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PREFACE 

This treatise is one of three manuscripts submitted 

as a completion report for a research project entitled 

"Sediment Filtration Capacity of Grassed Areas." The 

long range objective of the project is to develop 

procedures for designing sediment filters which use 

grassed media. The research reported in this account 

involves the use of a rigid simulated media to eliminate 

the spatial variability inherrent in real grass, and 

hence to help elucidate the pertinent variables affecting 

the mechanics of flow and sediment movement in a grass 

type media. We do not feel that this is a serious 

limitation, because the optimum filtration action occurs 

in non-submerged grass channels where the blades are 

approximately rigid. The progress in understanding 

the filtering action has prompted research in which 

actual grass media is used. 
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ABSTRACT 

The movement of sediment in non-submerged flow 

through a rigid grass media was studied experimentally 

by simulating the media with cylindrical nails. Models 

of sediment movement were developed from probablistic 

reasoning and from the use of existing parameters 

describing total bed material in open channel flow. 

In the probability analysis, the percent sediment 

trapped was found to be a power function of the number 

of potential fall paths, Nf' a particle could make 

from the surface to the bed while traveling through 

the filter media. The percent trapped was also found 

to be an inverse power function of the Reynolds number 

ReT. The characteristic length used in the Reynolds 

number was a hydraulic radius calculated assuming 

rectangular open channel flow with a width equal to the 

spacing between elements and a depth equal to the depth 

of flow. This is defined as the spacing hydraulic 

radius, Rs. The percent trapped was finally related 

exponentially to a combined power function of Nf and ReT. 

Total bed material transport functions of Graf and 

Einstein were modified and evaluated as predictors of 

suspended and bed load. Bed shear was assumed to be 

equal to yRsS where y is the weight density of water 

and Sis channel slope. Both Graf's and Einstein's 
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parameters were found to be good predictors of suspended 

and bed load. 

Based on the results of the study, procedures are 

proposed for analyzing the trapping capability of sediment 

by grass filters. 

Descriptors: 

Identifiers: 

Sediment Transport*, Erosion Control*, 

Suspended Load, Bed Load, Turbulence, 

Grassed Waterways*, Sediment Yield, 

Trap Efficiency* 

Grass Filters, Turbulent Hydraulics 
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CHAPTER I 

INTRODUCTION 

Reason for the Study 

Erosion from construction sites is the cause of fifty per-

cent of the sediment pollution in this country (Robinson, 1971). 

One of the sediment control procedures recommended by The u.s. 

Environmental Protection Agency is the use of grass filters in 

the drainage ways from disturbed areas. The grass slows down 

the flow and thereby decreases the sediment carrying capacity. 

This causes the grassed media to serve as a filter for sediment. 

In order to determine the width, length, and slope of the 

grassed waterway serving as a filter, it is necessary to define 

the filtering action of the media as a function of sediment para-

meters, flow rate, and morphological parameters describing the 

grass media. The objectives of this research was to define the 

important parameters and propose the functional relationships. 

Previous Research 

Ree (1949) presented data showing that the velocity profile 
-

over a submerged grassway was nearly uniform over the lower 2/3 

of the depth of the grass in comparison with that of the remainder 

of the profile. Hence, it would appear that the turbulent shear 

was less within that portion of the grass than in the remainder of 
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the channel. Fenzl and Davis (1962) reported that the hydraulic 

resistance was primarily a function of the flow depth, velocity, 

stem diameter and stem density in partially submerged flow 

when using both simulated and actual vegetation (alfalfa and Ber­

muda grass). His regression analysis revealed that deflection 

did not significantly contribute to the overall resistance with 

these grasses. The point was made that in a denser grass the 

deflection probably would be significant. Kouwen (1970)' pre­

sented data showing that for submerged flow with low slopes the 

von Karman's turbulence coefficient tended to be lower than the 

commonly accepted value of 0.4 in most open channels (Graf, 1971). 

This would appear to predict that sediment would tend to settle 

from a shallow flow through a grassed area when it would remain 

in suspension over a conventional bottom. 

The above-mentioned reports did not involve sediment. Wilson 

(1967) in an empirical study on Bermuda grass found that maximum 

percentages of sand, silt and clay were trapped at about 300, 

1500 and 12,200 cm (10, 50 and 400 ft.). Criteria for selecting 

grasses for use in filters were given. A relationship between 

the physical parameters was not presented in Wilson's report. 
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CHAPTER II 

PROBABILITY ANALYSIS OF SUSPENDED LOAD 

Description of the Suspended Sediment Transport Process 

Suspended sediment is that material which moves randomly 

in the flow, maintained in suspension by the turbulence of the 

flow. In an alluvial bed channel this material will intermittently 

fall to the bed only to be picked up at some later time and injected 

into the flow due to turbulent lift and drag forces. The number 

of particles falling to the bottom per unit time increases with 

the fall velocity of the particles and the concentration of par­

ticles in the flow. The number leaving depends on bed shear and 

lift force as well as the rate of fluctuation of these forces. 

Under steady state conditions the suspended concentration of 

sediment is such that the number of particles hitting the surface 

equals the number leaving. If the concentration of sediment in 

the flow is larger than the steady state value, the number of par­

ticles hitting the surface exceeds those leaving and deposition 

occurs. Inversely, when the suspended concentration is less than 

the steady state value, erosion occurs. 

If the stream bed were an ideal absorber, i.e. held in place 

all those particles hitting it, eventually all of the particles 

in suspension would be removed. The distance required for removal 

would depend on particle size as well as turbulence of the flow. 
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As sediment laden water flows through a grassed area, the 

same mechanism of suspended sediment transport that applies to an 

alluvial channel should also apply. The structure of the turbu­

lence, however, will be different due to the presence of the 

grass blades retarding the flow. 

Approach to the Problem 

As the sediment water mixture initially flows through a 

grass filter, the roughness of the bed makes it approximate an 

ideal absorber. In this case, the probability of trapping can 

be analyzed by the probability of a particle reaching the bed as 

discussed in this chapter. After flow has occurred for some time, 

the bed around the grass blades becomes essentially an alluvial 

bed and no longer acts as an ideal absorber. This case is dis­

cussed in subsequent chapters. 

The hydraulics of sediment-laden shallow flow through a 

grassed channel is very difficult to describe theoretically. In 

many cases there is a constant rate of sediment deposition; re­

sulting in a continual change of the hydraulic variables. One 

must also consider the reaction of the flexible vegetation to 

flow. Another problem is the lack of available information on 

sediment movement in flows of this type. These problems are all 

compounded by the fact that the type or amount of vegetation is 

constantly changing from month to month. These problems require 

that the analysis be essentially empirical or dimensional. We 

decided to use dimensional analysis with physical reasoning to 

aid in selecting terms. 
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Model Development 

The physical parameters considered to be important in t;he 

development of a sediment trapping model were flow rate and 

depth, particle size {fall velocity), particle concentration, 

spacing of the media and the channel length. Simulated, rigid 

media was used to eliminate the variability due to biological 

effects and the effect of waving vegetation. It was felt that 

this would clarify the effects of the other physical variables. 

A sediment particle was assumed to be effectively trapped if it 

remained stationary or moved as bedload. It is felt that the de-

pressions among the stools and clumps of vegetation would serve 

as bedload traps in an actual grass situation. The effect of 

deposition as it affected the section volume available for trapping 

was neglected. A probabilistic approach based on turbulent diffusion 

was used in developing a model to describe the phenomena. A 

definition sketch of the physical situation is given in Figure 1. 

The fraction of sediment trapped, as well as the probability 

of being trapped, is given by the difference of incoming and out-

going sediment concentrations, Si - S
0 

divided by the incoming 

concentration, s .. Since a particle is more likely to be trapped 
i 

if it moves to the bed a large number of times, it was assumed 

that the probability of trapping is related to some power function 

of the potential number of times, Nf, that a particle could fall 

from the surface to the bottom as it traveled through the test 

section. Nf is referred to in this report as the particle fall 

number. A typical path of motion is given in Figure 2. It is 
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further assumed that the trapping probability is inversely re­

lated to a power function of some turbulence index (T) since the 

number of particles in suspension increases with increasing tur-

bulence. These assumptions can be summed up as follows: 

Function Trapped= I (la) 

(lb) 

and 

P [trapping] =<1> 2 ( ~ ) . (le) 

or 

s. - s 
[ Nf, ~ j (ld) ]. 0 

= <1>3 Si 

The number of times a particle will fall, Nf, is given by: 

N = f 
( 2) 

where Lis the section length, Vm is the settling velocity, Vs 

is the flow velocity and df is the flow depth. 

The RMS turbulent Reynolds number ReT, was taken as an 

indicator of the level of turbulence. ReT is given by, 

= /u-,2 ReT (3) 

where /[i"T is the RMS turbulent velocity, Le is a characteristic 

length, and vis the kinematic visosity. Based on research by 
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Tollner (1974), a reasonably good predictor of the RMS turbulent 

velocity in a simulated rigid media is given by, 

-,I U I z = 23 • 5 Vs ( V~Lc~0.68 (4) 

A plot of equation (4) along with the data from Tollner is given 

in Figure 3. The best representation for the characteristic length, 

L
0

, was found to be the spacing hydraulic radius, Rs' where Rs is 

defined as 

SS df (5) 
Rs= 2df + Ss 

where Ss is the spacing defined in Figure 4. Combining equations 

(1) to (5) yields, 

(LT V /V df) m s 

23.52 

1 
0.32 

Experimental investigations were conducted to determine the form 

(6) 

of $3 which best approximated equality of the fraction trapped and 

the parameters on the right of equation (6). 

Experimental Procedures 

Artificial rigid grass media of three different spacings 

were built by inserting Bd finish nails into the bottom of three 

210 cm x 13.5 cm x 10 cm plexiglass flumes with the arrangement 

shown in Figure 4. A schematic of the experimental equipment is 

given in Figure 5. 
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As mentioned earlier, it is possible to consider the bed 

of the grassed media as an ideal absorber. However, after sedi­

ment has been deposited the bed will become alluvial. In order 

to develop a conservate relationship, which could be used for 

both cases, we felt that it would be desirable to use experimen­

tal data from an alluvial bed between the nails rather than an 

absorbing bed. Any predictions of trapping efficiency made with 

the model would be conservative since any absorption in a real 

filter should yield a higher trapping efficiency than predicted. 

The length of test section was varied by moving the flume 

inlet. A bedload trap was located at the discharge end of the 

section. The bedload trap was composed of a section with an 

open bottom covered by standard window screen. The section was 

as wide as the flume and 12.70 cm long. From visual observation, 

the trap appeared to work well. 

Sediment mixtures of varying concentrations were prepared in 

the mixing tank and run through the test sections while varying 

slope, spacing, particle size, flow rate and section length. A 

thin layer of sediment particles of the size being filtered was 

bonded to the channel bottom to maintain a uniform grain roughness 

for each test. The experimental procedures are discussed in more 

detail by Tollner (1974). The independent variables in equation 

(6) and their ranges are as given in Table l. The dependent 

variable is the outflow sediment concentration. An experimental 

design of 68 runs was used with emphasis on obtaining an approximately 

uniform distribution of fraction trapped. The ranges of the hydraulic 

variables is shown in Table 2. 
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Variable 

Slope 

TABLE 1. EXPERIMENTAL VARIABLES 

Levels Range 

5 0.0091 - 0.242 

Spacing of blades 3 0.945 - 1.583 cm 

Particle size 3 0.027 - .47 mm 

Flow rate 5 90 - 1500 cm 3/sec 

Section length 3 100 - 210 cm 

3 0.03 - ~ sed 
.10 gm H20 Input sed. cone. 

TABLE 2. HYDRAULIC VARIABLES 

Variable Range 

Particle No., Nf 0.07 - 50.0 

Turbulent Reynolds , No., ReT 100 - 300 

Froude No., NFr 0.6 - 2.0 

Flow Depth 0.45 - 5.2 cm 

Velocity 15.0 - 60 cm/sec 

Glass beads1/ of the type used in pavement marking were used 

to simulate sediment particles. They were kept in suspension in 

a mixing tank by a reciprocating agitator. Grab samples of the 

inflow were taken near the beginning and end of each run in pre-

weighed pint jars. Outflow grab samples were taken in similar 

containers near the beginning, middle and end of each trial. The 

1/ Manufactured by Potters Industries Inc., P.O. Box 14, Carlstadt, 
N.J., 07072. 
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sediment concentrations were determined gravimetrically. Flow 

depth was obtained by taking a minimum of two depth measurements 

with micrometers situated in stilling wells along the channel. 

Uniform flow was established to within 0.05 cm with a slotted 

tailgate being used for depth control when necessary. The weight 

of solids and water flow from the flume was recorded continuously 

with the load cell-recorder combinations shown in Figure 5. Six 

replications of several tests each provided data showing that flow 

rate and depth measurement could be expected to have a three percent 

variation. 

A summary of the experimental data is contained in the appen-

dix. 

Flow Velocity and Settling Velocity Calculation 

The flow velocity was calculated from 

Qs 

Aw 
(7) 

where Aw is the width times depth minus the projected area of one 

row of nails. Qs' the average total mass flow rate, is given by; 

(2 + s. + s l Ow 
J. 0 

where Si and S
0 

are input a.nd output sediment concentrations 
cm3/ 

and QW is the pure water flow rate sec given by 

S
0

s is the output 

rate of change of 

Q = Q (1 - S ) W SW OS 

. gms sed . 
concentration gm (H20 + Sed) and Qsw is the 

weight per unit time in the weight tank. 

-15-
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It was observed that if the mean flow velocity Vs' the 

spacing hydraulic radius R, and channel slope S, were substituted -. . - s 
---------

into Manning's formula to determine the roughness coefficient 
--------- --- _, ______ --------------- -----

n, a constant value of n = 0.007 was obtained with a standard 

deviation of 0.0008 over all test conditions. Hence, for the 

test channels it was assumed that the velocity could be pre-

dieted by, 

l 2/3 S 1/2 
Vs = 0.007 Rs (10) 

The grain roughness on the channel appeared to have a negligible 

effect on the roughness coefficient. It should be pointed out 

here that only the nail configuration shown in Figure 4 was used. 

Manning's n would vary with the shape and arrangement of the 

filter media. 

It has been documented by several investigators that the 

mean settling velocity is affected by the particle concentration. 

The following relationships were derived from data presented by 

Nordin and Dempster (1963): 

vm = 7.31 exp [-10.5 (Si - S
0

)/2] (diam = 0.47 mm) (lla) 

= 0.347 exp [-30.0(Si S
0

)/2] (diam = 0.067 mm) (llb) 

= 0.067 exp [-39.S(S. - S
0
)/2l (diam= 0.020 mm) (llc) 

J. 

These were used because of the importance of the concentration 

variable. It might be noted that the first term of each equation 

represents the single particle fall velocity. The evaluation of 

the single particle fall velocity was discussed by Tollner (1974). 
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Experimental Observations 

Several qualitative observations were made as the test runs 

were executed. For the tests involving the larger beads on the 

flatter slopes the sediment formed a distinct profile which moved 

down the channel as the test progressed. At some point after a 

test was started the mixture would flow over the previously de­

posited sediment (which had submerged the nails) where the tractive 

force was sufficient to prevent further deposition until the flow 

reached the leading edge of the sediment profile. At this point 

the nails would then slow the flow to a point at which settling 

occurred. With the larger sediment on steeper slopes, the high 

trapped fraction was mostly due to the high rate .of bedload transport. 

The test on the smallest beads generally produced the lower 

trapped fractions (lower bedload rates). Some deposition was noted 

on the flatter slopes. The depth of deposited material appeared to 

decrease uniformally with distance from .the inlet, thereby increasing 

the slope. The medium-sized beads generally produced results 

lying between those for the largest and smallest particle size. 

A summary of the data is included in the appendix. 

Discussion of Model Assumptions 

The calculated particle number, Nf, had a range of 0.07 - 50.0. 

Based on a logarithmic regression the percent trapped could be 

expressed by 

% Trap= 44.1Nf 0• 29 (12) · 
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A plot of equation (12) along with the data is given in Figure 6. 

The correlation coefficient, r, was found to be equal to 0.88, 

with nearly all of the variation occurring in the range of 0.04 

<%Trap< 0.8. 

A similar analysis was carried out with the turbulent Reynold's 

Number, which varied from 100 - 300. The following relationships 

were obtained: 

% Trap = 4.1 x 10 2 (Re )-0.28 
T (d = 0.47 nun) (13a) 

r = 0.72 

% Trap = 1.1 x 10 6 (Re )-1.98 
T (d = 0.067 nun) (13b) 

r = 0.64 

% Trap = 6.0 x 10 5 (ReT)-2.07 (d = 0.022 nun) (13c) 

r = .49 

A plot of equation (13) along with the data is shown in Figure 7. 

This anslysis was performed for each particle size because 

flow conditions were varied with particle size in order to obtain 

an approximately uniform distribution of percent of sediment trapped. 

Equations (12) and {13) verify the assumptions that the fraction 

of sediment trapped is directly proportional to the particle number 

and inversely proportional to the turbulent Reynolds Number. 

Final Model 

Linear regression analysis with various transformations was 

used to determine if the fraction trapped could be related to some 

combination of the independent variables. The independent variables 

used were the turbulent Reyonlds number, ReT, and the particle fall 
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nwnber Nf. A model constraint was that (S. - S )/S. must be 
J. 0 J. 

bounded between zero and one. The relationship yielding the 

maximum correlation coefficient r, was selected to define the 

functional form of equation (6). 

Using an inverse transformation suggested by Davis (1962), 

the following functional form was found to effectively describe 

the data while being bounded by zero and one. 

s. - so 
-

1=-...;;.. = Exp { -A 
Si 

The values of the coefficients A, B, and C were determined 

from the experimental data by taking log transforms and-performing 

linear regression. The correlation coefficient was 0.87. All 

coefficients were found to be significantly different from zero by 

the student's t test. Substituting the coefficients A, B, and C 

determined from regression, equation (14) becomes 

s. -s 0v RY0.82 (v L J -0.92 
1 o = Exp {-1.05 x 10 3 ~ ~ } 
Si \/ Vsdf 

A plot of equation (15) along with the experimental data is given 

(14) 

(15) 

in Figure 8. Vs' Rs' and Vm can be calculated by applying equations 

(5), (10), and (11) respectively. 

Several attempts to obtain improved r values were made. r 

was increased by dividing the flow depth by the Cosine of the slope 

angle in equation (2). A form of the Froude nwnber for larger slopes 
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was also included in the turbulence index term of equation (6), 

A slight improvement in r was observed, however, it was con­

sidered insignificant. The addition of the Froude Number was 

rejected because the resulting model was much more complicated. 

The power model of the form suggested by equation (15) was 

by far the best form of the functional relationship. Additive 

and multiplicative forms gave r values of less than 0.1. Other 

variations on equation (15) which were considered included a 

variable kinematic viscosity with concentration as suggested by 

Happel and Brenner (1965) which reduced the r value by 4%. The 

use of equations relating the fall velocity to sediment concentra­

tion was found to be a definite improvement (5% increase in r) 

over using a non-adjusted fall velocity. The method of computing 

the flow velocity, Vs' was found to be superior to a method which 

did riot correct for the presence of the nails and also to a method 

which involved the average cross-sectional area of the channel as 

compared to the cross-sectional area within a row of nails. 

E~nstein (1968) observed that an exponential distribution 

best described the depth of deposition of sediment particles with 

length over a gravel bed. This would indicate that the decrease 

in concentration was also some exponential function in keeping with 

these results. 

Discussion of the Trapping Model 

The model as presented in equation (15) is bounded between 

zero and one and the component terms behave as one would expect. 
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As the variables of spacing, flow depth, or slope angle increase, 

the trapping percentage goes down. As length and settling velocity 

increase the trapped percentage increases which is as one would 

expect. 

It can be seen in Figure 8 that a reasonably good relation-

ship does exist between the fraction trapped and the independent 

variables for the data collected over the range shown in Table 1. 

It would be highly desirable to have more data that contained 

longer lengths and finer clay sized particles since clay is fre-

quently a major component of urban runoff. 

Data from Tollner (1974) were analyzed to see if the model 

adequately predicted the times when greater than 95% of the sedi-

ment would be trapped. The relationship appeared adequate for 

all 54 cases. Check data were also collected in the range of 
s. - S 

O < 
1 s. 0 

2 ·90% using the equipment described in this paper. 
i 

Since the model would probably be used in practive to predict the 

necessary combinations of dependent variable to have trapping 

of 95%+, it is felt that the accuracy has been adequately de-

monstrated for other than clay particles. 

More research is required to adequately apply the results of 

this model to an actual.design situation. The model needs to be 

modified to account for the effects of deposition. This would be 

very important in most practical situations where longer times 

would probably be involved. How to best represent a nonhomogeneous 
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soil and, the effect of a given flexible, biologically active 

vegetation, and the effects of frequent inundations is currently 

under consideration. The mode of sediment transport is also under 

consideration in an actual grass situation. 

Summary and Conclusions on Prcbabilistic M:ldel 

A model of the trapping of suspended sediment by a rigid 

grass media was developed. The fraction trapped was found to be 

dependent upon media spacing, flow depth and velocity, sediment 

concentration and particle size, and the section length. 

The exponential model shown in equation (15), along with 

equations (5), (10), and (11) substituted in, was found to provide 

an adequate relationship between the fraction trapped and the de­

pendent physical variables for short durations. Each term behaves 

as one would expect, and the range of the exponential is properly 

bounded. 
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CHAPTER III 

SUSPENDED LOAD ANALYSIS USING 
TOTAL BED MATERIAL FUNCTIONS 

Total Bed Material Functions 

Total bed material functions (TBMF) describe the bed and 

suspended load sediment transport capacity of an open channel with 

alluvial boundaries. Graf (1971, chapter 9) has an excellent 

summary of these functions, all of which are steady state. The 

majority of the TBMF define some dimensionless transport parameter 

as function of a dimensionless shear intensity. This shear in-

tensity involves a computation of the shear on the bed. In order 

to use the functions for a grass filter it is necessary to find 

a method of partitioning drag between the filter elements and 

the bed. In this report bed shear was calculated as discussed 

subsequently and then used in the TBMF. An evaluation was then made of 

how well the TBMF would predict suspended load and bed load. Sus­

pended load is discussed in this chapter and bed load in a subse-

quent chapter. 

Partitioning of Drag Between Media Elements and Bed 

In normal open channel flow, the component of the fluid weight 

parallel to the bed is resisted entirely by frictional drag on 

the bed. In flow through a grassed media, the weight component 

is resisted by drag on the grass blades as well as drag on the 

bed. As mentioned earlier, partitioning of the drag is necessary 

in order to use the TBMF for sediment transport in grass filters. 
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Two approaches were used to partition drag in this study. 

One approach was that of Li and Shen (1973). In this approach, 
1/ 

a drag coefficient-, CD, is used along with the mean velocity to 

calculate the drag or an individual filter element. By knowing 

the number of elements per unit area, m, and the total drag on 

an element, T, the drag on the bed can be calculated from 

L 
TB = T - T g (16) 

where 

T = yRS (17) 

and 
pvs 

2 

Tg = m~ -2- (18) 

The other approach to partitioning the drag was based on 

the assumption that the flow could be represented by a series of 

channels with a hydraulic radius equal to the spacing hydraulic 

radius. Under this assumption, the bed shear becomes 

(19) 

where,: is the bed shear calculated by the spacing hydraulic 

radius method. 

1/ 
- Taken from Figure 9, Li and Shen (1973). The flow conditions 

used closely approximate those of the test in this report. 
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No data are available on drag measurements to directly test 

the procedures. The only evaluation possible was to use the 

procedures in the TBMF and see how well the functional relation­

ships worked. A direct comparison between the two methods was 

possible, however, using the hydraulic data collected in the 

trapping studies described in Chapter II. This data is summarized 

in the appendix. The comparison is shown in Figure 9. Obviously, 

the two methods do not agree well, particularly at high shears. 

Evaluation of the Parameters of Graf and Einstein as Predictors 

of Suspended Load 

Graf's Method. Graf et al (1968) proposed a shear intensity 

and a transport function for TBMF in a closed conduit. Graf's 

shear intensity parameter wG' is 

(y s - y) d 
= WG 

(20) 

where ys is the weight density of the sediment, dis the average 

diameter of the sediment particle, and other terms as previously 

defined. The transport parameter proposed by Graf and modified 

for suspended load is 

~G So Vs Rs 
s .; 

(ys/y ·-l)gd3 

(21). 

where g is the accelaration of gravity and other terms as previously 

defined. 

A plot of these parameters based on the experimental data 

summarized in the Appendix is shown in Figures 10 and 11 for bed 

shear calculated from equations (16) and (19) respectively. There 
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appears to be little difference in the correlation between the 

two parameters when either equation (16) or (19) is used to 

calculate the bed shear. Since equation (19) is much the simpler 

of the two, it is the recommended procedure. The functional re-

lationship using equation (19) for bed shear is 

G -0.31 lj!G = 0.46 (cp 5 ) 

with an r value of 0.84. 

Einstein's Method 

(22) 

Bed Load parameters proposed by Einstein (1942) were also 

evaluated as predictors of suspended load. The shear intensity 

parameter is the same as that of Graf, or 

ip =lj! = E G 
(23) 

Einstein's transport parameter as modified for suspended load 

is 

(24) 

E A plot of <Ps versus lj!E is shown in Figure 12 using bed shear 

as calculated from hydraulic radius in equation (19). The 

functional relationship is 

1jJ = 0.73 (<j>~) -o. 49 (25) 

with a correlation coefficient of 0.80. This is slightly below 

that of equation (21) for the Graf et al parameters. 
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A latter procedure proposed by Einstein (1950) for TBMF was 

not evaluated since it was not possible to determine some of the 

input parameters. 
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Summary and Conclusions on Total Bed Material Functions as Pre­

dictors of Suspended Load in Rigid Grass Media. 

The total bed material functions parameters of Einstein 

(1942) and Graf et al (1968) utilizing shear intensity as an 

independent parameter were evaluated as predictors of steady 

state suspended sediment transport grass filters. Shear on 

the channel bottom was predicted both by a method proposed by 

Li and Shen (1973) and by a method using the spacing hydraulic 

radius. Both the Graf et al parameters and the Einstein parameter 

were good predictors of suspended sediment transport. The Graf 

et al parameters were slightly superior to those of Einstein. 

The correlation coefficient between the Graf et al parameters 

was approximately the same for both methods of predicting bottom 

shear. Since the method based on the hydraulic radius is the 

much simpler relationship, it is the recommended one. 
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CHAPTER IV 

ANALYSIS OF BED LOAD 

Method of Analysis 

Bed load transport rate per unit width of stream, qB, was 

measured for each of the tests sununarized in the Appendix by 

dividing the total material trapped in the bed load trap by the 

total time of each test and the width of the channel. This data 

along with the hydraulic data for each test was used to evaluate 

the parameters of Graf et al (1968) and Einstein (1942) as pre-

dictors of bed load in a rigid grass media. 

Analysis of Graf's Parameters 

The shear intensity parameter is the same as that given by 

equation (20). The transport parameter as modified for bed load 

is 

G qB W Vs Ri.,,/' <PB= y Q (ys - y) gd 3 

s w y 
(25) 

where qB is the bed load sediment transport rate per unit width 

of channel and other terms as previously defined. 

Using the data sununarized in the Appendix, a relationship 

between <P~ and~ was determined by regression to be 

(26) 

with an r value of 0.77. A plot of the experimental data along 

with equation (26) is shown in Figure 13. 
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Analysis of Einstein's Parameters 

As in the Graf et al parameters, Einstein's shear intensity 

parameter is the same as for suspended load 

The transport parameter,$: for bed load is 

/ I (y s ~ y) gd3 

given in equation (20). 

(27) 

Using the data in The Appendix, the relationship between wand 

$E was determined by regression to be 
B $: = 1.56 w-1.355 <28> 

with an r value of 0.57. A plot of the experimental data along 

with equation (28) is shown in Figure 14. 

Summary and Conclusion on Use of Bed Load Function for Predicting 

Bed Load in Rigid Grass Filters. 

The total bed material function parameters of Graf et al 

and Einstein were evaluated as predictors of bed load transport 

in rigid grass filters when using the hydraulic radius technique 

equation (19) to predict shear on the bed. Both functions were 

reasonably good predictors of bed load. The parameters of Graf 

et al were clearly superior based on regression coefficients. 
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CHAPTER V 

RECOMMENDATIONS AND CONCLUSIONS 

The movement of sediment in non-submerged flow through a 

rigid grass media was studied experimentally by simulating the 

media with cylindrical nails. Analytical models of sediment 

movement were developed from probablistic reasoning and from 

the use of existing parameters describing total bed material 

transport in open channel flow. In both cases, functional relation-

ships were developed between dimensionless parameters from experi-

mental data. 

Based on the results of the study reported herein, the pro-

cedures which follow are tentatively recommended for analyzing 

the trapping capability of sediment by grass filters in non-

submerged flow when the flow rate and incoming sediment concen-

tration are known: 

1. Determine a characteristic spacing for the grass media. 

2. Using the characteristic spacing and equations (5) and 
(10), calculate the flow depth df and flow velocity Vs. 

3. Knowing the mean particle size, calculate the mean fall 
velocity. 

4. During initial stages of flow, assume that the stools 
and bed roughness act as an effective bed load trap so 
that equation (15) can be used to predict the fraction 
trapped. 

5. After sufficient deposition has occurred so that bed 
load transport has begun, the sediment transport capa­
bility of the grass filter can be analyzed from either 
equations (22) and (26) or equations (24) and (28). 
The fraction trapped would be the difference between 
incoming sediment load and the transport capability. 
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It should be pointed out that these procedures have only 

limited laboratory evaluation and no field evaluation. They 

should be used only as first order estimates. Further research 

is needed on the following questions to further enhance the 

results reported in· this account: 

1. How well can a given grass survive inundation? 

2. What effect does the flexibility of real grass have 
on flow through the media? 

3. At what point does the grass stop serving as an effective 
bed load trap? 

4. How well does the assumption of a constant Manning's 
or in equation (10) represent a real grass? 

5. How well does equation (19) predict bed shear? 
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Regression coefficients 

Cross sectional flow area 

Flow depth 

Characteristic length 

Section length 

Manning's roughness 

Number of times a particle 
will fall to the bottom 

Sediment flow rate 

Total flow rate 

Water flow rate 

Correlation coefficient 

Turbulent Reynolds Number 

Spacing hydraulic radius 

Slope 

Input sediment cone. g:s ~e~ 
2 

Outflow sediment cone. gms sed 
gm H20 

Output sediment cone. 
gms sed 

[gm(H20 + Sed)] 

Section spacing 

General turbulence index 

RMS turbulent velocity 

Settling velocity 

Kinematic viscosity 

Weight density of water and 
sediment respectively 

Width of channel 

Mean flow velocity 



m 

L R 
TB' TB 

Tg 

y 

R 

d 
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Draq coefficient on an 
individual filter element 

Number of filter elements per 
unit area 

Total drag on bed and filter 
elements 

Drag on the bed calculated by 
Li and Shen method and by 
spacing hydraulic radius method 

Drag on the filter elements 

Weight density of water 

Hydraulic radius 

Diameter of sediment particle 

Shear intensity function of 
Graf and Einstein respectively 

Transport function of Graf 
and Einstein respectively 
for suspended load 

Bed load sediment transport 
per unit width of channel 

Transport function of Graf 
and Einstein respectively 
for bed load 
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I .... 
..... 
I 

'..'ABLE A-1 

DATA SUMHARY 
Flow Nail Sed. 

Test Velocitv DCJ)th Spacinq Slope Lenqth Size 
nl/scc an an cm 

l 39.01 2.21 1. 583 0.143 210.0 0.045 
2 42.GQ 2.17 0.143 140.0 
3 43.70 2.13 0.143 100.0 
4 20. 92 4.06 0.039 
5 36.53 2a52 0.090 
6 40.82 2.10 0.143 
7 43.00 1. 92 0.192 
8 45.89 1.86 1.583 0.245 100.0 
9 27.23 3.75 0.945 0.143 210.0 

10 17.48 5. 92 0.945 0.039 210.0 
11 32.73 2.67 1.263 0.143 100.0 
12 35.70 2.23 1.583 
13 23.17 0.46 
14 25.54 1. 00 
15 38.26 1.33 
lG 40.22 2.28 
17 70.47 1.37 
l~ 39. 36 2.35 
19 39.00 2.31 
20 44. 92 2.04 1. 583 0.143 ·100. 0 
21 23.82 1. 76 1. 263 0.090 140.0 
22 13.20 2.65 1. 263. 0.039 210.0 
23 28.55 2.50 1. 583 0.143 100.0 
24 17.07 1. 81 0.945 0.039 210.0 
25 12.70 5.93 0.945 0.039 210.0 0.045 

*l - deposition did not alter the channel slope. 
0 - deposition altered the channel slope. 

Fall Input 
Velocitv Cone. 
;a1ml"sec 
7. 31 .,.0601 

.0630 

.0699 

.0626 

.0844 

.0711 

.0431 

.0546 

.0617 

.0061 

.0683 

.0716 

.0747 
• 0871 
.0466 
. 0597 
.0652 
.OG31 
.0701 
,1427 
.1202 
.0398 
.177 
.1623 

7. 31 .214 

Output Bed 
Cone. Load Profile* 

:s/sec.cm 
0.0066 11.527 

.0051 1.938 

.0065 1.810 

.0052 1.402 

.00006 ---

.0073 1. 387 

.0089 1.494 

.0108 1.401 
--- ---

.0015 1.402 

.0021 1.857 

.0062 1. 752 

.00010 0.501 

.0062 0.811 

.0049 1.248 

.0087 1.627 

.0143 2.100 

.OOS4 1. 1oa 

.Oll5 1.468 

.0208 3.417 

.0042 1.059 

.0001 0.034 

.0336 4.555 

.00007 ---

.0004 0.007 

1 
1 
l 
0 
0 
l 
l 
l 
0 
0 
l 
1 
1 
1 
1 
1 
1 
1 
l 
0 
0 
0 
0 
0 
0 

*l=no profile 
present 

O=profile pre­
sent 
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Test 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
3G 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

Velocitv 
60.03 
23.41 
27.38 
27.63 
27.40 
31. 92 
26.83 
15.28 
35.!:>'4 
42.67 
31. 75 
27.80 
27.26 
13. 22 
27.97 
27.23 
21. 83 
27.94 
31. 80 
20.14 
29.63 
12.74 

• 

Flow 
Depth Spacing 
1.38 l. 583 
l. 98 1. 263 
1.71 
l. 71 
l. 71 
1.49 
l. 79 
2,79 
1. 32 
l. 07 
l. 26 1. 263 
l. 76 1. 583 
2.50 1. 263 
3.82 0.945 
1. 77 0.945 
l. 05 l.263 
0.42 

. 2. 99 
4.14 
4.37 
3 .11 1. 263 
2.80 0.945 

TABLE A-1 (CONT'D) 

Sed. :Fall Input Output Bed 
Slope Length Size V,:,locitv Cone. Cone. Load Profile 
.246 100 0.02 3.0 · .0270 .0192 0.240 1 
.070 140 .0295 .-0139 0.277 1 
.090 100 • 0577 .0367 0.562 1 
.030 140 .0575 .0374 0.472 1 
.090 210 .0583 .0357 0.442 1 
.143 140 .0553 .0393 0.382 1 
.090 .0563 .0365 · 0.457 0 
.039 .0578 .0215 0.480 0 
.192 .0544 .0390 0.412 1 
.246 .0516 .0398 0.390 l 
.090 .0506 .0366 0.345 l 
.090 140 • 0571 .0380 0.465 1 
.039 210 .0589 .0337 0.600 0 
.090 210 .0666 .0075 0.240 0 

.0602 .0405 0.480 1 

.0577 .0352 0.382 1 

.0599 .0166 0.292 1 

.0594 .0418 0.645 l 

.0590 .0408 0.825 l 

.06~3 .0420 0.495 1 
.090 140 .0852 .0735 0.975 0 
.039 210 0.02 3.0 .0914 .0123 0. 277 0 
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Test 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
61 
65 
G6 
67 
63 

Velocitv 
45.90 
14.04 
14.05 
17.63 
14.37 
13.57 
12.57 
13 .10 
13. 79 
23.22 
20.33 
12.81 
27.91 
28.91 
19.45 
17. 71 
13. 22 
13. 32 
11. 51 
19.92 
25.06 

Flow 
Depth Spacina 
2.13 1. 503 
2.50 0.945 
2.44 0.945 
3.18 1.263 
2.30 0.945 
2.51 
2.42 
2.57 
2.43 
1. 31 
1. 61 
2.52 
1.22 
1. 09 0.945 
1. 62 1. 583 
1. 83 1. 263 
2.53 0.945 
4.21 
1.04 
4.73 
5. 72 0.945 

' 

Tl\BLE A-1 (CONT'D) 

Sed. Fall Input Output Bed 
Slope Lencrth S

0

i.ze Velocity Cone. Cone. Load Profile 
-- .143 100 0.0027 0 .-067 .0285 .0246 .097 1 

.039 210 .0203 .0196 .092 0 
210 .0560 .0280 .160 0 
140 . .OJ60 .0300 .159 1 
210 .0570 .0400 .265 0 
210 .0530 .0390 .225 0 
100 .0530 .0440 .229 0 
110 .0520 .0410 .224 0 

.039 210 .0530 .0400 .234 0 

.143 .0540 .0490 .214 1 

.090 .o.-ir.o .0430 .207 1 

.039 .0470 .0340 .229 1 

.192 .0400 - . 0440 .134 1 

.246 .0430 .0420 .195 1 
.• 039 • 059 0 .0520 .179 0 

.0570 .0420 .190 0 

.0490 .0330 .199 0 

.0440 .0310 .213 0 

.0470 .0260 .113 0 
.090 .0560 .0440 .252 0 
.090 210 0.0027 0.067 .0~90 .0470 .276 1 



I 
ln 
a 
I 

Test 
69 
70 
71 
72 
73 
74 
75 
76 
77 
73 
79 
80 
81 
82 
83 
8 4 
85 
8G 
07 
83 

I Flm,· 
Velocitv, Denth 

12.5 2.31 
13. :J 2.44 
12.6 2.36 
19.2 1. 52 
23.l 1. 21 
26.9 1.05 
29.5 1. 00 
13.3 1. 44 
16.0 1. 65 
13. 4 3.27 
12.9 3.34 
13.1 3.2B 
11. 7 3.38 
23.6 1. 83 
20.8 2.13 
27.1 1. 51 
30.4 I 1. 46 
12.0 i 2.39 
10.2 I 0.95 
15.8 5. 96 

v 

Spacinq Slope 
0.945 0.039 

0.039 
0.039 
0.090 
0.143 
0.192 

0.945 0.246 
1. 583 0.039 
1. 263 
0.945 

0.039 
0.143 
0.090 
0.192 

·O. 2 4 6 
,0.039 
0.039 

0.945 0.039 

TADLE A-1 (CONT'D) 

Sed. Fall Input Output Ded 
Length Size Velocity Cone. Cone. Lead Profile 

210 0.0027 0.067 .1017 .0749 0.300 0 
140 .. .1053 • 0792 0.315 0 
100 .1007 .087:! 0. 316 0 
210 .1017 .0890 0.277 1 

.1009 . 0 890 0.301 1 

.0973 .0372 0.292 1 

.0914 .OB24 0.281 1 
• 09 33 .0776 0.254 0 
.1119 .0990 0.304 1 
.0860 .0650 0.315 0 

210 .0955 .OG50 0.322 0 
100 • 0997 . 0720 0.359 0 
210 • 09G8 .0706 0.35b 0 

.0990 .0350 0.366 1 

. 0920 .0810 0 .272 1 

. 0970 .0830 0. 340 1 

.0973 . 0336 0. 34 9 0 
• 0969 .OG71 0.253 1 
.0950 .0395 0.124 0 

210 0. 0027 0.067 .1040 .0870 0.395 1 
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