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Abstract 
Nanotechnology has significant economic, health, and environmental bene-
fits, including renewable energy and innovative environmental solutions. 
Manufactured nanoparticles have been incorporated into new materials and 
products because of their novel or enhanced properties. These very same 
properties also have prompted concerns about the potential environmental 
and human health hazard and risk posed by the manufactured nanomaterials. 
Appropriate risk management responses require the development of models 
capable of predicting the environmental and human health effects of the na-
nomaterials. Development of predictive models has been hampered by a lack 
of information concerning the environmental fate, behavior and effects of 
manufactured nanoparticles. The United Kingdom (UK) Environmental Na-
noscience Initiative and the United States (US) Environmental Protection 
Agency have developed an international research program to enhance the 
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knowledgebase and develop risk-predicting models for manufactured nano-
particles. Here we report selected highlights of the program as it sought to 
maximize the complementary strengths of the transatlantic scientific com-
munities by funding three integrated US-UK consortia to investigate the 
transformation of these nanoparticles in terrestrial, aquatic, and atmospheric 
environment. Research results demonstrate there is a functional relationship 
between the physicochemical properties of environmentally transformed na-
nomaterials and their effects and that this relationship is amenable to model-
ing. In addition, the joint transatlantic program has allowed the leveraging of 
additional funding, promoting transboundary scientific collaboration. 
 

Keywords 
Aquatic Environment, Consumer Products, Manufactured Nanomaterials, 
Predictive Models, Terrestrial Ecosystem 

 

1. Introduction 

Emerging results have indicated nanotechnology has the potential to impact in-
dustrial processes (e.g., magnetic storage applications and catalysis), create ma-
terials with superior properties, and improve the effectiveness of drug delivery. 
Nanomaterials also offer detection advantages for use in national security emer-
gencies, and innovative approaches to address current environmental concerns 
[1] [2] [3]. Because of its promise, nanotechnology has been widely heralded as 
the underpinning technology platform of the next industrial revolution [4] and 
its development was deemed essential for economic development and United 
States (US) national security  
(https://clintonwhitehouse4.archives.gov/textonly/WH/EOP/OSTP/html/00_121
_3.html).  

In 2000, the National Nanotechnology Initiative (NNI) was created in the US 
to ensure the development of nanotechnology  
(https://clintonwhitehouse4.archives.gov/textonly/WH/EOP/OSTP/html/00_121_
3.html). At the foundation of the Initiative was the vision of enabling the control 
of matter at the nanoscale in order to facilitate a revolution in technology and 
industry. To materialize this vision, the US Congress enacted the 21st Century 
Nanotechnology Research and Development Act (P.L. 108-153). The Act pro-
vided a statutory foundation for the NNI, established programs, assigned federal 
agency responsibilities, authorized funding levels, and promoted nanotechnolo-
gy research to address key issues. To ensure harmonious progress of the Initia-
tive, federal agencies were tasked with developing programs consistent with their 
mission and authority. Under the NNI guidance, the Office of Research and De-
velopment (ORD) in the Environmental Protection Agency (EPA), has initially 
developed a program of research grants focused on environmental applications 
of nanotechnology with an emphasis on prevention, detection, and remediation 

Copyright © 2018 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
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of environmental pollution. As concerns of the unintended consequences of na-
notechnology have emerged, the focus of EPA’s nanotechnology grants program 
shifted to advance the understanding of the environmental implications and 
risks of nanotechnology. 

In 2004, the Royal Society and Royal Academy of Engineering in the United 
Kingdom (UK) published a seminal report highlighting how little it was known 
about how manufactured nanomaterials enter the environment, how they be-
have, their fate, and possible effects on plants, animals and humans  
(https://royalsociety.org/~/media/Royal_Society_Content/policy/publications/20
04/9693.pdf). The 2005 UK Government response highlighted the need for a 
cross-disciplinary approach led by the research community  
(http://webarchive.nationalarchives.gov.uk/20070603164510/http://www.dti.gov.
uk/files/file14873.pdf). To address the challenge, in 2006, in the UK a group of 
funding agencies led by the Natural Environment Research Council (NERC) es-
tablished the Environmental Nanoscience Initiative (ENI)1, a research program 
on hazard, exposure and environmental risk posed by manufactured nanomate-
rials. ENI funded exploratory research projects in 2006 and 2007 aimed at 
building capacity within the UK scientific community. At the same time, the in-
creasing awareness about the knowledge gaps surrounding environmental im-
plications of nanotechnology was highlighted in a report by the Royal Commis-
sion on Environmental Pollution published in 2008  
(https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/
228871/7468.pdf ). Again, the UK Government response agreed with the report’s 
recommendations as to the need to create an integrated approach to investigate 
the environmental implications of nanotechnologies with a priority focus on 
commercially available nanomaterials  
(https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/
228785/7620.pdf). These recommendations strengthen the ENI vision to consid-
er large research projects of transdisciplinary nature joining expertise from 
across continents. 

Rapid development and use of manufactured nanomaterials (MNMs) has led 
to concerns about their exposure and hazard [5] and underpinning environ-
mental, health and safety research should aim to allay those concerns through 
appropriate scientific means. Better science should lead to action to protect hu-
man and environmental health and promote the benefits of nanotechnology in a 
sustainable manner. Understanding the risks posed by MNMs is a global chal-
lenge that is best addressed through international collaboration and multidiscip-
linary expertise to allow resource and knowledge sharing. By 2009, the 
USEPA/ORD and UKENI had developed strong research communities through 
their nanotechnology grants programs and the benefits of joining these com-

 

 

1Comprised of UK NERC, the UK Government Department of Environment, Food, and Rural Af-
fairs, the Environment Agency, Biotechnology and Bioscience Research Council, Engineering and 
Physical Sciences Research Council, Medical Research Council, and UK Government Department of 
Health. 
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munities to collaboratively address the potential implications of nanotechnology 
became readily apparent. Initial consultations with the research community and 
other stakeholders indicated that one major goal for an international collaboration 
is the development of predictive models of fate, behavior, bioaccumulation, and 
effects of MNMs through relevant pathways of exposure via water, air, and land.  

In 2009, The UKENI and USEPA/ORD’s Science to Achieve Results (STAR) 
grants program (https://www.epa.gov/research-grants) announced the develop-
ment of a bilateral nanotechnology research program  
(https://cfpub.epa.gov/ncer_abstracts/index.cfm/fuseaction/display.rfatext/rfa_id/5
16; http://www.nerc.ac.uk/research/funded/programmes/nanoscience/ao-eni2/) 
with financial support provided jointly by UKENI, USEPA and the US Consum-
er Product Safety Commission (USCPSC). The program issued a call for propos-
als and subsequently funded three large, interdisciplinary UK-US consortia; 1) 
Transatlantic Initiative for the Nanotechnology and the Environment (TINE), 2) 
Manufactured Nanomaterial Bioavailability & Environmental Exposure (Nano-
Bee) and 3) Risk Assessment for Manufactured Nanoparticles Used in Consum-
er Products (RAMNUC). Each consortium developed an integrated, transatlan-
tic team of scientists, with complimentary expertise to address joint research ob-
jectives. The research objectives, specific media, and case studies associated with 
these consortia are shown in Table 1. 
 
Table 1. UK-US Nanotechnology consortia funded in 2009 focusing on specific media, 
research objectives and case studies. 

Nanotechnology 
Consortia 

Media Research Objectives and Case Studies 

TINE Terrestrial 

• Understanding environmental fate and 
transformation of MNMs in terrestrial  
ecosystems 

• Case studies: Transformation in  
wastewater treatment plants; Life  
cycle assessment  
model of terrestrial effects 

NanoBee Aquatic 

• Understanding exposure, bioavailability, 
and toxicity of MNMs in aquatic  
ecosystems 

• Case studies: Transformations and  
novel methods for MNMs analysis  
in complex matrices 

RAMNUC 
Atmospheric,  

Indoor air 

• Understanding human toxicity of  
consumer product-incorporated  
MNMs 

• Case studies: Household sprays with  
zinc oxide and silver; Diesel fuel  
additives with cerium dioxide 

The purpose of this paper is to summarize and integrate research results obtained by the three consortia in 
the transatlantic program. 
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2. Results 
2.1. Transatlantic Initiative for Nanotechnology and the  

Environment (TINE) Consortium, MNMs in the  
Terrestrial Ecosystems 

The primary route for MNMs (e.g., used in consumer products) to enter terre-
strial ecosystems is by wastewater treatment plants [6] via the land application of 
biosolids (sludge) to enhance soil fertility [7]. Previous studies have focused on 
pristine synthesized nanomaterials [8] which may misrepresent MNMs realistic 
environmental exposures [9] [10]. In contrast, TINE consortium sought to cha-
racterize transformation of zinc oxide (ZnO), titanium dioxide (TiO2) and silver 
(Ag) nanoparticles in realistic environmental conditions by investigating their 
behavior, bioavailability, trophic transfer, and ecological effects during sewage 
treatment and following application to agricultural soils. TINE also aimed to de-
termine whether risk assessment models and regulations for land applications of 
biosolids could be extrapolated to MNMs. 

Pilot-scale wastewater treatment plant studies showed that nanomaterials 
mostly partitioned in the sewage sludge with only a low fraction recovered in the 
treatment process effluents. Within the treatment plant, Ag and ZnO nanomate-
rials were completely transformed to a variety of secondary mineral phases. Ac-
cording to X-ray based speciation studies, transformation of bulk (nanomaterial 
free) was similar to that of dissolved metals (Figure 1). Laboratory assays, con-
ducted to determine the type and range of transformations, predicted well the 
transformations that occurred in the wastewater treatment plant [11] [12] [13] 
[14] [15]. In laboratory-scale experiments, researchers found that the type of 
particle coating affected the nanomaterial binding to soil solids, but not in aged 
nanomaterials which behaved identically irrespective of the original coating [16]. 
These results demonstrate that the transformations during wastewater treatment 
can alter the influence of initial particle coating on nanomaterial behavior. This 
observation could greatly simplify the risk assessment process, since one major 
material variable (particle coating) may have little influence on nanoparticles 
behavior in soils when applied as biosolids. 
 

 
Figure 1. Similar transformation of disolved, bulk or nanosized metals 
(ZnO and Ag) in the wastewater treatment plant (WWTP). X-ray ab-
sorption spectroscopy revealed that disolved, bulk or nanosized ZnO 
and Ag particles are transformed to sulfide and phosphate minerals. 
Zn was also bound to iron oxohydroxides. Reprinted with permission 
from Ma et al., 2014. Copyright 2014, American Chemical Society. 
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Xray spectroscopy-based speciation and bulk extractions results did not pre-
dict differences in the bioavailability and biological responses between 
bulk/dissolved metals and nanoparticles. Studies with plants showed that the le-
gume Medicago trunculatag rew less, had fewer root nodules, and accumulated 
more Zn when exposed to aged nanomaterial-treated biosolids compared with 
the bulk-treated biosolids [17]. In addition, patterns of gene expression and the 
behavior of the soil microbial community were significantly altered by the na-
nomaterial-treated biosolids [18]. These results indicate that current risk as-
sessment procedures for land application of biosolids may need to be adjusted to 
account for differences in the behavior and toxicity of nanomaterials relative to 
dissolved metals. 

In ecotoxicological studies, earthworms exposed to nanomaterial-treated bio-
solids reproduced less than earthworms in bulk-treated biosolids. This effect was 
more likely caused by the exposure to Zn, in the biosolids, rather than Ag and 
TiO2 [19]. Transformed Ag and ZnO nanomaterials were considerably less toxic 
to nematodes than pristine nanomaterials and the effects appeared to be caused 
by a different mechanism of toxicity [20] [21] [22]. Therefore, ecotoxicity tests 
using pristine nanomaterials may not accurately predict the toxicity of nanoma-
terials following their transformation in the environment. 

The research findings have been used to develop a first generation 
“Life-Cycle-Analysis-inspired Risk Assessment” (LCA-RA) predictive model of 
nanomaterials fate following transfer from sewage treatment plants to terrestrial 
environment. The TINE consortium developed a model of Ag and ZnO nano-
materials transport and transformation in agricultural fields and through water-
sheds [23] [24] [25] [26]. This realistic model accounts for the influence of 
land-use pattern, topography, meteorology, and stream hydrology on the trans-
port and fate of nanomaterials. Researchers also developed a Bayesian risk fore-
casting model to predict the toxicity of Ag nanomaterials. The model can be eas-
ily adapted and updated as additional experimental data and other information 
on nanomaterial behavior in the environment become available. The baseline 
model suggests Ag nanoparticles may pose the greatest risk due to accumulation 
in aquatic sediments [27] [28].  

TINE researchers have also developed a new functional assay-based approach 
for predicting nanomaterial fate and effects [29] [30]. For this approach, the 
team has developed predictive parameters of mobility, bioavailability and toxici-
ty by integrating intrinsic and extrinsic properties of nanomaterials within spe-
cific environmental matrices [31] [32]. 

2.2. Manufactured Nanomaterial Bioavailability & Environmental  
Exposure Consortium (NanoBee), MNMs in the Aquatic  
Environment 

The NanoBee consortium studied the exposure, bioavailability and toxicity of 
several nanoparticles including Ag, ceria (CeO2), ZnO, and Au in model aquatic 
organisms using a wide range of endpoints. Although some work was performed 
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with commercial nanomaterials, a critical output was the generation of a library 
of nanomaterials with tightly controlled physical and chemical properties, which 
were characterized using a multi-method approach [33] [34]. The consortium 
developed isotopically-labelled nanomaterials [35] [36] to track nanomaterial 
movement through the ecosystemat very low concentrations. Additional work 
produced isotopically labelled nanohybrid tools to quantify the relative impor-
tance of ion and particle bioavailability and hence their toxicity [37]. Collabora-
tive work between NanoBee and TINE researchers investigated and discussed 
properties of the pristine and transformed nanomaterials, determined their bio-
availability and toxicological properties [38] and extensive characterization was 
conducted to quantify transformations and to understand the effect on uptake 
[39]. Physicochemical properties of environmentally transformed MNMs deter-
mined exposure concentrations and chemical speciation and were found to be 
essential in understanding MNMs bioavailability and toxicity.  

Bioavailability was examined in experimental and modeling studies in Lym-
naea stagnalis, Daphnia magna and Lumbriculus variegatus, with a particular 
focus on Ag nanoparticles [35] [40] [41] although other nanomaterials were also 
investigated [42]. In several studies, bioavailability and toxicity were examined 
together [43] with bioaccumulation studies suggesting that both the particle and 
the ion were bioavailable after dissolution although with different uptake and 
loss rate constants [35]. In a simplified freshwater food chain model comprising 
the green alga Chlorella vulgaris and the crustacean Daphnia magna, Ag nano-
particles had lower uptake rates than the dissolved Ag and showed a corres-
ponding reduction in toxicity. In general, higher uptake values in the alga were 
related to higher toxicity, and electron microscopy showed the presence of Ag 
nanoparticles in the alga when exposed to higher nanoparticle concentrations. 
Additional studies suggested that toxicity was correlated with the ion concentra-
tion after dissolution [44]. A similar result was obtained in complementary ge-
nomic studies with zebrafish embryos [45] [46]. Thus, NanoBee research con-
firmed that Ag nanoparticle toxicity is largely, but not entirely, due to the ion 
which directly interacts with physiologically-active biological sites. It is likely 
that nanomaterials are an important delivery vehicle of toxic ionic species. 
However, not all toxicity could be explained by the ionic effect and this hypothe-
sis needs further investigation. The observed uncertainties may be due to a cur-
rent lack of appropriate experimental techniques, suggesting the need for new 
methodological developments, which are being developed from work started by 
NanoBee [37] [47]. 

The NanoBee consortium also studied the visualization of nanomaterials in-
cluding Au, Ag and carbon-based nanomaterials which are difficult to visualize 
[48]. Researchers developed new methods for obtaining tightly constrained Au 
nanoclusters as internal standards for use in electron cryo-tomography. This led 
to the development of accurate, minimally-invasive 3D tools for visualizing na-
nomaterials in complex hydrated and organic media, and for studying nanoma-

https://doi.org/10.4236/jep.2018.94025
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terials interactions with proteins and other biological matrices [49]. The tool has 
led to the possibility of producing nanoscale images of easily perturbed biologi-
cal structures such as proteins and eco-corona around nanomaterials [50]. La-
boratory studies were conducted using appropriate modeling parameters (e.g., 
diffusion and sedimentation) and exposure media to simulate realistic environ-
mental conditions [39]. Results suggested that nanomaterials are prone to a 
range of transformation processes such as dissolution, aggregation, eco-corona 
formation and sulfidation and that these effects are dependent on the solution 
and nanomaterial properties [51] [52]. For instance, a high resolution Scanning 
Transmission Electron Microscopy and Electron Energy Loss Spectroscopy 
(STEM-EELS) study showed heterogeneous sulfidation and allowed the quanti-
fication of the thickness of eco-coronas formed by natural organic macromole-
cules on nanomaterials [50] [53]. These results were linked with uptake and tox-
icity studies, suggesting that dispersed nanomaterials were far more toxic than 
aggregated nanomaterials [53] [54]; this work effectively complemented the Ag 
nanomaterial sulfidation work performed by TINE. 

Nanoparticles toxicity was further studied in a range of aquatic organisms us-
ing both targeted toxicological assays and non-targeted (transcriptomic and me-
tabolomics) approaches. At low concentrations, stimulatory effects have been 
seen in bacteria and hydroponically grown plants and toxicity was observed at 
higher concentrations [55] [56] [57]. Although extrapolation should be used 
cautiously, there is evidence of a potential hormetic effects. This assessment is 
further complicated by the concentration dependence of transformations [37] 
[50].  

2.3. Risk Assessment for Manufactured Nanoparticles Used in  
Consumer Products Consortium (RAMNUC), MNMs in the  
Atmospheric and Indoor Air 

The RAMNUC consortium conducted research to assess human health risk 
caused by inhalation exposure to MNMs (ZnO, Ag, and CeO2) incorporated in 
selected consumer products. The overall hypothesis of the RAMNUC consor-
tium is that the physicochemical and toxicological properties of MNMs at the 
point of exposure will substantially differ from those at the source (synthesized 
in the laboratory or acquired commercially). These differences may have signifi-
cant consequences on MNMs’ bioavailability, induction of oxidative stress, in-
flammation, and other toxicity measures. Therefore, RAMNUC aimed to under-
stand how these nanoparticles transform as they enter and move through the 
atmosphere and become inhaled.  

Exposure to airborne particles, ranging from 14 nm to 20 µm, resulting from 
the use of nanotechnology-based cosmetic powders, was studied by applying the 
aerosols to a mannequin’s face and measuring the concentration and size distri-
bution of inhaled aerosol particles [58] [59]. The highest inhaled particle mass 
was in the coarse aerosol fraction (2.5 - 10 µm), while nanoscale particles were 
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minimally inhaled. For all powders, 85% - 93% of aerosol deposition occurred in 
the head airways, while <10% deposited in the alveolar and <5% in the tracheo-
bronchial regions with nanomaterials likely distributed as agglomerates. These 
results suggest a major nanomaterial deposition in respiratory system compo-
nents other than alveolar regions and possibly a limited ability of the particles to 
enter the blood stream [60] [61]. 

In cells isolated from human lung tissue, nanoparticles tested showed different 
bioactivity. In addition, RAMNUC results showed the lung lining fluid, and par-
ticularly dipalmitoylphosphatidylcholine, can modify the kinetics of ion release 
from nanoparticles. In human alveolar cells, Ag nanowires were dissolved and 
subsequently transformed into the highly insoluble Ag sulfide [62] [63]. Pulmo-
nary surfactant also can significantly alter the dissolution kinetics, aggregation 
state and surface chemistry of ZnO nanowires (ZnONWs), with important con-
sequences on how they are internalized and processed by the underlying epi-
thelial cells [64]. In vitro adsorption of pulmonary surfactant lipids on ZnONWs 
has been demonstrated for the first time [65]. The lipid corona delayed the ki-
netics of Zn2+  release from ZnONWs at acidic pH, by blocking direct contact 
between the nanowire surface and the aqueous environment. In addition, pul-
monary surfactant prevented the agglomeration of ZnONWs, possibly through 
contributions of both steric and charge stabilization effects. These results indi-
cate a central role of pulmonary surfactant in understanding interactions at the 
bio-nano interface of the alveoli, and their impact on subsequent epitheli-
al–endothelial nanoparticle translocation. 

Exposure of lung cells to commercially available antifungal sprays containing 
nanoparticulate Ag (MesoSilverTM and NanofixTM) suggested an inflammatory 
response due to either product solvent and/or interaction of the Ag with the sol-
vent. Similar results were reported with nanoparticulate Zn-containing sprays 
(TheraZincTM and DermaZincTM). The overall toxicity was dependent on the 
type of nanoparticle and the solvent. These studies emphasize the importance of 
testing nanomaterials as they occur in commercial products, as the product sol-
vent may alter the fate, behaviour and toxicity of the nanoparticles, and unin-
tended inhalation could cause adverse health effects [66]. 

In another set of experiments, RAMNUC examined the potential toxic effects 
of Ag nanoparticles inhaled via the nasal passage in two rat strains (i.e., 
Brown-Norway and Sprague-Dawley). In the Brown-Norway rat strain, it was 
found that a pre-existing inflammatory condition is likely to lead to an increased 
amount of Ag retained in the lungs resulting in parenchymal dysfunction. This 
was not observed however in the Sprague-Dawley strain [67] [68]. The reduced 
clearance rate observed in the Brown-Norway rat may cause an increased in-
flammatory response, induction of surfactant protein D and phospholipids, and 
airway and parenchymal dysfunction. This would indicate that inhalation of Ag 
nanoparticles in humans with pre-existing lung condition (e.g., asthma or 
chronic obstructive pulmonary disease) may lead to a greater degree of inflam-
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mation with consequences on lung function. 
Another research focus of the RAMNUC consortium was the investigation of 

the impact of a nano-ceria diesel fuel additive (EnviroxTM) on pollutant emis-
sions and physicochemical and toxicological properties of diesel exhaust par-
ticles (DEPs). Addition of nano-ceria to an ultralow sulphur diesel fuel reduced 
the emission rates of carbon monoxide, carbon dioxide, formaldehyde, acetal-
dehyde, acrolein, several polycyclic hydrocarbons, and DEPs mass. However, 
there was also an increase in the emission rates of nitrogen oxides and ultrafine 
particles. Modeling studies suggest the nano-ceria additive has the potential to 
reduce the overall ambient DEPs concentration in many regions of the US 
(Figure 2). The addition of nano-ceria also affected several physicochemical 
properties of DEPs (e.g., reducing particle size, reducing carbon content, in-
creasing cerium content, increasing organic carbon to elemental carbon ratio, 
and reducing oxidation potential) [69] [70]. These transformations may be re-
sponsible for the changes in bioreactivity and reduction of DEPs toxicity ob-
served in several experiments conducted with cultured human lung cells, mice 
cells and zebrafish embryos. Researchers also characterized an effect on immune 
responses in blood monocytes which was linked to changes in size and zeta po-
tential of DEPs induced by nano-ceria [71].  

To capture realistic indoor and outdoor exposure scenarios at the population 
level, RAMNUC has taken a modular modeling approach including the use of 
geographic information systems and particle size distributions. A novel tiered 
modeling system, Prioritization/Ranking of Toxic Exposures with GIS (Geo-
graphic Information System) Extension (PRoTEGE), was developed utilizing 
available data for Ag nanoparticles production, usage, and property databases. 
The data were complemented with laboratory measurements of potential expo-
sures from Ag nanoparticles-containing consumer spray products generated by 
RAMNUC [66]. The RAMNUC team developed models of nanoparticle fate, 
behavior, and in vitro toxicity [72] [73] which can be used to support the analy-
sis and prediction of in vivo effects by predicting changes in cellular mechanisms 
caused by the nanoparticles. RAMNUC further investigated the effects of nano-
particle properties on biological toxicity using the Agglomera-
tion-Diffusion-Sedimentation-Reaction Model (ADSRM) and used a direct 
Monte Carlo simulation to study the transformation of nanoparticles in biologi-
cal media [72] [73]. Model predictions for agglomeration and dissolution were 
compared to in vitro measurements for various MNMs, coating materials, and 
incubation media, and found to be consistent with the measurements. The fate, 
transport, and effects of MNMs throughout the lung were also modelled to pre-
dict particle transport across the air/biological fluid interface and the final ex-
pected dose for both coated and uncoated particles [73] [74].  

3. Legacy  

The US-UK joint program in nanotechnology research has allowed US and UK  

https://doi.org/10.4236/jep.2018.94025


M. M. Lasat et al. 
 

 

DOI: 10.4236/jep.2018.94025 395 Journal of Environmental Protection 
 

 
Figure 2. Modelled ambient concentration of diesel exhaust particles (DEPs) assuming 
the use of diesel fuel with (a) no EnviroxTM and (b) with 0.5 mL EnviroxTM added per liter 
of fuel. The results are based on USEPA’s 2011 National Air Toxics Assessment (NATA) 
data and the DEPs emission data published in Zhang et al., 2013. 
 
scientists to collaborate and share knowledge across national borders in an ef-
fort to understand the complexities associated with nanomaterial toxicity and  
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environmental behavior. The international collaboration provided a platform for 
the consortia to take a robust, systematic approach that pooled strengths and 
expertise across disciplines. These projects have supported transboundary 
working practices and allowed the leveraging of additional funding promoting 
effective use of limited research resources. For example, TINE has developed a 
joint US-European Union collaboration to optimize the use of nanomateri-
al-containing products for agricultural benefits. The new project, NanoFARM, is 
expected to play a key role in ensuring the safe development of agricultural na-
notechnology and free trade of agricultural commodities. Additional financial 
support has been secured from both UK and US funders (e.g. USCPSC, 
UKNERC, US National Science Foundation, and the Royal Society), with re-
search outputs feeding into broader scientific groups within the nanoscience 
field. Researchers have developed close communication across organizations, 
taking advantage of career changes and academic movement between organiza-
tions to further build networking opportunities and to grow the research com-
munity. Indeed, these difficult to quantify developments may be some of the 
most important outcomes of this transatlantic program. Notably, the program 
has substantially advanced the understanding of how nanomaterials enter and 
move through the environment, how they transform, and how they may affect 
human health and ecosystems. Researchers have characterized the functional re-
lationship between the nanomaterials physicochemical properties, their toxicity, 
and effect on organisms, and demonstrated this relationship is amenable to 
modelling. A key output from this program has been the development of models 
that characterize the fate of nanomaterials through the environment and predict 
the impacts they might have on the environment and human health. 

Although these collaborations have substantially advanced the knowledgebase, 
additional work is needed to further progress. The US-UK transatlantic program 
offers an ideal funding model to enhance progress while effectively making use 
of scarce resources. An important development is that future funding models 
should include a more direct link between innovation and risk-related research. 
These are two cognate areas that are often separated for structural reasons but 
their interdependency and integration is essential for the safe and sustainable 
development of nanotechnology. Results reported here point to important re-
search questions that future work will need to address: 

1) Are current analytical methodologies suitable for parameterizing and vali-
dating models? If not, what further methods can be developed? 

2) Can existing models be applied to realistic exposure scenarios? If not, what 
modifications are required?  

3) Can existing models be applied to the next generation of nanomaterials? If 
not, how can these models be optimized? 
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