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Preface 

This report is the technical completion report for a research 

project entitled "Optimal Sizing of Water Supply Reservoirs Under 

Alternative Demand and Management Strategies". The project was 

supported in part by funds provided by the United States Department 

of Interior to the University of Kentucky Water Resources Institute 

as authorized by the Water Resources Act of 1964, Public Law 88-379, 

and the Office of Water Research and Technology Project A-052-KY. 

Partial funding was also provided by the Kentucky Agricultural 

Experiment Station as a contribution to Southern Regional Research 

Project S-53 "Factors Affecting Water Yields from Small Watersheds 

and Shallow Ground Aquifers". 
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ABSTRACT 

HYDROLOGIC AND ECONOMIC MODELS 

IN RESERVOIR DESIGN 

Recent studies indicated the need for development of surface water 

supplies in Kentucky. Rising resource costs make economically efficient 

reservoir designs increasingly important. This study was undertaken to 

provide methods in water supply reservoir design that increase system 

benefits. 

Two major factors influencing reservoir design were studied: 

estimated future streamflow into the reservoir and demands placed on the 

reservoir. Standard reservoir sizing methods rely on historical stream

flow data. This data is frequently limited and uncertainty in required 

storage estimates may result. To assess the reliability of a design, 

the use of mathematical models in simulation studies was proposed. 

Existing stochastic and parametric models of streamflow were reviewed 

and their limitations discussed. Parameters for the stochastic models 

must be estimated from historical streamflow data, and limited data 

produces unreliable estimates of the true values for these parameters. 

A streamflow record extended by a parametric model through simulation 
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may provide more reliable estimates of the parameters in the stochastic 

streamflow model than the short historical record. A methodology was 

presented to evaluate the ability of a parametric model to improve the 

stochastic model parameter estimates in this manner. It was found that 

the parameter estimates of a stochastic model might be significantly 

improved by this process. A long historical record of rainfall may not 

be available to provide the necessary inputs to a parametric model. One 

method for providing these inputs is to model the daily rainfall process 

at the potential site. A modified Markov Chain model was proposed which 

used continuous distributions, rather than discrete transition probabi

lities, to represent the process when rainfall actually occurred. A 

two-parameter gannna distribution fit the Kentucky data. The model 

provided a good representation of the daily point rainfall process. 15-

20 years of historical daily rainfall data were required to produce 

stable estimates of model parameters. 

The role of the demand function in reservoir design was examined. 

Projected demand is connnonly assumed not to depend on the concurrent 

water rates. Data on rural residential water demand in Kentucky has 

indicated that a price-demand relationship does exist for this sector. 

The second part of the study was undertaken to see if benefits to a 

hypothetical connnunity from water supply could be increased by utilizing 

price-demand information in reservoir design studies. Three pricing 

policies were examined and their effect on reservoir design determined. 

The first policy assumed no price-demand relationship, and demand was 
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based on existing community usage with a low water rate. A price-demand 

relationship was assumed in the second policy, and the water rate was 

constant. The third policy assumed the price-demand relationship, and 

the price charged for water during each billing period was a non-linear 

function which increased as the amount of water in storage at the 

beginning of the period decreased. 

It was found that the use of the conservation pricing policies 

substantially reduced storage requirements while providing increased, 

demonstrable net benefits to the community. The conservation pricing 

policies substantially lowered the average price paid for water. The 

effect of uncertainty in consumer response to changes in price was 

studied by using a probabilitistic price-demand relationship. This 

uncertainty did not significantly reduce the effectiveness of the con

servation policy. It was concluded that demand management by the use of 

a proper pricing policy could significantly increase water supply bene

fits to a community. 

Descriptors: Pricing*, Water Rates, Water Demand*, Reservoir Storage 
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CHAPTER I 

INTRODUCTION 

Recent investigations revealed that in many areas of Kentucky there 

exists, or will exist in the near future, a need for the development of 

water supply sources. For most areas it was felt that these needs could 

best be met by the impoundment of streamflow. According to Beattie and 

Haan (1973), 

A recent report of the Kentucky Division of Water 
(1971) indicates that there are 37 municipalities in 
Kentucky with existing or projected water supply problems. 
A water supply problem exists at 28 of the municipalities 
at the present time. The U.S. Department of Agriculture 
(1970) states that individual water supplies are inade
quate for present and future domestic water needs and 
require project action in 315 rural Kentucky communities. 
In addition, water supplies are inadequate for present and 
future needs in 169 Kentucky towns, villages, and communi
ties. The U.S. Department of Agriculture (1970) further 
states that the majority of the needs can be met through 
project action by impoundment of surface runoff. 

The two sources of public water are surface supplies 
and groundwater supplies. Groundwater supplies amount to 
only 14 per cent of the total water use in Kentucky ex
cluding hydropower and fuel-electric production (Kentucky 
Department of Natural Resources, 1965). The importance of 
groundwater supplies in proportion to surface water supplies 
is decreasing as more communities develop water supply 
systems. A report by the Kentucky Department of Natural 
Resources (1965) shows that in the period 1953 to 1965 the 
number of surface water systems increased by 39 while the 
number of groundwater systems decreased by 2. 
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If these Kentucky water requirements are to be met, considerable 

investment in water supply systems will be required. In 1965, L. R. 

Howson (1965) indicated, "It now costs almost ten times as much to build 

facilities to supply water to 1000 people as it did 50 years ago, but 

the volume of water required has scarcely doubled." The high level of 

investment required to provide water supply dictates that the components 

of the system be defined as precisely as possible in order that economic 

(and extra-economic) efficiency be maximized. 

The development of the water supply source (reservoir) represents a 

major expenditure in the system. The net benefits derived. from the 

reservoir will be a function of many factors including the seasonal flow 

into the reservoir (hydrologic factors) and the seasonal demand re

quirements on the reservoir (social and economic factors). In this 

study the demand function of interest is the rural residential water 

demand. 

In order to assess the probable net benefits obtainable from the 

construction and/or (in the case of an existing reservoir) operation of 

a proposed reservoir, it is necessary that future inflows and demands on 

the reservoir be estimated as reliably as possible. This entails a 

maximum utilization of all information pertaining to those factors in

fluencing inflows and demands. Primary information on inflow factors 

would include historical data of streamflow, rainfall, evaporation, and 

land-use changes, for instance. Primary information on residential 

demand factors could consist of historical data on water use as a 
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function of household type, price, pressures maintained, season of the 

year, economic and population growth, etc. 

One method which has been used to determine the required capacity 

of a water supply reservoir using the historical information has been to 

require a storage capacity which would have supplied the projected 

demands throughout the period of historical streamflow record. Pro

jected demands are based on prevalent and anticipated growth in demand 

in the various sectors of the community. A standard procedure for 

projecting demand is to estimate population growth over the design life 

of the project and then multiply this figure by an assumed per capita 

demand rate. Designs based on this type of analysis may be satisfactory 

in the sense that demands for water may be met; however, the method has 

limitations. 

A primary difficulty which may be encountered with this method 

results from the reliance on the historical streamflow record for the 

determination of the required storage capacity. Often there may be 

little, if any, historical streamflow data at the potential site. Data 

from nearby streams may be used to approximate the streamflow at the 

site; however, except for a few major streams in Kentucky, historical 

streamflow records are usually less than twenty years in length. The 

design life of a proposed reservoir may be 40, 50, or often 100 years. 

An estimate of the storage capacity needed to meet the demands during 

the design life must thus be made from streamflow data which may poorly 

approximate the true streamflow and which represents a time interval 
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which may be only a small fraction of the design period. A very un

certain estimate of required capacity may result. If the uncertainty as 

to the true storage requirement results in overdevelopment of supply, 

then costly premature investment will occur. If the estimated storage 

requirement is too small, then estimated project net benefits will be 

inflated. Methods which extend or improve the reliability of short 

historic streamflow records and provide better estimates of required 

storage will thus produce more economically efficient designs. 

This design procedure might also be improved by a more critical 

analysis of the projected demands. An examination of the present method 

reveals the implicit assumption that the future demands will not depend 

on the concurrent water rates. If the demand for water is related to 

the price charged, then this relationship should play an important part 

in assessing water requirements and determining storage needs and 

project benefits. 

A limitation of all methods which utilize only the historical 

record to evaluate a reservoir design is that no assessment of the risks 

involved is available (Fiering and Jackson, 1971). If storage is 

designed to meet demands throughout the design life, it would be desir

able to know the likelihood that the reservoir would run dry during this 

period. The stochastic nature of streamflow implies that the sequence 

of benefits and receipts from the project during the design life will 

also be stochastic, and a knowledge of the probability distributions of 

these quantities would be desirable for project evaluation. 
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In the following chapters methods for reducing these difficulties 

and limitations and improving present methods of water supply reservoir 

design based on economic efficiency will be presented. 
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CHAPTER II 

OBJECTIVES AND SCOPE 

The objective of this study was to develop methods for water supply 

reservoir design and operation that increase the net benefits of the 

system to the community. It was assumed that the water supply system is 

publicly owned. 

The two major components of a water supply reservoir system are the 

streamflow into the reservoir and the demands (outflow) placed on the 

reservoir. The estimation of the required storage for a proposed water 

supply system depends strongly upon the estimated streamflow into the 

reservoir during the design life. Reliable streamflow estimates will 

reduce the risk of wasteful investment in water supply. Except possibly 

for a few extremely large watersheds, the length of most historical 

streamflow records in Kentucky is quite short. Mathematical models of 

streamflow might be used to improve the reliability of streamflow 

estimates based on these short records. These models can be used in 

simulation studies in order to examine the reliability of proposed 

systems. The first part of this study examined currently available 

streamflow models and determined their suitability for use in water 
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supply reservoir simulation studies. New methods and models were 

developed as necessary in order to obtain the most reliable streamflow 

data. The second part of the study concerned the demand factor in 

system design. The role of price in water demand was examined. Price

demand information obtained by Grunewald et al. (1975) for rural re

sidential water demand in Kentucky was used in order to evaluate the 

economic consequences of various water pricing policies in system 

design. In particular, simulation studies were performed to determine 

if the net benefits of a water supply reservoir could be increased 

through the use of a conservation water pricing policy designed to 

promote maximum utilization of the reservoir capacity. 
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CHAPTER III 

REVIEW OF LITERATURE 

HYDROLOGIC CONSIDERATIONS 

The water supply planner must insure that reliable quantities of 

water are supplied by a reservoir during its design life in an econo

mical manner. To this end the pattern of inflows (evaporation and 

seepage losses from the reservoir are considered negative inflows) to 

the reservoir must be known. The large number of variables affecting 

future reservoir inflows precludes, at this time, exact attainment of 

this knowledge for any significant future time intervals. Hence the 

planner must rely on knowledge of the future inflow pattern in some 

probabilistic sense. The assumption must be made that probabilistically 

the future inflows will behave as past flows within a range of pre

dictable changes (e.g. effects of reservoir, watershed development, 

etc.) . 

One of the first steps in reservoir planning is an examination of 

relevant historical watershed data. The major component of inflow to 

the reservoir will be streamflow. For the sizing and operation of a 
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water supply reservoir, reliable information on monthly streamflow is 

generally considered adequate. Historical streamflow records on a 

watershed are generally shorter than the design life of the reservoir 

and the probability that the historical streamflows will be reproduced 

during the design life is extremely small. Therefore, sole reliance on 

these records in design and operation studies will yield only one point 

from an infinite spectrum of possibilities. It is now generally ac

cepted that reservoir studies must recognize the probabilistic aspects 

of future streamflow estimates. Historical developments of this idea 

are given in Fiering (1967). Mathematical models of streamflow must be 

used to examine the broader range of possible streamflow sequences that 

may occur during the life of the reservoir. 

Two broad classes of models which are presently available for this 

examination are the lumped parameter models and the stochastic models. 

Stochastic Models of Streamflow 

Stochastic models of streamflow attempt to model streamflow be

havior by preserving stochastic characteristics of historical stream

flow. A good discussion of stochastic models and their use in water 

planning is given by Jackson (1975a). A number of models have been 

formulated. Rather complex synthetic flow generators have been proposed 

by Mandelbrot and Wallis (1969) and Mandelbrot (1971) to account for 

long-term, low frequency dependencies (the so-called Hurst phenomenon) 
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of streamflows. The Broken Line Process suggested by Rodriguez-Iturbe, 

et al. (1972), Mejia, et al. (1972), Garcia, et al. (1972), and Mejia, 

et al. (1974) is also capable of generating synthetic streamflow data 

with long-term dependence. ARIMA (autoregressive integrated moving 

average) models described by Box and Jenkins (1970) are recommended by 

McKerchar and Delleur (1974) as being economical in terms of number of 

parameters required for cases in which long term dependencies are not 

important. Markov models are perhaps the simplest type of streamflow 

models which have been studied. Thomas and Fiering (1962) proposed the 

first such model for streamflow behavior. For normally distributed 

annual flows their first-order Markov model has the form 

Qi+l = µ + P (Qi - µ) + cr (1 - p2)1/2 ti 

where Q. is the annual flow in year i; µ, cr, pare the estimates of the 
i 

annual mean, standard deviation, and first-order serial correlation 

coefficient, respectively; and ti is an independent random variable with 

a standard normal distribution, The model can be used to generate 

traces of annual streamflow values which preserve the values ofµ, cr, 

and p, The model can be modified to produce monthly flows, flows with 

dependence greater than first-order, and flows with non-normal distri-

butions. Markov-mixture models have been proposed by Jackson (1975b) to 

generate synthetic streamflow records with long and severe droughts for 

use in water supply studies. 

Thus a wide variety of stochastic models are available from which 

to choose. A model should be selected only if it contributes to the 
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decision making process. A model which accurately reproduces low flows 

but is unreliable for high flows is not going to make a useful contri

bution to flood studies. Enough streamflow information should be 

available so that the model parameter estimates will be stable. If a 

number of models contribute substantially the same information, then the 

model should be selected which is most economical in terms of number of 

parameters, computation costs, and ease of parameter adjustment for 

sensitivity analyses. 

Parametric Models of Streamflow 

The lumped parameter models attempt to model the outputs (stream

flow) from a watershed by performing deterministic operations on the 

inputs (rainfall, evapotranspiration, etc.) to the watershed. The 

operations on the inputs are controlled by parameters. The optimum 

values for these parameters for a given watershed are determined 

(usually) by adjusting the parameter values until the model outputs 

agree in some sense with the measured values for a period of historical 

record. Once these optimum parameter values have been determined, the 

model can be used to predict streamflow from any given set of watershed 

inputs. 

Many parametric models have been developed. Probably the most 

comprehensive and well known model of this type is the Stanford Water

shed Model IV developed by Crawford and Linsley (1966), The model uses 
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climatological data and watershed characteristics as inputs. A variety 

of outputs may be selected including soil moisture conditions, monthly 

interflow and actual evapotranspiration, complete hydrographs for all 

storms that produced flows greater than some preselected base flow, and 

mean daily flows for designated flowpoints on the watershed. Another 

example of a comprehensive parametric watershed model is the USDAHL-70 

Model of Watershed Hydrology proposed by the Agricultural Research 

Service (Holtan and Lopez, 1971). These models are capable of providing 

a great deal of information; however, as noted by Tennessee Valley 

Authority (1972) researchers, "One significant drawback that most of the 

present watershed models have in common is that they rival the real 

.hydrologic system in complexity .•.•••• the number of parameters to be 

estimated is large and data management so involved that adjusting the 

model to data is a time-consuming and expensive procedure." Fortunate

ly, less detailed models can be used for water supply studies. Two such 

models which have been developed in the Kentucky-Tennessee area are the 

Continuous Daily Streamflow Model proposed by the Tennessee Valley 

Authority (1972) and a water yield model developed by Haan (1972b) for 

small watersheds. 

Inputs required by the TVA model are daily rainfall and monthly 

estimates of evapotranspiration. Five parameters must be optimized in 

the model. These are a volumetric parameter used to preserve mass 

balance of runoff, two surface runoff parameters associated with winter 

and summer storms, a parameter representing water stored in the 
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groundwater reservoir, and a parameter representing the fraction of 

surface runoff on the i'th day which results from rainfall on day i. 

Five additional parameters may be optimized at the user's option. The 

model is relatively insensitive to these parameters, however, and the 

model developers recommend that general estimates of the optimal values 

will suffice. These parameters represent a surface runoff recession 

constant, a threshold constant used in allocating groundwater for 

routing, soil B horizon permeability, an interflow or winter recession 

constant, and a summer groundwater routing constant. Six additional 

constants must be supplied to the model. These are drainage area, 

winter and summer interception capacity, moisture capacity in the soil A 

horizon, a groundwater reservoir allocation constant, and the day of the 

year for the beginning of each of the four seasons. Outputs from the 

model include daily streamflow, storm precipitation excess, and sediment 

transport. 

Inputs to the Haan model are daily rainfall and estimated average 

monthly potential evapotranspiration. The model has four parameters 

that must be optimized. These are maximum infiltration rate, maximum 

daily seepage rate, moisture holding capacity of less readily available 

groundwater storage, and fraction of seepage that becomes runoff. (As 

noted by Haan (1972b), nominal designations of parameters in lumped 

parameter models should not be interpreted too literally.) The Haan 

model simulates monthly runoff from small watersheds. 
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Both models require at least one year of observed streamflows (TVA 

model-daily flows, Haan model-monthly flows) for parameter optimization 

and 3 to 5 years of observed flows would be recommended. 

ECONOMIC CONSIDERATIONS 

In order to perform a reservoir evaluation, a water supply planner 

must not only obtain information concerning possible future inflows, he 

(or she) must also obtain information concerning the pattern of future 

outflows (demands) from the reservoir. The demand and supply functions 

play equal roles in determining the system behavior. The outflow from a 

reservoir is determined by societal demands for water. 

Water Demand 

The development of water supply sources has traditionally been the 

domain of engineers and hydrologists, whose primary concern has been 

with the study of water availability. The lack of emphasis on the 

demand side of the problem in more humid areas has been due in part to 

the relative abundance of water and the general notion that water is a 

necessity to life and must be supplied at any cost. These two factors 

created an inertia in the water supply industry toward overdevelopment 

of supply. The initial relative abundance of water insured that large 

amounts of water could be made available at a relatively low cost. 
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Water usage habits were engendered in society which promoted the use of 

water for every possible purpose. When additional sources of supply 

were required the "necessity to life" idea required that all "needs" be 

met through any anticipated drought period. These "needs", of course, 

were based on the demands then prevalent (i.e. demands for low cost 

water). The price of water was set to recover total costs of supplying 

this projected "need", and the marginal cost of abundant supply during 

drought periods of varying severity was obscured. 

Today, increasing demands on water resources and increasing 

developmental costs require a closer examination of past policies. The 

idea that water is a "necessity to life", although true in the extreme 

(as with many other resources), is no longer a valid reason for ignoring 

the demand function when more and more water is being supplied beyond 

the basic needs of society. Water supplied above the level of health 

requirements cannot be considered more necessary for life than any other 

resource. At this point the question to be answered is whether the 

delivered water is worth the cost of delivery. As stated by Judith Rees 

(1969, p. 28), "There appears to be no rational grounds for allowing 

water supplies to be extended to meet all foi'eseeable 'needs', when the 

supply of most other conunodities is only increased by foregoing alter

native goods. It is possible that the construction of additional water 

supply capacity is diverting resources away from uses valued more 

highly on the margin by consumers." Most efficient use of water sup

plies will assure that resources are not misused. Hence demands for 
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water should be evaluated within the economic realm if possible. The 

quantity of water demanded at a given price indicates a willingness-to-

pay, or user value, and the price provides a guideline for efficient use 

of resources. 

Rural Residential Water Demand in Kentucky 

A recent study of rural residential water demand (Grunewald et al., 

1975) in Kentucky showed that the price paid for water was the signi-

ficant factor in determining demand. Using least-squares regression 

techniques to evaluate the model 

Q = f(P,I,V,E,N,u) 

where 

Q = quantity of water used in thousands of gallons/year/dwelling 

unit, 

P = average water bill in dollars/1000 gallons, 

I= mean income in thousands of dollars/year/dwelling unit, 

V value of dwelling unit in thousands of dollars, 

E evaporation in inches for June-September, 

N = number of persons/dwelling unit, and 

u = stochastic error term, normally distributed with mean O and 

. sz variance . 

They derived the model 

Q = exp(4.5)/P" 915 exp(u) (1) 

significant at the .01 level, with a correlation coefficient of 0.82. 
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The price elasticity of this rural residential demand is 

(dQ/Q)/(dP/P) = -.915. 

That is, a 1% increase in price results in a .915% decrease in demand. 

Evidently then, the price charged for water will strongly affect the 

demand. The value of water to these consumers is reflected in the price 

and any "needs" derived independently of price will not be realistic. 

Thus the price-demand function should be an integral part of any re-

servoir study for rural residential water supply. 

Water Supply Benefits 

The price-demand function makes water an economic co1!Dilodity. Using 

the price-demand function, it is possible to determine the value, in 

explicit monetary units, of an increase in supply in a given time period 

(Howe, 1971). The decreasing demand function derived by Grunewald 

(figure 1) shows that the incremental value (price the consumer is 

willing to pay) of each unit of water decreases with each additional 

unit supplied. If a project increased total supply from ~
0

, supply 

without the project, to Q, supply with the project, in a given time 
w 

period, then the increase in benefits (value) to the co1!Dilunity is equal 

to the sum.of the values of each additional unit supplied or, 

Added benefits = 1~ P(Q)dQ 

~o 
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where P(Q) is the incremental value (price) when an amount of water, Q, 

has been supplied. 

The benefits produced by a project can be compared to the project 

costs to determine the net benefits of the project. Since the flow of 

benefits is distributed over the design life of the project and the bulk 

of the project costs may occur at the beginning of the project life, it 

is necessary to evaluate the benefits and costs in terms of present 

worth (or equivalent annual values) by discounting future monetary 

values to a common time reference using the discount rate (James and 

Lee, 1971, ch. 2). The proper choice of the discount rate which should 

be used for public works is widely debated (cf. James and Lee, 1971, ch. 

6) and will not be examined in this study. By comparing the net bene

fits produced by various proposed systems, it is then possible to select 

an optimal system. If all project costs are expressible in monetary 

units, then the optimal project is that which provides the maximum net 

benefits, Practically, it may be necessary to choose a sub-optimal 

system if the optimal system does not satisfy the constraint of finan

cial feasibility. If the costs include non-quantifiable components, 

such as the loss of aesthetic benefits suffered through the inundation 

of a wilderness area, then the decision becomes more difficult. In this 

study it will be assumed that all costs have been converted to monetary 

units. 
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Water Demand and Water Price 

The demand function obtained by Grunewald et al. (equation 1) was 

• based on cross-sectional data and does not claim to represent the 

response of an individual community to changes in price over time. The 

plausibility of its use to represent the price-demand function for the 

water demand of a single community is enhanced, however, by the results 

of studies based on time-series analysis of water usage for individual 

communities subject to rate changes. Using data from Boulder, Colorado, 

representing residential water use from 1955-1968, Hanke and Boland 

(1971) studied the effect on demand of a shift in 1962-63 from a flat 

rate to a universal metered rate of $.35/1000 gallons. The authors 

found that the average domestic usage fell 36 percent and" ..• consumers 

reacted immediately to an incremental commodity charge ••• " when the 

metered rate was effected. The change in usage was persistent and no 

significant recovery was noted. It was concluded that a pricing policy, 

by affecting the quantity of water demanded, is an effective tool that 

could be used to satisfy the varied goals of the water enterprise. 

Chiogioji and Chiogioji (1973) give the results of a number of similar 

studies which also indicated that introducing a fluctuating (meter with 

unit pricing) rate leads to a substantial decrease in per capita water 

consumption. Thus both cross-sectional and time-series data on water 

usage indicated that the price of water might be a significant factor in 

water demand and that water pricing might be a useful device for im-

proving the efficiency of a water supply system. 
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Demand Management of Water Supply 

Hanke and Davis (1971) suggested that uniform water rates mask 

significant differences in the marginal costs of serving customers 

during different periods and that in an economic sense water supplied 

during summer low flow periods was significantly different from water 

supplied during winter high flow periods. The additional facilities 

required to provide water during low flow periods make this water high 

cost water. The authors used data from the Washington D.C. area and a 

two-season price model to shift seasonal demand patterns by charging a 

higher price for water in the summer than in the winter. The result was 

a reduction in summer demand, and a slight rise in winter demand, which 

made possible a 10 year postponement of investment in additional 

sources. The seasonal pricing policy also yielded a more efficient use 

of the resources employed to provide and distribute water. The authors 

concluded that by not varying water rates to reflect the cost differ

ences, investments are larger than economically justified. 

In a general proposal for public utilities, including water uti

lities, Vickery (1971) suggested that utility prices which are made to 

respond appropriately to adventitious variations in demand or supply can 

produce substantial improvement in the efficiency of utilization of 

utility facilities. Gysi (1972) studied the effect of what he termed 

dynamic pricing policies on the probability of reservoir failure in a 

water supply system. In a simulation study, the price charged for water 
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during a given season (he assumed two seasons per year) was made a 

function of the level of storage in the reservoir at the beginning of 

the season. The household daily demand functions used were for U.S. 

western cities from a study by Howe and Linaweaver (1967). By increas

ing the price of water linearly as the amount of water in storage 

decreased, Gysi found that the probability of reservoir failure was 

smaller when the dynamic-price policy was used than when the fixed-price 

policy was used, for comparable average prices. He concluded that 

varying the price of water in accordance with the water supply situation 

in order to reflect its relative value could greatly reduce the risk of 

shortages. 
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CHAPTER IV 

THE SIMULATION OF RELIABLE STREAMFLOW DATA 

LIMITATIONS OF STREAMFLOW MODELS 

The review of literature indicated that for the purpose of data 

generation, two distinct types of streamflow models are available to the 

planner. The stochastic models utilize directly the historic streamflow 

data to probabilistically simulate streamflow behavior. Stochastic 

models are advantageous in simulation studies because a large number of 

possible future inflows can be generated inexpensively (usually) on a 

computer. A major drawback to the stochastic models is their reliance 

on long historical streamflow records for estimates of parameters 

defining the stochastic process. The serial correlation of streamflows, 

particularly, can be a significant factor in the streamflow behavior and 

reasonably accurate estimates of serial correlation require a long 

historical record. In Kentucky the majority of watersheds have his

torical records less than twenty years in length. Records of this 

length are inadequate for estimating parameters of most stochastic 

models (Haan, 1972a), 
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The parametric models, on the other hand, are not rigidly bound by 

the availability of long historical streamflow records. Historical 

daily rainfall data, the primary input to these models, is usually more 

readily available than the flow data. In addition, rainfall data may be 

more reliably transfered between nearby locations than streamflow data 

which is highly dependent upon the particular watershed. Unfortunately, 

the historical rainfall data on which the parametric models rely is not 

sufficiently long for simulation studies, nor is it computationally 

feasible to use parametric models (of those known to the author) in 

simulation studies. 

In this chapter it will be shown how the symbiotic use of these two 

model types can produce useful results for reservoir simulation studies. 

RELIABILITY OF PARAMETER ESTIMATES 

FOR STOCHASTIC STREAMFLOW MODELS 

As noted earlier, the use of stochastic models of streamflow is 

constrained by the availability of historical streamflow data. 

The problem of estimating stochastic model parameters from limited 

streamflow data has concerned modelers for several years. The parameter 

estimates will vary depending on the historical record length and the 

degree to which the record represents the actual, long-term streamflow 

pattern. 
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Short streamflow records present inherent difficulties in parameter 

estimation. Wallis and O'Connell (1972) examined the problem of esti-

mating the lag-one serial correlation coefficient, p, for normal Markov 

models. Using Monte Carlo methods they examined the bias and variance 

of p when estimated by different methods from record lengths of 20 to 

100 time periods. They found that the usual algorithms for estimating 

p yielded estimates which were biased toward zero and that the biases 

were rather large for the shorter records. They then examined bias 

correction methods by repeated Monte Carlo trials. They found that 

unbiased estimates resulted, although the corrected estimates for p 

tended to have larger variance than the uncorrected estimates. One 

procedure for obtaining unbiased short sample estimates of p was to 

use the estimator suggested by Box and Jenkins (1970), 

n-1 n n n 
p = E [xi-(1/n) E x.J [xi+l-(1/n) E xk]/ E [xi-(1/n) 

~l j=l J ~l ~l 

n 2 E ~] 
j=l 

where n is the number of observed values, xi, and correct p for bias by 

using 

t = ((p + (l/n))/(1-4/n). 

The variance amplification factor resulting from this correction is 

(n/n-4) 2 
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The fact that an unbiased sample estimate of p can be obtained for 

short samples gives no justification for assuming that this estimate is 

a reliable estimate for the true value, however. If pis the sample 

estimate of the first-order serial correlation coefficient then the 

expected value of p, E(p), is approximately 

E(p) = p-(1+4p)/n 

where pis the true value. The variance of pis approximately 

var(p) = (1-p 2)/n 

(Kendall and Stuart, 1966). If r is the corrected estimate of p, as 

above, then 

E(r) = p 

var(r) 2 2 n(l-p )/(n-4) 

approximately, 

To get a rough idea of the data requirements necessary for reliable 

estimates of p, a Monte Carlo experiment was performed. Synthetic 

standardized annual streamflow values were generated using 

2 1/2 
Qi+l = pQi + (l-p) t 

where tis an independent standard normal random variable. A value of 

,25 was used for p. Unbiased estimates of p were made from each sample. 

The distribution of the estimates was approximately normal (of course 

the distribution of p cannot be normal since -1 < p < 1, furthermore as 

moves closer to ±1 the distribution of the estimate must become more 

skewed). For small values of p the distribution of r was assumed to be 

approximately normal. Hence 

(r-p)/(n(l-p 2)/(n-4) 2) 1/ 2 
= z 
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has the standard normal distribution and 

P(j zj < 1.96) = .95, 

Rearranging gives 

p-l,96(n(l-p 2) 112t(n-4) 2)112
< r < p+l,96(n(l-p 2) 112t(n-4) 2)1/ 2 

or, 

.25 - l.90(n112t(n-4)) < r < ,25 + l.90(n1/ 2/(n-4)) 

with probability .95. 

To be 95% sure that the sample estimate is within ±10% of the 

true value of .25 requires n = 5763, 

To obtain estimates of data requireJllents for the monthly lag-one 

correlation coefficients the qua.ntity 

(arctanh(r)-arctanh(p))(n-3) 1/ 2 
= z 

which has approximately the staridard normal distribution (Cramer, 1951, 

p. 399ff.) was used (for n > 25). 

P < I z I < 1. 96 > = • 95 

or, rearranging, 

. 1/2 
tanh(arctanh(p)-1.96/(n-3) ) < r 

1/2 
< tanh(arctanh(p)+l. 96/ (n-3) ) 

with probability .95. Setting the left and right side equal to p-bp 

and p+bp, respectively, and solving for n for various values of p and 

bp will give a rough i<lea of the length of record required to achieve 

the given accuracy with 95% reliability. For bp = .05 and p ranging 

from 0.0 to 0.5, the value of n required ranged from approximately 1500 

to approximately 800. 
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Although it may be argued that the preceding arguments were crude, 

they at least yield some appreciation of the data requirements and point 

out the need for sensitivity analysis if the value of this parameter is 

important in the decision process. 

Kirby (1974) observed that some sample statistics, e.g. skew co

efficient, have algebraic bounds which are independent of the process 

generating the samples. These bounds are a function of the sample size 

and are properties of the algebraic formulas defining the statistics. 

The required accuracy of parameter estimates for stochastic models 

is dependent on the sensitivity of the decision function to that para

meter. At some stage in stochastic modelling, assumptions must be made 

and the experience of the planner plays an important role in establish

ing these assumptions. Some general procedures to aid the planner at 

this stage have been developed. For example, Haan (1972a) presented a 

simulation procedure to determine the distribution of a design variable 

as a function of the number of years of historical data used to estimate 

the parameters of a stochastic model. 

IMPROVING STOCHASTIC STREAMFLOW MODEL PARAMETER ESTIMATES 

When parameter estimates are deemed unacceptable, a water resource 

planner must either forego the use of the stochastic model or improve 

his parameter estimates so that they fall into an acceptable range. 
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Several methods of improving parameter estimates for stochastic 

models can be found in the literature. One method suggested by Benson 

and Matalas (1967) is to derive parameters from generalized multiple 

regression relations with physical and climatic characteristics of the 

drainage basin. They recommended the use of generalized statistical 

parameters to reduce the spatial and temporal errors in the original 
' 

record. The method also provides a means of developing a synthetic 

series for an ungauged basin. Lenton, et al. (1974) used sample and 

non-sample information in a Bayesian approach to improve estimates of 

the first-order serial correlation coefficient. 

Many methods of improving parameter estimates are based upon the 

extension of the runoff record, primarily through the use of available 

precipitation data. Usually, the length of a precipitation record in an 

area is greater than the length of the streamflow record. This is 

particularly true of small watersheds, where streamflow records are most 

often either short or non-existent. 

2 
For small (less than 104 km), ungauged watersheds, Jarboe and Haan 

(1974) described a procedure for simulating monthly runoff using the 

four-parameter water yield model of Haan (1972b) and watershed charac-

teristics. This method provided a close approximation to the annual 

streamflow values and yielded a simulated streamflow record equal in 

length to the length of the available rainfall record. 

On watersheds where short runoff records exist, stochastic model 

parameter estimates might be improved by using a parametric model to 
' 
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extend the runoff record and then estimating the stochastic model 

parameters from the extended record (Burges, 1971). Since data scarcity 

is the problem, it is desirable that the parametric model require as few 

measured inputs as possible. To apply a parametric model to the ex

tension of short runoff records for improvement of stochastic model 

parameter estimates, it is necessary to first test the parametric 

model's behavior on a similar watershed from which long historical 

records are available. The behavior of the parametric model is assumed 

to be consistent on similar watersheds. 

EVALUATING A PARAMETRIC MODEL 

Given a stochastic model and its parameters, it must first be 

determined if the parametric model has the ability to preserve the 

parameters of the stochastic model. In this determination a test 

watershed as defined earlier is required. 

First the parameters, pi' i=l, ... , n, for the stochastic model are 

estimated from the entire record. Confidence, or acceptance regions for 

the parameters should also be estimated, either by a statistical method 

or, preferably, by a sensitivity analysis. Optimum parameters for the 

parametric model should then be determined using the complete historical 

record. These optimum parameters are then used in the parametric model 

to simulate runoff for the entire period of record. The stochastic 

model parameters, p~, i=l, •.• , n, are then estimated from the simulated 
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runoff, If a parameter estimate pk falls outside the acceptance region 

around pk' then it may be assumed that the parametric model does not 

adequately preserve this parameter. In this case there would be no 

basis for assuming that the parametric model could adequately improve a 

short record estimate of this parameter, At this point other parametric 

models might be evaluated for their ability to preserve this parameter. 

It may be found that one parametric model would be best for improving 

estimates of one parameter, while another parametric model would be best 

for improving estimates of a different parameter. If the estimated 

parameters, p!, j=l, ••• , m, fall in the acceptance regions around the 
J 

corresponding p., j=l, ••• , m, then the parametric model might improve 
J 

short record estimates of these parameters and further investigation is 

suggested. 
WASHINGTON W.ITEfl 

RESEARCH CENTEl'I uaRAl'IY 

It must then be determined whether the record extended by the 

parametric model will reduce the variance and bias of short-record 

estimates of the stochastic model parameters. For this test the his-

torical record is divided into a number, S, of sub-records. The length 
r 

of the sub-records (i.e. short records) is presumably that which will 

exist on the watershed for which streamflow records are to be ultimately 

simulated. For each runoff sub-record, the stochastic model parameters, 

pjr' j=l, ••• , m; r=l, ••• , Sr' are estimated. The optimum parameters 

for the parametric model are determined for each sub-record and used in 

the parametric model to extend, by simulation, each sub-record to a 

runoff record equal in length to the length of the historical record. 
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From these extended records the stochastic model parameters, pjr' j=l, 

... ~ m; r=l, ... , S, are estimated. 
r 

If the variance of the parameter 

estimate pj around the best estimate pj is not less than that of pj, 

then it may be assumed that an extended runoff record obtained from the 

parametric model will not improve short-record estimates of pj. If the 

variance of pj is less than that of pj, then the parametric model should 

improve short-record estimates of pj. However, if p' is not in the jr 

acceptance region of p., then the parametric model is not improving the 
J 

estimates to a satisfactory level for this length of sub-record indi-

eating that a longer record would be required for adequate improvement. 

It may often be the case that a planner is not interested speci-

fically in the improvement of individual parameters in a stochastic 

model, but rather in the improvement of the whole set of parameters in 

the context of his planning situation. The use of a parametric model to 

improve parameter estimates of a stochastic model may be evaluated 

within the hypothesis that the stochastic model is correct. For exam-

ple, the effect of variance in parameter estimates on a test variable of 

interest (e.g. storage requirements) might be studied. Using the 

stochastic model parameters pj, j=l, ••. , n, obtained from the entire 

record, synthetic sequences can be generated and the statistics of the 

test variable determined. Acceptance regions should be determined for 

each of these statistics. Using the optimum parameter values in the 

parametric model, as before, runoff is simulated and the stochastic 

model parameters p., i=l, .•• , n estimated. These estimates are used in 
i 
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the stochastic model to generate synthetic sequences to evaluate the 

test variable, If the statistics of the test variable thus obtained 

fall into the acceptance regions determined earlier, then the parametric 

model may be capable of improving short-record estimates of the stochas-

tic model parameters in this context, In this event, the procedure is 

repeated for the parameter sets p~r' i=l, ••• , n; r=l, •.• , Sr' and pir' 

i=l, .•. , n; r=l, ,,,, S derived as earlier. 
r If the variance of the 

test variable statistics around their best estimates is reduced by using 

the extended data, and the test variable statistics thus obtained fall 

into an acceptable region, then the use of the parametric model to 

improve short-record estimates of the parameters in the stochastic model 

is recommended. 

It should be noted that all methods for improving stochastic model 

parameters are not necessarily mutually exclusive, and advantage should 

be taken of every available method or combination of methods. 

A Particular Parametric Model 

The water yield model developed by Haan (1972b) was tested for its 

ability to improve parameter estimates for stochastic models of the 

Markov type. These parameters are the monthly and annual means, x, 
standard deviations, s, and lag-one serial correlation coefficients, r 

(cf, Fiering and Jackson, 1971). 
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The test watershed was the South Fork of the Little Barren River, 

2 Metcalfe County, Kentucky, with a watershed area of 47.4 km. 

Thirty-one years (10/41-9/72) of historical data in the form of daily 

rainfall and monthly runoff (cm) were available. 

Estimates of the stochastic model parameters were determined from 

the historical runoff record (Table 1). These values were considered 

best estimates of the respective parameters. Acceptance regions for 

monthly parameter estimates were defined by statistical approximations. 

The monthly flow for most months in this example is approximately 

normally distributed. The departure from normality is the greatest for 

the drier months such as October. For the purpose of this example it 

was concluded that confidence intervals based on normality and/or large 

sample assumptions would approximate acceptable ranges for monthly 

parameter estimates. 

Monthly means were assumed to be normally distributed by appealing 

to the central limit theorem, and 95% confidence intervals were com-

puted. The 95% confidence intervals were computed for monthly standard 

deviation estimates by assuming that (n-l)s2/o2 followed a x2 distri-

bution. For lag-one monthly serial correlation coefficient estimates, 

95% confidence intervals were computed using the statistic (arctanh(r) -

1/2 arctanh(p)) (n-3) , which approximately follows a standard normal 

distribution, where pis the expected value of r, and n is the number of 

observations (n > 25), Upper and lower bounds defining the acceptance 

regions for the monthly parameters are taken as the computed confidence 

limits as shown in Table 1. 
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TABLE 1 

BEST ESTIMATES AND BEST PARAMETRIC MODEL ESTIMATES 

95% 95% 
Confidence Confidence 
Interval Interval 

-* Lower Upper x (cm) 
Lower Upper 

Month x (cm) Bound Bound 
s (cm) Bound Bound 

s (cm) r 
0 s 0 s 0 

. 

Oct 0.38 0.18 0.58 0.89 0.61 0.48 0.81 o. 71 0.66 
Nov 2.21 1.22 3.23 2.03 2.84 2.26 3.78 2.82 0.63 
Dec 5. 72 4.04 7.42 5.49 4.83 3.86 6.45 5.13 0.64 
Jan 8.18 5.97 10.36 8.31 6.25 5.00 8.36 7.06 0.13 
Feb 8.74 7.09 10.39 8.23 4.72 3.78 6.30 5.72 0.16 
Mar 9.27 7. 77 10. 77 8.94 4.27 3.40 5.69 5.54 0.14 
Apr 6.48 5.38 7.54 5.36 3.05 2.44 4.09 2.90 -0.17 
May 3. 71 2, 67 4. 72 3.63 2.90 2.31 3.89 2.13 -0.08 
Jun 1. 90 1.14 2.69 2. 64 2.21 1. 78 2.95 2.49 -0.03 
Jul 1.83 0.69 2.97 1.85 3.28 2.62 4.37 2.08 0.18 
Aug 0.74 0.33 1.14 1.17 1.14 0.91 1.52 1.32 0.49 
Sep 0.61 0.23 1.02 1.07 1.14 0.91 1.52 1.63 0.59 

Ann. 49.78 42.32 57.25 49.56 14.83 12.60 17.07 14.63 0.24 

* Subscript o refers to estimate from observed record. 

Subscripts refers to estimate from simulated record. 

n -- underlined quantity n falls outside acceptance region. 

95% 
Confidence 
Interval 

Lower Upper 
Bound Bound r 

s 

0.40 0.83 0.46 
0.36 0.81 0.58 
0.38 0.81 0.64 

-0.24 0.46 0.05 
-0.20 0.49 0.16 
-0.22 0.47 -0.01 
-0.49 o. 20 -0.27 
-0.42 0.28 0.24 
-0.38 0.32 -0.03 
-0.18 a.so 0.15 

0.17 o. 72 0.16 
0.30 0.78 0.44 

0.00 0.60 0.10 



Acceptance regions for the annual mean and standard deviation 

estimates were defined as including those values within ±15% of the best 

estimate. An acceptance region for the annual serial correlation co

efficient estimate was not defined; however, any values outside the 

interval (0.0, 0.6) would be considered highly suspect for this water

shed. 

Optimum parameter values were found for the parametric model using 

the entire historical record. The parametric model with these para

meters was called the best parametric model. Runoff was simulated for 

the entire period, and the stochastic model parameters estimated from 

this simulated record. These estimates are shown in Table 1. Under

lined values were not acceptable by the acceptance region criterion. 

For example, the mean flow in October predicted by the parametric model 

was well beyond the upper 95% confidence limit. Thus, for this required 

accuracy, the parametric model would not preserve the parameters as

sociated with the underlined values. At this point another parametric 

model could have been tested to determine if it would more accurately 

preserve these parameters, including the annual serial correlation 

coefficient estimate which was lower for the simulated record than for 

the historical record. However for the purpose of this example all 

parameter estimates were further studied. 

The historical record was then divided into the 5 sub-records, each 

of 4 years' length. Sub-records 1 (1942-45), 4 (1962-65), and 5 (1969-

72) were selected so that possible variations in time over the entire 
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record would be represented. Sub-records 2 (1949-52) and 3 (1953-56) 

represented periods of high and low average flows, respectively, and 

were selected in order that the parametric model be evaluated under 

extreme conditions. Stochastic model parameter estimates for each of 

these periods were computed and are shown in Tables 2-5. The variance 

of these estimates around their respective best estimates was computed 

for each of the stochastic model parameters. For example, the variance 

of the sub-record estimates of the mean flow in October around the best 

estimate, 0.38 cm (Table 1), was computed as 

Var X = (1/5) Oct,obs 

5 
i: ex 

S =l Oct,Sr 
r 

- 0.38/ = 0.134 2 cm. 

Variances of the parameter estimates are shown in Table 6. 

Optimum parameter values from each sub-record were used in the 

parametric model to extend the corresponding sub-record into a runoff 

record 31 years in length. The stochastic model parameters (Tables 2-5) 

were estimated from each of these extended records. The variances of 

these estimates around their respective best estimates was computed 

(Table 6). 

The reduction in the variance of estimates for each parameter, pi, 

which occurred from the use of the extended records was computed as 

100 (Var(pi b) - Var(p. ))/Var(pi b ). ,o s 1,ext ,o s 

These values are shown in Table 6. 
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TABLE 2 

MONTHLY MEANS--OBSERVED SUB-RECORDS AND EXTENDED SUB-RECORDS 

SUB-RECORD 

1 2 3 4 5 
Best -* 

Month Est. x x x x x x x x x x 
0 e 0 e 0 e 0 e 0 e 

Oct .38 .28 .81 1.22 .86 • 05 .38 .23 .94 .53 .84 
Nov 2.21 1.42 1.73 6.05 1. 96 .25 1.47 1.27 2.16 1.35 2.44 
Dec 5.72 7.37 4.72 10.21 5.13 1.88 4.57 5.79 5;44 5.59 6.27 
Jan 8.18 5.33 7.24 16.84 7.75 4.88 7.49 5.89 8.51 7.90 8. 92 
Feb 8.74 9.83 7.62 10.31 8.48 10.16 7.92 8.33 8.38 9.35 8.64 
Mar 9.27 9.98 8.36 11.84 8.69 9.42 8.51 14.63 9.42 5.54 9.17 
Apr 6.48 5.87 5.05 4.93 5.38 6.65 5.11 6.91 5.79 7.98 5.61 
May 3.71 2.79 3.35 2.41 3.58 3.30 2.82 1.14 3.76 3.66 3.68 
Jun 1.90 1.17 2.39 4.22 2.59 1.19 2.08 ~ 2. 72 2.18 2.59 
Jul 1.83 .25 1.80 3.76 2.08 ~ 1.30 2.06 2.06 2.51 1.96 
Aug .74 1.12 1.07 .89 1.12 .10 .61 .41 1.24 1.63 1.22 
Sep .61 1.37 1.02 1.27 1.14 .36 .69 .20 1.24 -:Ti 1.17 

All values in centimeters. 

* Subscript o indicates estimates from sub-record, subscript e 

indicates estimates from extended records. 

n -- underlined quantity lies outside acceptance region. 
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TABLE 3 

MONTHLY STANDARD DEVIATION ESTIMATES--OBSERVED 

SUB-RECORDS AND EXTENDED SUB-RECORDS 

SUB-RECORD 

1 2 3 4 5 
Best 

s* Month Est. s s s s s s s s s 
0 e 0 e 0 e 0 e 0 e 

Oct • 61 .41 .74 1.17 • 71 .08 .30 .43 .81 .64 .74 
Nov 2.84 1. 70 2.31 4.83 2.69 .36 2.84 .91 2. 72 1.24 3.23 
Dec 4.83 7.44 4. 72 6.10 4. 72 3.10 5.26 4.98 5.00 2. 72 5.44 
Jan 6.25 3.58 6.81 7.42 5.99 1.60 7.37 4. 24 7.06 6.02 7 .11 
Feb 4. 72 4.70 5.26 3. 71 5. 72 8.28 5.66 6.07 5.11 3.10 5.82 
Mar 4.27 2.90 5.03 3.68 4.70 6.20 5.64 2.18 5.59 2.44 5.61 
Apr 3.05 1.57 2.64 2.18 2.84 2.31 2.92 4.90 3.15 3.10 3.00 
May 2.90 1. 73 1. 96 2.26 2.18 2.11 2.41 --:zo 2.24 2.16 2.36 
Jun 2.21 1.12 2.13 3.73 1. 98 1.35 2.69 .30 2.49 3.51 2.74 
Jul 3.28 ~ 1. 93 4.57 2.44 -:"is 1. 90 1. 98 2.08 3.96 2.57 
Aug 1.14 1. 70 1.02 1.55 1.19 .10 .79 .58 1.42 1.98 1. 73 
Sep 1.14 ~ 1.35 1. 73 1. 63 .43 1.14 .13 1. 70 --:=i4 1.85 

All values in centimeters. 

* Subscripts: o - estimated from observed sub-record, e - estimated 

from extended sub-record. 

n quantity n is outside acceptance region. 
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TABLE 4 

MONTHLY CORRELATION ESTIMATES--OBSERVED SUB-RECORDS 

AND EXTENDED SUB-RECORDS 

SUB-RECORD 

1 2 3 4 5 
Best 

r* Month Est. r r r r r r r r r 
0 e 0 e 0 e 0 e 0 e 

Oct .66 . 84 .49 • 71 .60 .76 .42 .63 .53 • 94 .42 
Nov .63 .30 .60 .58 • 54 • 71 .62 .76 .60 .84 .53 
Dec • 64 • 98 .78 .54 .58 • 96 .61 • 34 .67 -.13 .59 
Jan .13 .11 .13 -.45 • 09 -.89 • 05 • 84 .07 -.69 .02 
Feb .16 • 64 .13 -:-33 .31 -.20 .18 • 86 .18 -:sz .17 
Mar .14 -.24 .05 -.78 .08 • 66 -.03 -. 71 .05 ,73 -.04 
Apr -.17 -rs -.20 -.41 -.20 -.73 -.23 -. 96 -.18 .67 -.31 
May -.08 • 65 .20 -.34 .17 -.39 .23 -.06 .13 -.74 .20 
Jun -.03 • 03 .03 .37 -. 02 -.73 -.14 .39 .10 -.47 -.12 
Jul .18 .14 .20 • 84 .42 -. 77 .05 .48 .16 -. 34 .02 
Aug .49 -.43 .25 .89 • 28 ---:-6Li .29 -.40 .13 ~ .14 
Sep .59 .99 .43 • 94 .50 -.16 .43 -.32 .40 -.12 .34 

* Subscripts: o - estimated from observed sub-record, e - estimated 

from extended sub-record. 

n underlined quantity n is outside acceptance region. 
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TABLE 5 

ANNUAL PARAMETER ESTIMATES--OBSERVED SUB-RECORDS 

AND EXTENDED SUB-RECORDS 
, 

Sub-record -* 
Number x x s s r r 

0 e 0 e 0 e 

1 46.76 45.19 13.39 14.07 -.21 .06 

2 73.96 48. 77 11.40 14.83 -.52 .33 

3 38.66 42.95 13.84 14.94 -,05 .11 

4 47.73 51.66 15.67 14.63 -.21 .11 

5 48.82 54.55 9.04 14.83 .27 .11 

Means and standard deviations in centimeters. 

* Subscripts: o - estimated from sub-record, e - estimated from 

extended sub-record. 

n underlined quantity falls outside acceptance region. 
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TABLE 6 

VARIANCE OF MONTHLY ESTIMATES AROUND BEST ESTIMATES 

Var Var Var 
Var* Var Red. Var Var Red. Var Var Red. 

Month x x 
% 

s s 
% 

r r 
% 0 e 0 e 0 e 

Oct 0.17 0.19 -8 0.13 0.04 73 0.025 0.033 -32 
Nov 4.15 0.18 96 3.54 0.10 97 0.036 0.004 89 
Dec 7.54 0.61 92 3.18 0.12 96 0.182 0.006 97 
Jan 19.86 0.44 98 6.83 0.61 91 0.511 0.005 99 
Feb 1.25 0.42 66 3.63 0.70 81 0.284 0.005 98 
Mar 9.95 0.36 96 2.73 1.24 55 0.466 0.016 97 
Apr 1.96 1.26 36 1.38 0.05 97 0.548 0.005 99 
May 1.85 0.19 90 2.04 0.47 77 0.227 0.072 58 
Jun 1.51 0.37 75 1. 92 0.13 93 0.205 0.008 96 
Jul 1. 75 0.08 95 4.45 1.26 72 0.340 0.020 94 
Aug 0.30 0.16 49 0.52 0.11 78 0.412 0.079 61 
Sep 0.25 0.23 7 0.81 0.22 73 0.435 0.032 93 

Ann. 144.58 16.00 89 9.81 0.13 99 1. 380 0.116 91 

2 Values for variance of mean and standard deviation estimates are in cm. 

* Subscripts: o - estimates from sub-record, e - estimates from 

extended record. 
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Discussion of Results 

The use of the extended record reduced the parameter estimate 

variance significantly for all annual model parameters (Table 6). The 

extended record estimates of the annual mean and standard deviation were 

within the hypothetical acceptance regions (Table 5), indicating that 

the parameter estimates were being adequately improved. The majority of 

the extended record estimates of the serial correlation coefficient, r, 

were low but were much more reliable than those obtained directly from 

the sub-record. This was somewhat expected since the sub-records were 

quite short. 

The variance around the best estimate for monthly mean flows was 

reduced by using extended-record estimates in all months except October 

(Table 6). Poor results for October were expected, since the best 

parametric model would not preserve the mean for this month. Extended

record estimates of the mean for the remaining months were checked to 

determine if they had been adequately improved. Underlined values of 

extended-record estimates in Table 2 indicate those months for which 

parameter improvement was not adequate by the 95% confidence interval 

criterion. In addition to October, extended-record estimates of the 

mean in April, August, September, and June were not adequate. This was 

expected for April, August, and September, since the best parametric 

model could not preserve these parameters (cf. Table 1). The best para

metric model estimate of the mean flow in June was also very near the 
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upper 95% confidence limit (Table 1). For the remaining months the 

extended-record estimates of the mean were found to be adequate, and the 

average reduction in variance, around the best estimate, obtained by 

using the extended record was 90%. 

Using the extended-record estimates of monthly flow standard devia

tions reduced the variance around the best estimate for all months 

(Table 6). Checking for adequacy of improvement revealed that extended

record parameter estimates for the months of October, August, May, July, 

and September were not always within the acceptance regions (Table 3). 

This result was expected for May, July, and September (cf. Table 1). 

However, the best parametric model estimates of the standard deviation 

for flows in October and August were well within the respective ac

ceptance regions (Table 1). For these two months an historical record 

longer than the 4-year sub-records would be required for this parametric 

model to yield extended-record estimates of the standard deviations 

which were within the given acceptance regions. For the remaining 

months, in which extended-record estimates of the standard deviation 

were found adequate, the average reduction in variance around the best 

estimate was 87%. 

A reduction in the variance around the best estimate of the lag-one 

monthly serial correlation coefficient, r, was produced by using the 

extended-record estimates in all months but October (Table 6). It 

seemed that for October extended-record estimates for r would be con

sistently low (cf. Table 4) using this parametric model. The value 
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obtained by the best parametric model (Table 1) appeared to verify this. 

Extended-record estimates of r were adequate for all remaining months 

except August (Table 4). The.value of r for August produced by the best 

parametric model (Table 1) indicated that August might be troublesome. 

In the remaining months the average reduction in variance resulting from 

using extended records was 92%. 

Hence, in this example, estimates of annual stochastic model para

meters were found to be significantly and, tentatively accepting the 

serial correlation coefficient estimates, adequately improved by extend

ing a four year record with the parametric model to a record 31 years in 

length. The reduction in variance of parameter estimates was about 90%. 

Except for the month of October, the variance around the best 

estimates for monthly parameter estimates was reduced by using extended 

records. The only months in which all three parameter estimates were 

adequately improved (i.e. always fell in acceptance region) for this 

example, however, were November, December, January, February, and March. 

PARAMETRIC MODEL EVALUATION IN THE CONTEXT OF 

WATER SUPPLY RESERVOIR SIZING 

At this point the Haan model was tested for its ability to improve 

stochastic model parameter estimates in a water supply context. The 

test variable was S, the storage required to meet assumed demands from a 

reservoir on the watershed with 99% reliability. 
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The stochastic monthly Markov streamflow model (Fiering and Jack-

son, 1971) was used in the form 

where 

qj = 

qj = 

(q. 1 - q. 1) + 
J- J-

flow in month j, inches; 

s.(l - r
2

) 112 
t. 

J J 

estimated mean flow in month j' inches; 

(2) 

s. = estimated 
J 

standard deviation of flow in month j, inches; 

rj = estimated first-order serial correlation coefficient between 

flows in months j and j-1; and 

t. = independent normally distributed random variable with mean 
J 

O and variance 1. 

Equation 2 was used to generate synthetic streamflow sequences for input 

to the reservoir, with a 40 year design life, from which an outflow 

demand of D = .833 inches/month was required. 

The parametric model evaluation in this context proceeded as 

described earlier. The monthly values of the stochastic model parameter 

estimates obtained previously were used. One hundred possible 40-year 

monthly streamflow sequences were generated, using equation 2, for each 

set of parameter estimates. Each of these sequences was routed through 

an initially full, large, hypothetical reservoir under the assumed 

demands using 

46 



sj+l min (Smax' s. + xj 
J 

- D) j 1, 2, ... , 480 

s1 s 
max 

where 

s. = storage beginning month j, inches; 
J 

s = maximum 
max 

storage available, inches; 

X. = inflow month j ' inches; and 
J 

D demand month j = . 833 inches . 

The hypothetical reservoir was large enough so that S. < 0 could not 
J 

occur for any j. The maximum deficit which occurred in this reservoir 

corresponded to the capacity required to meet demands during this 

period. The 100 estimates of required storage thus obtained were fit to 

a probability distribution (Gumbel's Extreme Value distribution, Appen-

dix A) in order to find the storage which would meet demands with 99% 

reliability. For each set of monthly stochastic model parameter esti-

mates an associated value of reservoir required storage capacity was 

found. These values are shown in Table 7. 

The storage associated with the stochastic model parameter set 

estimated from the 31 year historical record was taken as the best 

estimate, S*. The storage associated with the set of parameter esti-

mates obtained from the simulated streamflow of the best parametric 

model was compared with S* to determine if the parametric model had the 

potential to improve stochastic model parameter estimates in this con-

text. In this case the values differed by about 4.5% which indicated 

that the parametric model might be useful. 

47 



TABLE 7 

STORAGE REQUIREMENTS 

Stochastic Model Parameter 
Estimates Based on Storage Required (inches) 

31 year historical record 8.60 

Simulated streamflow from 
parametric model 8.23 

Historical sub-record 1 9.02 

Historical sub-record 2 7.29 

Historical sub-record 3 9.78 

Historical sub-record 4 8.59 

Historical sub-record 5 5.78 

Extended sub-record 1 9.42 

Extended sub-record 2 8.82 

Extended sub-record 3 10.90 

Extended sub-record 4 8.09 

Extended sub-record 5 7.57 
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Five values of required storage were found using the sets of para-

meter estimates obtained from the 5 sub-records. Five values of re-

quired storage were also found using the sets of parameter estimates 

derived from the records which had been extended using the parametric 

model. The variance of each set of 5 values around the best estimate 

was computed as 

5 
Var= E 

~l 

The variance, around the best estimate, of the estimated storage re-

quirements based on the original sub-records was 2.23. The variance, 

around the best estimate, of the estimated storage requirements based on 

the extended sub-records was 1.44. The reduction in the variance of 

estimated storage requirements obtained by using the parametric model to 

extend the sub-records was 35%. Thus it appeared that the parametric 

model could be used to improve the reliability of short-record estimates 

of the stochastic model parameters in the context of water supply 

reservoir sizing. 

RAINFALL SIMULATION 

It was shown in the previous section how a parametric model might 

be employed to improve estimates of parameters in stochastic models by 

utilizing historical rainfall records. This procedure may yield ade-

quate results in areas where long rainfall records are available. 
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Frequently, however, these long rainfall records are not available. 

Rainfall data may be transferred from a location which is not near the 

watershed, but the errors introduced may be significant. An alternative 

to the transfer of data is to model the daily rainfall. 

MARKOV MODELS OF DAILY RAINFALL 

Studies have indicated that a first order Markov process may give a 

reasonably accurate representation of daily rainfall amounts at a point 

(Adamowski and Smith, 1972). Markov chains have been used to synthesize 

daily rainfall records (Khanal and Hamrick, 1971; Allen and Haan, 1975). 

These Markov chain models are constructed from transition probabilities 

which represent the probability of an amount of rain Xn+l on day n+l 

given that the rainfall on day n was X. To reduce the number of 
n 

transition probabilities which must be estimated, daily rainfall is 

divided into a number of states, e.g. state 1 = no rain, state 2 = (.01, 

.OS), ••• , state m-1 = (.45, .75), state m = (.75, 00), (values in 

inches, say). Assuming that the transition probabilities are stationary 

within a season of the year and that there are no over-year period-

icities or trends, the model then consists of N transition matrices of 

order m (assuming an equal number of states in each season), where N = 

number of seasons in the year and m = number of rainfall states. The 

number of transition probabilities which must be estimated is then Nm(m-

1). If, for example, N = 12 (monthly seasons) and m = 7, 12 x 7 x 6 = 
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504 parameters, at a minimum, must be estimated from the data. Addi

tional parameters must be estimated depending upon the choice of rain

fall distribution within states, Allen and Haan (1975) used uniform 

distributions for all states but state m for which a shifted exponential 

was used, requiring the estimation of an additional parameter. Thus a 

long historical record will be required to yield stable parameter 

estimates, In an effort to reduce the historical record requirements 

while retaining the Markovian structure and comparable accuracy, the 

present model modification was examined. First the general structure of 

the proposed model will be discussed. Then the model will be fit to 

data from the seven weather stations used in the Allen and Haan (1975) 

study to determine if the modified model is in fact an improvement. 

GENERAL MODEL STRUCTURE 

The basic assumptions of this model, and the previously mentioned 

models, are: 

(1) The probable amount of rain on day i+l depends only on the 

amount of rain on day i; 

(2) For a given season within the year, the stochastic structure 

of daily rain is the same for each day and does not change 

from year to year. 

Like the previous models, the present model requires that daily 

rainfall amounts be divided into convenient "states", state 1 = no rain, 
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etc. In the earlier models the probability density function of the 

amount of rain on day n+l, given the state of the system on day n, has 

essentially the form of a histogram determined by the transition pro-

babilities, The present model smooths this function by fitting a 

continuous density function to that portion of the histogram where 

rainfall actually occurred. (A similar approach was used by Jones, et 

al. (1970) with states consisting of "dry" and "wet".) That is, given 

that the system is in state ion day n in season k, then the probability 

distribution of the amount of rain on day n+l is given by 

P(Xn+l .'.:_ xlxn E i, season k) = p~l + (1 - p~1)F(Xli,k) (3) 

where 

F(Xli,k) 

= rainfall on day n; 

= probability of no rain on day n+l given X in state i, 
n 

season k; and 

distribution of rainfall values given rain occurs on 

day n+l, X E i, season k. 
n 

Hence to each state in each season there is a corresponding distribution 

function of the form (3). k The parameters pil are estimated from the 

historical data as follows, k 
Let fil equal the historical frequency of 

transitions from state i to state 1 (no rain) in season k and let f~ be 
]. 

the total number of occurrences in state i, season k. k 
Then pil = 

f~1/f~ is the maximum likelihood estimator. The parameters for each 

distribution F(· li,k) are determined from the historical data using the 

set of observations [Xn+llxn+l > O, Xn E i, season k]. In the 
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application described later, the method of maximum likelihood was used 

to estimate these parameters. 

Synthetic traces of daily rainfall are generated in the following 

manner, given that the system is in state i in season k: 

(1) Generate a uniform random number, x, from (0, 1). 

(2) k 
If x ::_ pil' then Xn+l = O. 

(3) If x > p~
1

, generate a random observation, u, from F (·li,k). 

Set Xn+l = u and determine state of Xn+l" 

(4) Repeat 1-3 changing seasons when required. 

A MODEL FOR KENTUCKY 

The model was fit to daily rainfall records from weather station 

#0254 in Ashland, Ky. Forty years, 1932-1971, of daily rainfall data 

were available, with rainfall measured to the nearest hundredth of an 

inch. For model fitting a trace of rain was considered equivalent to no 

rain. 

Each month of the year was considered a season satisfying the 

assumptions of the model. Daily rain was divided into three states, 

state 1 = (0.0, .005) = no rain, state 2 = (.005, .145), state 3 = 

(.145, 00), values in inches. This classification was chosen since 

approximately equal numbers of rainfall events fell in class 2 and 3 for 

this station. The two-parameter gamma distribution given by 

53 



F(xJ i,k) = f x 
<11. k - 1) 

U 
1

' exp(-A, k U) dU 
i, 

0 

where 11· k and A, k are the shape and scale parameters, respectively, 
1, ]. ' 

was investigated as a distribution of rainfall amounts out of state i, 

season k. k 
The parameters p11 , 11i,k' Ai,k were estimated from the data 

by the method of maximum likelihood. The maximum likelihood estimators 

for 11· k and A, k were approximated by a method due to Greenwood and 
1., 1, 

Durand (1960) 

n* = (.5000876 + .1648852y - .0544274y2)/y 

if O .::_ y < 0.5772 

11* 8.898919 + 9.05995y + .9775373y2 

2 y(l7.79728 + ll.968477y + y) 

if 0.5772 < y .::_ 17.0 

where, 

y 
n 

ln( E 
i=l 

x./n) -
i 

n 
E 

i=l 
ln(x.)/n 

i 

x. = ith sample observation, from a sample of n observations. 
i 

The estimate 11* was corrected for small-sample bias as shown in Shenton 

and Bowman (1970, p. 61) 

n = (n-3)11*/n. 

The estimate for A is 
n 

n/ ( E 
i=l 

x. /n). 
i 
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For the months of June-October a single density function was used for 

wet events from states 2 and 3 since it was felt that the number of 

observations was not sufficient to reliably estimate the parameters of 

a density function for each state. Parameter estimates obtained are 

shown in Tables 8 and 9. 

The theoretical distributions were then checked for goodness of fit 

to the historical data by using x2 
tests. To compute the value of 

x2 , rainfall values were partitioned into 10 intervals using the in-

terval boundaries • 005, . 025, . 045, • 07 5, .105, .145, . 205, • 325, • 565, 

1.255, and UPPER BOUND. The last two intervals were combined for state 

3 in November. The value selected for UPPER BOUND depended on the 

estimated maximum rainfall value for the season. These values ranged 

from 1.955 in November to 3.405 in July. Observed frequencies in each 

class were determined from the historical data. Expected frequencies in 

each class were determined from the theoretical gamma distribution by 

numerically integrating between the interval boundaries to obtain the 

expected probability and then multiplying the expected probability times 

the total number of events. Since two parameters were estimated from 

2 the data, the x obtained had 6 degrees of freedom for state 3 in 

November and 7 degrees of freedom for the remaining months. The com-

2 puted x values are shown in Table lOa and seemed to justify the use of 

the gamma distribution. 

At this point the model consisted of 12 seasons and 3 states per 

season with a different distribution for each state. The probabilities 
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Month 

Jan 

Feb 

Mar 

Apr 

May 

Jun 

Jul 

Aug 

Sep 

Oct 

Nov 

Dec 

TABLE 8 

ESTIMATED PROBABILITY OF NO RAIN ON DAY n+l WHEN RAIN 

ON DAY n IS IN STATE i, ASHLAND, KY. 

State, day n 

1 2 

.68 .56 

.65 .56 

.63 .54 

.69 .so 

.73 .47 

• 72 .57 

• 71 .53 

.78 .SS 

.81 .64 

.80 .64 

.73 .58 

.68 .61 

56 

3 

.41 

.49 

.43 

.45 

.39 

.SS 

.51 

.53 

.so 

.57 

.45 

.43 



TABLE 9 

ESTIMATED PARAMETERS FOR ~AMMA DISTRIBUTED 

RAINFALL VALUES, ASHLAND, KY. 

Initial Model 

Month State n A 

Jan 1 .79 3.2 
2 • 65 2.9 
3 .80 2.2 

Feb 1 .84 3.4 
2 .74 2.8 
3 .68 2.4 

Mar 1 .86 2.8 
2 .63 1. 9 
3 .74 2.5 

Apr 1 .86 3.1 
2 . 77 2.6 
3 • 77 2.5 

May 1 .91 3.1 
2 .83 2.8 
3 .89 2.6 

Jun 1 .81 2.1 
2 .75 2.1 

Jul 1 .88 2.3 
2 .75 1. 9 

Aug 1 . 71 1.8 
2 .74 2.0 

Sep 1 . 71 2.1 
2 • 72 1. 7 

Oct 1 . 90 3.5 
2 .73 2.6 

Nov 1 .74 3.0 
2 .80 3.3 
3 . 65 2.5 

Dec 1 .90 3.9 
2 .70 2.3 
3 .73 2.5 
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TABLE lOa 

GOODNESS OF FIT OF STATE RAINFALL DISTRIBUTIONS 

Computed 2 7 degrees of freedom X 1 

State 

Month 1 2 3 

Jan 10. 3 10. 9 6.1 

Feb 7.1 7.0 8.3 

Mar 9.6 16.5 18.8* 

Apr 5.0 5.4 11.0 

May 5.4 13.2 8.5 

Jun 10. 2 10.5 

Jul 2.1 7.2 

Aug 41.4* 20.5* 

Sep 11. 7 13.5 

Oct 11.2 14.2 

Nov 29.3* 13.0 9.21:..I 

Dec 10.7 7.7 7.8 

1 - 6 degrees of freedom. 

* - significant at the .01 level. 
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k 
pil' i = 1, 2, 3; k fixed, were distinctly not equal and appeared to be 

monotonically decreasing for increasing i (cf. Table 8). In other 

words, as the amount of rainfall on day n increases, the probability of 

no rain on day n+l decreases. The possibility of making this probabi-

lity a continuous function of the rainfall amount was considered but not 

pursued. Visual examination indicated that the F(· li,k) were very 

similar in most cases for a particular season, k. Rainfall values from 

each of the states were pooled and parameters nk and Ak for a common 

distribution were estimated. The hypothesis that the rainfall values 

out of each of the states came from this common distribution could not 

2 be rejected in most seasons based on computed x values (cf. Table lOb). 

Thus for each of the 12 seasons only one distribution, F(· lk), of rain-

fall values was used and the number of parameters needed to be estimated 

was reduced by 38. Some modelling detail was lost by assuming one 

distribution per month; however, since a primary goal was to reduce 

historical data requirements and thus extend the usefulness of the model 

it was hoped (and subsequently was the case) that the loss of detail 

would not be significant. The final model consisted of 12 seasons with 

3 states and one rainfall distribution per season. The estimation of 

p~l' i = 1, 2, 3 and 2 parameters to fit F(·lk) in each season was 

required, or a total of 12 x (3 + 2) = 60 parameters. The parameters nk 

and Ak for the final model for Ashland, Ky. are shown in Table 11. 

The method of generating synthetic rainfall traces was described 

earlier. The process is initialized as follows, assuming the first day 
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TABLE lOb 

COMPUTED x2 FOR TEST THAT OBSERVATIONS FROM INDIVIDUAL 

STATES CAME FROM COMMON DISTRIBUTION 

State 

Month 1 2 3 2/ Pooled Data-

Jan 12.0 24.9* 12.5 18.1 

Feb 5.8 8.3 10.6 12.5 

Mar 8.2 24.4* 20.1* 25.4* 

Apr 5.3 5.9 10. 7 8.8 

May 7.3 14.3 7.8 12.6 

Jun 9.3 12.5 16.0 

Jul 2.0 9.4 7.5 

Aug 41.2* 21.6* 42.5* 

Sep 15.0 13.5 17.1 

Oct 10.6 16.6 17.0 

Nov 29.3* 11.9 11.s-:I:/ 34.0* 

Dec 11.3 6.0 9.9 12.4 

1 - 6 degrees of freedom. 

2 2 - values of X in this column indicate goodness-of-fit of the gamma 
distribution to all rainfall observations in the season. 

* - significant at the .01 level. 

60 



TABLE 11 

ESTIMATED PARAMETERS FOR GAMMA DISTRIBUTED RAINFALL VALUES 

ASHLAND, KY. 

Final Model 

Month n ;\ 

Jan .75 2.7 

Feb .78 3.0 

Mar • 77 2.5 

Apr .82 2.8 

May .89 2.9 

Jun .79 2.1 

Jul • 82 2.1 

Aug .73 1.9 

Sep .72 1.9 

Oct .83 3.1 

Nov .74 2.9 

Dec .81 3.1 
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generated is January 1: 

(1) 12 Determine the absolute probabilities pi, i = 1, 2, 3 of being 

in state ion December 31 from the historical data. 

(2) Generate a uniform random number, x, on (0, 1). 

(3) If 12 
initial state= 1 0 < x .::_ pl 

' 
12 

pl 
12 

< x .:.:_ pl + 12 
initial state 2 P2 ' 

= 

12 
+ 12 

pl P2 < x < 1, initial state 3. 

The generation of random observations from a gamma distribution 

with non-integral shape parameter was performed using a method suggested 

by Whittaker (1973). Because of closure under addition, a gamma random 

variable with any shape parameter can be constructed if one can be 

constructed for shape parameter p, 0 < p < 1. If O < n < 1 and u
1

, u
2

, 

u3 are three independent uniform random numbers from (0, 1), let 81 

ui/n and 8 = 2 
ul/(1-n) 

2 • If 8
1 + 82 .:.:_ 1, define Y = 8/(81 + 82) and x

1 
= -(Y/'A) log u3. Then x1 has the gamma distribution with shape para-e 

meter n and scale factor A. If 81 + 82 > 1, u
1 

and u
2 

are rejected and 

two more uniform random numbers on (O, 1) are generated. The probabi-

lity that 81 + 82 < 1 depends on the value of n and has a minimum of 

0.785 for n = .5. 

Evaluating the Model 

The model form obtained using the Ashland, Ky. data was used with 6 

other Kentucky weather stations shown in Table 12. Each of these 
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TABLE 12 

WEATHER STATIONS USED IN STUDY 

Station Number Location 

0254 Ashland 

0909 Bowling Green 

1345 Carrollton Lock 

3762 Henderson 

3994 Hopkinsville 

4825 Little Hickman 

6353 Pikeville 
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stations had 40 years of historical data from which model parameters 

were estimated, In order to evaluate the model performance, a number of 

descriptive statistics were tabulated for historical and simulated 

rainfall: 

(a) Mean monthly rainfall (Table 21, Appendix B), 

(b) Standard deviation of monthly rainfall (Table 22, Appendix B), 

(c) Maximum runs of wet and dry days (Table 23, Appendix B), 

(d) Maximum daily rainfall by months (Table 24, Appendix B), 

(e) Average annual number of wet days (Table 25, Appendix B), 

(f) Maximum and minimum total annual rainfall (Table 26, 

Appendix B). 

For each station, 6 simulated traces of 40 years length were generated. 

Table 21, Appendix B, shows that the model produced values for 

monthly and annual mean rainfalls which agreed well with historical 

values. The mean annual rainfall based on the average of six simula

tions was within 0.45 inches or 1.1% of the historical values for all 

stations. 

In Table 22, Appendix B the observed and simulated standard devia

tions are shown to be similar. The simulated rainfalls appeared to have 

standard deviations which were slightly smaller than those from observed 

rainfall, particularly for the months of January and February. The 

smaller standard deviations might be attributable to the decision to use 

a single rainfall distribution in each season for model simplicity and 

reduction of parameters. 
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Maximum runs of wet and dry days are shown in Table 23, Appendix B. 

The model seemed to be able to produce runs similar to those historical

ly observed. Table 24, Appendix B, shows maximum daily rainfalls by 

month. The model appeared to produce large rainfalls with less fre

quency than historically encountered. There was usually one simulation 

with a larger maximum than the historical maximum, but the average over 

all simulations tended to be smaller. 

Table 25, Appendix B, shows the average annual number of wet days, 

which the model reproduced very well. Maximum and minimum total annual 

rainfalls are shown in Table 26, Appendix B. The historic values were 

approached or exceeded by the simulated values for most stations. The 

average minimum simulated values were slightly larger than the historic 

minimums for all stations, however. 

In Tables 23 and 25 it was seen that the Markov model gave a good 

representation of sequences of wet and dry days. The fitted distri

butions (or perhaps the stationarity assumptions) appeared to produce 

extreme values less frequently than historically observed. 

Since the rainfall modeling was performed to provide inputs to a 

watershed model, a test of the rainfall model for this purpose would be 

to compare streamflow values produced by inputs of simulated and his

torical rainfall into a watershed model. The four-parameter monthly 

water yield model developed by Haan (1972b) was used. Table 13 shows 

the values of the four parameters used in the Haan model at each of the 

seven weather stations. Simulated and historical rain was routed 
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TABLE 13 

MODEL PARAMETERS USED IN RUNOFF GENERATION 

Rainfall 
f f Station s c max max 

254 • 67 .054 3.64 .65 

909 .53 .080 4.85 .70 

1345 .50 .017 4.11 .36 

3762 .53 • 068 5.33 .23 

3994 .58 • 080 5.65 .14 

4825 .55 .058 3.80 .52 

6353 .53 .032 7.50 .53 

f maximum infiltration rate, inches/hr. max 

s = maximum daily seepage rate, inches/day. max 

c = moisture holding capacity of less readily available 

groundwater storages, inches. 

f = fraction of seepage that becomes runoff. 
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through the watershed model to produce simulated monthly runoff at each 

station. Mean monthly and annual runoff values are shown in Table 27, 

Appendix B. Runoff from simulated rain agreed well with runoff from 

historical rain. Mean annual runoff averaged over the six sets produced 

by simulated rainfall was slightly lower than the mean annual runoff 

from historical rain at each station. The maximum difference never 

exceeded 0.71 inches, however. 

For each 40 year runoff record, from simulated and historical rain, 

the most severe 1-12 month low flows were computed, based on a March

February year, and are shown in Table 28, Appendix B. The average 

values of depth-duration low flows produced by the simulated rain 

approximated corresponding values produced by historical rain except for 

the longer durations of 10, 11, and 12 months. The low flows for these 

longer durations were usually larger for the runoff produced from 

simulated rain than the low flows produced from the historical rain. 

Each 40 year record of runoff was routed through a monthly re

servoir storage model to compare required storages based on runoff 

produced from simulated rain with storage required based on runoff 

produced from historical rain. Two constant annual water demand levels 

(reservoir outflows) were used, 5 inches and 10 inches. Results are 

shown in Table 14. With the exception of station #1345, the 5 inch 

demand storage requirements were similar for runoff produced by his

torical rain and runoff produced by simulated rain. For the 10 inch 

annual demand, storage requirements from simulated rain tended to be 

67 



TABLE 14 

RESERVOIR CAPACITY (INCHES) 

5 inch demand 

Simulation 

Sta 1 2 3 4 5 6 Ave. Hist 

254 2.0 2.0 2.0 2.2 1. 7 1.8 1. 95 1.8 
909 1.5 1.2 1.2 1. 9 1.2 1.6 1.43 1.5 

1345 2.9 2.5 2.8 3.1 3.2 2.9 2.90 4.0 
3762 2.8 2.8 3.8 3.4 3.3 2.4 3.08 3.3 
3994 5.1 5.6 3.9 4.7 4.1 4.1 4.58 4.3 
4825 2.1 1.6 2.4 1.8 1. 9 1.8 1. 93 2.0 
6353 1.6 2.1 2.0 2.5 1.5 1. 9 1. 93 2.0 

10 inch demand 

Simulation 

Sta 1 2 3 4 5 6 Ave. Hist 

254 7.3 4.8 9.8 5.2 5.2 4. 7 6.17 9.0 
909 3.4 3.6 4.2 4.6 3.0 4.4 3.87 4.0 

1345 7.1 7. 0 11.4 11.0 9.4 7.0 8.82 13.0 
3762 20.3 12.0 12.5 11. 6 14.8 10.2 13.57 12.5 
3994 16.7 17.5 16.0 16.8 20.5 14.2 16.95 19.0 
4825 4.7 4.4 7.1 4.9 7.7 4. 7 5.58 5.8 
6353 6.6 9.3 6.5 8.7 6.5 6.4 7.33 11.0 
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smaller than those for the historical rain. For all stations except 

#1345 and #6353, however, at least one simulation required a reservoir 

size which was greater than that required by the historical rainfall. 

Thus it appeared that although simulated runoff produced from synthetic 

rainfall might give an estimate for the storage required to be 99% sure 

of no reservoir failure during the 40-year design life of the reservoir 

which was less than the true 99% value, the simulated storage require

ment would still offer a better estimate of this storage than the single 

historical record. 

Data Requirements 

The final step in the model evaluation was to determine how much 

historical data would be required to yield stable estimates of the model 

parameters. This determination was made within the hypothesis that the 

model was correct. The first 15 years of historical data from station 

#0254 were used to estimate the model parameters. Forty years of 

simulated rainfall were then generated and model parameters were esti

mated from the initial 5, 10, 15, 20, 25, 30, 35 years of the simulated 

record. Visual inspection of these parameter estimates indicated that 

about 15-20 years, or 150 rainfall events per season, were required to 

yield stable estimates. Figures 2 and 3 show an example of parameter 

estimate stability vs. years of record used. Thus about 15 years of 

historical data is necessary for a monthly seasonal model in the Ken

tucky area. If fewer than 15 years of data were available it would be 
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necessary to use a model with seasons longer than a month. 

The modified model was then compared with the Markov chain model 

developed by Allen and Haan (1975) to determine if the modified model 

provided any improvement, The statistics generated by the modified 

model were compared with those obtained using the same seven weather 

stations and the Markov Chain model. The modified model was better 

able to reproduce monthly and annual mean rainfall than the Markov Chain 

model which was biased toward higher values. The modified model reduced 

the absolute error in annual rainfall from 2.5% to 0.5%. The remaining 

rainfall statistics were of comparable accuracy. Simulated runoff 

produced using each rainfall model with the Haan water yield model 

(1972) was compared, Synthetic rain from the modified model produced 

significantly better values of mean monthly and annual runoff than did 

rainfall obtained using the Markov Chain model. Annual runoff values 

with the Markov Chain model averaged about one inch high for all sta

tions. The annual runoff from the modified model was slightly less than 

that from historical rainfall for all stations. Comparing the reservoir 

storage requirements using each of the rainfall models showed that the 

modified model produced better results on the average. The historical 

data requirements of the modified model were found to be considerably 

less than those of the Markov Chain model, which appeared to require 

about 40 or more years of record. 
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SUMMARY OF CHAPTER IV 

A methodology was presented for evaluating parametric streamflow 

models for use in improving estimates of parameters in stochastic models 

of streamflow. In an example, a particular parametric streamflow model 

was studied (Haan, 1972). This parametric model was found to signifi

cantly improve annual stochastic model parameter estimates based on 4 

years of runoff data, when 31 years, including those years of runoff 

record, of daily rainfall data were available. The parametric model 

improved estimates for 34 of 36 monthly stochastic model parameters (cf. 

Table 6), as compared with estimates based on four year historical 

records of monthly flow. The parametric model was evaluated for its 

ability to improve estimates of parameters in a monthly Markov stream

flow model in the context of water supply reservoir sizing. It was 

found that the reliability of short-record estimates of these parameters 

could be improved in this context by using the parametric model. 

The type of parametric model used in improving stochastic model 

parameters depends on the inputs required and the available data. A 

parametric model for which few inputs are needed is less restricted by 

lack of available data but will generally give results which are less 

accurate than those of a model which requires a greater number of in

puts. Lack of data usually forces the use of the simpler parametric 

model with its inherent limitations. Due to these limitations there 

will necessarily exist a runoff record length beyond which the his

torical data will give better estimates of stochastic model parameters 
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than any extended record obtained from the parametric model. An example 

of this (X and r for October) was seen here. The parametric model 

predicted values of runoff in October which were too high. As a result, 

estimates of the October mean derived from 4 years of historical data 

had less variance about the best estimates than that of estimates 

derived from the extended record. Once the capabilities of a parametric 

model are determined to be sufficient for a given problem, it may aid in 

reducing the uncertainty of stochastic model parameter estimates, when 

adequate rainfall data is available. 

For the case when adequate rainfall data is not available, a daily 

point rainfall model was developed to provide the necessary inputs to 

the parametric model. The model used to generate synthetic traces of 

daily rainfall amounts at a point is a modification of the Markov Chain 

models. The present model requires discrete probabilities only for 

transitions into the state corresponding to no rain. Transitions to wet 

states are determined from a continuous probability distribution. The 

use of the continuous probability distribution, rather than discrete 

transition probabilities, greatly reduces the number of parameters which 

must be estimated from the data and hence the historical data require

ments. A two-parameter gamma distribution was used in the model at 

seven rainfall stations in Kentucky. The model was able to more ac

curately model the daily rainfall process than the standard Markov Chain 

model and appeared to offer a promising approach to the problem of 

synthesizing records of daily rainfall at a point. 
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The methods and models presented in this chapter make it possible 

to simulate reliable streamflow data for simulation studies in reservoir 

design and operation when minimal amounts of historical streamflow and 

rainfall data are available. 
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CHAPTER V 

WATER PRICE AND RESERVOIR DESIGN 

It was noted earlier that reservoir sizing studies require not only 

a knowledge of the probable inflow pattern to the reservoir, but also 

the probable outflow (demand) requirements on the reservoir. In the 

previous chapter methods for improving the reliability of estimates of 

possible future inflows to a reservoir when historical data was limited 

were discussed. In the present chapter it will be assumed that reliable 

estimates of probable future inflows are available, and the role of the 

demand function in reservoir design will be examined. 

The findings of the review of literature pertaining to residential 

water demand indicated that the price of water could be a significant 

factor in determining household demand. In the present study the 

economic efficiencies of various reservoir designs based on different 

assumptions concerning a possible price-demand relationship for a 

hypothetical community were evaluated. The purpose of these evaluations 

was to determine if an appropriate water pricing policy could be used to 

create greater community benefits from a water supply system than could 

be realized with conventional methods. Pricing policies based on three 

76 



different basic assumptions were evaluated. A description of these 

policies will first be presented and then a hypothetical example will be 

given to illustrate the economic consequences of their application in 

reservoir design. 

PRICING POLICIES FOR WATER SUPPLY 

The assumption of the first policy (really a non-policy) was that 

demand was not a function of price. This corresponded to the approach 

which views the demand for water as an intrinsic societal need which 

must be supplied. With this approach the projected demands on a pro

posed reservoir are based on present usage. The reservoir capacity was 

determined which would satisfy the projected demands with some degree of 

reliability. The price of water was then set to recover system costs. 

The assumption of the second policy was that a valid price-demand 

relationship did exist, A low price for water could cause high usage 

and benefits, but would require a large reservoir capacity at high cost. 

A higher price for water would cause lower usage and benefits, but would 

require less storage capacity at lower cost. That price for water, and 

the associated reservoir capacity, which yielded maximum net benefits 

(cf, James and Lee, 1971) was determined for the given level of reli

ability. 

The third policy assumed the price-demand relationship of policy 2 

and made the additional assumption that consumers would respond to 
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changes in price so that the price charged might be used to effect water 

conservation. This permitted the use of flexible pricing policies 

similar to the short time scale peak-load pricing schemes. The motiva

tion of a variable pricing policy was that if some degree of demand 

management were possible, increased system benefits might be achieved 

through a proper pricing policy. When water was plentiful and the 

reservoir was near full, a lower price for water would increase usage 

and utilize water which would otherwise have been lost to spillage. 

Conversely, the required storage might be reduced and net benefits 

increased if, during periods when reservoir storage was low, conserva

tion were achieved by increasing the price of water. The optimal 

variable-price policy was determined as that policy which yielded 

maximum net benefits to the community. 

Specific variable-price policies were studied in the example to be 

given. The policies were first evaluated using a deterministic price

demand function to determine if system benefits could be increased. 

Since there might be a great deal of uncertainty associated with actual 

consumer demands at various price levels, the variable-price policies 

were also evaluated using a random price-demand function. By incor

porating the probabilistic price-demand relationship into the design 

study, the effectiveness of the variable-price policies could be studied 

when only partial knowledge of consumer response to price changes was 

available. 
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Although the following example was based on Kentucky data, the 

general procedures are valid for any area where a price-demand rela

tionship exists. 

Example 

A rural Kentucky community of 750 households with a non-residential 

water demand equivalent to that of 3250 households was assumed. The 

total community demand for water was thus equivalent to that of 4000 

households. 

Water to the community was supplied by run-of-the-stream drainage 

from a four square mile basin. That is, the community was able to 

utilize available streamflow for water supply, but no facilities were 

available for monthly carryover storage. During summer and early fall 

the streamflow was often quite low and the water supply was augmented by 

pumped groundwater. Excessive groundwater use was undesirable, and 

during the months of low streamflow enough groundwater was supplied to 

insure that a minimum of 7 million gallons per month was available to 

the community but no more. The cost of the water supply was $.40/1000 

gallons and this was the price charged for water with the existing 

system. 

It was desired to see if water supply benefits to the community 

could be increased by building a water supply reservoir on the drainage 

basin. The design life of the project was taken as 50 years in economic 
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evaluations, with a nominal annual interest rate of 7 percent. The 

demands for water were assumed to be relatively stable during this 

period. The probability that the reservoir fail to meet demands during 

the design life was set to be less than .01. That is, the reservoir was 

designed to meet demands throughout the design life for at least 99% of 

all possible future SO-year sequences of monthly inflows and design 

outflows. A reservoir size-cost curve was assumed. This curve, la-

belled "cost curve" in figure 4, is given by: present value cost= 

.OOSS2 + 0.1758 - 0.27 where cost is in$ million and storage Sin 

inches. 

The 31-year (10/41-9/72) monthly streamflow record from the South 

Fork of the Little Barren River in Metcalfe County, Kentucky, was used 

as the historical record at the dam site. Since the most severe drought 

in the 31-year record could be quite different than that of the future 

SO-year design period, and in any event would not suffice to assess the 

system reliability, a stochastic streamflow model was used in simulation 

studies to evaluate the consequences of a number of different possible 

future SO-year streamflow sequences. A stochastic model which would 

preserve the estimated values of the first-order serial correlation 

coefficient, r, mean, x, and variance, 
2 

s • of monthly streamflow was 

considered satisfactory. The use of a model requiring a long historical 

record for parameter estimation was precluded by the amount of available 

data. Even with 31 years of record, the estimated values of the monthly 

first-order serial correlation coefficients carried a great deal of 
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uncertainty. For simplicity it was assumed that all parameter estimates 

for the streamflow model in this example were correct. The values of 

the three parameters were estimated for each month of the year and are 

given in Table 15. 

A Thomas-Fiering type streamflow model (Thomas and Fiering, 1962) 

was used in the form 

where 

s. 1 J-

qj = flow in month j, inches; 

qj mean flow in month j, inches; 

s. = standard deviation of flow in month j, inches; 
J 

rj = first-order serial correlation coefficient of flows in 

months j and j-1; and 

(4) 

t independent normally distributed random variable with mean 

O and variance 1. 

If a value of qj < 0 was generated, it was used to generate qj+l and 

then qj was set to O. It was found that the probability that qj = 0, 

p(qj = 0), for a given month j using equation (4) agreed well with p(qj 

= 0) derived from the historical data and that equation 4 provided a 

good representation of the streamflow process, while preserving the 

estimated values of the parameters. 
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TABLE 15 

STREAMFLOW STATISTICS 

-* Month r s* x 

Jan 0.13 2.46 3.22 

Feb 0.16 1.86 3.44 

Mar 0.14 1.68 3.65 

Apr -0.17 1.21 2.55 

May -0.08 1.14 1.46 

Jun -0.03 0.87 0.75 

Jul 0.18 1.29 o. 72 

Aug 0.49 0.45 0.29 

Sep 0.59 0.45 0.24 

Oct 0.66 0.24 0.15 

Nov 0.63 1.12 0.87 

Dec 0.64 1.90 2.25 

r - first-order serial correlation coefficient. 

s - standard deviation of monthly flows. 

x - mean monthly flow. 

* - values in inches. 
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A design based on the assumption that the demand for water was not 

a function of price was first evaluated. The connnunity's "true' annual 

demand, D, for water was assumed to be 11.98 inches (2560 ac-ft). This 

assumed annual demand was determined by using the Grunewald et al, 

relationship, equation 1, with u = 0 and the assumed cost=price of 

$.40/1000 gallons to find the annual household demand and then multi

plying this value by the assumed 4000 household equivalent connnunity 

demand, The monthly fractions of annual demand, fj, j=l, 2, ..• , 12, 

were assumed using information obtained by Dowell (1967) from Lexington, 

Ky,, and are shown in Table 16. "True" demand in each month was then 

computed as Dj = D x fj, An additional outflow of .283 inches/month was 

required to satisfy low flow requirements, evaporation and seepage 

losses, etc. from the proposed reservoir. 

Equation (4) was used to generate synthetic streamflow data for 

input into a simulation model to determine how much reservoir storage 

would be required to meet the outflow demands at the given level of 

reliability, assuming a full reservoir at the beginning of operation. 

One hundred 50-year sequences of possible future monthly inflows were 

generated for this purpose. A hypothetical reservoir of sufficient 

capacity such that no failure (storage< 0) could occur was assumed 

initially full in the simulation study. Each 50-year sequence of 

synthetic flows was routed through this hypothetical large reservoir, 

subject to the given demands, using, 
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TABLE 16 

MONTHLY FRACTION OF ANNUAL DEMAND 

Month Annual Fraction 

Jan 0.071 

Feb 0.073 

Mar 0.079 

Apr 0.077 

May 0.080 

Jun 0.101 

Jul 0.099 

Aug 0.095 

Sep 0.095 

Oct 0.081 

Nov 0.073 

Dec 0.076 

Lexington, Ky. data 
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= min(S , S. + X. 
max J J 

j 1, 2, ... , 600 (5) 

s max 

where 

Sj = storage at beginning of month j; 

S = maximum storage available in hypothetical reservoir; max 

Xj = inflow during month j; 

D. demand during month j; and 
J 

Yj low flow requirement, losses during month j. 

The maximum deficit which occurred in the reservoir for a given 50-year 

sequence corresponded to the storage capacity which would have sufficed 

to meet the demands during that period. The 100 values of required 

storage, S, corresponding to the 100 possible future inflows, were fit 

to a probability distribution in order to determine the storage capa-

city, S*, which would insure that the probability of failure during any 

given future 50-year period was less than .01. It was found that 

Gumbel's Extreme Value distribution (Type-I maximum) fit the values well 

(Appendix A). The required storage was found to be 20.3 inches (4330 

ac-ft). The estimated cost of the project was assumed to be $5.34 

million (cf. hypothetical cost curve, fig. 4). The present value of the 

system costs without the reservoir over the 50-year design life was 

assumed to be $3.25 million (based on average supply at the $.40/1000 

gallons cost), so that total system costs were $8.59 million. (The 

added costs of the reservoir system were assumed to be completely 

separable and additive to the costs of the original system.) The price 
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of water was set so that receipts from the sale of water would equal 

system costs. Solving 

49 
l: 

i=O 

12 12 ·+· 
l: PQf.(1/(l+r/12)) 1 

J = 8,590,000 
j=l J 

for P, where 

p price, $/1000 gallons; 

Q annual water use, 1000s gallons; 

f. fraction of annual use in month j; 
J 

r = nominal annual interest rate 

gave p = $.75/1000 gallons. 

and 

The second method of design, which assumed a valid price-demand 

relationship, was then evaluated. Using the relationship derived by 

Grunewald et al. (1975), the expected demand at a given price P was 

determined as: 

Q 

where 

- 915 -~~ 
exp(4.5)P • exp(u) - 915 1.05 exp(4.5)P · 

Q household demand in thousands of gallons per year, 

(6) 

u = normally distributed random variable with mean O and 

variance 0.096, 

P = price of water in $/1000 gallons, and 

exp(u) = expected value of exp(u). 
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Using the assumed monthly breakdown of annual use (Table 16) gave the 

expected community monthly demand at price P, 

Qj = 1.05 fj H exp(4.5) p-· 915 
(7) 

where 

H number of households and 

fj monthly fraction of annual demand. 

Equation 7 was used to find the community demands for prices ranging 

from $.40/1000 gallons to $4/1000 gallons. 

Using these demand levels and the streamflow sequences generated 

earlier, the reservoir routing procedure was repeated as before, for 

each price level, in order to determine the price for water, and cor-

responding reservoir size, which would yield maximum benefits to the 

community. The Gumbel distribution fit the values of required storage 

at each price level, and the 99% reliable required storages were found 

for each corresponding price. The present worth of the benefits pro-

duced by each system for each 50-year inflow sequence was computed using 

the nominal annual interest rate of 7%. The benefits produced were the 

benefits received from additional water provided which would not have 

been available without the reservoir. For a given system and 50-year 

inflow sequence, the produced benefits were computed for each month 

from, 

P(Q.) dQ. 
J J 

j 1, 2, .•. , 600 (8) 

~o 
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where 

Bj = added benefits in month j, $; 

P(Q.) = marginal value (price) of water, $/1000 gallons; 
J 

Qj = quantity of water supplied in month j, 1000s gallons; 

w = with reservoir; and 

wo = without reservoir~ 

Solving (7) for P gave the marginal value (price) function, 

P(Q.) = (1.05 f.H exp(4.5)/Qj)l/. 9lS (9) 
J J 

Equation 9 was used in (8) and the integration performed between the 

appropriate limits to find the monthly added benefits, Bj. In months 

of large streamflow, usage without the reservoir, ~
0

, could be higher 

than usage with the reservoir,~, since with the reservoir a portion 

of this streamflow might be stored for later use. Benefits added by 

the reservoir for these months are negative. That is, benefits from 

water supply to the community are less in these months with the re-

servoir than without the reservoir. The present worth of the produced 

benefits for a given system and 50-year inflow sequence was computed as 

where 

B = 
n 

600 
E B./(l+r/12)j 

j~ J 
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B 
n 

th present worth of produced benefits if n 50-year inflow 

sequence occurs; 

r = nominal annual interest rate; and 

j = monthly index. 

The expected present worth of produced benefits for a given system was 

computed as 

100 
B = " 

n=l 
B /100. 

n 

A plot of the present worth of expected produced benefits vs. required 

storage is shown in figure 4. Present worth of net benefits for a given 

reservoir are represented by the difference between the values of the 

corresponding points on the benefit and cost curves. With the reservoir 

cost curve used, expected benefits produced were never greater than 

costs for any level of development. Thus, in this case, the construe-

tion of a reservoir of any size would yield negative expected net 

benefits. 

Assuming the community would be price-responsive on a seasonal 

basis, the third method of design was investigated. The following 

variable-price strategy was evaluated. 

The price charged for water during month j was made a function of 

the amount of water in storage at the beginning of month j, 
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P, = P - (P - P . ) ((S. - S ) / (S - s )) l/n 
J max max min J con max con 

where 

if scon .'.:. sj .'.:. smax 

= p 
max 

if sj < s - con 

Pj price charged during month j, $/1000 gallons; 

p = maximum charge allowed, $/1000 gallons; max 

p = minimum charge, $/1000 gallons; min 

s. storage level 
J 

of reservoir at beginning of month 

s = storage con level below which rigid conservation is 

practiced and the price of water is set at p . 
max' 

s max maximum storage available; and 

n = a variable whose value is to be determined. 

j; 

(10) 

The quantity S - S represents the total storage available during 
max con 

normal operation when rigid conservation is not required. The quantity 

(S. - S )/(S - S ) represents the fraction of this storage 
J con max con 

remaining at the beginning of month j. From (10) it is seen that when 

the reservoir is full, P. = P . and when the reservoir level drops 
J min 

below S , P = P 
con j max For P = $4/1000 gallons and P , 

max min $. 40/1000 

gallons the pricing curves represented by (10) for various values of n 

are shown in figure 5. It can be seen that for small values of n the 

price increases rather rapidly as the storage level drops. For large 

values of n the price is relatively low until the storage level ap-

proaches the conservation level in which region the price increases 
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rapidly to P • As n + O, P. + P for all j. As n + oo, P. + P . 
max J max J min 

for S < S. < S , with P. = P for S. < S 
con J - max J max J - con 

By varying n from O 

to oo a broad spectrum of pricing policies can be obtained for selected 

P ,P.,andS. 
max min con 

The reservoir routing procedure was used with the one hundred 50-

year monthly inflow sequences and different pricing policies to deter-

mine the storage required and benefits obtained from each pricing 

policy. The storage level in the reservoir at the beginning of month j 

was determined from equation 5. This value was used in equation 10 to 

determine the price to be charged in month j. The price in month j was 

used in equation 7 to find the corresponding demand for month j. This 

value was used in equation 5 to determine the initial storage in month 

j+l and the process was repeated. The procedure was first performed 

using P = $4/1000 gallons and P . = $.40/1000 gallons. Pricing 
max min 

policies associated with S - S = 4, 6, 8, 10 inches and n = 8, 
max con 

24, 64, and 128 were evaluated. Results are shown in Table 17. The 

distribution of required storage values was found to be less skewed for 

the variable-price policies than for the constant price policies. In 

the former case it was found that the normal distribution fit the data 

better than the Gumbel distribution. Estimated curves of the present 

worth of expected net benefits for various policies are shown in figure 

6a. It was found that maximum expected net benefits were produced by 

the price curves given by n = 24 with S - S = 6 and by n = 64 with 
max con 

S - S = 8. The present worth of the expected net benefits for 
max con 
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s 
max 

s con 

n in. 

8 4 

8 6 

8 8 

24 4 

24 6 

24 8 

64 4 

64 6 

64 8 

64 10 

128 8 

128 10 

TABLE 17 

SIMULATION RESULTS 
VARIABLE PRICE STRATEGY 
P = $4/1000 GALLONS max 

p Capacity 
$/kgal ac-ft 

.58 1300 

.53 1540 

.50 1810 

.54 1410 

.48 1700 

.45 2060 

.52 1450 

.46 1810 

.43 2180 

.42 2620 

.42 2260 

.41 2690 

Present Worth 
Net Benefits 

$ million 

1.02 

1.52 

1.53 

1.05 

1. 74* 

1. 70 

. 98 

1.69 

1. 74* 

1.32 

1.68 

1.30 

* - optimal policy by expected net benefits criterion 

94 

Water 
Usage 
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154 

166 

173 

165 

181 

190 

171 

189 

199 

203 

202 

206 
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these policies was about $1,740,000. For the former policy, required 

storage was 7.97 inches (1700 ac-ft) and the average price charged was 

$.48/1000 gallons with an average usage of 181 gpcd. For the latter 

policy required storage was 10.24 inches (2180 ac-ft) and the average 

price charged was $.43/1000 gallons with an average usage of 199 gpcd. 

The pricing policy associated with n = 24 and S - S = 6 is shown 
max con 

in figure 7. 

The pricing policy evaluation was repeated with P = $10/1000 max 

gallons. Results are shown in Table 18 and net benefit curves seen in 

figure 6b. Maximum expected net benefits were produced by the policy 

corresponding ton= 128 and S - S 
max con 

8 shown in figure 7. The 

present worth of the expected net benefits for this policy was 

$1,810,000. Required storage was 11.57 inches (2100 ac-ft). The 

average price charged was $.45/1000 gallons with an average usage of 

197 gpcd. 

In order to reflect the uncertainty in the prediction of consumer 

demand for water when a variable-price strategy is used, the stochastic 

form of the demand model developed by Grunewald et al. (1975) was used, 

and is repeated here for convenience, 

Q 
- 915 

exp(4.5)P · exp(u) (11) 

where 
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s max 
s con 

n in. 

24 4 

24 6 

24 8 

64 4 

64 6 

64 8 

128 4 

128 6 

128 8 

128 10 • 

10000 8 

10000 10 

TABLE 18 

SIMULATION RESULTS 
VARIABLE PRICE STRATEGY 
P = $10/1000 GALLONS max 

p Capacity 
$/kgal ac-ft 

. 63 1240 

.53 1510 

.50 1830 

.63 1340 

.50 1640 

.46 2020 

.63 1360 

.50 1710 

.45 2100 

.43 2570 

.43 2260 

.41 2700 

Present Worth 
Net Benefits 

$ million 

1.06 

1.59 

1.56 

1.06 

1. 79 

1. 76 

1.00 

1. 77 

1.81* 

1.36 

1. 70 

1.32 

* - optimal policy by expected net benefit criterion 
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Water 
Usage 
gpcd 

155 

167 

175 

165 

181 

189 

170 

187 

197 

201 

207 

210 



Q = annual household demand, 1000s gallons; 

P = price of water, $/1000 gallons; and 

u =.independent random variable, normally distributed with 

- 2 mean, u • 0, and variance, s = 0.096. 

The function for the counnunity stochastic demand at price Pin month j 

is then given by 

( ) -. 915 ( ) Qj = fj H exp 4.5 P exp u 

where 

fj = fraction of annual demand in month j and 

H = number of households. 

(12) 

The variable-price policies with Pmax = $4/1000 gallons were re-eva

luated using equation 12 to generate community demand at a given price. 

This was done so that the optimal system produced in this manner could 

then be compared to that produced by using the deterministic equation 7 

and the effect of the uncertainty in demand could be evaluated. 

The simulation procedure used with stochastic demands differed from 

the earlier procedure only in that it was necessary to generate a random 

observation u from a normal distribution with mean O and variance 0.096 

at the beginning of each month j in order to derive the monthly demand, 

Qj' at a given price P. Also, in the computation of monthly benefits 

produced by the reservoir, equation 12 was used rather than equation 7 

to obtain the marginal value function, P(Qj), used in equation 8. 

Curves representing the upper and lower bounds which include 95% of all 
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realizations of equation 11 are shown in figure 8. The probability 

density function of the amount of water, Q, demanded by the community at 

a price o,f $.50/1000 gallons in the month of August is shown in figure 

9. It can be seen that the true demand may vary quite a bit from the 

expected demand in this case. 

The simulation results obtained using a variable-price strategy 

with P = $4/1000 gallons and stochastic demands are shown in Table max 

19. 

Discussion of Results 

Four possible pricing policies were studied. A description of the 

resulting optimal reservoir systems is given in Table 20. In system 1 

it was assumed that demand was not a function of price. The required 

reservoir storage was about twice that required by the variable-price 

systems. The price charged for water was about 67% higher than the 

average charge with the variable-price systems. If the assumption that 

no significant price-demand relationship existed were true, then the 

average usage would be 204 gpcd and net benefits assumed at least equal 

to costs. 

In systems 2, 3, and 4 the price-demand relationship given by 

equation (6) was assumed true. In system 2 the price charged for water 

was the same for each time period. Systems 3 and 4 were based on 

variable-price schemes developed to promote maximum utilization of 
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s max 
s con 

n ina 

8 4 

8 6 

8 8 

8 10 

24 4 

24 6 

24 8 

24 10 

64 4 

64 6 

64 8 

64 10 

TABLE 19 

SIMULATION RESULTS 
VARIABLE PRICE STRATEGY 

--STOCHASTIC DEMAND--
p = $4/1000 GALLONS 
max 

p Capacity 
$/kgal ac-ft 

.58 1340 

.53 1590 

.50 1880 

.49 2090 

.54 1460 

.48 1780 

.46 2110 

.44 2520 

.53 1560 

.46 1890 

.43 2250 

.42 2680 

Present Worth 
Net Benefits 

$ million 

1.22 

1. 71 

1. 71 

1.63 

1.26 

1.88 

1.90* 

1.54 

1.14 

1.83 

1.89 

1.52 

* - optimal policy by expected net benefits criterion 
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153 

165 

173 

178 

164 

180 

189 

194 

170 

188 

198 

203 



TABLE 20 

OPTIMAL SYSTEMS 

Average Average Present Worth Expected 
Capacity Price Usage Net Benefits 

System ac-ft $/kgal gpcd $ million 

1 4330 .75 204* not relevant 

2 DO NOT BUILD RESERVOIR 

3 2180 .43 199 1. 74 

3 1700 .48 181 1. 74 

3a 2110 .46 197 1. 90 

4 2100 .45 189 1.81 

Reservoir System Assumptions 

1 Reservoir design based on assumed "true" demands and price for 
water set to recover system costs. 

2 Reservoir design based on constant price-demand derived from 
price-demand function. 

3 Reservoir design based on variable price-demand with price a 
function of reservoir level. Maximum permitted charge is 
$4/1000 gallons. 

3a Same as system 3, but stochastic demand function used. 

4 Sarne as system 3, but maximum permitted charge is $10/1000 
gallons. 
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reservoir capacity. With system 2 the construction of a reservoir could 

not increase the expected net benefits from water supply when the given 

reservoir cost curve was assumed. 

Table 20 shows that system 3 produced two optimal systems based on 

the expected net benefits criterion. One policy required a higher aver-

age charge with lower average usage, but needed 380 ac-ft less storage. 

System 4 produced results which were roughly equivalent to the policy of 

system 3 associated with the pricing curve with n = 128 and S - S max con 

= 8. 

The assumptions of system 3a were identical to those of system 3 

except that uncertainty in consumer demand response was introduced by 

using the random price-demand function. The simulation results indi-

cated that the ability of the conservation pricing policies to increase 

system benefits was not significantly altered when this type of un-

certainty was present. Since the effectiveness of the conservation 

pricing was not significantly reduced by the demand uncertainty, the net 

benefits of system 3a were actually slightly larger than those of system 

3. This result was felt to be attributable to the stochastic nature of 

the operating policies. 

The choice of system 1 or either of systems 3 and 4 would depend 

upon the assumptions which were accepted. If it were believed that no 

price-demand relationship existed, then system 1 would be selected. If 

a price-demand relationship did exist, the use of the conservational 

pricing policies of systems 3 and 4 would produce substantially reduced 
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storage requirements and demonstrable expected net benefits. 

It was seen that the conservation pricing strategy remained ef

fective when the stochastic price-demand function was used to reflect 

uncertainty in demand response to changes in price. 

It should be noted that if it were assumed that demand was not a 

function of price, and system 1 were built, when in fact a price-demand 

relationship did exist, as in equation (6), then expected net benefits 

from the project would be negative, as was seen in the examination of 

the constant-price policies. 

SUMMARY AND CONCLUSIONS 

A hypothetical community was assumed in order to examine the 

effects of water pricing policies on water supply reservoir design. 

When it was assumed that the water rates did not influence the demand 

for water, a large storage capacity was required. When a price-demand 

relationship derived by Grunewald et al. (1975) for rural residential 

water demand was used in the design studies with the assumed reservoir 

cost function, it was determined that a reservoir should not be con

structed if a non-varying pricing policy was to be used. Conservation 

pricing policies designed to promote efficient use of available storage 

and reflect the higher marginal costs of supplying water during low-flow 

periods were examined. A low price for water was charged when storage 

levels were high in order to reduce losses due to spillage. A higher 
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price was charged for water when storage levels were low in order to 

conserve water. Reservoirs designed with these policies were found to 

provide a large average supply at low average prices and to produce 

substantial expected net benefits to the connnunity. The effect of un

certainty in consumer response to changes in price was studied by using 

a probabilistic, rather than deterministic, price-demand function in the 

design studies. It was found that the effectiveness of the conservation 

pricing policies was not reduced when this type of uncertainty in demand 

was present. 

Since any conservation pricing policy would probably be a new 

experience to water users, it is doubtful that the policy could be 

implemented without an educational campaign to stimulate consumer aware

ness. This consumer awareness could be achieved; however, as stated by 

Gysi (1972), '' the water utility must be a very public oriented 

organization that advertises clearly and repeatedly the changing price 

schedules and the reasons behind them." Of course in any actual operat

ing system the price-demand relationship must be continually reevaluated 

in order to achieve maximum utilization of the reservoir capacity. 

The simplifications used and the results obtained in this example 

serve only to outline the general consequences of the different pricing 

policies. It is strongly felt however that the results obtained do 

indicate that even in a more realistic framework the potential benefits 

to be achieved are of such significance that demand management of water 

supply by rational conservation pricing policies should not be ignored. 
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CHAPTER VI 

SUMMARY OF DISSERTATION 

The purpose of this study was to develop methods for water supply 

reservoir design which would increase the net benefits of the system to 

the community. To achieve this purpose, two major components of the 

reservoir system were studied, the estimated streamflow into the pro

posed reservoir and the demands placed on the reservoir. 

Uncertainty in the estimation of future streamflow into a proposed 

reservoir results in uncertainty as to the true storage needed to meet 

demand throughout the design life. Overdesign results in unnecessary 

investment and underdesign produces an inflated estimate of project 

benefits. For the majority of watersheds in Kentucky, historical 

streamflow data is limited. Capacity requirements for water supply 

which were based only on historical streamflow events could vary signi

ficantly from the true requirements for these watersheds. In order to 

overcome the difficulties of limited data and provide for the assessment 

of system reliability, the use of mathematical models of streamflow in 

simulation studies was examined. 
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Two broad classes of streamflow models were reviewed; the stochas

tic models which preserve selected streamflow statistics, and the 

parametric models which attempt to model watershed behavior. The 

stochastic models were found to be more suitable for simulation studies. 

The parameters required by these models cannot be reliably estimated 

from short historical streamflow records however. Two possible situa

tions of historical data inadequacy which might confront a water supply 

planner were envisioned. 

In the first case, only a few years of streamflow data is avail

able, but a relatively long record of daily rainfall exists in the area. 

By using the longer record of daily rainfall as input to a parametric 

runoff model, the historical streamflow record could be extended to a 

record whose length equals that of the rainfall record. Parameter 

estimates for a stochastic streamflow model obtained from an extended 

record might be more reliable than estimates based on a short historical 

record. A methodology was presented for evaluating the ability of a 

parametric runoff model to improve stochastic model parameter estimates 

in this manner. A water yield model (Haan, 1972b) was evaluated and was 

found to markedly improve the estimates of monthly and annual mean, 

variance, and serial correlation of streamflow when 31 years of daily 

rainfall was available and a 4 year historical streamflow record was 

assumed. In the water supply context, the parametric model was used to 

improve the parameter estimates for a Markov streamflow model. The use 

of the extended streamflow data for the estimation of the parameters of 
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the Markov model reduced the variance of required capacity estimates 

around the best estimate by 35%, when compared with capacity estimates 

based on the 4 year historical records. This method of improving 

streamflow estimates for design studies could be used to improve designs 

when no streamflow data were available at a proposed site. By install

ing a streamgage at the proposed site, several years of data could be 

collected while preliminary investigations took place and project 

approval was being obtained. These few years of streamflow data could 

then be used to obtain the optimum parameters for a water yield model. 

The water yield model could then be used with existing rainfall data to 

produce a streamflow record equal in length to the existing rainfall 

record. One procedure presently used when no streamflow data is avail

able at a site is to extrapolate data from a nearby watershed which is 

similar to the project watershed. The use of the water yield model 

would eliminate the need for this extrapolation and provide a more 

reliable storage estimate, if the water yield model represented the 

streamflow process with sufficient accuracy. 

The second case envisioned occurs when the rainfall record near a 

site is too short to adequately extend the streamflow record by the 

above method. The necessary inputs to the water yield model might be 

obtained from rain data transferred from a location away from the site. 

More reliable data might be obtained, however, by modelling the rainfall 

process at the watershed. An existing Markov chain model of daily point 

rainfall (Allen and Haan, 1975) was examined. The model represented the 
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process reasonably well but was not completely satisfactory. The model 

tended to produce rainfall values which were too large, and when used 

in conjunction with a water yield model, produced values of runoff which 

were also too large. It appeared that at least 40 years of historical 

data was required to reliably estimate the parameters of the model, and 

a model requiring less historical data was desired. A modification of 

the Markov chain model was proposed. Continuous distributions, rather 

than discrete transition probabilities, were used to represent the 

process when rainfall actually occurred. A two-parameter gamma dis

tribution was found to provide a good representation for daily point 

rainfall events in Kentucky. Daily rainfall data from seven weather 

stations across the state was used to test and compare the modified 

model with the original model. The modified model was found to more 

accurately represent the daily point rainfall process. Using the 

modified model with the water yield model produced runoff values which 

did not differ significantly from runoff produced by using historical 

rainfall in the water yield model. It was found that 15-20 years of 

historical data was necessary to obtain reliable estimates for the 

parameters of the modified model. Runoff produced by the water yield 

model using historical and simulated rainfall was used to determine 

reservoir storage requirements subject to given demands. It was con

cluded that the storage required for a given level of reliability could 

be more accurately estimated by examining a large number of runoff 

sequences derived from simulated rainfall than could be obtained using 
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the single historical rainfall record. 

By using the methods discussed, streamflow data for water supply 

reservoir design could be made available at a potential site where no 

historical streamflow data and as little as 15 years of daily rainfall 

data existed. The position taken in this study was that the streamflow 

data thus obtained would be used to estimate the parameters of a sto

chastic model of streamflow so that the probabilistic nature of the 

design could be studied. If it were felt that the streamflow could not 

be adequately represented by a stochastic model, the data obtained by 

these methods could be used directly, as in the traditional approach, in 

order to determine capacity requirements. In either case, improved 

estimates of future streamflow would produce better estimates of re

quired capacity for water supply and increase the economic efficiency of 

design procedures. 

The second part of the study examined the effect of water price on 

system design and behavior. The price to be charged for water is 

usually not considered when projected demands on a proposed reservoir 

are made. Recent studies indicated that the price charged for water may 

influence the demand however. A study by Grunewald et al. (1975) in

dicated that a price-demand relationship did exist for rural residential 

water demand in Kentucky. The information obtained by Grunewald et al. 

was used to derive three different water pricing policies which were 

used in a water supply reservoir design study for a hypothetical com

munity. Without the proposed reservoir, water was supplied by 
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unreliable streamflow. The first policy assumed that no price-demand 

relationship existed and projected demands were based on community usage 

when adequate streamflow was available. Required reservoir capacity was 

determined based on these demands and the price of water was set to 

recover system costs. The second pricing policy assumed a valid price

demand relationship, which enabled the benefits of added water supply to 

be evaluated in monetary terms. The price for water, and corresponding 

reservoir capacity, which provided maximum net benefits to the community 

was determined. The third pricing policy assumed the price-demand rela

tionship and allowed a variable price to be charged for water in order 

to promote maximum utilization of reservoir capacity and reflect the 

higher marginal costs required to supply water during low-flow periods. 

Nonlinear monthly pricing policies based on available water in storage 

were used. The optimal system was given by that variable price policy 

which yielded maximum expected net benefits to the community. 

It was found that the first policy required a large amount of 

reservoir storage. Since no price-demand relationship was used in this 

policy, it could only be assumed that expected benefits would equal or 

exceed costs. The evaluation of the second (constant) pricing policy 

indicated that no reservoir should be built, since the present worth of 

expected net benefits was never greater than zero using the assumed cost 

function. By using optimal conservational variable-price policies, 

however, the construction of a reservoir would yield expected net bene

fits whose present worth was about $1.8 million. The average price paid 
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for water was reduced by about 40% and the required storage was reduced 

by about 50%, when compared with the policy which assumed no price

demand relationship. 

The variable-price policy was evaluated using a probabilistic 

price-demand function to represent uncertainty in demand response when 

the price of water was changed. This uncertainty in demand response did 

not significantly reduce the effectiveness of the conservational 

variable-price policy. It was concluded that the demand management of 

water supply by the use of a proper conservational pricing policy might 

increase water supply benefits to a community. 

The methods and models proposed in this study do not pretend to 

represent final solutions to the problem of water supply reservoir 

design. There are many areas where further research is required. For 

example, a parametric water yield model which was computationally 

feasible for simulation studies would eliminate the need for stochastic 

models and possibly provide the ability to study the effect of anti

cipated land-use changes on streamflow from the watershed. Demand 

functions for the various sectors of municipal water use could provide 

for better estimates of projected demands at different price levels. 

The rising value of all resources insures that the study of methods 

which will reduce unnecessary expenditures for water supply will be of 

more than academic interest. The methods proposed in this study provide 

at least a tentative step in the direction of more economical water 

supply reservoir design. 
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APPENDIX A 

GUMBEL'S EXTREME VALUE DISTRIBUTION 

P(Y) = exp (-exp (-Y)) 

y = (X - b)/a 

a s/1. 283 

b ;;: - 0.45s 

where, 

x random variable with Gumbel's Extreme Value distribution 

x estimated mean of X 

s = estimated standard deviation of X 

Required storage for 99% reliability is found by solving 

P(S .:::_ S*) = .99 

as 

S* b - a ln(-ln(.99)). 
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APPENDIX B 

STATISTICS OF SIMULATED AND HISTORICAL 

RAINFALL AND SIMULATED RUNOFF 

TABLE 21 

MONTHLY MEAN RAINFALL 

Rain Generated for Station 254 

Simulation 

Month 1 2 3 4 5 6 Ave Hist 

Jan 2. 94 3.09 3.16 2.97 3.62 3.63 3.24 3.43 
Feb 3.13 2.78 2.98 2.88 2.81 3.06 2.94 2.94 
Mar 4.05 3.63 3.84 4.10 4.45 3.94 4.00 4.16 
Apr 3.36 3.52 3.64 3.64 3.35 3.56 3.51 3.39 
May 3.92 4.60 3.84 3.84 4.34 3.48 4.00 3.91 
Jun 3. 71 3.73 3.47 3.85 4.03 4.04 3.80 3.65 
Jul 4.23 3. 94 4.52 4.65 4.72 4.19 4.38 4.37 
Aug 3.63 3.73 3.30 3.25 3.19 3.68 3.46 3.43 
Sep 3.44 3.39 2. 72 2. 92 2. 64 3.09 3.03 2.76 
Oct 2.15 2.00 2.17 2.29 1. 90 2.15 2 .11 2.02 
Nov 2.47 3.05 2.21 2.59 2.52 2.89 2.62 2.76 
Dec 3.01 3.07 3.19 2. 96 3.02 2.98 3.04 2.86 

Ann. 40.02 40.54 39.04 39.94 40.58 40.69 40.13 39.68 

117 



TABLE 21 - CONTINUED 

Rain Generated for Station 909 

Simulation 

Month 1 2 3 4 5 6 Ave Hist 

Jan 5.13 5.29 4.85 4.41 4.58 5.02 4.88 5.14 
Feb 4.54 3.94 3.53 4.03 4.07 3.74 3.98 4.07 
Mar 5.50 5.83 5.70 4. 92 5.69 5.01 5.44 5.32 
Apr 4.60 4.20 4.45 4.38 4.66 4.20 4.42 4.23 
May 4.12 4.15 3.85 4.28 3.91 3.76 4.01 3.97 
Jun 4.44 4.02 4.14 4.29 4.38 4.20 4.24 4.23 
Jul 3.78 4.27 4.43 4.26 4.17 3.87 4.13 4.24 
Aug 3.67 3.40 3.70 4.06 4.34 3.89 3.84 3.52 
Sep 3.06 3.13 3.00 3.21 3.19 2.91 3.08 2.94 
Oct 2.56 2.58 2.21 2.32 2.62 2.52 2.47 2.42 
Nov 3.02 2.94 2.82 2.87 3.44 3.46 3.09 3.50 
Dec 4.33 4.24 4.37 4.17 4.52 4.49 4.35 4.22 

Ann. 48.76 47.99 47.04 47.20 49.57 47.08 47.94 47.78 
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TABLE 21 - CONTINUED 

Rain Generated for Station 1345 

Simulation 

Month 1 2 3 4 5 6 Ave Hist 

Jan 3.14 3.45 3.15 3. 24 2.88 3.35 3.20 3.45 
Feb 3.20 2.74 3.01 2.84 2.91 2.95 2.94 3.04 
Mar 4.14 4.12 4.99 4.11 4.81 4.17 4.39 4.45 
Apr 3.49 3.92 3.50 3.30 3.88 3.80 3.65 3. 71 
May 3.32 3.37 3.63 3.38 3.45 3.93 3.51 3.67 
Jun 4.21 4.55 4.12 4.06 3.92 4.28 4.19 3.94 
Jul 4.18 3.59 4.06 3.70 3.24 3.73 3.75 3.75 
Aug 3.87 3.11 3.79 4.32 3.51 3.09 3.62 3.25 
Sep 2.68 2.85 2.25 2.18 2.91 2.27 2.52 2.69 
Oct 2.31 2.61 2.41 2.48 2.63 2.49 2.49 2.25 
Nov 2.91 2.49 2. 77 2.85 2.43 3.12 2.76 2.94 
Dec 2. 71 2.91 2.53 2.87 3.39 2.93 2.89 2.67 

Ann. 40.16 39. 72 40.20 39.32 39. 96 40.11 39.91 39.81 
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TABLE 21 - CONTINUED 

Rain Generated for Station 3762 

Simulation 

Month 1 2 3 4 5 6 Ave Hist 

Jan 4.49 4.75 3.74 3.84 3.83 5.31 4.33 4.35 
Feb 3.19 3.17 3.10 3.38 3.15 3.55 3.26 3.46 
Mar 5.32 6.12 4.69 5.25 5.10 5.29 5.30 5.22 
Apr 4.19 3.89 4.83 4.93 4.42 4.57 4.47 4.40 
May 4.17 4.55 4.04 4.73 4.24 4.76 4.42 4.25 
Jun 3.52 3.11 3.34 3.44 3.53 3.14 3.35 3.65 
Jul 3.75 4.07 4.19 3.76 3.71 4.01 3.92 4.00 
Aug 3.11 3.49 3.56 3.45 3.67 3.06 3.39 3.15 
Sep 3.46 2.83 2.79 2.68 3.34 3.09 3.03 3.19 
Oct 2.60 2.97 3.11 2.64 2.83 2.73 2.81 2. 70 
Nov 3.15 2.89 3.06 3.17 3.14 3.33 3.12 3.33 
Dec 3.03 3.50 3.95 3.91 3.70 3.49 3.60 3.50 

Ann. 43.98 45.34 44.40 45.20 44.66 46.32 44.98 45.20 
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TABLE 21 - CONTINUED 

Rain Generated for Station 3994 

Simulation 

Month 1 2 3 4 5 6 Ave Hist 

Jan 4.70 4.46 4.60 4.83 4.96 4.79 4. 72 4.85 
Feb 4.07 4.46 4.59 3.70 3.86 4.33 4.17 4.01 
Mar 5.69 5.15 5.53 5.31 4.81 5.04 5.26 5.21 
Apr 4.47 4.66 4.57 5.00 4.58 4.34 4.60 4.26 
May 3.88 3.96 4.25 4.00 4.49 4.12 4.12 4.31 
Jun 4.33 4.08 4.11 4.08 4.16 3.97 4.12 4.17 
Jul 4.06 4.04 3.39 3.95 4.35 4.53 4.05 4.02 
Aug 4.00 3.74 3.12 3.29 3.10 3. 77 3.50 3.43 
Sep 2. 92 2.94 3.44 2.92 2.80 2.50 2. 92 2.97 
Oct 2.84 2.78 2.66 2.60 2.25 2.70 2.64 2.55 
Nov 3.24 3.67 3.49 3.95 3.42 2.79 3.43 3.79 
Dec 4.23 3.65 3.95 4.44 4.31 4.46 4.17 3.94 

Ann. 48.42 47.58 47.70 48.07 47.08 47.36 47.70 47.52 
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TABLE 21 - CONTINUED 

Rain Generated for Station 4825 

Simulation 

Month 1 2 3 4 5 6 Ave Hist 

Jan 4.78 4.26 4.08 4.13 4.28 4.38 4.32 4.37 
Feb 3.60 3.51 4.10 3.54 3.49 3.47 3.62 3.67 
Mar 4.43 4.75 4.70 4.39 5.01 4.42 4.62 4. 71 
Apr 3.53 3.94 3.78 3.93 3.64 3.55 3.73 3.87 
May 4.01 4.26 4.38 3.69 3.99 3.95 4.05 4.07 
Jun 3.92 4.20 4.84 4.64 4.43 4.39 4.40 4.35 
Jul 5.07 4.94 4.97 4.65 5.14 5.10 4.98 4.81 
Aug 3.94 4.35 3.82 3.51 4.07 3.61 3.88 3.81 
Sep 2.82 2.60 2.67 2.62 2.78 2.47 2.66 2. 96 
Oct 2.18 2.20 1. 78 2.13 1. 96 2.34 2.10 1. 94 
Nov 2.65 3.24 2.69 3.17 3.02 2.93 2.95 3.17 
Dec 3.67 4.02q 3.48 3.52 3. 93 3.65 3. 71 3.40 

Ann. 44.60 46.28 45.30 43.93 45.74 44.26 45.02 45.12 
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TABLE 21 - CONTINUED 

Rain Generated for Station 6353 

Simulation 

Month 1 2 3 4 5 6 Ave Hist 

Jan 3.84 3.66 3.11 3.38 3.31 3.49 3.46 3.56 
Feb 3.26 3.78 3.31 3.68 3.48 3.59 3.52 3.70 
Mar 4.69 4.45 4.17 4.49 4.61 4.26 4.44 4.34 
Apr 3.76 3.60 3.41 3.60 3.60 3.51 3.58 3.59 
May 4.09 3.89 4.03 4.22 4.15 4.50 4.15 3.91 
Jun 4.43 4.20 4.39 3.98 4.64 3.69 4.22 4.15 
Jul 5.91 5.26 5. 24 5.38 4.62 5.05 5.24 5.16 
Aug 3.90 3.64 3.53 3.68 3.35 3.90 3.67 3.60 
Sep 3.54 3.22 3.14 2.92 2.79 3.22 3.14 3.24 
Oct 2.44 2.56 2.49 2.28 2.20 2.26 2.37 2.16 
Nov 2. 72 2. 77 2.25 2.40 2.52 2.46 2.52 2.79 
Dec 3.02 3.03 3.59 3.09 3.30 3.47 3.25 3.12 

Ann. 45.60 44.06 42.66 43.10 42.57 43.40 43.56 43.32 
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TABLE 22 

STANDARD DEVIATION OF MONTHLY RAIN 

Standard Deviation of Monthly Rain for Station 254 

Simulation 

Month 1 2 3 4 5 6 Ave Hist 

Jan 1.52 1.47 1. 75 1.26 1. 73 1.49 1.54 2.10 
Feb 1.04 1.17 1.19 1. 31 1.28 1.02 1.17 1. 77 
Mar 1. 92 1.50 1.35 1.46 1.80 1.62 1.61 1. 76 
Apr 1.52 1.22 1.42 1.40 1.07 1.47 1.35 1.46 
May 1.65 1.55 1.52 1.48 1. 92 1. 38 1.58 1.88 
Jun 1.50 1.88 1.60 1. 93 1. 77 1. 64 1. 72 1.84 
Jul 1.56 2.04 1.58 1. 98 2.30 2.42 1. 98 1. 96 
Aug 2.24 1. 97 1.63 2.04 2.02 1.54 1. 91 1. 72 
Sep 1. 96 1.56 1.47 1. 51 1. 57 2.44 1. 75 1. 41 
Oct 1.42 1.06 1.12 1.08 1.20 1.24 1.19 1.06 
Nov 1.26 1.62 0.95 1. 09 1.54 1.09 1.26 1.34 
Dec 1. 30 1.19 1.32 1.08 1.17 1.23 1. 22 1.41 
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TABLE 22 - CONTINUED 

Standard Deviation of Monthly Rain for Station 909 

Simulation 

Month 1 2 3 4 5 6 Ave Hist 

Jan 2.29 2.84 1.87 2.23 2.28 2.11 2.27 3.95 
Feb 1.51 1.65 1.51 1. 94 2.01 1. 58 1. 70 2.39 
Mar 1.86 2.55 2.87 2.40 2.34 2.02 2.34 2.31 
Apr 2.54 2.11 2.11 2.26 1. 94 1. 72 2.11 1.59 
May 1. 90 1. 78 1.55 1. 94 1. 96 2.06 1.86 2.23 
Jun 2.31 2.02 2.03 2.16 2.52 2.18 2.20 2.57 
Jul 1. 51 2.06 2.41 1. 67 2.20 1. 78 1. 94 2.32 
Aug 1. 90 1.39 1. 78 1.90 2.94 1.85 1.96 1.65 
Sep 2.11 1. 77 1.67 2.14 1.94 1.86 1. 92 1.66 
Oct 1. 58 1. 77 1.42 1.31 1. 65 1.88 1.60 1.28 
Nov 1.48 1.48 1.59 1.52 1.65 1.39 1.52 1. 71 
Dec 3.08 1.98 2.03 1. 78 2.57 1. 98 2.24 2.13 
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TABLE 22 - CONTINUED 

Standard Deviation of Monthly Rain for Station 1345 

Simulation 

Month 1 2 3 4 5 6 Ave Hist 

Jan 1. 70 1. 70 1. 70 1.51 1.31 1.55 1.58 2.74 
Feb 1.86 1.48 1.59 1.46 1.40 1.47 1.54 2.07 
Mar 2.02 1.88 2.13 1. 91 1.94 1. 94 1. 97 2.88 
Apr 1.52 1.49 1. 61 1.80 1. 64 1.98 1.67 1.87 
May 1.28 1. 75 1.63 1.49 1. 78 1. 78 1. 62 1.87 
Jun 2.01 2.51 2.31 1. 73 2.01 1.65 2.04 2.40 
Jul 2.47 2.00 1. 91 1. 91 1.47 2.24 2.00 1.56 
Aug 2.40 1.69 2.40 2.62 2.27 1. 98 2.23 1. 79 
Sep 1. 71 1.65 1. 64 1. 74 1.49 1.33 1.59 1.56 
Oct 1.56 1.42 1.43 1. 40 1. 68 1.55 1.51 1.34 
Nov 1.24 1.09 1. 70 1. 37 1.40 1. 72 1.42 1. 60 
Dec 1.48 1. 27 1.41 1.43 1. 66 1.44 1.45 1.37 
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TABLE 22 - CONTINUED 

Standard Deviation of Monthly Rain for Station 3762 

Simulation 

Month 1 2 3 4 5 6 Ave Hist 

Jan 2.38 2. 71 2.00 2.51 1. 93 2. 78 2.38 4.05 
Feb 1.64 1. 57 1.66 1. 63 1.47 1. 63 1.60 2.15 
Mar 3.06 2.58 2.09 2.59 2.18 2.16 2.44 3.50 
Apr 1. 76 1. 79 1. 61 2.30 2.09 2.17 1.95 1. 91 
May 1.99 1.89 1. 79 2.27 2.01 1. 97 1.99 2.08 
Jun 1. 72 1.62 1.80 1.56 1. 74 1.69 1.69 1. 90 
Jul 1.60 2.47 2.01 1.59 1.99 2.37 2.00 2.60 
Aug 1. 91 2.22 2.48 1.82 2.23 1. 88 2.09 2.05 
Sep 2.21 1.82 1.63 1.84 2.04 2.13 1. 94 2.26 
Oct 1.43 2.02 1.60 1.32 1.64 1.01 1.50 1.69 
Nov 1.99 1.43 1.81 1.88 1.69 1.86 1. 78 2.02 
Dec 1.54 1. 79 1. 72 2.04 2.00 2.00 1. 85 1.93 

127 



TABLE 22 - CONTINUED 

Standard Deviation of Monthly Rain for Station 3994 

Simulation 

Month 1 2 3 4 5 6 Ave Hist 

Jan 2.42 2.29 2.49 2.20 3.20 2.30 2.48 3.96 
Feb 2.08 1.89 2.00 1.81 1. 90 1. 91 1. 93 2.32 
Mar 2.74 2.01 2,41 2.39 2.02 2.47 2.34 2.39 
Apr 1.69 2.19 1.81 1. 98 2.10 2.17 1. 99 1.68 
May 2.30 2.08 2.35 2.04 1. 99 2.23 2.16 2.54 
Jun 2.19 2.32 2.21 2.66 2.11 2.23 2.29 2.40 
Jul 1.64 1. 66 1.66 1. 91 2.32 2.12 1.88 1.88 
Aug 2.25 2.05 1.64 1. 74 1. 95 2.16 1. 96 1.82 
Sep 1. 77 1.55 1.80 1.68 1.45 1.54 1.63 1.85 
Oct 1,18 1.49 1.30 1.67 1.40 1.83 1.48 1.63 
Nov 1. 92 2.45 2.04 2.65 2.30 1. 76 2.19 2.33 
Dec 1.83 2.22 2.12 1.86 1. 96 2.14 2.02 1.89 
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TABLE 22 - CONTINUED 

Standard Deviation of Monthly Rain for Station 4825 

Simulation 

Month 1 2 3 4 5 6 Ave Hist 

Jan 2,07 l,51 1.96 1. 96 1. 92 1.80 1.87 2.98 
Feb 1.44 1. 93 1.94 1,69 1.42 1. 38 1.63 2.33 
Mar 2.00 2.06 1.58 2.15 1. 98 1. 59 1.89 2.15 
Apr 1.49 1.56 1.66 1. 76 1.60 1.58 1.61 1.81 
May 1.53 1,66 2.25 2.35 1.83 1.88 1.92 2.02 
Jun 1.83 2.12 2.22 2.30 1.87 1.89 2.04 2.13 
Jul 2.18 2.10 2.19 2.18 1.95 1. 98 2.10 1.96 
Aug 1. 74 2.33 1.60 1. 78 2.29 1. 75 1.92 1. 90 
Sep 1.69 1.45 1.42 1.55 1.87 1.56 1.59 1.50 
Oct 1.31 1. 26 1.04 1.08 0.92 1. 39 1.17 0.93 
Nov 1.33 1. 62 1.49 1.58 1.42 1.28 1.45 1.66 
Dec 1. 94 1. 73 1.47 1.68 1.92 1,56 1. 72 1. 76 
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TABLE 22 - CONTINUED 

Standard Deviation of Monthly Rain for Station 6353 

Simulation 

Month 1 2 3 4 5 6 Ave Hist 

Jan 1.30 1.51 1.28 1. 28 1.44 1.30 1.35 1. 67 
Feb 1.49 1.30 1.18 1.43 1.44 1.44 1.38 1.85 
Mar 1. 61 1. 70 1.51 1. 71 1.60 1.54 1.61 2.12 
Apr 1.41 1.39 1.40 1.38 1.43 1.49 1.42 1.42 
May 1. 64 1.67 1. 74 1.36 1. 71 1. 77 1.65 2.05 
Jun 2. 20 1.81 2.08 1.65 1. 96 2.00 1. 95 1. 71 
Jul 1. 99 2.23 1.68 2.23 2.06 1.82 2.00 2.29 
Aug 2.16 1.59 1.41 1.96 1. 74 1.82 1. 78 2.21 
Sep 2.38 1. 71 1.42 1. 76 1. 79 1. 79 1.81 1. 75 
Oct 1.26 1.22 1. 64 1. 23 1.19 1.08 1.27 1.27 
Nov 1.25 1.38 1.00 0.83 1.02 1.03 1.08 1.32 
Dec 1.55 1.28 1. 77 1. 68 1. 24 1.32 1.47 1. 38 
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TABLE 23 

MAXIMUM RUNS OF WET DAYS AND MAXIMUM RUNS OF DRY DAYS 

Station 254 

Maximum Run Wet Days 

Simulation 

Month 1 2 3 4 s 6 Ave Hist 

Jan 7 7 11 12 9 11 9.50 11 
Feb 7 7 7 9 11 s 7.67 9 
Mar 8 6 7 10 8 9 8.00 9 
Apr 11 9 8 8 6 12 9.00 6 
May 8 13 9 10 16 9 10.8 9 
Jun 6 8 8 10 7 7 7.67 10 
Jul 8 7 10 9 6 8 8.00 7 
Aug 7 7 6 7 7 6 6.67 7 
Sep 6 6 6 6 6 7 6.17 8 
Oct 7 6 6 7 6 6 6.33 5 
Nov 7 13 9 9 7 7 8.67 7 
Dec 9 7 8 8 7 8 7.83 8 
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TABLE 23 - CONTINUED 

Station 254 

Maximum Run Dry Days 

Simulation 

Month 1 2 3 4 5 6 Ave Hist 

Jan 20 13 16 19 14 13 15.8 14 
Feb 12 13 14 12 20 11 13. 7 12 
Mar 15 11 15 13 9 13 12.7 12 
Apr 18 13 11 14 14 24 15.7 20 
May 16 17 18 15 19 12 16.2 12 
Jun 16 18 17 14 17 15 16.2 19 
Jul 16 13 11 13 16 17 14.3 12 
Aug 22 19 16 17 16 20 18.3 22 
Sep 20 30 24 23 30 26 25.5 24 
Oct 29 21 21 19 20 27 22.8 27 
Nov 20 14 15 12 22 15 16.3 21 
Dec 15 12 21 14 16 13 15.2 14 
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TABLE 23 - CONTINUED 

Station 909 

Maximum Run Wet Days 

Simulation 

Month 1 2 3 4 5 6 Ave Hist 

Jan 10 10 7 9 8 8 8.7 8 
Feb 7 7 7 6 6 10 7.2 6 

Mar 7 7 9 12 10 6 8.5 8 
Apr 7 7 8 6 9 8 7.5 8 

May 6 7 6 7 10 9 7.5 8 
Jun 7 7 7 8 6 7 7.0 7 
Jul 6 5 8 8 10 6 7.2 8 
Aug 7 7 9 5 7 6 6.8 8 
Sep 7 6 6 8 9 9 7.5 9 

Oct 7 6 6 6 6 5 6.0 4 

Nov 5 7 9 6 6 6 6.5 7 
Dec 11 9 7 7 7 9 8.3 6 
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TABLE 23 - CONTINUED 

Station 909 

Maximum Run Dry Days 

Simulation 

Month 1 2 3 4 5 6 Ave Hist 

Jan 17 15 14 18 16 15 15.8 16 
Feb 14 13 13 11 13 13 12.8 12 
Mar 18 13 15 14 19 13 15.3 13 
Apr 21 18 17 21 14 15 17.7 16 
May 26 16 29 21 17 23 22.0 13 
Jun 22 16 20 19 20 20 19.5 18 
Jul 18 13 21 21 15 18 17.7 16 
Aug 18 26 30 19 25 17 22.5 21 
Sep 23 27 26 22 23 22 23.8 25 
Oct 27 28 20 21 28 24 24.7 26 
Nov 15 17 19 23 19 17 18.3 19 
Dec 19 18 12 14 14 14 15.2 19 
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TABLE 23 - CONTINUED 

Station 1345 

Maximum Run Wet Days 

Simulation 

Month 1 2 3 4 5 6 Ave Hist 

Jan 6 11 9 7 8 9 8.3 7 
Feb 9 6 9 8 5 6 7.2 5 
Mar 6 10 8 7 7 6 7.3 7 
Apr 7 9 6 7 9 9 7.8 5 
May 7 7 6 9 8 10 7.8 7 
Jun 8 9 9 6 9 7 8.0 8 
Jul 8 6 4 7 4 5 5.7 7 
Aug 7 4 8 5 7 5 6.0 4 
Sep 5 6 7 6 8 4 6.0 8 
Oct 8 7 7 6 7 6 6.8 5 
Nov 9 8 10 11 8 6 8.7 5 
Dec 6 8 8 9 6 7 7.3 7 
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TABLE 23 - CONTINUED 

Station 1345 

Maximum Run Dry Days 

Simulation 

Month 1 2 3 4 5 6 Ave Hist 

Jan 21 25 18 17 18 21 20.0 20 
Feb 18 17 22 22 16 20 19.2 21 
Mar 16 18 19 18 18 16 17.5 13 
Apr 23 16 17 17 19 20 18.7 15 
May 19 18 14 24 19 14 18.0 15 
Jun 16 23 20 18 23 15 19.2 28 
Jul 22 20 19 26 22 18 21.2 15 
Aug 21 24 31 19 26 29 25.0 31 
Sep 30 30 30 24 22 30 27.7 23 
Oct 22 24 28 27 25 30 26.0 27 
Nov 19 20 18 20 30 17 20.7 25 
Dec 18 18 16 20 20 20 18.7 25 
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TABLE 23 - CONTINUED 

Station 3762 

Maximum Run Wet Days 

Simulation 

Month 1 2 3 4 5 6 Ave Hist 

Jan 7 8 5 7 8 7 7 .o 6 

Feb 7 7 6 6 9 6 6.8 6 
Mar 9 7 6 8 7 8 7.5 6 
Apr 7 8 7 6 8 9 7.5 6 

May 7 7 7 13 7 7 8.0 6 
Jun 6 5 6 6 7 8 6.3 8 
Jul 6 6 5 6 8 5 6.0 7 
Aug 4 5 6 6 6 5 5.3 4 

Sep 7 5 6 6 6 7 6.2 10 
Oct 6 8 4 6 6 6 6.0 5 
Nov 5 7 5 6 5 8 6.0 5 

Dec 7 7 6 8 8 7 7.2 6 
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TABLE 23 - CONTINUED 

Station 3762 

Maximum Run Dry Days 

Simulation 

Month 1 2 3 4 5 6 Ave Hist 

Jan 18 15 20 18 19 25 19.2 23 
Feb 16 13 15 17 13 14 14.7 19 
Mar 20 15 14 13 14 18 15.7 15 
Apr 18 25 10 14 13 16 16.0 15 
May 19 20 16 14 23 15 17.8 16 
Jun 18 20 26 21 18 17 20.0 26 
Jul 16 19 24 20 16 18 18.8 19 
Aug 24 29 20 25 29 19 24.3 26 
Sep 22 26 28 30 24 29 26.5 23 
Oct 21 31 25 27 21 19 24.0 31 
Nov 22 19 20 21 18 22 20.3 24 
Dec 21 20 23 21 25 22 22.0 19 
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TABLE 23 - CONTINUED 

Station 3994 

Maximum Run Wet Days 

Simulation 

Month 1 2 3 4 5 6 Ave Hist 

Jan 9 6 8 9 8 8 8.0 7 
Feb 7 5 8 6 10 9 7.5 6 
Mar 8 10 7 14 8 6 8.8 6 
Apr 10 7 11 6 8 7 8.2 6 
May 8 7 10 8 9 9 8.5 8 
Jun 8 11 6 5 8 8 7.7 8 
Jul 7 5 6 5 6 7 6.0 6 
Aug 6 6 6 7 8 7 6.7 7 
Sep 6 9 8 9 5 6 7.2 6 
Oct 6 7 6 6 7 5 6.2 8 
Nov 7 8 8 6 10 5 7.3 7 
Dec 9 9 7 6 9 6 7.7 8 
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TABLE 23 - CONTINUED 

Station 3994 

Maximum Run Dry Days 

Simulation 

Month 1 2 3 4 5 6 Ave Hist 

Jan 15 19 20 17 22 18 18.5 27 
Feb 18 14 11 15 16 16 15.0 15 
Mar 18 18 16 17 17 20 17.7 14 
Apr 13 11 11 12 16 13 12.7 13 
May 26 14 21 20 14 20 20.7 18 
Jun 20 20 20 21 19 24 20.7 20 
Jul 21 18 23 18 28 19 21.2 20 
Aug 18 22 22 26 23 22 22.2 23 
Sep 23 24 30 24 16 24 23.5 28 
Oct 26 26 26 20 31 24 25.5 27 
Nov 20 20 25 25 20 27 22.8 21 
Dec 17 18 21 19 17 24 19.3 20 
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TABLE 23 - CONTINUED 

Station 4825 

Maximum Run Wet Days 

Simulation 

Month 1 2 3 4 5 6 Ave Hist 

Jan 9 6 10 6 8 8 7.8 7 
Feb 7 5 8 7 5 8 6.7 6 
Mar 6 6 7 6 7 11 7.2 5 
Apr 7 7 10 7 7 9 7.8 7 
May 6 5 6 7 7 8 6.5 7 
Jun 6 5 8 6 5 7 6.2 6 

Jul 7 8 7 5 12 7 7.7 9 

Aug 5 7 6 4 6 5 5.5 6 

Sep 5 6 8 5 6 6 6.0 7 
Oct 4 6 5 5 5 4 4.8 4 

Nov 6 7 8 6 5 5 6.2 7 
Dec 8 6 7 6 8 9 7.3 7 
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TABLE 23 - CONTINUED 

Station 4825 

Maximum Run Dry Days 

Simulation 

Month 1 2 3 4 5 6 Ave Hist 

Jan 15 16 15 17 13 13 14.8 19 
Feb 19 17 13 17 15 13 15.7 18 
Mar 14 15 16 17 13 12 14.5 13 
Apr 17 16 16 26 19 21 19.2 21 
May 15 17 16 27 18 19 18.7 17 
Jun 22 20 18 17 17 17 18.5 23 
Jul 18 14 15 17 17 21 17.0 19 
Aug 22 20 18 19 26 21 21.0 16 
Sep 29 30 29 18 23 29 26.3 28 
Oct 30 27 31 28 25 20 26.8 27 
Nov 18 23 24 18 20 18 20.2 21 
Dec 20 25 20 19 17 19 20.0 15 
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TABLE 23 - CONTINUED 

Station 6353 

Maximum Run Wet Days 

Simulation 

Month 1 2 3 4 5 6 Ave Hist 

Jan 12 9 8 8 12 8 9.5 11 
Feb 6 9 9 7 8 11 8.3 9 
Mar 7 10 8 7 8 9 8.2 7 
Apr 9 11 8 6 8 7 8.2 9 
May 9 7 10 9 10 10 9.2 9 
Jun 8 8 8 7 11 11 8.8 8 
Jul 12 7 12 9 9 11 10.0 9 
Aug 8 9 11 8 8 8 8.7 7 
Sep 6 6 8 7 5 9 6.8 5 
Oct 8 7 6 7 8 7 7.2 7 
Nov 8 7 7 8 8 8 7.7 7 
Dec 9 9 10 9 11 8 9.3 6 
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TABLE 23 - CONTINUED 

Station 6353 

Maximum Run Dry Days 

Simulation 

Month 1 2 3 4 5 6 Ave Hist 

Jan 12 14 17 11 17 11 13. 7 
Feb 
Mar 
Apr 
May 
Jun 
Jul 
Aug 
Sep 
Oct 
Nov 
Dec 

* -

13 11 10 10 15 12 11.8 
12 12 12 10 11 13 11. 7 
12 13 12 11 15 11 12.3 
12 14 14 14 16 17 14.5 
17 18 17 20 18 15 17.5 
15 15 15 16 13 12 14.3 
22 17 22 17 18 20 19.3 
19 22 26 20 24 21 22.0 
22 24 24 21 21 18 21. 7 
21 22 16 16 19 17 18.5 
14 13 15 15 17 15 14.8 

Investigation revealed that no reports were given from this 
station in March, 1971. The symbol '-' on the weather bureau 
tape was read into the computer as 'O'. The true value should 
be about 15. 
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TABLE 24 

MAXIMUM DAILY RAINFALL 

Maximum Daily Rainfall for Station 254 

Simulation 

Month 1 2 3 4 5 6 Ave Hist 

Jan 1. 98 2.44 1.88 1.69 2. 77 1.86 2.10 2.31 
Feb 1.49 1.40 1.66 1. 92 1. 95 2.48 1.82 2.40 
Mar 2.74 2.08 1.61 2.24 3.31 1. 70 2.28 2.63 
Apr 2.17 1. 69 2.64 2.44 1.49 2.75 2.20 2.67 
May 2.61 2.36 2.04 2.40 2.28 1. 76 2.24 3. 21 

Jun 2.27 2.50 2.11 3.33 3.39 2.34 2.66 4.09 
Jul 3.86 2.50 2.87 2.92 3.89 2.83 3.14 3.38 
Aug 3.22 3. 94 3.30 2.43 3.20 2.88 3.16 3.97 
Sep 3.09 2.65 2.50 1.81 2.50 2. 96 2.58 2. 91 

Oct 2.09 1. 97 2.09 1.85 1.85 2.11 1.99 1.62 
Nov 2.00 2.01 2.05 2.06 1. 89 1.83 1. 97 2.35 
Dec 2.00 1. 93 1.64 2.57 1.41 1.46 1.84 2.09 

Ann. 3.86 3.94 3.30 3.33 3.89 2. 96 3.55 4.00 
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TABLE 24 - CONTINUED 

Maximum Daily Rainfall for Station 909 

Simulation 

Month 1 2 3 4 5 6 Ave Hist 

Jan 3.30 4. 79 3.82 3.08 3.47 4.70 3.86 4.75 
Feb 3.14 2.98 2.42 2.79 3.79 3.01 3.02 3.01 
Mar 3. 72 4.01 4.50 3. 76 3.27 2. 72 3.66 4.48 
Apr 3.66 3.01 2. 92 2.50 3.70 2.17 2.99 4.61 
May 2.88 2.37 2.29 2.70 2.39 4.05 2.78 2.98 
Jun 3.34 2. 96 4.11 3.53 4.35 3.20 3.58 5.69 
Jul 2.26 3.00 3. 72 3.29 2.95 2.76 3.00 3.20 
Aug 4.01 3.09 2.69 3.45 4. 77 4.56 3.76 2.87 
Sep 3.61 3.85 2.84 3.26 2. 77 3.29 3.27 3.91 
Oct 2.62 2.96 2.37 2.85 2.75 2.67 2.70 2.70 
Nov 2.50 2.35 2.66 2.06 3.19 2.90 2.61 3.54 
Dec 4.03 2.24 2.97 4. 72 3.03 2.49 3.25 4.47 

Ann. 4.03 4.79 4.50 4. 72 4. 77 4.70 4.58 5.69 
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TABLE 24 - CONTINUED 

Maximum Daily Rainfall for Station 1345 

Simulation 

Month 1 2 3 4 5 6 Ave Hist 

Jan 2.36 2.19 2.44 2.44 2.32 3.54 2.55 2.93 
Feb 2.28 2.65 2.67 2.83 2.21 2.49 2.52 3.14 
Mar 3.12 3.06 3.07 2.33 3.03 2.25 2.81 3.66 
Apr 3. 30 2.74 2.82 2.16 2.22 2.87 2.68 2.45 
May 2.25 2.10 2.41 2.42 2.63 2.29 2.35 3.85 
Jun 2.56 2.68 4.81 3.40 4.12 2.20 3.30 4.25 
Jul 4.19 2.90 2. 98 3.17 2.26 3.92 3.24 2.88 
Aug 2.59 3.40 4.18 4.38 2. 97 2.65 3.36 5.05 
Sep 4.01 4.43 2.29 2.50 3.52 2.43 3.20 3.41 
Oct 2.20 2.08 2.76 2.26 1. 95 2.73 2.33 3.80 
Nov 2.09 1. 79 1.64 1.49 2 .11 1. 96 1.85 3.20 
Dec 2.16 1. 99 1. 77 2.57 1. 77 1. 92 2.03 2.90 

Ann. 4.19 4.43 4.81 4.38 4.12 3.92 4.31 5.05 
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TABLE 24 - CONTINUED 

Maximum Daily Rainfall for Station 3762 

Simulation 

Month 1 2 3 4 5 6 Ave Hist 

Jan 4.87 5.42 2.89 3.88 3.46 5. 72 4.37 4.15 
Feb 3.95 4.95 2.25 2.35 3.94 2.93 3.40 3.57 
Mar 3.25 3. 72 3.85 3.52 3.54 3.69 3.60 6.33 
Apr 2.95 2.90 3.17 3.95 3.66 3.55 3.36 3.91 
May 3.29 2.43 2.43 3.36 3.20 2.84 2.92 3.25 
Jun 2.53 2.57 3.54 3.40 3. 71 2.88 3.10 3.06 
Jul 3.34 3.70 4.60 2.89 4.57 3.44 3.76 5.02 
Aug 2.67 2. 64 5.50 3.48 4.80 2.53 3.60 4.32 
Sep 3.26 2.35 2.76 2.62 5.37 3.22 3.26 4.10 
Oct 2.40 2.66 2. 67 3.00 2.64 2.52 2.65 2.35 
Nov 2.60 2.04 2. 90 2.63 3.15 2. 90 2.70 2.83 
Dec 2.24 2.82 3.14 3.07 5.32 3.24 3.30 4.28 

Ann. 4.87 5.42 5.50 3. 95 5. 37 5.72 5.14 6.33 
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TABLE 24 - CONTINUED 

Maximum Daily Rainfall for Station 3994 

Simulation 

Month 1 2 3 4 5 6 Ave Hist 

Jan 2.91 4.40 3.42 3.14 6.15 2.95 3.83 4.47 
Feb 5.22 2.79 3.12 3.01 2.83 3.43 3.40 4.75 
Mar 4.21 2. 77 4.48 3.45 2.49 3.00 3.40 3.44 
Apr 3.04 3.62 4.42 2.44 2.34 3.17 2.84 3.37 
May 3.54 3.83 2.60 4.93 2.76 2.80 3.08 3.86 
Jun 2.58 2.84 5.00 5.08 3.74 3.93 3.86 4.22 
Jul 3.91 3.89 2.25 3.68 3.08 3.04 3.31 4.13 
Aug 2.87 3.53 3.14 3.13 4.60 5.06 3. 72 2.93 
Sep 3.05 2.36 2.41 3.37 2.89 2.99 2.84 4.15 
Oct 2.14 2.52 2.04 2.27 2.47 2.59 2.34 2.55 
Nov 2. 96 2.44 2.52 3.35 4.46 3.36 3.18 4.07 
Dec 2.63 4.45 3.06 2.49 3.12 2.66 3.07 2.75 

Ann. 5.22 4.45 5.00 5.08 6.15 5.06 5.16 4.75 
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TABLE 24 - CONTINUED 

Maximum Daily Rainfall for Station 4825 

Simulation 

Month 1 2 3 4 5 6 Ave Hist 

Jan 2.88 2.53 2.23 3.06 2.85 2.69 2. 71 3.10 
Feb 1. 99 2.44 3.99 2.15 1. 99 2.34 2.48 2.75 
Mar 2.24 2.67 2.69 2.60 3.92 2.76 2.81 3.00 
Apr 2.13 2.53 3.39 2.14 2.68 1.87 2.46 2.80 
May 3.00 3.68 2. 77 2.70 2.47 2.31 1. 90 2.65 
Jun 2.76 3.13 3.55 3.62 2.70 4.34 3.35 2.75 
Jul 2.24 2.46 2.65 2.63 3.84 2.55 2.73 3.50 
Aug 2.96 4.04 2.73 3.69 2.74 3.81 3.33 2.95 
Sep 2.51 2.54 3. 96 2.09 2.67 2.93 2.78 2.44 
Oct 2.18 1. 78 1.84 1.52 2.41 1.43 1.86 1.99 
Nov 1. 95 2.49 1.88 2.51 1. 72 1.93 2.08 2.15 
Dec 2.02 2.37 2.25 2.32 2.60 2.78 2.39 2.45 

Ann. 3.00 4.04 3.99 3.69 3.92 4.34 3.83 3.50 
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TABLE 24 - CONTINUED 

Maximum Daily Rainfall for Station 6353 

Simulation 

Month 1 2 3 4 5 6 Ave Hist 

Jan 2.59 1.87 1.41 1. 74 1.97 1.98 1. 93 2.05 
Feb 2. 92 1.67 2.07 2.93 2.59 2.49 2.44 2.67 
Mar 3.05 4.20 3.05 2.16 2.58 2.46 2.92 2.76 
Apr 2.21 2.05 1. 91 2.26 2.16 2.33 2.15 2.94 
May 2.23 1.82 2.44 1.88 2.54 2.11 2.17 3.02 
Jun 2.92 3.39 2.70 2.29 3.33 3.01 2.94 3.12 
Jul 3.76 2.16 2.47 2.58 2.86 2.75 2.76 3.41 
Aug 2. 96 2.60 2.75 2.29 2.21 3.05 2.64 2.43 
Sep 3.75 3.40 2.72 2.58 2.16 3.80 3.07 2.83 
Oct 1. 48 1. 88 2.68 1. 90 2.10 1. 76 1. 97 2.20 
Nov 1. 71 1. 91 1. 91 1.56 1.95 1. 72 1. 79 2.20 
Dec 2.10 1.58 2.47 2.73 2.00 1. 98 2.14 2.76 

Ann. 3.76 4.20 3.05 2.93 3.33 3.80 3.51 3.41 
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Sta 1 2 

254 128 131 

909 115 115 

1345 102 99 

3762 102 102 

3994 109 107 

4825 101 105 

6353 137 136 

TABLE 25 

AVERAGE ANNUAL WET DAYS 

Simulation 

3 4 5 

130 129 131 

113 110 117 

100 101 102 

102 102 101 

110 109 106 

103 100 105 

131 133 133 

152 

6 Ave Hist 

131 130 126 

114 114 113 

103 101 102 

105 102 102 

108 108 108 

106 103 103 

133 134 133 



TABLE 26 

MAXIMUM AND MINIMUM TOTAL ANNUAL RAIN 

Maximum 

Simulation 

Sta 1 2 3 4 5 6 Ave Hist 

254 53.49 50.98 54.65 50. 77 54.99 51.04 52.65 53.32 
909 69. 72 64.97 68. 72 68.01 68.96 57.24 66.27 63.72 

1345 53.43 55.08 51.61 52.99 52.66 60.53 54.38 53.26 
3762 58.42 63.82 63.90 55.93 59.83 56.79 59.78 71.01 
3994 61.57 64.86 63.59 62.41 60.82 69.57 63.80 71.17 
4825 58.28 57.21 60.98 59.16 56.13 59.31 58.51 64.75 
6353 61.46 59.84 56.68 54. 24 59.32 56.64 58.03 56.83 

Minimum 

Simulation 

Sta 1 2 3 4 5 6 Ave Hist 

254 26.80 29.88 30.79 31. 23 27.31 29.78 29.30 28.26 
909 33.81 34.63 33.82 33.66 37.78 32.16 34.31 31. 33 

1345 25.48 27.05 25.38 25.01 28. 88 26.50 26.38 23.78 
3762 32.03 25.87 29.92 29.99 30.61 30.80 29.87 28.25 
3994 34.01 28.97 34.32 33.46 31.64 29.14 31.92 28.47 
4825 34.44 33.91 25.69 31.90 32.84 35.88 32.44 31.04 
6353 34.03 31. 78 29.74 27.81 31.59 33.12 31. 34 30.69 
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TABLE 27 

MEAN MONTHLY RUNOFF FROM HAAN MODEL 

Mean Runoff for Station 254 

Simulation 

Month 1 2 3 4 5 6 Ave Hist 

Jan 1.88 1. 92 2.05 2.02 2.39 2.44 2.12 2.21 
Feb 2.06 1.85 2.02 1.93 1.97 2.21 2.01 2 .11 
Mar 2.97 2.41 2.66 2.89 3.12 2. 77 2.80 2.90 
Apr 1.65 1.84 1.82 1.92 1. 72 1.81 1. 79 1.82 
May 1.20 1.63 1.27 1.14 1.52 1.13 1.32 1.33 
Jun 0.88 0. 96 0.75 0.91 0.90 0.79 0.86 0.79 
Jul 0.57 0.67 0.57 0.80 0.99 0.87 0. 74 0.76 
Aug 0.52 0.54 0.46 0.49 0.49 a.so 0.50 0.54 
Sep 0.58 0.44 0.33 0.40 0.30 0.50 0.42 0.36 
Oct 0.48 0.43 0.35 0.32 0.33 0.36 o. 38 0.31 
Nov 0.49 0.65 0.35 0.48 0.44 0.57 a.so a.so 
Dec 1.24 1.53 1.14 1.09 1.09 1.22 1.22 1. 28 

Ann. 14.51 14.85 13. 77 14.40 15.27 15.18 14.66 14. 92 
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TABLE 27 - CONTINUED 

Mean Runoff for Station 909 

Simulation 

Month 1 2 3 4 5 6 Ave Hist 

Jan 3.60 3.89 3.38 3.12 3.33 3.70 3.50 3.81 
Feb 3.43 3.03 2.65 3.03 3,15 2.84 3.02 3.18 
Mar 4.13 4.49 4.35 3.63 4.32 3.82 4.12 3.92 
Apr 2. 91 2.62 2.74 2.64 2.83 2.31 2.68 2.48 
May 1. 69 1.56 1.46 1. 76 1.56 1. 72 1.62 1. 76 
Jun 1.41 1. 20 1.20 1.31 1.31 1. 23 1.28 1.42 
Jul 0.84 0,86 LOO 0.86 0.94 0.81 0.88 0.94 
Aug 0.66 0.62 0.68 0.78 1.07 0.67 o. 75 0.71 
Sep 0.56 0.57 0.57 0.67 0.68 0.56 0.60 0.58 
Oct 0.53 0.59 0.50 0.61 0.70 0.60 0.59 0.48 
Nov 0.76 0.74 0.61 0.70 0.94 o. 75 o. 75 0.85 
Dec 2.19 1. 79 1.91 1. 79 2.37 2.25 2.05 2 .17 

Ann. 22. 71 21. 97 21.05 20.91 23.20 21. 27 21.85 22.30 
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TABLE 27 - CONTINUED 

Mean Runoff for Station 1345 

Simulation 

Month 1 2 3 4 5 6 Ave Hist 

Jan 2.29 2.70 2.25 2.39 2.07 2.47 2. 36 2.61 
Feb 2.68 2.19 2.35 2.26 2.17 2.36 2.34 2.37 
Mar 3.22 3.19 4.02 3.17 3.90 3. 25 3.46 3.44 
Apr 1.69 2.14 1.88 1.62 2.23 2.18 1.96 2.02 
May 0.64 0.89 0.97 0.70 0.95 0.94 0.85 1.15 
Jun 0.93 1.04 0.97 o. 71 0.62 0.89 0.86 0.87 
Jul 0.69 0.45 0.56 0.54 0.27 0.53 0.51 0.47 
Aug 0.58 0.26 0.57 o. 77 0.47 0.30 0.49 0.41 
Sep 0.37 0.20 0.21 0.27 0.25 0.21 0.25 0.24 
Oct 0.21 0.30 0.22 0.20 0.28 0.24 0.24 0.19 
Nov 0.62 0.40 o. 73 0.63 0.60 0.71 0.62 0.56 
Dec 1. 26 1.37 1.07 1.51 1.93 1.63 1.46 1. 35 

Ann. 15.19 15.14 15.81 14.78 15.74 15.70 15.39 15.68 
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TABLE 27 - CONTINUED 

Mean Runoff for Station 3762 

Simulation 

Month 1 2 3 4 5 6 Ave Hist 

Jan 2.13 2.52 1.85 1.94 1. 76 2.93 2.19 2.34 
Feb 1.56 1.47 1.47 1.65 1.47 1.86 1.58 1. 72 
Mar 3.02 3. 77 2.47 2.94 3.00 3.20 3.07 2.99 
Apr 1.55 1.44 1.80 2.09 1.65 1.82 l. 72 1.86 
May 1.02 1.11 0.94 1.36 1.08 1.14 1.11 1.12 
Jun 0.40 0.40 0.50 0.42 0.50 0.50 0.45 0.45 
Jul 0.36 0.44 0.48 0.34 0.40 0.48 0.42 0.59 
Aug 0.33 0.34 0.44 0.29 0.38 0.24 0.34 0.39 
Sep 0.27 0.22 0.23 0.20 0.36 0.28 0. 26 0.32 
Oct 0.22 0.26 0.28 0.24 0.30 0.23 0.26 0.25 
Nov 0.43 0.34 0.42 0.51 0.51 0.40 0.44 0.49 
Dec 0.75 0.98 1.04 1.11 1.06 1.09 1.00 1.02 

Ann. 12.04 13.30 11.93 13.09 12.48 14.16 12.83 13.54 
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TABLE 27 - CONTINUED 

Mean Runoff for Station 3994 

Simulation 

Month 1 2 3 4 5 6 Ave Hist 

Jan 1.93 1.69 1.98 2.26 2. 34 2.13 2.06 2.30 
Feb 2.04 2.18 2.46 1. 70 1.85 2.21 2.07 1. 95 
Mar 3.15 2.51 2.83 2. 73 2.18 2.54 2.66 2.50 
Apr 1.42 1.67 1.46 1. 97 1.37 1.34 1.54 1.38 
May 0.81 0.75 0.99 0.73 0.97 0.91 0.86 1.09 
Jun 0.49 0.50 0.45 0.68 0.50 0.51 0.52 a.so 
Jul 0.39 0.26 0.21 0.31 0.32 0.43 0.32 0.37 
Aug 0.26 0,23 0.19 0.19 0.21 0.30 0.23 0.28 
Sep 0.19 0.16 0.16 0.17 0.17 0.14 0.16 0.28 
Oct 0.15 0,17 0.13 0.12 0.12 0.17 0.14 0.15 
Nov 0.43 0.47 0.44 0.65 0.48 0.22 0.45 0.51 
Dec 0.97 1.10 0.96 1.19 0.82 0.96 1.00 1.00 

Ann. 12.22 11.68 12.28 12.69 11.33 11.84 12.01 12.32 
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TABLE 27 - CONTINUED 

Mean Runoff for Station 4825 

Simulation 

Month 1 2 3 4 5 6 Ave Hist 

Jan 3.42 3.04 2.55 2.75 2.93 3.09 2.96 2.96 
Feb 2.58 2.61 3.14 2.55 2.51 2.50 2.65 2.66 
Mar 3.06 3.31 3.29 3.07 3.61 2.98 3.22 3.26 
Apr 1.61 1. 97 1.85 1.90 1.73 1.65 1. 78 1.93 
May 1.12 1.23 1.66 1.35 1.25 1.21 1. 30 1.36 
Jun 0.76 0.94 1.15 1.06 0.89 0.84 0.94 0.99 
Jul 0.82 0.91 0.95 0.75 0.82 0.88 0.86 0.92 
Aug 0.66 0.90 0.60 0.56 0. 70 0.50 0.65 0.52 
Sep 0.42 0.32 0.37 0.36 0.46 0.34 0.38 0.35 
Oct 0.33 0.35 0.27 0.24 0.29 0.32 0.30 0.32 
Nov 0.51 0.64 0.44 0.62 0.48 0.55 0.54 0.62 
Dec 1.46 2.02 1.32 1.62 1.82 1.53 1.63 1.56 

Ann. 16.75 18.24 17.59 16.83 17.50 16.40 17.22 17.44 
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TABLE 27 - CONTINUED 

Mean Runoff for Station 6353 

Simula ton 

Month 1 2 3 4 5 6 Ave Hist 

Jan 2.32 2.29 1. 61 1.96 1.81 2.15 2.02 2.09 
Feb 2.34 2.68 2.26 2.69 2.57 2.53 2.51 2.60 
Mar 3.52 3.30 3.10 3.34 3.44 3.12 3.30 3.20 
Apr 1. 94 1.81 1.54 1.69 1. 73 1. 57 1. 71 1.82 
May 1.30 1.17 1.34 1.37 1.50 1.58 1.38 1.36 
Jun 1.14 0.97 1.ll 0.84 1.19 0.91 1.03 0.95 
Jul 1.27 1.06 0.84 1.01 0.82 0. 76 0.96 LOO 
Aug 0.81 0.62 0.49 0.62 0.47 0.57 0.60 0.68 
Sep 0.75 0.50 0.39 0.51 0.37 0.56 0.51 0.47 
Oct 0.51 0.37 0.44 0.35 0.30 0.32 0.38 0.31 
Nov 0.58 0.45 0.53 0.36 0.36 0.39 0.44 0.45 
Dec 1.24 1.16 1.19 0.90 0.84 1.13 1.08 1.02 

Ann. 17. 71 16.37 14.86 15.65 15.41 15.59 15.93 15.96 
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TABLE 28 

MOST SEVERE LOW FLOWS DURING PERIOD 

(MARCH-FEBRUARY WATER YEAR) 

i • 

Low Flows for Station 254 

Simulation 

Mon 
Dur 1 2 3 4 5 6 Ave Hist 

1 o.oo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2 0.00 o.oo 0.00 o.oo 0.01 0.00 0.00 0.00 
3 0.04 o.oo o.oo 0.01 0.01 0.01 0.01 0.06 
4 0.07 0.03 0.05 0.03 0.15 0.10 0.07 0.16 
5 0.29 0.22 0.13 0.24 0.43 0.28 0.26 0.58 
6 0.53 0.48 0.60 0.41 0.98 0.68 0.61 0.91 
7 0.96 1.28 1.08 0.76 1.65 1.24 1.16 1.58 
8 1.52 1. 94 1.69 1.52 2.0S 2.00 1. 79 2.19 
9 2.43 2.73 2. 77 2.37 2.83 2.76 2.65 2.89 

10 3.45 3.69 3.62 3.20 3.63 4.34 3.66 3.55 
11 4. 95 6.09 4.46 3.96 6.53 6.98 5.50 4.25 
12 7 .11 7 .82 7.50 8. 77 10.09 9.20 8.42 4.92 
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TABLE 28 - CONTINUED 

Low Flows for Station 909 

Simulation 

Mon 
Dur 1 2 3 4 5 6 Ave Hist 

1 o.oo 0.00 0.00 o.oo 0.00 0.00 0.00 o.oo 
2 0.00 0.01 0.02 0.04 0.01 0.00 0.01 0.01 
3 0.09 0.16 0.17 0.12 0.17 0.00 0.12 0.08 
4 0.21 0.45 0.51 0.24 0.49 0.14 0.34 0.32 
5 0.83 0.89 1.22 0.34 1.15 0.50 0.82 0.79 
6 1.56 1.44 1. 98 0.57 2.19 0.88 1.44 1.27 
7 2.41 2.23 2.49 1.26 3.36 1.43 2.20 2.08 
8 3.69 3.29 3.32 2.24 4.93 2.41 3.31 2.98 
9 5.03 4.67 4.26 3.35 6.44 3.79 4.59 4.01 

10 6.97 6.69 5.59 4.59 8.33 5.43 6.27 5.26 
11 8.61 8.54 7. 72 8.47 10.22 7.75 8.55 7.10 
12 12.18 14.26 9.85 10.44 14.33 11.15 12.04 11.84 
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TABLE 28 - CONTINUED 

Low Flows for Station 1345 

Simulation 

Mon 
Dur 1 2 3 4 5 6 Ave Hist 

1 0.00 0.00 0.00 0.00 o.oo o.oo 0.00 0.00 
2 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 
3 0.01 0.03 0.03 0.02 0.01 o.oo 0.02 0.00 
4 0.04 0.08 0.07 0.08 0.01 0.01 0.05 0.01 
5 0.09 0.13 0.14 0.15 0.01 0.03 0.09 0.04 
6 0.16 0.24 0.21 0.25 0.04 0.10 0.17 0.08 
7 0.27 0.40 0.34 0.35 0.13 0.19 0.28 0.16 
8 0.46 0.86 0.49 0.57 0.22 0.57 0.53 0.34 
9 1.12 2.17 1.15 1.42 0.82 0.82 1.25 0.63 

10 3.03 3.59 1.58 2.21 0.93 1. 38 2.12 1.48 

11 4.26 5.99 2.41 3.05 2.08 2.26 3.34 1. 78 
12 6.35 8.38 2. 96 5.35 3.91 4.04 5.16 3.03 
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TABLE 28 - CONTINUED 

Low Flows for Station 3762 

Simulation 

Mon 
Dur 1 2 3 4 5 6 Ave Hist 

1 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 
2 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 
3 0.01 0.00 0.03 0.00 0.06 0.07 0.03 0.02 
4 0.09 0.03 0.12 0.04 0.16 0.14 0.10 0.08 
5 0.220 0.10 0.34 0.14 0.27 0.29 0.23 0.21 
6 0.45 0.20 0.52 0.30 0.53 0.69 0.45 0.37 
7 0.74 0.35 0.80 0,59 0.73 0. 92 0.69 0.68 
8 0.97 0.56 1.02 0.95 0.94 1.38 0.97 0.81 
9 1.29 0.91 1.37 1.40 1.26 1.65 1.31 0.98 

10 1.60 1.55 2.03 1.88 2. 72 1.94 1. 95 1. 21 
11 1. 95 2.51 2.37 3.16 3.41 2.62 2.67 1.59 
12 2.35 4.33 4.74 3.94 3.76 4.16 3.88 3.83 
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TABLE 28 - CONTINUED 

Low Flows for Station 3994 

Simulation 

Mon 
Dur 1 2 3 4 5 6 Ave Hist 

1 0.00 0.00 0.00 0.00 o.oo 0.00 0.00 0.00 
2 0.00 0.01 0.00 0.00 0.02 0.00 0.00 0.01 
3 0.03 0.04 0.03 0.02 0.03 0.01 0.03 0.04 
4 0.08 0.08 0.08 0.07 0.05 0.04 0.07 0.08 
5 0.19 0.28 0.14 0.13 0.14 0.21 0.18 0.13 
6 0.35 0.34 0.26 0.23 0.32 0.28 0. 30 0.25 
7 0.54 0.45 0.42 0.44 0.52 0.41 0.46 0.52 
8 o. 92 0.69 0.65 o. 70 0.79 0.59 o. 72 0.79 
9 1.11 1.07 0.89 0.97 1.04 0.81 0.98 1.00 

10 1.39 1.29 1.39 1.18 1.52 1.11 1.31 1.20 
11 2.63 1.58 1.67 2.86 2.97 2.12 2.30 1.49 
12 2.95 3.58 3.39 4.26 3.97 6.01 4.03 3.64 
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TABLE 28 - CONTINUED 

Low Flows for Station 4825 

Simulation 

Mon 
Dur 1 2 3 4 5 6 Ave Hist 

1 0.00 0.00 0.00 0.00 o.oo 0.00 0.00 0.00 
2 0.04 0.01 0.00 0.03 0.00 0.04 0.02 0.00 
3 0.04 0.04 0. 03 0.10 0.03 0.14 0.06 0.02 
4 0.15 0.15 0.03 0.36 0.11 0.2l 0.17 0.06 
5 0.33 0.55 0.08 0.57 0.27 0.45 0.38 0.28 
6 0.43 0.87 0.23 0.74 0.61 0.73 0.60 0.79 
7 1.17 1.45 0.50 1.20 1.13 1. 20 1.11 1.36 
8 2.07 2.62 1.03 1.82 1. 94 1.98 1. 91 1. 74 
9 3.02 3.94 2.33 2.65 2.47 3.55 2.99 2.21 

10 5.13 4.40 3.64 3.43 4.68 5.16 4.41 2.81 
11 7.09 5.79 5.46 4.30 7.39 5.90 5.99 3.99 
12 8.53 8.75 7.50 7.60 9.83 8.28 8.42 6.03 
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TABLE 28 - CONTINUED 

Low Flows for Station 6353 

Simulation 

Mon 
Dur 1 2 3 4 5 6 Ave Hist 

1 0.09 0.04 0.08 0.07 0. 06 0.09 0.07 0.06 
2 0.21 0.09 0.17 0.17 0.18 0.24 0.18 0.14 
3 0.35 0.18 0.26 0.31 0.35 0.36 0.30 0.22 
4 0.55 0.29 0.43 0.44 0.56 0.59 0.48 0.40 
5 0.79 0.43 0.61 0.63 0.82 0.74 0.67 0.58 
6 1.07 0.61 0.83 0.84 1.04 1.00 0.90 0.79 
7 1.32 0.92 1.12 1.10 1.54 1. 27 1.21 1.15 
8 1.69 1. 23 1.48 1.42 2.06 1,55 1.57 1.69 
9 2.12 1. 69 1.80 1.80 2.63 1.83 1. 98 2.09 

10 2.59 2.09 2.17 2.14 4.02 2.33 2.56 3.29 
11 5,69 2.90 2.66 2.83 5.41 2.87 3.73 5.02 
12 8.05 4.93 5.74 5.35 7.51 6.30 6.31 6.58 

167 



p'. 
1 

r 

s 

s 
r 

x 

r (x) 

APPENDIX C 

SELECTED NOTATION 

stochastic model parameter 

stochastic model parameter estimated from runoff simulated 

by the parametric runoff model 

stochastic model parameter estimated from sub-record r 

stochastic model parameter estimated from the parametric 

model extension of sub-record r 

sub-record estimate of a stochastic model parameter 

extended-record estimate of a stochastic model parameter 

probability of no rain on day n+l given rainfall on day n 

in state i, season k 

estimate of the lag-one serial correlation coefficient for 

a given period of flow 

estimate of the standard deviation of flow for a given 

period 

number of sub-record 

estimate of the mean flow for a given period 

the Gamma function 
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n. k 1., 

>.. k 
1., 

µ 

p 

2 
a 

shape factor for gamma distributed rainfall from state i 

in season k 

scale factor for gamma distributed rainfall from state i 

in season k 

mean flow for a given period 

lag-one serial correlation coefficient 

variance of flow for a given period 
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