 percent of the time leaf temperature prediction values would 

be between 1. 5° Clower than and 0. 4° C above observed leaf temperature. 

SOIL HEAT LOSS 

The assumption of negligible heat loss to the soil was investigated. 

Soil profile temperatures for the first and last five cycles of readout during 

each run were averaged and plotted on graphs (Figure 14). The two resulting 
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TABLE 5 

Results of Statistical Analysis 

Prediction Confidence Intervals 

Equation Variables t Calculated to. 05 
t 
0. 01 

Aerodynamic . r =1. 2 z =2. 5 6.8 5. 5<XD <11. 2 4. 3<xD <12. 4 
s 0 

z =1. 7 21. 9 7. 5<x
0

<9, 2 7. l<x
0

<9. 6 
0 

r =2. 0 z =2. 5 27.2 9.1<~<10.8 8. 8<xD <11. 1 
s 0 

z =1. 7 27.9 10. 3<XD <12.1 9. 9<x
0

<12. 5 
0 

Free 
Convection r =2. 0 1. 8 -1 O<x <0 •l -1.2x

0
<0.4 

s . D" ·, ' 

r =1. 2. 3.1 -1. 3<xti<Oi Ci -1. 5<x
0

<0. 0 
s 

t t 
0. 05 = 2. 26 , 0. 01 = 3: 25 
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curves represented beginning and ending soil temperature profiles. This 

temperature difference was multiplied by a specific b.eat for Maury silt loam 

calculated by a metb.od described by Van Wijk to give an estimate of b.eat loss 

per square centimeter during the observation (22). This result was divided 

by the lapsed time between the third temperature cycle from tb.e beginning and 

the third temperature cycle from the end of the observation. Results of th.is 

investigation are shown in the Appendix. Soil heat gain during the observation 

ranged from less than 0. 01 to 0. 06 cal/cm
2 

min. Consideration of th.is soil 

heat gain would have lowered leaf temperature predictions by at most 0. 2'C. 
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CHAPTER VI 

SUMMARY AND CONCLUSION 

Prediction equations were derived for the calculation of leaf temperature 

under natural conditions. The equations were based on two different modes 

of convective heat transfer, forced convection and free convection. Both. 

equations consider b.eat transfer from the leaf to tb.e bulk canopy air and from 

the bulk canopy air into the atmosphere. Values for leaf boundary layer 

resistance and leaf stomata! resistance were obtained from literature. Leaf 

boundary layer resistance was considered to be negligible and b.ence was 

neglected. Zero displacement height and roughness height values were 

obtained from computer analysis of measured wind speed profiles. Tb.e average 

value of computed roughness b.eight agreed closely with tb.e one-tenth canopy 

height value. Richardson numbers calculated from wind speed temperature 

profiles indicated th.at b.eat transfer was in the free convection regime. Results 

from analysis appear in Table 6. 

Prediction of leaf temperature with. the aerodynamic prediction was 

completed using 1. 2 and 2. 0 sec/cm stomata! resistance values and 1. 7 and 

2. 5 cm roughness b.eigb.t values. Tb.e value of 1. 7 cm derived from computation 

and 2. 5 cm equal to one-tenth of maximum approximate crop height. Predicted 

aerodynamic equation temperatures were at least 6° C larger than observed 
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values. Best results were obtained with a roughness height of 2. 5 cm and a 

stomata! resistance value of 1. 2 cm/ sec. High prediction values were 

explained by the presence of buoyancy forces which enhance sensible and 

latent heat transfer. 

Prediction from the free convection equation agreed closely with 

observed leaf temperature values. Confidence intervals with the t-test 

revealed prediction at the 99 percent level would be between 1. 5 ° C below 

the observed leaf temperature for the poorest results. Stomata! resistance 

values of 1. 2 and 2. 0 sec/ cm were used. 

Based on the results, the following conclusions were drawn: 

1. The aerodynamic prediction equation derived to define 
forced convection under natural conditions overpredicts 
leaf temperature when Richardson number indicates heat 
transfer in the free convection regime. 

2. The free convection prediction equation derived to define 
heat transfer with free convection accurately predicts leaf 
temperature under most natural conditions. 

For further work in the immediate subject area the following is suggested: 

1. Refinement of instrumentation, primarily continuous readout 
of required data in a form available for computer reduction 
and analysis. 

2. Addition of more data collection points in the profile; the five 
used lacked good continuity. 

3. Installation of lysimeters to check evaporation that could be 
calculated by use of one of the two right hand terms in the 
prediction equation. 

4. Use of a stomata! resistance meter to get an accurate value of 
stomata! resistance. 
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TABLE 6 

EXPERIMENTAL DATA 

Test 1 2 3 4 5 6 7 8 9 10 

Dry Bulb 
Temperature ° C 

320. 5 cm 26.4 28.7 22.8 26.2 27,2 22.7 26.9 25.3 28.0 28.8 

183.1 cm 26.4 28.8 23.6 26.5 27.6 23.3 27.3 25.5 28.3 29.1 

101. 2 cm 27.2 29.0 23.9 26,8 27.8 23.8 27.8 26.4 28.8 29.5 

70. 7 cm 27.9 29.1 24.0 26.8 27.8 24.1 28.1 27,0 29.2 29.8 

"' er, 45.1 cm 28, 6 29,2 24.6 27.1 28.0 25.1 28.2 27.7 29.6 30. l. 

22. 0 cm 28.6 27.6 25.0 27.0 27.7 25.6 28.3 27.7 29.5 29.2 

Wet Bulb 
Temperature ° C 

320. 5 cm 23.9 24.4 18.7 21.1 22.2 19.4 21. 5 21. 2 22.3 23.0 

183.1 cm 23.6 24.1 18. 3 20.5 21. 8 19.2 21. 5 21. 1 22.0 22.3 

101. 2 cm 24.1 24.3 18.8 21. 0 22.3 19,9 22.0 21. 9 23,0 23.6 

70. 7 cm 24.7 24.9 19.3 21. 5 22.9 20.2 22.7 22.7 24.1 24.9 

45.1 cm 25.4 25.1 19,9 21. 8 23.1 21. 0 23.0 22.5 24.0 24.3 

22. 0 cm 26.0 25.7 20.4 22.6 23.7 21. 6 23.7 23.5 24.9 24.5 



TABLE 6 (Continued) 

Test 1 2 3 4 5 6 7 8 9 10 

Wind Velocity 
cm/sec. 

320.5 cm 128.0 231. 6 280.4 262.1 228.6 167.6 274.3 216.4 176.8 211.2 

183.1 cm 101. 5 210.3 292.6 231. 6 243.8 158.5 249.9 210.3 140.2 21.0. 2 

101. 2 cm 103.6 176.8 249.9 210.3 176.8 146.3 182.9 176.8 134.1 146.3 

70. 7 cm 94.5 155.4 219.5 143.3 112. 8 131.1 146.3 140.2 112. 8 134.1. 

45.1 cm 57.9 115. 8 109.7 97.5 67.1 85.3 115. 8 100.6 70.1 79.25 

Net Radiation 

I 
ly/min. 0.62 0.83 o. 76 0,89 0.75 0.62 0.89 0.72 0.87 0.64 

"' 0 



TABLE 7 

EXPERIMENTAL DATA 

Test 1 2 3 4 5 6 7 8 9 10 

Avg, Richardson 
Number -8. 27 -0. 04 -0.61 -0.12 -0.29 -1. 02 -0.09 -1. 08 -1.14 -0.43 

Zero Displacement 
Height cm 43.45 30.82 44.65 34. 71 34.84 43.84 8.15 36.60 37.92 35.10 

Roughness Height 
cm 0,014 0.735 0.010 1. 623 3.296 0.005 8.980 0.518 0.539 l..430 

Observed TL ·c 29.5 31. 1 25.1 28.5 29.3 26.7 30.1 28.9 31. 3 30.7 
"' '"" Aerodynamic 
I 

Prediction TL ° C 

d=35 Z =1,7 r =1.2 39.7 39.6 33.6 37.7 37, 3 35.1 37.7 36.3 41.1 36.8 
0 s 

r =2,0 
42. 3 42.5 36.2 40.7 40.0 37.7 40.4 39,0 44.3 39.5 s 

Z =2. 5 r =1. 2 38.6 38.6 32. 6 36.7 36.3 34.0 36.7 35.3 39.9 36.0 
0 s 

r =2. o 41.1 41. 4 35.0 39.5 39.0 36.5 39.6 37.8 43.1 38.6 
s 

Free Convection 
Prodiction T • C 

L 
d=35 r =L 2 28.3 30.9 25.1 28,6 29.2 24.7 29.3 27.2 30.2 30,4 

s 
r =2,0 28.5 31. 2 25.3 28.9 29.5 24.9 29,6 27.5 30.5 30,9 

s 



"' "" 

Test 

Values corrected 
for Soil Heat 
Loss 

r =l. 2 
s 

r =2.0 
s 

Soil Heat Gain 
ly/min 

1 2 3 

28.3 30.8 24.9 

28.5 31. 2 25.2 

0.01 0.01 0.06 

TABLE 7 (Continued) 

4 5 6 7 8 9 10 

28.6 29.0 24. 6 29.2 27.2 30.1 30.4 

28. 9 29.4 24.8 29.5 27.4 30.4 30.9 

0.00 0.06 0.02 0. 03 0.02 0.04 0.00 



I 

"" "" p, 

Test 

Dry Bulb 
Temperature • C 

457. 5 cm 

Wet Bulb 
Temperature • C 

457.5 cm 

Wind Velocity (cm/sec) 
457. 5 cm 

1 

28.2 

23.5 

125.9 

• TABLE' 8 

EXPERI,MENTAL DATA 

2 3 4 

29.4 28.1 26.8 

24. 2 18.7 20.8 

179.8 387.1 222.5 

5 6 7 8 9 10 

28.3 24.7 27.7 27. 5 29,2 30.6 

22.0 19.2 21. 3 21.1 22.2 22.6 

207.3 210.3 329.2 293.8 182.9 253. 0 



A,B 

c 
p 

constants 

specific heat of dry air at constant pressure 

D = diffusivity of sensible b.eat 

Dt = diffusivity of water vapor 

D* = leaf dimension in wind direction 

E evaporation 

H = latent b.eat transfer 
1 

H = radiant heat transfer 
r 

H 
s 

sensible heat transfer 

Kh = turbulent transfer coefficient for b.eat 

K = turbulent transfer coefficient for momentum 
m 

K 
v 

L 

p 

R 

R. 
I 

= 

= 

= 

= 

turbulent transfer coefficient for mass 

latent heat of vaporization 

atmospheric pressure 

net short wave radiation 

natural gas constant for water vapor 

incoming solar radiation 

Richardson number 

T = temperature of the air at reference height 
a 

Tb = temperature of the air at the top of the boundary layer 

TL leaf temperature 
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TS = temperature of the leaf surface 

T = average temperature of the layer 

z = reference height 

z = roughness height 
0 

d = zero displacement height 

e = water vapor pressure 

e = water vapor pressure at reference height 
a 

eb water vapor pressure at the top of the boundary layer 

e = saturation vapor pressure of the substomatal evaporating surface 
s 

g = acceleration of gravity 

k = Von Karman Constant 

kl' k2 = constants 

q = specific humidity 

qa specific humidity of the air at reference height 

qb = specific humidity of the air at the top of the boundary layer 

gs = specific humidity of the substomtal evaporating surface 

r. h. relative humidity of the air at reference height 

r = boundary layer resistance 
a 

r = stomatal resistance 
s 

u wind velocity at reference height 

u* = friction velocity 

w = dimension of the leaf transverse to the wind 

! ; 
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6 = boundary layer thickness 

E = emissivity 

p density of dry air 

(I Stefan-Boltzmann Constant 

T = Shear 

T = surface shear 
0 

,p = water vapor concentration 
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