
University of Kentucky
UKnowledge

KWRRI Research Reports Kentucky Water Resources Research Institute

1-1972

Factors Regulating the Growth of Algae in
Continuous Culture in Diluted Secondary Sewage
Treatment Plant Effluent and Subsequent
Biodegradability
Digital Object Identifier: https://doi.org/10.13023/kwrri.rr.45

Edward G. Foree
University of Kentucky

Caroline P. Wade
University of Kentucky

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/kwrri_reports

Part of the Algae Commons, Biochemistry Commons, and the Water Resource Management
Commons

This Report is brought to you for free and open access by the Kentucky Water Resources Research Institute at UKnowledge. It has been accepted for
inclusion in KWRRI Research Reports by an authorized administrator of UKnowledge. For more information, please contact
UKnowledge@lsv.uky.edu.

Repository Citation
Foree, Edward G. and Wade, Caroline P., "Factors Regulating the Growth of Algae in Continuous Culture in Diluted Secondary
Sewage Treatment Plant Effluent and Subsequent Biodegradability" (1972). KWRRI Research Reports. 150.
https://uknowledge.uky.edu/kwrri_reports/150

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Kentucky

https://core.ac.uk/display/232594496?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/?utm_source=uknowledge.uky.edu%2Fkwrri_reports%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
http://uknowledge.uky.edu/?utm_source=uknowledge.uky.edu%2Fkwrri_reports%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu?utm_source=uknowledge.uky.edu%2Fkwrri_reports%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/kwrri_reports?utm_source=uknowledge.uky.edu%2Fkwrri_reports%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/kwrri?utm_source=uknowledge.uky.edu%2Fkwrri_reports%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
https://uknowledge.uky.edu/kwrri_reports?utm_source=uknowledge.uky.edu%2Fkwrri_reports%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/961?utm_source=uknowledge.uky.edu%2Fkwrri_reports%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/2?utm_source=uknowledge.uky.edu%2Fkwrri_reports%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1057?utm_source=uknowledge.uky.edu%2Fkwrri_reports%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1057?utm_source=uknowledge.uky.edu%2Fkwrri_reports%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/kwrri_reports/150?utm_source=uknowledge.uky.edu%2Fkwrri_reports%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:UKnowledge@lsv.uky.edu


Research Report Number 45 

FACTOl'tS REGULATING THE GROWTH OF ALGAE IN 
CONTINUQUS CULTURE IN DILUTED SECONDARY 

SEWAGE TREATMENT PLANT EFFLUENT AND 
SUBSEQUENT BIODEGRADABILITY 

Edward G. Foree 
Principal Investigator 

Caroline P. Wade 
Research Assistant 

University of Kentucky Water Resources Institute 
Lexington, Kentucky 

WASHINGTON WATIII 
RESEARCH CENTER LIIIIIAltY 

Project Number A-023-KY 
Agreement Number 14-31-0001-3217 
November 1969 - June 1971 

The work on which this report is based was supported in part by 
funds pvovi\ied by the Office of Water Resources Research, United States 
Department of the Interior, as authorized under the Water Resources 
Research Act of 1964. 

January 1972 



PREFACE 

This report on the factora regulating the growth of algae In continuoµs 

culture In diluted secondary sewage treatment plant effluent and subsequent 

blode~radab.llity present1:1 the results of the second part of a stµdy entitled 

Algal Growth and Decomposition: Effects on Water Quality, Phase 2 (OWRR 
, , I . . . 

Project No. A-023-KY). The results of the first part nave been puqlished as 

University of Kentucky Water Resources Institute Research Report No. 31 
' . . 

(October 1970). Two additional l'!tudies on the kinetics of algal growth in 

contlnµous culture and on the decoqiposition and nutrient regeneration of 

plankton samples c;ollected from central Kentucky surface waters qave been 

completed 11-nd the results will be published in two subsequent research reports. 

The cooperati9n afforded the aiithors during this study by Dr. Robert 

A. Lauderd11-le, Director of the University of Kentucky Water Resources 

Institute, Is greatly 11-oknowledged. The assistance of Mrs. Pat ~ammond in 

prepar11tio11 of the report Is greatly appreciated. 



ABSTRACT 

Heterogeneous algal cultures were grown in laboratory continuous 

culture in pontinuqus flow, completely mixed chemostats in secondary sewage 

treatment plant effluent diluted to give an ammonia nitrogen concentration of 

10 mg/I. V;triables were lighting, pH, carbon dioxide availability, and 

hydraulic residence time. 

Optimum growth occurrep under pH 7. 0, excess co 2, and continupus 

lighting cond!tiop.s. The availability of artifically supplied excess co
2 

greatly 

increa11e<l the mass (standing crop) at steady-state over that produced under 

otherwise identical cqnd!tions for all residence times studied. For the case 

of excess co
2 

availability, the nitrogen concentration in the algal cells 

regulated growth rather than the concentration of nutrients in solution. A 

mathematical expvession was hypothesized to describe this phenomenon and 

was confirmed by the experimental results. 

Under dark-aerobic cop.ditions, the algal cultur';ls exerted a two-

stage BQD, the second stage apparently beginning after the de,i.th of the algal 

Cillis. Lop.ger chemqstat residence times during growth produced cultures with 

lower percenta~e biodegradability. Carbon dioxide enriched growth conditions 

pro~b.i.ced 9ultures with lowe11 percentage biodegradability than cultures grown 

in a carbon dioxicje deficient medium. 

KEY WORDS: algae, carbon, p.itrogen, hydrogen, ion concentration, 
biochemical oxygen demap.d, sewage effluents 

iii 
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CHAPTER I 

INTRODUCTION 

The fertilization of surface waters with excess nutrients may cause 

massive growths of algae and other aquatic plants and thus serious associated 

water quality problems. Eutrophication, the aging of waters by fertilization, 

has become a major concern in many regions and will be one of the most 

significant water quality problems of the future. The nutrients which seem to 

limit algal growth in most cases are nitrogen, phosphorus, and carbon. When 

the nutrients enter a natural water through domestic and industrial discharges 

or agricultural drainage, under favorable environmental conditions large blooms 

of algae can occur causing water quality deterioration from an aesthetic stand­

point. 

Algal growth will continue until some factor becomes growth limiting. 

If environmental conditions become unfavorable the algae will begin to decom­

pose, many times causing serious oxygen depletion in the water. Under 

conditions cif severe oxygen depletion the water may become anaerobic and 

anaerobic decomposition will occur with its associated detrimental water 

quality effects. 

Considerable research has been conducted on the entry of algal 

nutrients into receiving waters and ways of preventing algal growi;h in fertilized 

waters. However, it is generally expensive to remove small quantities of 

nutrients from wastewater streams and nearly impossible to regulate agri­

cultural drainage; therefore, it is important to determine the factors which 

affect algal growth and decomposition and how this information can be used to 

minimize the associated water quality problems. 



In the first phase of this two phase study a continuous flow system was 

used to evaluate algal growth under different growth conditions and to determine 

the effects of these conditions on the level of mass supported by the particular 

environment. In the second phase the algal cultures were then decomposed 

aerobically to determine the rate filld extent of decomposition of the algae 

grown under different environmental conditions. The results from the growth 

and decomposition studies can be applied to similar natural situations to 

determine the effect of the algae on the natural water quality. 

- 2 -



CHAPTER II 

BACKGROUND 

A. Continuous Flow Chemostat Theory 

The use of continuous flow culture vessels allows the study of steady 

state conditions and enables a determination of differences in growth behavior 

and characteristics as a function of the growth rate. Data from chemostat 

studies can be applied to natural ecosystems and the laboratory environment 

can be adjusted to simulate natural conditions. 

Continuous flow analysis has been used in the past to study many 

aspects of algal growth such. as the effects of light intensity and temperature, 

and the relative roles of various nutrients in regulating algal growth. In a 

laboratory environment it is possible to determine the level of growth at any 

particular hydraulic residence time for any given set of grow-th. conditions and 

concentration of growth regulating nutrients. When the system reaches steady 

state, growth will be regulated by the concentration of the rate limiting nutrient, 

so for any particular concentration of th.e limiting nutrient a maximum level of 

mass which the system will support can be determined. 

1. Characteristics of Chemostat Systems. Th.e chemostat is a 

reactor in which a constant flow rate and volume produce an outflow equal to 

the inflow. The system is completely mixed with a uniform distribution of 

algae and is maintained in a uniform environment. The desired hydraulic 

residence time ( 0) is obtained by adjusting the flow rate through the constant 

volume chemostat. 

Steady state conditions are characterized by constant cell mass 

concentration in th.e effluent equal to that in th.e ch.emostat and a constant 

specific growth rate ( dX I X) and nutrient concentration in the reactor. 
dt 

- 3 -



Due to the completely mixed system, the mass in the reactor will be washed 

out at a rate equal to the flow rate and in order to ma!ntaifr steady state the 

rate of growth must be adequate to replace this washout rate, Thus a 

constant level of mass is maintained. 

Growth may be limited by either an er"ergy source (organic material, 

light) or by nutrients (C0
2

, N, P, trace elements). When the energy sources 

are in excess the maximum mass level the system wiH support will be regulated 

by the concentration of the limiting nutrient. 

2. Nutrient Limitation. Porcella (22) found in chemostat studies of 

phosphorus limitation that the phosphorus concentration decreased rapidly and 

then remained at a constant low level. He found that the nutrient concentration 

deminished faster than would be expected based on a constant yield of algal 

cells for each unit of phosphorus removed from the influent. This tends to 

indicate that the algal cells store excess nutrients during nutrient abundant 

growth and the growth rate is therefore not constant with respect to the 

nutrient concentration in solution. These stored nutrients could then be used 

to produce added growth after the nutrient concentration tn solution had been 

exhausted. Foree and Tapp (7) reported cases in which excess nitrogen was 

taken up during nutrient abundant growth and stored rather than converted 

directly to protein. Once the nitrogen became depleted from solution the 

nitrogen stored in tbe algal cells was converted to protein causing additional 

growtb. 

This storage of excess nutrients would te::id to indicate a growtb rate 

proportional to the cellular nutrient concentration rather than the concen­

tration of the limiting nutrient in solution. Jewell and McCarty (11) reported 

this effect as they found that although cell division ceases when the limiting 

nutrient is depleted from solution, growth col'.iirmes by increased cell sizes 

until a minimum cellular nutrient concentration is reached, Gerloff and 

Skoog (8), on the other hand, proposed that growtll continues untn some 
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minimum critical level of the growth regulating nutrient is reached in the cells 

at which time both cell division and grow-th will cease. Both these explanations 

of nutrient defficient growth would indicate a growth rate based on cellular 

nutrient concentration as opposed to one based on the nutrient concentration in 

solution. 

3. Growth Kinetics Theory. Based on the previous discussion and 

preliminary studies during this research, it was concluded that the kinetic 

theory outlined in Provisional Algal Assay Procedure (PAAP) (4) was not 

always applicable. The PAAP theory describes a growth rate proportional to 

the nutrient concentration in solution and based on a constant yield of cells per 

unit of nutrient removed. 

A more reasonable kinetic equation to describe the observed data is 

hypothesized with the specific growth rate proportional to the cellular nutrient 

concentration. The specific growth rate may be defined as: 

specific growth rate = dX Ix 
dt 

where X is a measure of mass and t is time. Assuming that growth will 

cease when the cellular nutrient concentration reaches some minimum level 

and allowing for the respiration rate, the specific growth rate may be 

expressed as: 

ddtx I x = k (N/x - [ N/x J . ) - b 
mm 

where k is a constant of proportionality, N is the quantity of growth 

regulating nutrient incorporated in a total quantity of cellular mass X (thus 

N/X is the cellular nutrient concentration), and b is the respiration rate of 

the algae. Combining the respiration rate and the minimum cellular concen­

tration in a term b' representing an "effective respiration rate" and using 

the continuous flow assumptions: 

: / X = k (N/X) - b' = 1/ 0 
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where 0 is the hydraulic residence time or the mean algal cell age in the 

system. 

B. Carbon Dioxide Limitation 

Much research has been done in the past concerning the influence of 

limiting nutrients on the growth of algae. Most of this research has been 

concerned with nitrogen and phosphorus, Carbon, although it has long been 

known to be an important growth limiting nutrient for all plant life, has until 

recently been all but disregarded. 

Carbon dioxide was long considered as readily available through access 

to the atmospheric supply and therefore not limiting in natural situations. How­

ever, as pointed out by Hutchinson (10), both the movement of free co
2 

through the water interface and co
2 

replacement by carbonate salts are slow 

processes, with the quantity of co
2 

normally available lying between 0. 4 and 

1. 0 mg/1. Kuentzel (15) described cases of growth which would have required 

as much as 110 mg/1 of co
2 

to produce, far above the maximum available 

from most natural inorganic sources. 

Kuentzel postulated that this tremendous amount of co
2 

came from 

bacterial action on organic carbon sources stimulated by the quantities of o
2 

produced by the fast-growing algae. He described a bacteria-algae symbiosis 

which can supply as much as 20 mg/1 of co
2 

in a supersaturated state causing 

explosive algal growth rates. He pointed out many examples in which massive 

algal blooms are associated with large bacterial populations and decomposable 

carbohydrates and cited much research in which co
2 

growth limitation was 

indicated. 

Kuentzel (15) and Oswald (21) described a system such as that depicted 

in Figure 2.1 as that responsible for large mass blooms. 

In this situation an organic carbon source, usually from a sewage 

effluent, stimulates the growth of large amounts of bacteria which produce co
2 

as the organic carbon source is degraded. The algae, in turn, use the CO 
2 

- 6 -
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Figure 2. 1 The Carbon Dioxide-Oxygen Cycle in a Mixed 
Algae-Bacteria Environment. 

EXCESS 
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ENERGY 

and produce more o
2 

which, with that from the atmosphere, further stimulates 

the growth of bacteria. 

Thus many times it may be the availability of co
2 

which limits algal 

growth and not one of the other major nutrients, nitrogen or phosphorus. 

Phosphorus, for example, is needed in very small quantities, about 0. 01 mg/1, 

to stimulate and support massive blooms. Since most lakes and rivers contain 

at least this much, and the use and distribution of phosphorus is so wide­

spread, it would be almost impossible to limit algal growth by restricting 

phosphorus. Kuentzel (15) suggested that more appropriate means might be to 
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provide more complete removal of biogradeable organic matter from effluents 

or use of a bactericide to eliminate the co
2 

producing bacteria. The former 

suggestion is a practical possibility, the latter is not. 

C. Biochemical Oxygen Demand of Algae Under Unfavorable Environ­

mental Conditions. 

Waste stabilization lagoon studies by Meron, et al. (18j and others 

have shown that much of the organic material in the lagoon effluent is com­

prised of algal cell mass as opposed to the waste organics of the influent. 

There is considerable interest inthe effects of this algae on water quality in 

receiving streams. The results of previous studies, Jewell (11) and Foree (6), 

have shown that the rate and extent of aerobic decomposition, and thus oxygen 

demand, depend upon algal cell age and conditions of growth. Thus it would be 

desirable to evaluate the relationship between algal growth parameters in 

simulated lagoon situations and the oxygen demanding potential of the effluent 

in simulated receiving water situations. 

The conventional 5 dya BOD test has some shortcomings when applied 

to the analysis of samples containing significant quantities of algae. Previous 

studies, Fitzgerald (5), have shown that living algal cells are relatively 

resistant to attack by bacteria, but become highly susceptible to bacterial 

attack and decomposition upon death. Thus when heterogeneous cultlires of 

algae and bacteria are subjected to dark aerobic conditions, the oxygen demand 

is characterized by three phases: an initial phase in which an oxygen demand 

is exerted at a relatively slow rate as a result of algal respiration, an inter­

mediate phase in which an oxygen demand is exerted at an accelerated rate as 

a result of bacterial respiration. This second stage BOD usually begins 

after a few days of incubation in the dark and may not be measured in the 

conventional 5 day test. An electrolysis BOD apparatus allows for a continuous 

determination of BOD as a function of time and provides a convenient technique 

-8-



for determining the BOD characteristics of an algal culture for extended 

periods of time. 

In this study algal cultures were grown in the continuous flow chemo­

stats under various environmental conditions and detention times, and once 

steady-state conditions were established, aliquots were placed on the electro­

lysis BOD apparatus for observation. This allowed the desired correlation 

between algal growth parameters in simulated lagoon situations and the oxygen 

demanding potential of the effluent in simulated receiving water situations. 

- 9 -



CHAPTER III 

EXPERIMENTAL PROCEDt;RE 

The purpose of this chapter is to describe the growth apparatus and 

procedure and the sampling methods used d'.lring this study. Analytical 

techniques are described in the next chapter. 

A. Growth Procedure 

1. Apparatus: The algae were grown in completely mixed continuous 

flow chemostats using methods similar to those outlined in Provisional Algal 

Assay Procedure (PAAP) (4). Details of the chemostat and the system arrange­

ment can be seen in Figures 3.1 and 3. 2. The chemostats were constructed of 

plexiglas tubing with ports for influent, sampling, and effluent, as well as 

provisions for diffused air and/ or carbon dioxide supply. Two sets of 

chemostats were used during the study in order to compare the effect of 

different growth factors on the systems. 

One set consisted of four chemostats, e,wh of which were 61 centi­

meters high and contained 1. 2 liters. These chemostats were maintained at 

hydraulic residence times of 2, 4, 8, and 16 days throughout the study. A 

constant influent flow rate, determined from the residence time and volume, 

was provided by using metering syringe pumps. 

The second set consisted of six chemostats each of which was 61 cm 

high and contained 2. 0 liters. The. hydraulic residence times were 1, 2, 4, 8, 

16, and 32 days in this set. 

All chemostats were mixed continuously by magnetic stirrers using 

teflon stirring bars to ensure complete mixing. The stirring speed was 

adjusted to prevent formation of a vortex at the surface of the liquid, 
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Figure 3.1. Detail of the Continuous Flow Culture Apparatus (Chemostat). 
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2. Gas Supply System. Provisions for gas supply were furnished at 

the bottom of each chemostat by means of glass porous diffusors. By using a 

system of glass "T" connections and rubber tubing, it was possible to provide 

either a mixture of air and co
2 

or air alone to each set of chemostats. The 

air used was from a laboratory compressed air system and the co2 was 

supplied from pure bottled co 2. 

After the junction of the air and co 2, the mixture was bubbled through 

a 9. 0 liter pyrex bottle containing distilled water to ensure saturation of the gas 

and thereby minimize evaporation losses in the system. The flow of each 

chemostat air supply was regulated individually with the use of a castaloy 

clamp to compensate for pressure differences. 

Since the pH of the culture was controlled by the free CO 2 in solution, 

pH was used as a monitor of adequate co
2 

concentration in the culture vessels. 

pH was maintained in the 7. 0 to 8. 0 range by increasing the co2 flow when the 

pH reached 8. 0 and decreasing it when the pH fell below 7. 0. 

It was determined that when no co
2 

was supplied in the aeration 

mixture the pH would stabilize at about 10 due to the carbon dioxide depletion 

from the growth medium by the algae. Since in one phase of the study it was 

desired to evaluate the role of the absence of added co
2 

in regulating the 

algal growth while maintaining the pH in the same range as when co2 was 

supplied, it was necessary to chemically regulate the pH. This was 

accomplished by the addition of sufficient 1. 0 N HCl to the feed to maintain the 

pH in the chemostats in the 7. 0 to 8. 0 range. 

3. Light. The light source used for set one, containing the four 

chemQstats, consisted of five, 20 watt, cool-white fluorescent lamps. The 

bulbs were mounted vertically between the chemostats and on each end of the 

set. Lighting for set two, which contained the six chemostats, was 

supplied by four horizontally supported 40 watt cool-white fluorescent bulbs. 

The average light intensity measured at the surface of the vessels was 250 

and 320 foot-candles for sets one and two, respectively. 
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Each set of chemostats was enclosed in a· white plexiglas shell with 

an open front to ensure a more uniform lighting intensity. To allow study of 

diurnal lighting conditions, each set of lights was controlled by an AMF 

electric 24 hour timer which automatically controlled the 12 hours-on: 12 hours­

off cycle. 

4. Temperature. The temperature of the laboratory housing the 

culture apparatus was controlled by a thermostat which was maintained at 

approximately 22 ° C during the growth period. 

5. Feed Material. To simulate natural conditions, settled 

secondary activated sludge effluent obtained from the Town Branch Sewage 

Treatment Plant in Lexington, Kentucky, was used as a source of nutrients. 

After each collection of the sewage effluent, it was returned to the 

laboratory and allowed to settle for several hours. In order to ensur_e a 

relatively constant influent composition the supernatant was then diluted. to 

give an ammonia-nitrogen (NH
3

-N) concentration of 10. 0 mg/1 (as N). The 

feed was then stored in a refrigerator at 4°C for a maximum time of three 

days to minimize biological activity, and enough withdrawn daily to supply the 

feed requirements of the cultures. 

6. Growth Procedure. At the beginning of the growth period, each 

chemostat was filled from a large bottle containing a mixture of feed solution 

and mixed algal culture indigenous to Kentucky. The algae in the mixture had 

been cultured in the same sewage treatment plant effluent to ensure acclimation 

and was blended for approximately 30 seconds in a Waring Blender to break up 

any clumps before it was added. 

During growth the cultures were sampled periodically to deter.mine 

when steady state conditions existed. Once steady state was reached in all 

the vessels each was sampled and five chemostats selected for decomposition 

studies on an electrolysis Biological Oxygen Demand (BOD) apparatus. 
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B. Sampling Procedure 

All samples were collected from the sampEng ports at mid-height of 

the culture vessels. Before sampling, the i;:iside of the chemostat was brusl1ed 

down to remove any algae which adhered to the sides, and the port was 

allowed to run sufficiently to dislodge any algae in. the port opening. Approxi­

mately 250 ml of sample was then collected directly into a plastic bottle and, 

after shaking, half was transfered to centrifuge tubes and the remainder 

marked "total sample." The tubes were centrifuged for 15 minutes at 

17, 000 rpm and 20°C on an Internatiorral Equipment Company Model B-20 

refrigerated centrifuge. The supernatant was then passed through Whatman 

Glas Fibre Paper, grade GF/C, using a millipore filter apparatus, and stored 

in another plastic bottle marked "soluble fraction. " 

All samples were stored in a -30°C freezer and thawed at +4°C for 

analysis. Samples taken after the BOD decomposition were pipetted into 

plastic bottles and separated into total and soluble fractions in the same 

manner as the chemostat samples. 

C. Analysis 

Appropriate combinations of analyses from the following list were 

run in accordance with the objectives of the various phases of the studies: 

a. Chemical Oxygen Demand 

b. Biological Oxygen Demand 

c. Total Carbon 

d. Organic Carbon 

e. Total and Volatile Suspended Solids 

f. Ammonia Nitrogen 

g. Kjeldahl-Nitrogen (Organic plus Ammonia Nitrogen) 

h. Nitrate Nitrogen 

i. Total Phosphorus 

j. Inorganic Phosphorus 
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k. Orthophosphate 

1. pH 

m. Alkalinity 
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CHAPTER IV 

ANALYTICAL PROCEDURE 

All tests were run in accordance with Standard Methods for the 

Examination of Water and Wastewater, 12th ed. (25) unless otherwise indicated 

and are described briefly below. 

A. Biological Oxygen Demand (BOD) 

In order to obtain a direct and continuous measure of the dissolved 

oxygen used during decomposition of the algae, the electrolysis method of BOD 

determination was used. Using the design of Young and Baumann (1), a unit 

was fabricated consisting of six, one-liter Pyrex bottles to serve as reaction 

vessels, each of which had an electrolysis cell and a direct current power 

source. 

The electrolysis cell consisted of a potassium hydroxide solution well 

for absorbing the carbon dioxide produced by the microorganisms, a weak acid 

solution to serve as an electrolyte and three electrodes. As oxygen in the 

reaction vessel is depleted, a pressure differential is created, causing the 

electrolyte level to fall and activate the switching electrode. This switches on 

tile current and oxygen is produced by electrolysis at the positive electrode. 

The oxygen production reestablishes the gas pressure in atmospllere over tile 

reaction vessel and shuts off the current until depletion of oxygen again activ.ates 

the switching electrode. Tile negative electrode produces b.ydrogen wllicll is 

allowed to escape to the atmosphere. 

Tile apparatus is constructed so that tb.e current is constant and a 

timer records tile accumulated time of current flow. Tilus, by using Faraday's 

Law, the accumulated oxygen production at any time is computed as a direct 

multiple of the timer meter reading. For this particular set-up the oxygen 

- 17 -



production in mg is computed by multiplying the meter reading in minutes 

by 0.100. The oxygen consumption in mg/1 is then computed knowing the size 

of the sample in the reaction vessel. By taking periodic meter readings a BOD 

vs. elapsed time relationship is established. 

In running the algal samples, a one-liter sample was taken from 

each chemostat after growth had reached steady state and placed in the 

reaction vessels. The only seed material used was that already contained in 

the aglal cultures; therefore no seed correction was necessary. The sample 

was used undiluted and unbuffered and was stirred continuously by a magnetic 

stirrer built into the electrolysis BOD unit. The decomposition was allowed 

to continue for 30 days in a constant temperature room at 20 ° C and readings 

of BOD were taken daily. 

B. Chemical Oxygen Demand (COD) 

All COD tests were run using the dichromate reflux method in accor-

dance with Standard Methods, pp. 510-514. Twenty ml sample sizes and the 

corresponding volumes_ of reagents for the 0.1 N standard ferrous ammonium 

sulfate titrant were used. 

C. Nitrogen 

1. Ammonia Nitrogen. A micro-kjeldahl steam distillation and 

nesslerization procedure was used to determine the ammonia nitrogen concen­

tration of the samples. All reagents were made in accordance with Standard 

Methods, pp. 391-392. 

2. Total Kjeldahl Nitrogen. To measure the total nitrogen (organic 

+ NH
3
-N) content of the samples, the organic nitrogen was converted to 

NH
3
-N using a micro-kjeldahl digestion procedure described in Standard 

Methods, pp. 208-210 and measured using the previously mentioned ammonia 

nitrogen test. 

- 18 -



D. Phosphorus 

1. Total Phosphorus. In order to convert the. organic phosphorus to 

orthophosphate (23), the sample with 1. o·ml of 70 gm/l magnesium chloride 

reagent added was dried in a vycor dish at 100°C, and then burned for 10 

minutes in a muffle furnace at 600° C. The resulting pyrophosphate was then 

hydrolyzed to orthosphosphate by boiling in acidic solution as described in 

standard Methods, p. 236. Total phosphorus wa.s .then determined as 

orthophosphate as indicated below. 

2. Orthophosphate. The orphophosphate concentrations were 

determined by the stannous chloride method for orthophosphate described in 

Standard Methods, pp. 234-236 utilizing the Beckman spectrophotometer. 

3. Inorganic phosphorus. To deterllline the inorganic portion of the 

phosphorus in the sample, all but the organic portion was converted to 

orthophosphate by acid hydrolysis. and measur.ed a,s previously described 

according to Standard Methods, pp. 234-236. 

E. Suspended Solids 

1. Total Suspended Solids. Total suspended solids concentration was 

obtained using the method described in Standard Methods 13th ed., pp. 537-538 

(26). Whatman Glass Fibre Filter Papers grade GF/C and a Millipore Filter 

Apparatus were used for filtering the sample and a distilled water blank was 

carried through the test. 

2. Volatile Suspended Solids. The filter pads from the total sus­

pended solids determination were then analyzed according to Standard Methods 

13th ed., pp. 538-539 (26) by burning for 10 minutes in a 580° C muffle 

furnace. The volatile suspended solids value was then determined as the 

portion of the total suspended solids which was lost during combustion. The 

furnace was maintained below 600°C since that is the melting point of the 

glass filter pads. 
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F. Carbon 

1. Total Carbon determinations were made by passing 20 µl of 

sample through a Beckman infrared total carbon Analyzer Model 1R315. 

Dilutions were sometimes necessary to produce on-scale readings. 

2. Soluble Carbon was measured using the same techniques as total 

carbon but on the "soluble fraction" of the sample. 

3. Soluble Organic Carbon. A portion of the "soluble fraction" 

sample was acidified to pH 2. 0 and then purged with nitrogen for 15 minutes 

to drive off the inorganic carbon as CO 
2 

leaving .the organic form for measure­

ment. To obtain soluble inorganic carbon values the soluble organic portion 

was subtacted from the total soluble carbon value .. 

G. Alkalinity and pH 

Alkalinity and pH were run in accordance with Standard Methods, 

pp. 48-52, using a Corning Model 10 pH meter with a Beckman No. 39501 

combination pH electrode. 
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CHAPTER V 

RESULTS AND DISCUSSION 

A. General Comments 

In this two phase study, algal cultures were grown in parallel 

chemostats at different hydraulic residence times under four different sets of 

growth conditions. In each run several residence times (calculated as the 

volume of the reactor divided by the feed or effluent rate) were observed and 

comparisons made between residence times for the same growth condition and 

between growth conditions for the same residence times. 

In the first phase, the growth regulating factor was determined for 

each set of growth conditions and the rate and extent of growth was evaluated 

as a function of the hydraulic residence time and the growth condition. For the 

second phase samples from the cultures were allowed to decompose on an 

electrolysis BOD apparatus to determine the relationship between growth 

conditions and the rate and extent of oxygen utilization during decomposition. 

1. Algae Cultures Used. The original inoculation of algae was a 

mixture of several unialgal cultures (Chlorella, Scenedesmus, and Anabaena) 

and a mixed natural pond culture indigenous to Kentucky. After each run 

samples from each chemostat were mixed and used for inoculation of the next 

run to ensure the same algal types for future comparison. 

An examination of the samples after a growth period revealed 

presence of the algal genera presented in Table 5. 1. 

During a growth period in which co
2 

was supplied to the cultures a 

population shift was observed after a steady state level had been reached. The 

samples of shorter detention times were predominantly Chlorella, a green 
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TABLE 5.1 

Algal Genera Present in Cultures 

co2 ENRICHED CULTURES 

1. 16-day residence time 

Anabaena - blue green - dominant 

Chlorella - green 

Scenedesmus - green 

Chlamydomonas - green 

2. 8-day residence time 

Chlorella - green - dominant 

Oscillatoria - blue green 

Cylindrospermu.m - blu.e green 

Chlamydomonas - green 

Chlorococcu.m - green 

3. 4-day residence time 

Chlorella - green - dominant 

Closteriu.m - green - few 

Unknown blue green filamentous form-few 

4. 2-day residence time 

Chlorella - green - dominant 

Anabaena - blu.e green - few 

co2 DEFICIENT CULTURES 

5. 32-day and 8-day residence time 

Chlorella - green - dominant 

Chlorococcum - green 

Oscillatoria - blue green 
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alga, while the 16-day detention sample contained more Anabaena, a blue-green 

alga. Samples with no co
2 

added during growth generally all showed the same 

algal types present and all were dominated by Chlorella. 

2. Characteristics of Feed Solution. The feed solution was secondary 

sewage treatment plant effluent diluted so as to contain approximately 10 mg/1 

ammonia nitrogen. Other parameters measured are listed in Table 5. 2 and 

represent approximate values as each batch collected varied in strength. This 

feed solution was used in order to simulate a natural treatment plant effluent 

condition. 

TABLE 5.2 

Diluted Sewage Feed Characteristics 

Total Kjeldahl Nitrogen 

Soluble Kjeldahl Nitrogen 

Ammonia Nitrogen 

Total COD 

Total Phosphorus 

Total Suspended Solids 

pH 

Alkalinity 

Total Carbon 

Soluble Organic Carbon 

Approx. value (mg/I) 

13 

11 

10 

40 

3.0 

less than 5 

7.5 

130 

50 

15 

Range 

8. 0 - 10. 9 

36 - 72 

2. 7 - 4. 0 

3. Symbols Used. The symbols used for the measured parameters 

presented in the results and the method by which they were determined are 

presented in Table 5. 3. 
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Abbreviation 

s 

CT 

CTS 

c 

cso 
CSI 

NTK 

NSK 

NA 

N 

%N 

BOD 

e 

TABLE 5. 3 

Abbreviated Symbols 

Total Chemical Oxygen Demand 

Soluble Chemical Oxygen Demand 

Particulate Chemical Oxygen 
Demand 

Volatile Suspended Solids 

Total Carbon 

Total Soluble Carbon 

Particulate Organic Carbon 

Soluble Organic Carbon 

Soluble Inorganic Carbon 

Total Kjedahl Nitrogen 

Soluble Kjedahl Nitrogen 

Ammonia Nitrogen 

Particulate Organic Nitrogen 

Nitrogen Content of Particulate 
Material expressed as % of S 

Total Phosphorus 

Soluble Phosphorus 

Particulate Phosphorus 

Phosphorus Content of 
Particulate Material Expressed 
as % of S 

Biological Oxygen Demand 

Hydraulic Residence Time 

Means of Determination 

Direct Measurement 

Direct Measurement 

Calculated as (MT - MS) 

Direct Measurement 

Direct Measurement 

Direct Measurement 

Calct1lated as (CT - CTS) 

Direct Measurement 

Calculated as (CTS - csol 
Direct Measurement 

Direct Measurement 

Direct Measurement 

Calculated as (NTK - NSK) 

Calculated as 100 (NIS) 

Direct Measurement 

Direct Measurement 

Calculated as (PT - PS) 

Calculated as 100 (P/S) 

Direct Measurement 

Volume of Reactor/ 
Flow Rate 

Note: All symbols except %N, % P and 0 represent concentrations in (mg/1). 
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B. Growth Phase Results 

The objective of this phase of the study was to evaluate the effects of 

various environmental conditions upon the rate and extent of algal growth. By 

varying factors such as pH, co
2 

availability, and lighting, while holding all 

other conditions constant, these factors were evalv.ated as to their effect on 

growth potential. By using the same algal cultures throughout the study it was 

also possible to study growth regulating factors under each set of conditions. 

1. Diurnal pH Variation. An example of an observed variation in 

pH through the light-dark cycle is shown in Figure 5.1. During the light cycle 

algal photosynthesis requires carbon dioxide and light energy to produce algal 

protoplasm according to the following equation: 

CO + H O + NH + PO + light energy - protoplasm + o
2 2 2 3 4 

If a direct source of CO 
2 

is not available then the algae must obtain 

carbon from the bicarbonate alkalinity as noted by Meron and Rebhum (18). The 

bicarbonate disassociates to give CO 
2 

as a usable carbon source: 

+ 
+ H -' CO + H O 

2 2 

As the algae use this available CO 
2

, the equilibrium shifts to the 

right, decreasing the hydrogen ion concentration and causing the pH to rise 

as observed during the light cycle as the algae use co
2

. This pH variation was 

noted even though the total alkalinity remained fairly constant. This is 

possible according to King (14) in waters where there is largely carbonate 

alkalinity unless there is formation and precipitation of calcite as the pH rises. 

During the dark cycle the process is reversed as the algae respire, producing 

co
2 

according to: 

Algal protoplasm + o
2 

- co
2 

+ H
2

0 

This shifts the bicarbonate equilibrium to the left decreasing pH by increasing 

the hydrogen ion concentration. The pH of the samples begins to decrease at 
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Figure 5.1. Typical pH Variation with Time in an Algal Culture Observed 
During Diurnal Light Cycling. 



the end of the light cycle and continues until it reaches its previous level at the 

end of the dark period. 

2. Mass Variation with Hydraulic Regidence, Time. Figure 5. 2 

shows the variation of Total COD (MT) and Particulate COD (M) with the 

hydraulic residence time during several growth conditions. For the carbon 

dioxide enriched samples on a diurnal lighting cycle it can be noted that the pH 

maintained during the growth period had a decided effect on the total COD at 

all residence times. In the observed pH range from 5. 0 to 9. 0 it was found 

that the apparent optimum pH level for growth was around 7 and that cultures 

maintained either above or below this value produced less total growth. Of all 

the samples grown under the same conditions it can be seen that a pH level of 

about 5 produced the least growth, and in order of increasing growth were pH 

6 and pH 8 to 9 with pH 7 showing the maximum of all values tested. 

Similar results were reported by Soltero and Lee (24) in the testing 

of an automatic pH controller for algal cultures. In their studies on unialgal 

cultures they found pH 7. 0 to be optimum followed by pH 8. 0 and 9. 0, and 6. 0, 

respectively. Although the data cannot be compared directly, as batch 

cultures were used by Soltero and Lee, the results show the same trend in 

growth at different pH levels. 

Also from Figure 5. 2 differences in growth for the same conditions 

with and without co
2 

can be observed. At pH 7. 0 and diurnal lighting conditions 

the algae grown with excess co
2 

showed as much as seven times the growth 

based on total COD as that grown in the absence of co 2. In order to maintain 

the same pH conditions the co
2 

deficient samples were adjusted to pH 7. 0 

using HCl daily. Both the co
2 

enriched and the co
2 

deficient cultures 

produced the same curve, although the slope of the co
2 

supplied cultures was 

far greater than that of the CO 
2 

deficient case. 

Lighting effects were also studied using the co
2 

deficient case. 

Samples grown without co
2 

under continuous lighting showed a significantly 
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Figure 5. 2. Total and Particulate COD as a Function of Hydraulic 
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• 

higher total COD than samples grown under diurnal cycles of light, For the 

shorter detention times only a small effect was noted, while the longest 

detention time showed almost twice the growth for the continuously lighted 

sample. 

In the run made using continuous lighting no attempt was made to 

control pH and it ranged to 10. 6 to 11. 0 as compared tc the manually adjusted 

pH of near 7 for the diurnal lighted samples. From the previous results, 

this would tend to cause a lower total COD than would have been observed at 

pH 7 and would point to a greater difference in growth due to lighting. Consid­

ering these data in light of a stabilization lagoon situation, the longer days 

during the summer months, along with higher ambient temperatures, contribute 

to the greater masses of algae usually observed. 

3. Mass Variation with Time of Growth. Figure 5. 3 shows the 

variation in the total COD (MT) during the growth period for the different 

residence times of both the co
2 

enriched and the co
2 

deficient runs. It can 

be noted that all samples showed a pattern of reaching a maximum value and 

then decreasing slightly to a fairly constant steady state level. Thls same 

effect was reported by Porcella (22) in his studies using chemostat analysis 

and sewage effluents to grow algae. He found this pattern to hold when using 

direct cell counts, COD, and suspended solids measurements, For similar 

conditions of growth Porcella observed the maximum mass between 15 and 20 

days after inoculation, the same range of time observed in Figure 5. 3. Figure 

5. 3 also depicts the significance of carbon dioxide availability on the growth 

rate of the cultures as can be seen from the slope of the lines immediately after 

inoculation. The CO 
2 

enriched samples showed very steep curves indicating a 

fast growth rate, with greater variation between residence times than the co2 
deficient cases. For all the residence times of the co

2 
deficient cultures, 

the curves were similar and all showed wash out rates greater than growth rates 

for about 15 days before peaking and reaching steady state. The large difference 
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in growth rate and total COD shows the significance of co
2 

availability. In 

comparing the two conditions at the same residence time it can be seen that 

there is a much greater effect at the long detention times while at 2 days there 

is very little significant difference in the steady state To!al COD values. 

4. Growth Limiting Factors. Table 5. 4 shows a comparison of 

values of pertinant parameters at steady state conditions for four separate 

chemostat runs. Two runs contained sets of co
2 

enriched chemostats grown 

under the same conditions and the other two runs contained co2 deficient 

chemostats. In run 3, a co
2 

deficient run, there was no effort made to 

control the pH of the cultures. Due to photosynthesis and the corresponding 

depletion of co
2 

as discussed previously, the average pH remained high, 

normally about 10. 8. In trying to determine the growth regulating factor under 

these conditions, it was difficult to determine what in fact limited growth. As 

reported by King (14) at pH's of 10. 0 and above, phosphorus in solution will 

precipitate as CaPO 
4 

and growth may then become phosphorus limited. The 

values observed for soluble phosphorus were fairly lcw and could have possibly 

been limiting in this situation. Ranging from 0. 09 mg/1 to 0. 21 mg/1 

phosphorus, they were in fact the lowest observed during this research. 

Since co
2 

was purposely withheld, the values reported for soluble 

inorganic carbon were low and randomly distributed, indicating possible 

carbon limitation. There was, however, a certain amount of co
2 

supplied by 

the bacteria in the system as they degraded the organic matter in the sewage 

feed, as discussed by Kuentzel (15) and Kerr et al. (12). The third possibility 

for growth limitation during this run was the high pH per~· which has a 

decided effect on growth as previously discussed and shown in Figure 5. 2. 

In an effort to isolate the growth regulating factor in this CO 2 
deficient situation, a second run (run 4) was made in which the pH was 

adjusted to 7. 0 manually each morning as described in Chapter III. Under 

these conditions the maximum pH recorded was 9. 3 in the afternoon which may 
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TABLE 5.4 

Comparison of Steady state Parameters for Different Growth Conditions 
9 pH M c CSI NA PS 

dars mg/1 mg/1 mg/1 mg/1 mg/1 

Run 1 with co
2 

enriched, diurnal lighting 

2 7. 4 255 140 8.0 0.0 0.90 

4 7.0 506 155 14. 0 0.2 0.86 

8 7.0 834 250 30.0 0.0 0. 89 

16 6.7 1427 430 40.0 0.0 0. 81 

Run 2 with co
2 

enriched, diurnal lighting 

2 7.9 176 49 7. 0 0.0 1.17 

4 7.3 298 97 9.0 0.0 0.14 

8 7.6 505 162 16. 0 0.0 0.34 

16 7.0 905 276 13.0 o.o 0.23 

Run 3 without co
2 

supplied, continuous lighting, no pH control 

1 11.1 114 33 4.0 3.0 0.09 

2 10.9 126 38 1. 0 4.0 0.11 

4 10.9 126 42 3.0 4.2 0.10 

8 10.7 129 32 7.0 8.6 0.21 

16 10.8 235 56 11. 0 2.0 0.15 

32 10.7 341 74 1. 0 0.2 0.21 

Run 4 without co
2 

supplied, diurnal lighting, pH controlled 

1 9.3 66 12 16.0 3.0 0.99 

2 9.1 110 36 12. 0 2.0 0.76 

4 8.4 102 19 8.0 1. 9 0.49 

8 8.0 150 43 5.0 1. 9 1. 66 

16 7.1 162 44 3.0 1. 9 1. 47 

32 6.0 196 67 4.0 1. 4 1. 31 
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account for the greater soluble phosphorus values recorded in Table 5. 4. 

These values, which ranged from 0. 49 mg/I to 1. 66 mg/1 phosphorus, were 

well above the previous run and similar to other runs where co2 was 

supplied. The soluble inorganic carbon (CSI) values were again low and there 

was no increase in growth as measured by particulate COD even though 

phosphorus was in solution. The COD's were actually slightly lower in run 4 

than in run 3. This was probably due to continuous lighting in run 3 and 

diurnal lighting in run 4. Since no greater growth was experienced when more 

favorable pH and phosphorus conditions were used it can be concluded that 

carbon was the regulating nutrient under the conditions of run 3 as well as 

run 4. 

In both run 1 and run 2 for the co
2 

enriched samples there were 

soluble phosphorus and soluble inorganic carbon in solution at steady state 

conditions. However, in neither of these two identical runs was there any 

ammonia nitrogen in solution at steady state. Therefore, nitrogen appeared to 

be the growth limiting nutrient under the co
2 

enriched, diurnal lighting 

conditions. There was some difference in growth between run 1 and run 2 in 

partduetorun 2 having a longer total lapse time of growth and an apparent 

population shift as discussed previously (Section A). 

From Table 5. 4 a trend in the soluble inorganic carbon results can be 

noted: that of increasing soluble carbon with increasing residence time. Each 

of the CO 
2 

enriched chemostats received the same amount of co2, and due to 

the higher growth rate at the shorter detention times, more co2 was used 

leaving less carbon in the solution. The inconsistancy of the inorganic carbon 

values for the co
2 

deficient runs was probably due to the fact that the 

analytical technique employed is rather insensitive at the low concentration 

range measured for these cultures. 

When considering these results in light of natural situations there are 

several points to consider. Run 3 with no co
2 

added and uncontrolled pH con­

ditions most nearly simulates a stabilization lagoon environment. Although 
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in the laboratory continuous lighting was used which ir.creased the growth and 

restricted the normal pH variation observed with diurnal cycling, the same 

general trend was noted in the field for waste treatment lagoons. During the 

summer months of observation in 1971 when the days were long, the pH of the 

final lagoon of the West Hickman Creek Plant in Lexington, Kentucky, reached 

10. 0 during the afternoons. The results of run 3 suggest that while the longer 

lagoon detention times may increase the quality cf sewage effluent there is 

considerably more algae grown, which actually adds to the organic load in the 

receiving stream. It is also evident that both nitrogen and phosphorus are 

removed from solution, the levels being much smaller than that of the feed, 

either by algal uptake or due to precipitation because of the algal effect on pH. 

This nutrient removal, however, is of little benefit unless the algae is pre­

vented from entering the receiving stream by some means such as algae 

harvesting since the nutrients removed from solution are incorporated in the 

algal cells. 

There is another implication in these results which has been the topic 

of much controversy in recent literature (2): the role of phosphorus as a 

regulating nutrient. In the runs simulating natural conditions, co
2 

was found 

to be the limiting factor even though phosphorus was probably beiv.g pre­

cipitated as a result of high pH. In subsequent runs when co
2 

was added in 

excess amounts, a four fold increase in growth was observed and nitrogen 

became growth regulating while phosphorus was still observable in solution. 

This seems to support the position of Kuentzel (15) and Kerr (12) that carbon 

is in fact many times the regulating nutrient rather than nitrogen or phos­

phorus. In this case efforts to remove nitrogen and phosphorus from the 

sewage effluent or restrict phosphorus contents in detergents would do little 

to limit algal growth unless highly efficient methods are employed. A more 

beneficial and practical approach might be to provide more complete removal 

of organic matter from sewage as bacterial action on such matter produces 
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quantities of co
2 

which are readily useable by the algae. The algae, in turn, 

produce oxygen and more organic matter and thereby a mutually supportitive 

system develops. 

It might also be pointed out that the sewage effluent used was diluted 

to the weakest concentration of ammonia nitrogen observed during preliminary 

studies to produce a feed of approximately constant concentration. This im­

plies that at most times greater nitrogen and phosphorus concentrations would 

be available than those actually used. 

5. Measure of Growth. Figure 5. 4 is a graphical representation of 

growth parameters for the data in Table 4. As can be seen from the figure 

the runs made with excess co
2 

added to the system produced greater COD (M), 

solids (S), and Carbon (C) concentrations, than the runs made without co
2

. 

Subscripts 1 and 2 denote the runs made under identical conditions with the 

exception of the observed population shift in run 2 discussed in Section A. 

Although the mass concentration measured as COD and solids seemed to vary 

somewhat the carbon concentrations for runs 1 and 2 were almost identical. 

The same effect is noted for runs 3 and 4 made without co
2 

although the con­

ditions of growth varied as mentioned before for both lighting and pH control. 

6. Variation of Cellular Nitrogen and Phosphorus Content. According 

to the theory outlined in PAAP (4) the growth rate is a function of the limiting 

substrate nutrient concentration and the mass yield is directly proportional 

to the quantity of the growth limiting nutrient depleted from solution. During 

preliminary studies and this research it was found that gro-w-th did not cease 

when the regulating nutrient was no longer available in solution. Figure 5. 5 

shows the total COD data from Figure 5. 3 for the co
2 

enriched samples 

plotted along with the corresponding ammonia-nitrogen (NA) values in 

solution. As can be seen the nitrogen in solution deminished quickly and 

remained there for the duration of the sampling period. Even though the 

ammonia-nitrogen in most cases was completely removed from solution 
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rapidly, growth continued for sometime before a steady state level was 

obtained. 

This trend seems to follow those observed by either Gerloof and 

Skoog (8) or Jewell and McCarty(ll) as discussed in Chapter II. Although 

they did not agree on the point at which cell division actually ceases, both 

their theories state the cellular nutrient content, not the nutrient concentration 

in solution, actually limits growth. As discussed by Foree and Tapp (7), algae 

store excess nutrients in their cells during nutrient abundent growth and can 

then use these stored nutrients for continued growth during nutrient deficient 

conditions. 

This phenomenon has an effect on the percent nutrients in the cells 

as seen from Figure 5. 6. For the longer detention times the total mass is 

higher due to synthesis of cellular material (primarily lipids and carbohydrates) 

which contains no nitrogen or phosphorus while the limiting nutrient in solution 

is low or absent. The result is if essentially all the nutrients are depleted 

from solution and stored by the algae, the longer residence times with higher 

cell masses will result in smaller percentages of the nutrients. This was 

observed for both nitrogen and phosphorus in all the cases studied with the 

exception of run 2 for the 16 day residence time where there was apparent 

nitrogen fixation due to the observed population shift. For this particular case 

the cellular nitrogen concentration was very much greater than the ammonia­

nitrogen concentration in the feed solution. 

From Figure 5. 6 the cellular phosphorus content was below 2% for the 

longer residence times and below 0. 4% for the heavy growth, co
2 

enriched 

cases even though phosphorus was not found to be growth regulating. Most 

observed nitrogen concentrations were below 3% and in the nitrogen limited 

case they were about 1 %. These values are in agreement with th.ose fmmd by 

Foree and Tapp (7) for a Kentucky Mixed sample of algae under batch culture 

conditions. 
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These low percentages would tend to support Kuentzel's (15) and 

Kerr's (12) position that limitation of nitrogen and phosphorus might be of 

little value as many lakes and rivers already contain sufficient quantities of 

these nutrients to produce large algal blooms if all other conditions were 

optimum. The population shift would tend to indicate that the algal culture 

which was limited by nitrogen shifted to a predominant species that could fix 

atmospheric nitrogen and continue to grow. 

7. Nutrient Limitation Theory. As stated previously, the kinetic 

theory outlined in PAAP (4) for nutrient limited growth does not seem to apply 

in the case when nitrogen or phosphorus is growth limiting. Since preliminary 

studies pointed out this fact, a kinetic theory was hypothesized and developed 

in Chapter II which describes a growth rate proportional to the cellular nutrient 

concentration on a mass basis. This theory applies cnly to nutrients such as 

nitrogen and phosphorus and not to the observed case of carbon limitation, as 

lipid and carbohydrate synthesis, and thus mass increase, requires an avail­

able source of extracellular carbon in the substrate. The growth is therefore 

regulated,· in the carbon deficient case, by the available inorganic carbon in the 

substrate. 

For completely mixed, continuous flow systems the specific growth 

rate ( dX/:t ) is equal to the reciprocal of the hydraulic residence time ( 1/ e ) 
and by the hypothesized equation is proportional to the cellular nutrient con­

centration minus an effective respiration rate. 

i = ~~ /X = k (N/X) - b' 

To test this equation, 1/ e can be plotted against N/X to check for 

proportionality. If the expression is applicable, then a straight line should 

result with a slope equal to k and a negative intercept equal to b'. The data 

for the nitrogen limited cases of runs 1 and 2 were plotted in Figure 5. 7. 

The cellular nitrogen concentration on three different mass bases was used 
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as nitrogen was the limiting nutrient. It can be seen that the observed data 

were reasonably well fitted to straight lines for both runs for all three mass 

parameters. Values for k and b' were determined from Figure 5. 7 and are 

summarized in Table 5. 5. 

TABLE 5.5 

Summary of Kinetic Growth Parameters for Nitrogen 
Regulated Growth from Figure 5. 7 

Basis for Cellular 
Nitrogen Concentration 

N/M 

N/S 

N/C 

Run 

1 

2 

1 

2 

1 

2 

k( mg X ) 
mg N · day 

10,9 

11.4 

10.7 
10.1 

3.6 
3.8 

-1 
b' (day ) 

0.05 
0.07 

0.08 
0.22 

0.05 
0.07 

The values for k and b' were consistent except for run 2 on a solids 

basis. This inconsistency was probably due to a systematic error in this set 

of suspended solids analyses which tended to make all the determined solids 

values somewhat smaller than the actual values. The ratio of k for the COD 

basis to k for the carbon basis was approximately 3 to 1 and the ratio for the 

COD basis to solids basis was 1. 13 to 1 which were within the normal range of 

COD: carbon and COD: solids values previously reported for algae (11). 

Also plotted in Figure 5. 7 were the data from Run 3 in which carbon 

was the limiting nutrient. As contrasted to the nitrogen limited runs, it can 

be seen that there was no such linear relationship for cellular nitrogen concen­

tration as it appeared to be almost constant with respect to the specific growth 

rate. 
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C. Decomposition Phase 

In the decomposition phase the algae grown under different conditions 

were allowed to decompose in the dark on an electrolysis BOD apparatus in order 

to determine the rate and extent of oxygen utilization. From these data it was 

determined what effects, if any, the different growth corrditions made on the 

biodegradability of the algal cultures. 

Since there is much concern over the added organic load of dying algae 

in eutrofied lakes, these data might have application in determining the amount 

of OXJgen depletion associated with different algal growth factors. 

1. Shape of the Algae BOD Curve. In all tr,e BOD studies a char­

acteristic curve was noted (Figures 5. 8 and 5. 9) showing a two stage de­

composition effect. There was usually a first stage BOD exerted followed by a 

leveling off, then between 5 and 10 days there was an increased rate of BOD 

exertion. This effect was due (27, 16, 28) to the fact U:at algae incubated in 

the dark will continue to live for a period and respire which exerts a low oxygen 

demand. After 5 to 10 days in the dark, death and a;;tolysis of the algal cells 

begin. This results in additional biodegradable organic matter becoming 

available to the decomposer organisms and thus the second stage increase in 

the BOD. Fitzgerald (5) found that living algal cells are highly resistant to 

attack and degradation by bacteria, but become susceptible to bacterial 

decomposition upon death. 

This phenomenon may have an importar;t bearbg when evaluating 

treatment plant and lagoon effluents containing algae as the conventional 5 day 

BOD will not show the added effect of the algal mass load downstream. As 

long as the algae continue to live it will not produce an increased organic load 

and may actually be beneficial if the receiving stream environment is favorable 

for photosynthesis and thus o
2 

production. However, if downstream conditions 

become unfavorable for photosynthesis, the algae wal produce the same effect 

on the stream dissolved oxygen resources as unstabillzed organics from a 

sewage effluent. 
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2. BOD Variation with Growth Residence Time. To determine the 

effect of the hydraulic residence time or the mean algal cell age on the BOD, an 

electrolysis BOD test was run on a sample of each residence time grown under 

identical conditions. Figure 5. 8 shows the continuous BOD plotted against the 

incubation time of four samples grown under diurnal lighting and sufficient 

carbon dioxide supplied to maintain the pH of the sample during growth at near 

7. 0. As expected the sample with the lowest initial COD and the shortest 

residence time had the lowest BOD. With the exception of the 4 day detention 

time, this was true for all samples although judging from the shape of the 4 

day curve there was probably an error introduced due to machine malfunction. 

Nitrification did not seem to occur during any of the 25 day BOD tests. This 

was confirmed by analysis which showed no significant decrease in Kjeldahl 

nitrogen during the BOD tests. 

As discussed in Section B, under these conditions of growth the 

hydraulic residence time had a large effect on the total mass supported by the 

system. Although the total initial COD was six times greater for the 16 day 

sample as for the 2 day sample as seen in Figure 5. 8, the same difference was 

not observed for the 25 day BOD, the 16 day being only 1. 4 times greater than 

the 2 day residence time. This would suggest that the age of the algal culture 

has a considerable effect on its degradability. Jewell and McCarty (11) have 

noted this same effect, that ·biodegradability generally decreases with culture 

age. 

From Figure 5. 8 it is also noticeable that there is more variation or 

a more pronounced second stage increase in the BOD curve for the shorter 

residence times. This again would indicate that the younger algal cells were 

more easily degraded once death occurred. 

If this result is applied to a waste treatment lagoon situation it 

appears that although a long detention time would produce a larger mass of 

algae it would be more resistant to biological breakdown and would probably 
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cause little more oxygen depletion than would the smaller mass of algae from a 

lagoon of shorter detention time. However, although there is no great increase 

in the oxygen used for decomposition, there is an aesthetic problem of large 

quantities of fairly non-biodegradable algae flowing into a receiving stream. 

3. BOD Variation with Growth Conditions. Figure 5. 9 shows the 

BOD data for algae grown at several residence times under identical 

conditions except for the carbon dioxide supply. Again the continuous BOD was 

pl.otted against the incubation time in days ar.d typical BOD curves were 

obtained. As noted previously in Figure 5. 8 for the effect of detention time, 

very little variation was observed between the BOD of th.e co
2 

enricb.ed and the 

co
2 

deficient sample for the same detention times. The 8 day sample with 

co
2 

supplied showed a higher BOD than did the 8 day without CO supplied as 
2 

would be expected from the initial COD; however, this difference is in-

significant compared with the large difference in their total masses. 

At the 25 day BOD all cultures showed similar BOD's with little 

variation for either detention time or co
2 

growth condition. It can also be 

noted that the pH in the co
2 

deficient samples dropped during the decomposition 

period from a level of around 8 down to 5. 3. This was due to destruction of the 

buffering capacity of the waste feed by the HCl addition to maintain the pH near 

7 during the growth period. These low pH levels could have caused unfavorable 

conditions for decomposition and lower BOD's of these samples than might have 

otherwise been obtained. 

In order to depict the biodegradabil\ty of the different growth 

conditions, Figure 5. 10 shows the ratio of tt1e BOD to the initial COD plotted 

against the incubation time. It can be seen that the cultures which were not 

fed co
2 

were 60 to 70% degraded while the co
2 

enriched samples remained 

fairly low, between 20 and 30% degraded after 25 days. As in the case of the 

age of the algal cultures, this seems to suggest that the co
2 

enriched growth 

conditions produce a more refractory algae which is more resistant to 

- 47 -



0.7 

' Cl 
E 
:::: 0.6 
' Cl 
E 

c 
~ 0.5 
c 

... 
~ 

' C) 

o 0.4 
CD 

"C 
Q) -... 
Q) 

~ 0.3 -0 

0 -c 
a:: 0.2 

0.1 

0 

Note: See Fig. 5.9 for 
Sample Characteristics. 

5 10 15 20 25 
lncuba tion Time (days) 

Figure 5.10. Biodegradability Measured by the Ratio of the Exerted BOD to 
the Initial Total COD as a Function of Incubation Time. 

- 48 -



• 

.. 

decomposition over the 25 day period studied. It is also noted that the 

residence time made less difference in biodegradability of the samples enriciled 

with co
2 

than those without co 2. 

Since tilese results suggest that it would make little difference on tile 

silort term BOD load in a receiving stream, it might be argued that bacterial 

action on organic matter in sewage which produces excess co 2, should cause 

little concern. However, from the COD data it is clear that there are actually 

far greater masses of algae produced in the co
2 

enriched environment and, 

although it is resistant to short term decomposition and the associated 

dissolved oxygen depletion, it retards a water's self cleansing process and 

causes aesthetic problems. Other resulting problems are taste and odor in 

water, filter clogging, dead algae washing up on beaciles, and reduced 

recreational benefits . 
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CHAPTER VI 

SUMMARY 

Using the continuous flow algal cultures it was found that optimum 

growth occurred when the culture was maintained at pH 7. 0. Decreased levels 

of growth were noted at pH 8 - 9 and pH 6. 0, and pH 5. 0 showed the least 

observed growth during this research. 

Samples grown under co
2 

enriched conditions showed faster growth 

rates and seven times the total steady-state standing crop mas~ on a COD 

basis as identical cultures grown under co
2 

deficient conditions. The growth 

conditions were constant otherwise with pH = 7. 0 and diurnal lighting. 

Greater mass was noted for all three mass bases: COD, solids (dry weight), 

and organic carbon concentration. 

Cultures maintained at similar conditions with the exception of the 

lighting cycle were used to study the effects of diurnal lighting and continuous 

lighting. The continuously lighted samples produced twice the total COD for 

the longer residence times, but there was little difference for the shorter 

residence times. 

Carbon dioxide was found to be the growth regulating nutrient in runs 

made at pH 7. 0, diurnal lighting, and the diluted sewage treatment plant 

effluent feed. When pH was uncontrolled phosphorus was precipitated from 

solution, but was determined not to cause lower growth levels. In the cultures 

which were co
2 

enriched, but grown under the above conditions, growth was 

determined to be regulated by the nitrogen concentration in the algal cells. 

For these conditions, cultures with long residence times exhibited a population 

shift to blue-green forms of algae which had the capability for atmospheric 

nitrogen fixation and associated mass increase. 
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It was found that the growth regulating nutrient (nitrogen) was depleted 

from solution shortly after inoculation and remained low during the entire run, 

but growth (mass increase) continued for some time after this depletion from 

solution. Percentages of nitrogen and phosphorus in the cells showed trends 

of decreasing with increasing residence times due to the difference in growth 

rates. On a dry weight basis, the cellular phosphorus concentration ranged 

from O. 4 - 2. 0% and the cellular nitrogen concentration ranged from 1. 0 - 3. 0%. 

The data from this research for nitrogen limitation confirmed the 

hypothesized kinetic theory developed for cases of nitrogen and phosphorus• 

limitation. Due to algal inability to synthesize mass without a carbon source 

this theory did not apply for the observed case of co2 limitation. 

During the decomposition studies typical BOD curves were obtained 

showing a first stage BOD due to algal respiration followed by a leveling off 

and then a second stage increased exertion after the death of the algae. For 

samples grown under identical conditions the longer residence times showed 

the greatest 25 day BOD. However, there was less difference in BOD between 

the 2 day residence and the 16 day residence than the difference in the 

respective total initial COD. 

Samples grown with and without co
2 

showed differences in BOD 

similar to the differences observed in the COD. The co2 enriched samples 

produced greater 25 day BOD than samples of the same residence times 

grown without co
2

. As in the case of residence times (algal cell age) this 

difference was less pronounced for BOD than for total initial COD. This 

points to a difference in biodegradability due to cell age and conditions of 

growth. The algae grown under co
2 

deficient conditions were found to be 

60 - 70% dflgraded, determined as the ratio of the BOD to the initial total COD, 

while those grown under co
2 

enriched conditions were only 20 - 30% degraded 

during the same 25 day decomposition period. 
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CHAPTER VII 

CONCLUSIONS 

The following conclusions are drawn based on this laboratory study of 

heterogeneous algal populations grown in continuous culture in diluted secondary 

• sewage treatment plant effluent: 

1. Optimum algal growth occurred under pH 7. 0, excess co 2, and 

continuous lighting conditions. Lower and higher pH, CO 
2 

deficiency, 

and diurnal lighting all resulted in decreased growth rate and mass 

(standing crop) at steady-state conditions. 

2. For the case when excess co
2 

was provided, nitrogen was quickly 

depleted from solution after inoculation, but growth (mass increase) 

continued due to the storage of nitrogen in the algal cells during the 

previous period when excess nitrogen was available from solution. 

3. The availability of artifically supplied excess co
2 

greatly increased the 

mass (standing crop) at steady-state over that produced under other­

wise identical conditions for all residence times studied. Thus co
2 

availability would regulate growth in similar natural situations. 

4. For the case of excess co
2 

availability, tile nitrogen concentration in the 

algal cells regulated growth rather than the concentration of nutrients in 

solution. A mathematical expression was hypothesized to describe this 

phenomenon and was confirmed by the experimental results. 

5. Under dark-aerobic conditions, the algal cultures exerted a two-stage 

BOD, the second stage apparently beginning after the death of the algal 

cells. 
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6. Algal cell age (as measured by the residence time) and environmenial 

growth conditions influenced the biodegradability of the cultures. 

Increased cell age produced a lower percentage biodegradability. Cultures 

grown in co
2 

enriched medium (optimum growth conditions) were 

significantly less biodegradable on a percentage basis than cultures 

grown in a co
2 

deficient medium. 
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