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ABSTRACT 

Study of springs and cave streams has shown that heavy metal-rich 
effluent from a wastewater treatment plant can be traced to Hidden River 
Cave (beneath the city of Horse Cave) and thence 4 to 5 miles north to a 
group of 39 springs at 14 locations along a 5-mile reach of Green River. 
Nickel, chromium, copper and zinc in these effluent-bearing springs are 
in concentrations of as much as 30 times greater than other springs up
stream and downstream from this reach, 20 times greater than the Green 
River, and 60 times greater than in shallow domestic wells between Horse 
Cave and the river. Mean concentration ratios, based on samples taken 
during moderate to flood flow, are considerably lower. Although the 
heavy metal content of the effluent-bearing stream in Hidden River Cave 
greatly exceeds various maximum concentrations set by current standards, 
the concentrations in the effluent-bearing springs do not exceed current 
maximums allowed for public water supplies. None of the domestic shallow 
wells between the cave and the river intercept this effluent-rich water. 

The distributary system that was postulated to feed the 39 springs 
was entered by digging in June 1975; 14.6 miles of this floodwater maze 
has been mapped. 

Water tracing over distances of as much as 15 miles has made it 
possible to delineate thirteen groundwater basins, eleven of them 
characterized by distributary flow. Study of the water quality· of five 
adjacent groundwater basins showed that they could be geochemically 
differentiated. One of these, the Three-Springs Groundwater Basin, has 
a distributary complex that is 2.4 miles wide and its discharge is 
believed to be affected by brines released by drilling. 

Dendritic flow paths, identified by dye-traces to and from caves 
(and mapping of these caves), have been recognized in the Turnhole 
Spring Groundwater Basin (Quinlan, 1976) and the Graham Springs Ground
water Basin. Flow converges to trunk streams as much as 40 ft wide that 
may rise and fall as much as 100 ft in response to heavy rains. Ground
water velocities in the upper part of the principal aquifer range from 
30 ft per hour to 1300 ft per hour, depending upon the duration and 
intensity of rains. 

Recorrmendations are made for: l) the use of drainage basin maps for 
regional planning and protection of water supplies, 2) protection of 
other water supplies, and 3) development of specific springs as potential 
public water supplies. 

DESCRIPTORS: Water Cycle, Water Quantity Management and Control, Water 
Quality Management and Protection 

IDENTIFIERS: *Karst, *Kentucky, *Caves, *Limestone, *Tracers, *Dyes, 
Optical Brighteners, Springs, Heavy Metals, Water Pollution, 
*Groundwater 
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CHAPTER I 

INTRODUCTION 

Project Objectives 

This project had three general objectives: 

1. Obtain basic data relevant to an understanding of the hydrology of the 

Central Kentucky Karst. 

2. Identify major present and potential sources of groundwater pollution, 

their flow paths, rate of movement, and the discharge point to where 

they go once they may enter the ground. 

3. Prepare a summary of the hydrology of the area which can be read, 

understood and used by federal, state, county, and local officials, 

as well as by professional engineers, geologists, and planners. This 

Phase I completion report is not that summary. Such a document will 

be prepared after the next (and last) completion report and will be 

written in a completely different style. 

Statement of Limitations 

It should be stressed that this is an interim report that is written 

while work is in progress -- much map compilation and other drafting 

remains to be done. We are confident of the accuracy of the statements 

and conclusions of this report but discussion of many others, now 

considered to be tentative, is deferred until the next report. The Phase 

Il report on this project will be more comprehensive but will have a 

different emphasis. 

Many of the dye traces on which some conclusions are based were run 

by National Park Service personnel under the supervison of James F. 

Quinlan. The results, on open-file at National Park Service headquarters 
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at Marrmoth Cave, have been incorporated into this report. All tests 

contributed to an understanding of the regional hydrology, 

Background Infonnation 

Description of Study Area 

The study area is shown in Fig. 1. It is a 1125 square mile (2915 

km2
) area (15 square miles of which is not shown in the map) of Central 

Kentucky in which most of the terrain is gently rolling and pitted with 

sinkholes. It is arbitrarily bounded by the banks of the rivers, creeks, 

and branches shown. Most of our work, however, has been done in the 860 

square miles (2200 km2 ) area south of the Green River. 

All of the Central Kentucky Karst is underlain by various limestones 

of Mississippian age that dip very gently (generally 40-100 ft per mile) 

to the north, northwest, and west. The stratigraphy of the area is 

summarized in Fig. 2. Most of the waters studied occur in the St. Louis 

and Ste. Genevieve Limestones. The U.S. Geological Survey has published 

geological maps (with structural contours) of each of the 7 1/2 minute 

quadrangles that include the study area. Reviews of the geology and 

hydrology have been published by White et al (1970), Quinlan (1970), 

and Quinlan and Rowe (1977). Except as relevant elsewhere within this 

report no attempt will be made to discuss the regional geology or review 

the voluminous literature concerning the karst. It has most recently 

been summarized by Lambert (1976), Quinlan (1976), Miotke (1975 & 1976), 

Miotke & Palmer (1972), and Palmer & Palmer (1975). This report is 

concerned with the results of new research. 

General reports on the resources of the area, its water quality 

and sewage treatment problems, and basic data on the area, have been 
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summarized and published by: Weston (1976), Hensley-Schmidt (1973), U.S. 

Army Engineer District, Louisville (1975), U.S.D.A. River Basin Planning 

Staff (1975), and the Barren River Area Development District (1976). 

Fig. l shows a broad streamless area, the Sinkhole Plain, that has 

been the principal area of study. More than 40 streams along its south 

and east border sink into the ground -- to ultimately resurge at springs 

along the Green, Barren and Little Barren Rivers. We have studied the 

subsurface of the area between where they sink and where they resurge, 

how they get there and the nature of waters in the aquifer. 

Major Recognized Problems 

The flow of water in limestone terrains is notoriously plagued with 

problems. The flow is different from that in other rocks because caves 

in limestone may transmit water as much as six or more orders of 

magnitude faster than most other rocks -- and in unpredictable directions. 

Yield of water wells is also unpredictable. As a consequence, pollutants 

move rapidly -- before they have time to biodegrade, break down, die, or 

be neutralized or sorbed by the rock or sediment through which they move. 

Three recognized examples of pollution-related problems in the 

Central Kentucky Karst will be cited: 

1. Horse Cave area (summarized chiefly from Payton, 1932, and Branstetter, 

1974). Until 1912 this city obtained its water from Hidden River 

Cave, beneath its center. Municipal water was then obtained from 

wells but during the drought of 1930 and for several years thereafter 

the cave stream was again used. Several cases of typhoid fever 

occurred and a cholorinator was installed in 1932. Within a few 

years wells again became the sole source of groundwater but there 
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were problems of quality and quantity available for a growing town. 

Supply problems were alleviated by the creation of the Green River 

Valley Water District that developed Rio Springs (Site #3 on Fig. 5) 

on the north side of Green River. Today these springs supply water 

for Horse Cave, Cave City, and much of the area between these cities 

and the Green River. 

Until the Horse Cave wastewater treatment plant went into 

operation in 1964 individual residences and businesses disposed of 

sewage and other waste by means of septic tank and tile field or 

direct. discharge into wells or sinkholes. During 1931 oil refinery 

waste that was dumped into a sinkhole south of Hidden River Cave and 

near the city limits, appeared in wells and in the cave. Payton 

(1932) cites several other examples of how the municipal wells were 

commonly affected by waste disposal. Hidden River Cave had been 

operated as a commercial tourist attraction from 1916 until 1944 but 

by then, in spite of lawsuits and countersuits, the cave was forced 

to close because of malodorous and aesthetic problems caused by fecal 

waste and, beginning in 1944, whey from a local creamery (W. T. 

Austin, verbal communication, 1974). 

The wastewater treatment plant, approximately l mile southwest ·Of 

the entrance of Hidden River Cave, uses a trickling filter for 

secondary treatment. At first its effluent was discharged into an 

adjacent sinkhole but, when this became clogged, two disposal wells 

were drilled. All three disposal sites drain to the South Branch of 

Hidden River Cave. The effluent from the plant was unusually septic 

because much of it consisted of creamery waste. This problem was 

partially "solved" by dilution when a metal-plating plant went into 
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operation in 1970. This plating plant discharges approximate.ly 60,-70% 

of the 10,000,000 gallons per month of effluent discharged by the 

treatment plant. Unfortunately this effluent also includes nickel, 

chromium, zinc, and copper that are present in Hidden River Cave in 

concentrations of as much as 8.90 mg/1 chromium, 19.4. mg/1 nickel, 

2.1 mg/1 zinc and 1.2 mg/1 copper -- most definitely toxic to animal 

life and far above the maximum allowable for drinking water. Higher 

concentrations are present in the influent. These concentrations and 

their implications will be discussed in the body of this report. 

A 24-hour composite sample of plant effluent in a May 1975 

survey of it included the following characteristics: 

Biochemical Oxygen Demand (BODs) 445 mg/1 

Chemical Oxygen Demand (COD) 786 mg/1 

Suspended Solids (SS) 153 mg/1 

These figures and other data were supplied by Robert Ware, Sanitary 

Engineering Associate, Kentucky Division of Natural Resources and 

Environmental Protection (verbal communication to D.R. Rowe, 

December 1976). 

For comparison, and to indicate how the treatment plant should 

be operating, the Water Pollution Control Act of 1972 (Public Law 

92-500) requires that the monthly average of the maximum levels in 

the discharge of municipal wastewater receiving secondary treatment 

be: 

Biochemical Oxygen Demand (BOD) 

Suspended Solids (SS) 

30 mg/1 

30 mg/1 

These figures are cited by the Izaak Walton League (1973, p. 24). 

Part of the report on the May survey of the treatment plant by 
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the Division of Natural Resources and Environmental Protection was 

quoted in the Hart County Herald of July 10, 1975. The survey "showed 

that the plant is 'all practically non-functional under the present 

operating conditions."' The conclusions quoted in part include: 

"'l. The plant, which has a design capacity for a 4,000 
population is receiving a waste load which is 
organically equivalent to a population of 13,556.'" 
[The 1970 population of Horse Cave was 2068.] 

"'2 •..• the appearance of the incoming wastes was 
indicative of milk and/or cheese plant wastes. 

"'3. The concentrations of certain metals indicate that 
Ken-Dec controls are ineffective. These metals can 
not be reduced to an acceptable level by conventional 
treatment means. Further, these are toxic to the 
biological life that must be present in order that 
the treatment plant can perform its function. 

"'4. The plant efficiency is considerably less than the 
design expectancy of 85 percent. (The survey 
showed the plant operating at 55 to 59 percent 
efficency.) The plant is so grossly overloaded that 
about 92 to 98 percent reduction would be required 
in order that effluent concentration limits be 
complied with.'" 

The State of Kentucky, the City of Horse Cave, officials of 

the metal-plating plant and officials of the cheese and whey plants 

have been involved in trying to solve these problems of alleged 

pollution but no attempt will be made herein to summarize these 

efforts, or the various accounts of them published in the Hart County 

Herald during the past few years, but the issues for May 8 and July 

17, 1975 (Matera, 1975) are also relevant. 

Hidden River Cave is the type locality for the Horse Cave Blind 

Fish, Typhlichtys osborni which was described in 1905 and later shown 

to be synonymous with Typhlichtys subterraneous. According to 

Branstetter (1974, p. 30, 32) the blindfish were once so abundant in 

the stream that they had come through the faucets of a house near the 

cave's entrance. With increased pollution, however, "the fish 
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population decreased and eventually disappeared." Today it is no 

more. 

2. Horse Cave area. An estimated 4000 gallons of gasoline was lost by 

leakage from an underground steel tank from February 1975 until 

November 1975 when it was discovered and the tank replaced. Gasoline 

fumes were detected in the basement of certain nearby buildings. 

These fumes could have been accidently exploded underground by cave 

explorers or by water well pumps. Both types of catastrophic 

accidents have occurred elsewhere in the U.S. and have been described 

in detail. 

3. Smiths Grove area. According to Warren County court records, in 1970 

a company was responsible for dumping an estimated 340 tons of whey 

into a sinkhole. No adverse effect was intended or anticipated but 

the water supply of Smiths Grove, approximately 5 miles to the 

northwest, became foul and unfit to drink for more than a month. This 

is described in issues of the Park City Daily News issues of September 

4, 10, 16, 25, and October 1, 8, and 15, 1970. The dumping ceased 

and the water supply was restored to its former quality. 

Research described in this report indicates that if the whey had 

been dumped a mile or two north or east of where it was, it would have 

entered part of Mammoth Cave National Park -- with consequent 

destruction of the fauna of cave rivers and streams. 

Some Potential Problems of Wastewater Disposal, 
Water Supply, and Industrial Development 

The above-cited examples raise strong questions about the health, 

safety and economic welfare of the people in the Central Kentucky Karst --
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and about the protection of the subterranean fauna of Ma111TIOth Cave 

National Park, as well as that of other caves in the area. Some of 

these questions are: 

l. Where does the heavy metal-rich, effluent-laden stream in Hidden 

River cave go? Does it affect the water quality of any of the 

domestic wells between the city and Green River? Might some of this 

water be going to Mammoth Cave National Park? 

2. What might be the environmental consequences of locating an effluent

producing new industry or a sewage treatment plant that would dispose 

of its effluent into the ground at various places in the Central 

Kentucky Karst, specifically in or near the Sinkhole Plain? What 

towns and water supplies might be affected by any such new activity? 

Would industrial growth have to be curtailed? 

3. Is Marrmoth Cave National Park affected or potentially affected by 

present-day waste disposal practices at Horse Cave, Cave City, and 

Park City? If so, to what extent? 

4. How and where does water move through the ground in limestone 

terrains? How fast? What controls this movement? 

The reported research provides answers for many of these questions. 
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CHAPTER II 

RESEARCH PROCEDURES 

Water Analysis 

For this first phase of the project only partial chemical analyses 

were run. Interest was primarily in the heavy metals, alkalai metals and 

chloride content of the waters. Analyses made during Phase II of the 

project, as part of a study of regional variation in the quality of well 

waters, are relatively complete analyses. 

Specific conductance was measured in the field with a Beckman 

RB3-338 Solu Bridge conductivity meter. It corrects the reading to 25°C 

when the temperature dial is set at the sample temperature. Specific 

conductances below 600 micromhos/cm were recorded to the nearest 

micromho/cm. Specific conductance measurements were reproducible to 

within ±0.4%. 

Samples were collected in 1-quart plastic cubitainers into which 

4 ml of concentrated nitric acid had been previously added as a 

preservative. Cubitainers are routinely used by the Kentucky Division 

of Water Quality for the collection of samples to be analysed for heavy 

metals and have been shown to be contaminant-free. (W.M. Andrews, verbal 

communication, 1975). Because of leakage problems, however, a different 

type of bottle, also allegedly water-tight, was then used in May and 

June 1975. But the nitric acid leached heavy metals from their red 

plastic caps and these analyses for heavy metals had to be discarded. 

All metals were analysed by atomic absorption with a Perkin-Elmer 

Model 403 Flame Atomic Absorption Spectrophotometer by W.M. Andrews of 

the Kentucky Division of Water Quality. Depending upon sample site and 

elements to be analysed, a portion of many samples was concentrated by 
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slow evaporation. Specifically, a 500 ml portion of all spring, river, 

well, and Hidden River Cave-East Branch samples were concentrated 10:l 

and analysed for heavy metals. A 250 ml portion of Hidden River Cave

South Branch samples was concentrated 5:1. Heavy metals in sewage plant 

influent and effluent samples were analysed after digestion, but without 

concentration. Alkalai metals were analysed without concentration. 

Certified standards were repeatedly run for the purposes of calibration 

and re-calibration. Blanks, consisting of distilled water with a similar 

amount of nitric acid, were concentrated to the same proportion as the 

samples, analysed before and after each sample, averaged as background, 

and added or subtracted from the reading for each sample. 

The following are the limits of detection for the elements analysed: 

Detection Limit before 
Metal 10:l Concentration (mg/1) 

Chromium . 003 
Copper . 003 
Nickel .01 
Zinc .003 

Metal Detection Limit (mg/1) 

Ca lei um . 01 
Magnesium .01 
Potassium .01 
Sodium .01 

Analysis of 10:l Concentrations 
Recorded to (mg/1) 

.0001 

. 0001 

. 001 

. 0001 

Analyses Recorded to (mg/1) 

. l or l . 0 

. 01 or O. l 

.OlorO.l 

. 01 or O. 1 

Metals that were recorded to the nearest 0.0001 mg/1 had this last 

digit retained in all calculations but means were rounded off to the 

nearest 0.001. Ratios between comparable samples were calculated to the 

nearest 0.01 but later rounded off to the nearest 0.1. 

Chloride was determined by the mercurimetric method, as discussed 

in Standard Methods and recorded to the nearest 0.1 for values less than 

10 and nearest unit for values greater than 10. 

Some samples were analysed for mercury, cadmium, lithium, iron, 
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and manganese. Mercury was analysed by flameless cold vapor atomic 

absorption spectrophotometry. Cadmium, lithium, iron and manganese were 

analysed by flame atomic absorption spectrophotometry. Mercury, cadmium, 

lithium, and manganese were present in trace concentrations that showed 

no significant systematic variation and analyses for them ceased. These 

results will not be discussed further. 

Iron in Green River water averages less than twice the old, but no 

longer existing maximum allowable limit of 0.3 mg/1 in drinking water 

(U.S. Public Health Service, 1962). The iron content of the Green River 

and of spring water increases directly with suspended sediment, but this 

is to be expected. The concentration of iron would have been much less 

if the samples had been filtered. 

It can be argued that all samples should have been field-filtered. 

But the very low heavy metal content of the samples with by far the 

highest suspended solids content -- those from Green River -- is very 

similar to or less than that of the four groundwater basins other than 

the Hidden River Basin. Nevertheless, field filtration was tried for 

the June 1975 samples. Gelman GN-6 Metricel filters (pore size: 0.45 µm) 

were used but these had trace heavy metals that invalidated the heavy 

metal analyses. 

Measurements were not made of the pH of samples collected but the 

wastewater treatment plant influent has been reported by the Hart County 

Herald (May 8, 1975) to be very acidic. The paper states that concrete 

in the manholes between the metal-plating plant and treatment plant 

" • has been eaten away 4 to 5 inches." 

No attempt has been made herein to review.the chemistry of carbonate 

waters, the various reactions involved, or to determine the saturation 

of the waters. 
13 



All chemical analyses used in this report have been carefully 

scrutinized. Unless otherwise cited, all analyses are based on samples 

collected specifically for this study since October 1974. 

Standard deviations of element concentrations at individual sites 

were not calculated because of the small number of samples and the lack 

of evidence that concentration values are normally distributed. 

Specific conductance, for example, probably does not have a normal 

distribution. Nonparametric statistical tests could have been used but 

were not considered necessary. 

Dye Tracing 

The five dyes used are described in Table 1. Three of these five, 

Fluorescein, Rhodamine WT, and Rhodamine B, have been conventionally used 

for many years. The dye is recovered on detectors consisting of activated 

charcoal detectors and eluted with a mixture of 1-propanol (43%), 

ammonium hydroxide (33%) and distilled water (24%), as recommended by 

Smart (1972). Detector fluorescence, indicating a positive trace, was 

evaluated in sunlight. Dyes were used only after a literature search and 

evaluation had been made of their possible toxicity and data showed that 

they could be considered safe. 

Optical brighteners are fluorescent dyes that absorb light in the 

ultra-violet region of the spectrum and are therefore colorless in 

solution. They have a strong affinity for cellulosic and various man

made fibers. Manufacturers add them to detergents in order to "make 

your whites whiter." They were first used for water-tracing by Crabtree 

(1970) and Glover (1972), in England. Their use in the United States was 

pioneered by James Quinlan on behalf of the National Park Service at 

Mammoth Cave beginning in August 1974. Since then, he and the staff of 
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TABLE 1 - pyes used for water tracing 

Colour Inclex 
Colour Index Constitution 

Brand Name Common Name General Name Number Supplier 

Pyla-tel Fluorescent Fluorescein Acid Yellow 73 45350 Pyl am Products 
Yellow Queens Village, N.Y. 

Rhodamine WT Rhodamine WT not assigned ----- DuPont 
Wilmington, Delaware 

Pyla-tel Fluorescent Rhodamine B Basic Violet 10 45170 Pylam Products 
Pink Queens Village, N.J. 

~ 

0, 

Diphenyl Brilliant none Direct Yellow 96 ----- Ciba-Geigy Corp. 
Flavine 7GFF Greensboro, N.C. 

Calcofluor White ST Optical Fluorescent 40622 American Cyanamid Co. 
(Solution) Brightener Brightener 28 Bouncj Brook, N.J. 
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the Park Service's Uplands Research Laboratory have utilized brighteners 

in traces as long as 15 miles. Discussion of the results is included. 

The several techniques for use of optical brighteners have most 

recently been described by Smart (1976), Quinlan (1977) and Quinlan and 

Rowe (1977). In brief, a piece of unbrightened cotton such as Johnson & 

Johnson Surgical Cotton is suspended in a stream or spring. If optical 

brightener is present in the water it reacts with the cotton and is 

retained. Detectors are changed every few days, washed under a high

speed jet of water, and examined under a long-wave ultra~violet lamp for 

the blue-white fluorescence of the brightener. 

As a result of a systematic review of the properties of dyes, 

evaluation of desirable characteristics of dyes, an extensive correspon

dence with various manufacturers, and finally laboratory and field 

testing, Quinlan (1977) showed that Direct Yellow 96 is eminently 

suitable for water tracing. It is used like an optical brightener but 

it turns cotton a bright canary yellow. 

The dye tests run were qualitative rather than quantitative because, 

with a limited number of personnel (1 assistant) during the winter and 

spring rainy season, rapid flow velocities, and the uncertainty as to 

which of ten or more springs dye from a test might go to, it was more 

practical to be qualitative. Quantitative tests are planned for the 

future. 

Of the five dyes used, we highly recommend only fluorescein, optical 

brightener, and Direct Yellow 96 as groundwater tracers. Rhodamine WT 

is less efficient, and relatively expensive. Rhodamine B has been used 

for many years but it is too easily absorbed by clays. More importantly, 

in high concentrations, it can be toxic to fish (Little & Chillingworth, 

1974). Although Rhodamine Bis the safest of the basic dyes tested by 
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others and its use in very low concentrations has been approved by the 

Public Health Service (Turner Associates, 1971), in our opinion'no basic 

dyes should be used as water tracers. We had used small quantities 

Rhodamine B for three short-distance tests of less than a mile but, after 

reaching the above conclusion, we ceased using it -- even though we 

know of no strictures against its use. 

A review of the chemistry and classification of dyes has been made 

by Allen (1971). A comprehensive and definitive review of dyes other 

than Direct Yellow 96 that are suitable for water tracing has been made 

by Smart and Laidlaw (1976). 

Location of springs, wells, and caves and 
sampling of their waters 

Springs were located by searching for them along river banks, 

consultation with landowners, and review of relevant literature. Springs 

sampled in the eastern two-thirds of the study area are shown in Fig. 3. 

Wells and caves were located by systematically talking with landowners 

and by plotting the position of these features on topographic maps. 

Cave Mapping 

Caves that are actively functioning as conduits in conveying water 

from the Sinkhole Plain to the Green or Barren Rivers were mapped so 

'that an understanding could be obtained of the fluid mechanics of the 

aquifers. 

Caves were mapped with Suunto KB-14 liquid-filled precision 

compasses, Suunto PM-5/360 PC clinometers, and fiberglass survey tapes. 

Backsights were used as a check on accuracy and closures made whenever 

possible. A four-man survey crew, generally in wetsuits, worked most 
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TABLE 2 - Sampling and dye input sites. Locations are shown on Fig$. 
3 and 7. 

MAJOR SPRINGS ALONG GREEN RIVER, CHIEFLY EAST OF MAMMOTH.CAVE NATIONAL PARK, WELLS 
SAMPLED FOR HEAVY METALS BETWEEN THE TOWN OF HORSE CAVE ANO GREEN RIVER, OTHER WATER 
SAMPLING SITES, AND DYE INPUT SITES 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

.34 

W-1 
W-2 
W-3 
W-4 
W-5 
W-6 
W-7 
W-8 
W-9 
W-10 
W-11 

MAJOR SPRINGS, CAVES, AND SEWAGE TREATMENT PLANT 

Cedar Spring 
300 Springs 
Rio Springs 
Buckner Spring 
Scott Spring 
Green River 
Grady Spring 
Boyd Spring 
New Spring 
Boiling Spring 
Major Johnson Springs 
High Spring 
Captain Spring 
Blue Hole 
11 X11 Spring 
Dixon Spring 
Perched Spring 
31-W Bridge Spring 
Woodsonville Spring 
Munfordville Blue Hole 
Big Tree Spring 
#2 Spring 
Gorin Mill Spring 
Trough Spring 
Spring Seat Spring 
Surrmer Seat Spring 
Fall Seat Spring 
#8 Spring 
#9 Spring 
Hick Springs 
5-Finger Springs 
High & Dry Springs 
Alcove High Spring (Cave) 
Alcove Spring 

35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
HRC-S 
HRC-E 
STP-I 
STP-E 

WELLS SAMPLED IN A STUDY FOR 
HEAVY METALS IN GROUNDWATER 

Wells 
H. Lively 
Bennett 
Rowe 
England 
Mears 
Mears-Meredith 
Martin 
Ross-Denni son 
Gilpin-Wallace 
Smith 

W-12 
W-13 
W-14 
W-15 
W-16 
W-17 
W-18 
W-19 
W-20 
W-21 
W-22 

Houk 
Wilson-Turner 
J. Wilson 
Stinson 
Lane 
Meador 
Mansfield 
Marrmoth Onyx Cave 
Mi nit-Burger 
Marathon 
Lawler 
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Mike's Spring 
Natural Tunnel Spring 
Blow Hole East Spring 
Blow Hole West Spring 
Garvin Spring 
#16 Spring 
#17 Spring 
Beaver Spring 
Green River 
Lawler Blue Hole 
Wi 11 i ams Spring 
McCoy Spring 
Suds Spring 
Mile 205.7 Spring 
Grinstead Spring 
Pike Spring East 
Pike Spring West 
Styx Spring 
Echo River Spring 
Cotton Gin Hollow Spring 
Sand Cave Spring 
Above Turnhole Spring 
Turnhole Spring 
Sandhouse Cave Spring 
East Window Spring 
Smith Valley Cave Spring 
Mill Hole Spring 
Mill Hole Cave Spring 
Parker Cave, Sulphur River 
Hidden River Cave, South Branch 
Hidden River Cave, East Branch 
Sewage Treatment Plant, Influent 
Sewage Treatment Pl ant,' Effluent 

DYE INPUT SITES 

D-1 
0-2 
0-3 
HRC 

Horse Track Sink 
Marshall Collins Cave 
Palmore Sink 
Hidden River Cave 



efficiently. The map of only one of the more than 20 caves surveyed is 

reproduced in this report. The Phase II report will include these maps 

with a discussion of the role of these caves in the regional hydrology. 

Study of Surface Geomorphology 

Terraces along the Green River were mapped in an effort to descrimi

nate between base-level and stratigraphic controls on water movement. 

This work is still in progress and will be discussed in the Phase II 

report. 
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CHAPTER III 

DATA AND RESULTS 

Introduction 

Dye tests by project personnel began in April 1975 from Horse Cave 

to the Green River and have been run in the Smiths Grove, Park City, 

and Grady Spring area. However almost all tracing tests since 1974 have 

been by the staff of the Uplands Research Laboratory (chiefly Bill Cobb 

and Don Coons), under the direction of James Quinlan. Many tests in the 

area east of Horse Cave were run in collaboration with Dr. Joseph 

Saunders of the University of Kentucky. Quinlan compiled this informa

tion on a base map first published in 1970, delineated groundwater basins 

on another copy of the first compilation, and placed both maps on open

file status in Park Service files at Mammoth Cave National Park. A copy 

of these syntheses is reproduced as Fig. 4 and 5. These maps are 

introduced here so that subsequent discussion can refer to the various 

groundwater basins. 

Fig. 4 is similar to Fig. 1, but the boundaries of the study area 

are not shown. The streams that sink along the south and east margin of 

the Sinkhole Plain have been traced as shown to the Green, Barren, and 

Little Barren rivers. Much more water tracing is scheduled, particularly 

in the Hidden River Groundwater Basin. 

Fig. 5 shows part of Fig. 4 at a different scale and tentative 

boundaries of thirteen groundwater basins are shown. These will be 

referred to in the following sections. The Western Kentucky University 

Karst Research Team has worked chiefly in caves of the Graham Springs 

Groundwater Basin (A), the Three-Springs Groundwater Basin (I), the Grady 

Spring Groundwater Basin (J), and Markum Mill Groundwater Basin (M). 
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Uplands Research Lab personnel have worked chiefly in caves of the 

Turnhole Spring Basin (D) and Pike Spring Basin (F). Both groups have 

worked in caves of the Hidden River Groundwater Basin (E). 

The significance of Fig. 5 and application ·of its data is discussed 

beginning on page 82. 

In this report only two of the twelve groundwater basins will be 

discussed in detail -- Hidden River and Graham Springs. A preliminary 

description of the hydrology of the Turnhole Spring Groundwater Basin 

(B) has been published by Quinlan (1976). 

A brief description of major perennial springs of the Hidden River 

Groundwater Basin and adjacent basins is given in Table 3. 

Hidden River Groundwater Basin 

General Description 

The discharge point of the contaminated water in Hidden River Cave 

has long been a matter of speculation. In order to test the hypothesis 

that sewage effluent that contained optical brighteners (from laundry 

detergent) and heavy metals should be capable of detection at the 

spring (or springs) along Green River where it is discharged*, in 

October 1974 James Quinlan and Mike Mccann (a volunteer assistant) 

sampled a series of nine springs along its south bank, north of Horse 

Cave. They also placed cotton detectors in the springs. The results 

*This heavy metal anomaly had been predicted by Quinlan. He had 
suggested to Rowe that a group of Western Kentucky University students 
doing a National Science Foundation SOS (Student Originated Studies) 
Project under the latter's supervision during the summer 1974 look for 
it. The analytical procedures they used were incapable of detecting 
heavy metals at the low concentrations subsequently found in October. 
After the anomaly was found, and before another set of data was acquired, 
Rowe and Quinlan decided to collaborate in this study and seek funding 
for it. Quinlan was appointed Adjunct Professor in the Department of 
Engineering Technology and Department of Geography and Geology at 
Western Kentucky University. 
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TABLE 3 - Brief description of major perennial springs in the Hidden 
River Groundwater Basin and adjacent basins 

Site 

7 

B 

14 

16 

23 

26 

30 

3B 

39 
42 

44 

Base Flow 
Discharge 

Spring (cfs) 

Grady Spring Groundwater Basin 
Grady Spring. Issues from rubble and flows about 5-8 

100 ft to Green River. Site of former mill. 
Fed by Grady Cave, more than 10 miles long. 

Three Springs Groundwater Basin 
Boyd Spring. A group of five springs along river 3-4 

bank, but only one flows perennially. Issues 
from rubble. 

Blue Hole. Spectacular alluviated rise pit in 5-8 
large alcove 250 ft back from river. 30 ft 
deep. 

Dixon Spring. Alluviated rise pit, 300 ft back 2-3 
from river. 30 ft deep (Steve Maegerlein & 
Clarence Dillon, verbal communication, 1976) 

Hidden River Groundwater Basin 
Gorin Mill Spring. Alluviated rise pit, at least 25-30 

35 ft deep. 100 ft back from river. Has 
highest base flow discharge of any spring 
along south bank of Green River. Site of 
former mill. 

Surrmer Seat Spring. Group of three springs in · l 
an alcove. Issues from rubble. 

Hick Spring. Group of ten springs issuing from .5 
rubble at base of cliff. Only one flows 
perennially during low stages of the river. 

Blow Hole West Spring. A series of seeps along a .5 
100 ft wide outcrop of bedrock and rubble. 

Garvin-Beaver Groundwater Basin 
~arv1n Spring. Cave passage at river level. .5 

Beaver Spring. Issues from rubble and alluvium .25 
along bank. 

Lawler Blue Hole Groundwater Basin 
Lawler Blue Hole. Alluviated rise pit, 60 ft 1-2 

deep (Steve Maegerlein & Clarence Dillon, · 
verbal corrmunication, 1976), about 1000 ft 
from river bank. At least four other higher 
level springs are part of a distributary 
complex here. 
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were quite surprising. Five of the nine springs were positive for 

optical brighteners and only these five springs had heavy metals 

(nickel, chromium, copper and zinc) in concentrations significantly 

higher than those of the other four springs and the Green River. 

The tests were repeated in November at more springs with similar 

results and one minor anomaly. Beaver Spring (Site 42) was slightly 

positive for optical brighteners but had no heavy metal anomaly. A 

comparison and discussion of the heavy metals in the springs and Green 

River is given in Table 4. The heavy metal anomaly had been shown to be 

significant and the springs that carried them were dubbed "effluent-

bearing springs." 

In December another series of samples was taken and a conductivity 

meter was again used. The heavy metal analyses are plotted on Fig. 6. 

Upstream from Gorin Mill Spring (Site 23) the specific conductance of 

the first six springs sampled ranged from 315 to 565 µmhos/cm. But the 

conductivity of the next seven springs along the south bank, measured 

beginning at Gorin Mill and travelling downstream, was 420, 420, 423, 

420, 420, 419, and 420 µmhos/cm! The first six of these seven* had 

previously been identified as having heavy metal and optical brightener 

anomalies. The next five springs measured ranged from 216 to 414 

µmhos/cm. Thus there was demonstrated a near-perfect correlation between 

the occurrance of heavy metal and optical brightener anomalies and 

uniform conductivities. The only flaw in the perfection was the very 

slight optical brightener anomaly at Beaver Spring (Site 42). 

All operating domestic wells between Horse Cave and the effluent-

*Previous and subsequent measurements of the conductivity of this seventh 
spring {Garvin Spring, Site 39) showed that its conductivity was 
usually significantly less than the group upstream from it. 
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TABLE 4 - Comparison of analyses for heavy metals present in effluent 
springs, other springs, and Green River during conditions of 
moderate spring flow and moderate river flow, November 15, 
1974. 

COMPARISON OF MEANS OF HEAVY METAL CONCENTRATIONS 

Sample GROUNDWATER BASINS 
Site 

Hidden 
River Grady Three Garvin- Lawler Green 
Effluent- Blue 
Bearing Spring Springs Beaver Hole River 

Springs 
(GS) (3S) (G-B) (L) (GR) (ES) 

Analysis RATIOS 

ES ES ES ES ES ES - - - - -
Metal (mg/1) GS 35 GB L GR 

Nickel .047 11.8 12.7 13.4 15.7 7 .8 

Chromium .012 6.7 5.5 8.4 l 0.9 7.5 

Copper .009 4.5 2.4 4.5 4.5 3.0 

INTERPRETATION: On November 15, 1974 the nickel content of effluent
bearing springs was 11.8 to 15.7 times greater than that of the two 
groundwater basins immediately upstream and downstream and 7.8 times 
greater than in the Green River. For chromium the range was 5.5 to 
10.9; Green River was exceeded by 7.5. For copper the range was 2.4 
to 4.5; Green River was exceeded by 3.0. The chromium content of the 
effluent-bearing springs is 24% of the allowable maximum of .05 mg/1 
for drinking water. 
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bearing springs were located and sampled. The lack of anomalous heavy 

metal concentrations and the very low Ca/Mg ratio of these shallow wells 

as well as the lack of bacterial contamination in them (Branstetter, 

1974) indicated that they did not penetrate the conduit system conveying 

effluent to the Green River and suggested that there was no connection 

between the wells and the conduit system. Subsequent re-sampling and 

analysis of some of these wells confirmed this interpretation. 

Springs were again sampled in December 1974. The results for 

nickel, chromium and copper are shown in Fig. 6 and discussed in the 

interpretation of it. The legend identifying the sample sites is given 

in Table 5. 

The sites sampled at Horse Cave, the effluent-bearing springs along 

Green River, and the sampled wells in the area between are shown in 

Fig. 7. They are identified by name in Table 2. The large ridge just 

north of Horse Cave is uninhabited; there are no wells there. Most 

families are serviced by the Green River Valley Water District or they 

rely on rainwater stored in cisterns. 

Field observations made during river stages ranging from low flow 

to high flood, chemical analyses, and specific conductance measurements 

made during the past 18 months have showed that the effluent-bearing 

water from Hidden River Cave emerges at Green River at 39 springs at 14 

locations over a 5-mile reach of the river. Quinlan et al. (1975), in 

an abstract written in March, concluded that the conduit-flow system 

of the cave and springs is largely independent of the diffuse-flow 

system that is intercepted by the wells. They also predicted the 

existence of a cave system that included a complex of at least 34 dis

tributary springs that is 3 km wide -- 3 times wider and much more 
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complicated than any other known in the Central Kentucky Karst. This 

conjectured cave system -- to be discussed subsequently -- was thought 

to feed every spring along the Green River, from Gorin Mill to Blow Hole 

West! Another of the reasons for predicting its existence was the 

uniformity of heavy metal concentrations at each of the effluent-bearing 

springs on a given day. 

In order to test this hypothesis and gain access to this cave, 

project personnel during June 1975, with the permission of a land-owner, 

excavated rocks from the orifice of an intermediate-level spring at Site 

31 (Hick Spring) but were stopped by a pool of water. They then dug at 

a nearby high-level spring and worked their way down about 10 ft to a 

6 x 6 ft passage with 2 ft of water. This led to a river passage 10 ft 

high and 20 ft wide. The saga of the mapping of this cave system will 

not be given here. From June until September 1975, 13.33 miles of 

passage were mapped; more than 100 passages remained to be checked and 

mapped. An outline map of the cave, subsequently named the Hidden River 

Complex, is included on Figs. 7 and 19 and the location of sampled wells 

relative to known cave passages can be seen. A brief description of this 

cave and its hydrology is given after the following discussion on the 

chemistry of the spring waters. 

Fig. 8 summarizes distinctive chemical properties (exclusive of 

heavy metals) of springs in the Hidden River Groundwater Basin, adjacent 

groundwater basins, wells, and the Green River -- at two different flow 

conditions, low and moderate. Most of the discussion of it and other 

graphs will not be repeated within the body of this report. 

Table 6 is a summary of the chemical analyses at various sites 

within the Hidden River Groundwater Basin and at relevant adjacent sites. 
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FIGURE 6 - Concentration of nickel, chromium, and copper in springs, cave streams, and wastewater treatment 
plant effluent in the Hidden River Groundwater Basin, springs in four adjacent groundwater basins, 
shallow wells, and Green River, December 20, 1975. The location of the various sites is shown in Fig. 3. 
Some are also shown in Fig. 7. Explanation of sample site symbols is given in Table 5. 

DESCRIPTION: Concomitantly with the study of-water quality, dye-tracing and field observations have made it 
possible to differentiate between the various groundwater basins and demonstrate the existence of a 
distributary spring system in the Three-Springs, Hidden River, Garvin-Beaver, and Lawler Blue Hole basins. 
The tentative boundaries of the groundwater basins are shown in Fig. 5. The springs that discharge 
diluted effluent-bearing water derived from Hidden River Cave are hereafter referred to as "effluent
bearing springs." 

INTERPRETATIONS: The effluent-bearing springs of the Hidden River Groundwater Basin have a nickel, chromium, 
and copper content that is significantly higher than that of other springs and the Green River. 
Specifically, for the day sampled, their mean nickel, chromium, and copper content was 5.0, 5.8, and 2.7 
times greater than that of the mean of the four other groundwater basins and 3.0, 11.7, and 2.6 times 
that of the Green River (Sites 6 and 43). Effluent from the sewage treatment plant (Site STP-E) 
contributes to the flow of the South Branch of Hidden River Cave (Site HRC-S). It mixes with water from 
the East Branch (Site HRC-E) where the flow is estimated to be 10 to 40 times greater (depending 
upon stage}, and ultimately discharged at the effluent-bearing springs along Green River, 4-5 miles away. 
The nickel and chromium content of the effluent-bearing springs is significantly higher than that of the 
wells but their copper content is slightly less than that of the wells. The slightly higher copper 
content of the wells might be related to copper in their plumbing. It is not significant. 

NOTE: Each of the subsequent 11 graphs is accompanied by a separately written description and interpretation. 
Some are accompanied by a description that generally applies also to other graphs but the descriptions 
of the regional hydrology relevant to the interpretation of all graphs will not be repeated. Generally 
the interpretations will not be repeated within the body of the report. 
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TABLE 5 - Legend for site numbers, flow conditions, and symbols on Figs. 
6 and 9 through 18. (Continued on next page) 

Site# 

6 

7 

8 
14 
16 

23 
26 
30 
31 
34 
36 
37 
38 

39 
42 

43 

SELECTED SAMPLE SITES 

Site Name 

Green River, above Grady Spring 

GRADY SPRING GROUNDWATER BASIN 
Grady Spring 

THREE SPRINGS GROUNDWATER BASIN 
Boyd Spring 
Blue Hole 
Dixon Spring 

HIDDEN RIVER GROUNDWATER BASIN 
Gorin Mill Spring 
SuR111er Seat Spring 
Hick Spring 
Five-Finger Springs 
Alcove Springs 
Natural Tunnel Springs 
Blow Hole East 
Blow Hole West 

GARVIN-BEAVER GROUNDWATER BASIN 
Garvin Spring 
Beaver Spring 

Green River, above Lawler Blue Hole 

LAWLER BLUE HDLE GROUNDWATER BASIN 
44 Lawler Blue Hole 

W Shallow water wells within the Hidden River 
Groundwater Basin and adjacent basins 

46 McCoy Spring 
48 Mi 1 e 205. 7 Spring 

PIKE SPRING BASIN 
51 Pike Spring West 

HIDDEN RIVER GROUNDWATER BASIN 
HRC-E Hidden River Cave, East Branch 
HRC-S Hidden River Cave, South Branch 
STP-E Horse Cave Wastewater Treatment Plant, Effluent 
STP-I Horse Cave Wastewater Treatment Plant, Influent 
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TABLE 5 (Continued) 
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~ 

.... 
"' "' "' "' Q (!j ::E 

C::. 10/01/74 7 .1 

• l l /15 5.7 

0 12/20 6. l 

• 12/25 9.5 

0 1/20/75 11.8 

• 2/26 12.2 

0 3/29 24.5 

• 4/17 13.6 

a 5/03 12.5 

• 5/21 6.8 

0 6/19 2.7 

0 6/29 2.2 ' 

~ 

~ -..... 
QI "' ""~ E 
~ ~ 

41·~ "Cl 
"'>~ QI .... 
~ "Cl v, "Cl c "' ~ .... c QI 
.c:ou 41 E u<+-~ 0.·~ 
Cl) c Cl) "Cl 
·~:::, :::, QI 
Q ::E "'"' 
2,420 F 42 

4,760 C 37 

2,710 F 15 

4,650 R 133 

6,920 F 54 

5,850 F 57 

18,900 R 340 

7 ,070 F 57 

5,720 F 51 

2, l 00 F 41 

718 C 34 

476 R 33 

Cl) 

c 
0 ·~ .... ·~ 

"Cl 
c ~ 
O QI 
U> ·~ 
~ "" ~<+-u. 0 

c 
c 
c 
D 

D 

D 

E 

D 

D 

c 
B 

A 

NOTES 

1. Location of all sites is shown on Fig. 3. Many 
sites are also shown on Fig. 7. 

2. Discharge and suspended sediment data is cited from 
U.S. Geological Survey Water Data Report Ky-75-1. 
F, C, and R indicate that the river was falling, 
cresting, or rising. 

3. Flow conditions on Green River, indicated by letters, 
are based on the following arbitrary limits: 

A 200- 699 cfs Very Low 
B 700- l ,999 cfs Low 
C 2,000- 4,499 cfs Moderate 
D 5,000- 9,999 cfs Moderate Flood 
E 10,000-24,999 cfs High Flood 
F 25,000+ cfs Extreme Flood 

Flow for individual springs is considerably less but 
may exceed 150-200 cfs. During floods, spring 
hydrographs are out of phase with that of the river 
and are complicated by the fact that all springs may 
be back-flooded by the river. The release of water 
from Green River Lake, 79 miles upstream from the 
USGS gaging station at Munfordville, creates a 
second flood pulse that may also cause back-flooding 
of springs for either the first of second time 
during a given flood. 

4. Numerous samples from sites HRC and STP were taken 
on various other dates during the month indicated. 

5. Sites 46, 48, and 51 are shown only on Fig. 6. 
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FIGURE 7 - Detailed map of the area between Horse Cave and the Green 
River. Wells and springs are identified on Table 2. 
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Evaluation of it is made easier by study of Table 7, wherein the ratios 

between chemical properties are compared for various sites and basins. 

Figs. 9 through 18 graphically summarize the chemical analyses made for 

the period October 1974 through June 1975. Each graph is accompanied by 

a description and interpretation. Other analyses of samples collected 

since 1976 during low base flow of the springs, are being run. They will 

be discussed in the Phase II report. Table 8 sun111arizes bacterial 

quality and nitrate concentration of several sites along Green River. 

Table 9 summarises the extent to which wastewater treatment plant 

effluent and Hidden River Cave water exceeds maximum limits for heavy 

metals in public water supplies and fish habitats. Table 10 gives 

dilution ratios. 

What do all these graphs and tables tell us? Many things, some 

obvious and some not so obvious. To summarize: 

1. The chromium concentration of the effluent-bearing springs (those 

which discharge diluted wastewater effluent derived from Hidden River 

Cave) reaches a maximum of 0.015 mg/1 but the mean is 0.005 mg/1. 

This mean is 4.0 times greater than that of the mean of four 

adjacent groundwater basins, 6.5 times that of the Green River and 

3.7 times that of shallow domestic water wells, as shown in Tables 

6 and 7. 

2. The nickel concentration of the effluent-bearing springs reaches a 

maximum of 0.058 mg/1 but the mean is 0.018 mg/1. This mean is 5.1 

times greater than the mean of four adjacent groundwater basins, 4.2 

times that of the Green River, and 9 times that of shallow domestic 

water wells, as summarized in Tables 6 and 7. Similar statements can 

be made about the concentrations of copper and zinc but their means 
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FIGURE 8 - Distinctive chemical properties (exclusive of heavy metals) characteristic of springs, cave 
streams and wastewater treatment plant effluent in the Hidden River Groundwater Basin, springs in four 
adjacent groundwater basins, shallow wells, Green River, and wastewater treatment plant influent. Site 
locations are shown in Fig. 3; many are also shown in Fig. 7. Symbols for sites are in Table 5. 

DESCRIPTION: Same as that of Fig. 6. This shows values for specific conductance, carbonate hardness, 
chloride, sodium, and calcium/magnesium ratio during low river flow accompanied by low base flow of 
springs (June 19, 1975; open symbols) and moderate river flow accompanied by moderate base flow of 
springs) (December 20, 1974; closed symbols). The properties of water in the Hidden River Groundwater 
Basin are traced from where wastewater treatment plant effluent first enters the ground by a sinkhole 
(Site STP-E) to where it is discharged along Green River. The effluent-bearing springs are a mixture of 
flow from the South Branch and East Branch of Hidden River plus input from various other sources. Gaging 
of springs and Hidden River Cave during low base flow conditions has shown that the total discharge in 
Hidden River Cave (6.8 cfs) is only about 25% of the discharge of the effluent-bearing springs (28 cfs at 
Gorin Mill Spring (Site 23) and an estimated total of l cfs at all other effluent springs). It is 
impossible to measure discharge of the effluent-bearing springs during high flood stage but an aggregate 
discharge of 1000 to 1500 cfs is believed possible. 

INTERPRETATIONS: 
l. Specific conductance, carbonate hardness, chloride, and sodium of the Three-Springs Groundwater Basin 

is significantly higher than that of the others, Green River, and wells. (Sulphate was not determined.) 
2. During moderate base flow of the effluent-bearing springs the chemical composition of their waters is 

surprisingly uniform; it is also different from that of the other groundwater basins and wells. 
3. During low base flow conditions the composition of Hick Spring (Site 30) is remarkably different from 

that of the other effluent-bearing springs. Mapping of the distributary cave passages behind this and 
adjacent springs west of it has shown that Hick Spring is also fed by a small tributary passage that 
discharges less than .1 cfs of brine presumably derived by upward seepage from an old oil well about 
200 ft away (Point D, Fig. 20). No complete analysis was made of this brine but it smelled of hydrogen 
sulphide and had a sulphate content of 760 mg/1 (July 15, 1975). During low base flow of this spring, 
this brine significantly alters the composition of the distributary stream that feeds it. 

4. The composition of the water in both springs of the Garvin-Beaver distributary is less uniform than the 
composition of water in springs of distributary systems in other groundwater basins, presumably because 
of local recharge that doesn't go to both springs. 

5. The small spring (Site 21) immediately east of Gorin Mill Spring (Site 23) is clearly not part of the 
Hidden River Drainage Basin, as indicated by the significant differences between their chemical 
properties. Similarly, the composition of the small spring at Site 24 -- between the two effluent
bearing springs (Gorin Mill and Spring Seat) -- shows that it drains a separate (smaller) basin that is 
not part of the Hidden River Groundwater Basin but is within it. 
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TABLE 6 - Sunmary of chemical analyses (mean, maximum and minimum) at 
relevant sites . 

SAMPLE 
GROUNDWATER 

SITE HIDDEN RIVER 

Effluent- Hidden Hidden Horse Cave 
CHEMICAL Bearing River Cave River Cave Wastewater Grady 
PROPERTY Springs East South Treatment Spring 
& LIMITS** Branch Branch Plant, Eff. 

~ 

Chromium ~ .015 .008 2.73 8.90 3.48 4.75 .002 0 

5.0 (.05) 0 .005 .003 .001 . .001 .002 .202 .810 .001 
+> 
VI 

.057 .013 19 .4 12.2 .007 Nickel QJ ... .018 .007 4.13 9.22 .004 5.0 "' QJ .008 . 001 1.15 6.21 .002 <: 

0 
+> .011 .007 1.17 4. 72 .005 Copper .... .005 .004 .584 2.28 .002 . 02 (1.0) .... .003 .002 . 130 .895 .001 0 

-0 

Zinc 
QJ .020 . 021 2 .12 .952 .006 -0 

.009 .009 .841 .652 .005 .3 (5.0) 
<: 
:::, 

. 001 .004 .074 .396 .005 0 ... 
VI 11.524.0 15.0 48 110 8.2 QJ 

Chloride :::, 10.0 26.2 81.8 5.2 
~ 3.6 6.6 11 .35 4.0 "' > 
~ 

5.79 15.0 9.00 54.6 197 480 2.00 "' 4. Bl 165 1. 71 Sodium +> 
QJ 
E 1.50 2.70 28.0 70.0 1.22 
>, 
> 2 .18 1. 74 54.0 114 1. 61 "' Potassium QJ l.27 1.15 13. 2 41. l 1.07 :,:: 
~ . 92 .68 2.95 4.45 .67 

Carbonate ~ 463 255 288 200 226 
Hardness 

...._ 206 214 200 163 200 Ol 
::;: 121 180 179 110 159 

5.86 5.49 8. 13 11. 17 6.39 
Ca/Mg Ratio 4.63 4.68 6.34 6.31 5.09 

3. 18 4.23 3.86 .934 4. 12 

Specific 540* 520 670 1350 458 
Conductance 420 422 522 1166 395 

210 379 299 960 330 

No. of 13 1 l l 1 Sample Sites 

Average tota 1 36 8 8 10 5 no. of samples 

**The first figure in column l is the concentration fatal to some fish 
(Cheremisinoff et al. 1976). The figure in parentheses is the maximum 
allowed by State and/or Federal standards for public water supplies. 
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BASINS 

OTHER Shall ow 
Horse Cave 

Green Wastewater 
Lawler Mean of 3 River Water Treatment 

Three Garvin- Blue Basins Wells Pl ant, 
Springs Beaver Hole other than Influent 

3-Springs 

.003 .002 .002 .002 .002 .003 21.7 
.002 .001 .001 .001 <.001 .001 7.33 

.001 <.001 <.001 <.001 <.001 <.001 .156 

.005 .005 .004 .007 .005 .004 27.2 
.003 .004 .003 .004 .004 .002 12.9 

<.001 .003 .003 . 001 <.001 <.001 . 198 

.006 .002 .004 .006 .003 .021 5.36 
.003 .002 .002 .002 .002 .007 1.64 

.002 .002 .001 .001 .001 .003 .090 

.012 .003 .011 . 011 .012 not 11. 9 
.005 .003 .005 .OD~ .006 analyzed 2.21 

.027 .003 .002 .002 .002 .220 

128 13 7.6 13 15 5.6 216 
49.9 5.8 5.6 5.6 9.2 3.81 94.2 

13 3.2 2.9 2.9 6. l 2.5 35 

76 6. 36 2.65 636 7.5 3.25 213 
29.0 2.57 1.65 2.0 3.89 l.68 148 

4.6 1.56 1.00 1.00 2.4 .82 60 .5, 

2 .16 1.83 1 . 81 1.83 1. 71 1.27 59.0 
1.43 0.97 1.08 1.0 1 . 15 .66 32. 1 

1.07 0.58 .60 .58 .70 .39 10.6 

325 248 183 .32 245 279 
213 189 151 ---- 105 212 197 

147 166 129 73 185 130 

5.06 9.21 8. 77 5.04 3.88 10.68 
4.18 6.29 6.39 ---- 3.71 1.56 7.49 

3 .15 3.46 4. 41 2.78 .86 4.25 

865 420 355 300 490 8000+ 
543 381 303 ---- 250 426 2434 

320 328 252 173 360 715 

3 2 l 7 2 14 l 

17 11 7 23 18 17 13 

*This maximum for Specific Conductance does not include the 945 value 
caused by local seepage of brine into a single spring (Hick). 
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TABLE 7 - Comparison of means of chemical analyses of effluent-bearing 
springs with those of other relevant sites 
Mean GROUNDWATER analysis of SAMPLE effluent- HIDDEN RIVER SITE bearing Hidden Hidden Hidden Horse Cave springs in River Cave, River Cave, River Cave Wastewater the Hidden 
River East South South Br. Treatment 
Groundwater Branch Branch & East. Br. Pl ant, 
Basin, (HRC-S, Effluent 
along the (HRC-E) (HRC-S) HRC-E) (STP-E) 
South 
Bank of RATIOS 

CHEMICAL Green River ES STP-E HRC-S STP-E PROPERTY (ES) -- -- -- --
HRC-E HRC-S HRC-E ES 

Chromium .005 1.8 l.3 940 670 mg/1 

Nickel . 018 2.6 2.2 590 512 mg/1 

Copper .005 l. 2 3.9 140 450 mg/1 

.009 .78 77 
Zinc mg/1 l.O (2. 7) 98 (209)* 

Chloride 11.6 l.2 3. l 2.6 7. l mg/1 

Sodium 5.8 l.2 3.0 11.4 28 mg/1 

Potassium l.3 l. l 2.8 11.5 32 mg/l 
Carbonate 206 l.O .9 .8 Hardness mg/1 Mean of all 

but zinc 
ratios is 

Ca/Mg Ratio 4.63 l.O 2 .7. This l.4 l .4 mean is 
assumed 

specific 420 l.O for zinc. l.2 2.8 Conductance )JITihos/cm 

* Calculated from assumed STP-E/HRC-S ratio of column 4. 
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BASINS Green Shallow 
OTHER River Water 

Grady Three Garvin- Lawler Mean of Wells 

Spring Springs Beaver Blue 3 Basins 
Hole other 

than 
3-Springs 

(GS) (35) (GB} (L) (3B) (GR) (W) I 

(Rounded off, for Clarity) 

ES ES ES ES ES ES ES 
- - - - - - -
GS 35 GB L 48 GR w 

I 

4.0 3.3 4.0 5.8 4.6 6.5 3.7 

4.5 5.8 4.9 6.0 5. 1 4.2 9.0 
:i 

1 

2 .1 1.8 2.6 2.4 2.4 2.4 .8 I 

I 
1.6 1.6 3.0 1.8 2. 1 1.4 --

2.2 1.1 2.0 2 .1 2 .1 1.3 3.0 

I 

3.4 .2 2.3 3.5 2.9 1.4 3.5 I 
1.2 .9 1.3 1.2 1.3 1.1 1.9 

1.0 1.0 1.1 1.4 -- 2.0 1.0 

.9 1.1 .7 .7 -- 1.3 3.0 

1.1 .8 1 . 1 1.4 -- 1. 7 1.0 
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FIGURE 9 - Specific conductance of water in springs, cave streams and wastewater treatment plant effluent in 
the Hidden River Groundwater Basin, springs in four adjacent groundwater basins, shallow wells, Green 
River, and wastewater treatment plant influent. 

DESCRIPTION: Same as that of Figs. 6 and 8. The general uniformity of conductivity of other effluent
bearing springs in the Hidden River Basin and anomalously high conductivity of Hick Spring (Site 3D) 
during conditions of low flow has been discussed in Interpretation no. 2 of Fig. 8. 

INTERPRETATIONS: 
1. The relatively low specific conductance of Gorin Mill Spring (Site 23) in November may indicate local 

recharge from a local sub-basin east of the spring. 
2. The specific conductance of springs in the distributary of the Three-Springs Groundwater Basin is not 

uniform, suggesting local inputs of chemically different waters, but it is usually higher than that of 
other springs. Boyd Spring (Site 8) generally has the highest specific conductance of any spring along 
the Green River. These high conductivities, the relatively high sodium and chloride content of these 
springs, and the dye tests shown in Fig. 5 suggest mixing with oil well brine from the LeGrande Field, 
other shallow oil and gas fields, and uncased exploration holes within the Three-Springs Groundwater 
Basin. Seepage from uncased water wells that penetrate rock with saline water could also be a cause. 

3. The high specific conductance of water in the South Branch of Hidden River Cave is caused by partial 
dilution of the wastewater treatment plant effluent that is discharged into the ground at the plant. 

4. As would be expected, there is much more variation in the character of the wastewater treatment plant 
influent than for the effluent. 

5. The specific conductance in the East Branch of Hidden Rjver Cave (Site HRC-E) in the February samples 
is slightly higher than in the effluent-bearing spring~. This is because the cave stream samples were 
collected 2 days later and the flow was rapidly receding after a heavy rain 4 days before .. 
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FIGURE 10 - Concentration of nickel in springs, cave streams and wastewater treatment plant effluent in the 
Hidden River Groundwater Basin, springs in four adjacent groundwater basins, shallow wells, Green River, 
and wastewater treatment plant influent. 

DESCRIPTION: Same as that of Figs. 6 and 8. There is no maximum limit for nickel in the current federal 
standards for public water supplies but the nickel content of wastewater effluent discharged into the 
ground at Site STP-E almost always exceeds the levels known to be toxic to some fish (5.0 mg/1). Such 
high levels are only occasionally achieved in the South Branch of Hidden River Cave. A graphic summary 
of how often the limits for various heavy metals are exceeded by treatment plant effluent and in the 
South Branch of Hidden River Cave, and the sources for these limits, is given in Table 9. 

INTERPRETATIONS: 
1. Nickel concentrations as high as those present in the wastewater treatment plant influent and effluent 

are usually derived from a metal-plating industry. 
2. The nickel content of the effluent-bearing springs is significantly higher than that of springs in 

adjacent groundwater basins, wells, or the Green River. 
3. The nickel content of the January, February and May samples from the East Branch of Hidden River Cave 

(Site HRC-E) is higher than that of springs in adjacent groundwater basins and wells but not very much 
lower than that of the effluent-bearing springs. There are several possible explanations for this but 
most likely it is due both to: 

A. Contamination of the East Branch by water in a slightly higher passage sub-parallel to the South 
Branch that is inaccessible to people because of collapse and aesthetic reasons. 

B. A smaller dilution factor when both branches are flowing with high discharges. A dye test has 
proven that contamination of the East Branch by the South Branch, by flow beneath the talus that 
separates them, occurs during very low stages. 

4. The nickel content of springs outside of the Hidden River Basin is not significantly different from 
that of the Green River. It is slightly higher than that of water in shallow wells. 
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FIGURE 11 - Concentration of chromium in springs, cave streams and wastewater treatment plant effluent in the 
Hidden River Groundwater Basin, springs in four adjacent groundwater basins, shallow wells, Green River, 
and wastewater treatment plant influent. 

DESCRIPTION: Same as that of Fig. 6 and 8. The chromium content of wastewater effluent discharged into the 
ground at the treatment plant always exceeds the maximum allowed for public water supplies but doesn't 
exceed or rarely exceeds levels known to be toxic to some fish. See also the summary of metal toxicity 
that comprises Table 9 and the discussion of metal toxicity that begins on p. 65, 

INTERPRETATIONS: 
1. Chromium concentrations as high as those present in the wastewater treatment plant influent and 

effluent are usually derived from a metal-plating industry. 
2. The chromium concentration is significantly higher in the effluent-bearing springs than in other 

springs, wells, and the Green River. The ratios between means of these different analyses at various 
sites are given in Table 7 and won't be summarized here. 

3. The reasons for the suspicious similarity of the chromium concentrations in the effluent-bearing 
springs with those in the East Branch of Hidden River Cave are discussed in Interpretation no. 3 of 
Fig. 10. If the proposed explantion or a similar explanation were not correct one would be forced to 
conclude that the East Branch is also a major source of heavy metals -- even though there are no known 
probable sources for them in its recharge area. 

4. The mean copper content of the wastewater treatment plant effluent is greater than that of its influent 
but this imbalance is attributed to greater variation in the quality of the influent and the 
statistical problems of adequately sampling for them. This lack of mass balance does not affect our 
conclusions about the flow to the effluent-bearing springs and their properties. 
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FIGURE 12 - Concentration of copper in springs, cave streams and wastewater treatment plant effluent in the 
Hidden River Groundwater Basin, springs in four adjacent groundwater basins, shallow wells, Green River, 
and wastewater treatment plant influent. 

DESCRIPTION: Same as that of Figs. 6 and 8. The copper content of wastewater effluent discharged into the 
ground usually exceeds the maximum allowed for public water supplies (2.0 mg/1) and always exceeds levels 
known to be toxic to some fish (0.2 mg/1). The concentration of copper in the South Branch of Hidden 
River Cave usually exceeds levels known to be fatal to some fish. See also the summary of metal toxicity 
that comprises Table 9 and the discussion of metal toxicity that begins on p. 65, 

INTERPRETATIONS: 
l. Copper concentrations as high as those present in the wastewater treatment plant influent and effluent 

are commonly derived from a metal-plating industry. 
2. Generally the copper content of the effluent-bearing springs is significantly higher than that of 

springs in adjacent groundwater basins and Green River. It is about the same as that of wells. 
3. The reasons for the suspicious similarity of the copper concentrations in the effluent-bearing springs 

to that of the East Branch of Hidden River Cave are discussed as Interpretation no. 3 of Fig. 10 . 
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FIGURE 13 - Concentration of zinc in springs, cave streams and wastewater treatment plant effluent in the 
Hidden River Groundwater Basin, springs in four adjacent groundwater basins, shallow wells, Green River, 
and wastewater treatment plant influent. 

DESCRIPTION: Same as that of Figs. 6 and 8. The zinc content of wastewater treatment plant effluent 
discharged into the ground is always less than the maximum allowed in public water supplies. The con
centration of zinc in the South Branch of Hidden River Cave commonly exceeds levels known to be fatal to 
some fish. See also the summary of metal toxicity that comprises Table 9 and the discussion of metal 
toxicity that begins on p. 65. 

INTERPRETATIONS: 
1. Zinc concentrations as high as those present in the wastewater treatment plant influent and effluent 

are commonly derived from a metal-plating industry. 
2. The mean zinc content of the South Branch of Hidden River Cave (Site HRC-S) is greater than that of 

the effluent (Site STP-E) that was diluted by water in the South Branch. This apparent discrepancy is 
interpreted to be a statistical anomaly that would not exist if more samples had been taken. It does 
not seem likely that zinc in the effluent is reacting significantly with something between the two 
sample sites. Therefore an assumed mean value of 1.78 mg/1 has been calculted as explained in Table 
10. 

3. The zinc content of the effluent-bearing springs is significantly higher than that of other springs, 
but the anomaly is less significant than those for nickel and chromium because less zinc is discharged 
into the system. 

4. Other than chance, we have no satisfactory explanation for the low zinc .concentration in October at 
Site 37 (Blow Hole East). The analysis was not re-run but the data was checked. Chromium and nickel 
in the sample are high like they are in other effluent-bearing springs. · 

5. The peculiar apparent decrease in zinc between the East Branch of Hidden River Cave and the effluent 
springs in the January samples -- as well as the similarity in the concentration of the May samples 
is explained in Interpretation no. 3 of Fig. 10. The difference could also be enhanced by the 
arrival of a zinc-rich pulse of contamination in the East Branch, or, more likely, dilution of the 
total Hidden River Cave discharge by water from elsewhere in the groundwater basin. 
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FIGURE 14 - Concentration of sodium in springs, cave streams and wastewater treatment plant effluent in the 
Hidden River Groundwater Basin, springs in four adjacent groundwater basins, shallow wells, Green River, 
and wastewater treatment plant influent. 

DESCRIPTION: Same as that of Figs. 6 and B. 

INTERPRETATIONS: 
1. The sodium content of the wastewater treatment plant influent and effluent is significantly higher than 

that of most municipal plants. Part of the high concentration could be derived from sodium hydroxide 
and sodium carbonate commonly used for rinsing in metal-plating operations. (Environmental Protection 
Administration, 1973b) as well as from milk waste (Milk Industry Foundation, 1967, p. 499; the sodium 
content of milk is 0.28 g per pint.). 

2. The sodium content of the effluent-bearing springs is usually slightly higher than that of most other 
springs, the shallow domestic wells, and Green River, but it is usually much lower than that of the 
springs in the Three-Springs Groundwater Basin. The reason for the high sodium values in this basin 
is the probable slight contamination by brines from oil and gas fields, as discussed in Interpretation 
no. 2 of Fig. 9. 

3. The sodium content of the Three-Springs and Hidden River groundwater basins tends to increase during 
base flow, probably because of less dilution of effluent by rainfall. This is suggested by the 
~enerally small range of sodium values at Grady Spring (Site 7), Garvin Spring (Site 39), Beaver Spring 
(Site 42) and Lawler Blue Hole (Site 44). 

4. There is a slight increase in sodium at Site 30 (Hick Spring) during June. The increase is probably 
related to the local brine contribution to the discharge of this spring which is discussed in 
Interpretation no. 3 of Fig. 8. 

5. The sodium and potassium deficit at the effluent-bearing springs strongly suggests that ion-exchange 
reactions probably occur between these metals and clays. These reactions have been discussed by 
Langmuir (1971) and reviewed by Collins (1974). The calculations of dilution ratios that demonstrate 
the probability of these reactions is shown in Table 10. 
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FIGURE 15 - Concentration of chloride in springs, cave streams and wastewater treatment plant effluent in 
the Hidden River Groundwater Basin, springs in four adjacent groundwater basins, shallow wells, Green 
River, and wastewater treatment plant influent. The Description is the same as that of Figs. 6 and 8. 

INTERPRETATIONS: 
1. The chloride content of the wastewater treatment plant influent and effluent is higher than normal for 

most municipal plants. Some of it could be derived from plating operations. 
2. The Three-Springs Groundwater Basin is characterized by a chloride concentration, and usually a sodium 

concentration, hardness, and specific conductance, that is significantly higher than that of any other 
basin studied. As discussed in the Interpretation no. 2 of Fig. 9, these high values are probably due 
to slight contamination by brines that have been released by oil and gas exploration. The chloride 
content of springs in the Hidden River Groundwater Basin is similar to that of the Lawler Blue Hole 
Basin but greater than that of the Grady Spring and Garvin-Beaver groundwater basins, shallow domestic 
wells, and the Green River. 

3. The very slight increase in chloride at Hick Spring (Site 30) during June is due to seepage of an oil 
well brine, as discussed in Interpretation no. 3 of Fig. 8. 

4. The apparent loss of chloride in June between Site HRC-E (Hidden River Cave, East Branch) is a slight 
loss. Assuming the analyses are correct, the difference can be caused by one or more of the following; 

A. The dilution of East Branch water that has been contaminated by flow through talus from the 
South Branch. Proof of the, possibility of this contamination was established by a dye-test. 

B. Dilution by less saline water. 
C. Lag in the change in water quality that is related to base flow recession. The Hidden River Cave 

samples were collected one day before the spring samples. Dye tests in the Turnhole Spring 
Groundwater Basin (B, on Fig. 5) have demonstrated that mean flow velocities range from 1300 ft 
per hour to as low as 30 ft per hour for the total distance between the same two points 5 miles 
apart, depending upon how much water is moving through the aquifer. Accordingly, and allowing for 
the effects of dilution, the water at Site 38 (Blow Hole West) could be the water that had been 
at Hidden River Cave as much as one or two weeks previously. 

D. Ion-exchange reactions with clays, as discussed below. 
5. The decrease in chloride in February between the East Branch of Hidden River (Site HRC-E) and Natural 

Tunnel Spring(Site 38) is most easily explained in terms of dilution and flow recession. There had 
been 4.7 inches of rain spread over a 2-day period ending 2 days before the springs were sampled. The 
Hidden River Cave sample was collected 2 days after the spring samples. 

6. The chloride deficit at the effluent-bearing springs strongly suggests that ion-exchange reactions 
between clays and c1-, Na+ and K+ probably occur. These reactions have been reviewed by Collins (1974). 
The dilution calculations that strongly suggest these reactions are occuring are given in Table 10. 
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FIGURE 16 - Concentration of potassium in springs, cave streams and wastewater treatment plant effluent in 
the Hidden River Groundwater Basin, springs in four adjacent groundwater basins, shallow wells, Green 
River, and wastewater treatment plant influent. 

DESCRIPTION: Same as that of Fig. 6 and 8. 

INTERPRETATIONS: 
1. The potassium levels in the influent and effluent of the wastewater treatment plant are higher than 

normal for a municipal plant. It could be derived both from metal-plating operations (Environmental 
Protection Administration, 1973b) and milk waste (Milk Industry Foundation, 1967, p. 499; the 
potassium content of milk is 0.7 g per pint.). 

2. The differences in potassium levels at various sites is very slight, but persistant. The generally 
higher values in the Three-Springs Groundwater Basin are possibly related to slight contamination by 
brines associated with drilling for oil, gas, or even water, as discussed in Interpretation no. 2 of 
Fig. 9. 

3. Potassium concentrations are not useful for discriminating between water of various groundwater basins. 
The relative smallness of the increase in potassium in the effluent-bearing springs that are fed by 
potassium-rich effluent suggests that they have a potassium deficit. This potassium (and sodium) 
deficit is indicative of ion-exchange reactions that probably occur between these metals and clays, as 
discussed by Langmuir (1971) and reviewed by Collins (1974). The calculation of the dilution ratios 
that demonstrate the probability of these reactions is shown in Table 10. 
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FIGURE 17 - Carbonate hardness in springs, cave streams and wastewater treatment plant effluent in the 
Hidden River Groundwater Basin, springs in four adjacent groundwater basins, shallow wells, Green River, 
and wastewater treatment plant influent. 

DESCRIPTION: Same as that of Figs. 6 and 8. 

INTERPRETATIONS: 
l. Hardness of wells and springs other than Lawler Blue Hole is significantly higher than that of Green 

River -- a totally expected result concerning the river. The hardness of Lawler Blue Hole is 
significantly less than that of other springs, but the reason for the consistantly lower values is 
not yet known. 

2. Hardness of the Three-Springs Groundwater Basin may be higher or lower than that of the Hidden River 
Basin. This may be related to the different amounts of dilution of Three-Springs water by brines that 
takes place at different stages. It could also be partly related to more rain falling on one basin 
than another. 

3. The exceptionally high hardness at Hick Spring (Site 30) during June and the slight rise in November 
is related to the local contribution of an oil well brine to the flow of this spring. This anomaly is 
discussed in Interpretation no. 3 of Fig. 8. As mentioned in that discussion, an analysis of the 
brine was not made. (It should have been!) But study of the analysis of the spring and consideration 
of the subsequent analysis for sulphate (760 mg/1) indicates that it is primarily a calcium-magnesium 
sulphate water in which chloride is subordinate. For consistancy, the hardness of this sample is still 
reported as CaCO,. 

4. No evaluation has been made of how ion-exchange processes with clays increases the carbonate hardness. 
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FIGURE 18 - Calcium/magnesium ratio of springs, cave streams and wastewater treatment plant effluent in the 
Hidden River Groundwater Basin, springs in four adjacent groundwater basins, shallow wells, Green River, 
and wastewater treatment plant influent. 

DESCRIPTION: Same as that of Figs. 6 and 8. The molar calcium/magnesium ratio is a measure of the extent 
to which a water may have approached equilibrium with dolomite. It also is an indirect measure of the 
amount of dolomite present in a recharge area. 

INTERPRETIONS: 
1. Ca/Mg ratios are directly proportional to discharge. In two of the 

and Lawler Blue Hole, the ratio increases much more than in others. 
this behavior is the relative lack of dolomite in these two smaller 
residence time of recharge within them. 

groundwater basins, Garvin-Beaver 
The most likely explanation for 

basins and the probable shorter 

2. The Ca/Mg ratio of the well waters is near unity, partly because of the relatively long residence time 
of these low-velocity waters. This distinctive low ratio, coupled with the relatively low concen
trations of heavy metals, indicates that the wells neither intercept passages conveying water from 
Hidden River Cave nor are recharged by such water. It is conceivable, however, that the wells 
intercept low-order feeders for the cave passages that function as wastewater conduits between Horse 
Cave and the Green River. If there are such feeders it is possible that they could be back-flooded by 
the trunk drainage after heavy rains. But such waters would be highly diluted and unlikely to have a 
significant effect upon the quality of the well water. 
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TABLE 8 - Bacterial quality and nitrate concentration at selected sites. 

MEANS OF FIVE WEEKLY ANALYSES, MAY-JULY 1974 (after Holmes, 1974 

GROUNDWATER BASIN Total Fecal Fecal Nitrate 
Site and Col iforms Coli forms Streptococcus (N03) 

No. Site Name Colonies per 100 ml mg/1 I 

6 Green R., near 310 100 120 3.2 
Grady Spring 

THREE SPRINGS 
14 Blue Hole 320 270 300 13 .9 
16 Dixon Spring 300 230 270 13. l 

HIDDEN RIVER 
23 Gorin Mi 11 Sp. 340 130 160 12.8 
30 Hick Spring 290 120 170 12.7 

GARVIN-BEAVER 
39 Garvin Spring* 1380 (370) 410 (220) 4870 (190) 6.4 

I 

43 Green River, I 
I 

above Lawler 250 125 110 4.8 ' I 

LAWLER BLUE HOLE ~ 44 Lawler Blue Hole 390 190 350 
. 

* The anomalously high mean bacterial counts for Garvin Spring are the 
result of one sample with very high counts. The figures in parenthese:; 
give the mean for Garvin if this one sample is not used for calculatin<J 
the mean. 

· INTERPRETATIONS: Although the total coliform count of the effluent-bearing 
springs in the Hidden River Groundwater Basin is about the same as in 
the adjacent basins, the fecal coliform count may be less than in the 
adjacent basins and about the same as the Green River. The fecal 
streptococcus count may be less than that of adjacent basins and 
greater than that of the Green River. The data may not be 
statistically significant but it certainly suggests that the bacterial 
quality of the effluent-bearing springs is not greatly different from 
that of springs in adjacent basins or the Green River. We interpret 
the different nitrate concentrations of the springs to be partly 
determined by the percentage of each recharge area that is fertilized 
for crops. 
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TABLE 9 - Answers to the question, "Do samples exceed maximum limits for heavy metals?" for public water 
supplies and habitats for fish, a partial sunmary of Table 6. 

Do Samples Exceed Maximum Limits for Heavy Metals? 

Site 
Maximum 

Metal Limits* Horse Cave Wastewater Treat- Hidden River Cave 
ment Plant, Effluent South Branch 

(mg/1) 
Mean All Some Mean All Some 

Samples Samples Samples Samples 

Public Water Supplies (0.05) Yes Yes Yes Yes Yes Yes 
Chromium 

Fatal to Some Fish {5.0) No No No No No Yes 

Public Water Supplies --- --- --- --- --- --- ---
Nickel 

Fatal to Some Fish (5.0) Yes No Yes No No Yes 

Public Water Supplies (1. 0) Yes No Yes No No Yes 
Copper 

Fatal to Some Fish (0.02) Yes Yes Yes Yes Yes Yes 

Zinc 
Public Water Supplies (5.0) No No No No No No 

Fatal to Some Fish (0.3) Yes Yes Yes No No No 

* Maximum limits for public water supplies are set by State and Federal Standards {Kentucky Department of 
Natural Resources and Environmental Protection (1973) and Environmental Protection Administration (1973a). 
Current Federal standards, however, do not specify a maximum contaminant level for copper and zinc in 
public water supplies (Environmental Protection Administration, 1975). The concentrations fatal to some 
fish are taken from a compilation by Cheremisinoff et al. {1976). They are the lowest levels that have 
been shown to be lethal. The lethal concentration varies with type of fish, pH, temperature, etc. The 
Environmental Protection Administration (1973) recommends that the following concentrations not be exceeded 
in order to protect mixed aquatic life: chromium - 0.05 mg/1, nickel - 0.1 mg/1, copper - 0.03 mg/1, zinc -
0.1 mg/1. All samples at both sites always exceeded these limits. 
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TABLE 10 - Calculation of true dilution ratios between wastewater treatment plant effluent and anomalous 
metal levels in effluent springs which can not be attributed to regional background. 

Sample Regional 
Site & Background 

True Ratios Mean of (Mean of values Anomaly Mean of Mean of 
Effluent- for Grady, Higher than Wastewater Hidden River Dilution 
Bearing Garvin-Beaver, Regional Treatment Cave, South Ratios 

Element 
Springs and Lawler Blue Background Plant Branch STP-E Hole Basins) Effluent* 

(ES-B) mg/l (ES) (B) (ES-B) (STP-E) (HRC-S) 
Chromium .005 .001 .004 3.48 2.73 870 

Nickel .018 .004 .014 9.22 4.13 660 
Copper .005 .002 .003 2.28 .58 760 

Zinc .009 .004 .005 .68 (l .78)* .84 130 ( 360) * 
Chloride 11.6 5.6 6.0 81.8 26.2 14 
Sodium 5.8 2.0 3.8 165 54.6 43 
Potassium 1.3 1.0 .3 41 13.2 140 

* Mean dilution ratio of STP-E/HRC-S exclusive of zinc is 2.7. (Values are shown in column 4 of Table 7.) 
Since only zinc occurs in diluted effluent in l1igher values than in undiluted effluent, an improbabili~ 
that is explained by statistics of sampling, the HRC-S value was multipled by 2.7 to get an estimated 
effluent zinc concentration of 1.78 mg/1. The mean of values in the 3-Springs Groundwater Basin were not 
used because such values have been interpreted to have b~en affected by brine from oil and gas exploration. 

DESCRIPTION: Dilution ratios for heavy metals range from 870 to an estimated 360. But for chloride and 
alkalai metals it ranges from 140 to 14. 

INTERPRETATION: It seems very likely that ion-exchange reactions are taking place between clays and Cl-, 
Na+, and K+. Many samples would have to be analysed in order to demonstrate the rate and magnitude of 
these processes. 



are 2.2 and 1.9 times greater than that of the mean of four adjacent 

groundwater basins. These mean difference concentrations are con-

sistant and are useful for geochemically discriminating between the 

waters of different groundwater basins but the concentrations in the 

effluent-bearing springs pose no probable threat to public health or 

animal life. 

3. It should be stressed that the heavy metal concentrations present in 

the waters of Hidden River Cave, summarized in Tables 6 and 9, are 

considerably higher than current state and federal standards for 

public water supplies. We are not qualified to say whether the metal 

concentrations present are toxic, dangerous, or a hazard to public 

health. But the once-abundant stream fauna is no longer present. The 

metals plus the high Biological Oxygen Demand and Chemical Oxygen 

Demand have destroyed the habitat of the blindfish in the accessible 

part of the cave. The extent to which this septic environment extends 

downstream.is a matter of speculation. 

It is also to be stressed that metal concentrations that are not 

toxic to people or adult fish may be toxic or teratogenic to fish 

embryos. For example, Birge and Just (1974, p. 26-27) state, 

"the commonly accepted public health standard of 5 ppb 
for mercury in water is essentially an LD 5 o value for 
trout embryos, as better than 50% either die prior to 
hatching or exhibit gross anatomical defects when 
treated at this concentration." 

They also cite work which shows that zinc concentrations as low as 

0.01 ppm are lethal or toxic to trout eggs and alevins (fry) and 0.04 

ppm is lethal for young rainbow trout. Very little is known about the 

toxicity and teratogenicity of heavy metals to the embryos of invert

ebrates, fish, and other vertebrates. Acute toxicity tests are usually 
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run with adult specimens that may be resistant to concentrations 100 

to 1000 times greater than those that are toxic or teratogenic to 

eggs or embryos of the same species. Even less is known about the 

synergistic manner in which two or more metals that are non-toxic at 

"X" concentration are very toxic when both are in the same solution at 

"X" concentration (Dan Stoneburner, National Park Service, verbal 

communication, 1975). 

4. Column 4 of Table 7 indicates that the average dilution of effluent 

between the wastewater treatment plant and Hidden River Cave is 2.7. 

5. Column 5 of Table 7 compares the composition of the South and East 

Branches of Hidden River Cave. Chromium, nickel, and copper levels 

average 940, 590, and 140 times higher in the South Branch. 

6. Column 6 of Table 7 gives some apparent dilution factors for various 

elements at effluent-bearing springs relative to their concentration in 

treatment plant effluent, but a more accurate determination of 

dilution can be obtained by allowing for the background that would 

probably be present if no metal-rich effluent was being discharged 

into the cave system. These calculations are given in Table 10. 

Heavy metals are diluted by a factor of 360 to 870. (Mean= 660.) 

Chloride, sodium, and potassium are diluted by a factor of 14 - 140. 

(Mean= 70.) The low dilution of these latter three elements is 

interpreted to be a result of ion-exchange reactions with clays. 

7. The remaining columns of Table 7 compare the concentration of heavy 

metals and other chemical properties of the effluent springs with 

those of four adjacent groundwater basins, shallow domestic water 

wells, and the Green River. 

8. A study of columns 3 and 11 of Table 7 suggests that the effluent 
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springs average 1.9 times the chromium, nickel, and copper content of 

the East Branch of Hidden River Cave. They average 4.0 times the 

content of the Grady Spring, Garvin-Beaver, and Lawler Blue Hole 

Groundwater Basins. Therefore the East Branch averages 2.2 times as 

much chromium, nickel and copper as these three groundwater basins. 

And a very significant portion of the heavy metals in the effluent 

springs must come from the supposedly uncontaminated waters of the 

East Branch that do not drain a source area for such metals! This 

necessary hypothesis was discarded when a dye test by project 

·p~rsonnel proved that, at low discharge rates, water from the South 

Branch seeps into talus, flows beneath it, and contaminates the flow 

of the East Branch at the most upstream point in which it can be 

sampled. Contamination might also take place during high discharge, 

but by a hypothetical passage sub-parallel to the South Branch. 

9. Waters of the Three-Springs Groundwater Basin are easily discriminated 

from those of other basins by their characteristically higher sodium, 

chloride, carbonate hardness, and specific conductance. These 

relatively high levels are believed to be caused by brines released 

by oil and gas exploration, or even drilling for water wells. 

10. The bacterial quality of the effluent~bearing springs is not significantly 

different from that of other springs and the Green River. The total 

co·1 iform count of all three types of water averaged about 320 colonies 

per 100 ml, slightly less for fecal coliforms and fecal streptococcus. 

The fecal coliform and fecal streptococcus counts were lower, about 40% to 

50% of the total coliform count, and slightly higher than those of 

the Green River. 

ll. Accardi ng to Branstetter (1974) the mean monthly effluent discharge 
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of the Horse Cave wastewater treatment plant is approximately 12 

million gallons, but 10 million gallons may be a more realistic 

figure. Using this latter discharge and the mean values for effluent 

cited in Table 10, the monthly discharge into the subsurface would be: 

Chromium 
Nickel 
Copper 
Zinc 

290 lbs 
770 lbs 
190 lbs 
150 lbs 

An independent test of the accuracy of the chemical analyses can 

be obtained by checking the mass balance of Green River on days in which 

samples were taken both upstream and downstream of the effluent-bearing 

springs. This test is summarized in Table 11 and it suggests that there 

are no significant errors. Spring discharge was not measured or estimated 

(nor was it possible to do so) on all days sampling was done, so the 

actual dilutions can not be determined. But let us assume the following 

possible worst case that might occur during extremely low base flow for 

Green River and all springs: 

Discharge of Green River, at Munfordville 100 cfs 
(This is less than half the lowest flow in 
1975, the driest of the past 10 years. The 
lowest flow in 50 years is 39 cfs, in 1921.) 

Discharge at Gorin Mill Spring 25 cfs 
(This value has been measured during very 
low flow conditions) 

Concentration of chromium in Green River 0.0020 mg/1 
(The maximum recorded by this study) 

Concentration of chromium at Gorin Mill Spring .0500 mg/1 
(The maximum allowable in public water 
supplies, 3.3 times greater than the maximum 
recorded at an ·effluent-bearing spring) 

The new concentration of the Green River (100 cfs x .0020 mg/1 plus 

25 cfs x 0.0500 mg/1) would be 0.0116 mg/1, an increase of 0.0096 mg/1, 

a quantity certainly detectable, but not an increase to a level that 
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TABLE 11 - Comparison of nine matched analyses of Green River water 
upstream and downstream from where springs discharge diluted 
heavy metal-laden effluent. 

SITE GREEN RIVER 
LOCATION 

Is the 
Above Above Difference 
Grady Lawler Difference Significant? 

CHEMICAL Spring Blue Hole 
PROPERTY* (Site 7) (Site 44) 

Chromium .0005 .0009 + .0004 No 

Nickel .0041 ... .0041 0 No 
Q) 

Copper 
...., 

.0022 .0021 - . 0001 No ·~ 
~ ....... 

Zinc "' .0058 .0053 - .0005 No E 

"' ... 
Sodium 0, 3. 87 4.20 + .33 Probably ·~ 

~ 

~ 

Potassium ·~ 1.06 E 1.08 + .02 No 

Carbonate 
Hardness 103 114 + 11 Yes 

Ca/Mg Ratio 3.77 3.78 + .01 No 

Specific 
Conductance 247 268 + 21 Yes 
µmhos/cm 

* Heavy metal analyses are usually not significantly accurate at 
concentrations of less than 0.001 but the 4th figure is used for 
calculations. 

INTERPRETATION: During periods of moderately low flow to moderate 
flood, heavy metals from Hidden River Cave which are discharged at 
effluent-bearing springs along the river do not have any detectable 
effect on the heavy metal composition of the Green River. Spring 
discharge is diluted by an estimated factor of 40 to 200 or more. 
The balance between heavy metal input and output suggests that the 
samples (and analyses) are not significantly affected by statistical 
noise. 
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could be considered a threat to public health in cities downstream that 

use the river as their source of drinking water. Many similar calcula

tions could be made. 

Figure 19 shows the flow paths of groundwater in the Horse Cave 

area. It is redrawn from Fig. 7 and the site numbers of the wells and 

springs are shown on the latter figure. Except where mapped in caves, 

the flow paths are shown schematically as nearly straight lines. Water 

from the confluent streams in Hidden River Cave, the East Branch and 

South Branch, is discharged through a distributray system that includes 

39 springs at 14 locations along a 5-mile reach of the river -- every 

spring but one* between Gorin Mill and Blow Hole West. Water in these 

springs has heavy metals in concentration that are as high as 30 times 

greater than other springs upstream and downstream, 20 times greater 

than Green River, and 60 times greater than in shallow wells in the area 

between Horse Cave and the river. 

Metal-rich wastewater treatment plant effluent which also has a high 

Biological Oxygen Demand, Chemical Oxygen Demand and Suspended Solids 

content flows to Hidden River Cave where it is mixed with a river that 

flows from the southeast. During low base flow of the springs and Green 

River, the much-diluted effluent is discharged at 6 locations: Gorin Mill 

Spring, the three sites half a mile southwest of it, Hick Spring, and 

Blow Hole West. The total discharge in Hidden River Cave under such 

conditions is 7 cfs, that of Gorin Mill is 28 cfs, and that of all the 

other springs is estimated to total .5 to l cfs. In extreme flood, 

however at least 39 springs at 14 locations flow an estimated total of 

*Site 24, Trough Spring, discussed in Interpretation no. 5 of Fig. 8. 

70 



LAWLER 
, BLUE HOLE 

SPRING 

• 

CRUMP SPRING 
CAVE 

• WELL SAMPLED FOR HEAW METALS 

• DYE INPUT SITE 

• SEWAGE TREATMENT PLANT 

• HIOOEN RIVER CAVE 

• ' • • TRACED FLOW-~TH, BUT LOCATION OF 
ROUTE IS NOT KNOWN 

____ _.l KILOMETER 

0
, _____ ...,.I MILE 

• 

' 

MILL SPRING 

• 

·• 

•• • 
HIDDEN 'RIVER COMPLEX • 

• • 
• 

... 
•• 

• • • 

• • 
• • 

HORSE· CAVE 

• 
•• 

TRUNK DRAINAGE 
• • FROM BLUE 

' • SPRING 
' , BRANCH 

• 

FIGURE 19 - Flow paths of groundwater in the Horse Cave area. Site 
names are identified in Table 2. The map of Crump Spring Cave is 
reproduced through the courtesy of Joseph Saunders, University of 
Kentucky. The map of Garvin Cave is reproduced through the courtesy 
of Jack Hess, Desert Research Institute, Nevada. 
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1000 to 1500 cfs. This is a very speculative figure; at such stages the 

springs are impossible to gage. 

The Hidden River Complex, a major cave system 

Fig. 20 shows the mapped portions of the Hidden River Complex, a 

14.6 mile (23.5 km) cave system that was discovered in June 1975 by 

digging inspired by interpretation of the chemistry of the effluent

bearing springs to mean they are part of the widest known distributary 

system in America (Quinlan et al., 1975). It is the third largest cave 

in Kentucky, and is second only to Mammoth Cave (190 miles; 306 km) in 

Central Kentucky. 

The flow paths of water in the mapped portions of the cave are 

briefly summarized in the legend for Fig. 20. The break-out dome at A 

is a large feature formed by the collapse and stoping the roof of a 

subjacent cave passage. Today it is a lake 100 ft wide and 56 ft deep, 

with a hemispherical ceiling 60 ft high. The ancient conduit below, 

shown by a dye test by project personnel to be blocked and not in line 

with flow to Gorin Mill Spring, is presumably related to a level occupied 

by the Green River during the Pleistocene before its valley was filled 

with about 50 ft of alluvium. The partially mapped cave shown is a 

floodwater maze (Palmer, 1975) that is probably an extreme modification 

of a cave older than the one from which the water rises at A. 

A detailed discussion of the geology and hydrology of this cave, 

and that of other caves mapped because they are relevant to an under

standing of the regional hydrology, will be included in the Phase II 

report. 

The Hidden River Complex is accessible during only a few months of 
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FIGURE 20 - Map of the Hidden River Complex, showing flow paths and springs. Each dot represents one or more 
springs. Water enters the horizontal cave at A by rising 56 ft up a break-out dome and, at low stages, 
takes the paths shown by the stippling. The route from B to C is a river 40 ft wide, 8 ft deep, and 1.5 
miles long. Point 0, at the head of a small tributary, is where brine from a nearby oil well enters the 
cave. Its effect on water quality of Hick Spring is shown in Figs, 8, 9, 14, 15, & 17. If the stage of 
Green River rises slightly, water from A takes a slightly different route through the maze. During high 
flood the water from A flows to 33 springs at 10 locations along the river. The entire cave is water-filled. 



the year, when Green River is at low stages. Al ft rise in the Green 

River or a sudden thunderstorm can seal the cave shut for a day or two 

until the flow recedes. The cave was mapped by the skilled, dedicated 

people cited in the acknowledgements and the senior author. Wet suits 

were worn for protection from the cold water. 

In July 1976 it was discovered that the Hidden River Complex and 

many other caves in the Sinkhole Plain had anomalous concentrations of 

radon gas. These concentrations are higher than those found in Mammoth 

Cave and other caves within Mammoth Cave National Park. The source and 

nature of these anomalies is being studied by the senior author. 

Distributary flow in karst aquifers 

After the distributary system of the Hidden River Groundwater Basin 

was discovered, dye tests by Quinlan and the staff of the Uplands 

Research Lab (National Park Service) showed that distributary flow is 

characteristic of the Garvin-Beaver, Three-Springs, Markum Mill (Fig. 5, 

Basin M), Graham Springs (Fig. 5, Basin A) and Double Sinks (Fig. 5, 

Basin C) groundwater basins. Joseph Saunders and associates discovered 

that Scott Spring (Site 5), a perennial spring, is a distributary for 

the Grady Spring Groundwater Basin. But Scott Spring functions as such 

only during moderate to high stages when water flows through a high-level 

"cut-around". 

River Styx and Echo River (Sites 52 and 53), two springs upstream 

from the Mammoth Cave ferry, comprise a distributary of Mammoth Cave in 

which the Styx distributary is a high-level passage. When Green River is 

at a moderate stage and both it and springs are in a recessional phase, 

river water flows into Mammoth Cave at Styx and comes out 3000 ft down-
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stream at Echo River. Quinlan has observed similar behavior in Pike 

Spring East and Pike Spring West (Sites 50 and 51). He also i'nterprets 

two high-level passages adjacent to the Rotunda in Mammoth Cave, Houchins 

Narrows (and its continuation as Dixon Cave) and Audubon Avenue, to be 

distributaries of a Tertiary age river that flowed through Main Cave 

(the main passage in the historic part of the cave, near the main 

.;entrance). Lawler Blue Hole has a small distributary complex. Quinlan 

and National Park Service personnel and project personnel have 

demonstrated that distributary flow routes are characteristic of every 

large groundwater basin but one, Turnhole Spring, shown on Fig. 5. The 

other groundwater basin shown that lacks such flow is Mill Spring (Basin 

L). 

Distributary flow systems have been recognized by dye tests to the 

numerous springs that feed the Ljubljanica River, near Ljubljana, 

Yugoslavia (Gospodaric and Habic, 1976). The conduit system that feeds 

them is inaccessible and can not be mapped. 

Z6tl (1974) su111narized and interpreted the results of numerous dye 

tests (many made by him) in Austria, Yugoslavia, Greece, and Germany. 

Most of these tests were run in alpine and other high-relief areas in 

which the rocks have been intensely faulted and fractured. Many fasci

nating dye-dispersal patterns (such as flow paths that cross but do not 

mix) are illustrated and discussed. Some dispersal patterns can be 

interpreted to represent flow in a distributary complex, but much of the 

flow is believed to be in fissures. Most of the flow systems are 

inaccessible to man and there are no maps of the plumbing systems that 

feed the springs. 

Perhaps the area most intensively studied by dye-testing is the 
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Mendip Hills, an area of southeastern England in which the stratigraphy 

and structure is similar to that of'the Appalachians (Drew, 1975). Many 

of the caves there have been mapped. Indeed, more than 80% have been 

discovered by digging, sometimes over a period of years. Most of the 

caves are less than a mile long. But here too the hypothesized cave 

systems behind the numerous springs are generally inaccessible. 

Three of the numerous reasons why the discovery and mapping of the 

Hidden River Complex is significant are the: 

1. understanding it gives of the water quality of the effluent

bearing springs. 

2. demonstration it gives of how pollutants from a point source 

in a limestone terrain can be widely dispersed 

3. understanding it gives of how water moves in the ground and 

how caves can form. 

It is the first distributary complex to be recognized as such and mapped. 

Grady Cave, an important 10-mile cave that feeds Grady Spring (Site 7) 

has subsequently been identified by Joseph Saunders as having a 

distributary system but during moderate and low flow all water goes only 

to a single spring. 

Flow in limestones can be classified into two types -- diffuse and 

conduit (White, 1969). These are end-members of a continuum. In 

diffuse-flow aquifers water movement is through small interconnected 

joints and bedding planes. A water table is present; springs are small 

and.numerous; circulation is deep; velocities are very low. In conduit

flow aquifers water movement is through well-integrated conduits. 

Springs are few, but their discharge is large. Flow may be very rapid. 

Flow in the upper part of the principal aquifer in Central Kentucky, 
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is disposed of by dumping it into a sinkhole about 1000 ft away. The 

sinkhole is grass-lined and lacks an accessible opening into the sub

surface. Several years ago some of the sludge was used by local farmers 

as fertilizer. 

According to Robert Ware (Sanitary Engineering Associate, Kentucky 

Division of Water Quality, Frankfort, verbal communication to D.R. Rowe, 

1976) an August 1976 sample of digested sludge from the treatment plant 

has the following analysis (dry basis): 

Chromium 
Nickel 
Copper 
Zinc 
Iron 
Lead 
Manganese 
Cadmium 

15,440 mg/1 
13,607 mg/1 
6,380 mg/1 
6,345 mg/1 
5,393 mg/1 

233 mg/1 
99 mg/1 
6 mg/1 

Sludge with such a high heavy metal content should not be put into 

a sinkhole. Since the sinkhole is not ponded it must be assumed that 

rainfall drains through its bottom. Such runoff can carry heavy metals 

into the subsurface and could potentially contaminate wells nearby. It 

is also possible that the soil that partially plugs the sinkhole bottom 

could collapse, thus putting a massive amount of toxic metals into the 

groundwater. We believe that the sludge from this plant should be 

properly treated before disposal. But until such proper treatment 

facilities are built and influent controls are established the sludge 

should be given alternative approved treatment. The sludge now produced 

should not be put into any sinkhole or spread on the ground. 

GRAHAM SPRINGS GROUNDWATER BASIN 

The sources of water to Graham Springs, just across the river from 

Bowling Green (Fig. 5, Basin A, and Fig .• 21) have also been studied. 
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the one in which the active caves are fonning, is by way of conduits. 

Flow in most wells, however, is diffuse. As discussed by Quinlan et al. 

(1975) it is theoretically possible for diffuse flow to be in one 

direction and conduit flow, because of subsurface piracy or other reasons, 

to be in a different direction. Accordingly, it is conceivable that 

although nearly all effluent from the Horse Cave wastewater treatment 

plant is discharged by conduit-flow at the effluent-bearing springs, as 

discussed, some could be moving west by diffuse-flow towards Ma111Tioth 

Cave National Park. Such diffuse flm1 could contaminate wells in the 

intervening area and pose a threat to the subsurface fauna and flora 

of Ma111Tioth Cave National Park. The probability of such diffuse-flow is 

very remote but if it occurs, it would be years before i111Tiediate remedial 

action could alleviate the problem. Wells in the intervening area should 

be monitored for heavy metals. 

Sludge disposal 

The sludge that is collected during the treatment of wastewater 

consists of organic and inorganic matter. After anaerobic digestion and 

drying it must be disposed of, usually in a sanitary landfill or by ocean 

dumping. Depending upon the nature of a sludge and the extent to which 

it has been digested, some can be used as a soil conditioner. Except 

for a deficiency of potassium, phosphates, and nitrates, such sludges 

are comparable with fannyard manure. 

Sludge from the Horse Cave wastewater treatment plant is rich in 

organic matter because its metal content is toxic to the bacteria that 

would otherwise digest it.* About 1600 cubic ft per year of this sludge 

*Metals also kill the bacteria in the trickle filter which would otherwise 
digest the organic matter in the wastewater. This killing accounts for 
the high Biological Oxygen Demand of the effluent. 
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INTERPRETATION BY WELLS (1973) OF TRACES BY MIOTKE ANO PAPENBERG (1972) 

SPECULATED FLOW PATH OF TRACE NOT MADE 

TRACE BY WELLS (1973) BUT BELIEVED BY QUINLAN TO BE BASED ON ERRONEOUS 
INTERPRETATION OF DATA 

FIGURE 21 - Pre-November 1975 dye traces in the Graham Springs Ground
water Basin. The name of the various sites identified by letters is 
given in Table 12. Water was traced from the ponor (sinking point) of 
5 streams but one of the flowpaths, from SB, was wrongly identified. 
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TABLE 12 - Names of sites within and adjacent to the Graham Springs 
Groundwater Basin 

Main Trunk 

GS Graham Springs 
GPC Grant-Palmore Cave 
MC Mill Cave 

Long Hollow Trunk Wolf Sink Trunk 

LHC Long Hollow Cave ws Wolf Sink (Cave) 
JS Jackson Spring CHC Chicken Hollow Cave 
MS Meador Spring MC Mitchell Cave 
LES Little Elk Spring cc Crump Cave 
MB Meek Branch MS Madison Spring 
PB Petty Branch CB Cayton Branch 
ES Elk Spring SS Sledge Sinks 
BS Bohannon Branch SG Smiths Grove (town) 
GB Grinstead Branch SB Sinking Branch 
MB Madison Branch SC Sinking Creek 
RR Robertson Run PC Pondsville Creek 
cs Cook Spring DC Doty Creek 

TURNHOLE SPRING GROUNDWATER BASIN 

MH Mill Hole 
MS Madison Spring 
LSC Little Sinking Creek 
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•• • • • • • • • · SPECULATED FLOW PATH OF TRACE NOT MADE 

- - - FLOW PATH OF 340 TONS OF WHEY DUMPED INTO A SINKHOLE IN 1970 

~ BARREN RIVER 

FIGURE 22 - Flow paths in the Graham Springs Groundwater Basin. The name 
of the various sites identified by letters is given in Table 12. 
Water has been traced from the ponor (sinking point) of ten sinking 
streams, three karst windows (sinkhole in which a stream emerges from 
one side, flows across the bottom, and sinks on the other side), and 
six caves to Graham Springs (GS), via one to three caves. This map 
schematically shows a dendritic subsurface drainage system in which 
two trunk streams, shown by heavy lines, converge to form a main trunk 
stream flowing to Graham Springs. Passage widths of these trunk 
streams are as much as 40 to 50 ft and water levels in them may rise 
as much as 100 ft in response to very heavy rains. During base flow 
conditions water from Madison Spring (MS) contributes flow to two 
groundwater basins, Graham Springs and Turnhole Spring. The extent to 
which these two groundwater basins partially overlap is not yet known, 
but as discussed by Quinlan (1976), their common boundary has been 
proven to shift during floods. 
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This is the largest spring in the Central Kentucky Karst. Flows of as 

much as 230 cfs have been measured by the U.S. Geological Survey (Miotke 

and Papenberg, 1972) but higher discharges occur. Graham Springs is a 

distributary complex of four alluviated rise pits, at least one of which 

is 50 ft deep. 

Early dye tracing work is summarized in Fig. 21. One can see from 

it and from Fig. 22 that interpretation of dye tracing results is greatly 

aided by -- indeed, profoundly influenced by -- the availability of caves 

that intercept the regional drainage conduits. All of the caves shown 

have been mapped. 

Although other dendritic subsurface drainage systems undoubtedly 

exist, the one shown is the first one in the world to be documented at 

so large a regional scale. The size of the trunk passages is described 

in the explanation of Fig. 22. Mapping and study of them has also given 

new insight into the mechanics of sinkhole development. 

The dashed line on Fig. 22 shows the flowpath of the 340 tons of 

whey mentioned in the introduction as having been innocently dumped into 

a sinkhole in 1970. It contaminated the municipal well at Smiths Grove. 

Use and application of maps showing flow paths 
and groundwater basin boundaries 

Aside from the fact that the subsurface drainage patterns depicted 

by Figs. 5 and 22 are phenomenologically very interesting, these maps 

are rather useful. They can be used to predict: 

1. Where sewage industrial effluent or other substances diliberately or 

accidently discharged into the ground will go. 

2. Where pollutants in a domestic or municipal well probably came from --
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thus making it possible to discover the probable soµrce of such 

discharges sooner and stop them. 

The most recent version of these maps could be usefully studied by 

individuals or agencies planning, urban or industrial development. 

The follO't!ing is a specific application of these maps. Park City 

(1970 population: 576) does not have a sewage treatment plant. All 

dpmestic sewage is treated by septic t,mk or discharged directly into the 

ground, without treatment. Oye tests by Quinlari and: Uplands Research Lab 

personnel have shown that surface water that drains into sinkholes at 

Pa.rk City flows to Echo River (Site 53), through Mammoth Cave. 

Park City, Cave City, Horse Cave, and Munfordville have recently 

signed an agreement with an engineering consultant to plan for regional 

sewage disposal. This planning, to be done in compliance with section 

2_01 of the Water Pollution Control Act of 1972 (Public Law 92-500), 

wi 11 e.va.l uate the advantages and disadvantages of various types of 

r.egional sewage treatment. It will analyse costs, benefits, treatment 

plant designs, and environmental effects of various decisions to be made. 

For example, if a regional plant is to be built, what cities should it 

serve? All four or some? Where should it be located? We do not propose 

to recommend where it should be, but if the wastewater does not receive 

proper treatment the plant definitely should not be in the Park City area. 

By use of Figs. 5 and 22 one can predict the probable consequences 

of subsur.face disposal of efflu.ent from a proposed regional wastewater 

treatment plant at various sites. It is to be str.essed, however, that the 

groundwater basin boundaries drawn are tentative, work is still in 

progress, and the senior author should be consulted about the most recent 

wor.k. Also, it would be wise to run tests from specific sites under 

consideration. 
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Work.in progress 

The following work is in progress and all or most of it will be 

discussed in the Phase II report: 

1. Interpretation of analyses of spring, cave, and well waters 

in other areas of the Sinkhole Plain and Chester Cuesta, and 

an attempt to delineate areas of highest water quality. 

2. Compilation and drafting of maps and limited continuation of 

mapping. 

3. Dye tracing and continued delineation of groundwater basins. 

4. Mapping of the piezometric surface and delineation of two or 

more aquifers beneath the Sinkhole Plain. 

5. Compilation of a map showing the regional structure. 

6. Continuation of spring surveys 

7. Continued analysis of waters, but on a more limited scale. 

8. Synthesis of the above in order to summarize structural, 

stratigraphic, and geomorphic controls on groundwater 

movement and quality. 
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CHAPTER IV 

SU""1ARY OF CONCLUSIONS AND RECOMMENDATIONS 

1. Heavy metal-laden effluent, with high concentrations of chromium, 

nickel, copper and zinc that greatly exceed maximums allowed by 

current standards, is discharged at the Horse Cave wastewater treat

ment plant. It flows to the entrance of Hidden River Cave where it is 

mixed with water from a much larger stream. From the cave the 

effluent-rich water travels at least 4.5 miles north to Green River 

where, depending upon flow conditions, it is discharged at as many 

as 39 springs at 14 locations over a 5-mile reach of the river. Some 

of these springs flow only after heavy rains, when they and the river 

are at flood stages. The heavy meta 1 content of this effluent at 

Hidden River Cave still greatly exceeds maximums allowed by current 

standards but, by the time it reaches Green River, it is diluted to 

concentrati ans below the maxi mum a 11 owed by current s t.andards for 

public water supplies. The effluent-bearing spring waters have heavy 

metal concentrations that are as high as 30 times greater than other 

springs upstream or downstream, 20 times greater than the Green River, 

and 60 times greater than shallow domestic wells between the cave and 

the river. Mean ratios between concentrations at effluent-bearing 

springs and other springs, the river, and wells however, based on 

spring samples collected chiefly during conditions of moderate to 

flood flow, average 3.8, 4.4 and 4.5, respectively. The concentration 

of heavy metals in effluent-bearing springs is greatest during low 

flow because there is less water available for dilution. None of the 

operating wells between Horse Cave and.Green River intercept the 

effluent-bearing water -- as proven by their relative lack of heavy 
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metals and their calcium/magnesium ratios, and as suggested by their 

lack of coliform bacteria. There is a slight theoretical possibility 

that a small amount of effluent moves by diffuse-flow toward Mammoth 

Cave National Park but this is not considered probable. 

2. Interpretation of the anomalous heavy metal content and presence of 

optical brighteners uniquely in the 39 effluent-bearing springs, and 

consideration of the unusual uniformity of their specific conductance, 

led to the hypothesis that they were fed by a distributary complex 

unlike any known. Excavation of a spring led to the discovery of the 

hypothesized cave, 14.6 miles of which has been surveyed. Study of 

the cave map has made it possible to understand the hydrology and 

water quality of the springs and has given an insight into the 

geomorphic history of the area. 

3. Thirteen groundwater basins have been recognized and their boundaries 

have been partially delineated. At least two of these basins partially 

overlap. Distributary flow systems are a property of ten of the 

thirteen groundwater basins. These flow patterns, hitherto unrecognized 

anywhere in North America, are extremely important because they enable 

pollutants from a point source to be dispersed over a broad area. 

Such flow patterns could occur in karst areas elsewhere in Kentucky 

and in other states. 

4 •. Maps showing the boundaries of groundwater basins are exceedingly 

relevant to problems of sewage disposal, water supply, and industrial 

development. Knowledge of the flow direction of water in a basin 

enables prediction of where toxic (or other) pollutants will go or 

where they might originate. Such knowledge can guide wise location 

of new industrial facilities. It is to be stressed that some of the 
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boundaries of the groundwater basins are not yet known; others are 

only tentatively located. 

5. Groundwater velocities in the upper part of the main aquifer range 

from 30 ft per hour to 1300 ft per hour -- depending upon the duration 

and intensity of rains. Most deeper water moves at an undertermined 

rate that is several orders of magnitude slower. 

6. Sludge from the Horse Cave wastewater treatment plant has as much as 

15,400 mg/1 chromium, 13,600 mg/1 nickel, 6,400 mg/1 copper, 6,300 

mg/1 zinc, and other metals. The sludge is dumped into a surface 

depression that lacks an accessible outlet but it still could 

contaminate water supplies. The sludge should be properly treated but, 

until such facilities are available, it should be given alternative 

approved treatment. All sinkholes or other surface depression in a 

karst area should be regarded as recharge points for the conduit-flow 

and diffuse-flow of the aquifer. Surface depressions should never be 

used as disposal sites for any type of waste. 

7. It is possible to geochemically discriminate between the waters of 

several of the groundwater basins studied. For example, the Hidden 

River Groundwater Basin is characterized by anomalous heavy metal and 

optical brightener concentrations and by generally uniform specific 

conductances. The Three-Springs Groundwater Basin is characterized 

by relatively high chloride, sodium calcium, and specific conductance. 

These anomalous properties are interpreted to be a result of slight 

contamination by brines released by drilling operations. 

8. Ion-exchange reactions between clays and sodium, potassium, and 

chloride have been shown to probably occur in the conduit system 

conveying effluent-laden waters from Horse Cave to the Green River. 
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9. Water wells that might be drilled in the area between Horse Cave and 

Green River could intercept the conduit system that carries effluent 

to Green River. Not only would such water be unsuitable for use but, 

if the well were not properly cased, the aquifer could be contami

nated; other wells, now safe, could also be contaminated. 

10. The map of flow paths in the Graham Springs Groundwater Basin (Fig. 

22) is a useful planning document. In this basin and in the Turnhole 

Spring Groundwater Basin (Quinlan, 1976) it can be shown that the 

plumbing system of the principal aquifer is very much analagous to 

the form of a major surface river. Low-order tributaries join 

intermediate-order tributaries that join high-order trunk streams as 

much as 40 ft wide that flow to a distributary complex or a large 

spring. Water levels in these trunk streams may rise and fall as 

much as 100 ft in response to heavy rains. 

11. If the whey dumped into a sinkhole east of Smiths Grove had been 

dumped a few miles to the north and east, it could have flowed into 

Manmoth Cave National Park -- and potentially destroyed much or all 

of the unique fauna of a part of the park. 

12. The facts and interpretations based on dye tracing results, flow 

velocities, and research on the geometry of caves are essential to 

the development of future computer simulations of groundwater 

movement in limestone -- if such simulations are in any way to model 

the real world. 

13. Several large springs, Lawler Blue Hole, Gorin Mill, and Graham 

Springs, and Oisappointment Lake (within the Hidden River Complex, at 

Point A, on Figs. 19 and 20) are potential sources of public water 

supply but, assuming water rights can be acquired, and neglecting 
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the costs of necessary treatment for sediment during high flow and 

perhaps for chemical quality, it would be expedient to: 

1. Run pumping tests during low flow conditions -- in order to 

determine the sustained yield of the springs 

2. Define the drainage basin boundaries as ,accurately as possible, 

by dye tests 

3. Pass and enforce zon.ing ordinances that would assure protection 

of the water supply from toxic wastes. 

14. It is possible that part of several of the major cave systems that 

underlie the Sinkhole Plain could be developed as public or industrial 

water supplies. In a sense, these caves.could be considered a.s 

natural aquaducts. In a sense also, the caves could be considered as 

natural sewers. Corporate and regional planning decisions can be 

influenced by these alternatives. 

15. We recognize that not all of this preliminary report is directly 

relevant to the interests of public officials within the study area. 

Accordingly, after completion of the Phase II report, we propose to 

make a large scale summary map of the groundwater basins .. This map 

and the style of its text would be for general distribution. 
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