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ABSTRACT 

Material balances on substrate and microorganisms were derived in 

conjunction with various mixing configurations thought to accurately 

describe the activated sludge process. These models include the com­

pletely mixed with bypass, plug flow, and plug flow with bypass. Two 

sets of kinetic mechanisms for substrate utilization and bacterial 

growth were employed. 

A feed forward controller was designed from linear approximations 

of the material balances derived in the completely mixed with bypass 

mixing model. Utilizing frequency response methods, the controller was 

found essentially identical to a completely mixed modeled controller 

developed in a prior investigation. 

Through computer simulation the controller's effectiveness was 

tested. The controller maintained suitable effluent quality principally 

through proportional control on the influent flow rate. Additional 

proportional derivative control on influent substrate concentration pro­

duced further reductions in substrate levels; however, when employing 

realistic forcing functions,these reductions were minor. Comparison of 

mixing models was dependent upon the degree of substrate loading inflicted 

on the system. Bypassing had a detrimental effect on effluent quality 

and process control. 
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Experimental studies were performed to find a representative 

kinetic and mixing model which reproduces the diurnal fluctuations of 

key activated sludge process parameters found at the Lexington Waste­

water Treatment Plant. A suitable model was not found as experimental 

and theoretical results did not agree. 

DESCRIPTORS: 

Activated sludge*, environmental engineering, mathematical models, 
optimization, quality control, settling basins, sewage treatment*. 

IDENTIFIERS: 

Digital simulation, process control. 
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Project Objectives 

CHAPTER I 

INTRODUCTION 

It was the intent of this research to continue the study of the feed 

forward control of the activated sludge process. In addition to extend­

ing the analytical and simulation work begun during phase I, experimental 

studies to establish aeration tank kinetic parameters were to be initiated. 

The resulting experimental data were then to be compared with the computer 

simulation results. If favorable agreement was achieved, then actual feed­

forward control on the recycle flow would be tried on the Lexington treat­

ment plant. 

Background Information 

A comprehensive review of the principles of process control as applied 

to the activated sludge process has been presented by Kermode and Brett6. 

In this same reference, the models proposed by various authors for both the 

aeration tank and the settler are discussed in detail. Computer simulation 

studies carried out for the case of perfect mixing and instantaneous set­

tling indicated that operational improvements could be obtained using feed 

forward proportional control with measurement of substrate flow rate, and 

derivative control with inlet substrate concentration, and manipulation of 

the rate of return by both controllers. Changing the settler dynamics to 

a variable time delay caused degredation in the control. It was also con­

cluded that for a given controller the more non-linear the aerator model 

used the less effective was feed forward control. Finally, a comprehensive 

literature survey thru March, 1973, is given. 

l 



CHAPTER II 

RESEARCH PROCEDURES 

Because of the two-part nature of this project, procedures for 

evaluating experimental as well as computer simulation results were 

essential. The steps taken for the computer simulation are briefly 

listed below: 

i. The effect of various mixing patterns in the aerator such as 

completely mixed with bypass, plug flow, and plug flow with bypass on 

process performance was established. 

ii. These results were then compared with the perfectly mixed case. 

iii. The perfect feed forward controllers for the various types of 

mixing patterns were then derived to establish the effect of bypass on 

the control algorithm. 

iv. Establish by computer simulation the effectiveness of these con­

trollers in reducing the detrimental effect of bypass flow. 

v. Derive the perfect feed forward controllers for the case of plug 

flow. 

vi. Use the computer to establish the effect of the type of forcing 

functions, the use of sludge storage, and changes in important parameters 

on system performance. 

The experimental steps were carried out as follows: 

i. Discrete dynamic measurements of the following quantities were 

made at the Lexington sewage treatment plant. 

2 
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a. Inlet and exit aerator substrate concentration 

b. Exit settler substrate concentration 

c. Mixed liquor suspended solids 

d. All necessary flow rates 

ii. Kinetic rate constants were then detennined by data evaluation. 

iii. A comparison of experiment results with those predicted by the 

various postulated models was then carried out. 

3 



CHAPTER II I 

CONTROLLER DEVELOPMENT 

General System Equations and Model Development 

The development of computer simulation models in this study was 

actually an extension of prior work carried out by Brett, Kermode and 

Burrus1 and Davis, Kermode and Brett3. 

Brett used a mathematical model of a completely mixed process 

developed by Westburg13• 14 to derive a feed forward controller to manipu­

late the sludge recycle rate. 

Davis continued the computer work on the completely mixed system 

after developing a feed forward controller from design equation involving 

kinetic models derived by Lawrence and McCarty7 and Eckenfelder5. 

Both Brett and Davis assumed an ideal separator following the aeration 

unit as described by equation 1. Thus any contribution of escaping sludge 

solids to the effluent organic concentration was not considered. Later 

Debelak, Brett, Kermode and Davis4 included more realistic settler dynamics 

represented by a variable time delay; however, in this present study the 

settler was again assumed ideal. 

Completely Mixed with Bypass Model 

A flow diagram of an activated sludge process modeled with a com­

pletely mixed plug bypass aeration unit is illustrated in Figure 1. The 

process includes an internal sludge recycle with sludge wasting from the 

recycle line. The separation unit is assumed to be ideal in that it produces 

4 
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a clean overflow at a rate (Q-q2), and a concentrated underflow at a rate 

(q1 + q2). The sedimentation step can be described by a material balance 

around the sludge settler (separator) namely: 

(1) 

The aeration unit is modeled to simulate a less than perfect com­

pletely mixed unit by bypassing a fraction of the inlet flow around the 

completely mixed unit. The two streams are mixed immediately following 

the aerator to form the inlet concentrations of substrate and live bacteria 

fed into the separator. The bypass model was chosen to simulate incomplete 

biological degradation of the substrate while using the complete volume of 

the aerator. 

Material balances were derived for the bypass model using Lawrence & 

McCarty and Eckenfelder kinetic expressions for substrate utilization and 

bacterial growth. These are: 

V ~i = (QS; + q1\l(l - y) - (Q + q,)(l - y) S - V (~~) , (2) 

and 

( 3) 

where~~ and~~ are the internal substrate utilization rate and internal 

synthesis rate respectively and y the fraction bypassed. The Lawrence & 

McCarty and Eckenfelder kinetic terms,~~ ~~ are shown in Table I. 
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Table I Kinetic Models 

Model dF/dt dG/dt f(S) g(S) 

Lawrence X[f(S)] X[g(S)] kS tkS 
K + S K + S 

& McCarty s s 

Eckenfelder X[f(S)] X[g(S)] 
K1S 

K1S - a 

Additional material balances on the living bacteria may be written 

around stream junction points yielding: 

A material balance on the substrate concentration may be written 

around the junction of the bypass and main stream to give 

yQS i ( 1 - y) ( Q + q l ) S s - ~-----=---- + _____ .,_____ 
s - Q + ql - yql Q + ql - yql 

(4) 

(5) 

(6) 

(7) 

Equations 1, 3, 4, 5 and 6 may be combined to eliminate X0 , Xs'• and 

Xs yielding: 

V dX = V (dG) 
dt dt 

(8) 

Similarly, combination of equations 2 and 8 eliminates Ss leaving: 

dS Q + ql dF 
V dt = (1 - y) (Q + ql - yql) Q(S; - S) - V (dt) (9) 

7 



Feed Forward Controller Design 

Because the methodology necessary to derive the perfect feed forward 

controllers has been presented in detail by Kermode and Brett6 in a pre­

vious report, and the actual steps for the present study are given by 

Pault8, only a brief summary will be given. The first step is a lineari­

zation of equations 7, 8, and g about a steady state. All the variables 

are then written as deviation variables from their steady state values. 

The resulting equations are then Laplace transformed and solved simultane­

ously to eliminate X and 5". The resulting equation becomes: 

p p 
ql = - (-p14) lT - (-1i) 51 

34 P34 
( 10) 

Where after assuming that qlss = SQa (negligible sludge wasting) the 

feed forward controllers become 

Ol AAs 2 + BBs + 
- 02 Cccs2 +ODs+ and 

P D 2 
(_M) = _ _l [AAAs + BBBs + 1.0] 
P34 04 cccs2 + ooos + 1.0 

where 

Q(l y)(l + s) 2 a dGl a dF) rs 
Dl = [ -v2 - ]ss + [a5 (dt ax (dt ]ss[Q(l-+ S)]ss, 

D = 2 
[(1 + S)2(1 - y)Q]ss + [--2.. (dG) _l (dF)]ss[ 

sv2 as dt ax dt 0(1 

8 

y ] + S} SS 

(11) 

( 12) 



2 
D = [(l + s) (1 - y)Q + T (,sa (ddGt) 'Xa (ddFt))Jss x 
4 sv2 o + 1 + s) o Q 

(S. - S) 
[(l + ~(l _ y))Jss 

cc= Co o(T + B)Jss, 
2 

2 
BB= [-1 {(L_y) ((1 + B) - By(2 + B)) + yB (Qi1 - yl'l + B) + 

D1 V l + B ( l - y) Q ( 1 + B) V l + B l - y J 

a dF as (dt) } Jss 

_ [ l {( y ) (Qfl - yl'l + Bj + 'Sa (ddtF)) _ (1 - y)y }] 
DD - D

2 
Q ( l + f3) V 1 + B 1 - y) o V ( l + B ( 1 - y)) s s' 

(S.S)y 

CCC= [D40(l + B)(~ + B{l - y))Jss, 

y(l - y)(S. - S) 
+ 1 and 

V(l + B(l - y)) 2 

1 ( s i - s l y ( Q f 1 - x lf 1 + s j a ctF 
DDD = o

4 
{(l + B{l - y)) } {Q(l + B) V l + B l - y ) + as (cit)) -

(1 - y)y } 
V(l + S(l - y)) ss 

9 



A similar operation was carried out by Davis in devising a controller 

expression for a completely mixed tank. Davis' Laplacian controller 

equation was of the same form as Equation 10; however, his final expression 

for the controllers was independent of the kinetic model whereas expressions 

11 and 12 are not. An attempt was made to analytically simplify the 

expressions by examining the magnitude of each tenn. This proved unsuc­

cessful and the familiar Bode diagram was used instead. 

The Effect of Bypass on Controller Bode Plots 

Further comparisons were made using frequency response techniques 

found in Coughanowr and Koppel 2, specifically the use of Bode diagrams. 

Bode plots were drawn from Equations 11 and 12 for five different bypass 

fractions and compared with the Davis3 expressions. 

Figure 2 compares the (P 14;P34 ) expressions of the bypass and com­

pletely mixed models with the Eckenfelder kinetic terms included. Analysis 

of Figure 2 illustrates that for an operating frequency of w = rr/12.0 or 

(.262), that the feed forward control with Q the inlet substrate flow rate 

reduces to proportional alone even with a bypass as high as 25% (y = 0.25). 

Thus, for all practical purposes the Davis controllers should do as well 

as the more complicated one derived in equation 11. The (P 14;P34) expres­

sions were also plotted using Lawrence & McCarty kinetic terms, and 

although the plots were shifted slightly to the left the results were 

identical with those observed using Eckenfelder's kinetics; thus, the 

(P
14

;P
34

) expression seems to reduce to proportional control, (P14;P34) = 

- s. 

10 
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Figure 3 compares the two expressions for (P 24;P34 ), an analysis of 

the plots show that for the same operating frequency as before, the expres­

sion (P24;P34 ) essentially reduces to a derivative type control expression, 

-D3/D4(T*s). Table II summarizes the results of Figure 3 and illustrates 

that the maximum deviation is quite small, 12% in the most extreme case, 

and the assumption that both (P24;P34 ) expressions, were identical is 

justified. 

Therefore, the Bode plots show that the bypassing of a fraction of 

the inlet stream around the aeration unit has little or no effect on the 

control algorithm. 

Table II Amplitude Ratio - P24/P34 

ECKENFELDER LAWRENCE & McCARTY 

y -D/D4 i,*s (P2iP34) -D/D4 T*S P2iP34 

o.o Davis controller -23.324s Davis controller -23.3245 

0.05 - . 4833 47.7895 -23.0965 -.37821 61.20ls -23. 147s 

0. 1 -1. 011 22.52ls -22.769s -.79226 28.8925 -22. 89s 

0. 15 -1. 5908 14.0l3s 22.2925 -1. 2483 18.0385 -22.517s 

0.20 -2.2322 9.6672s -21. 5795 -1. 7541 12.52ls -21. 963s 

0.25 -2.9474 6.946s -20. 4735 -2.3193 9.10485 -21. 117s 

T* = effective time constant of (P24;P34) expression in 

w = rr/12.0 range. 

12 
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• 

where 

Equation 10 may be written in Standard control form as 

ql = qlss + Kc(TDs+l){Q-Qa) + Kc'To'(Si - 5ia)s 

K = c 

SQ2 + q,2 
[Q(Q - SQ+ 2ql)Jss 

Rewriting Equation 13 back to the time domain yielded: 

( 13) 

and 

Equation 14 was the control algorithm used in the computer simulations. 

Plug Flow Model 

In order to examine another mixing regime in the aerator, an 

approximate plug flow mixing model was formulated. This was accomplished 

by using N completely mixed tanks in series with a total volume equal to 

that of the original completely mixed tank used in the bypass simulations. 

A flow schematic is shown in Figure 4. 

Material balances on the substrate and live bacteria concentrations 

for the N number of tanks are: 

(15) 

(16) 

14 
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' 

dG) + v l (dt l ( 17) 

(18) 

where Vt= Vtotal/N. The kinetic tenns are again described in Table I. 

Plug Flow with Bypass Model 

This model was the final system tested with the objective of reassur­

ing us of the detrimental effect of a bypassed stream around the aerator 

but this time using a plug flow modeled aerator. For the sake of brevity 

a description of the model will not be discussed as the material balances 

on the substrate and live bacteria flows were found in manners similar 

to the previous two models. A schematic of the model is identical with 

Figure 4 except for the substitution of a series of completely mixed tanks 

in place of the completely mixed aerator. 

16 



Component Description 

CHAPTER IV 

COMPUTER SIMULATION 

The computer testing was carried out using the IBM System/360 Con­

tinuous Systems Modeling Program 11. Interpretation of the results can 

be simplified if one keeps in mind the four basic parts involved, namely, 

the forcing functions, the controller, sludge storage availability, and 

the dynamic model employed. 

Forcing Functions 

The forcing functions are approximations of diurnal fluctuations in 

inlet flow rate, Q(t), and inlet substrate concentration, Si(t), that 

cause the upsets or derivations from steady state values in the process. 

They are functions of time only and are independent of the process and 

model. Three different forcing functions were used in these simulations. 

The first was in phase sinusoidal changes in Q and Si. 

Q(t) = Qa/2 (2 + sin 1~) , and 

si(t) = Sia/2 (2 +sin~). 

The second was out of phase by 90°, or: 

Q(t) = Qa/2 (2 + sin 1~) and 

si(t) = 5;/2 (2 + sin (1~ + fJJ. 

17 
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Third was a fourth order polynomial. 

Q(t} = Qa(E1 + E2t + E3t 2 + E4t 3 + E5t 4) and (22) 

Si(t) = Sia(F1 + F2t + F3t 2 + F4t 3 + F5t4). (23) 

The constants in equations 22 and 23 were determined by fitting the 

literature values of Wallace and Zollman12. 

Controller 

This was already described in detail and presented as Equation 14. 

The abbreviations PD, D, and P were used to designate the control modes 

proportional derivative, derivative alone, and proportional only (see 

Tables III and IV). 

Sludge Storage 

Examination of Figures 1 and 4 indicates that the underflow rate from 

the separator is SQ= q1 + q2• This is split into two unequal flows, the 

recycle flow, q1, and the sludge waste flow, q2. If no restrictions are 

imposed upon q2 then it is possible in times of required high recycle rate 

(q1 > SQ) that the value of q2 may become negative, i.e., stored sludge 

must be supplied to the system. Whether or not sludge storage was avail­

able was an added dimension that could be imposed upon the system during 

the simulations. 

Dynamic Models 

These have been described in detail in a previous section. 
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Computer Results 

To facilitate the comparison of different models, the values of 

following parameters were kept the same as those used by Davis: 

S = 0.4, Sia= 267 g/m3, Qa = 10000 m3/hr, Sss = 22 g/m3 and V = 20,000 

m3. The steady state expression for the live bacteria concentration [X]ss 

and the recycle flow rate [q1Jss as functions of bypass fraction, y, 

were found by solving Equations 7 and 9 under steady state conditions. 

Completely Mixed with Bypass Model 

The first bypass system tested inc 1 uded Lawrence & McCarty kinetic 

expressions and the simulation results are summarized in Table III. Kinetic 

coefficients were the same as the values used by Davis, Y = 0.67 g/g, 

b = 0.00291 hr-1, k = 0.233 g/g·h and Ks= 22.0 g/m3. 

Runs 1 thru 3 show the effect of increasingly more complicated con-

trol on the Lawrence & McCarty model with sinusoidal forcing functions. 

No restrictions were made on the sludge wasting flow rate, q2. It can be 

seen from Table III that the most elaborate control, PD-Q D-Si' substantially 

reduced Ss maximum, with 70% of this reduction due to the proportional con­

trol on the inlet flow rate, P-Q. This is of practical importance since 

fluctuations in flow can be measured more easily than changes in substrate 

concentrations. 

Runs 4 and 5, when compared to runs 2 and 3, show the favorable effect 

of a phase difference between the two forcing functions. This is easily 

explained since low values of influent substrate coincide with high influent 

flow rates and vice versa, thus easing the controller's task. 
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Results of Feed Forward Control of 
TABLE III 

Lawrence & McCarty, Bypass Model 

Run Control Mode Forcing Controller Sludge 
Ss max Ss min 

No. Q(t) Si(t) Functions Constants Storage 
Available 

y = o. 0 y = • 10 y = • 25 y = 0 y = .10 y = • 25 

1 No No Sinusoidal None Yes 290.6 288.2 284.7 2.3 10. 6 23. 6 

2 p No II Davis Yes 87.7 111. 4 149.4 3. 1 13. 3 29.6 

3 .PD D II Davis Yes 22.0 44.6 90.3 10. 1 18. 5 32. 5 

4 p No Phase Diff. Davis Yes 65.8 88.7 125. 4 6.2 16. 3 31. 9 
N 
0 

5 PD D II Davis Yes 48. 1 73.4 114. 1 22. 5 30.7 43.4 

SA No No 4th order None Yes 40.2 59.8 91. 4 9. 2 26.4 53.9 

6 p No 4th order Davis Yes 32.4 52.7 85.8 16.4 34. 0 61. 1 

7 PD D II Davis Yes 27. 1 45.7 79.2 22.6 39.7 64.9 

8 PD D Sinusoidal Davis No 57.8 71. 9 113. 4 14. 2 21. 9 34.9 

9 II D Phase Diff. Davis No 7 5. 9 96.6 130. 7 22.0 31. 4 43.8 

10 No No Sinusoidal None No 290.6 288.2 284.7 12. 3 20.5 33.6 



' . 

The fourth order polynomial functions were imposed upon the system 

in runs 6 and 7, and a comparison can be made with the previous four 

simulations just discussed. These realistic forcing functions are less 

severe as can be seen from Figure 12. This resulted in lower effluent 

substrate concentrations. 

The fluctuating value of the sludge wasting flow rate, q2, was com­

puted throughout the twenty-four hour simulations in runs 1 through 7. 

With proportional control alone on inlet flow rate, q2 remained positive 

throughout the cycle and sludge storage was not necessary. However, the 

value of q2 did occasionally drop below zero as shown in runs 1, 3, and 5 

and, therefore, the restriction q2 .::_ 0.0 was added to these simulations 

with the results shown in runs 8, 9, and l O. For the no contra l cases, 

runs l and 10, stored sludge availability had no effect on the effluent 

quality. For the controlled cases, approximately a 10% reduction in Ss 

maximum was possible when sludge storage is available. This improvement 

probably does not warrant the addition of sludge storage. 

In all these simulations, the values of Ss maximum were reported for 

the bypass fractions 0%, 10%, and 25%. Examination of Figures 5 through 

11 illustrates the detrimental effect of bypassing. A comparison of the 

detrimental effect of the bypass fraction on the controller action is 

shown in Table VIII for runs 1 through 3. 

The second bypass system tested included the Eckenfelder kinetic terms, 

these results are summarized in Table IV. The kinetic constants were 

assigned values: a= 0.39 g/g, and K1 = 0.00227 m3/g·h. The effluent 

quality proved to be substantially better in the Eckenfelder simulations. 
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Results of Feed Forward Control of 
TABLE IV 

Eckenfelder Bypass Model 

Run Control Mode Forcing Controller Sludge 
Ss max Ss min 

No. Q(t) s (t) Functions Constants Storage y = o. 0 Y= .10 y = • 25 y = 0 y = .10 y = • 25 
Available 

11 No No Sinusoidal None Yes 102. 5 1 21. 7 153. 9 2.3 l 0. 6 23.4 

12 p No " Davis Yes 41. 4 68.0 111. 1 5. 1 14. 9 30.7 

13 PD D !I Davis Yes 22.0 46. 1 91. 4 13. 1 21. 2 34.5 

N 14 p No PhaseDiff. II Yes 36.7 62. 7 105. 7 9,2 19. 1 34.2 
N 

15 PD D " II Yes 32. 3 58,7 101. 6 22,9 31. 3 44.4 

15A No No 4th order None Yes 28.4 49,2 82.5 12. 2 28.9 55.9 

16 p No 4th order Davis Yes 26.7 47.4 80. 1 18. 5 35,5 61. 9 

17 PD D " " Yes 24.6 44. 1 78.5 22. 6 39.0 64.3 

18 PD D Sinusoidal " No 46.0 60.9 104. 8 18. 6 26. 1 38,6 

19 PD D Phase Diff. II No 47.4 72.7 11 3. 6 22.0 32. 1 45. l 

20 No No Sinusoidal None No 102. 5 1 21. 7 15 3, 9 11. 1 19.9 34. 1 
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This was expected due to the favorab1e effect of the kinetic growth rates. 

The same control modes, stored sludge availability, forcing functions, and 

bypassing effects when applied to the Eckenfelder simulations proved to 

have similar effects as those exhibited in the Lawrence & McCarty simula­

tions. However, for the no control case, run 11, the bypass fraction had 

a more detrimental influence on the effluent quality than that experienced 

in the Lawrence & McCarty model as 

Plug Flow Model 

seen in Figure 5. 
WASHINGTON WATl!R 

RESEARCH Cl!NTEII LlllRAftY 

The required steady state values of substrate and bacteria concen­

trations in each of the N aerators were computed using the steady state 

values, Qa and Sia' and solving all the system equations dynamically on 

the computer. As time became large, the derivatives went to zero and the 

steady state values were obtained. However, the recycle flow rate, q1, 

had to be adjusted until the final effluent, SN, reached its steady state 

value of 22.0 g/m3. Thus, a trial and error procedure was required. 

The first plug flow system tested included the Lawrence & McCarty 

kinetic terms with the results su11111arized in Table V. The identical 

kinetic coefficients used in the bypass mixing model were used for plug 

flow. 

Runs 20, 21, and 22 exhibit the increasingly desirable effect of a 

more sophisticated control on the three tank system using sinusoidal 

forcing functions and stored sludge. 

The strong effect of proportional control on flow rate Q(t) in con­

trolling the system is not as dominant in the plug flow system as P-Q 

produces a 56% reduction in exit substrate levels as compared to 70% in 
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Results of Feed Forward Control of 

TABLE V 
Lawrence &: McCarty, Plug Flow Model 

Run Control Mode Forcing Controller Sludge Effuent Substrate N# of 

No. Q(t) s (t) Functions Constants Storage Max. Min. Tanks 
Available 

20 No No Sinusoidal None Yes 348,5 1. 2 3 

21 p No Sinusoidal Davis Yes 1 52. 3 0.3 3 

22 PD D Sinusoidal Davis Yes 45.4 4.7 3 

23 No No Sinusoidal None Yes 361. 6 1. 0 10 

w 24 p No Sinusoidal Davis Yes 1 72. 6 - o. 0 10 
N 

25 PD D Sinusoidal Davis Yes 82.4 1. 1 10 

26 No No 4th order None Yes 85.8 0.3 10 

27 p No 4th order Davis Yes 43.0 6.9 10 

28 PD D 4th order Davis Yes 41. 5 13. 3 10 

29 No No Phase Di££. None Yes 239.4 22.0 10 

30 p No Phase Di££. Davis Yes 1 39. 5 o. 1 10 

31 No No Sinusoidal None No 361. 6 22.0 10 

32 PD D Sinusoidal Davis No 123. 0 22.0 10 



the bypass case. The addition of derivative control produces an 87% 

reduction from the no control run and practically speaking this case 

seems to warrant its application. 

Runs 23, 24, and 25 illustrate the effect of a ten tank plug flow 

approximation. Proportional control on Q(t) alone accounted for a 52% 

reduction in effluent substrate, while proportional derivative control 

on Q(t) and derivative control on Si(t) increased this to 77%. Thus, the 

10 tank approximation changed the results only slightly. 

Comparison of runs l through 3 (bypass model) with the above cases 

illustrates an unexpected result. The completely mixed case with no 

bypass proved to give a better quality effluent than the plug flow 

approximation, even in the no control case. The closer the approximation 

approached an actual plug flow model the worse was the resulting effluent 

substrate concentration, or in other words 

At first this result was thought to be caused by the high fluctuation of 

Q(t) and S(t) associated with the sinusoidal forcing function; however, 

two runs, SA and 15A, displayed the same result. A reason for this was 

found in the experimental section of this study. Data from a local treat­

ment plant was used to find realistic forcing functions, and these were 

used with both a CSTR and plug flow mixing model. This time the plug flow 

model gave the lower effluent substrate level as originally expected. An 

explanation for these combined results is that the experimental forcing 
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functions, while no less invariant than Equations 22 and 23, fluctuated 

about a lower average value for Q(t) and Si(t), or in other words the 

average substrate loading on the system was much lower. 

Thus, the plug flow mixing model will not receive high average 

loadings, characteristic for that system, as efficiently as the CSTR 

model, thus giving higher effluent concentrations. 

Examination of runs 26 through 30 illustrate the same effects of 

the .:i:arious control modes on the system but using less severe forcing 

function namely, the 90° phase different functions and the 4th order 

polynomial approximations. 

The effluent substrate s10 maximum for the no control, phase difference 

case was - 66% of the s10 maximum for the in-phase, no control case. Also, 

the no control, 4th order polynomial maximum was - 24% of the no control, 

in-phase simulation. 

The use of proportional derivative control resulted only in a 3% reduc­

tion in effluent substrate maximum levels for the 4th order polynomial 

forcing function. This is contrary to the favorable results experienced 

with derivative control using sinusoidal forcing functions. 

The detrimental effect caused by no sludge storage can be seen by 

inspection of runs 31 and 32. Using the most sophisticated control case, 

loss of stored sludge results in a 62% increase in s10 maximum. Again the 

sophisticated control (PD-Q, D-SI) seems to be unjustified, as its reduction 

in the maximum effluent substrate concentration for the more realistic 4th 

order forcing functions is minimal, and part of its effectiveness is pro-

vided by sludge stored in the system. The results of the above are pre-

sented in Figures 13 thru 16. 
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The second plug flow system tested involved Eckenfelder kinetic 

expressions with the results summarized in Table VI. Again, the 

Eckenfelder kinetic tenns yielded faster bacterial growth and substrate 

utilization rates. This resulted in better effluent substrate quality. 

The effects of various control modes, different forcing functions, and 

stored sludge availability were similar in runs 33 through 45 to runs 

20 through 32; this is evident by comparison of Tables V & VI. 

In all the computer simulations, either plug flow or completely 

mixed with bypass, the results were evaluated by examination of maximum 

effluent substrate concentrations. Although the maximums presented are 

accurate representation of the process effectiveness, one should also 

examine th~ actual fluctuations occurring throughout the 24 hour period, 

and selected simulation results are illustrated in Figures 5 through 16. 

Plug Flow With Bypass 

Again, the values of the process parameters used in the previous two 

models were kept the same for comparative purposes. 

For simplicity, only the three tank plug flow approximation and 

Lawrence and McCarty kinetics was tested with bypass, the results being 

shown in Table VII. 

The effect of bypass on the 3 tank system can be seen by inspection 

of Table VII and Figures 17, 18, and 19. The following were a few of the 

results: 

l - bypass had a definite negative effect on the system as the 

fraction was increased, except for the no control, sinu­

soidal case - run 46. 
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Results of Feed Forward Control of 
TABLE VI 

Eckenfelder, Plug Flow Model 

~ 

Run Control Mode Forcing Controller Sludge Effluent Substrate N# of 

No. Q(t) s (t) Functions Constants Storage Max. Min. Tanks 
Available 

33 No No Sinusoidal None Yes 124. 8 o.6 3 

34 p No Sinusoidal Davis Yes 41. 7 2. 6 3 

35 PD D Sinusoidal Davis Yes 35.9 1 o.o 3 

36 No No Sinusoidal None Yes 143. 2 0. 1 10 

.I>, 37 p No Sinusoidal Davis Yes 41. 7 1. 6 10 
0 

38 PD D Sinusoidal Davis Yes 65.7 6. 1 10 

39 No No 4th order None Yes 40.0 8.0 10 

40 p No 4th order Davis Yes 3 1. 1 1 5. 9 10 

41 PD D 4th order Davis Yes 28.7 1 7. l 10 

42 No No PhaseDiff. None Yes 11 0. 4 2. 3 10 

43 p No PhaseDiff. Davis Yes 44.9 6.7 10 

44 No No Sinusoidal None No 143. 2 1.4 10 

45 PD D Sinusoidal Davis No 67.4 1 o. 3 10 



Results of Feed Forward Control 
TABLE Vil 

Lawrence &: McCarty, Plug Flow with Bypass Model 

, 
Run Control Mode Forcing Controller Sludge Ss Max s Min 

No. Q(t) Si(t) Functions Constants Storage y = 0. 0 y = o. 10 y = o. 25 y = o. 0 y = 0.10 y = o. 25 
Available 

46 No No Sinusoidal None Yes 348.5 347.9 345. 6 1. 2 11. 8 27.2 

47 p No Sinusoidal Davis Yes 152. 9 174. 6 206.2 0.3 lo. 9 27.9 

48 PD D Sinusoidal Davis Yes 45.5 52. 5 84.2 4.8 33.4 43.6 

.,. 49 No No 4 order None Yes 75.0 93.8 120. 3 2. 3 20.2 48.9 
~ 

50 p No 4 order Davis Yes 43.6 65.6 98.2 1 o. 9 29.7 58.4 

51 PD D 4 order Davis Yes 34. 2 · 52. 2 81. 0 19. 3 42. 4 70.5 

52 No No PhaseDiff. None Yes 218. 6 221. 3 225. 5 9.2 32.7 66.2 

53 p No PhaseDiff. Davis Yes 11 7. l 137. 0 165. 6 1.4 12. 4 28. 8 
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2 - bypass had its most drastic effect on the system when the 

PD-Q, D-S; control was used. 

Comparisons of the negative effects of bypass on the controller 

operation is shown in Table VIII and can be compared with the com­

pletely mixed case. 
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TABLE VIII 

Effect of Bypass on % 

Reduction of Effluent Substrate* 

Type Bypass Fraction Aerator 

Control 0% 10% 25% Model 

P-Q 70 61 48 Completely 

PD-Q D-S· 92 85 68 Mixed 
' 1 

P-Q 56 50 40 Plug Flow 

PD-Q, D-S. 87 85 76 (3 Tanks) 
1 

* Lawrence & McCarty Kinetic Model; Sludge Storage Available; 
Sinusoidal Forcing Functions. 
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CHAPTER V 

EXPERIMENTAL ANALYSIS 

This section involved a study of the secondary treatment operations 

of the Lexington Municipal Treatment facility. The objectives of the 

analysis were to establish the most representative kinetic and mixing 

models, and to develop more realistic time dependent fonns of typical inlet 

flow rate and substrate concentrations. 

Lexington Treatment Plant Data Collection 

A flow diagram of the activated sludge secondary treatment facility 

as well as sampling sites is shown in Figure 20. The 10 aeration tanks 

are situated in parallel, each with a volume of 45,000 ft3, and each 

employing diffused air type aerators. The separator is 6 parallel settling 

tanks with volumes of 31,000 ft3 each. 

On July ,st and 30th data samples were collected for a full 24 hours 

with the purpose of obtaining diurnal fluctuations of the inlet substrate 

concentrations (point A), the effluent substrate concentration (point B) 

and the aerator live bacteria concentration (taken from each tank) for the 

Lexington plant. Flow rates, Q, q1, and q2 were also obtained during the 

sampling operations from a monitoring station located at the plant. The 

organic content of the substrate samples was evaluated using the 5-day 

BOD (BOD5) test. Biological solids in the aerators was evaluated using 

the volatile suspended solids test. All laboratory procedures were followed 

as outlined in Standard Methods10. Data obtained from the analysis on the 
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two different days in July is shown in Tables IX and X. The realistic 

time dependent fonns of inlet flow rate and substrate concentrations 

could then be developed from this data by approximating the actual fluctu­

ations with 4th order polynomial expressions. 

Data Analysis 

The next objective was to establish the most representative kinetic 

and mixing models. The first method tried was an attempt to solve for 

the kinetic expressions f(S) and g(S) (from Table I) using the simpler 

CSTR mixing model. This involved solving equations 8 and 9 for f(S) 

and g(S) using the experimental data for the time dependent parameters and 

setting the bypass fraction, y, equal to zero. 

The following assumptions were made: 

X + dX = X g ( S) • dt 

(24) 

(25) 

1. The 24 hour data of bacteria concentration, influent substrate con-

centration, and effluent substrate concentration could be smoothed 

out to eliminate data point scatter. 

2. ~~and~~ could be approximated by~~ and~~ respectively with a 

time increment equaling one hour. 

3. The values of the time dependent parameters Q, q1, q2, Si' S, and X 

were assumed to vary linearly over the time interval ilt = 1 hour, and 

that an average value could be assumed for each parameter over that 

interval. 

49 



TABLE IX 

Analysis of Secondary Treatment (Lexington Plant) - 7 /1/74 

BOD (5-day) 
MLVSS 

Influent Sludge Sludge 
Time Flow Recycled Wasted 

Influent Effluent (mg/1) (MGD) (GPM) (GPM) 

6:00AM. 22.7 4.0 1510 11. 0 5590 440 

7:00 22.9 4.4 1600 13. 0 5590 440 

8:00 26. 5 5.4 1490 16. 3 5530 440 

9:00 46.0 4.7 1490 18. 0 5530 440 

10:00 59.0 6.6 1400 20.5 ~553 440 

11:00 78.2 6. 5 1340 21, 0 5730 o.o 

12:00 noon 106. 1 5.8 1450 20.0 5730 o.o 

1:00 PM l 05. 0 7.2 1490 18. 4 5730 0.0 

2:00 114. 0 lo. 6 1300 19. 0 5730 o.o 

3:00 114. l 1 3. 1 1540 18. 0 5730 o.o 

4:00 115. 0 13. 0 1650 l 7. 5 5730 o.o 

5:00 l 08. 4 14. 4 1540 l 7. 0 5730 o.o 

6:00 91. l 1 3. 5 1830 17. 0 5400 o.o 

7:00 80.6 13. 6 1680 17. 0 5290 160 

8:00 80.9 1710 1 7. 0 5330 130 

9:00 7 l. 6 11. l 1690 16. 0 5250 350 

10:00 78. l 9,9 1920 15. 5 5260 340 

11:00 82. 5 9,7 l 750 15. 0 5300 300 

12:00 mid 78.6 7. 3 1640 15. 0 5300 300 

1:00 AM 65. 3 4.0 2210 13. 0 5300 300 

2:00 58.9 5. 4 1 750 11, 0 5380 220 

3:00 49, 1 2, 9 1770 1 O. 0 5250 410 

4:00 46.9 3. 5 1810 lo. 0 5250 410 

5:00 44. l 3. 0 l 790 lo. 0 5260 400 
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TABLE X 

Analysis of Secondary Treahnent (Lexington Plant) - 7 / 30/74 

BOD (5-day) 
Primary Sludge Sludge 

Time MLVSS Ef. Flow Recycled Wasted 
Influent Effluent (mg/1) (MGD) (GPM) (GPM) 

6:00 AM 40.3 3. 1 2040 5.0 5460 440 

7:00 44.2 2.6 1970 1 0. 0 5460 440 

8:00 25.9 3,7 2180 14. 0 5470 430 

9:00 27.3 5. 3 1970 1 6. 0 5470 430 

10:00 53.7 4.5 1480 1 7. 5 5475 425 

11:00 60.4 4.0 1 620 1 6. 2 5530 370 

12:00 noon 91. 7 5. 6 1820 1 7. 0 5570 330 

1:00 99.0 6. 5 1660 1 6. 0 5590 310 

2:00 98. 1 5.2 1610 16. 0 5585 315 

3:00 91. 9 5. 5 1840 1 5. 5 5590 310 

4:00 4.8 1870 1 6. 0 5350 550 

5:00 95.8 5'. 1 1 710 14. 0 5360 540 

6:00 89.3 6.3 1530 1 5. 0 5360 540 

7:00 78.7 6. 3 1670 14. 0 5360 540 

8:00 78.3 3. 9 1630 13. 5 5360 540 

9:00 81. 9 4.7 1760 1 3. 0 5360 540 

10:00 85.5 3.4 1640 1 3. 5 5370 630 

11:00 96. 1 3.4 1 700 13. 0 5370 530 

12:00 mid 75.7 4.6 1660 1 2. 0 5370 530 

1:00 AM 67.2 2.2 1 780 12. 0 5370 530 

2:00 61. 4 3.0 1 700 5. 0 5360 540 

3:00 55.2 4.2 1860 5. 0 5360 540 

4:00 47.0 5. 4 1930 5. 0 5360 540 

5:00 45.8 2020 5. 0 5360 540 
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4. The retention time in the settling tanks was assumed small enough 

that the substrate levels at point B, (Figure 20), were representative 

of substrate levels in the aerator at any time, t. This was later 

verified. 

Once values for f(S) and g(S) were obtained for over the 24 hour 

cycle one could attempt to find the most representative kinetic model. 

From Table I, 

kS 
f(S) = [K + S] 

s 
Kl 

f(S) = - S a 

for the Lawrence & McCarty model, (26) 

for the Eckenfelder model. (27) 

A plot of Equations 26 and 27 for the two kinetic models is shown in 

Figure 21. If one plots the values obtained for f(S) versus substrate 

concentration, S, over the 24 hours one should be able to determine the 

more representative kinetic model by comparison with Figure 21. A straight 

line would indicate Eckenfelder kinetics, and an asymptotic line would 

infer Lawrence & McCarty kinetics. The values of the kinetic constants 

could be determined from the f(S) vs. S plot, and with the use of an 

additional plot, g(S) vs. f(S), since with both models this would yield a 

straight line with the slopes and intercepts giving the remaining kinetic 

constants. 

It should be noted that the values of the kinetic constants k and Ks 

in the Lawrence & McCarty model are more accurately determined by plotting 

fls) vs. t, yielding a stra1ght line with slope= Ks/k and intercept= 

1 
K' 
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1 

The second method attempted in the evaluation of a mixing and kinetic 

model involved the use of computer simulation. The data obtained during 

the two days in July could be fed into the completely-mixed, plug flow, 

or completely-mixed with bypass models, and using literature values for 

the kinetic constants in both kinetic expressions (Table I), one could 

determine the most representative mixing model by examination of the 

effluent substrate curve, S, and the live bacteria curve, X. The closer 

these curves came to the actual curves obtained experimentally would 

indicate the most representative model, provided the biological kinetics 

of the actual plant was approximately that described in Table I. The 

following assumptions were made: 

1. The sludge recycle flow rate, q1, was assumed constant and set equal 

to its arithmetic mean. 

2. The sludge wasting rate, q2, was also assumed constant and equal to 

its arithmetic mean. 

3. The influent flow rate, Q, and influent substrate concentration, 

Si' could be represented by 4th order polynomials as shown in 

Figure 22. 

Experimental and Theoretical Comparison 

The 4th order polynomial representation, Equations 41 and 42, of Q 

and s1 are shown in Figure 22. The coefficients are given in Table XI. 
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Table XI Values of 4th Order Polynomial Coefficients 

July 1st July 30th July 1st July 30th 

el 1913. 395 894. 911 fl 13. 179 39. 77 

e2 554. 21 815.7209 f2 32.5152 19.3067 

e3 -76.0486 -124.3174 f3 -1. 9729 -0.857 

e4 3.4651 7.3474 f4 0.000025 -0.01769 

e5 -0.0538 -0.15557 f5 0.00127 0.000906 

The next objective was to find a representative kinetic and mixing 

model for the activated sludge treatment process. Solutions of equation 

24 and 25 gave values of f(S) and g(S) and are listed in columns 1 and 

3 in Tables XII and XIII. Columns 2, 3, 5 and 6 list theoretical values 

of the Lawrence and McCarty or Eckenfelder equations for comparison. 

Analysis of columns (2) and (3) in Table XII indicate that both 

theoretical kinetic models yield approximately the same values for f(S). 

This can be explained by inspection of Figure 21 as both models con­

verge at the substrate levels experienced on July 1st. However, on 

July 30th the substrate levels were considerably lower and the two kinetic 

models predict somewhat different results as seen in Table XIII. 

If one compares the experimental values of f(S), column 1, with the 

previous two columns it is evident that in most cases, f(S)EXP. is 

approximately one sixth the theoretical values calculated. Possible 

explanations for these low experimental values could be: 
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TABLE XII First Method of Analysis - 7 /1/74 

Colunin (1) ( 2) ( 3) ( 4) ( 5) (6) 

Time f(S) EXP. f(S) L+Mc f(S) ECK. g(S) EXP. g(S)L+Mc g(S) ECK. 

0 • 0023 l • 05123 .03609 • 0313 • 03141 • 0141 

1 . 00322 • 0550 l • 03958 .000515 • 0340 • 0154 

2 • 00610 • 05865 .04307 -.00353 .03639 • 0168 

3 • 0 1151 .06326 .04773 • 01168 • 03947 • 0186 

4 • 01599 • 06765 • 05238 • 0198 • 04242 .02043 

(J1 5 • O 1989 . 07430 .05995 • 0139 • 04687 • 02338 ...... 

6 • 02127 • 08 179 • 06926 • 0239 • 05189 • 0270 l 

7 • 02140 • 09179 • 08323 • 0300 • 05859 • 03246 

8 • 02067 • l O 120 • 098 37 • 0259 .06489 .03836 

9 • 01965 .10830 .111 20 • 0253 .06965 .04336 

10 • 0 1862 • 11210 • 11870 • 0 186 .0722 • 0463 l 

11 • 0 1602 .11295 .12050 • 0182 .07276 .04699 

12 • 01384 .11124 .11700 • 0119 • 07162 • 04563 

13 • 01287 • l 0797 • 11060 • 0149 • 06943 • 04313 



TABLE XII First Method of Analysis - 7 /1/74 (Cont'd) . 
Column (1) (2) (3) (4) ( 5) (6) 

Time f(S) EXP. f(S) L+Mc f(S) ECK. g(S) EXP. g(S) L+Mc g(S) ECK. 

14 • 0 1239 .10323 .10190 • 0 10 l .06625 .03972 

15 • 0 1211 • 09703 • 09 140 • 0234 .0621 .03564 

16 • 0 1255 .08982 . 08030 • 0226 • 05727 • 03133 

17 • 0 1274 • 08 134 .06870 . 0207 • 05159 .02679 

18 • 01103 .06923 • 05413 , 0205 .04347 .0211 

01 19 • 00788 .05982 .04420 • 0184 • 03717 • 01725 co 

20 • 00585 • 0 5123 .03610 • 01425 • 0320 l • 01407 

21 ,00493 • 04450 .03030 • 0228 • 02691 • 0118 

22 • 00448 • 04100 .02730 .0229 • 02456 • 0107 



-- ·-----· .. -- - --- ------ -·---- --~----

TABLE XIII First Method of Analysis - 7 /30/74 

Column (1) (2) ( 3) ( 4) ( ~) ( 6) 

Time f(S) EXP. f(S) L+ Mc f(S) ECK. g(S) EXP. g(S) L+Mc g(S) ECK. 

0 • 00175 • 04294 .02852 -.02830 .02552 • 0 111 

1 . 00347 . 04727 • 03259 -.02610 • 02876 • 0127 

2 .00534 . 05123 • 03609 - . 0 102 • 03141 • 0 1407 

3 .00706 • 0 550 1 .03958 -.00958 .03395 • 01544 

4 • 00903 • 05865 • 04307 -.01071 • 03639 • 01679 

"' 5 • 0 1218 • 06198 . 04598 -.00343 .03862 • 01793 
<D 

6 • 0 1492 .06438 .04889 -.00020 .04022 • 01907 

7 • 0 1574 • 06493 • 04947 • 00180 .04059 • 01929 

8 • 0 1566 .06548 • 05006 • 00982 .04096 • 01592 

9 • 0 1574 • 06493 .04947 • 0 1695 .04059 • 01929 

10 • 0 1486 • 06383 . 04831 • 0 1964 .03986 • 0 1884 

11 .01373 • 06213 .04656 .02369 • 03872 • 018 16 

12 • 0 1280 • 05924 .04365 .02527 .03678 • 01702 

13 • 0 1161 .05563 • 04016 .02436 .03436 • 0 1566 

14 • 01136 • 05187 .03667 .02533 • 03184 • 0 143 



---------------------
l .. 

TABLE XIII First Method of Analysis - 7/30/74 (Cont'd.) 

Column (1) ( 2) ( 3) ( 4) ( 5) ( 6) 

Time f(S) EXP. f(S) L+Mc f(S) ECK. g(S) EXP. g(S) L+Mc g(S) ECK. 

15 .01190 • 04993 . 03492 . 02936 • 03054 • 01362 

16 • 0 1209 • 04795 • 03717 , 03827 .02922 , O 1294 

17 • 01055 , 04592 , 03143 • 040 17 • 02786 • 0 1226 

18 .00862 , 0438 5 .02968 • 04489 • 0264 7 • 0 1158 

19 • 00538 .04244 . 02852 .04056 .02552 • 0111 

"' 20 • 00285 • 04100 
0 

.02735 • 04186 , 02456 • 01067 

21 • 00248 • 03883 . 02561 • 05153 • 02311 .00999 

22 • 00237 .03883 , 02561 , 06005 • 02311 , 00999 



1. The literature values of the theoretical kinetic constants were 

based on a COD basis; however, the experimental results were based 

on an ultimate BOD basis. This would tend to lower the theoretical 

values of f(S). 

2. The time lag involved in the clarifiers between the actual sub­

strate level in the aerators and the substrate level at point A 

where the samples were taken was approximately 2 hours. The 

detrimental effect of this 2 hour lag was tested by shifting 

effluent substrate values back two hours. The procedure proved to 

have negligible effects on f(S). 

3. The Lawrence & McCarty and Eckenfelder kinetic models are based on 

only one limiting concentration, namely the substrate concentration, 

S. However, actual aeration tanks, especially long narrow tanks, 

sometimes exhibit oxygen demands greater than 0.0. levels present at 

the inlet section, thus decreasing the substrate utilization and 

bacterial growth rates with this additional limiting concentration. 

4. Experimental error due to faulty sampling procedures and inaccurate 

laboratory analysis. 

Comparison of theoretical versus experimental values of g(S), columns 

4, 5 and 6, indicate the following results: 

1. The Lawrence & McCarty model predicts larger values for g(S) than 

does the Eckenfelder model due mainly to the magnitude of its yield 

coefficient, i.e. y = 0.67 as compared to a= 0.39 for the Eckenfelder 

model. 

2. In most cases, the theoretical models yield larger values for g(S) 

than those found experimentally. g(S)EXP. is approximately 45% of 
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that predicted by Lawrence & McCarty's, column (5), and approximately 

70% of that predicted by Eckenfelders, column (6). 

3. The yield factor, g(S)/f(S), for the experimental figures averaged 

out to be 1.6 for Table XII and 1.85 for Table XIII. Since these 

values exceed unity, they had no physical significance. 

The next step taken was to make plots of f(S)EXP. versus substrate 

concentration, S, and g(S)EXP. versus f(S)EXP .. Because the kinetic rate 

constants are based on ultimate BOD, it was decided to convert the 

measured 5 day values to ultimate values. It was also necessary to plot 

averaged values of ultimate because derivatives were approximated by 

letting ~S/~t = dS/dt, thus the S plotted should be on the half hour not 

the hour. Finally, this meant that only 23 points could be plotted for 

a 24 hour period. These plots are shown in Figures 23 through 26. 

Inspection of Figures 23 and 9 shows no consistent resemblance to 

either kinetic model described in Figure 21. The magnitude of f(S)EXP. 

seemed to depend on some other function in conjunction with Sas identical 

values of Soften yielded quite different values for f(S)EXP .. The data 

points are connected to indicate the path of the function over the 24 hour 

cycle. Figures 24 and 25 also did not yield the expected results, as the 

data points did not form straight lines with a positive slope. It was 

concluded that this method was ineffective for the determination of a 

representative kinetic expression. 

The computer simulation results of the second method of analysis in 

the determination of a kinetic and mixing model are listed in Table XIV. 
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TABLE XIV Results of Experimental Computer Simulations 

Forcing Mixing 
Run# Kinetic Functions Model 8max smin Xmax Xmin 

54 L+Mc July l CSTR 6. 6 1. l 674.7 629. 3 

55 EcKN July 1 CSTR 14. 4 3. 7 41 o. 7 381. 4 

56 L+Mc July 30 CSTR 7. 1 o.o 483. 5 439.6 

57 EcKN July 30 CSTR 14.2 o.o 308.3 286. 9 

"' L+Mc -a -6 
677.3 619. 3 ..... 58 July 1 Plug flow 1. 5 x 10 4.4xl0 

L+Mc July 30 
-6 -10 

l 73. 0 167. 5 59 Plug flow 7. 7 x 10 4. 3 x 10 

60 L+Mc July 1 30% bypass 44.2 15. 5 370.5 288.5 

61 L+Mc July 30 30o/obypass 36.9 8. 5 334.4 288.0 



The first mixing model, the completely mixed tank, was tested in 

order to compare results with the previous method of analysis. It was 

observed in runs 54 through 57 and from Figures 27, 28, and 29 that the 

effects of the theoretical kinetics on the July ,st and July 30th data 

were the following: 

1. Theoretical substrate levels experienced on July 1st and July 30th 

were approximately the same as those found experimentally and shown 

in Figure 27. 

2. Live bacteria concentrations in runs 54 through 57 were lowered 

drastically when theoretical kinetics were employed. 

The equivalent substrate levels can be explained since the high theoretical 

values for f(S) multiplied by the low values of X tend to compensate for 

each other when compared to experimental values and thus the substrate 

utilization rates,~~, are of the same approximate magnitude. However, 

the low values of theoretical X must first be explained. If one compares 

the magnitudes of f(S) and g(S) found both experimentally and theoretically 

in Tables XII and XIII,the reasons become obvious. The experimental values 

of g(S) are lower than those predicted by Lawrence & McCarty's or Eckenfelder's 

models, but not as drastic as the differences found for values of f(S). 

Thus experimentally one has very low substrate utilization but at the same 

time receives high bacterial growth due to a high yield factor. This results 

in an abundance of food for the bacterial growth when compared with theo­

retical food supplies resulting in larger experimental values of X than 

predicted theoretically. 
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As expected from examination of Tables XII and XIII the Eckenfelder 

kinetics, in runs 55 and 57, predict higher effluent substrate concen­

trations than does Lawrence & McCarty. 

Runs 58 through 61 were results of attempts made in search of a 

more representative model. The 10 tank plug flow model proved to give 

extremely low values of effluent substrate while sludge concentrations 

still remained very low. Bypassing a fraction of the inlet stream around 

a CSTR aerator likewise proved to decrease the sludge concentration as 

the bypass fraction was increased. The extreme 30% bypass fraction case 

is shown in runs 60 and 61. It was concluded that none of these mixing 

models gave satisfactory result in approaching the actual mixing mode 

at the Lexington facility. Therefore, it seems that either the sampling 

or laboratory procedures were in error or that the theoretical kinetic 

rates described in Table I are actually ideal expressions for frequent 

non-ideal conditions. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

1. The controller, derived from CSTR with bypass model design equations, 

was practically identical with that derived for the simpler CSTR 

model and therefore was independent of the kinetic model chosen. 

2. Bypassing a fraction of the inlet stream around the aerator caused 

deterioration in the controllers effectiveness in controlling 

effluent quality. 

3. Proportional control-flow rate Q was responsible for a large per­

centage of the controller's effectiveness. This percentage decreased 

from a CSTR to a plug flow mixing model. 

4. When 4th order polynomial forcing functions were employed, the more 

sophisticated derivative control did not substantially enhance the 

controller's effectiveness. 

5. Sludge storage was not required when the 4th order polynomials 

forcing functions were employed, or when proportional control on flow 

rate Q was used. 

6. The plug flow model did not receive high substrate loadings as 

efficiently as did the CSTR model, thus yielding higher effluent sub-

strate concentrations. 

7. It was difficult to obtain a representative kinetic or mixing model 

of a local plant as experimental data did not coincide with theoretical 

prediction. 
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Recomnendations 

The following are recomnendations for future research. 

1. Continue the computer simulations of the kinetic and mixing models 

but include more realistic settler dynamics, utilizing infonnation 

such as that recently given by Roper and Grady. 9 

2. Obtain considerably more experimental data of diurnal fluctuations 

of activated sludge process parameters in order to successfully 

find a realistic model for the process. 
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NOTATION 

a Activated sludge synthesis per removal of substrate 

for Echenfelder model, dimensionless, 

b Bacteria decay coefficient for the Lawrence & McCarty 

dF/dt 

dG/dt 

f(S) 

g(S) 

K' c 

-1 
model, hr 

Internal substrate utilization rate per unit volume, 

- 3 h _1 gm r , 

Internal activated sludge synthesis rate per unit volume, 

-3 -1 
gm hr , 

Internal substrate utilization kinetic mechanism 

Internal sludge growth kinetic mechanism 

Gain of PD controller, dimensionless 

3 3 - 1 
Gain of D controller, m (gm ) 

Half velocity coefficient in Lawrence & McCarty model, 

_3 
gm 
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K1 First order growth rate for Eckenfelder model, 

k Maximum rate of substrate utilization pe1; unit wght. of 

-1 
sludge hr 

ML VSS Mixed liquor volatile suspended solids 

p,. 
lJ 

Q 

s 

t 

v 

x 

Xo 

X' s 

y 

Transfer function from index i to index j 

3 -1 
Influent substrate flow rate, m hr 

3 -1 
Sludge recycle flow rate, m hr 

3 -1 
Sludge wasting flow rate, m hr 

-3 
Aerator substrate concentration, gm 

-3 
Influent substrate concentration, gm 

Effluent substrate concentration from Nth tank, gm - 3 

-3 
Effluent substrate concentration from bypass. model, gm 

Time, hr. 

Aerator volume, m 3 

-3 
Concentration of activated sludge in aerator, gm 

-3 
Influent concentration of sludge to aerator, gm 

-3 
Sludge concentration in recycle stream, gm 

Growth yield coefficient for Lawrence & McCarty model, 

dimensionless 
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Greek 

Underflow from settling tank as proportion of substrate 

influent flow, dimensionless 

y Percent of aerator inlet stream bypassed, dimensionless 

w Angular frequency of sinusoidal forcing functions, rad min -l 

T* Effective time constant of (P~4 /P34) expression for CSTR 

'T I 
D 

-1 
with bypass model, hr 

-1 
Derivative time constant of PD controller, hr 

-1 
Derivative time constant of D controller, hr 

Subscript 

ss Steady state value 

a Average value over one day 

Superscript 

Deviation from steady state value 
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