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ABSTRACT OF DISSERTATION 

 
 
 

SYNTHESIS OF BIOLOGICALLY-INSPIRED NANOFILTRATION MEMBRANES 
USING PROTECTED, MUTATED, AND SIMULATED AQUAPORINS 
 
 
 
 

 Gram-negative bacterial cells are surrounded by a cell membrane which protects 

the cell and controls the transport of nutrients and waste products in and out of the cells at 

a fast rate. This rapid transport of nutrients and wastes through the cell membrane is 

made possible by channel proteins called porins. Various types of porins present in the 

cell membrane have specific functions depending on their selectivity towards different 

nutrients, and channel proteins selective towards water are called aquaporins. These 

proteins restrict the passage of all entities except water molecules and they provide a fast 

transport rate of water molecules at 109 molecules/second per channel.  

 The high selectivity of porins has led to their incorporation into synthetic systems, 

and one example is the addition of porins to separations membranes in order to enhance 

their performance in terms of selectivity and permeability, in a field called biomimetics. 

The concept of incorporating aquaporins into synthetic membranes has been studied for 

the last 10 years in order to enhance the water permeability and selectivity of membranes 

for water purification; however, there are still limitations such as high costs, difficulties 

in fabrication of aquaporins, their alignment into synthetic membrane assembly, low 

stability, and limitations on number of aquaporin molecules that can be introduced into 

synthetic membranes limit their applicability.  



     
 

 In recent years, concurrent with the work on aquaporin-based biomimetic 

membranes, there has been an increase in the study of synthesizing molecules with 

similar structure-function relationships of aquaporins. These artificial channels attempt to 

mimic the high-water permeability and selectivity of aquaporins, while being synthesized 

using simple chemistry, being solvent compatible, and requiring less space on the 

membrane surface which helps to incorporate more channels into the membrane 

assembly. 

 The objectives of this study were to first incorporate aquaporins into synthetic 

nanofiltration membranes without chemical alteration them to prevent flattening or 

denaturing of aquaporins; then, the second objective was to install functional groups on 

aquaporins and align them in the direction of water flow; lastly, the third objective was to 

synthesize artificial channels in order to overcome the issues with aquaporin stability, 

alignment, and efficient packing of water channels onto the membrane surface.  

 For the first objective, aquaporins were treated with a polysaccharide, gum 

Arabic, and incorporated into an amphiphilic polymer, polyvinyl alcohol with alkyl side 

chains (PVA-alkyl), in order to simulate the natural housing of lipid bilayer for 

aquaporins and to protect them from denaturing. Long alkyl chains provided the 

hydrophobic component, while PVA provided the hydrophilic component of the 

amphiphilic polymer. Membranes modified with aquaporins displayed lower flux 

declines and higher flux recoveries after reverse flow filtration, along with improved 

rejection values for both protein and salt solutions as compared to PBI and PBI-PVA-

alkyl membranes. However, there was leakage of ions between channels.   



     
 

 Therefore, in order to improve the rejection of protons, ions and other impurities, 

the channels were aligned with the direction of water flow. Functional groups were 

installed on Aquaporins using site-directed mutagenesis for covalent attachment to the 

polymer matrix so that the proteins could be immobilized to the membranes and aligned 

in the direction of the flow. Aquaporin constructs were modified to bear affinity tags or 

unique amino acids at the N-terminus of the aquaporin molecule, which was used to 

facilitate directional immobilization. Each aquaporin monomer was modified with a 

unique amino acid Cys group at the N-terminus right after the first Met, and due to the 

aquaporin tetrameric nature, these Cys groups became four anchors for attachment. The 

presence of these four Cys anchors per aquaporin tetramer was used to attach on the 

membrane surface in alignment with the feed water flow direction. Membranes modified 

with mutated aquaporins showed consistently higher salt rejection values of ~70% 

irrespective of feed concentration, along with higher flux recoveries and lower flux 

declines. Commercial NF-270 membranes provide a monovalent salt (NaCl) rejection of 

~50% and divalent salt (MgCl2) rejection of 97%. Also, approximate coverage of 

membrane surface with attached aquaporins was calculated using simulation studies. 

Simulation studies showed that immobilized aquaporins with PVA-alkyl provided a 

diffusion rate equivalent to 64% coverage on the membrane surface. This showed that 

aquaporins didn’t cover the entire surface area of the membrane. However, immobilized 

aquaporins were responsible for the rejection of a portion of ions passing through the 

membrane.  

 In order to overcome the limitations of aquaporin incorporation into polymer 

membranes, artificial organic frameworks were added as surface modification on PBI 



     
 

membranes. Organic frameworks were synthesized as derivatives of hybrid bisamides. 

The series of bisamides 1-4 consist of 6-amino-pyridine-2-dicarboxylic acid, 6-

hydroxymethyl-pyridine-2-carboxylic acid and ethylenediamine, trimethylenediamine, 

putrescine, and cadaverine depending on the length of carbon chain. These frameworks 

are amphiphilic in nature and have strong chemical attachment due to the presence of 

amines and carboxylic acids into each building block. These molecules were introduced 

into the membrane matrix using carbodiimide chemistry. FTIR results showed the 

attachment of these bisamide molecules onto the surface of a modified PBI membrane. 

Also, modified membranes showed a reduced molecular weight cut off (MWCO) for 

neutral organic molecules. 

 Overall, membranes modified with aquaporins have shown a potential to provide 

consistently high salt rejections with increasing feed solutions. Also, preliminary results 

have shown that bisamide molecules can be attached onto the membrane surface as 

organic frameworks and have a potential to be an alternative for aquaporins based 

biomimetic membranes. 
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CHAPTER 1.  INTRODUCTION 

 A typical cell consists of cell membrane, mitochondria, golgi complex, 

lysosomes, endoplasmic reticulum, ribosomes, plastids, peroxisomes, cilia, flagella, 

nucleus, and the cytosol. The cell membrane is composed of the plasma membrane and 

an inner membrane, which act as the protection system of the cell components against 

macromolecules such as proteases[16], larger oligopeptides, neutral sugars with 

molecular weights more than 600 Da, and hydrophobic dyes and antibiotics [17]. 

However, this protection system allows certain small biomolecules and entities, such as 

mono- and disaccharides and nucleosides, into the cytoplasm for proper functioning of 

the cells (Figure 1-1). This system acts as a molecular sieve with various proteins, called 

porins, that allow rapid diffusion of small molecules across the membranes acting as the 

sieves [18]. Porins can provide a size exclusion ranging from 600 Da to 5000 Da, and 

they form a major integral component of the cell membrane making it a molecular sieve 

[19].  
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Figure 1-1 Biological cell membrane separation strategies [20]  
 Porins can be divided into three main categories: (1) non-specific or general 

porins, (2) specific channels, and (3) high-affinity, energy-dependent transport systems. 

Non-specific or general porins allow nonspecific and spontaneous diffusion of small 

molecules through cell membrane. Specific channels have ligand-binding sites and have 

facilitative transport of specific ligands. High-affinity, energy-dependent transport 

systems carry out energy-intensive translocation of large nutrients present in very small 

amount outside cell membrane [21, 22].  

 The first class of porins is known as non-specific or classical porins. These porins 

allow the influx of small, hydrophilic nutrients at very high permeability, while rejecting 

larger lipophilic molecules [22]. An example of classical porins is outer membrane 

protein F (OmpF). The monomeric unit of OmpF acts as a size-selective membrane with 



3 
 

a molecular weight cut off of 600 Da. The three-dimensional structures of these porins 

determine their function and properties, and transport of various entities through these 

porins is highly affected by physical properties, and charge [23]. These porins have 

preference for neutral and positively charged molecules over negatively charged ones 

[22, 24]. Incorporating these porins into synthetic polymeric membrane can potentially 

improve membrane selectivity while attaining greater water permeability as compared to 

conventional ultrafiltration membranes [25]. 

 However, some of nutrients are too large to go through non-specific porins or too 

slow to get transported through them; thus, in order to allow these nutrients to be 

transported into the cell, a second class of porins exists, which comprises of specific 

porins present in cell membranes. These specific porins have stereospecific ligand-

binding sites that facilitate the transport of a particular entity through these channels [23, 

24]. An example of the specific porins is maltose outer membrane protein, Phage Lambda 

(LamB) that facilitates the influx of maltose and higher oligosaccharides of the maltose 

series into the cell [24, 26]. LamB is not very discriminating among monosaccharides, 

but becomes more selective for larger saccharides [23]. The permeability for maltose and 

higher oligosaccharides through LamB is much higher than through non-specific porins. 

Also, the diffusion rate of these oligosaccharides through LamB is not affected even in 

low concentrations [24]. 

 The third class of porins is comprised of high affinity transporters where the 

ligands are bound strongly with high energy intensity, and catalyze active transport 

across the cell membrane. These transporters carry out uphill transport through energy 

coupling via TonB protein [27]. An example of such transporters is ferrichrome receptor 
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FhuA. FhuA binds to the ferrichrome ligands and transports those ligands through an 

interaction with TonB. [28]. The ß-barrel in these monomeric receptors is composed of 

22 strands, the N-terminal portion of the protein consists of 150 to 200 residues that are 

inserted into the barrel. These residues form a “plug” for ligands to bind [24]. Binding of 

these ligands induces conformational changes in the receptor and in turn promote TonB 

to contact the receptor physically. TonB transduces energy, enabling further changes in 

the receptor such that the affinity for ligand is decreased, and ligand enters the periplasm. 

TonB dissociates from the receptor after this detachment [13]. 

 Along with nutrients, minerals, and sugars, water is also an integral part of all 

living systems [29], and it is the major component of cells and of surrounding 

extracellular spaces. The organization of water and its flow across the cells within 

biological compartments is fundamental to life. Water must be able to flow not only into 

and out of the cell, but also into and out of all sub-cellular compartments [30]. In order to 

provide water to all cells and their sub-cellular components, cell membranes contain lipid 

bilayers through which water can be transported via diffusion; however, diffusive 

permeability is fairly low, so lipid bilayers are not solely responsible for the actual water 

flow across cells. This higher flow of water through cells is provided by membrane 

proteins present in the cell membrane. These transmembrane proteins have a specific 

three-dimensional structure with pores that provide a pathway for water permeation 

across cell membranes [30]. In 1992, Peter Agre and coworkers discovered a 28kDa 

“water channel” protein responsible for this high transport of water across the cells, and 

named it aquaporin [31-33]. Since 1992, hundreds of water channels proteins have been 

discovered in organisms from all kingdoms of life [30]. 
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 Aquaporins possess a high capacity of water permeation based on an osmotic 

gradient driving force, while being completely selective for water and preventing the 

passage of ions and other solutes including protons [29, 34, 35]. A unique hourglass 

shaped structure, conserved hydrogen bonding groups from asparagine-proline-alanine 

(NPA) signature motifs, and a pore diameter of 3 Ao that is large enough to transport 

single chain of water molecules (size exclusion) allow aquaporins to selectively transport 

water through cell membranes with a high permeability and selectivity [36-39]. Since the 

discovery of aquaporins, these proteins have been of great interest in the field of synthetic 

membrane separations. Membrane separation processes are widely used for various 

applications owing to their ability to produce desired water quality, high stability, 

efficiency, smaller footprint compared with conventional water treatment technologies. 

However, membranes suffer from selectivity-permeability trade-off, inherent materials 

limitations, performance decline and cleaning requirements [40, 41]. Learning from 

nature and adapting those concepts into synthetic systems has become a popular 

philosophy in scientific communities through biomimetics and bioinspiration [42].  

 The term biomimetics was introduced in the 1960s, and it refers to the study of 

the structures and functions of biological systems as models for synthetic systems in 

order to enhance the performance of synthetic systems with respect to various parameters 

[42]. Biomimetics is essentially limited to copying or imitating the solutions nature has 

adapted over the course of billion years. In this context, aquaporins represent a new 

material, which can provide high selectivity and permeability as compared to traditional 

synthetic systems. Thus, in theory, one would be able to completely reject all the solutes, 

including ions and protons except water if functional aquaporins were successfully 
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incorporated with proper orientation into synthetic membrane systems. Inspired by this 

concept, Kumar et al. incorporated aquaporins into polymersomes with water 

permeability through these polymersomes up to two orders of magnitude higher than 

commercial membranes and at an almost perfect selectivity [43].  

 Since the introduction of biomimetics using aquaporins into the field of 

membrane separations, a number of approaches have been developed to incorporate 

aquaporins in synthetic membranes in order to improve the selectivity of membranes 

towards water [20, 40, 43-58]. Biomimetic membranes have three main components: 

aquaporins, amphiphilic molecules where aquaporins are reconstituted, and a polymer 

support. The amphiphilic molecules can either be a lipid bilayer or an amphiphilic 

polymer. Amphiphilic polymers are shown to have more stability and flexibility and 

hence are more widely used to synthesize biomimetic membranes [59, 60].  The goal has 

been to fabricate biomimetic membranes that are as stable, robust, scalable and cost-

effective as already established technologies [61]. At the commercial level, the 

Aquaporin InsideTM flat sheet is the first thin film commercial forward osmosis 

membrane fabricated with aquaporins incorporated in its polyamide selective layer [62]. 

These commercial membranes have been synthesized using conventional interfacial 

polymerization, where aquaporin-based proteoliposomes were dispersed in the aqueous 

solution. These membranes incorporated with proteoliposomes have shown water 

permeability values greater than 4 LMH/bar and salt rejection values of more than 96% 

[47]. 

 However, there are certain challenges that are associated with incorporating 

aquaporins into synthetic assembly with respect to synthesis, stability and functioning of 
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the membranes. One of the challenges is high costs involved in the expression and 

purification of aquaporins on a large scale. Another challenge is scalability of current 

approaches to synthesize biomimetic membranes on a large scale [61]. Along with the 

work going on in the field of biomimetic membranes based on aquaporins, there has been 

an increase in the research associated with bioinspired materials [4]. A number of 

artificial structures with similar structure-function relationships of aquaporins have been 

introduced in the recent years. These structures have the potential to overcome the 

aforementioned challenges in the commercialization of biomimetic membranes [4]. 

 Biomimetic and bioinspired membranes is one of the most promising scientific 

and technological challenges in coming years. Extensive research has been carried out in 

order to incorporate a number of biological molecules into synthetic systems to enhance 

their performance. However, the structure-functional relationships of biological systems 

need to be explored fully in order to strengthen the technological development in the field 

of biomimetic membranes. Also, the cost involved in large-scale expression of biological 

molecules and synthesis of biomimetic and bioinspired membranes should be reduced 

significantly. In summary, the future of aquaporin-based biomimetic and bioinspired 

membranes will be based on what can be understood in terms of structure-functional 

relationships of aquaporins, how can uniform and narrowly distributed pores with higher 

level of imitation be recreated, and how can biomimetic and bioinspired membranes be 

fabricated on a commercial scale [61].  

 This study is focused on synthesis of biomimetic nanofiltration membranes with 

protected and immobilized aquaporins, as well as on synthesis of bio-inspired membranes 

with artificial water channels imitating the structure-function relationships of aquaporins. 



8 
 

The objectives of this study were to first incorporate aquaporins into synthetic 

nanofiltration membranes without chemically altering them to prevent flattening or 

denaturing of aquaporins during operation. Then, the second objective was to install 

functional groups on aquaporins and align them in the direction of water flow. Lastly, the 

third objective was to synthesize artificial channels in order to overcome the issues with 

aquaporin stability, alignment, and efficient packing of water channels onto the 

membrane surface.  Membranes synthesized here had as a primary goal to match or 

exceed the permeability of ~11 LMH/bar and a divalent salt rejection of 97% of 

commercially-available NF-270 membranes [62, 63]. 
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CHAPTER 2. LITERATURE REVIEW 

 

2.1 Diffusion channels in bacterial cell membrane 

 Bacterial cells consist of a cell wall, cytoplasm, nucleus, endoplasmic reticulum 

(ER), ribosomes, golgi body apparatus, lysosomes, mitochondria, vacuoles, and cilia and 

flagella [64]. The cell wall of gram positive bacteria has several layers of peptidoglycan 

with teichoic acid molecules perpendicular to the layers of peptidoglycan. Gram negative 

bacteria have a cell wall with a single layer of peptidoglycan surrounded by outer 

membrane [65], which allows selective passage of nutrients from the outside in and waste 

products from the inside of cell out. The cell membrane is composed of three layers; the 

outer membrane, the peptidoglycan cell wall, and the inner membrane [66]. The outer 

membrane is made of lipid bilayers, which show little permeability for hydrophilic 

solutes, including most nutrients. Therefore, these lipid bilayers are embedded with 

protein channels to provide influx of nutrients and removal of waste products.  

 The proteins present in the outer membrane are categorized into two classes, 

lipoproteins and ß barrel proteins. Lipoproteins contain lipid moieties attached to an 

amino terminal cysteine residue[67]. These proteins are embedded in the inner leaflet of 

the outer membrane and hence are not considered as transmembrane proteins. There are 

three main categories of transmembrane proteins: (1) non-specific or general porins, (2) 

specific channels, and (3) high-affinity, energy-dependent transport systems. Non-

specific or general porins allow nonspecific and spontaneous diffusion of small 

molecules through cell membrane. Specific channels allow facilitative transport of 
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specific ligands via ligand-binding sites. High-affinity, energy-dependent transport 

systems carry out energy-intensive translocation of large nutrients present in very small 

amount outside cell membrane [21, 22]. 

2.1.1 Non-specific channels: 

 Nearly all of the transmembrane proteins of the outer membrane are ß barrel 

proteins. These proteins are essentially ß sheets with a cylindrical conformation. Some of 

these outer membrane proteins (OMPs), such as classical or non-specific porins, regulate 

the uptake of nutrients and disposal of waste products via passive diffusion.  Porins have 

monomer molecular weights in the range of 28000 to 48000 Da. They exist as trimers 

where each monomer acts as an individual channel (Figure 2-1). These proteins are 

present in abundance in the outer membrane; there are approximately 250,000 copies of 

OMP per cell [68]. The expression of these porins depends on growth conditions. For 

example, OmpF and OmpC are regulated by osmotic pressure and temperature. OmpF, 

OmpC, and PhoE porins are highly homologous with 63% sequence identity [68]. OmpF 

and OmpC are weakly cation selective whereas PhoE is weakly anion selective porin 

[69]. The interior of the porins contains charged amino acids lining the inner pore walls 

(Figure 2-1), while the number and position of these charged entities with respect to the 

most constricted portion of the porin channel determines ion selectivity of the channel 

[70]. These ion selectivities are the strongest determinants of the sieving properties of the 

porins for antibiotics of different charges. These porins have distinct channel 

conductances and voltage gating behaviors when they are incorporated into lipid bilayers. 

OmpF, OmpC, and PhoE show conductance of 0.8, 0.5, and 0.6 nS in 1M salt, 
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respectively. Also, the threshold potentials observed are 90, 160 and 100 mV, 

respectively, above which the channels close [71, 72].  

 

Figure 2-1 Structure of OmpF porin of Escherichia Coli (E. coli). (A) Top view of OmpF 

trimer. (B) Side view of the monomer (C) Top view of OmpF monomer, showing the 

constricted region of the channel. The constricted region is formed by Glutamic acid117 

(E117), Aspartic acid113 (D113), Lysine16 (K16), Arginine42 (R42), Arginine82 (R82), 

and Arginine132 (R132) [24] 

 Diffusion of solute molecules passing through porin channels is strongly affected 

by their lipophilicity. Cationic and anionic amino acid residues located in the opposite 

sides in the most constricted region of the channels are responsible for the retarded 

diffusion of lipophilic solutes. Due to this structure of the constricted region, water 

molecules are oriented in a highly directional manner, making the disruption of this 

ordered structure by hydrophobic solutes unfavorable in terms of energy [73-75]. 

 Molecular dynamics simulation studies of OmpF porin have shown that the 

channel is remarkably efficient in the transport of cations even in micromolar solutions. 

The constriction of the channel is very stable and water molecules are highly ordered in 

the constriction region. Cations bind to the anionic side chain of the constriction region 
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and this binding plays a significant role in the permeation of cations over anions. 

Therefore, the transport of cations through these non-specific porins is also through a 

binding mechanism similar to specific porins. This shows that the difference between 

non-specific and specific porins is quantitative rather than qualitative [76, 77]. Some 

other outer membrane proteins present in E. Coli are listed in Table 2-1. 

Table 2-1 Outer membrane non-specific channel proteins in wild type and K-12 mutants 

of E. Coli 

Porin Bacteria Function Reference 

OmpF 

 

 

 

 

E. Coli Diffusion of small 

cations, pore 

diameter 1.2 nm 

[24, 25] 

OmpC E. Coli Transport of small 

cations, pore 

diameter 1.0 nm 

[24] 

PhoE E. Coli Transport of small 

anions, pore 

diameter 1.1 nm 

[24] 

NmpC 

 

E. Coli K-12 mutant Similar to OmpF and 

OmpC, pore 

diameter 1.0 nm 

[78, 79] 
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OmpN E. Coli K-12 mutant Similar to OmpF and 

OmpC 

[79] 

OmpG E. Coli K-12 mutant Unusually large 

channel with 

monomeric form 

(uptake of large 

oligosaccharides) 

[24, 80] 

OmpW E. Coli Used as a receptor by 

a colicin, relatively 

small in size 

[24, 81] 

OmpX E. Coli Promotes bacterial 

adhesion to 

mammalian cells 

[82] 

OmpT E. Coli Secretion of colicins [83, 84] 

OmpLA E. Coli Cleavage of ferric 

enterobactin receptor 

protein 

[85] 
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2.1.2 Specific channels:  

 The second class of transmembrane proteins are specific porins that catalyze the 

spontaneous diffusion of specific classes of nutrients. An example of this class of porins 

is phage lambda receptor (LamB) protein of E. coli. LamB facilitates the influx of 

maltose and higher oligosaccharides of the maltose series. The permeability for maltose 

and large oligosaccharides observed through LamB is much higher than other porin 

channels [86]. Also, the diffusion rates through non-specific porin channels are 

proportional to the difference in concentration across cell membrane. As a result, the 

rates become very low as concentration drops below millimolar level. However, the 

diffusion rate is not affected in LamB even at low concentrations [24].  

 Each subunit within the LamB trimer has a ß barrel containing 18 transmembrane 

ß-strands as compared to 16 ß-strands in classical porins. The pore of LamB is more 

constricted than those porin channels owing to the infolding of 2 additional loops [87, 

88]. However, in order to facilitate the transport of maltose and derivatives, the entire 

length of inner wall consists of six aromatic residues, which is called greasy slide (Figure 

2-2). Sugar residues in maltose and other oligosaccharides interact with this greasy slide 

via van der Waals forces [89, 90]. Also, there are many charged residues at the 

constriction region that form hydrogen bonding with the hydroxyl groups in sugars [91]. 

Thus, LamB channel is a specific channel that facilitates wide variety of carbohydrates 

when they are present in low concentrations. Table 2-2 shows examples of other specific 

channels. 
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Figure 2-2 Structure of LamB protein (A) Side view of LamB monomer (B) Top view of 

the LamB monomeric unit. The greasy slides: Tyrosine41 (Y41), Tyrosine6 (Y6), 

Tryptophan420 (W420), Tryptophan358 (W358), and Phenylalanine227 (F227) are 

shown as blue stick diagrams. Tyrosine118 (Y118) constricts the diffusion channel 

(shown in yellow). (C) Side view of the monomer with greasy slide and interaction of 

greasy slide with maltotriose [24]. 

 

Table 2-2 Specific channel proteins in cell membrane 

Protein Bacteria Function Reference 

Sucrose channel 

(ScrY) 

E. Coli, Salmonella Utilize sucrose as a 

carbon source, 

allows rapid 

diffusion of large 

variety of sugars 

[92-95] 
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Aryl-ß-D-glucoside 

channel (BglH) 

E. Coli Degradation of aryl-

ß-glucoside 

[96] 

Receptor protein of 

phage T6 (Tsx) 

E. Coli Nucleoside transport, 

uptake of antibiotic 

albicidin 

[97, 98] 

Cytochrome protein 

(CymA)  

Klebsiella oxytoca Exists as monomers, 

binds cyclodextrins 

at high affinity 

[99, 100] 

Long chain fatty 

acid outer 

membrane protein 

(FadL)  

E. Coli Efficient utilization 

of long-chain fatty 

acids as carbon 

source 

[101, 102] 

TbuX channel Ralstonia picketii Diffusion of Toluene [103] 

XylN channel P. putida Diffusion of m-

xylene 

[104] 

SalD channel Acinetobacter Diffusion of 

salicylate ester 

[105] 

CymD channel P. putida Diffusion of p-

cymene 

[106] 

KdgM channel Erwinia Diffusion of [107] 
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chrysanthemi oligogalacturonate 

 

2.1.3 TonB dependent receptors or gated channels:  

 Iron is particularly important for living cells due to its importance in cellular 

metabolism. It is a constituent of enzymes that play a vital role in oxygen metabolism, 

electron transfer, RNA synthesis, and dissolution of reactive oxygen intermediates [13, 

108]. Iron complexes originated from microbes and vitamin B12 are larger than the pore 

diameter of non-specific channels. For a bacterial cell membrane, having a specific 

channel large enough for these complexes to go through poses a challenge of 

compromising the resistance of bacterial system to environmental toxic compounds. In 

order to transport these complexes through cell membranes, there are receptors in the 

outer membrane of a bacterial cell [24]. Some examples of these receptors include BtuB 

for vitamin B12, and receptors for Fe+3 chelator complexes (FhuA for ferrichrome, FepA 

for Fe+3 enterobactin, FecA for Fe+3 citrate, FhuE for Fe+3 coprogen, and Cir for Fe+3 

catecholates, IroN for Fe+3 salmochelin and Fiu for Fe+3 dihydroxybenzoylserine) [109, 

110]. 

 These receptors bind to the ligand with high affinity. The transport of complexes 

through the cell membrane, however, requires the protein TonB, which spans the 

thickness of periplasm (Figure 2-3) [13].  The TonB-dependent receptors transport 

chelated iron with maximum efficiency at very low concentrations of ligand. This 

characteristic distinguishes them from non-specific porins. From the periplasm, they 

carry out this transport into the cytoplasm using an ATP-dependent mechanism which 



18 
 

distinguishes them from specific channels. These TonB-dependent uptake systems enable 

bacterial growth in a wide range of iron-limited environments [28]. These  

systems are also considered as targets for novel antibiotics because of their contribution 

to the specific permeability of the cell envelope [111]. Some examples of receptors and 

gated channels are listed in Table 2-3. 

 

Table 2-3 Iron chelate receptors and gated channels in the outer membrane 

Receptor Bacteria Uptake  Reference 

BtuB E. Coli  B12 [24, 27] 

FhuA E. Coli  Ferrichrome [109] 

Figure 2-3 TonB-dependent uptake of iron chelate complex through iron receptor [13] 
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FepA E. Coli Fe+3 enterobactin [109, 112] 

FecA E. Coli Fe+3 citrate [13] 

FhuE E. Coli Fe+3 coprogen [28, 108] 

Cir E. Coli Fe+3 catecholates [28] 

IroN E. Coli Fe+3 salmochelin [110] 

Fiu E. Coli Fe+3 

Dihydroxybenzoylserine 

[28] 

 

2.2 Water transport across cell membrane: 

 In addition to nutrients, hydrophilic molecules, and complexes, water gets 

transported through cell membranes at a very high permeability via water channel 

proteins, known as aquaporins (Aqp). Aquaporins are not porins similar to the ones 

previously described here; rather, they are helix bound proteins. The structure and 

functions of aquaporins have been studied extensively in the last two decades [9, 30, 35-

37, 113-124]. More than 450 homologs of aquaporins are found in bacterial and 

mammalian cells [125]. Aqp1 is the first recognized and characterized homolog, and it is 

found in abundance and actively in mammalian red cells, renal proximal tubules, and 

other epithelia [126]. Aqp2 and Aqp3 are found in the renal collecting duct, and they are 

regulated by vasopressin and are permeable to glycerol [127-131] . Other aquaporins are 

found in brain (Aqp4) [132, 133], salivary and lacrimal glands, cornea, and lung (Aqp5) 
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[134], and a weak water transporter is in eye lens (Aqp0) [135]. The homolog of 

aquaporins found in E. Coli is aquaporinZ (aqpZ) and is responsible for water transport 

through cell membrane [113].  

 Aquaporins are present in cell membrane in the form of tetramers with each 

monomer acting as an individual channels. They selectively transports water in and out of 

the cell at a rate of 109 water molecules/second per monomer, while rejecting solutes and 

ions present in it [136]. This ability of aqps to transport water with extremely high 

selectivity and permeability results from their unique hour-glass shape [123]. Aqps have 

a conserved aromatic/arginine (Ar/R) region in the constriction site of the channel. The 

pore diameter at this constriction is 3 Ao, which is slightly bigger than the diameter of 

water molecule (2.8 Ao), so all solutes larger than water molecules are rejected by size 

exclusions [14]. 

 Water travels through the channels of aquaporins as a single file of molecules. 

However, in an aqueous solution, there is hydrogen bonding between two adjacent water 

molecules that allows free movement of protons between molecules. This phenomenon is 

called as Grotthuss Mechanism [137]. This phenomenon is responsible for the formation 

of H3O+ ions. Thus, a single file of water molecules through aqp is expected to transport a 

proton with it by acting as a proton wire. However, due to the presence of highly 

conserved asparagine-alanine-proline (NPA) motifs present on the inner walls of aqp 

pores, every water molecule passing through the pore has to form a series of hydrogen 

bonds with the aquaporin residues. This hydrogen bonding leads to reorientation of water 

molecules causing the breakage of proton wire (Figure 2-4) [136]. In the constricted 

region of aqp, arginine and histidine, provide fixed positive charges to prevent the 
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passage of any positively charged solute present in water [39]. Figure 2-5 illustrates all 

the mechanisms of water transport through Aqp channel.  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 2-4 Illustration of Grotthuss mechanism and reorientation of water molecules while 

passing through Aqp pore [15]. 
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2.3 Mechanisms of water transport through aquaporins 

2.3.1 Electrostatic barrier for proton transport 

 The pores of aquaporins have a constriction in the middle and become wide at the 

opening. Protons are prevented from their passage through aquaporins via hydrogen bond 

disruption between adjacent water molecules and the electrostatic barrier. A number of 

studies have been done in order to understand the origin of this electrostatic barrier and 

magnitude [12]. Some studies have shown that NPA motif present in aqp is responsible 

for this electrostatic barrier [138, 139]. Burykin and Warshel carried out the evaluation of 

electrostatic free energies using the free-energy perturbation (FEP) method [12]. FEP has 

been used extensively in free energy calculations for biological systems [12]. It uses the 

relation of free energy with the change of potential surface from U1 to U2 by gradually 

changing the potential surface as shown in equation (2-1): 

                                            Umλm = U1 (1-λm) + U2λm                                                   (2-1)  

Where λm is a parameter that changes between (0 ≤ λm ≤ 1), and Um is potential surface at 

point m. 

Figure 2-5 Mechanisms of water transport through Aquaporin. Amino acids responsible 

for this highly selective water transport are Histidine 180 (His 180), Arginine 185 

(Arg185), Asparagine 192 (Asn192), and Asparagine 76 (Asn 76) [14].   



23 
 

The overall free energy is then calculated by changing λm in n equal increments and 

evaluating the sum of the corresponding 𝛿𝛿𝛿𝛿 as given by equation (2-2): 

                                  ∆𝛿𝛿 (𝑈𝑈1 → 𝑈𝑈2) =  ∑ 𝛿𝛿𝛿𝛿 (λ𝑚𝑚 → λ𝑚𝑚+1)𝑛𝑛−1
𝑚𝑚=0                                       (2-2) 

In some cases such as binding of large ligands to proteins, converging of FEP 

calculations is harder, and an equation (equation 2-3) derived by Lee et al. [140] can be 

used.  

                     ∆𝛿𝛿 (𝑈𝑈1 → 𝑈𝑈2) =  1
2

 (〈𝑈𝑈1 −  𝑈𝑈2〉1 +  〈𝑈𝑈2 −  𝑈𝑈1〉2)                                      (2-3) 

 Burykin and Warshel [12] carried out molecular dynamics (MD) simulations 

using the framework described above. The system chosen for the MD simulations in 

order to quantify electrostatic barrier for aquaporins is shown in Figure 2-6. An aquaporin 

monomer was placed in a grid of 30 × 20 × 20 Ao size and 2.5 Ao spacing of carbon-like 

atoms that representing the low dielectric membrane. Also an H3O+ ion (shown in 

yellow) was placed at the NPA region in the center of the pore.   

  

        

 

 

 

 

 

 

 

  

Figure 2-6 All-atom simulation system used to quantify electrostatic barrier in an 

aquaporin monomer [12] 
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 The results showed that the electrostatic barrier at the center of the channel for the 

passage of an H3O+ ion was 17 kcal/mol. The study also showed that the difference 

between the energy at the center of the aqp channel and at the entrance was mainly due to 

solvation of the charge by bulk water and water molecules other than the two water 

molecules on both sides of the hydronium ion. The ion was influenced greatly at the 

entrance because of the bulk solvent whereas it was not solvated significantly in the 

channel by the bulk solvent [12]. 

2.3.2 Hydrodynamics of water flow through water channels 

 Water passes through aqp as a single unbroken file of water molecules. Due to a 

pore size only slightly bigger than a water molecule (3 Ao), macroscopic laws of 

hydrodynamics, such as Hagen-Poiseuille’s, do not apply. Hagen-Poiseuille equation 

considers a no-slip condition at the wall which is not the case in an aqp pore. The aqp 

channel is wide enough only to allow one water molecule, so there is no outer layer of 

water molecules in the flow that adheres to the channel wall since otherwise there would 

be no flow across the pore [7]. In aquaporins, the slippage during water flow is perfect; 

that is, the mobility of water molecule is the same as that in the bulk (Figure 2-7) [7-9]. 

Water molecules lose two of the four neighboring molecules upon entering the aqp 

channel, and only the hydrogen bonds to the preceding and following water molecules 

remain. Furthermore, water molecules form new hydrogen bonds with pore lining 

residues of aqp [10].  
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Horner et al. [9] showed water permeability values (Figure 2-8) for different channels 

through which water flow was shown as a single file of molecules based on Finkelstein’s 

model [141]. According to Finkelstein’s model, the water permeability Pf through a water 

channel was given by equation (2-4). 

                                                           Pf = 𝑣𝑣𝑤𝑤 𝐷𝐷1
𝑧𝑧𝑧𝑧

                                                              (2-4)                                                

Where, Pf is unitary water permeability of water channel, 𝑣𝑣𝑤𝑤 is the volume of one water 

molecule, 𝐷𝐷1 is the diffusion coefficient of a single-water molecule in the pore (typically 

10-10 m2/s), Z is the distance between two water molecules (typically 0.31 nm), and L is 

channel length. 

 Based on equation 2-4, the model predicted that with a constant D1, Pf varied no 

more than two times between different channels because single file water channels are at 

least 4 molecules long (K+ channels) and accommodate a maximum 8 water molecules 

(aquaporins). Considering D1 is constant in equation 2-4, Pf would depend on length of 

water channels, and in turn on number of water molecules in the channels (number of 

Figure 2-7 Macroscopic hydrodynamics following Hagen-Poiseuille equation with no-

slip flow on the left and single-file flow in an aqp channel with perfect slip [7] 
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water molecules in the channel = L × z). However, experimental results showed very 

high variability of water permeability through these water channels as shown in Figure 2-

8. Hence, variation in L cannot be related to variability of unitary water permeability [9].  

 

 

 

 

 

 

 

 

 

 

 Horner et al suggested that availability of hydrogen bond donating and receiving  

residues in the channel walls of aquaporins was a major component determining the 

water mobility through these channels [9]. For example, it was observed that the unitary 

water permeability through potassium channels (KcsA) was much lower than through 

aqps even though the potassium channels are shorter than aqps. As KcsA is shorter than 

aqp, water molecules should complete the passage through KcsA pore faster than an aqp 

pore. However, long stretches of aqp pores contain only a few residues that form 

Figure 2-8 Unitary water permeability values of various single-file water channels as 

calculated by Finkelstein’s model [9] 
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hydrogen bonding with water molecules passing through these channels; on the other 

hand, the number of hydrogen bonding sites in KcsA is much higher than aquaporins. 

Thus, there are so many hydrogen bonding sites in KcsA that the distance between two 

different hydrogen bonding partners of water molecules is shorter than the diameter of 

water molecule [8]. Figure 2-9 shows a plot of unitary water permeability against the 

number of potential hydrogen bond donors and acceptors (NH) in the single-file region of 

pore walls. It was observed that the relation between permeability and NH was of 

logarithmic nature which meant a faster decrease in permeability with an increase in NH. 

GlpF showed highest water permeability amongst biological water channels due to 

shorter single-file region and smaller value of NH than aquaporins, which confirmed the 

results obtained in Figure 2-8. Only carbon nanotubes showed higher permeability than 

GlpF in Figure 2-8. The reason behind this is the lack of hydrogen bonding partners for 

water inside pore walls [142, 143].  

 

 

 

 

 

 

 

 

 

 Figure 2-9 Plot of unitary water permeability of water channel proteins against the 

available number of hydrogen bonding sites in the single-file region of pore walls [8-10] 
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2.4 Incorporation of aquaporins in synthetic systems 

 Aquaporins have been studied extensively in the recent years in terms of their 

structures, unique functions, and potential applications in various separations [15, 144]. 

The highly selective nature of aquaporins towards water and their ability to allow water 

molecules pass through them at a very high permeability value have given rise to new 

research directions in clinical and biotechnological research [145, 146], physiological 

research [147, 148], membrane materials and synthesis of biomimetic membranes [61, 

149].  

 Biomimetic membranes usually have three main components: aquaporins which is 

the biological element in the assembly, amphiphilic molecules where aquaporins are 

reconstituted, and a polymeric support structure. The amphiphilic molecules can either be 

lipid bilayers or amphiphilic polymers. Amphiphilic polymers are shown to have higher 

stability and flexibility and hence are more widely used to synthesize biomimetic 

membranes [59, 60].  

 The first attempt to synthesize biomimetic membranes using aquaporins was 

performed by Kumar et al. [43], where aquaporins were incorporated into amphiphilic 

triblock-polymer vesicles. These vesicles were made of a block copolymer with 

symmetric poly-(2-methyloxazoline)-poly-(dimethylsiloxane)-poly-(2-methyloxazoline) 

(PMOXA15-PDMS110-PMOXA15) repeat units. Water permeability for aqp embedded 

vesicles was found to be ~3000 times greater than the vesicles without aqp. Also of note, 

Kaufman et al [150] used supported phospholipid bilayer (SPB) for the first time on a 
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commercial nanofiltration membrane to study the feasibility of synthesizing aquaporin-

embedded membranes using lipid vesicles. The lipid bilayer showed consistent 

permeability; however, there were some issues with the assembly, such as ruptured 

vesicles and defects. Wang et al. [53] later used a planar lipid bilayer to incorporate 

aquaporins using a pore-suspending technique for possible applications in forward 

osmosis. Liposomes were ruptured on a porous alumina support for this purpose. 

Liposomes incorporated with aqpZ displayed a 3000 fold increase in permeability as 

compared to pristine liposomes. It was also observed that the performance of aquaporins 

was highest at an optimal lipid-protein molar ratio of 2000:1. A similar design strategy 

was applied in preparing proteopolymersomes using a block copolymer; however, under 

a pressure driven environment, it was observed to be challenging to keep aquaporins 

functional and stable [52].   

 Zhong et al. [56] attempted a vesicle rupture method using triblock copolymer 

and UV polymerization to form a selective layer on a nanofiltration support. Aquaporin-

modified membranes using this method displayed water permeability of 34 LMH/bar and 

NaCl rejection of more than 30%, which showed that the assembly still had some defects 

in terms of coverage by aquaporins. Since 2012, a number of innovative approaches have 

been adapted to keep aquaporins stable and functional in biomimetic membrane 

assemblies. Examples include supported-lipid membranes using spin coating of surface 

with positively charged lipids [44], incorporation of aqpZ embedded vesicles into 

interfacial polymerization where the proteoliposomes were incorporated into m-

phenylene-diamine aqueous solution [47], reconstitution of aqpZ into a lipid bilayer 

formed by Langmuir - Blodgett technique [49], functionalization of proteoliposomes 
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using amine followed by their deposition on polydopamine-coated microporous 

membranes [50], encapsulation of proteoliposomes with positively charged poly-L-lysine 

molecules and their adsorption onto a polyanion support film [51], incorporation of aqpZ 

using surface imprinting [55], and pressure-assisted sorption on gold-coated 

polycarbonate substrate [151]. Table 2-4 shows some of the recent approaches followed 

in synthesis of biomimetic membranes.  

 At the commercial level, the Aquaporin InsideTM flat sheet is the first thin film 

commercial forward osmosis membrane fabricated with aquaporins incorporated in its 

polyamide selective layer [62]. These commercial membranes were synthesized using 

conventional interfacial polymerization, where aquaporin-based proteoliposomes were 

dispersed in the aqueous solution. These membranes incorporated with proteoliposomes 

showed water permeability values greater than 4 LMH/bar and salt rejection values of 

more than 96% [47].  

Table 2-4 Recent approaches followed for synthesis of Aquaporin based biomimetic 

membranes 

Biomimetic membrane 
fabrication strategy  

Remarks  Author 
reference 

Using a propargyl functionalized 
ß sheet peptide to bind to aqp and 

using click chemistry to 
incorporate into synthetic 

membranes. 

Successful covalent attachment 
onto the membrane and improved 

salt rejection. 

[152] 

Commercially available 
Aquaporin InsideTM for forward 

osmosis.  

Similar performance to other 
commercially available 

membranes. 

[62] 

Aqp-based polymersomes in a 
TFC membrane using interfacial 

polymerization. 

Good chemical stability; adverse 
effect on flux after chemical 
cleaning in long-term use. 

[153] 
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Hollow fiber membranes; 
Incorporation of aquaporins into 

lipid vesicles using thin film 
rehydration method. 

Enhanced water permeability of 
selective layer. 

[154] 

RO membranes using 
polymersomes. 

Sensitive to temperature and 
pressure changes. 

[155] 

Electrostatic layer by layer 
assembly, with AqpZ-embedded 

DOPC/DOTAP. 

Excellent separation under high 
pressure environment. 

[156] 

Hollow fiber composite ABM. Robust and easily scalable. [157] 
Polymer crosslinking using 

polyamide as substrate. 
Easily scalable, less fouling. [45] 

Thin film composite aquaporin 
biomimetic membranes by 
interfacial polymerization. 

High permeability, able to 
withstand pressure till 10 bar. 

[42] 

Amine functionalized 
proteoliposomes vesicles 

deposited on the PDA layer. 

Chances of protein deactivity.  [50] 

AqpZ-implanted liposomes on a 
PDA coated microporous 

membrane (NF).  

Controlled properties of 
membrane but vesicle rupture 

under pressure. 

[51] 

Aquaporin-embedded through 
pressure assisted sorption on 
gold-coated polycarbonate 

substrates.  

Better performance than other 
pore spanning membranes. 

 [54] 

AqpZ embedded membrane on 
cellulose acetate using surface 

imprinting technology. 

High strength; protein flattening 
causing low salt rejection. 

[55] 

LBL adsorption ABM. Easy to scale up. [51] 

 

 As mentioned above, a number of studies have been carried out in order to 

successfully incorporate functional and stable aquaporins into synthetic membranes. In 

the initial approaches, alteration and denaturing of aqps, alignment of the channels, and 

mechanical stability of the whole membrane assembly were some of the key issues 

observed. Recent studies carried out to tackle these issues have encountered new 

challenges. One of the challenges is high costs involved in the expression and purification 
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of aquaporins on a large scale. Another challenge is scalability of current approaches to 

synthesize biomimetic membranes on a large scale [61]. Along with the work going on in 

the field of biomimetic membranes based on aquaporins, there has been an increase in the 

research associated with bioinspired materials [4]. A number of artificial structures with 

similar structure-function relationships of aquaporins have been introduced and studied in 

the recent years. These structures have the potential to overcome the aforementioned 

challenges in the commercialization of biomimetic membranes [4]. 

2.5 Bioinspired membranes 

 Bioinspiration connects basic science and applied engineering, and it extracts 

fundamental concepts and ideas from biological systems to form a bridge between 

fundamental science and engineering applications [158]. Recent work on synthesis of 

materials inspired by the functions of aquaporins consists of artificial water channels 

[159] and carbon nanotube porins [6, 160]. These artificial materials attempt to mimic the 

ability of aquaporins to provide high water permeability and selectivity. Ideally, artificial 

channels can be synthesized using simple chemistry and are compatible with various 

solvents which makes them convenient to synthesize. There has been an increase in 

recent years in studies discussing the design considerations, challenges encountered, and 

performance of membranes with artificial water channels [2-4, 11, 159, 161-166]. There 

are mainly two types of artificial channel types: self-assembling channels and 

unimolecular channels [159].  

 Self-assembling channels consist of a number of building blocks that interact with 

each other via hydrophobic interactions or hydrogen bonding to form a stable structure. 
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Percec et al. [1, 167] synthesized dendritic dipeptide pores which could self-assemble 

into helical columnar structures with a pore size of 12.8 ± 1.2Ao. The building blocks 

interacted via hydrogen bonding. These channels were reconstituted into lipid bilayers 

and they were shown to simulate gramicidin, which is a biological proton channel. The 

study strongly indicated that these dipeptide pores could mediate water transport across 

lipid bilayers [137, 168, 169]. However, these channels showed low thermal stability 

owing to the dynamic equilibrium states of Dendron monomers at approximately 22oC. In 

order to overcome this low stability, the channels were modified structurally such that the 

benzyl ether moiety of the monomers was replaced by naphthyl groups at the periphery of 

helical pores. The purpose of this replacement was to enhance Π-Π stacking interactions 

between monomers and in turn increase the stability. Although this change in the 

structure enlarged the pore diameters to 14.5 ± 1.5 Ao, the pores showed enhanced 

stability between 20oC to 40oC [159]. These modified channels showed selective water 

and proton transport over Li+, Na+ and Cl- monovalent ions.  

 Barboiu and coworkers synthesized I-quartet channels [2, 161], which were 

inspired by Influenza A M2 proton channels. M2 proton channel is a pH gated channel, 

and its key functions are proton selectivity and low-pH gating [161]. The rate of proton 

flux through M2 channels has been reported from 10 to 1000 sec-1 depending on the 

electrical and chemical potential applied [170]. The proton channels facilitate water and 

proton transport via diffusion through water-filled pores. In order to mimic these proteins, 

ureido imidazole compounds were synthesized. It was shown that these ureido imidazole 

compounds crystallized into bulk states and self-assembled into lipid bilayers. These 

pores provided an inner diameter of 2.6 Ao and these channels were stabilized by 
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continuous and repetitive hydrogen bonding between water molecules and imidazole 

moieties. A number of factors, such as the number of alkyl chains, and chirality of alkyl 

chains and lipids in the bilayer, affected the permeabilities obtained through these 

channels. For the most optimal I-quartet channel, water permeability obtained by a single 

channel was ~1.5 × 106 H2O molecules per second while single channel proton 

conduction rate was ~5 H+ molecules per second, which is almost half of proton transport 

through M2 protein. These channels have restricted pore structures compatible for 

transport of water molecules, suggesting that the critical pore diameter is ~3 Ao for 

desalination applications of artificial channel-based membranes. 

 Similarly, in order to mimic Gramicidin A protein channel, triazole channels were 

synthesized. These channels showed an average 5 Ao diameter pores with an hourglass 

shape. However, they showed increased cation conduction rates due to hydration of their 

inner surfaces with four continuous water wires [171]. Gong et al. [172] synthesized 

Hexa (m-phenylyene ethynylene) channels that formed a stable self-assembled structures 

with a pore diameter of 6.4 Ao and an outer diameter of ~3.7 nm. These channels showed 

sufficiently high water conductance but their single channel permeability was not clear. 

The distinctive features of these channels were that they could be modified to reduce 

proton conductance through the channels, and also the alkyl chains could be altered in 

order to provide more stability [173]. Zhao et al. [5, 174] designed pyridine-based 

foldamers of diameter 2.8 Ao with high affinity to capture water molecules and similar 

stacked pores that mimic aquaporins. Aromatic stacking of pyridine monomers in these 

structures provided them stability. In addition to the approaches mentioned above, 



35 
 

triarylamine channels have also been studied as basic building blocks to form columnar 

structures [175-180].  

 Unimolecular channels are single molecules with tubular pore structures. These 

channels are more stable that self-assembled channels and provide smaller pores. 

However, they are challenging to synthesize [159]. Pillararenes were one of the first 

unimolecular channels synthesized [164, 181-185]. These channels were hollow-pillar 

shaped and easy to chemically modify in order to restrict pore sizes [182]. Hou et al. 

[185] developed hydrazide-appended pillar[5]arenes (HAPs) showing complete rejection 

of proton diffusion, which was similar to aquaporin water channels [36, 116]. These 

channels can be considered as the first approach that simulated the functions of 

aquaporins, which is high water conductance while rejecting protons. Peptide-appended 

pillar[5]arenes (PAP[5]) had hydrophobic tripeptide chains of phenylalanine isomers in 

pillar[5]arene backbone. These channels had single-channel permeability of 3.5 × 108 

H2O molecules per second, showing continuous and efficient water wire formation in the 

pores [4, 159].  

Carbon nanotubes are regarded as an important material for energy-efficient water 

purification [186-189]. Experimental and simulation studies have shown enhanced water 

flux as compared to biological cellular channels through carbon nanotubes (CNT) with 

less than 1 nm in diameter [187, 190]. McGinnis et al. [191] reported CNTs with a 

diameter range of 0.67 -127 nm covering a nonporous polysulfone film with permeability 

1000 times that calculated by Hagen-Poiseuille flow. CNTs can be tuned according to 

their applications in terms of variations in their diameters or by adding functional groups 

within the CNT or at the ends [192].  Recently, carbon nanotube porins (CNTP) were 
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found to have a water permeability of 2.27±0.47×1010 water molecules per second per 

channel, which is higher than that observed in Aqp1 [6]. This was explained by MD 

simulations of a water molecule confined in a CNTP. It was observed that CNTPs could 

sterically confine water to a single file. Since a water molecule present in bulk solution 

has a higher number of hydrogen bonds than a water molecule in a confined channel with 

a single file of molecules, the energy barrier for the transport of a water molecule in bulk 

is higher than that in the channel. Furthermore, CNTPs had hydrophobic inner surfaces 

which enabled them to have a six-fold increase in water permeability relative to Aqp1 [6, 

159]. Figure 2-10 shows a schematic of types of bio-inspired membranes based on 

various channels and their applications. 

 

 

 

 

 

 

 

 

 

 

Figure 2-10 Types of artificial channels and their applications [1-6] 
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2.6 Applications of aquaporin-based biomimetic membranes: 

 Along with the traditional microfiltration (MF), ultrafiltration (UF), nanofiltration 

(NF), and reverse osmosis (RO) membranes, there has been additional incentive to 

integrate next generation membranes incorporated with novel materials and biological 

molecules in various fields [61]. Because of their controlled selective transport and 

stability, biomimetic membranes have found their applications in various areas, such as 

sustainable resources, energy management and environmental applications [61]. The 

development of aqp-based biomimetic membranes has created a number of possibilities 

in the field of water and wastewater treatment. Table 2-5 shows some of the applications 

of aqp-based biomimetic membranes and their performance.  

Table 2-5 Applications of aqp-based biomimetic membranes, design approach and their 

performance 

Application Membrane and design 

approach 

Performance Author 

reference 

Removal of trace 

organic contaminants 

in osmotic membrane 

bioreactor (OMBR). 

Commercial aquaporin 

FO membrane 

(Aquaporin Asia, 

Singapore). Interfacial 

Much better transport 

properties, better 

smaller reverse salt flux 

without compromising 

[193] 
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polymerization with 

embedded aquaporin 

vesicles into a 

polyamide selective 

layer on polysulfone 

support. 

water permeation 

resulting in less severe 

salinity build-up. More 

than 85% removal of 

trace organics. 

Treatment of 

sugarcane molasses 

distillery wastewater 

and concentration of 

distillery wastewater 

by FO by removing 

melanoidins. 

Aquaporin insideTM 

membranes by 

Aquaporin A/S. Thin 

film composite (TFC) 

FO membranes 

70% water recovery 

from distillery 

wastewater over 24h 

study period. 

[194] 

Coconut milk 

concentration 

Aquaporin insideTM 

tubular FO membranes 

by Aquaporin A/S 

2 times concentration of 

10 kg coconut milk 

corresponding to 

approximately 50% 

recovery.  

[195] 

Removal of trace 

organics such as the 

herbicide 2, 4-

dichlorophenoxyacetic 

Aquaporin insideTM 

hollow fiber FO 

membrane by Aquaporin 

A/S 

Over 95% rejection of 

methyl paraben while 

over 99% rejection of 2, 

4-

[195] 



39 
 

acid, plastic 

component bisphenol 

A (BPA), and the 

preservative methyl 

paraben. 

dichlorophenoxyacetic 

acid, and BPA. 

Algae dewatering in 

algal harvesting with 

low energy 

requirement 

Aqp based 

polyethersulfone 

membrane for FO 

81% algae dewatering 

was achieved with 29% 

flux drop. 

[196] 

Multifiltration bed 

system in the 

International Space 

Station (ISS) Water 

Processor Assembly 

(WPA) 

Aquaporin insideTM 

hollow fiber module 

Water recovery ratio of 

97.6%±0.47% with a 

~50% rejection of total 

organic carbon. No 

degradation of 

membrane over at least 

8711.8 hours. 

[197] 

 

 Despite having a number of applications in various fields, there are still some 

challenges involved in the use of aqp-based biomimetic membranes, such as high costs 

involved in the expression and purification of aquaporins on a large scale, and scalability 

of current approaches to synthesize biomimetic membranes on a large scale [61], which 

limit their applicability comparative to commercial nanofiltration membranes. 
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2.7 Nanofiltration membranes and their applications: 

 Nanofiltration has been extensively studied and commercialized over the last two 

decades and is one of promising technologies for the separation of neutral and charged 

solutes in aqueous solutions [198]. NF membranes provide an average pore size in the 

order of 1 nm and a molecular weight cut off (MWCO) of 200-2000 Da, which lies 

between RO and UF. They typically have a moderate level of surface charge, which plays 

an important role during various separations. This makes NF highly competitive in terms 

of selectivity and cost effectiveness as compared to traditional separation processes [199, 

200].  

 NF has found a wide variety of applications in a number of industries, such as 

water and wastewater treatment, pharmaceutical and biotechnology industry, food 

processing, among others. In water and wastewater treatment, NF membranes are used to 

remove small dissolved organic molecules such as micro-pollutants, partial mineral 

components such as sulfates and nitrates, and multivalent electrolytes [198]. In food 

industry, NF is required to avoid product contamination in order to meet quality and 

safety standards. In dairy industry, NF membranes are mainly used for concentration and 

demineralization of salty whey [201]. NF membranes have also been used to separate 

different saccharides and sugar from salt solutions [202]. Table 2-6 shows some of the 

applications of NF membranes and their performance. In summary of Table 2-6, the 

average permeability expected from nanofiltration membranes is approximately 10 

LMH/bar with average divalent salt rejection of approximately 97%. 



41 
 

Table 2-6 Applications of NF membranes and their performance 

Applications Membrane Performance Author 

reference 

Removal of 

Perfluorooctanoic acid 

(PFOA) and different 

salts from water. 

Negatively charged, with a 

selective polyamide layer 

consisting of trimesoyl 

chloride, and a mixture of 

bipiperidine and 

piperazine. 

High retention of 

PFOA (~90%) and a 

reduced scaling as 

compared to 

commercial NF270 

membrane at an initial 

flux of 80 LMH. 

[203] 

Removal of 

pharmaceutical and 

personal care products 

(PPCP) and mitigation 

of organic and 

biological fouling by 

humic acid and 

sodium alginate 

In-situ radical graft 

polymerization technique 

using monomers of 3-

sulfopropyl methacrylate 

potassium salt (SPM) and 

2-hydroxyethyl 

methacrylate (HEMA) on 

a commercial NF 90 

membrane 

Considerably 

improved fouling 

resistance as compared 

to virgin NF90 

membrane. Effective 

removal of PPCP 

(>98.7%)  

[204] 

Separation of 

Molybdenum, 

Germanium, Cobalt, 

Commercial NF99HF 

obtained from Alfa Laval 

AB (Sweden) and UTC-60 

NF99HF: ~100% 

rejection of Co, Cu, 

Zn, ~70% rejection of 

[205] 
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Copper, Zinc, 

Rhenium 

obtained from Toray Ind. 

Inc. (Japan) 

Mo, 20-30% rejection 

of Re, ~20% rejection 

of Ge. 

UTC-60: ~100% 

rejection of Co, Cu, 

Zn, ~70% rejection of 

Mo, ~25% rejection of 

Ge, ~20% rejection of 

Re, 

 

 

Wastewater by-

produced during 

tomato manufacturing 

and canned products 

Commercial spiral-wound 

module (Desal-5 

membrane, model 

DK2540, Osmonics) 

Permeate flux of ~8.2 

LMH, purification of 

of the wastewater up to 

a water compatible 

with the municipal 

sewer system 

requirements, with a 

recovery rate of 90%. 

[206] 

Artichoke wastewater: 

extract from artichoke 

solid waste 

NF270 (Dow, polyamide) Total retention of 

prebiotic sugar with a 

high flux up to 120 

[207] 
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LMH 

Removal of MgSO4 DOW FILMTEC™ NF90-

400/34i Element 

98.7% rejection of 

MgSO4, at a 

permeability of 8.88 

LMH/bar 

[208] 

Removal of MgSO4 DOW FILMTEC™ 

NF270-400/34i Element 

97.0% rejection of 

MgSO4 at a 

permeability of 11.10 

LMH/bar 

[209] 

Removal of NaCl CSM NE8040-90 7500 

GPD Nano-filtration 

Membrane 8 x 40 

85-97% NaCl rejection 

with 6.60 LMH/bar 

permeability 

[210] 

Removal of NaCl CSM NE4040-90 1700 

GPD NF Membrane, 4″ x 

40″ 

85-97% NaCl rejection 

with 6.42 LMH/bar 

permeability 

[211] 
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CHAPTER 3. RESEARCH OBJECTIVES 

 
 
 
 The overarching goals of this study were to first incorporate aquaporins into 

synthetic nanofiltration membranes without chemical alteration and to prevent flattening 

or denaturing of aquaporins; then, the second objective was to install functional groups 

on aquaporins and align them in the direction of water flow; lastly, the third objective 

was to synthesize artificial channels in order to overcome the issues with aquaporin 

stability, alignment, and efficient packing of water channels onto the membrane surface. 

 

3.1 Hypotheses 

A) AqpZ can be incorporated in an amphiphilic PVA-alkyl matrix. PVA-alkyl has the 

hydrophilicity of polyvinyl alcohol (PVA) and hydrophobicity of long alkyl chains. 

Being amphiphilic in nature, it is proposed that it act as a synthetic alternative for the 

lipid bilayer in cell membrane, where aquaporins are naturally constituted. PVA-alkyl has 

good film forming properties and outstanding physical and chemical stability. It has been 

used for cell surface modifications in order to provide new biological functions. PVA-

alkyl was observed to get attached to the cell surface by spontaneous hydrophobic 

interactions. A capping phenomenon by PVA-alkyl chains onto the cell surface was 

observed thereby maintaining its viability [212, 213]. Because of the hydrophobic 
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interactions of long alkyl chains of PVA-alkyl and its tendency to maintain cell viability, 

it was hypothesized to be able to support aquaporins. 

B) Aquaporins modified with cysteine (-SH) groups at the N-terminus can be 

immobilized on the membrane surface and aligned in the feed direction in order to orient 

water flow through the aquaporins to reject protons, ions and other impurities. Being 

located at the end groups, cysteine groups would be accessible to attach to –COOH 

groups on modified PBI membranes.  

C) Bisamide channels can be synthesized and incorporated into synthetic polymeric 

membranes in an attempt to mimic aquaporin selectivity towards water. It was 

hypothesized that pyridine-carboxylic acid provided rigidity at the end groups of 

compounds while diamine remained flexible and adjusted accordingly to get hydrogen 

bonding partners. These channels were proposed to form via intermolecular hydrogen 

bonding within themselves and with water molecules forming a passage through them. 

These artificial channels would have less footprint on the membrane surface as compared 

to aquaporins, would be more stable than aquaporins, and would have lower cost 

associated with their synthesis as compared to aquaporin expression.  

 

In order to investigate above hypotheses, the objectives of this study are the following: 

3.2 Objectives 

Objective 1. Addition of protected aquaporins on the surface of the membranes. 

1.1 Synthesis and surface modification of polymeric support structure 
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  Flat sheet polybenzimidazole (PBI) membranes were prepared in 

dimethylacetamide (DMAc) solvent. The surface of PBI membranes was then modified 

with 4-chloromethyl benzoic acid (CMBA) in order to add carboxylic acid (-COOH) 

groups on membrane surface. In order to make subsequent functionalization, a stable 

ester intermediate was formed using N-hydroxysuccinimide (NHS) and N-(3-

Dimethlyaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDCH) via carbodiimide 

chemistry. 

1.2 Synthesis of amphiphilic polymer for aquaporin incorporation 

 The amphiphilic polymer, PVA-alkyl was prepared in two steps. In first step, 

carboxyl methyl-polyvinyl alcohol (PVA-COOH) was synthesized using polyvinyl 

alcohol (PVA) and sodium monochloroacetate (CH2ClCOONa). In the second step of this 

synthesis, polyvinyl alcohol carrying long alkyl chains (PVA-alkyl) was synthesized 

using PVA-COOH and Hexadecanal (CH2(CH2)14CHO). 

1.3 Aquaporin expression and incorporation 

 AquaporinZ (AqpZ) were expressed from E. Coli and purified. These aquaporins 

were treated with a polysaccharide, gum arabic to form Aqp-GA, in order to prevent 

functionalization of aquaporins in synthetic system. Aqp-GA were then physically 

embedded into PVA-alkyl to form a homogenous solution. Amphiphilic PVA-alkyl 

incorporated with Aqp-GA was then covalently attached to the stable ester intermediate 

of PBI membrane to form biomimetic membranes. 
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Objective 2. Align genetically engineered Aquaporins to the membrane backbone. 

2.1 Stable ester intermediate of surface modified PBI membrane was prepared as 

explained in (1.1) 

2.2 Aquaporin expression, mutation, and incorporation into the membrane 

 AqpZ were expressed from E. Coli and purified. In order to modify aquaporins, 

cysteine groups were added at the N-terminus of each monomer using QuikchangeTM site 

directed mutagenesis. These cysteine groups served as anchors for aquaporins to get 

immobilized on the modified surface of PBI membrane. Subsequently, cysteine modified 

AqpZ were covalently attached to the ester intermediate of –COOH modified PBI 

membranes. 

2.3 PVA-alkyl was synthesized as explained in (1.2) and attached covalently to the 

membranes simultaneously with cysteine modified AqpZ. 

 

Objective 3 Incorporate artificial water channels into synthetic PBI membranes in order 

to obtain more selectivity of membrane towards water.  

3.1 Stable ester intermediate of –COOH modified PBI membranes was synthesized as 

explained in (1.1).  

3.2 Bisamide channels were synthesized using a three step synthesis process. In first step, 

6-aminopyridine-2-carboxylic acid and cadaverine were attached using 

dicyclohexylcarbodiimide (DCC) under nitrogen (N2) environment. 6-hydroxymethyl 
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pyridine-2-carboxylic acid was then added to form a monomer of artificial channel using 

DCC again. 

3.3 PVA-alkyl was synthesized as mentioned in (1.2). 

3.4 Bisamide channels attached to –COOH modified PBI membrane using carbodiimide 

chemistry. PVA-alkyl was incorporated in situ to provide mechanical support for 

artificial channels. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



49 
 

CHAPTER 4. MATERIALS AND EXPERIMENTAL 

 

4.1  Methodology 

4.1.1 Glassware and Labware: 

 All glassware required for experiments and material synthesis, i.e., beakers, 

measuring cylinders, vials, bottles, flasks, burettes, stirring rods were cleaned before use 

by a detergent wash followed by acetone wash, acid wash, and multiple rinses of DI 

water. Acid wash solution was prepared by adding 4 mL of hydrochloric acid to 250 mL 

of DI water. After thorough cleaning, glassware were wrapped in aluminum foil and 

dried in Furnace (Oakton, VA) oven for 5 hours to remove any traces of organic 

contaminants. 

4.1.2 PBI membranes casting:   

 The dope polymer used to cast the backbone of the membranes was 

polybenzimidazole (PBI). The solvent used to make the dope solution was N, N-

Dimethylacetamide. Commercially-available 26% w/w dope solution, containing 26% 

PBI polymer, 72% N, N- Dimethylacetamide (DMAc) and 2% Lithium chloride (LiCl), 

was used and obtained from PBI Performance Products, inc. (Charlotte, NC). LiCl served 

the function of a pore former, preventing PBI polymer from phasing out of the solution 

[214, 215] and imparting long shelf life to the solution. The dope solution was diluted to 

21% PBI by adding solvent, and the solution was sealed with parafilm to prevent air 
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bubbles from being trapped inside the solution and affecting its homogeneity. Because of 

very high viscosity of the solution, the solution was kept in the sonicator and degassed for 

2 days in order to ensure homogeneous mixing of the solvent and the solute. After 

sonication, the solution was allowed to come to room temperature and then the solution 

was ready for membrane casting using the phase inversion process. The non-solvent 

phase that was used in this process was water. 

A casting knife, or doctor’s blade (Paul N Gardner Co, U.S. Pat 4869200, 

Pompano Beach, FL.) was used to make flat sheet membranes. A clean glass mirror was 

used as a surface, which provides optimum hydrophobicity to the membranes and helps 

for detachment of polymer films during phase inversion [216]. The solution was placed in 

an even line on the surface and the casting knife was used to push the solution across the 

glass surface to make a thin film. The thickness of the membranes was kept between 150 

µm and 200 µm. A water coagulation bath was used to induce phase inversion with 

subsequent pore formation within the membranes. Once the phase inversion had taken 

place, the membrane came out of the surface of the water. The membrane was thoroughly 

washed with water and kept in a 50/50 glycerol-DI water solution. Glycerol was added to 

DI water to ensure that the membranes would stay wet during storage because when they 

are dried, they can become brittle and susceptible to breakage [217]. The membranes 

were kept in the solution at least one day before they were analyzed. 

4.1.3 Surface activation of membranes:  

 The polybenzimidazole membrane surface needs to be activated for further 

modifications with PVA-alkyl and additions of Aqp-GA to the PVA-alkyl matrix. 
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Activation was achieved by reaction of a highly reactive chlorine atom, from 4-

chloromethyl benzoic acid (CMBA) purchased from Sigma-Aldrich (USA), with the 

secondary amine group in the imidazole ring of the repeat unit in PBI backbone. It is 

important to note that there are two secondary amine sites in PBI molecule, so after the 

reaction, carboxylic groups are added on both sites on the molecule. For simplicity, the 

reaction at only one site is shown (Figure 4-1).  

 

 

 

 

 

 

 

 

  

 Modification was performed according to previous studies [217]. For the reaction,  

1 wt% solution of sodium persulphate in water was prepared for use as a free radical 

initiator for the reaction. 200 ml DI water were taken in a 500mL beaker with a stir bar. 

2.02g sodium persulphate was added to the water, and the solution was stirred on hot 

plate at 40oC. Two membranes were added to the solution, which were kept fully 

submerged and were not stuck under the stir bar. In a second beaker, 0.5 wt% solution of 

CMBA in acetone was prepared. 0.788 g CMBA was added to 200 mL acetone and was 

PBI 

DI/Acetone 

Na2S2O8, Δ 

CMBA 

Figure 4-1 CMBA modification of membrane. 
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stirred until dissolved. Then acetone/CMBA solution was slowly added to the beaker on a 

hot plate while stirring, and then covered. This was done in order to prevent the 

precipitation of CMBA as it is insoluble in water. The final solution was a 50/50 mixture. 

The temperature of the solution was kept at 40oC and it was stirred for 24 hours to keep 

all the reactants in solution and prevent the evaporation of CMBA. Once the reaction was 

finished, the membranes were washed with copious amounts of DI water to remove 

excess sodium persulphate and immediately placed in glycerol/water bath.  

4.1.4 Preparation of PVA–alkyl: 

 PVA-alkyl was prepared in two steps [218, 219], the preparation of (1) carboxy-

methyl PVA followed by (2) PVA-alkyl.  

4.1.4.1 Preparation of carboxy-methyl PVA (PVA-COOH): 

The preparation of carboxy-methyl PVA (PVA-COOH) followed literature 

methods [220, 221], explained here. Initially, 50 mL water were taken in a 100 mL 

beaker, 1 g PVA (Acros Organics, USA) was added to it, and the solution was kept at 

70oC. The mixture was stirred for 1 hour continuously to prevent PVA from sticking to 

the bottom of the beaker until it completely dissolved. The solution was transferred to a 

500 mL beaker, and 50 g of sodium monochloroacetate (Fisher Scientific, Pittsburgh PA) 

were added. The solution was then covered with aluminum foil and was incubated at 4 oC 

for 24 hours. After that, 42 mL water were taken in a 100 mL beaker, 42 g sodium 

hydroxide (Fisher Scientific, Pittsburgh PA) were added, and the mixture was stirred until 

the sodium hydroxide dissolved.  
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NaOH/water solution was added to the incubated solution of PVA and sodium 

monochloroacetate in water, and stirred at room temperature for 24 hours. Then, it was 

neutralized using a 6 M solution of hydrochloric acid (Fisher Scientific, Pittsburgh PA) in 

water was prepared in a separate beaker with pH being continuously monitored. This 

neutralized solution was dialyzed against deionized water. The molecular weight cut-off 

for the dialysis was chosen as high as possible, which was 12-14 kDa in order to 

maximize dialysis rate. The dialysis tubing (Fisher Scientific, Pittsburgh PA) used was 

soaked in water for 3 hours in order to open it and fill it with the solution. It was then 

sealed with dialysis locking membrane clamps. A 2000 mL beaker with a stir bar in it 

was filled with DI water to be used as a dialysate. It was kept stirring and the water was 

changed after every 4-5 hours to make sure that the driving force for the dialysis is high. 

The procedure was continued for 3 days, and the remaining solution in the tube was taken 

out and stored in another beaker. Then, the stored solution after dialysis was deionized 

using ion-exchange resins. DOWEX 1X8 (Acros Organics, USA) was used for negatively 

charged ions and DOWEX 50WX8 (Acros Organics, USA) was used for positively 

charged ions. The output solution after the ion exchange was lyophilized using freeze 

dryer. For that, the solution was kept in centrifuge tubes and was allowed to freeze dry 

for 3 days. PVA-COOH was obtained as a white solid after freeze-drying. The weight of 

the product was 0.45 g and the yield was 39%. The overall reaction is shown in Figure 4-

2. 
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4.1.4.2 Preparation of PVA-alkyl: 

 The second step of making PVA-alkyl was synthesis of hexadecanal. Chemicals 

used for the preparation were celite, pyridinium chlorochromate and 1-hexadecanol. 

Dichloromethane was used as the solvent. 11.2 mL dichloromethane were taken in a 50 

mL beaker while stirring, and 0.95 g celite, 0.95 g pyridinium chlorochromate and 0.5 g 

1-hexadecanol were added to the beaker under a fume hood. The solution was sealed with 

aluminum foil and stirred for 6 days at room temperature. After that, the reaction mixture 

was diluted by adding 40 mL diethyl ether. Florisil columns were used to remove excess 

celite, pyridinium chlorochromate and 1-hexadecanol. Then the mixture was evaporated, 

and hexadecanal was obtained as a white solid. 

 PVA-COOH obtained after first reaction was dissolved in DMSO. Hexadecanal 

and 200µL of 12 M hydrochloric acid were added to the solution, which was maintained 

at 70 oC and stirred for 25 hours. The reaction mixture was extracted with diethyl ether.  

The mixture was then neutralized with 1M sodium hydroxide. The neutralized solution 

was dialyzed against DI water using dialysis tubing of 12-14kDa following the same 

procedure as described previously. The solution was then desalted with ion exchange 

+ ClCH2COONa NaOH  
in water 

PVA Sodium 
monochloroacetate 

PVA-COOH 

Figure 4-2 PVA-COOH synthesis. 
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resins previously mentioned and lyophilized using a freeze dryer for 3 days. PVA-alkyl 

was obtained as a white solid with yield of 49% at a final weight of the product was 0.22 

g. The overall reaction for the second step of the process is shown in Figure 4-3. 

 

 

 

 

 

 

  

 

 

4.1.5 AquaporinZ expression and purification: 

The constructed plasmid was transformed into E. coli strain C43 (DE3). Single 

colony was cultured overnight at 37 ℃ in 5 ml LB medium containing 50 µg/ml 

kanamycin. The overnight culture was then inoculated into 300 ml fresh LB medium with 

50 µg/ml kanamycin and shaking at 250 rpm at 37 ℃. The cells were induced with 1 mM 

IPTG when the absorbance at 600 nm reached 0.8. After 4 hours incubation, the cells 

were collected by centrifugation at 8,000×g for 10 min.  

Figure 4-3 PVA-alkyl synthesis. 

 

Hexadecanal 

 PVA-COOH 

PVA - alkyl 

+ CH
3
(CH

2
)

14
CHO 

HCl 
in DMSO 
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To purify the protein, cell pellet was re-suspended with 30 ml PBS buffer (20 mM Na-

PO4, 0.3 M NaCl and pH 7.9) supplied with 0.5 mM protease inhibitor 

phenylmethylsulfonyl fluoride (PMSF) and sonicated for 20 min on an ice-water bath. 

The cell lysate was clarified by centrifugation at 10,000 rpm, 4 ℃ for 20 min. Then cell 

debris was dissolved using 2 % Triton in PBS buffer and incubated with shaking for 2 

hours at 4 ℃ to extract membrane protein. The re-suspension was clarified with 

centrifugation at 10,000 rpm, 4 ℃ for 20 min and the supernatant was collected.  Ni-

NTA agarose beads (Qiagen) was mixed with the supernatant for 40 min at 4 ℃ with 

shaking. The resin was then loaded into an empty column, drained, and washed with PBS 

buffer supplemented with 0.03 % DDM (n-Dodecyl β-D-maltoside) and 40 mM 

imidazole. Protein was eluted with 500 mM imidazole and 0.03 % DDM in PBS buffer. 

Imidazole was removed by dialysis against PBS buffer supplemented with 0.03 % DDM 

overnight. 

4.1.6 AquaporinZ modification with single cysteine at the N-terminus: 

Cysteine contains a thiol group in its side chain, which can be used for 

immobilization. To prevent cysteine from being buried in the structure of AqpZ with 

limited accessibility for binding, a cysteine was added before the his-tag which was used 

to facilitate protein purification via the conventional metal-affinity chromatograph as 

shown in figure 4-4. In this study, cysteine was added using QuikChange site-directed 

mutagenesis following manufacturer’s instruction (Agilent). Primers are: 5’-

GAGATATACCATGGGTTGCTCTGGTCTGAACGAC-3’, and 5’- 



57 
 

GTCGTTCAGACCAGAGCAACCCATGGTATATCTC-3’, using pET28a-ApqZ as 

template [222]. The modification was verified by DNA sequencing.  

 

 

4.1.7 Treatment of AqpZ with gum arabic: 

 A 15wt. % solution of gum arabic (Fisher Scientific, USA) in water was prepared. 

AqpZ was added to this solution and sonicated under mild conditions for 4 hours in order 

to disperse it in the gum arabic solution. The concentration of AqpZ was 1ml/3ml of GA. 

Gum arabic has been used previously to disperse carbon nanotubes to PVA without either 

shortening the nanotubes or disrupting their structures. After the addition of GA to carbon 

nanotubes solution, the suspension was found to be stable over few months and was not 

affected by centrifugation. Hence, it was proposed to protect the structure of aquaporins. 

The weight ratio of AqpZ to gum arabic was kept at 1:4. The mixture was kept stirring at 

room temperature for 72 hours and then heated slowly to remove water [223, 224]. Gum 

arabic-treated AqpZ were then added to de-ionized water and sonicated for 30 minutes. 

The solution with gum arabic-treated AqpZ was physically dispersed into the PVA-alkyl 

solution. The ratio of AqpZ-GA to PVA-alkyl solution was 1:1 by volume. Aquaporin is 

 

AqpZ DNA sequence histag Cys  

N-Terminus  C-Terminus 

Binding Purification 

Figure 4-4 Schematic of Cysteine attachment at the N-terminus of aquaporins 
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bidirectional water channel protein; hence the orientation of the protein isn’t expected to 

change the water flux through the protein [225]. 

4.1.8 Surface modification of PBI membrane using Aqp-PVA-alkyl: 

Aqp-PVA-alkyl was attached to the membrane using carbodiimide chemistry 

[217], for the reaction between a carboxylic group and the hydroxide group present in 

PVA-alkyl molecule. For the reaction, N-(3-dimethylaminopropyl)-N’-

ethylcarbodiimidehydrochloride (EDCH) and N-hydroxysuccinimide (NHS), both 

purchased from Sigma-Aldrich were used. The reactions were performed in 2-(N-

morpholino) ethanesulfonic acid (MES) buffer (Sigma-Aldrich, USA). 

 400 mL water were taken in a 500 mL beaker and 7.85 g MES buffer was added 

with stirring, Followed by the addition of 11.75g NaCl with stirring. The solution was 

titrated to pH 6 using NaOH, 0.23 g NHS and 0.153 g EDCH were added to the solution 

and stirred well. CMBA modified PBI membranes were added to the solution, stirred for 

15 minutes, and then the reaction mixture was titrated to pH 7 using NaOH. PVA-alkyl 

was added to the solution and stirred for 24 hours, and then the membranes were removed 

and rinsed well with DI water and stored in a beaker filled with DI water. The 

membranes were stored for 24 hours before using it for analysis. The overall reaction is 

shown in Figure 4-5. 
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4.1.9 Chemical attachment of –Cys modified Aqp to PBI backbone: 

Immobilization of aquaporins into polymer matrix was done in order to align their 

channels with the direction of water flux and to optimize their performance. Aquaporins 

were covalently attached to the modified PBI backbone with carbodiimide chemistry. 

For this task, flat sheet PBI membranes were prepared and modified with CMBA. In the 

+ MES buffer 
EDCH 

4-5 (A) 

NHS 

NHS 
CMBA modified 

PBI 

 

NHS ester 
intermediate 

R (PVA-alkyl) 
MES buffer 

NHS ester 
intermediate Aqp-PVA-alkyl 

modified membrane 

Figure 4-5 (a) and (b) Carbodiimide membrane activation chemistry 

Figure 4-5(b) 
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next step, Cys modified Aquaporin (Aqp-SH) were covalently attached in a reducing 

environment to the –COOH modified PBI membrane using EDCH chemistry, as shown 

in figure 4-6. In this mechanism, Aqp-SH acted as a nucleophile to get covalently 

attached to the –COOH group present on the surface of PBI membrane. Cys groups 

present after the N-terminus acted as anchors the Aquaporin molecules to prevent the 

swaying and to help with the alignment of the aquaporin molecules in the direction of the 

flow. PVA-alkyl was used in order to bind to the remaining –COOH groups present in 

the membrane and to seal the gaps in between the attached Aqp-SH molecules following 

the EDCH chemistry previously used.  

 

 

 

 

 

 

 

 

 

Aqp-SH 

NHS ester 
intermediate 

Figure 4-6 Chemical attachment of Aqp-SH to –COOH modified PBI membranes 
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4.2 Membrane characterization: 

4.2.1 Fourier Transform Infrared Spectroscopy (FTIR): 

          A vibrational spectrum is a characteristic of every molecule and is considered a 

unique property of that molecule [226]. FTIR was used in ATR mode to determine the 

chemistry of the proposed reactions and modifications on the membrane surface. Digilab 

UMA 600 FT-IR microscope was used for all the analysis of membrane samples 

performed in this study. 

4.2.2 Contact angle measurements: 

 Contact angle was used as a measure to determine the hydrophilicity of the 

membrane surface. A drop shape analyzer – DSA 100 (KRUSS USA, Matthews, NC) 

was used for contact angle measurements using sessile drop technique (Figure 4-7). 

 

 

 

 

Figure 4-7 Contact angle measurement [227]. 

 

4.2.3 Zeta potential and surface charge analysis 

 Zeta potential is a parameter used to characterize the surface charge property of 

membranes at different pH environments. This analysis is particularly important to 
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understand the acid-base properties and to predict the separation efficiency of membranes 

[228]. Zeta potential measurements indicate the degree of repulsion between adjacent, 

similarly charged particles. Surface charge was analyzed by measuring the zeta potential 

using an Anton Paar SurPASS electrokinetic analyzer (Anton Paar, Ashland, VA) in 

surface analysis mode. Before analysis, membranes were rinsed with copious amounts of 

DI water to remove any residual solvent or glycerol from the storage solution. The KCl 

electrolyte solution used in these measurements had an ionic strength of 1.0 mM. The pH 

values for the various readings were adjusted using 0.5 M HCl and 0.5 M NaOH 

solutions for acid and base titrations. 

4.2.4 Flux analysis: 

Dead end filtration was used to monitor the flux decline of both PBI and PVA-

alkyl-AqpZ membranes. Filtration experiments were performed using Amicon filtration 

cell (Amicon Stirred Cell 8010 – 10 ml). Using a constant membrane surface area of 4.1 

cm2, the time to collect a 2-ml permeate sample was measured for each feed and flux was 

calculated. A constant pressure of 70 psi (4.83 bar) for laboratory purposes and 

continuous stirring was applied in all tests. Flux values were calculated as L/m2-hr and 

plotted against the total time of filtration. Membrane samples were cut into circular 

pieces of area 4.1 cm2 and supported by a WhatmanTM filter paper (110 mmø). Each 

membrane was precompacted with DI water for 7-8 hours until a stable flux was reached. 

Precompaction was followed by filtration of protein solutions of 10 ppm each of bovine 

serum albumin (BSA) and lipase protein in water. The same filtration cell was used for 

protein filtration under the same conditions of pressure and stirring. Protein rejections 
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were calculated using UV-VIS spectrometer (Varian Inc. Cary 50, Agilent Technologies, 

Santa Clara, CA) according to following equation (4-1): 

                                        𝑅𝑅 = �1 −  𝐶𝐶𝑝𝑝
𝐶𝐶𝑓𝑓

 � × 100%                                             (4-1) 

where Cp and Cf are solute concentrations in permeate and feed solutions 

respectively. 

Salt rejection was tested using five solutions of different concentrations of sodium 

chloride and calcium chloride in DI water: 3.4, 10, 20, 35 and 100 mM solutions. 

Solutions were run through the 10 ml dead-end cell under the same conditions as used for 

the pure water flux testing. Continuous stirring was applied inside the cell to prevent salt 

build-up on the membrane surface. Two mL permeate samples were collected for each 

feed. Salt rejections were calculated using conductivity meter. The apparent solute 

rejection R (%) was calculated using equation (4-1).  

After each feed water filtration, the membrane was backwashed for 1 hour with 

DI water and filter paper support was changed. The flux recovery of the membrane was 

measured after backwash. 

4.2.5 Morphological characterization: 

Environmental scanning electron microscopy (ESEM) was used to verify the 

asymmetric morphology of the membranes and monitor the surface of both unmodified 

and PVA-alkyl-AqpZ modified membranes before and after filtration. An FEI Quanta 3D 

FEG Dual Beam Electron Microscope (FEI, USA) was used to test the samples. By 

freezing small samples of the membranes in liquid nitrogen and cracking them, smooth 



64 
 

cross-sectional areas could be observed. In order to get an image of cross-section of the 

membranes, the frozen and cracked samples were attached vertically to a carbon tape 

while the samples were attached horizontally to the carbon tape to get an image of 

membrane surface. The surfaces of the samples were dusted with a thin layer of 

palladium-gold using a Cressington 108 auto sputtering device and then observed under 

scanning electron microscope. 

 To investigate the cross-section of the membrane and measure the thickness of 

selective layer of modified membrane, ion beam of the FEI Helios Nanolab Dual beam 

was used to cut out a small piece of the membrane. A small deposit of platinum with a 

thickness of around 60 nm was deposited over the area in order to protect the underlying 

surface during the process of cutting of cross-section by ion beam. A small cross section 

was cut out and lifted away from the rest of the membrane sample by welding a small 

bead of platinum to the platinum layer. This sample was then thinned out with a low 

power ion beam until the morphology of the mesoporous layer was visible using STEM 

mode in the Dual Beam. This sample was transferred into the JEOL 2010F for TEM 

imaging of the cross-section. 

4.2.6 Dynamic light scattering: 

 Since aquaporins form the functional element of biomimetic membranes, 

producing high quality proteins is critical. Before immobilizing proteins on membrane 

surface, it is important to evaluate the proteins for their concentration, purity and 

aggregation state. For this purpose, analysis of protein solution with dynamic light 

scattering to determine the presence and extent of aggregation was carried out in Litesizer 
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500 particle analyzer by Anton Paar (Ashland, VA). An aquaporin solution was taken in a 

glass cuvette and a plot of particle size vs relative frequency and polydispersity index 

(PDI) of the solution was obtained. Good quality protein samples would have PDI of 

0.08, acceptable quality protein would have PDI of 0.1 to 0.4, while the precipitated 

protein would have PDI of 0.4 to 0.9 [57]. 

4.2.7 Molecular weight cut off: 

The molecular weight cut off analysis of unmodified PBI, CMBA modified PBI, 

and PVA-alkyl modified PBI membranes was conducted using 100 ppm solutions of 

various molecular weights of polyethylene glycol (PEG) and sucrose solutions. The total 

organic carbon (TOC) of both feed and permeate solutions were measured using 

Teledyne Tekmar Fusion TOC analyzer (Mason, OH). The various samples that were 

used in this study along with their Stokes-Einstein radii are shown in Table 4-1. The 

rejection values of all solutes were used to determine the molecular weight cut off of both 

unmodified and modified PBI membranes.  The molecular weight of solute in feed 

solution for which the membranes showed more than 90% rejection was considered the 

molecular weight cut off of the membranes. The apparent solute rejection R (%) was 

calculated using equation (4-1).                                                           

Table 4-1 Neutral solutes used for molecular weight cut off analysis and their Stokes-
Einstein radii in nm [25, 229-232] 

Solute Mol. Wt. (gm/mol) Stokes-Einstein radii 

(nm) 

PEG 200 200 0.41 
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Sucrose 342.3 0.47 

PEG 400 400 0.57 

PEG 600 600 0.68 

PEG 1000 1000 0.94 

  

4.2.8 Depth profiling using XPS: 

 Membranes modified with Aqp-SH were analyzed for changes in the 

concentration of sulfur since unmodified PBI, -COOH modified PBI, and PVA-alkyl 

modified PBI membranes do not contain any sulfur present in their structures. Hence, 

Aqp-SH modified membranes were analyzed for the sulfur concentration in them as a 

confirmation for attachment of aquaporins to the membranes. K-Alpha x-ray 

photoelectron spectrometer (XPS) was used in order to analyze the elemental 

composition along the cross section of both unmodified and Aqp-SH modified 

membranes. Depth profiling was performed using an ion beam to etch layers of 

membrane surfaces and elemental composition was measured after each etching cycle. 

An ion beam of 200eV was used to etch the surface. Three etching cycles were performed 

for 120 seconds each for elemental analysis along cross sections of membranes.  

4.2.9 Elemental analysis using TEM: 

 Membranes modified with Aqp-SH were analyzed for changes in the 

concentration of sulfur since unmodified PBI, -COOH modified PBI, and PVA-alkyl 
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modified PBI membranes do not contain any sulfur present in their structures. Hence, 

Aqp-SH modified membranes were analyzed for the sulfur concentration in them as a 

confirmation for attachment of aquaporins to the membranes. For that purpose, electron 

energy loss spectroscopy (EELS) mode was used in a transmission electron microscope 

(TEM), which is sensitive towards low atomic weight elements in samples. A JEOL 

2010F TEM (Akishima, Tokyo, Japan) was used for this purpose. Samples were prepared 

using a Helios Nanolab 660 focused ion beam (FIB) instrument (FEI, USA). Sample 

preparation was carried out in a high vacuum in FIB chamber, thereby keeping oxidation 

of sample to a minimum. Thin lamella were lifted out from precise locations of the 

samples and thinned down to 50 nm for subsequent analysis in TEM. Energy dispersive 

X-ray spectroscopy (EDX) was also performed on the sample. The reduced thickness of 

the samples decreased scattering of the beam and optimized EDX lateral resolution. Only 

sulfur, oxygen, carbon and nitrogen were considered to calculate the elemental 

composition during the analysis. Other observed elements, such as Pt (coating), Ga 

(beam) and Cu (holder), were ignored to clearly analyze the elemental composition and 

sulfur concentration in the sample. 

4.2.10 Diffusion studies:  

 In order to compare salt diffusion rates through unmodified PBI and Aqp-SH 

modified PBI, the membrane was mounted in the middle of a stainless-steel diffusion cell 

to separate two compartments (salt solution side and DI water side). Each compartment in 

the cell had a volume of 250 mL, and an effective membrane area available for diffusion 

of 3.5 cm2. Continuous stirring was provided during the experiment in order to avoid 
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deposition at the bottom of the compartments. A solution of 1000 ppm NaCl solution was 

added into the salt solution side and the same amount of DI water solution was added into 

the other compartment [233, 234]. In order to measure the change in concentration, a 

sample of 2 mL was collected from each compartment every day. The experiment was 

run for 7 days to measure the rate of salt diffusion through the membranes and salt 

concentrations of collected samples were measured using ICP analysis. Initial conditions 

of the experimental setup is shown in Fig 4-8. 

 

Figure 4-8 Diffusion cell assembly with 1000 ppm NaCl and DI water in two 

compartments separated by membrane. 

4.2.11 Estimation of Aquaporin packing in membrane assembly: 

 Membrane porosity and double layer properties influence ion fluxes through the 

membrane.  The flux values measured for aqp-SH modified membranes exhibited weak 
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sensitivity to ionic strength. These fluxes could be estimated via an ion’s concentration 

(c) gradient and its diffusion coefficient (D), as shown in equation (4-2): 

                                                         j = - D𝛻𝛻c                 (4-2) 

assuming a concentration gradient was imposed perpendicular to a porous film.  This 

concentration gradient was set by the ion concentrations in reservoirs to either side of the 

membrane as well as their separation (see figure 6-11). By relating the measured flux to 

the concentration gradient, an effective diffusion coefficient, De, could be determined. 

This allowed the inference of relative packing densities of aqp molecules incorporated in 

the active layer of membrane.   This effective diffusion coefficient would be generally 

smaller than the ion’s intrinsic diffusion rate in bulk media, and moreover, it would be 

proportional to the ratio of the accessible pores’ surface area to the total surface area, 

assuming the channels were perfectly linear and aligned with the concentration gradient, 

e.g. De = SApore
SAtotal

×D. According to the SEM imaging data of cross-sections of membranes 

published previously [149], It was further assumed that the PVA-alkyl and PBI were 

stacked in layers aligned perpendicular to the concentration gradient.  

  Based on these assumptions, a numerical partial differential equation was used to 

estimate how ionic fluxes were modulated by aquaporin surface densities, from which 

aquaporin packing densities compatible with experimentally-measured flux data could be 

determined. Namely, finite element simulations of the steady state Fickian diffusion 

equation (4-3) were performed, 

                                                   dc
dt =  −Dd2 c(x)

dx2  = 0                                                      (4-3) 



70 
 

subject to c (L) = 1 mM and c(R) =0 mM, where c is the concentration of the ionic 

solution and D is the diffusion coefficient and L, R correspond to the left and right 

reservoir boundaries. From these simulations, an effective diffusion coefficient that 

reflected the impact of the channel geometry on transport was determined. This 

proceeded through recognizing the flux was related to the concentration gradient via 

equation (4-4)          

                                                 < 𝐽𝐽 > = 1
𝐴𝐴 ∫𝐷𝐷 ∇𝑐𝑐 𝑑𝑑𝑑𝑑                                                     (4-4) 

where A is the surface area of the film and S represents the surface.  

Flux could be expressed in terms of concentrations and De was given by equation (4-5) 

                                                  <J>*A ~ De  (c(L) − c(R))
(x(L) − x(R))                                                (4-5) 

where c(i) is the concentration at boundary i (left and right) and x(i) is the position of the 

boundary. By numerically evaluating <J> at the film boundary, the equation was solved 

for De based on the concentrations imposed at the reservoir boundaries and their 

separation distance.    

 These equations were solved on three-dimensional finite element meshes [235, 

236], based on potential membrane and aquaporin configurations using the mesh 

generation tool GMSH [235, 237]. The meshes consisted of two reservoirs separated by a 

porous domain representing the film. Aqp or aggregates thereof were represented by 

cylinders of varying radii aligned parallel to the membrane.  In principle, atomistic 

resolution surface geometries could have been used for the aqp molecules [235, 236], but 

since specific knowledge of the membrane structure at the solvent/membrane interface is 
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not known, a simple cylindrical representation of the protein was used. These equations 

were solved, assuming Dirichlet conditions of c=1.0 M and c=0.0 M on the left and right 

reservoir boundaries [235, 236] via the finite element method using FEniCS [235, 238]. 

The diffusion coefficient was arbitrarily set to D=1.0 [m2/s].   Specifically, the weak form 

of these equations was solved using a piecewise linear Galerkin basis with FEniC’s 

default direct linear solver and parameters.  Concentration fluxes were determined by 

performing an ‘assemble’ call on an immersed boundary located at the middle and 

oriented parallel of the porous film. Details of the numerical procedure follow from 

previously published work [235, 236]. To capture the behavior of monomeric AqpZ, the 

flux found at the boundary of a pore was normalized [235, 236]. The packing fraction 

observed in the boundary layer then represented a boundary condition surrounding 

individual aquaporins.  All code written in support of this study is publicly available at 

https://bitbucket.org/pkhlab/pkh-lab-analyses. Simulation input files and generated data 

are provided in Appendix D. 
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CHAPTER 5. A NEW TECHNIQUE TO FABRICATE HIGH-PERFORMANCE BIOLOGICALLY 
INSPIRED MEMBRANES FOR WATER TREATMENT 

 

5.1 Introduction: 

 Water is an essential component in all separation processes involved in any 

application. Water is required in varying degrees of purity depending on the application 

for which it is used. Membrane separations play an important role in different industrial 

applications related to water, energy, pharmaceutical and life sciences. These membranes 

provide an alternative to conventional separation processes to obtain cost effective and 

high quality water [239-241]. However, there are some drawbacks involved with 

membrane separation processes; in particular, desalination membranes provide very low 

water flux values. In addition, limited lifetime of membranes, insufficient pollutant 

rejection, further treatment of concentrates, and chemical resistance of membranes are 

some of the problems faced while dealing with membrane separations [242-246] 

Nanofiltration membranes can be used for brackish water desalination but membrane 

fouling, pretreatment, membrane cleaning, limited recoveries and feed water loss, and 

short lifetimes of membranes are some of the problems involved in it [239]. Therefore, 

even though membrane separations are now established processes for water treatment, 

there is still need to develop improved membranes that would avoid these limiting issues. 

  Aquaporin is a bidirectional water channel protein present in cell membranes, and 

it regulates the flow of water in and out of cells. Aquaporin has, therefore, a potential to 

improve the water flux through incorporation into synthetic polymeric membranes. Water 
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passes through porous structures as a single unbroken column of molecules with 

hydrogen bonds between adjacent water molecules. These water molecules can carry 

protons as well through these structures in the form of H3O+ ions. However, this flow of 

protons along with water is prevented while passing through aquaporins. Aquaporins 

have pores which are constricted in the middle and wider at the openings. This 

constriction leads to a high dielectric barrier for charged entities like protons or other 

ions, while allowing the passage of small, neutral solutes. The backbone amide and 

carbonyl groups in the Asparagine-Proline-Alanine motif that lines the pore walls in 

aquaporin make hydrogen bonds with the water oxygen atoms, causing reorientation of 

water molecules to become perpendicular to the pore axis. In this orientation the water 

hydrogen atoms can’t make H-bonds with adjacent water molecules. All of the other 

groups present on the pore-walls are hydrophobic, leaving the water hydrogen atoms 

without hydrogen bonding partners. This raises the energy by nearly equal 3 kcal/mol 

[114, 120, 136, 247] thus allowing water passage with a minimal energy barrier. The 

activation energy for the transport of water through Aqp is about 3 kcal which is close to 

hydrogen-bonding energy, suggesting breakage of hydrogen bonds in the water flow 

[248]. 

For this research project, AqpZ, a water channel protein found in Escherichia coli 

was used, since it is inexpensive and can be expressed in large quantities. AqpZ has been 

shown to be robust under different reducing conditions and at low temperatures. It can 

retain 100% activity for up to 6 months of storage at 4oC. [114, 150]. The overarching 

purpose is to improve water permeability while enhancing ion rejection, by incorporating 

AqpZ into the membrane. Successful formulation could then lead to the formation of 
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biomimetic membranes with high selectivity and high water flux. In this study, 

aquaporins were treated with gum arabic (GA), a polysaccharide used previously to 

disperse carbon nanotubes to PVA successfully with the key purpose of preventing 

excessive functionalities that lead to disruption of the original structures.[224]. Gum 

arabic is a water soluble polysaccharide produced by Acacia Senegal trees. . In modern 

times, the most important applications of gum arabic have been as an emulsifier in the 

food and pharmaceutical industries and as an adhesive [249-251]. Gum arabic has been 

used in the food industry as a stabilizer, thickener, emulsifier, anti-caking agent as well as 

color preservative [252]. It has also been used to slow down the deterioration of inks 

[253, 254], and it has been observed to be significantly enhance the stability of iron-gall 

inks [255]. Gum arabic has been used to increase the durability of the functional textiles 

and add value to them [256]. Gum arabic conjugated polysaccharides showed an 

unusually high tolerance to salts, thermal instability and lower stability in alkaline 

conditions [257]. This ability of GA to prevent functionality of materials is exploited here 

with the purpose to have it protect the aquaporins from being functionalized in the 

presence of PVA. GA acted as an intermediate layer to enhance the interfacial interaction 

between the selective layer and the substrate, thus making the assembly stronger. Aqp-

GA was then dispersed in a polyvinyl alcohol matrix carrying alkyl side chains (PVA-

alkyl). PVA-alkyl is amphiphilic in nature with high hydrophilicity of PVA and 

hydrophobicity of the long alkyl side chains. This polymer has good film forming 

properties and outstanding physical and chemical stability [258], and is proposed to be an 

excellent material to support aquaporins. Thus, by attaching PVA-alkyl matrix with Aqp-

GA dispersed in it to the hydrophilized PBI membranes, the assembly was made 
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mechanically stronger and was designed to withstand higher hydraulic water pressure 

gradients.  

5.2 Research Objective:   

 The objective of the project is to make a new class of biomimetic nanofiltration 

membranes made of aquaporin dispersed in a membrane selective layer and capable of 

operation under high hydraulic pressure. The PVA-alkyl with embedded aquaporins will 

be used as the nanofiltration membrane active layer (Figure 5-1). Aquaporins are 

dispersed into PVA-alkyl layer, but not necessarily aligned into the layer. Aquaporins are 

bidirectional in nature; hence, even if their orientation is different than aligned, it does 

not affect the transmembrane water transport. 

 

 

 

 

 

 

 

 

 

Figure 5-1 Schematic of biomimetic membranes 
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5.3 Methodology:  

5.3.1 PBI membranes casting:   

 The dope polymer used to cast the backbone of the membranes was 

polybenzimidazole (PBI). PBI is stable polymer, which has robust mechanical strength 

with thermal stability for a wide range of high temperature applications and it also 

provides chemical stability over a wide pH range. PBI membranes are hydrophobic [259, 

260], and are strong but brittle [214, 217, 261]. The structure of PBI molecule is shown in 

Figure 5-2.  The imidazole ring of PBI contains two nitrogen atoms, one protonated to 

serve as a potential hydrogen bond donor and the other nitrogen has a lone pair, which 

can act as a proton acceptor. 

 

Figure 5-2 PBI molecule structure. 

 

  The solvent used to make the dope solution was N, N-Dimethylacetamide. 

Commercially-available 26% w/w dope solution, containing 26% PBI polymer, 72% N, 

N- Dimethylacetamide (DMAc) and 2% Lithium chloride (LiCl), was used and obtained 

from PBI Performance Products, inc. (Charlotte, NC). LiCl served the function of a pore 

former, preventing PBI polymer from phasing out of the solution [214, 215] and 

imparting long shelf life to the solution. The dope solution was diluted to 21% PBI by 

adding solvent, and the solution was sealed with parafilm to prevent air bubbles from 
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being trapped inside the solution and affecting its homogeneity. Because of very high 

viscosity of the solution, the solution was kept in the sonicator and degassed for 2 days in 

order to ensure homogeneous mixing of the solvent and the solute. After sonication, the 

solution was allowed to come to room temperature and then the solution was ready for 

membrane casting using the phase inversion process. Phase inversion is the phenomenon 

whereby the phases of a liquid-liquid dispersions interchange such that the dispersed 

phase spontaneously inverts to become the continuous phase [216, 261]. The non-solvent 

phase that was used in this process was water. The PBI chemistry used here was identical 

to that of previous studies which made nanofiltration membranes with a pore size of 0.61 

nm, so the unmodified PBI membranes of this study should also be suitable for 

nanofiltration [217]. 

A casting knife, or doctor’s blade (Paul N Gardner Co, U.S. Pat 4869200, 

Pompano Beach, FL.) was used to make flat sheet membranes. A clean glass mirror was 

used as a surface, which provides optimum hydrophobicity to the membranes and helps 

for detachment of polymer films during phase inversion [216]. The solution was placed in 

an even line on the surface and the casting knife was used to push the solution across the 

glass surface to make a thin film. The thickness of the membranes was kept between 150 

µm and 200 µm. A water coagulation bath was used to induce phase inversion with 

subsequent pore formation within the membranes. Once the phase inversion had taken 

place, the membrane came out of the surface of the water. The membrane was thoroughly 

washed with water and kept in a 50/50 glycerol-DI water solution. Glycerol was added to 

DI water to ensure that the membranes would stay wet during storage because when they 
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are dried, they can become brittle and susceptible to breakage [217]. The membranes 

were kept in the solution at least one day before they were analyzed. 

5.3.2 Surface activation of membranes:  

 The polybenzimidazole membrane surface needs to be activated for further 

modifications with PVA-alkyl and additions of Aqp-GA to the PVA-alkyl matrix. 

Activation was achieved by reaction of a highly reactive chlorine atom, from 4-

chloromethyl benzoic acid (CMBA) purchased from Sigma-Aldrich (USA), with the 

secondary amine group in the imidazole ring of the repeat unit in PBI backbone (Figure 

5-2). CMBA adds a carboxylic group to the surface, which serves two purposes: 1) to 

impart negative charge on the membrane surface, and 2) to act as a platform for 

subsequent functionalization of the membrane. It is important to note that there are two 

secondary amine sites in PBI molecule, so after the reaction, carboxylic groups are added 

on both sites on the molecule. For simplicity, the reaction at only one site is shown 

(Figure 5-3).  
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 Modification was performed according to previous studies [217]. For the reaction, 

1 wt% solution of sodium persulphate in water was prepared for use as a free radical 

initiator for the reaction. 200 ml DI water were taken in a 500mL beaker with a stir bar. 

2.02g sodium persulphate was added to the water, and the solution was stirred on hot 

plate at 40oC. Two membranes were added to the solution, which were kept fully 

submerged and were not stuck under the stir bar. In a second beaker, 0.5 wt% solution of 

CMBA in acetone was prepared. 0.788 g CMBA was added to 200 mL acetone and was 

stirred until dissolved. Then acetone/CMBA solution was slowly added to the beaker on a 

hot plate while stirring, and then covered. This was done in order to prevent the 

precipitation of CMBA as it is insoluble in water. The final solution was a 50/50 mixture. 

The temperature of the solution was kept at 40oC and it was stirred for 24 hours to keep 

PBI 

DI/Acetone 

Na2S2O8, Δ 

CMBA 

Figure 5-3 CMBA modification of membrane. 
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all the reactants in solution and prevent the evaporation of CMBA. Once the reaction was 

finished, the membranes were washed with copious amounts of DI water to remove 

excess sodium persulphate and immediately placed in glycerol/water bath.  

5.3.3 Preparation of PVA–alkyl: 

 PVA-alkyl is polyvinyl alcohol carrying long alkyl side chains. It is amphiphilic 

as it has both hydrophilic (PVA) and hydrophobic (alkyl chains) elements present. This 

polymer has good film forming properties and outstanding physical and chemical 

stability. Using PVA as skin layer provides the resulting membranes with high water 

permeation rate, good antifouling nature, and excellent integrity in acidic and alkaline 

and remarkable resistance to abrasion [258, 262]. PVA-alkyl was prepared in two steps 

[218, 219], the preparation of (1) carboxy-methyl PVA followed by (2) PVA-alkyl.  

5.3.3.1 Preparation of carboxy-methyl PVA (PVA-COOH): 

The preparation of carboxy-methyl PVA (PVA-COOH) followed literature 

methods [220, 221], summarized here. Initially, 50 mL water were taken in a 100 mL 

beaker, 1 g PVA (Acros Organics, USA) was added to it, and the solution was kept at 

70oC. The mixture was stirred for 1 hour continuously to prevent PVA from sticking to 

the bottom of the beaker until it completely dissolved. The solution was transferred to a 

500 mL beaker, and 50 g of sodium monochloroacetate (Fisher Scientific, Pittsburgh PA) 

were added. The solution was then covered with aluminum foil and was incubated at 4 oC 

for 24 hours. After that, 42 mL water were taken in a 100 mL beaker, 42 g sodium 
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hydroxide (Fisher Scientific, Pittsburgh PA) were added, and the mixture was stirred until 

the sodium hydroxide dissolved.  

NaOH/water solution was added to the incubated solution of PVA and sodium 

monochloroacetate in water, and stirred at room temperature for 24 hours. Then, it was 

neutralized using a 6 M solution of hydrochloric acid (Fisher Scientific, Pittsburgh PA) in 

water was prepared in a separate beaker with pH being continuously monitored. This 

neutralized solution was dialyzed against deionized water. The molecular weight cut-off 

for the dialysis was chosen as high as possible, which was 12-14 kDa in order to 

maximize dialysis rate. The dialysis tubing (Fisher Scientific, Pittsburgh PA) used was 

soaked in water for 3 hours in order to open it and fill it with the solution. It was then 

sealed with dialysis locking membrane clamps. A 2000 mL beaker with a stir bar in it 

was filled with DI water to be used as a dialysate. It was kept stirring and the water was 

changed after every 4-5 hours to make sure that the driving force for the dialysis is high. 

The procedure was continued for 3 days, and the remaining solution in the tube was taken 

out and stored in another beaker. Then, the stored solution after dialysis was deionized 

using ion-exchange resins. DOWEX 1X8 (Acros Organics, USA) was used for negatively 

charged ions and DOWEX 50WX8 (Acros Organics, USA) was used for positively 

charged ions. The output solution after the ion exchange was lyophilized using freeze 

dryer. For that, the solution was kept in centrifuge tubes and was allowed to freeze dry 

for 3 days. PVA-COOH was obtained as a white solid after freeze-drying. The weight of 

the product was 0.45 g and the yield was 39%. The overall reaction is shown in Figure 5-

4. 
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5.3.3.2 Preparation of PVA-alkyl: 

 The second step of making PVA-alkyl was synthesis of hexadecanal. Chemicals 

used for the preparation were celite, pyridinium chlorochromate and 1-hexadecanol. 

Dichloromethane was used as the solvent. 11.2 mL dichloromethane were taken in a 50 

mL beaker while stirring, and 0.95 g celite, 0.95 g pyridinium chlorochromate and 0.5 g 

1-hexadecanol were added to the beaker under a fume hood. The solution was sealed with 

aluminum foil and stirred for 6 days at room temperature. After that, the reaction mixture 

was diluted by adding 40 mL diethyl ether. Florisil columns were used to remove excess 

celite, pyridinium chlorochromate and 1-hexadecanol. Then the mixture was evaporated, 

and hexadecanal was obtained as a white solid. 

 PVA-COOH obtained after first reaction was dissolved in DMSO. Hexadecanal 

and 200µL of 12 M hydrochloric acid were added to the solution, which was maintained 

at 70 oC and stirred for 25 hours. The reaction mixture was extracted with diethyl ether. 

The mixture was then neutralized with 1M sodium hydroxide. The neutralized solution 

was dialyzed against DI water using dialysis tubing of 12-14kDa following the same 

+ ClCH2COONa NaOH  
in water 

PVA Sodium 
monochloroacetate 

PVA-COOH 

Figure 5-4 PVA-COOH synthesis. 
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procedure as described previously. The solution was then desalted with ion exchange 

resins previously mentioned and lyophilized using a freeze dryer for 3 days. PVA-alkyl 

was obtained as a white solid with yield of 49% at a final weight of the product was 0.22 

g. The overall reaction for the second step of the process is shown in Figure 5-5. 

 

 

 

 

 

 

 

 

5.3.4 AqpZ expression and purification: 

 Aquaporin Z (AqpZ) is a bacterial aquaporin from Escherichia coli, which shows 

high degree of homology to its mammalian counterparts and can be expressed in a 

bacterial host. Furthermore, it is highly stable and resists denaturing due to heat, 

detergent, voltage, and pH changes [114, 150]. This makes the protein suitable for 

commercial use.  

The pET-NH6 plasmid (a generous gift from Dr. Michael Weiner, University of 

Virginia) was transformed into an Escherichia coli C43(DE3) cell line for protein 

Figure 5-5 PVA-alkyl synthesis. 

 

Hexadecanal 

 PVA-COOH 

PVA - alkyl 
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3
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expression. Single colonies bearing the plasmid were used to inoculate four liters of LB 

media containing 100 μg/mL ampicillin at 37 °C with shaking at 250 rpm. After reaching 

an OD600 of 1.0, AqpZ protein expression was induced by addition of 1 mM isopropyl 

β-D-thiogalactopyranoside (IPTG) with further incubation for 3 hours at 30 °C and 

shaking at 250 rpm. Cells were harvested and stored at -80 °C until use.  

The protein was purified by using a modified version of a previously published 

protocol [263]. Five grams of cells paste were resuspended in 50 ml cold buffer (20 mM 

Tris-HCl pH 7.4, 500 mM NaCl and 1 mM Pefabloc). The suspension was lysed by 

ultrasonication using 30 sec pulse on and 2 min pulse off cycle for a total exposure time 

of 8 min. The lysate was centrifuged at 12,500 rpm for 30 minutes to pellet cell debris. 

Membrane fractions were collected by high speed at 40,000 rpm for 1 hr. The total 

membrane pellet was resuspended in cold buffer (20 mM Tris-HCl pH 7.4, 500 mM 

NaCl, 1 mM Pefabloc and 10% glycerol) and 270 mM of n-octyl-D-glucopyronoside 

(OG) was added with incubation at room temperature on a rocking platform.  

The solubilized membrane was loaded onto a 5 mL TALON superflow metal 

affinity (Co2+-IMAC) equilibrated with Buffer A  (20 mM Tris–HCl, pH 7.4, 500 mM 

NaCl, 10% glycerol and 40 mM OG) using an ÄKTA chromatography system. The 

column was washed with 10% buffer B (20 mM Tris–HCl, pH 7.4, 500 mM NaCl, 10% 

glycerol, 40 mM OG and 500 mM imidazole) for 10 column volumes. The protein was 

eluted with a linear gradient from 50 mM to 500 mM imidazole and the peak fractions 

were analyzed by SDS-PAGE (NuPAGE Novex 4-12% Bis–Tris gels). The calculated 

monomer mass of hexahistidine-tagged AqpZ is 27 kDa, but on this gel the AqpZ protein 

run at a lower electrophoretic mass of approximately 22 kDa, as shown in Figure 5-6. 
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The AqpZ containing fractions were pooled and stored at -80 °C until ready for 

incorporation into the membranes. 

 

Figure 5-6 SDS- PAGE showing purification of AqpZ with the protein band migrating at 

22 kDa. 

 

5.3.5 Treatment of AqpZ with gum arabic: 

 A 15wt. % solution of gum arabic (Fisher Scientific, USA) in water was prepared. 

AqpZ was added to this solution and sonicated under mild conditions for 4 hours in order 

to disperse it in the gum arabic solution. The concentration of AqpZ was 1ml/3ml of GA. 

Gum arabic has been used previously to disperse carbon nanotubes to PVA without either 

shortening the nanotubes or disrupting their structures. After the addition of GA to carbon 

nanotubes solution, the suspension was found to be stable over few months and was not 

affected by centrifugation. Hence, it was proposed to protect the structure of aquaporins. 
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The weight ratio of AqpZ to gum arabic was kept at 1:4. The mixture was kept stirring at 

room temperature for 72 hours and then heated slowly to remove water [223, 224]. Gum 

arabic-treated AqpZ were then added to de-ionized water and sonicated for 30 minutes. 

The solution with gum arabic-treated AqpZ was physically dispersed into the PVA-alkyl 

solution. The ratio of AqpZ-GA to PVA-alkyl solution was 1:1 by volume. Aquaporin is 

bidirectional water channel protein; hence the orientation of the protein isn’t expected to 

change the water flux through the protein [225]. 

 

5.3.6 Surface modification of PBI membrane using Aqp-PVA-alkyl: 

Aqp-PVA-alkyl was attached to the membrane using carbodiimide chemistry 

[217], for the reaction between a carboxylic group and the hydroxide group present in 

PVA-alkyl molecule. For the reaction, N-(3-dimethylaminopropyl)-N’-

ethylcarbodiimidehydrochloride (EDCH) and N-hydroxysuccinimide (NHS), both 

purchased from Sigma-Aldrich were used. The reactions were performed in 2-(N-

morpholino) ethanesulfonic acid (MES) buffer (Sigma-Aldrich, USA). 

 400 mL water were taken in a 500 mL beaker and 7.85 g MES buffer was added 

with stirring, Followed by the addition of11.75g NaCl with stirring. The solution was 

titrated to pH 6 using NaOH, 0.23 g NHS and 0.153 g EDCH were added to the solution 

and stirred well. CMBA modified PBI membranes were added to the solution, stirred for 

15 minutes, and then the reaction mixture was titrated to pH 7 using NaOH. PVA-alkyl 

was added to the solution and stirred for 24 hours, and then the membranes were removed 

and rinsed well with DI water and stored in a beaker filled with DI water. The 
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membranes were stored for 24 hours before using it for analysis. The overall reaction is 

shown in Figure 5-7. 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.7 Membrane characterization: 

5.3.7.1 Fourier Transform Infrared Spectroscopy (FTIR): 

          A vibrational spectrum is a characteristic of every molecule and is considered a 

unique property of that molecule [226]. FTIR was used in ATR mode to determine the 

+ MES buffer 
EDCH 

5-7 (A) 

NHS 

NHS 
CMBA modified 

PBI 

 

NHS ester 
intermediate 

R (PVA-alkyl) 
MES buffer 

NHS ester 
intermediate Aqp-PVA-alkyl 

modified membrane 

Figure 5-7 (b) 

Figure 5-7 (a) and (b) Carbodiimide membrane activation chemistry 
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chemistry of the proposed reactions and modifications on the membrane surface. Digilab 

UMA 600 FT-IR microscope was used for all the analysis of membrane samples 

performed in this study. 

5.3.7.2 Contact angle measurements: 

Contact angle is defined as the measure of wettability of a surface. Cam-Plus 

Micro contact angle meter (Tantec Inc., Schaumburg, IL) was used for the contact angle 

measurement of all the membrane samples. A small drop of water was placed on the 

membrane surface and resultant angle of the droplet to the surface was measured as 

shown in Figure 5-8. The higher the hydrophobicity of the membrane, the higher the 

contact angle. 

 

Figure 5-8 Contact angle measurement [227]. 

5.3.7.3 Flux analysis: 

Dead end filtration was used to monitor the flux decline of both PBI and PVA-

alkyl-AqpZ membranes. Filtration experiments were performed using Amicon filtration 

cell (Amicon Stirred Cell 8010 – 10 ml). Using a constant membrane surface area of 4.1 

cm2, the time to collect a 2-ml permeate sample was measured for each feed and flux was 

calculated. A constant pressure of 70 psi (4.83 bar) for laboratory purposes and 
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continuous stirring was applied in all tests. Flux values were calculated as L/m2-hr and 

plotted against the total time of filtration. Membrane samples were cut into circular 

pieces of area 4.1 cm2 and supported by a WhatmanTM filter paper (110 mmø). Each 

membrane was precompacted with DI water for 7-8 hours until a stable flux was reached. 

Precompaction was followed by filtration of protein solutions of 10 ppm each of bovine 

serum albumin (BSA) and lipase protein in water. The same filtration cell was used for 

protein filtration under the same conditions of pressure and stirring. Protein rejections 

were calculated using UV-VIS spectrometer (Varian Inc. Cary 50, Agilent Technologies, 

Santa Clara, CA) according to following equation (4-1). 

Salt rejection was tested using five solutions of different concentrations of sodium 

chloride and calcium chloride in DI water: 3.4, 10, 20, 35 and 100 mM solutions. 

Solutions were run through the 10 ml dead-end cell under the same conditions as used for 

the pure water flux testing. Continuous stirring was applied inside the cell to prevent salt 

build-up on the membrane surface. Two mL permeate samples were collected for each 

feed. Salt rejections were calculated using conductivity meter. The apparent solute 

rejection R (%) was calculated using equation (4-1).  

After each feed water filtration, the membrane was backwashed for 1 hour with 

DI water and filter paper support was changed. The flux recovery of the membrane was 

measured after reverse flow filtration with DI water. 

5.3.7.4 Morphological characterization: 

Environmental scanning electron microscopy (ESEM) was used to verify the 

asymmetric morphology of the membranes and monitor the surface of both unmodified 
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and PVA-alkyl-AqpZ modified membranes before and after filtration. An FEI Quanta 3D 

FEG Dual Beam Electron Microscope (FEI, USA) was used to test the samples. By 

freezing small samples of the membranes in liquid nitrogen and cracking them, smooth 

cross-sectional areas could be observed. In order to get an image of cross-section of the 

membranes, the frozen and cracked samples were attached vertically to a carbon tape 

while the samples were attached horizontally to the carbon tape to get an image of 

membrane surface. The surfaces of the samples were dusted with a thin layer of 

palladium-gold using a Cressington 108 auto sputtering device and then observed under 

scanning electron microscope. 

 

5.4 Results and Discussion: 

5.4.1 Chemical analysis: 

          Figure 5-9 shows the FTIR analysis of PBI, CMBA and PVA-alkyl-AqpZ 

membranes, and Table 5-1 identifies all peaks. FTIR showed peaks at ~1050 cm-1 for C-

O stretch, ~1200 cm-1 for alkyl substituted ether, which is observed after PVA-alkyl is 

attached to CMBA-modified PBI molecule using carbodiimide chemistry (Figure 5-10). 

A peak at 1660 cm-1 corresponds to C=O stretch that is present in the final molecule due 

to addition of CMBA. FTIR spectrum of PBI molecule also shows a peak at 1650 cm-1, 

which identifies the presence of secondary amine group present in PBI. Peak 4 

corresponds to O-H stretch, which is present in CMBA-modified PBI molecule as well as 

PVA-alkyl-AqpZ-modified molecule (Figure 5-10). Peak 5 in the analysis is due to long 
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alkyl chains that are present in the PVA-alkyl-AqpZ-modified molecule [226]. A very 

broad peak around 3400 cm-1 is observed in all the membrane samples, which is associate 

with N-H stretching [264]. Bonds corresponding to different functional groups are 

indicated in Figure 5-10.  

 

Figure 5-9 FTIR analysis of unmodified, CMBA modified and PVA-alkyl modified 

membranes.  

 

Table 5-1 Functional groups and corresponding wave numbers in IR spectra. 

Band number Functional group Wave number (cm-1) 

1 C-O 1057 

2 C-O (ether) ~ 1200 

3 C=O 1670-1820 
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4 OH ~ 2670 

5 C-H ~ 2850 

6 >N-H 1550-1650 

 

 

Figure 5-10 AqpZ-PVA-alkyl modified PBI molecule. 

 

5.4.2 Hydrophobicity: 

 Contact angle was used as a measure of hydrophobicity, and results are shown in 

Figure 5-11. CMBA modified membranes were found to be more hydrophilic than PBI 

membranes [217, 261]. This was most likely due to addition of a –COOH group in the 

modified molecule and its increased ability to form hydrogen bonds because of the 
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presence of oxygen with a lone pair. However, the change is not statistically significant 

because of the overlap of standard deviations. After the addition of PVA-alkyl to the 

membranes, the contact angle decreased further showing a significant increase in the 

hydrophilicity of the membrane. This was most likely due to high hydrophilicity of PVA 

[258]. After AqpZ was added to the membrane, there was no significant difference 

between its contact angle and that of the PVA-alkyl membranes, which is likely because 

the aquaporins that were added to PVA-alkyl matrix were embedded inside the matrix 

and not on the surface of the membrane.  

 

Figure 5-11 Hydrophobicity via contact angle 
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 Before comparing observations between PBI and PVA-alkyl-AqpZ (or AqpZ-

modified) membranes, it is important to separate the effects of the addition of PVA-alkyl 

only and PVA-alkyl-AqpZ to the membrane in order to separate the effect of the presence 

of the amphiphilic/polar PVA-alkyl inclusions from that of the presence of AqpZ. 

Experiments were conducted in parallel comparing PBI, PVA-alkyl and PVA-alkyl-AqpZ 

membranes using BSA and lipase solution filtration. The flux analyses are shown in 

Figures 5-12, 5-13 and 5-14. For PBI membranes, the pure water flux was 7.90 L/m2-h 

(LMH), the initial flux for BSA filtration was 5.77 LMH, the recovery after BSA 

filtration (i.e. after DI backwash) was 5.47 LMH (or a 69% flux recovery, as compared to 

the initial pure water flux), and the final flux after lipase filtration was 3.82 LMH. BSA 

and lipase rejections were approximately 86% and 84%, respectively. After the addition 

of PVA-alkyl (no aquaporins), the pure water flux was lower at 6.0 LMH, which is likely 

due to the extra resistance added by the addition of PVA-alkyl to the surface of the 

membrane. The initial flux for BSA filtration was 4.36 LMH, the recovery after BSA 

filtration was 4.80 LMH (or an 81% flux recovery), and the final flux after lipase 

filtration was 4.13 LMH. BSA and lipase rejections were approximately 90% and 87%, 

respectively. While flux values for the PVA-alkyl membranes were not as high as for the 

PBI membranes, it is clear that the flux decline during filtration was improved and the 

final flux after the 36-hour filtration period was higher. This was associated with the 

increase in hydrophilicity of PVA-alkyl (Figure 5-11). Lastly, after the addition of PVA-

alkyl with embedded aquaporins (PVA-alkyl-AqpZ), the initial pure water flux was lower 

at 5.32 LMH, which again is likely due to the extra resistance. The initial flux for BSA 

filtration was 5.0 LMH, the recovery after BSA filtration was 5.0 LMH (or a complete 
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recovery of the filtration flux, or 96% flux recovery as compared to the initial flux), and 

the final flux after lipase filtration was 4.43 LMH. BSA and lipase rejections were 

approximately 91% and 87%, respectively. Protein rejection and flux recovery data is 

shown in Table 5-2. Therefore, it is concluded that the addition of aquaporins to the 

membrane led to a more consistent flux value and a nearly complete recovery of flux 

back to its initial pure water flux after cleaning. Actual data for Figures 5-12, 5-13, and 5-

14 is presented in Appendix A, Tables A-1, A-2, and A-3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-12 Flux analysis of unmodified PBI membrane. 

 

Pressure: 70 PSI 

Membrane area: 4.1 cm2 
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Figure 5-13 Flux analysis of PVA-alkyl modified PBI membrane. 

 

Figure 5-14 Flux analysis of AqpZ-PVA-alkyl modified PBI membranes. 

 

Pressure: 70 PSI 

Membrane area: 4.1 cm2 

Pressure: 70 PSI 

Membrane area: 4.1 cm2 
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Table 5-2 Protein rejection and flux recovery comparisons. 

 Unmodified PBI 
membranes 

PVA-alkyl 
modified PBI 
membranes 

AqpZ-PVA-alkyl 
modified PBI 
membranes 

BSA Rejection 86% 
 

90% 
 

91% 
 

Lipase Rejection 
 

84% 
 

87% 
 

87% 
 

Flux Recovery 69% 81% 96% 

 

 

 More in-depth flux comparisons were then conducted between PBI and 

PVA-alkyl-AqpZ membranes for a period of 140 hours with protein solutions and salt 

solutions. These flux analyses are shown in Figures 5-15 and 5-16, respectively. For 

unmodified PBI membranes, initial flux values observed were higher than for the PVA-

alkyl-AqpZ membranes due to extra increased thickness, and hence resistance, associated 

with the addition of PVA-alkyl to the membrane matrix. However, the flux decline 

observed was greater in unmodified membrane than modified membrane.  
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Figure 5-15 Flux analysis of unmodified PBI membranes. 
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Figure 5-16 Flux analysis of AqpZ modified PBI membranes. 

 

 For PBI membranes, initial pure water flux was 8.77 LMH, initial flux for BSA 

filtration was 7.89 LMH and that for lipase filtration was 6.79 LMH. The flux recovery 

obtained after BSA filtration was 7.07 LMH (or an 80% flux recovery as compared to the 

initial pure water flux). Final flux after lipase filtration was 6.37 LMH and flux recovery 

after DI backwash was 6.41 LMH (a 73% of initial water flux). Rejections for protein 
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membranes were 84% and 83%, respectively, and these were not significantly different 

from our initial PBI studies. For PVA-alkyl-AqpZ membranes, initial pure water flux was 

6.74 LMH, which again was likely lower due to the additional resistance to flow from the 

addition of PVA-alkyl to the surface of PBI membranes. Initial flux for BSA solution for 

these membranes was 6.32 LMH and for lipase solution was 6.30 LMH. The flux 

recovery after BSA filtration was 6.68 LMH (or a 99% as compared to initial pure water 

flux). The final flux after lipase filtration was 5.96 LMH, and flux recovery after that was 

6.24 LMH (a 92% of initial water flux). Rejection values for both BSA and lipase 

solutions increased for PVA-alkyl-AqpZ membranes. For BSA solution, an 88% and for 

lipase, an 86% rejection was observed. This might be due to addition of AqpZ in the 

PVA-alkyl matrix since aquaporins block the flow of protein molecules through the 

aquaporin structure. Any protein going through the membrane would be moving through 

the membrane regular pores. 

Table 5-3 Rejection and flux recoveries for protein filtrations 

 PBI membranes AqpZ-PVA-alkyl membranes 

BSA rejection 84% 88%  

Lipase rejection 83%  86%  

Flux recovery 61.11% 87.98% 

 

 Filtrations with protein solutions were followed by filtration with solutions of 

NaCl and CaCl2 in water. Five different concentrations of salt solutions were chosen for 

filtration studies of both unmodified and modified membranes. For unmodified PBI 
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membranes, initial flux for 3.4 mM NaCl feed solution was 6.14 LMH and final flux was 

6.10 LMH, with a flux recovery of 6.58 LMH (75%). For PVA-alkyl-AqpZ membranes, 

the initial flux for the same NaCl solution was 6.22 LMH, the final flux was 6.03 LMH 

and flux recovery was 6.38 LMH (94.6%). A 10 mM NaCl solution was used as feed 

after DI water backwash. For PBI membranes, the initial flux was 6.16 LMH, the final 

flux was 6.02 LMH and flux recovery was 6.44 LMH (73.43%), while for PVA-alkyl-

AqpZ membranes, the initial flux was 6.30 LMH, the final flux was 6.29 LMH and flux 

recovery was 6.87 LMH (100%). When the NaCl solution concentration was increased to 

20 mM, the unmodified PBI membranes showed an initial flux 5.80 LMH, final flux was 

5.81 LMH and flux recovery was 6.15 LMH (70%). For PVA-alkyl-AqpZ membranes, 

initial flux was 6.80 LMH, final flux was 6.69 LMH and flux recovery obtained was 6.81 

LMH (100%). Upon another increase in the NaCl feed solution concentration to 35 mM, 

the initial flux for the PBI membranes was 5.30 LMH, the final flux was 5.41, and flux 

recovery was 5.41 LMH (61.7%). Again, for PVA-alkyl-AqpZ membranes, flux values 

remained not significantly different from previous solutions with an initial flux of 6.73 

LMH, final flux of 6.47 LMH and flux recovery of 6.33 LMH (93%). For 100 mM NaCl 

feed solution, PBI membranes showed an initial flux of 4.98 LMH, a final flux of 5.10 

LMH and a flux recovery of 5.60 LMH (63.8% flux). For this this concentration of NaCl, 

the initial flux  of PVA-alkyl-AqpZ membranes decreased slightly 6.10 LMH, a final flux 

was 5.90 LMH and flux recovery of 5.95 LMH (88.3%).  

While flux declines during filtration were lower and flux recoveries higher with 

the PVA-alkyl-AqpZ membranes, flux values after the final recovery were approximately 

the same as PBI membranes; however, the greatest advantage of the PVA-akyl-AqpZ 
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membranes seems to be with respect to sodium chloride rejection, as shown in Figure 5-

17. AqpZ-PVA-alkyl membranes showed higher rejections for the solutions as compared 

to PBI membranes. Unmodified PBI membranes showed 19% rejection during filtration 

of the 3.4 mM NaCl solution, and as the NaCl concentration went up to 100 mM, the 

rejection decreased to 5.3%. On the other hand, PVA-alkyl-AqpZ membranes showed a 

much better rejection of 73.5% for 3.4 mM feed solution of NaCl and 36% for 100 mM 

NaCl. 

 

Figure 5-17 Sodium chloride and calcium chloride filtration rejection. 

 

After NaCl filtration and the final flux recovery, CaCl2 solutions of five different 

concentrations were filtered through the membranes (flux declines and recoveries are 
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an initial flux of 4.95 LMH, a final flux of 5.10 LMH and a flux recovery of 6.33 LMH 
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followed by filtration of 10 mM CaCl2 solution. For PBI membranes, the initial flux was 

4.69 LMH, final flux of 4.65 LMH and flux recovery of 5.97 LMH (68%), while for 

PVA-alkyl-AqpZ membranes, these were 6.40 LMH, 6.20 LMH and 6.03 LMH (89.5%), 

respectively. After that, the concentration of the feed solution was increased again to 20 

mM CaCl2. PBI membranes gave initial flux of 4.92 LMH, final flux of 4.56 LMH and 

flux recovery of 6.02 LMH (68.6%), while PVA-alkyl-AqpZ membranes displayed 6.01, 

5.80 LMH and 5.56 LMH (82.5%), respectively. For a feed solution of 35 mM CaCl2 

solution, the initial flux for PBI membrane was 5.39 LMH, final flux was 4.71 LMH and 

flux recovery was 5.76 LMH (65.7%). For the same solution, PVA-alkyl-AqpZ 

membranes had an initial flux of 5.47 LMH, final flux of 5.31 LMH and flux recovery of 

4.77 LMH (70.8%). When feed concentration was increased to 100 mM of CaCl2, the 

initial flux for PBI membranes was 4.63 LMH, the final flux of 4.36 LMH and flux 

recovery of 5.36 LMH (61.1%), while PVA-alkyl-AqpZ membranes had an initial flux of 

4.42 LMH, final flux of 4.28 LMH and a flux recovery of 5.93 LMH (88%). Figure 5-17 

also shows CaCl2 salt rejections. For CaCl2 salt solutions of low concentration (3.4 mM), 

the maximum salt rejection observed for PBI membranes was 24.3% while for PVA-

alkyl-AqpZ membranes was 76.2%. As the concentration of CaCl2 feed solution was 

increased to 100 mM, the rejection for PBI membranes dropped to 8%, while that for 

PVA-alkyl-AqpZ membranes was 39.6%. Therefore, as with NaCl filtrations, the final 

rejection of salts by aquaporin membranes remained significantly higher than for PBI 

membranes. It is important to note here that salt rejections observed for both the salt 

solutions for AqpZ-PVA-alkyl modified PBI membranes were not 100%. This might be 
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because of the feed solution going around aquaporins that are embedded in the PVA-

alkyl matrix. 

5.4.4 Morphological analysis: 

Figures 5-18(a), (b) and (c) show the SEM images of cross sectional areas of 

clean unmodified PBI, PBI membranes with only PVA-alkyl added and PVA-alkyl-AqpZ 

modified PBI membranes, respectively, at a magnification of 50 µm before filtration. The 

cross sectional area of PVA-alkyl modified PBI membrane showed the addition of an 

extra layer added to the surface of PBI membrane due to the attachment of PVA-alkyl. It 

is important to note that the layer of PVA-alkyl was added to both sides of the membrane. 

Unmodified PBI membranes showed more porous structures as compared to modified 

PBI membranes. Since the modification of the PBI membranes was not controlled to only 

surfaces, some of the modification might have occurred inside the pores of the PBI 

membranes resulting in the less porous structure of modified membranes observed. This 

is in agreement with the lower pure water flux values observed for the PVA-alkyl-AqpZ 

membranes, shown in Figures 5-15 and 5-16 (during precompaction). 

 

 

 

 

 

5-18(a) 5-18(b) 

PVA-
alkyl-
AqpZ 
layer 

5-18(c) 

Figure 5-18 (a), (b) and (c) SEM images of cross sectional areas of unmodified PBI, PVA-
alkyl and PVA-alkyl-AqpZ modified PBI membranes. 
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Figures 5-19(a) and (b) show SEM images of the clean surfaces of both 

unmodified PBI and PVA-alkyl-AqpZ modified PBI membranes, respectively, at a 

magnification of 10 µm. The surface of unmodified PBI membranes displayed a 

smoother texture as compared to that of PVA-alkyl-AqpZ modified PBI membranes. This 

was likely due to the addition of the extra layer of PVA-alkyl containing AqpZ. On the 

other hand, Figures 5-20(a) and (b) show SEM images of surfaces of both unmodified 

PBI and PVA-alkyl-AqpZ modified PBI membranes, respectively, at a magnification of 

10 µm after filtration. The surface of unmodified PBI membranes showed a rougher 

texture as compared to PVA-alkyl-AqpZ modified membranes. The reason is 

hypothesized to be due to the accumulation of foulants on the surface of unmodified PBI 

membranes. PVA-alkyl-AqpZ modified membranes showed better antifouling 

characteristics than unmodified PBI membranes. This might be due to addition of 

aquaporins in PVA-alkyl layer added on the surface of PBI membranes. The addition of 

aquaporins likely helped during backwash by providing more water channels for water to 

pass through the membrane resulting in higher removal of foulants. This agrees with flux 

recoveries shown in Figures 5-15 and 5-16 as well as Table 5-3.  

 

 

 

 

 

 

5-19(b) 5-19(a) 

Figure 5-19 (a) and (b) SEM image of surface area of unmodified PBI membrane and 

PVA-alkyl-AqpZ modified PBI membrane respectively 
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5.5 Discussion: 

While the initial water flux values of PVA-alkyl-AqpZ membranes were slightly 

lower than unmodified PBI membrane, the flux decline was less when using PVA-alkyl-

AqpZ membranes, and the final flux after 140 hours of flux experiments was  higher for 

PVA-alkyl-AqpZ membrane as compared to PBI membrane. Therefore, it is believed that 

the presence of aquaporins helped to increase and maintain the water flux through the 

membranes, and the addition also led to better flux recoveries. Aquaporins are 

bidirectional, hence during backwash, aquaporins might have also helped in the increased 

water flux through the membrane and more removal of reversible fouling resulting in 

better flux recovery of the membrane. The embedment of AqpZ in the modified 

membranes is hypothesized to have facilitated water transport through the membrane and 

brought about an increase in the water flux, which agrees with previous studies [56, 156]. 

Furthermore, the increase in the hydrophilicity of the membrane after modification 

(Figure 5-11) could also be associated with the increase in the water being transported 

5-20(a) 5-20(b) 

Figure 5-20 (a) and (b) SEM image of surface area of unmodified PBI membrane and PVA-
alkyl-AqpZ modified PBI membrane respectively after filtration 
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across the membrane [265]. Aquaporins selectively filter water molecules through their 

porous structures while preventing the passage of ions and other solutes (Figure 5-1). 

Thus they form channels for water molecules to pass through them and in turn increase 

the water flux and the flux recovery of the PVA-alkyl-AqpZ membrane.  

  It is hypothesized that the presence of aquaporins in the PVA-alkyl-AqpZ 

membranes acted as water channels and prevented the flow of ions and salt solutions that 

flow along with water molecules. This helped in the increase in water flux and rejection 

of salt solutions of different concentrations. Previously, Chung et al. [56] prepared Aqp-

modified cellulose acetate membranes functionalized with methacrylate end groups. Aqp 

was introduced into the membranes using vesicle rupture of triblock (ABA) copolymer 

vesicles and UV polymerization. Maximum salt rejection obtained with NaCl salt 

solution of concentration 3.4 mM was 32% Fane et al. [47] prepared a thin film 

composite aquaporin-based biomimetic membrane by interfacial polymerization method. 

A microporous polysulfone substrate was soaked with an m-phenylene-diamine (MPD) 

aqueous solution which contained AQP-based proteoliposomes. The substrate was then 

exposed to trimesoyl chloride (TMC) to form a three-dimensionally crosslinked 

polyamide layer with the proteoliposomes embedded. Maximum salt rejection obtained 

for NaCl salt solution of concentration 10 mM was 96.3±1.2% at 5 bar. Also, lipid 

bilayer was attached to commercial NF-270 membrane under conditions suitable for 

AqpZ survival and AqpZ was incorporated into the lipid bilayer subsequently [44]. 

Maximum salt rejection obtained for NaCl salt solution of concentration 1 mM was 20% 

at 1 bar. In this study, PBI membranes modified with PVA-alkyl-AqpZ showed 73.5% 

rejection for 3.4 mM NaCl feed solution, whereas for 10 mM NaCl feed solution, the salt 
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rejection was 68% using nanofiltration membranes. Salt rejections observed in this study 

were not 100% likely because some of the feed solution might have leaked around the 

aquaporins embedded in the PVA-alkyl matrix. 

 

5.6 Conclusions: 

Aquaporins have received worldwide attention due to their potential to 

significantly improve water flux across synthetic membranes. Aquaporins provide more 

water channels while rejecting everything else that is present in the feed including ions 

and dissolved salts. However, under high pressure, aquaporins can get chemically altered 

and not function properly, resulting in the failure of the assembly of synthetic membrane 

and the protein. In this study, aquaporins were protected with gum arabic and dispersed 

into a PVA-alkyl layer, which was crosslinked to a synthetic PBI membrane backbone 

using carbodiimide chemistry to minimize the disruptive effects of high pressure. 

Membranes modified with aquaporins showed higher water fluxes, better flux recoveries 

and greater ion selectivities as compared to unmodified synthetic membranes. The 

biomimetic membranes presented here showed promising performance with respect to 

lower fouling and ion rejection. 
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CHAPTER 6. ALIGNMENT AND IMMOBILIZATION OF AQUAPORINS ON 
POLYBENZIMIDAZOLE NANOFILTRATION MEMBRANES 

 

6.1 Introduction: 

A growing research area in water purification is the incorporation of 

transmembrane water channel proteins, known as aquaporins in the synthetic membranes 

owing to the excellent permeability and selectivity of aquaporins (aqp) towards water 

molecules [29, 38, 52, 56, 121, 266]. These membranes are called biomimetic membranes 

because of the fact that they mimic the function of aquaporins present in lipid bilayer 

within cell membranes. In recent years, a number of approaches have been adapted from 

biological concepts and principles to develop biomimetic membranes [20, 40, 43-58]. 

However, there are still many challenges associated with aquaporins based membranes. 

Generally, aquaporin-based biomimetic membranes developed to date consist of three 

building blocks: aquaporins, amphiphilic molecules in which the aquaporins are 

embedded in order to simulate the environment of the lipid bilayer in the cell membranes, 

and a polymer support structure [59]. These amphiphilic molecules in which the 

aquaporins are incorporated can be either lipids or polymers. Due to the superior 

mechanical and chemical properties, block copolymers and amphiphilic polymers have 

been predominantly investigated for the development of aquaporin-based membranes [52, 

56, 57, 59, 151, 267-275]. Studies using lipids as the amphiphilic molecules to support 

aquaporins have shown that these systems were able to maintain membrane integrity [44, 

48-50, 55, 150, 156, 276]. 



111 
 

The widespread application of aquaporin-based membranes face several challenges 

with respect to synthesis, stability and function of the membrane assembly. One of the 

challenges is to design and prepare biomimetic membranes with embedded and aligned 

aquaporin proteins without losing their integrity and performance, while providing an 

additional solid support that is sufficiently porous [276]. Toward this goal, aquaporin 

constructs were modified to bear affinity tags or unique amino acids at the N-terminus of 

the aquaporin molecule, which was used to facilitate directional immobilization. Each 

aquaporin monomer was modified with a unique amino acid Cys group at the N-terminus 

right after the first Met (figure 6-1), and due to the aquaporin tetrameric nature, these Cys 

groups became four anchors for attachment. There are two intrinsic Cys groups in the 

sequence of aquaporin. Studies have shown that they are not chemically reactive toward 

modifications due to their limited accessibility [29]. Therefore, the engineered Cys would 

be the only site in aquaporin reactive toward the thiol-specific modification. The presence 

of these four Cys anchors per aquaporin tetramer was used to ensure that all tetramers 

were attached on the membrane surface in alignment with the feed direction. 

 

 

 

 

 

 

The objective of this study was to covalently attach Cys modified aquaporins 

(Aqp-SH) to a polymeric membrane backbone in order to align them in the direction of 

SH SH SH SH 

Figure 6-1 Cys modified aquaporin molecule 
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flow. PVA-alkyl was used to bind the remaining sites present on the backbone and to seal 

the gaps in between attached aquaporin molecules. PVA-alkyl has been previously used 

to enhance the mechanical strength of the membrane assembly and simulate the natural 

environment for attached aligned aquaporins [149]. Figure 6-2 provides a schematic of 

the attachment of Cys modified aquaporins to the membrane backbone. 

 

Figure 6-2 Attachment of Aqp-SH to –COOH modified PBI membrane 

 

6.2 Experimental: 

6.2.1 Materials: 

6.2.1.1 Polybenzimidazole (PBI): 

The polymer used to cast the backbone of the membranes was polybenzimidazole 

(PBI). PBI has found applications in ion-exchange membranes for fuel cells because of 
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its excellent mechanical, thermal and chemical stability over a wide range of pH [217, 

261, 277]. The specific polymer composition used in these membranes is poly [2, 2’-(1, 

3-phenylene)-5, 5’-bibenzimidazole]. The absence of aliphatic groups and stability of 

benzimidazole group in PBI are responsible for its applications in a wide range of pH 

[278]. Hydrogen bonds can be formed intramolecularly or intermolecularly due to the 

heterocycle imidazole ring presented in the repeating unit of PBI molecules [279]. The 

solvent used to make the dope solution was N, N-Dimethylacetamide. 

6.2.1.2 PVA-alkyl: 

PVA-alkyl is amphiphilic in nature with the high hydrophilicity of PVA and 

hydrophobicity of the long alkyl side chains. Being amphiphilic in nature, it can be an 

excellent synthetic alternative for the lipid bilayer in cell membrane where aquaporins are 

constituted naturally [59]. PVA-alkyl spontaneously attaches to cell surface, anchoring 

through hydrophobic interactions between the alkyl chains and the lipid bilayer of the cell 

membrane without reducing cell viability [212]. It carries 28 alkyl side chains per 

molecule, and interacts strongly with the lipid bilayer in cell membrane because the alkyl 

chains anchor to the cell surface at multiple points [280]. Because of these hydrophobic 

interactions and tendency of the polymer to protect the cells, PVA-alkyl is proposed to be 

an excellent material to support aquaporins.   

6.2.1.3 AquaporinZ modification with single cysteine at the N-terminus: 

Cysteine contains a thiol group in its side chain, which can be used for 

immobilization. To prevent cysteine from being buried in the structure of AqpZ with 
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limited accessibility for binding, a cysteine was added before the his-tag which was used 

to facilitate protein purification via the conventional metal-affinity chromatograph as 

shown in figure 6-3. In this study, cysteine was added using QuikChange site-directed 

mutagenesis following manufacturer’s instruction (Agilent). Primers are: 5’-

GAGATATACCATGGGTTGCTCTGGTCTGAACGAC-3’, and 5’- 

GTCGTTCAGACCAGAGCAACCCATGGTATATCTC-3’, using pET28a-ApqZ as 

template [222]. The modification was verified by DNA sequencing.  

 

 

6.2.1.4 AquaporinZ expression and purification: 

The constructed plasmid was transformed into E. coli strain C43 (DE3). Single 

colony was cultured overnight at 37 ℃ in 5 ml LB medium containing 50 µg/ml 

kanamycin. The overnight culture was then inoculated into 300 ml fresh LB medium with 

50 µg/ml kanamycin and shaking at 250 rpm at 37 ℃. The cells were induced with 1 mM 

IPTG when the absorbance at 600 nm reached 0.8. After 4 hours incubation, the cells 

were collected by centrifugation at 8,000×g for 10 min.  

AqpZ DNA sequence histag Cys  

N-Terminus  C-Terminus 

Binding Purification 

Figure 6-3 Schematic of Cysteine attachment at the N-terminus of aquaporins 
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To purify the protein, cell pellet was re-suspended with 30 ml PBS buffer (20 mM 

Na-PO4, 0.3 M NaCl and pH 7.9) supplied with 0.5 mM protease inhibitor 

phenylmethylsulfonyl fluoride (PMSF) and sonicated for 20 min on an ice-water bath. 

The cell lysate was clarified by centrifugation at 10,000 rpm, 4 ℃ for 20 min. Then cell 

debris was dissolved using 2 % Triton in PBS buffer and incubated with shaking for 2 

hours at 4 ℃ to extract membrane protein. The re-suspension was clarified with 

centrifugation at 10,000 rpm, 4 ℃ for 20 min and the supernatant was collected.  Ni-

NTA agarose beads (Qiagen) was mixed with the supernatant for 40 min at 4 ℃ with 

shaking. The resin was then loaded into an empty column, drained, and washed with PBS 

buffer supplemented with 0.03 % DDM (n-Dodecyl β-D-maltoside) and 40 mM 

imidazole. Protein was eluted with 500 mM imidazole and 0.03 % DDM in PBS buffer. 

Imidazole was removed by dialysis against PBS buffer supplemented with 0.03 % DDM 

overnight.  

An inactive mutant Aqp-SH R189A was also expressed, according to previously 

published protocol [47], to be use as a negative control to the –Cys modified Aqp. In 

order to express the inactive mutant, the arginine (R) residue at position 189 in AqpZ was 

replaced with alanine (A) using site-directed mutagenesis. This inactive mutant of 

aquaporin shows no selectivity towards water [281]. Hence, it was used to prepare a 

negative control of the functional Aqp-SH modified membrane. The protocol used to 

incorporate Aqp-SH R189A was the same as that used to incorporate functional Aqp-SH 

into PBI membranes. 
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6.2.2 Methodology: 

6.2.2.1 PBI membranes casting:   

  PBI membranes were prepared according to previously published studies [149, 

217]. The dope solution was diluted to 21% PBI by adding solvent. The non-solvent 

phase that was used in this process was water. Flat sheet membranes were prepared using 

casting knife, or doctor’s blade (Paul N Gardner Co, U.S. Pat 4869200, Pompano Beach, 

FL.) The membranes were stored in a 50/50 glycerol-DI water solution in order to 

prevent their drying and collapse of pore structure. The membranes were kept in the 

solution at least one day before they were analyzed. 

6.2.2.2 Surface activation of membranes:  

 In order to attach Aqp-SH and PVA-alkyl to PBI membranes, membrane surfaces 

were activated following previous techniques [149, 217], in which 4-chloromethyl 

benzoic acid (CMBA) purchased from Sigma-Aldrich (USA) was used in order for 

functionalization. CMBA added a carboxylic acid group to the surface of PBI membrane, 

which could be used as a platform for subsequent functionalization of the membrane 

[261, 277]. Once the reaction was finished, the membranes were washed with copious 

amounts of DI water to remove excess reagents and immediately placed in glycerol/water 

bath.  

6.2.2.3 Preparation of PVA–alkyl: 
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 PVA-alkyl was prepared in a two-step process, according to literature protocols 

[149, 218-220]. Briefly, a reaction between PVA and sodium monochloroacetate yielded 

carboxy-methyl PVA (PVA-COOH), and PVA-alkyl was prepared by reacting PVA-

COOH with hexadecanal [149, 218].  

6.2.2.4 Chemical attachment of –Cys modified Aqp to PBI backbone: 

Immobilization of aquaporins into polymer matrix was done in order to align their 

channels with the direction of water flux and to optimize their performance. Aquaporins 

were covalently attached to the modified PBI backbone with carbodiimide chemistry. 

For this task, flat sheet PBI membranes were prepared and modified with CMBA. In the 

next step, Cys modified Aquaporin (Aqp-SH) were covalently attached in a reducing 

environment to the –COOH modified PBI membrane using EDCH chemistry, as shown 

in figure 6-4. In this mechanism, Aqp-SH acted as a nucleophile to get covalently 

attached to the –COOH group present on the surface of PBI membrane. Cys groups 

present after the N-terminus acted as anchors the Aquaporin molecules to prevent the 

swaying and to help with the alignment of the aquaporin molecules in the direction of the 

flow. PVA-alkyl was used in order to bind to the remaining –COOH groups present in 

the membrane and to seal the gaps in between the attached Aqp-SH molecules following 

the EDCH chemistry previously used.  
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Figure 6-4 Chemical attachment of Aqp-SH to –COOH modified PBI membranes 

 

6.2.2.5 Surface modification of PBI membrane using PVA-alkyl: 

PVA-alkyl was attached to the membrane using carbodiimide chemistry. For the 

reaction, N-(3-dimethylaminopropyl)-N’-ethylcarbodiimidehydrochloride (EDCH) and 

N-hydroxysuccinimide (NHS), both purchased from Sigma-Aldrich (St. Louis, MO) were 

used. The reactions were performed in 2-(N-morpholino) ethanesulfonic acid (MES) 

buffer (Sigma-Aldrich, USA). PVA-alkyl was chemical attached to the CMBA modified 

PBI membranes using this reaction, as reported in previous studies [149]. 

6.2.3 Membrane characterization: 

6.2.3.1 Dynamic light scattering: 

 Since aquaporins form the functional element of biomimetic membranes, 

producing high quality proteins is critical. Before immobilizing proteins on membrane 

surface, it is important to evaluate the proteins for their concentration, purity and 

aggregation state. For this purpose, analysis of protein solution with dynamic light 

Aqp-SH 

NHS ester 
intermediate 

 
n 
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scattering to determine the presence and extent of aggregation was carried out in Litesizer 

500 particle analyzer by Anton Paar (Ashland, VA). An aquaporin solution was taken in a 

glass cuvette and a plot of particle size vs relative frequency and polydispersity index 

(PDI) of the solution was obtained. Good quality protein samples would have PDI of 

0.08, acceptable quality protein would have PDI of 0.1 to 0.4, while the precipitated 

protein would have PDI of 0.4 to 0.9 [57]. 

6.2.3.2 Molecular weight cut off: 

The molecular weight cut off analysis of unmodified PBI, CMBA modified PBI, 

and PVA-alkyl modified PBI membranes was conducted using 100 ppm solutions of 

various molecular weights of polyethylene glycol (PEG) and sucrose solutions. The total 

organic carbon (TOC) of both feed and permeate solutions were measured using 

Teledyne Tekmar Fusion TOC analyzer (Mason, OH). The various samples that were 

used in this study along with their Stokes-Einstein radii are shown in Table 6-1. The 

rejection values of all solutes were used to determine the molecular weight cut off of both 

unmodified and modified PBI membranes.  The molecular weight of solute in feed 

solution for which the membranes showed more than 90% rejection was considered the 

molecular weight cut off of the membranes. The apparent solute rejection R (%) was 

calculated using equation (6-1).           

             𝑅𝑅 = �1 −  𝐶𝐶𝑝𝑝
𝐶𝐶𝑓𝑓

 � × 100%                                                           (6-1) 
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Table 6-1 Neutral solutes used for molecular weight cut off analysis and their Stokes-

Einstein radii in nm [25, 229-232] 

Solute Mol. Wt. (gm/mol) Stokes-Einstein radii 

(nm) 

PEG 200 200 0.41 

Sucrose 342.3 0.47 

PEG 400 400 0.57 

PEG 600 600 0.68 

PEG 1000 1000 0.94 

 

6.2.3.3 Contact angle measurements: 

 Contact angle was used as a measure to determine the hydrophilicity of the 

membrane surface. A drop shape analyzer – DSA 100 (KRUSS USA, Matthews, NC) 

was used for contact angle measurements using sessile drop technique. 

6.2.3.4 Zeta potential and surface charge analysis: 

 Zeta potential is used to analyze the surface charge of membranes at different pH 

environments. It is particularly important to analyze the separation efficiency of 

membranes based on charge and also a confirmation test for surface modification [228]. 

Surface charge was analyzed by measuring the zeta potential using an Anton Paar 
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SurPASS electrokinetic analyzer (Anton Paar, Ashland, VA) in surface analysis mode. 

Before analysis, membranes were rinsed with copious amounts of DI water to remove 

any residual solvent or glycerol from the storage solution in the case of PBI membranes. 

The KCl electrolyte solution used in these measurements had an ionic strength of 1.0 

mM. The pH values for the various readings were adjusted using 0.5 M HCl and 0.5 M 

NaOH solutions for acid and base titrations. 

6.2.3.5 Elemental analysis: 

 Membranes modified with Aqp-SH were analyzed for changes in the 

concentration of sulfur since unmodified PBI, -COOH modified PBI, and PVA-alkyl 

modified PBI membranes do not contain any sulfur present in their structures. Hence, 

Aqp-SH modified membranes were analyzed for the sulfur concentration in them as a 

confirmation for attachment of aquaporins to the membranes. K-Alpha x-ray 

photoelectron spectrometer (XPS) was used in order to analyze the elemental 

composition along the cross section of both unmodified and Aqp-SH modified 

membranes. Depth profiling was performed using an ion beam to etch layers of 

membrane surfaces and elemental composition was measured after each etching cycle. 

An ion beam of 200eV was used to etch the surface. Three etching cycles were performed 

for 120 seconds each for elemental analysis along cross sections of membranes. 

6.2.3.6 Membrane morphology: 

 To investigate the cross-section of the membrane and measure the thickness of 

selective layer of modified membrane, ion beam of the FEI Helios Nanolab Dual beam 
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was used to cut out a small piece of the membrane. A small deposit of platinum with a 

thickness of around 60 nm was deposited over the area in order to protect the underlying 

surface during the process of cutting of cross-section by ion beam. A small cross section 

was cut out and lifted away from the rest of the membrane sample by welding a small 

bead of platinum to the platinum layer. This sample was then thinned out with a low 

power ion beam until the morphology of the mesoporous layer was visible using STEM 

mode in the Dual Beam. This sample was transferred into the JEOL 2010F for TEM 

imaging of the cross-section. 

6.2.3.7 Flux analysis: 

Dead end filtration was used to monitor the flux decline of PBI, PVA-alkyl 

modified PBI, inactive Aqp-SH modified PBI, and active Aqp-SH modified PBI 

membranes (called just Aqp-SH modified membranes). Filtration experiments were 

performed using Amicon filtration cell (Amicon Stirred Cell 8010 – 10 ml) under a 

constant pressure of 70 psi (4.83 bar) and continuous stirring. Flux values were calculated 

as L/m2-hr and plotted against the total permeate volume. Membrane samples were cut 

into circular pieces of area 4.1 cm2 and supported by a WhatmanTM filter paper (125 

mmø). Each membrane was precompacted with DI water for 1 hour until a stable flux 

was reached.  

Precompaction was followed by feed solutions of monovalent and divalent salt 

solutions in water under same conditions of pressure and stirring. Salt rejection was 

evaluated using five solutions of different concentrations of sodium chloride (NaCl) and 

calcium chloride (CaCl2) in DI water: 3.4, 10, 20, 35 and 100 mM solutions. Salt 
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concentrations were measured using conductivity meter. Solute rejections were calculated 

using equation (6-1). 

After each feed water filtration, reverse flow filtration using DI water was 

performed for 1 hour to remove reversibly-attached foulants that were not adsorbed to the 

membrane and the filter paper support was changed. The flux recovery of the membrane 

was measured afterwards in order to study the effect of presence of aquaporins on 

removal of reversible fouling. 

In order to analyze linearity of DI water flux through unmodified and Aqp-SH 

modified PBI membranes, flux values were measured using DI water as feed solution at 

four different pressure values: 1.38, 2.76, 4.14, and 5.52 bar. 

Unmodified and modified membranes were subjected to dead end flow filtration 

using 0.5M, 1M, and 2M NaCl and CaCl2 solutions in order to compare the rejection 

trends of membranes under high salt concentration feed solutions. Inductively coupled 

plasma (ICP) analysis was used to measure the concentrations of permeates obtained 

from all membranes. 

6.2.3.8 Diffusion studies:  

 In order to compare the salt diffusion rates through unmodified PBI and Aqp-SH 

modified PBI, the membrane was mounted in the middle of a stainless-steel diffusion cell 

to separate the two compartments (Salt solution side and DI water side). Each 

compartment in the cell was of volume 250 mL. The effective membrane area available 

for diffusion to occur was 3.5 cm2. Continuous stirring was provided during the 
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experiment. A solution of 1000 ppm NaCl solution was added into the salt solution side 

and the same amount of DI water solution was added into the other compartment. A 

sample of 2 mL was collected from each compartment every day. The experiment was 

run for 8 days to measure the rate of salt diffusion through the membranes. Salt 

concentrations of collected samples were measured using inductively coupled plasma 

(ICP) analysis. Initial conditions of the experimental setup is shown in Fig 6-5. Actual 

data for diffusion experiment is provided in Table C.1 in Appendix C. 

 

Figure 6-5 Diffusion cell assembly with 1000 ppm NaCl salt solution on one side     

and DI water on other side. Both compartments are separated by a membrane. 

6.2.3.9 Estimation of Aquaporin packing in membrane assembly: 

 Membrane porosity and double layer properties influence ion fluxes through the 

membrane.  The flux values measured for aqp-SH modified membranes exhibited weak 
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sensitivity to ionic strength. These fluxes could be estimated via an ion’s concentration 

(c) gradient and its diffusion coefficient (D), as shown in equation (6-2): 

                                                        j = - D𝛻𝛻c                   (6-2) 

assuming a concentration gradient was imposed perpendicular to a porous film.  This 

concentration gradient was set by the ion concentrations in reservoirs to either side of the 

membrane as well as their separation (see figure 6-11). By relating the measured flux to 

the concentration gradient, an effective diffusion coefficient, De, could be determined. 

This allowed the inference of relative packing densities of aqp molecules incorporated in 

the active layer of membrane.   This effective diffusion coefficient would be generally 

smaller than the ion’s intrinsic diffusion rate in bulk media, and moreover, it would be 

proportional to the ratio of the accessible pores’ surface area to the total surface area, 

assuming the channels were perfectly linear and aligned with the concentration gradient, 

e.g. De = SApore
SAtotal

×D. According to the SEM imaging data of cross-sections of membranes 

published previously [149], It was further assumed that the PVA-alkyl and PBI were 

stacked in layers aligned perpendicular to the concentration gradient.  

  Based on these assumptions, a numerical partial differential equation was used to 

estimate how ionic fluxes were modulated by aquaporin surface densities, from which 

aquaporin packing densities compatible with experimentally-measured flux data could be 

determined. Namely, finite element simulations of the steady state Fickian diffusion 

equation (6-3) were performed, 

                                                  dc
dt =  −Dd2 c(x)

dx2  = 0                                                      (6-3) 
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subject to c (L) = 1 mM and c(R) =0 mM, where c is the concentration of the ionic 

solution and D is the diffusion coefficient and L, R correspond to the left and right 

reservoir boundaries. From these simulations, an effective diffusion coefficient that 

reflected the impact of the channel geometry on transport was determined. This 

proceeded through recognizing the flux was related to the concentration gradient via 

equation (6-4)          

                                                 < 𝐽𝐽 > = 1
𝐴𝐴 ∫𝐷𝐷 ∇𝑐𝑐 𝑑𝑑𝑑𝑑                                                     (6-4) 

where A is the surface area of the film and S represents the surface.  

Flux could be expressed in terms of concentrations and De was given by equation (6-5) 

                                                 <J>*A ~ De  (c(L) − c(R))
(x(L) − x(R))                                                (6-5) 

where c(i) is the concentration at boundary i (left and right) and x(i) is the position of the 

boundary. By numerically evaluating <J> at the film boundary, the equation was solved 

for De based on the concentrations imposed at the reservoir boundaries and their 

separation distance.    

 These equations were solved on three-dimensional finite element meshes [235, 

236], based on potential membrane and aquaporin configurations using the mesh 

generation tool GMSH [235, 237]. The meshes consisted of two reservoirs separated by a 

porous domain representing the film. Aqp or aggregates thereof were represented by 

cylinders of varying radii aligned parallel to the membrane.  In principle, atomistic 

resolution surface geometries could have been used for the aqp molecules [235, 236], but 

since specific knowledge of the membrane structure at the solvent/membrane interface is 
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not known, a simple cylindrical representation of the protein was used. These equations 

were solved, assuming Dirichlet conditions of c=1.0 M and c=0.0 M on the left and right 

reservoir boundaries [235, 236] via the finite element method using FEniCS [235, 238]. 

The diffusion coefficient was arbitrarily set to D=1.0 [m2/s].   Specifically, the weak form 

of these equations was solved using a piecewise linear Galerkin basis with FEniC’s 

default direct linear solver and parameters.  Concentration fluxes were determined by 

performing an ‘assemble’ call on an immersed boundary located at the middle and 

oriented parallel of the porous film. Details of the numerical procedure follow from 

previously published work [235, 236]. To capture the behavior of monomeric AqpZ, the 

flux found at the boundary of a pore was normalized [235, 236]. The packing fraction 

observed in the boundary layer then represented a boundary condition surrounding 

individual aquaporins.  All code written in support of this study is publicly available at 

https://bitbucket.org/pkhlab/pkh-lab-analyses. Simulation input files and generated data 

are provided in Appendix D. 

 

6.3 Results: 

6.3.1 Dynamic light scattering: 

As shown in figure 6-6, the particle size analysis of Aqp-SH solution obtained 

showed a sharp peak around 10 nm, which is the size range of aquaporin molecules and 

the bound detergent. Also, the PDI obtained from the particle analyzer was 0.19. This 
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showed that the proteins were not aggregated in the solution and the PDI of aquaporin 

solution was in the acceptable range [57]. 

 

Figure 6-6 Size measurement of Aqp-SH by dynamic light scattering 

 

6.3.2 Molecular weight cut off analysis:  

Both unmodified PBI and PBI-CMBA membranes showed 90% rejection for PEG 

1000 (figure 6-7 and Table 6-2), which has a Stokes radius of 0.94 nm. This showed that 

the membranes were in the nanofiltration range. After modification with PVA-alkyl 

attachment to the membrane, the produced membranes showed a 90% rejection for PEG 

600, which has a Stokes radius of 0.68 nm. This showed that PVA-alkyl modified 

membranes were also nanofiltration membranes but with smaller pores. Aqp-SH 

modified membranes showed consistent rejections of more than 90% for all solutes used 

in MWCO studies. 
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Figure 6-7 Molecular weight cut off analysis of unmodified PBI, -COOH modified PBI, 

and PVA-alkyl modified PBI membranes 

 

 



130 
 

 

Table 6-2 Rejections obtained for unmodified PBI, PBI-CMBA and Aqp-SH modified 

PBI membranes 

Membrane Rejection > 90% 

Unmodified PBI 0.94 nm (94.2%±2.5 %) 

PBI-CMBA 0.94 nm (93.0%±2.4 %) 

PVA-alkyl modified PBI 0.68 nm (91.3%±1 %) 

 

6.3.3 Aquaporin attachment verification through elemental analysis: 

Depth profiling in XPS analysis was performed for both PBI-COOH and Aqp-SH 

modified PBI membranes in order to prove the change in sulfur concentration in the 

membranes after modification. Tables 6-3 and 6-4 show weight percentage of atoms of 

carbon, oxygen, nitrogen and sulfur present in the membrane samples. It can be seen 

from the Table 6-3 that the amount of sulfur is negligible in PBI-COOH membrane, 

which was expected since the structure of –COOH modified PBI [149, 217] does not 

contain any sulfur. Small amount of sulfur shown in unmodified membrane might be due 

to impurities present on the surface and polymer matrix of the membrane. Table 6-4 

shows some amount of sulfur in Aqp-SH modified membrane. Each aquaporin monomer 

contained 4 cysteine groups including the one attached at the end groups. Considering the 

tetrameric form of aquaporins, there are 16 sulfur atoms present in one aquaporin 

molecule. Hence, for a point scan, the amount of sulfur present at a level in Aqp-SH 
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modified membranes should be between 0.5% and 1%. Therefore, elemental analysis of 

both unmodified and modified PBI membranes showed the presence of sulfur in the Aqp-

SH modified membrane. 

 

Table 6-3 Elemental composition of elements in PBI-COOH membrane 

 Carbon Nitrogen Oxygen Sulfur 

Surface 85.22 10.7 4 0.07 

Level 1 86.28 10.28 3.39 0.05 

Level 2 86.2 10.39 3.33 0.09 

Level 3 87.3 10.56 2.11 0.03 

 

 

Table 6-4 Elemental composition of elements in Aqp-SH modified PBI membrane 

 Carbon Nitrogen Oxygen Sulfur 

Surface 92.13 4.07 3.3 0.5 

Level 1 87.18 8.93 3.41 0.48 

Level 2 87.58 8.73 2.99 0.7 

Level 3 86.82 8.02 3.05 0.62 
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6.3.4 Hydrophobicity: 

Contact angle was used as a measure of hydrophobicity, and results are shown in 

Table 6-5. CMBA modified membranes were found to be more hydrophilic than PBI 

membranes [217, 261]. This was most likely due to addition of a –COOH group in the 

modified molecule and its increased ability to form hydrogen bonds because of the 

presence of oxygen with a lone pair. After the addition of PVA-alkyl to the membranes, 

the contact angle decreased further showing a significant increase in the hydrophilicity of 

the membrane. This was most likely due to high hydrophilicity of PVA. It is 

hypothesized that hydrophobic part of PVA-alkyl was reoriented so that the alkyl chains 

were inside the membrane matrix whereas PVA was on the outside, thus making the 

membranes more hydrophilic [258]. After chemical attachment of Aqp-SH and PVA-

alkyl, there was no significant difference in the contact angle showing that most of the 

surface of Aqp-SH membrane might be covered with PVA-alkyl providing a protection to 

Aqp-SH. The middle portion of AqpZ is hydrophobic, but the ends are hydrophilic as 

these parts are exposed to the cytosol/periplasm. In case of aquaporins aligned to the feed 

direction and exposed to the surface, the hydrophilic ends would be facing up, and this 

would be responsible for an increase in contact angle if they were exposed on the surface 

of the membrane [29] 



133 
 

 

Table 6-5 Hydrophobicity via contact angle 

Membrane Contact angle 

Unmodified PBI 75o±0.55 

-COOH modified PBI 70.56o±1.04 

PVA-alkyl modified PBI 60.5o±1.44 

Aqp-SH modified PBI 57.5o±0.93 

 

 

6.3.5 Zeta potential and surface charge analysis: 

Aquaporins have histidine groups present at the pore opening which are positively 

charged [15]. In order to confirm that the aquaporins were not exposed on the surface of 

Aqp-SH modified membranes, zeta potential analysis was carried out of unmodified PBI, 

PBI-CMBA, and Aqp-SH modified PBI membranes over a pH range of 2-10 (Figure 6-

8). It was observed that unmodified PBI membranes showed more positively charged 

surface as compared to PBI-CMBA and Aqp-SH modified PBI membranes. PBI-CMBA 

membranes showed the most negatively charged surface among all three membranes 

owing to the presence of –COOH groups on membrane surface. Aqp-SH modified 

membranes showed negatively charged surface at a pH of 7. Also, the surface of 

modified membranes was more negatively charged as compared to unmodified PBI 
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membranes. This showed the absence of positively charged groups on the surface of Aqp-

SH modified membranes.  

. 

6.3.6 Membrane morphology: 

 Membrane modified with Aqp-SH-PVA-alkyl showed a selective layer of about 

50 nm. However, the cross sectional images (Figure 6-9) didn’t provide any visual 

confirmation of Aquaporins present in the selective layer of the membrane. A selective 

layer as thick as 50 nm might be because of the surface modification of PBI membrane 

with PVA-alkyl. Lack of any visual confirmation of aquaporins in the selective layer 

might be because there are no vesicles in the system. Aquaporins are present in the 

Figure 6-8 Zeta potential values of unmodified PBI, PBI-CMBA, and Aqp-SH 

modified PBI membranes over a pH range of 2-10 
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modification layer as individual molecules surrounded by hydrophobic and hydrophilic 

groups of PVA-alkyl. 

 

 

 

 

 

 

 

 

6.3.7 Flux analysis:  

 To investigate the ability of the Aqp-SH membranes to reject ions, filtration 

studies using different concentration solutions of NaCl and CaCl2 in water were 

performed under a constant pressure of 4.83 bar. Experiments were conducted in parallel 

in order to study unmodified and modified membranes, and the flux values were plotted 

as a function of permeate volume for unmodified, PVA-alkyl modified PBI (to reflect the 

amphiphilic matrix without aquaporins), inactive Aqp-SH modified PBI (i.e., to be used 

as a negative control) and Aqp-SH membranes, as shown in figure 6-10 (A), (B) and (C), 

and (D) respectively. Actual data for Figures 6-10 (A), (B), (C), and (D) is presented in 

Appendix A, Tables A-2-1, A-2-2, and A-2-3, and A-2-4. 

Platinum deposition 

Selective layer 

Figure 6-9 Cross sectional cut out of the modified membrane using 

FIB 
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6-10 (A) 

Pressure: 70 PSI 

Membrane area: 4.1 
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6-10 (B) 

Pressure: 70 PSI 

Membrane area: 4.1 cm2 
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6-10 (C) 

Pressure: 70 PSI 

Membrane area: 4.1 cm2 
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Figure 6-10 (A), (B), (C), and (D). Flux analyses of (A) unmodified PBI, (B) PVA-alkyl 
modified PBI, (C) inactive Aqp-SH modified PBI membranes and (D) Aqp-SH modified 
PBI membranes at constant pressure of 70 psi (4.83 bar) 

 

 

 PVA-alkyl modified membranes showed the lowest initial flux, filtration flux and 

recovered flux among all membranes possibly because of added resistance to flow due to 

6-10 (D) 

Pressure: 70 PSI 

Membrane area: 4.1 cm2 
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the addition of a dense layer to the surface and because of a decrease in pore size (figure 

6-7). Unmodified PBI membranes showed highest initial flux values, which might have 

been due to the absence of any layer adding resistance on the surface of membranes. The 

flux profile obtained for the inactive Aqp-SH membranes did not show any significant 

change when compared to that of PVA-alkyl modified membranes possibly due to the 

lack of water permeability of inactive mutant of aquaporins (Aqp-SH  R189A) [47, 281]. 

The incorporation of aquaporins on PVA-alkyl modified membranes showed an increase 

in flux values as compared to PVA-alkyl membranes as well as the membranes modified 

with inactive mutant; however, the flux values of Aqp-SH membranes were still lower 

than those of unmodified PBI membranes. The addition of PVA-alkyl alone acted to both 

block pores and increase resistance to flow, and hence, the decrease in flux. The addition 

of functional aquaporins to these membranes provided them with flow channels, which 

increased the flux as compared to PVA-alkyl membranes. However, the flux was not as 

high as the modified membranes owing likely to the fact that aquaporin coverage was not 

complete over the surface of the PVA-alkyl, so there were still regions of minimal or no 

flow.  

Additional experiments were conducted in order to analyze the flux linearity of 

Aqp-SH modified membranes. As shown in figure 6-11, the slope of line represents 

permeability of unmodified, PVA-alkyl modified, and Aqp-SH modified PBI membranes. 

Unmodified PBI membranes showed a permeability of 6.27 LMH/bar. PVA-alkyl 

modified membranes showed the lowest permeability of all the membranes at 1.88 

LMH/bar, while Aqp-SH modified PBI membranes showed an increased permeability as 

compared to PVA-alkyl modified membranes (4.46 LMH/bar). This increased 
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permeability might have been due to the presence of immobilized aquaporins on modified 

membranes providing the modified membrane with more flow channels. Figure 6-11 

shows that fluxes produced by all the membranes increased linearly with increment in 

pressure. Also, the incorporation of immobilized aquaporins and dense PVA-alkyl layer 

on the surface of PBI membrane did not affect the flux linearity of the membranes. 

 

Figure 6-11 Flux linearity and permeability consistency for unmodified PBI and Aqp-SH 

modified PBI membranes 

 

With respect to salt rejection (figure 6-12), Aqp-SH membranes showed the 

highest rejections for the solutions as compared to unmodified PBI and PVA-alkyl 

modified PBI membranes. Unmodified PBI membranes showed 19±2.3% rejection 

during filtration of the 3.4 mM NaCl solution, and as the NaCl concentration increased to 

100 mM, the rejection decreased to 5.3±1.2%. PBI membranes modified with only PVA-

alkyl showed a rejection of 37.24±2.5% for a feed solution of 3.4 mM NaCl solution and 

19.53±3.7% rejection for 100mM NaCl solution. On the other hand, Aqp-SH membranes 
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showed a significantly higher rejection of 72.15±4.2% for 3.4 mM feed solution of NaCl 

and 72.95±1.8% for 100 mM NaCl. Similarly, unmodified PBI membranes showed 

24.30±1.5% rejection during filtration of the 3.4 mM CaCl2 solution, and as the CaCl2 

concentration increased to 100 mM, the rejection decreased to 8±1.8%. PVA-alkyl 

modified PBI membranes showed 41.61±4% rejection for 3.4 mM CaCl2 and 

25.82±4.5% rejection for 100 mM CaCl2. On the other hand, Aqp-SH membranes 

showed a rejection of 73.01±3.7% for 3.4 mM feed solution of CaCl2 and 72.0.4±7.4% 

for 100 mM CaCl2.  

All membranes were then subjected to high concentration feed solutions of NaCl 

and CaCl2 (figure 6-12). Unmodified PBI membranes showed 2.1±0.5% rejection during 

filtration of the 0.5M NaCl solution, and as the NaCl concentration increased to 2M, the 

rejection decreased to 0.8±0.4%. PBI membranes modified with only PVA-alkyl showed 

a rejection of 15.21±5.1% for a feed solution of 0.5M NaCl solution and 2.13±1.7% 

rejection for 2M NaCl solution. On the other hand, Aqp-SH membranes showed a 

significantly higher rejection of 62.4±5.4% for 0.5M feed solution of NaCl and 

49.3±7.5% for 2M NaCl. Similarly, unmodified PBI membranes showed 3.4±0.8% 

rejection during filtration of the 0.5 M CaCl2 solution, and as the CaCl2 concentration 

increased to 2M, the rejection decreased to 1.3±0.2%. PVA-alkyl modified PBI 

membranes showed 17.52±1.7% rejection for 0.5M CaCl2 and 13.19±5.1% rejection for 

2M CaCl2. On the other hand, Aqp-SH membranes showed a rejection of 67.2±3.5% for 

0.5M feed solution of CaCl2 and 59.1±5.1% for 2M CaCl2. 
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Figure 6-12 Sodium chloride and Calcium chloride filtration rejection 

PVA-alkyl modified membranes showed higher salt rejection values as compared 

to unmodified PBI membranes possibly due to decrease in MWCO, pore size of 

membranes, and charge interactions with ions. The rejection obtained for Aqp-SH 

modified PBI membranes for salt solutions were higher as compared to the unmodified 

PBI membranes. This might be due to the immobilized aquaporins on the membrane 

surface.  

 Rejection properties are in part determined by the electric double layer that arises 

from the  electrostatic potential about charged surfaces in aqueous media; the magnitude 

of this potential and its rate of decay from the surface are determined by the surface 

charge and ionic strength, respectively [282]. As the ionic strength of feed solution 

increases, rejection decreases owing to a contraction of the electric double layer that 

enhances charge shielding [283, 284] and reduces ion transport rates [236]. However, in 

case of aquaporin modified membranes, membrane rejection remained fairly constant 
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irrespective of the ionic strength of salt solutions (figure 6-12). In the case of unmodified 

PBI membranes and membranes modified with PVA-alkyl, a decrease in salt rejection 

was observed as the ionic strength of feed salt solutions increased, which corresponds to 

double layer and charge shielding effects. The constant rejection of salt solution obtained 

with aquaporin modified membranes shows that immobilized aquaporins might be 

unaffected by charge interactions and provide the same rejection irrespective of the ionic 

strengths of the feed solutions. The reason might be because of the unique hourglass 

shaped structure of aquaporin pores and the electrostatic barrier able to reject all the 

charged entities present in feed other than water molecules [36, 122], which means that 

any decreases in rejection would be due to leakage around the aquaporins. The free-

energy profile for ion penetration through aquaporin modified membrane shows a 

significant difference between the overall barriers for ion and water penetration. The 

constant rejection observed with Aqp-SH modified membranes is another evidence of the 

presence of functionalized aquaporins that opened up more water channels, increased 

water flux through the membrane, and provided higher and constant rejection of feed salt 

solutions irrespective of their ionic strength. However, it is likely that aquaporins did not 

cover entire surface area of the membranes due to the presence of detergent or PVA-

alkyl, so some of the feed solution might have gone around the aquaporins on the surface 

providing a rejection less than the complete rejection that was expected with aquaporins. 

6.3.8 Estimations of aquaporin packing in membrane assembly:  

Although the polymer layers could be resolved via electron microscopy, the 

distribution of surface-anchored Aqps were beyond limits of detection. Thus, to 
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investigate the hypothesis that aquaporin surface deposition was incomplete, a 

computational model was used to measure ion fluxes across a membrane with aquaporins 

aggregates of varying sizes. In principle, complete coverage of the film surface with 

aquaporins should reduce electrolyte flux across the membrane to zero while permitting 

water flux owing to the high selectivity of aquaporins to water over ions. Although 

electrostatic interactions with charged surfaces can strongly influence ion conduction 

[285], the high ion concentrations at which the experiments were conducted strongly 

attenuated such effects.     

 To rationalize the flux values reported in Figures 6-10 A-D that demonstrated 

significant variations in magnitude with respect to polymer membrane configuration, a 

computational geometry was developed. The 1 nm diameter pores were consistent with 

MWCO analysis; the pore spacing accounted for 28% surface coverage by nanopores. 

For this modeling, the PVA-alkyl porosity was assumed to be invariant across the 

characterized membrane configurations. Since ions do not significantly permeate through 

the Aqp pore, the proteins were presumed to comprise a monolayer of cylindrical 

obstructions that resist flow through the PBI layer. It was studied whether the fluxes 

would be influenced by how the Aqps were distributed: either as single proteins 

distributed uniformly as aggregates. Toward this end the steady state diffusion equation 

was solved based on varying Aqp aggregate sizes. Figure 6-13 shows a disk of increasing 

radius that occluded the underlying pores as a representation of Aqp-aggregates of 

increasing size. It was observed that as the Aqp packing density approached 0, the faster 

diffusion observed in the PBI-only case was recovered; as the packing density 

approached 64%, the diffusion constant estimated for the Aqp-modified membranes was 
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recovered as shown in Figure 6-10 D. Also figure 6-13 shows the change in De with 

respect to packing density for a single Aqp monomer, by varying the surface area of the 

film.  It was found that the effective diffusion rate scaled comparably to the aggregates, 

hence these two cases could not be discriminated based on diffusion alone. However, it is 

important to note that Aqp monomers at a given packing density presented more exposed 

surface area compared to an aggregate of comparable density. In light of which, packing 

configurations could be discriminated under conditions for which surface/diffuser 

interactions were significant. For instance, in the event that these experiments were 

performed under low ionic strength conditions, it was expected that ions could interact 

with the Aqp surface and thereby influence diffusion. However, the flux obtained with 

Aqp-SH modified PBI membranes was lower than that of unmodified PBI membranes. 

The reason of lower flux might be the aggregation of some portion of aquaporins attached 

on the surface. These aggregated aquaporins would not increase the water flux through 

them owing to the loss of functionality. Based on the flux data, it was calculated that 24% 

of the aquaporins that are attached on the surface contributed to the water transport 

through the membranes and hence remaining aquaporins might be aggregated on 

membrane surface.  
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Figure 6-13 Predictions and experimentally measured effective diffusion coefficients, 

based on the geometry in Figure 6-14.  Black lines correspond to experimental data 

found in Table C.1 in Appendix C. Blue lines represent aggregate (solid) and 

monomeric (dots) Aqp models, respectively.  

 

Figure 6-14 Representative simulation geometry of membrane occluded by 

aquaporin (Aqp) aggregate. In this picture, the left reservoir contained 1000 ppm 

NaCl solution while right reservoir was DI water (0 M). Aggregate was simulated 

by cylinders of increasing diameter overlayed onto membrane surface.  The 

effective ion diffusion rate was obtained by integrating the concentration gradient 

along the membrane surface. 
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6.4 Concluding remarks 

 Modification of aquaporins with a cysteine at the N-terminus and immobilization 

of these modified aquaporins on the membrane surface was successfully accomplished. 

Elemental analysis showed that aquaporins were immobilized on the membrane surface. 

It is proposed that four cysteine groups acting as anchors for aquaporin tetramer helped to 

align aquaporins on the surface of membranes. In agreement with pore size distributions, 

charge interactions, and added resistance to flow due to modification, PVA-alkyl 

modified PBI membranes showed lower flux values and slightly higher salt rejection as 

compared to unmodified PBI membranes. On the other hand, Aqp-SH modified 

membranes displayed lower flux values as compared to unmodified PBI but higher as 

compared to PVA-alkyl modified membranes. Membranes modified with an inactive 

Aqp-SH were used as a negative control to demonstrate the functionality of Aqp-SH 

incorporated into the membranes. Inactive Aqp-SH modified membranes did not show 

any improvement in flux values as compared to PVA-alkyl modified PBI membranes. 

Furthermore, owing to the presence of functional and immobilized aquaporins, Aqp-SH 

modified membranes displayed the highest salt rejection values among all membranes 

analyzed in the study. Aqp-SH modified membranes displayed a nearly constant salt 

rejection irrespective of the salt concentration for low feed concentration, while 

unmodified PBI and PVA-alkyl modified PBI membranes showed a decrease in 

rejections as feed salt concentration increased. However, due to the hindrance of 

detergent or PVA-alkyl in aquaporin solutions, the surface of the membrane was not 

completely covered with immobilized and aligned aquaporins, which in turn led to 

rejection values lower than 100%. Simulation studies showed that immobilized 
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aquaporins with PVA-alkyl provided a diffusion rate equivalent to 24% coverage of 

active aquaporins. This proved that aquaporins did not cover the entire surface area of the 

membranes, thereby providing a salt rejection of less than 100%. 
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CHAPTER 7. BISAMIDE-BASED ORGANIC FRAMEWORK FOR SYNTHESIS OF MEMBRANES 
WITH SPECIFIC MOLECULAR WEIGHT CUTOFF 

 

7.1 Introduction 

 Membranes of specific pore size distribution have found numerous applications 

for selective separations based on size exclusion [286, 287]. Membranes with tunable 

pore size and covalent organic frameworks are attractive for separation of larger 

molecules on the basis of size exclusion by nanofiltration [287-289]. Some of the 

materials used for these applications are zeolites [290], graphene oxide [291], metal-

organic frameworks [292], etc. Organic frameworks are porous materials that consist of 

light elements (carbon, oxygen, nitrogen, sulfur, hydrogen) that are connected via 

hydrogen bonding or via covalent bonding. Their inherent porosity, ordered channel 

structure, large surface area, excellent stability, and functionality make them excellent 

candidates for mixed matrix membranes [287].  

 Wang et al. synthesized nanocomposite membranes by embedding the 

zwitterionic functionalized “cage like” porous organic frameworks into the polyamide 

layer of membranes. These frameworks provided more and shorter channels for water to 

go through the membrane. Membranes modified with these organic frameworks 

displayed higher flux with 90.6% retention of Na2SO4. Modified membranes showed 

higher hydrophilicity and a negatively charged surface as compared to unmodified 

membranes [293]. Kandambeth et al. fabricated a series of self-standing, porous and 

crystalline covalent organic frameworks via baking of organic linkers in the presence of 

p-toluene sulfonic acid and water. Membranes modified with these organic frameworks 
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provided high flux values towards organic solvents such as acetone and acetonitrile. 

These membranes showed a 2.5 fold increase in flux with equivalent solute-rejection 

performances [294]. 

 Despite of a number of approaches being implemented in the field of organic 

frameworks in membrane matrix or on membrane surface, there are some limitations in 

the use of these frameworks. Some of the issues observed in incorporation of organic 

frameworks into membranes are membrane stability [294], difficult synthesis procedures 

[295], chemical instability [296], and insolubility in solvents [294]. 

 Bera et al. investigated the assembly of encapsulated water molecules with hybrid 

bisamide hosts [11]. The study reported that a one-dimensional column of water 

molecules in a single file (or a water wire) promoted a supramolecular framework in 

solution by bridging two bisamide molecules and thus formed self-assembled channels of 

internal diameters ranging from 5 Ao to 9 Ao depending on the number of carbon atoms in 

the chain [11]. These bisamide channels contained monomethyl esters (Figure 1) on each 

end to prevent intermolecular hydrogen bonding interaction. The addition of water 

promoted the self-assembly and Π-stacking interactions between these bisamides, and 

water formed a helical pattern of flow through hydrogen bonding with these artificial 

channels (Figure 2). The interactions between water and bisamides were studied using 

FTIR and NMR previously in order to confirm the formation of water channels [11].  
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 The objective of this study was to synthesize modified bisamide molecules with 

amine and carboxylic acid end groups to promote intermolecular hydrogen bonding in 

order to ultimately form a selective layer on membrane surface. After formed, these 

bisamide molecules were incorporated into synthetic membranes to act as a layer 

providing a specific molecular weight cut off. It was hypothesized that single bisamide 

molecules could be attached onto a membrane surface using carbodiimide chemistry, and 

they could form a stable selective layer in the form of an organic framework in order to 

provide a specific molecular weight cut off. The schematic of incorporation of bisamide 

molecules into synthetic membrane as an organic framework is shown in Figures 3(A) 

and 3(B). 

 

  

 

 

 

 

7-2 (a) 

Figure 7-1 Schematic representation of bisamide molecules synthesized 

by Bera et al.[11] 
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7.2 Experimental 

7.2.1 Polybenzimidazole (PBI) membrane preparation 

 Polybenzimidazole was used as the backbone for the assembly of bioinspired 

membranes. It has been used in the synthesis of biomimetic membranes based on 

aquaporins in studies published previously [149]. PBI has found its applications in fuel 

cells [297], hydrogen purification [298], high flux organic solvent nanofiltration [299], 

anion exchange membranes [300]. It has been shown to have a high alkaline resistant and 

mechanical stability [300]. Phosphoric acid doped PBI membranes have gained a lot of 

interest in the last decade because of their stability in high temperature range (120-200oC) 

7-2 (b) 

Figure 7-2  (a) and (b) Schematic of incorporation of artificial bisamide molecules onto the 

membrane surface via carbodiimide chemistry and hydrogen bonding between bisamide 

molecules 
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[301]. PBI has a unique functionality because of electron donating groups of imidazoles, 

and intramolecular and intermolecular hydrogen bonding ability in the presence of 

Bronsted acids [302]. A number of applications of PBI in areas such as proton conducting 

membranes, nanofiltration, and other separation membranes have been reported [303, 

304].  

 Flat sheet PBI membranes were synthesized according to the studies published 

previously [149, 305]. 21% dope solution was prepared in dimethylacetamide (DMAc) 

solvent. Water was used as the non-solvent in this process. Flat sheet membranes were 

prepared using casting knife, or doctor’s blade (Paul N Gardner Co, U.S. Pat 4869200, 

Pompano Beach, FL.) The membranes were stored in a 50/50 glycerol-DI water solution 

in order to prevent their drying and collapse of pore structure. The membranes were kept 

in the solution at least one day before they were analyzed. 

7.2.2 Surface functionalization of PBI membranes: 

 In order to attach bisamide framework on PBI membrane surface, membrane 

surfaces were functionalized following previous techniques [149, 217], in which 4-

chloromethyl benzoic acid (CMBA), purchased from Sigma-Aldrich (USA), was used to 

add a carboxylic acid group to the surface of PBI membrane, which could be used as a 

platform for subsequent functionalization of the membrane [261, 277]. The membranes 

were washed with copious amounts of DI water to remove excess reagents and 

immediately placed in glycerol/water bath after the reaction was completed. 
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7.2.3 PVA-alkyl synthesis: 

 Polyvinyl alcohol carrying long alkyl chains (PVA-alkyl) is amphiphilic in nature. 

It has polyvinyl alcohol (PVA) as the hydrophilic component while long alkyl chains are 

responsible for the hydrophobicity of the molecule [218].  PVA-alkyl has been used to 

incorporate and immobilize aquaporins into synthetic PBI membranes previously [149]. 

It has found its applications in cell surface modification without affecting cell viability 

[212, 213]. It was observed that PVA-alkyl attached to cell surface at multiple points 

through interactions with 28 alkyl chains of every PVA-alkyl and a capping phenomenon 

was observed on the surface [306]. Being amphiphilic in nature and flexible because of 

long alkyl chains, PVA-alkyl can serve as an excellent housing for artificial channels and 

organic frameworks.  

 PVA-alkyl was prepared in a two-step process, according to literature protocols 

[149, 218-220]. Briefly, a two-step reaction procedure was followed. A reaction between 

PVA and sodium monochloroacetate yielded carboxy-methyl PVA (PVA-COOH) which 

was then used as a reactant along with hexadecanal to obtain PVA-alkyl as the final 

product [149, 218].  

7.2.4 Synthesis of Bisamide molecules 

 Hybrid bisamide molecules were first synthesized by Bera et al. [11] to 

investigate assembly of water molecules encapsulated into confined channels. These 

bisamide channels formed supramolecular frameworks that were stabilized by the 

passage of water molecules through them and hydrogen bonding groups between the 
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monomers in the channels. For this study, a modification of bisamide molecules 

synthesized by Bera et al. [11] was used. Instead of monomethyl esters as end groups of 

channels, amines and carboxylic acid groups were added on end groups in order to 

facilitate intermolecular hydrogen bonding between bisamide molecules. A modified 

bisamide monomer with 5 carbon atoms chain and a primary amine on one end and 

carboxylic acid on another end of the molecule is shown below in Figure 7-3.  

 

 

   

 

 

 

 6-amino pyridine-2-carboxylic acid, ethanediamine, trimethylenediamine, 

cadaverine, 6-hydroxymethyl-pyridine-2-carboxylic acid, dicyclohexylcarbodiimide 

(DCC) were purchased from VWR (Atlanta, GA). A 2-step reaction protocol was 

followed where addition of diamines, 6-amino-pyridine-2-carboxylic acid, and 6-

hydroxymethylpyridine-2-carboxylic acid using DCC as a reagent was performed under 

nitrogen environment, as shown in Figure 4(a). This was followed by Jones oxidation 

reaction to form the bisamide monomer with 2 carbon atom chain length. Oxidation 

reactions are shown in Figure 4(b). Size exclusion chromatography was carried out using 

Sephadex G-10 (GE healthcare, Chicago, IL) gel filtration resin and methyl red (Alfa 

Figure 7-3  Structure of Bisamide monomer with 5 carbon atom 

chain 
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Aesar, Haverhill, MA) as an indicator for separation between product and by-products. 

Figure 7-4 shows the synthesis reactions for bisamide molecules. 

 

 

  

 

 

  

7-4 (a) 

 

 

 

7-4 (b) 

 

 

 

DCC, N2 

CrO3, H2SO4 
Acetone 

Figure 7-4 (a) and (b) Synthesis reactions for the formation of bisamide channel with 

2 carbon atoms chain length 

6-amino-
pyridine-2-

carboxylic acid 

6-hydroxymethyl 
pyridine-2-

carboxylic acid 

+ 
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7.2.5 Attachment of bisamide channels on PBI membranes surface 

 Bisamide molecules were covalently attached to CMBA modified PBI 

membranes using carbodiimide chemistry in the presence of dicyclohexylcarbodiimide 

(DCC), as shown in Figure 7-5. In this mechanism, the bisamide molecules acted as 

nucleophiles to get covalently attached to –COOH group present on the surface of PBI 

membrane. Amines present in the bisamide molecule reacted with –COOH groups in 

order to form amide groups and helped for the immobilization of bisamide molecules. 

PVA-alkyl was used in the following step in order to bind to the remaining –COOH 

groups of PBI membranes. 

 

 

 

 

 

 

 

 

 

 

DCC, 
N2 

Figure 7-5 Covalent attachment of bisamide channels on –COOH modified PBI 

membrane 

+ 
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7.2.6 Fourier transform Infrared Spectroscopy (FTIR) 

          A vibrational spectrum is a characteristic of every molecule and is considered a 

unique property of that molecule [226]. FTIR was used in ATR mode to confirm the 

modification with carboxylic acid groups on PBI surface as well attachment of bisamide 

channels on modified membranes. Digilab UMA 600 FT-IR microscope was used for all 

the analysis of membrane samples performed in this study. 

7.2.7 Molecular weight cut off: 

The molecular weight cutoff analysis of unmodified PBI, PVA-alkyl modified 

PBI, and bisamide-modified PBI membranes was conducted using 100 ppm solutions of 

sucrose and various molecular weights of polyethylene glycol (PEG) solutions. The total 

organic carbon (TOC) of both feed and permeate solutions were measured using 

Teledyne Tekmar Fusion TOC analyzer (Mason, OH). The various samples that were 

used in this study along with their Stokes-Einstein radii are shown in Table 7-1. The 

rejection values of all solutes were used to determine the molecular weight cut off of both 

unmodified and modified PBI membranes. The molecular weight of solute in feed 

solution for which the membranes showed more than 90% rejection was considered the 

molecular weight cut off of the membranes. The apparent solute rejection R (%) was 

calculated using equation (7-1).           

             𝑅𝑅 = �1 −  𝐶𝐶𝑝𝑝
𝐶𝐶𝑓𝑓

 � × 100%                                                           (7-1) 
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Table 7-1 Neutral solutes used for molecular weight cut off analysis and their Stokes-

Einstein radii in nm [25, 229-232] 

Solute Mol. Wt. (Da) Stokes-Einstein radii 

(nm) 

Sucrose 342.3 0.47 

PEG 400 400 0.57 

PEG 600 600 0.68 

PEG 1000 1000 0.94 

 

7.2.8 Contact angle analysis: 

 Contact angle was used as a measure to determine the hydrophilicity of the 

membrane surfaces before and after modification. A drop shape analyzer – DSA 100 

(KRUSS USA, Matthews, NC) was used for contact angle measurements using the 

sessile drop technique. 

7.2.9 Flux and selectivity experiments 

Dead end filtration was used to monitor the flux decline of unmodified PBI, PVA-

alkyl modified PBI, and bisamide-modified PBI membranes. Filtration experiments were 
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performed using Amicon filtration cell (Amicon Stirred Cell 8010 – 10 ml) under a 

constant pressure of 70 psi (4.83 bar) and continuous stirring. Flux values were calculated 

as L/m2-hr and plotted against the total permeate volume. Membrane samples were cut 

into circular pieces of area 4.1 cm2 and supported by a WhatmanTM filter paper (125 

mmø). Each membrane was precompacted with DI water for 1 hour until a stable flux 

was reached. Precompaction was followed by feed solution of 100 mM magnesium 

sulfate (MgSO4) in water under same conditions of pressure and stirring. Salt 

concentrations were measured using conductivity meter. Solute rejections were calculated 

using equation (7-1). 

  

7.3 Results 

7.3.1 Chemical analysis using FTIR 

 Figure 7-6 shows the FTIR analysis of unmodified PBI, and bisamide-modified 

PBI membranes, and Table 2 identifies all peaks. FTIR of bisamide modified PBI 

membranes showed peaks at ~1050 cm-1 for C-O stretch, ~ 1260-1350 cm-1 for –OH bend 

which correspond to terminal carboxylic acid groups present in the molecule. This 

showed that the terminal alcohol after reaction 1 completion (Figure 7-4(b)) was oxidized 

to a carboxylic acid group. A peak at 1580-1615 cm-1 corresponding to aromatic carbon 

bond is associated with the pyridine carboxylic acid part of bisamide molecule. This peak 

showed the covalent attachment of bisamide molecule after reaction 1 (Figure 7-4(a)). 

The peak at 1630-1680 cm-1 corresponds the presence of amide groups in bisamide 

modified PBI membranes, while the peak in the range of 1310-1360 cm-1 corresponds to -
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CN stretch of aromatic tertiary amine confirming the presence of pyridine in modified 

membranes. Lastly, a peak corresponding to aliphatic secondary amine -NH stretch is 

shown at 3310-3360 cm-1 in bisamide modified PBI membranes. Bonds corresponding to 

different functional groups are indicated in Figure 7-7.  

 

 

 

Figure 7-6 FTIR analysis of unmodified, CMBA modified and PVA-alkyl modified 

membranes. 

 

 

 

Table 7-2 Functional groups and corresponding wave numbers in IR spectra. 

Band number Functional group Wave number (cm-1) 

1 C-O (stretch) ~ 1050 
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2 -OH (bend) ~ 1260-1350 

3 C=C-C (stretch) 1580-1615 

4 N-C=O ~ 1630-1680 

5 C-N (Aromatic tertiary 

amine C-N stretch) 

~ 1310-1360 

6 >N-H (stretch) 3310-3360 

 

 

1 
2 

3 

4 
6 

5 

Figure 7-7 Bisamide modified PBI molecule 
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7.3.2 Molecular weight cut off analysis: 

Unmodified PBI membranes showed more than 90% rejection for PEG 1000 

(Figure 7-8 and Table 2) which has Stokes radius of 0.94 nm. This showed that the 

membranes were in nanofiltration range. Membranes modified with only PVA-alkyl 

showed 90% rejection for PEG 600, which has Stokes radius of 0.68 nm, and molecular 

weight of 600 Da. After addition of bisamide molecules and PVA-alkyl on membrane 

surface, modified membranes showed 90% rejection for PEG 400, which has Stokes 

radius of 0.57 nm and molecular weight 400 Da. Therefore, the decrease in MWCO is not 

due to the addition of the PVA-alkyl layer. This showed that bisamide-modified 

membranes were also in nanofiltration range but showed a smaller molecular weight cut 

off than unmodified membranes. All other larger compounds were rejected at nearly 
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100%

 

Figure 7-8 Molecular weight cut off analysis of unmodified PBI, PVA-alkyl modified 

PBI, and bisamide-modified PBI membranes. 
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Table 7-3 Rejections obtained for unmodified PBI, and bisamide-modified PBI 

membranes 

Membrane Rejection > 90% MWCO 

Unmodified PBI 0.94 nm (94.2%±2.5 %) 1000 

PVA-alkyl modified 

PBI 

0.68 nm (91.3%±1.0) 600 

Bisamide-modified PBI 0.57 nm (91.5%±1.2 %) 400 

 

7.3.3 Contact angle analysis: 

Contact angle was used as a measure of hydrophobicity, and results are shown in 

Table 7-4. Unmodified PBI membranes were more hydrophobic as compared to 

bisamide-modified PBI membranes. PVA-alkyl modified membranes showed a decrease 

in contact angle due to the hydrophilicity of PVA groups present on the surface [149]. 

Bisamide-modified membranes showed a slightly lower contact angle as compared to 

PVA-akyl. This small decrease might have been due to the presence of more carboxylic 

acid groups present in bisamide channels.  
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Table 7-4 Hydrophobicity via contact angle 

Membrane Contact angle 

Unmodified PBI 74o 

PVA-alkyl modified PBI 63o 

Bisamide modified PBI 60o 

 

 

7.3.4 Flux analysis 

 To investigate the permeability and selectivity of bisamide-modified PBI 

membranes, filtration studies using 100 mM MgSO4 were performed under a constant 

pressure of 4.83 bar. Experiments were conducted in parallel in order to study 

unmodified PBI, PVA-alkyl modified PBI, and bisamide-modified membranes, and the 

flux values were plotted as a function of permeate volume as shown in Figure 7-9. For 

unmodified PBI membranes, the pure water flux was 31.6 L/m2-h (LMH), the initial flux 

for MgSO4 filtration was 27.4 LMH, the recovery after MgSO4 filtration (i.e. after 

reverse flow filtration with DI water) was 26.9 LMH (or a 85% flux recovery, as 

compared to the initial pure water flux). MgSO4 rejection obtained with unmodified PBI 

membranes was 32.4%. PVA-alkyl modified PBI membranes provided the lowest flux 

values among all three membranes. The pure water flux was 19.4 LMH, the initial flux 

for MgSO4 filtration was 17.5 LMH, the recovery after MgSO4 filtration was 17 LMH (or 
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a 88% flux recovery, as compared to the initial pure water flux). MgSO4 rejection 

obtained with PVA-alkyl-modified PBI membranes was 34.7%. On the other hand, for 

bisamide-modified PBI membranes, the initial pure water flux during precompaction was 

26.3 LMH, and the initial flux for MgSO4 filtration was 24.3 LMH. Flux recovery 

observed after reverse flow filtration with DI water was 24.0 LMH (or 91% as compared 

to initial pure water flux). Bisamide-modified PBI membranes displayed a rejection of 

43.4%. Therefore, bisamide addition increased the flux of water through the addition of 

water channels and increased the rejection, which supports the addition of one-

dimensional water wire channels 

 

 

 

 

 

 

 

 

 

 

 Bisamide-modified PBI membranes showed lower initial flux as compared to 

unmodified PBI membranes possibly because of added resistance of PVA-alkyl and 

Pressure: 70 PSI 

Membrane area: 4.1 cm2 

Figure 7-9 Flux analyses of unmodified PBI, PVA-alkyl modified PBI, and bisamide-

modified PBI membranes at constant pressure of 70 psi (4.83 bar) 
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decrease in molecular weight cut off. PVA-alkyl modified membranes provided the 

lowest flux values among all three membranes possibly because of added resistance and 

the absence of channels facilitating more water flow. The flux recovery obtained after 

filtration with 100 mM MgSO4 solution in water was slightly higher for bisamide-

modified membrane as compared to unmodified PBI membranes. Higher flux recovery 

obtained with modified membranes might be because of the presence of artificial 

channels which provided more channels for water to go through and remove reversible 

impurities better than unmodified membrane. The rejections obtained for both 

unmodified and modified membranes did not differ much owing to the fact that the pore 

diameter of bisamide channels was higher than the size of MgSO4 molecules. 

7.4 Concluding remarks 

 Bisamide-based molecules were successfully incorporated into synthetic PBI 

membranes in order to form an organic framework on the surface of the membrane. 

Bisamide molecules were incorporated via covalent attachment to the -COOH groups on 

the membrane surface. FTIR analysis of modified membranes confirmed the presence of 

functional groups present in bisamide molecules. These hybrid bisamide molecules 

formed a framework on membrane surface, which translated into a MWCO of 

approximately 400 Da and average pore size of 0.57 nm. Bisamide modified membranes 

allowed for a slightly lower passage of divalent salt as compared to unmodified PBI and 

PVA-alkyl modified PBI membranes. Furthermore, since bisamide was added to PVA-

alkyl-modified PBI membranes, when compared, bisamide-modified membranes had 

higher flux values than PVA-alkyl PBI membranes. This supports the presence of an 
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organic framework of bisamide molecules on functionalized membranes providing a 

specific molecular weight cutoff. 
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CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS 

 

8.1  Conclusions 

 The overarching goal of this study was to synthesize biomimetic nanofiltration 

membranes with protected and immobilized aquaporins, as well as to synthesize bio-

inspired membranes with artificial water channels imitating the structure-function 

relationships of biological channels. The objectives of this study were to first incorporate 

aquaporins into synthetic nanofiltration membranes without chemically altering them to 

prevent flattening or denaturing of aquaporins during operation. Then, the second 

objective was to install functional groups on aquaporins and align them in the direction of 

water flow. Lastly, the third objective was to synthesize artificial channels in order to 

overcome the issues with aquaporin stability, alignment, and efficient packing of water 

channels onto the membrane surface.  Membranes synthesized here had as a primary goal 

to match or exceed the permeability of ~11 LMH/bar and a divalent (MgSO4) salt 

rejection of 97% of commercially-available NF-270 membranes [62, 63]. 

 For the first objective, aquaporins were treated with a polysaccharide, gum 

Arabic, and incorporated into an amphiphilic polymer, polyvinyl alcohol with alkyl side 

chains (PVA-alkyl), in order to simulate the natural housing of lipid bilayer for 

aquaporins and to protect them from denaturing. Long alkyl chains provided the 

hydrophobic component, while PVA provided the hydrophilic component of the 

amphiphilic polymer. Membranes modified with aquaporins displayed lower flux 

declines and higher flux recoveries after reverse flow filtration, along with improved 
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rejection values for both protein and salt solutions as compared to PBI and PBI-PVA-

alkyl membranes. However, there was leakage of ions, as observed by a rejection less 

than 100% as expected with aquaporins, that occurred likely between channels.   

 Therefore, it was then hypothesized that in order to improve the rejection of 

protons, ions and other impurities, the channels were aligned with the direction of water 

flow. Cysteine functional groups were installed on aquaporins using site-directed 

mutagenesis in order to covalent attach them to the polymer matrix and to align them in 

the direction of the flow. Aquaporin constructs were modified to bear affinity tags or 

unique amino acids at the N-terminus of the aquaporin molecule, which was used to 

facilitate directional immobilization. Each aquaporin monomer was modified with a 

unique amino acid Cys group at the N-terminus right after the first Met, and due to the 

aquaporin tetrameric nature, these Cys groups became four anchors for attachment. The 

presence of these four Cys anchors per aquaporin tetramer was also used to align the 

aquaporins with the feed water flow direction. Membranes modified with mutated 

aquaporins showed consistently higher NaCl and CaCl2 salt rejection values of ~70% 

irrespective of feed concentration, along with higher flux recoveries and lower flux 

declines. Unlike unmodified PBI membranes, these membranes showed fairly consistent 

rejections for salt solutions with increasing feed concentrations. However, these 

membranes still did not compete against commercial NF-270 membranes, which have a 

divalent salt (MgCl4) rejection of 97%. In order to investigate the reason for the low 

rejection, approximate coverage of membrane surface with attached aquaporins was 

calculated using simulation studies, which showed that immobilized aquaporins with 

PVA-alkyl provided a diffusion rate equivalent to 64% coverage on the membrane 
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surface. That is, simulations showed that aquaporins did not cover the entire surface area 

of the membrane.  

 The last objective of this project was to assemble artificial water channels and add 

them as surface modifiers on PBI membranes. Artificial channels were synthesized as 

derivatives of hybrid bisamides. The series of bisamides 1-4 consist of 6-aminopyridine-

2-dicarboxylic acid 6-hydroxymethyl pyridine-2-carboxylic acid, ethylenediamine, 

trimethylenediamine, putrescine and cadaverine depending on the length of carbon chain. 

These channels are amphiphilic in nature and have strong chemical attachment due to the 

presence of amines and carboxylic acids into each building block. These channels were 

introduced into the membrane matrix using carbodiimide chemistry. The channels acted 

as an organic framework on membrane surface. FTIR results showed the attachment of 

these channels onto the surface of a modified PBI membrane. Also, modified membranes 

showed a reduced molecular weight cut off (MWCO). Membranes modified with 

bisamide molecules showed higher hydrophilicity than unmodified membranes. These 

modified membranes showed similar divalent (MgSO4) salt rejections as unmodified 

membranes. 

 Overall, results showed that PVA-alkyl could be used as housing for aquaporins 

in synthetic membranes to prevent their loss of activity due functionalization and 

flattening under hydraulic pressure. Furthermore, aquaporins could be mutated using 

specific functional groups and immobilized by covalent attachment on membrane 

surfaces in order to orient them in feed flow direction. Lastly, artificial framework using 

modified bisamide molecules could be incorporated into synthetic membranes in order to 

provide pores with lower MWCO and rejection of larger organic solutes. 



174 
 

 

8.2 Recommendations 

 Aquaporin-based biomimetic membranes were fabricated here, and artificial 

bisamide channel-based bioinspired membranes were synthesized and covalently attached 

membrane surfaces. Further studies are suggested in order to incorporate aquaporins 

more effectively into synthetic membranes, and to study more in-depth bioinspired 

membranes. The following recommendations are suggestions for future studies: 

 1. PVA-alkyl provided mechanical support for the assembly and prevented 

the functionalization of aquaporins under synthetic environments. However, 

there is a possibility of hydrogel formation with PVA-alkyl which might 

prevent complete coverage of membrane surface with aquaporins. Other 

amphiphilic polymers, such as poly(maleic anhydride alt-1-tetradecene) and 

poly(ethylene glycol) methyl ether methacrylate (PEGMA)-b-polysulfone 

(PSF)-b-P(3-O-methacryloyl)-1,2:5,6-di-O-isopropylidene-D-glucofuranose 

(MAIpG) (P(PEGMA)-b-PSF-b-PMAIpG), should be investigated. These 

amphiphilic block copolymers have been used to modify the surface of 

polysulfone membranes previously and can provide alternatives for PVA-

alkyl. 

2. Although polybenzimidazole (PBI) provided a strong mechanical support 

and stability under a wide range of pH and temperature values, the 

hydrophobicity of PBI membranes can limit the flow rate of water through 

membrane. Hydrophilic membrane materials should be explored to 
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incorporate and immobilize aquaporins and their performance could be 

compared in terms of stability under various operating conditions. 

3. In order to increase divalent salt rejection, for a particular aquaporin 

concentration, various molar ratios of aquaporins and the amphiphilic matrix 

could be investigated and compared. Simulation studies could be carried out 

considering various molar ratios of the amphiphilic polymer and aquaporins 

and different possibilities of aqp-orientations in order to obtain an optimum 

molar ratio between the two. 

4. In order to increase divalent salt rejection by artificial channels, more 

functionalities could be added to their structure that would provide 

electrostatic barriers for charged entities and prevent their passage through 

the channels. 
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APPENDICES  

 

Appendix A. Flux Data for membranes: 

 

All the filtration experiments were performed at 25oC. Pressure was maintained at 4.83 

bar (70 PSI). Effective membrane area for each membrane sample was 0.00041 m2. 

Reverse flow filtration was used to remove reversible fouling after filtration with each 

feed solution. 

A.1 Filtration with protein solutions for unmodified PBI, PVA-alkyl modified PBI, and 

AqpZ-PVA-alkyl modified PBI membranes 

 Actual data for membranes with BSA and Lipase solutions as appeared in Figures 

(5-125-13, and 5-14) is presented in Table A.1.1, A.1.2, and A.1.3. 

Table A.1.1 Unmodified PBI 

Precompaction       

Vol (mL) Experiment 
time (hr) Flux time (min) Flux time ( 

hr) Flux (LMH) 

2 0 36.08 0.60 7.90 
2 0.68 38.03 0.63 7.50 
2 1.42 44.56 0.74 7.04 
2 2.08 38.03 0.63 7.49 
2 2.75 39.45 0.66 7.22 
2 3.58 38.25 0.64 7.45 
2 4.32 42.20 0.70 6.76 
2 5.03 42.76 0.71 6.67 
2 6.23 42.90 0.72 6.64 
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2 7.05 43.12 0.72 6.61 
Filtration-10 PPM BSA       

2 8.37 49.4 0.82 5.77 
2 9.73 51.13 0.85 5.57 
2 11.15 55.33 0.92 5.15 
2 12.13 57.72 0.96 4.94 
2 13.18 59.60 0.99 4.78 
2 14.76 64.52 1.08 4.42 
2 15.94 67.53 1.13 4.22 
2 17.09 69.38 1.16 4.11 
2 18.77 71.26 1.19 4.00 
2 20.03 69.16 1.15 4.12 

Reverse flow filtration       
2 21.40 52.13 0.87 5.47 
2 22.36 52.63 0.88 5.42 

Filtration-10 PPM Lipase       
2 23.99 67.65 1.13 4.21 
2 25.14 67.16 1.12 4.24 
2 26.27 68.53 1.14 4.16 
2 27.54 73.23 1.22 3.89 
2 28.86 74.45 1.24 3.83 
2 30.66 78.33 1.31 3.64 
2 32.02 80.4 1.34 3.55 
2 33.31 76.8 1.28 3.71 
2 34.68 81.00 1.35 3.52 
2 36.09 84.4 1.39 3.42 
 

Table A.1.2 PVA-alkyl modified PBI 

Precompaction         
Permeate vol 
(mL) 

Experiment time 
(hr) 

Flux time 
(min) Flux time (hr) 

Flux 
(LMH) 

2 0.00 47.04 0.79 6.00 
2 0.83 49.08 0.81 5.86 
2 1.75 53.00 0.88 5.40 
2 2.66 51.28 0.86 5.54 
2 3.59 56.11 0.94 5.07 
2 4.61 59.58 1.00 5.00 
2 5.61 57.30 0.96 4.96 
2 7.13 61.12 1.02 4.89 
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2 8.35 58.25 0.97 4.88 
Filtration 10 PPM BSA       
Permeate vol 
(mL) 

Experiment time 
(hr) 

Flux time 
(min) Flux time (hr) 

Flux 
(LMH) 

2 9.93 65.29 1.09 4.36 
2 11.05 65.49 1.09 4.35 
2 12.30 65.09 1.09 4.37 
2 14.04 74.05 1.23 3.85 
2 15.20 67.40 1.13 4.21 
2 16.40 70.48 1.18 4.03 
2 17.60 69.38 1.16 4.09 
2 18.79 68.52 1.15 4.14 
Flux recovery         
Permeate vol 
(mL) 

Experiment time 
(hr) 

Flux time 
(min) Flux time (hr) 

Flux 
(LMH) 

2 23.81 59.29 0.99 4.79 
2 24.88 59.49 1.00 4.76 
Filtration 10 PPM Lipase       
Permeate vol 
(mL) 

Experiment time 
(hr) 

Flux time 
(min) Flux time (hr) 

Flux 
(LMH) 

2 26.34 64.29 1.07 4.42 
2 27.51 67.39 1.13 4.21 
2 28.62 65.27 1.09 4.35 
2 29.76 66.18 1.11 4.30 
2 30.94 67.49 1.13 4.20 
2 32.07 66.10 1.10 4.31 
2 33.24 68.49 1.15 4.14 
2 34.44 69.03 1.15 4.13 
 

Table A.1.3 AqpZ-PVA-alkyl modified PBI membrane 

Precompaction         
Permeate vol 
(mL) 

Experiment time 
(hr) Flux time (min) Flux time (hr) Flux 

(LMH) 
2 0.00 54.58 0.92 5.32 
2 1.13 55.05 0.92 5.31 
2 2.09 56.11 0.94 5.21 
2 3.07 56.50 0.95 5.15 
2 4.07 56.51 0.95 5.15 
2 5.03 56.46 0.95 5.15 
2 6.10 62.25 1.04 4.94 
2 7.10 58.48 0.98 4.98 
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2 8.13 59.00 0.98 4.96 
2 9.13 59.20 0.99 4.93 
Filtration 10 PPM BSA       
Permeate vol 
(mL) 

Experiment time 
(hr) Flux time (min) Flux time (hr) Flux 

(LMH) 
2 10.97 63.42 1.06 4.59 
2 12.12 67.47 1.13 4.32 
2 13.29 68.48 1.15 4.26 
2 14.96 70.18 1.17 4.16 
2 16.61 69.25 1.16 4.22 
2 18.28 69.55 1.17 4.19 
2 19.45 70.12 1.17 4.17 
2 20.62 70.34 1.18 4.15 
Flux recovery         
Permeate vol 
(mL) 

Experiment time 
(hr) Flux time (min) Flux time (hr) Flux 

(LMH) 
2 23.65 58.36 0.98 5.00 
2 24.65 59.12 0.99 4.95 
Filtration 10 PPM Lipase       
Permeate vol 
(mL) 

Experiment time 
(hr) Flux time (min) Flux time (hr) Flux 

(LMH) 
2 26.68 61.45 1.03 4.74 
2 27.88 62.56 1.05 4.65 
2 28.96 63.23 1.06 4.62 
2 30.18 64.12 1.07 4.56 
2 31.31 65.53 1.10 4.44 
2 32.42 65.44 1.10 4.45 
2 33.56 66.04 1.10 4.43 
2 34.68 66.13 1.10 4.42 
 

A.2 Filtration with salt solutions for unmodified PBI, PVA-alkyl modified PBI, Aqp-SH 

modified PBI, and Aqp-R189A modified membranes. The tables show total permeate 

volume, mean flux for 3 filtration runs, and standard deviations. The calculations are 

same as tables in section A.1. 
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 Actual data for membranes with NaCl and CaCl2 solutions of 3.4 mM, 10 mM, 20 

mM, 35 mM, and 100 mM as appeared in Figure 6-10 (A), (B), (C), and (D) is presented 

in Table A.2.1, A.2.2, A.2.3, and A.2.4. 

 

Table A.2.1 Salt solution filtration for unmodified PBI membrane 

Precompaction (DI 
H2O)     
Permeate volume 
(mL) 

Mean flux 
(LMH) Std. dev. 

2 34.56 2.5 
4 36.01 5.1 
6 34.67 6.3 
8 37.12 2.8 
10 33.92 4.1 
12 34.26 3.7 
14 36.2 4.4 
16 34.1 6.1 
18 34.21 2.8 
20 34.16 3 
NaCl 3.4 mM     
Permeate volume 
(mL) 

Mean flux 
(LMH) Std. dev. 

22 34.15 3.1 
24 34.2 5.2 
26 34.08 2.7 
28 34.04 6.1 
30 33.97 4.4 
32 34.01 7 
34 33.94 2.6 
36 33.9 1.9 
38 33.93 3.2 
40 33.87 5.2 
NaCl 10 mM     
Permeate volume 
(mL) 

Mean flux 
(LMH) Std. dev. 

42 34.03 1.4 
44 34.09 3.2 
46 33.98 4.2 
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48 33.9 2.8 
50 34.02 5.4 
52 33.89 5.1 
54 33.94 6.2 
56 33.84 2.5 
58 33.81 5.1 
60 33.79 3.9 
NaCl 20 mM     
Permeate volume 
(mL) 

Mean flux 
(LMH) Std. dev. 

62 33.91 4.3 
64 33.81 6.4 
66 33.75 7.2 
68 33.8 2.8 
70 33.72 4.6 
72 33.69 8.1 
74 33.75 2.7 
76 33.63 4.5 
78 33.6 1.7 
80 33.62 6.3 
NaCl 35 mM     
Permeate volume 
(mL) 

Mean flux 
(LMH) Std. dev. 

82 33.64 4.2 
84 33.61 5 
86 33.52 3.1 
88 33.41 5.2 
90 33.53 6.7 
92 33.48 2.6 
94 33.41 8.4 
96 33.44 2.6 
98 33.35 7.5 
100 33.28 5.2 
NaCl 100 mM     
Permeate volume 
(mL) 

Mean flux 
(LMH) Std. dev. 

102 33.31 4.5 
104 33.23 6.4 
106 33.18 2.4 
108 33.1 6 
110 33.14 3.7 
112 33.04 5.6 
114 32.98 8.7 
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116 33.02 3.4 
118 32.91 2.1 
120 33.01 4.5 
CaCl2 3.4 mM 

 
  

Permeate volume 
(mL) 

Mean flux 
(LMH) Std. dev. 

122 32.94 4.3 
124 32.8 6.5 
126 32.85 2.4 
128 32.75 7.5 
130 32.82 2.4 
132 32.73 6.4 
134 32.69 1.2 
136 32.64 7.6 
138 32.66 1.8 
140 32.58 5.4 
CaCl2 10 mM 

 
  

Permeate volume 
(mL) 

Mean flux 
(LMH) Std. dev. 

142 32.62 3.2 
144 32.56 5.4 
146 32.51 6.5 
148 32.46 1.2 
150 32.38 3.2 
152 32.43 6.5 
154 32.4 1.2 
156 32.36 3 
158 32.3 1.3 
160 32.31 5.2 
CaCl2 20 mM 

 
  

Permeate volume 
(mL) 

Mean flux 
(LMH) Std. dev. 

162 32.28 4.3 
164 32.2 5.4 
166 32.1 1.2 
168 32.04 6.7 
170 31.97 3 
172 31.9 2.6 
174 31.87 7.4 
176 31.73 2.3 
178 31.8 7.5 
180 31.69 4.2 
CaCl2 35 mM 
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Permeate volume 
(mL) 

Mean flux 
(LMH) Std. dev. 

182 31.71 3.5 
184 31.62 5.4 
186 31.54 2.3 
188 31.47 6.7 
190 31.37 8.5 
192 31.34 3.2 
194 31.27 6.5 
196 31.21 3.2 
198 31.1 3.5 
200 31.01 6 
CaCl2 100 mM 

 
  

Permeate volume 
(mL) 

Mean flux 
(LMH) Std. dev. 

202 31.04 4.5 
204 30.91 3.5 
206 30.87 5.2 
208 30.76 6.7 
210 30.61 5.4 
212 30.41 2.3 
214 30.29 4.5 
216 30.15 6.7 
218 30.09 5.4 
220 29.97 3.2 
Flux recovery     
Permeate volume 
(mL) 

Mean flux 
(LMH) Std. dev. 

222 29.87 4.2 
 

Table A.2.2 Salt solution filtration for PVA-alkyl modified PBI membrane 

Precompaction (DI 
H2O)     

Permeate volume (mL) 
Mean flux 
(LMH) 

Std. 
dev. 

2 11.34 3.4 
4 9.45 2.4 
6 10.34 1.2 
8 12.57 1.7 
10 12.54 3.1 
12 11.09 0.87 
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14 10.65 1.2 
16 10.45 5.4 
18 10.34 1.1 
20 10.29 1.2 
NaCl 3.4 mM     

Permeate volume (mL) 
Mean flux 
(LMH) 

Std. 
dev. 

22 10.14 4.5 
24 10.2 1.9 
26 10.12 2.3 
28 10.06 2.9 
30 10.09 2.1 
32 10.01 5.4 
34 9.91 2.3 
36 9.97 1.12 
38 9.9 1.5 
40 9.92 1.2 
NaCl 10 mM     

Permeate volume (mL) 
Mean flux 
(LMH) 

Std. 
dev. 

42 9.94 1.43 
44 9.89 1.76 
46 9.83 2.67 
48 9.79 1.43 
50 9.74 2.22 
52 9.76 1.21 
54 9.67 3.21 
56 9.6 1.66 
58 9.65 1.2 
60 9.53 1.55 
NaCl 20 mM     

Permeate volume (mL) 
Mean flux 
(LMH) 

Std. 
dev. 

62 9.61 3.12 
64 9.58 1.22 
66 9.5 1.45 
68 9.42 2.3 
70 9.47 2.22 
72 9.38 1.11 
74 9.33 1.34 
76 9.22 2.3 
78 9.27 1.2 
80 9.18 3.12 
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NaCl 35 mM     

Permeate volume (mL) 
Mean flux 
(LMH) 

Std. 
dev. 

82 9.27 1.23 
84 9.23 2.13 
86 9.18 4.12 
88 9.11 1.22 
90 9.15 1.85 
92 9.07 1.98 
94 9.03 1.67 
96 8.96 1.4 
98 8.94 1.2 
100 8.89 1.67 
NaCl 100 mM     

Permeate volume (mL) 
Mean flux 
(LMH) 

Std. 
dev. 

102 8.87 1.3 
104 8.8 1.2 
106 8.73 1.4 
108 8.65 1.1 
110 8.69 3.4 
112 8.62 2.1 
114 8.56 3.9 
116 8.45 2.78 
118 8.34 2.2 
120 8.36 1.5 
CaCl2 3.4 mM 

 
  

Permeate volume (mL) 
Mean flux 
(LMH) 

Std. 
dev. 

122 8.4 2.32 
124 8.34 2.9 
126 8.27 1.3 
128 8.31 2.8 
130 8.22 4.3 
132 8.18 2.3 
134 8.23 2.4 
136 8.14 1.4 
138 8.24 1.4 
140 8.12 2.6 
CaCl2 10 mM 

 
  

Permeate volume (mL) 
Mean flux 
(LMH) 

Std. 
dev. 

142 8.15 1.2 
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144 8.08 3.2 
146 8.09 1.9 
148 8.01 1.6 
150 7.92 1.56 
152 7.82 1.78 
154 7.88 2.65 
156 7.81 3.98 
158 7.72 1.68 
160 7.7 2.778 
CaCl2 20 mM 

 
  

Permeate volume (mL) 
Mean flux 
(LMH) 

Std. 
dev. 

162 7.74 2.8 
164 7.67 2.7 
166 7.62 1.7 
168 7.56 2.6 
170 7.5 3.6 
172 7.48 1 
174 7.42 3.7 
176 7.34 2.8 
178 7.27 0.64 
180 7.29 1.54 
CaCl2 35 mM 

 
  

Permeate volume (mL) 
Mean flux 
(LMH) 

Std. 
dev. 

182 7.34 3.2 
184 7.24 3.1 
186 7.17 1.8 
188 7.11 1.7 
190 7.04 1.6 
192 7.09 2.1 
194 6.97 2.8 
196 6.91 1.4 
198 6.84 2.6 
200 6.8 1.1 
CaCl2 100 mM 

 
  

Permeate volume (mL) 
Mean flux 
(LMH) 

Std. 
dev. 

202 6.78 2.5 
204 6.7 1.8 
206 6.74 2.6 
208 6.63 2.1 
210 6.51 1.2 
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212 6.54 2.4 
214 6.46 2 
216 6.4 0.9 
218 6.35 1.09 
220 6.28 0.73 
Flux recovery     

Permeate volume (mL) 
Mean flux 
(LMH) 

Std. 
dev. 

222 6.31 1.7 
 

 

Table A.2.3 Salt solution filtration for Aqp-SH modified PBI membrane 

Precompaction (DI water)   
Permeate volume (mL) Mean flux (LMH) Std. dev. 

2 23.35 2.1 
4 23.32 3.2 
6 25.31 1.3 
8 23.12 5.4 

10 24.12 2.3 
12 26.21 4.3 
14 21.23 3.4 
16 23.34 1.8 
18 23.45 3.7 
20 23.29 4.7 

NaCl 3.4 mM     
Permeate volume (mL) Mean flux (LMH) Std. dev. 

22 23.32 2.8 
24 23.35 3.1 
26 23.26 4.6 
28 23.19 2.38 
30 23.22 1.2 
32 23.17 5.4 
34 23.14 3.2 
36 23.22 3.8 
38 23.13 3.6 
40 23.1 4 

NaCl 10 mM     
Permeate volume (mL) Mean flux (LMH) Std. dev. 

42 9.94 1.43 
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44 9.89 1.76 
46 9.83 2.67 
48 9.79 1.43 
50 9.74 2.22 
52 9.76 1.21 
54 9.67 3.21 
56 9.6 1.66 
58 9.65 1.2 
60 9.53 1.55 

NaCl 20 mM     
Permeate volume (mL) Mean flux (LMH) Std. dev. 

62 9.61 3.12 
64 9.58 1.22 
66 9.5 1.45 
68 9.42 2.3 
70 9.47 2.22 
72 9.38 1.11 
74 9.33 1.34 
76 9.22 2.3 
78 9.27 1.2 
80 9.18 3.12 

NaCl 35 mM     
Permeate volume (mL) Mean flux (LMH) Std. dev. 

82 9.27 1.23 
84 9.23 2.13 
86 9.18 4.12 
88 9.11 1.22 
90 9.15 1.85 
92 9.07 1.98 
94 9.03 1.67 
96 8.96 1.4 
98 8.94 1.2 

100 8.89 1.67 
NaCl 100 mM     

Permeate volume (mL) Mean flux (LMH) Std. dev. 
102 8.87 1.3 
104 8.8 1.2 
106 8.73 1.4 
108 8.65 1.1 
110 8.69 3.4 
112 8.62 2.1 
114 8.56 3.9 
116 8.45 2.78 
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118 8.34 2.2 
120 8.36 1.5 

CaCl2 3.4 mM 
 

  
Permeate volume (mL) Mean flux (LMH) Std. dev. 

122 8.4 2.32 
124 8.34 2.9 
126 8.27 1.3 
128 8.31 2.8 
130 8.22 4.3 
132 8.18 2.3 
134 8.23 2.4 
136 8.14 1.4 
138 8.24 1.4 
140 8.12 2.6 

CaCl2 10 mM 
 

  
Permeate volume (mL) Mean flux (LMH) Std. dev. 

142 8.15 1.2 
144 8.08 3.2 
146 8.09 1.9 
148 8.01 1.6 
150 7.92 1.56 
152 7.82 1.78 
154 7.88 2.65 
156 7.81 3.98 
158 7.72 1.68 
160 7.7 2.778 

CaCl2 20 mM 
 

  
Permeate volume (mL) Mean flux (LMH) Std. dev. 

162 7.74 2.8 
164 7.67 2.7 
166 7.62 1.7 
168 7.56 2.6 
170 7.5 3.6 
172 7.48 1 
174 7.42 3.7 
176 7.34 2.8 
178 7.27 0.64 
180 7.29 1.54 

CaCl2 35 mM 
 

  
Permeate volume (mL) Mean flux (LMH) Std. dev. 

182 7.34 3.2 
184 7.24 3.1 
186 7.17 1.8 
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188 7.11 1.7 
190 7.04 1.6 
192 7.09 2.1 
194 6.97 2.8 
196 6.91 1.4 
198 6.84 2.6 
200 6.8 1.1 

CaCl2 100 mM 
 

  
Permeate volume (mL) Mean flux (LMH) Std. dev. 

202 6.78 2.5 
204 6.7 1.8 
206 6.74 2.6 
208 6.63 2.1 
210 6.51 1.2 
212 6.54 2.4 
214 6.46 2 
216 6.4 0.9 
218 6.35 1.09 
220 6.28 0.73 

Flux recovery     
Permeate volume (mL) Mean flux (LMH) Std. dev. 

222 6.31 1.7 
 

Table A.2.4 Salt solution filtration for Aqp R189A-modified PBI membrane 

Precompaction (DI H2O)     
Permeate volume (mL) Mean flux (LMH) Std. dev. 

2 14.3 1.2 
4 15.73 2.1 
6 16.24 1.7 
8 13.56 1.4 
10 14.28 1.5 
12 15.1 3.1 
14 12.53 1.2 
16 14.67 1.7 
18 14.8 1.4 
20 14.72 1.5 

NaCl 3.4 mM     
Permeate volume (mL) Mean flux (LMH) Std. dev. 

22 14.34 2 
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24 14.41 2.3 
26 14.27 1.2 
28 14.1 1.1 
30 14.01 1 
32 13.98 1.5 
34 13.87 1.7 
36 13.91 1.5 
38 13.88 2 
40 13.82 2.7 

NaCl 10 mM     
Permeate volume (mL) Mean flux (LMH) Std. dev. 

42 13.91 2.8 
44 13.87 2.1 
46 13.89 2.4 
48 13.8 1.7 
50 13.77 1.5 
52 13.7 1.44 
54 13.64 1.6 
56 13.72 1.4 
58 13.58 1 
60 13.51 1.9 

NaCl 20 mM     
Permeate volume (mL) Mean flux (LMH) Std. dev. 

62 13.63 2.4 
64 13.67 2.5 
66 13.59 1.6 
68 13.54 1.5 
70 13.48 1.8 
72 13.4 1.9 
74 13.34 2 
76 13.21 2.3 
78 13.28 1.5 
80 13.2 1.6 

NaCl 35 mM     
Permeate volume (mL) Mean flux (LMH) Std. dev. 

82 13.29 1.9 
84 13.21 1.4 
86 13.17 1.2 
88 13.1 1.6 
90 13.04 1.6 
92 13.07 1.4 
94 12.98 2.5 
96 12.9 2.9 
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98 12.99 3.2 
100 12.92 4 

NaCl 100 mM     
Permeate volume (mL) Mean flux (LMH) Std. dev. 

102 12.99 1.4 
104 12.9 1.2 
106 12.83 2.3 
108 12.84 1.5 
110 12.77 1.5 
112 12.69 1.8 
114 12.6 1.5 
116 12.62 1.9 
118 12.54 1.4 
120 12.44 1.5 

CaCl2 3.4 mM   
Permeate volume (mL) Mean flux (LMH) Std. dev. 

122 12.5 2.3 
124 12.42 2.1 
126 12.47 2.4 
128 12.4 2.6 
130 12.32 2 
132 12.35 1 
134 12.29 2.1 
136 12.25 2.4 
138 12.18 1.4 
140 12.11 1.2 

CaCl2 10 mM   
Permeate volume (mL) Mean flux (LMH) Std. dev. 

142 12.23 0.9 
144 12.13 1.5 
146 12.03 2.1 
148 12.05 3.5 
150 11.95 1.8 
152 11.92 1.5 
154 11.86 1.4 
156 11.8 1.8 
158 11.81 1.4 
160 11.75 1.6 

CaCl2 20 mM   
Permeate volume (mL) Mean flux (LMH) Std. dev. 

162 11.83 2.5 
164 11.76 2.4 
166 11.7 2.6 
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168 11.67 2.7 
170 11.6 2.1 
172 11.62 2.4 
174 11.57 2.5 
176 11.52 2.1 
178 11.46 1.5 
180 11.41 1.8 

CaCl2 35 mM   
Permeate volume (mL) Mean flux (LMH) Std. dev. 

182 11.53 1 
184 11.46 2.4 
186 11.37 3.5 
188 11.38 2.1 
190 11.32 2.5 
192 11.26 2.5 
194 11.23 2.1 
196 11.17 1.6 
198 11.04 1.5 
200 10.72 1.4 

CaCl2 100 mM   
Permeate volume (mL) Mean flux (LMH) Std. dev. 

202 10.82 0.8 
204 10.73 1.4 
206 10.69 1.8 
208 10.63 2.5 
210 10.57 1.6 
212 10.51 1.4 
214 10.43 1.1 
216 10.34 1 
218 10.32 1.9 
220 10.25 1.1 

Flux recovery     
Permeate volume (mL) Mean flux (LMH) Std. dev. 

222 10.29 1.2 
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Appendix B. Elemental analysis: 

EDS and EELS analysis were performed for both unmodified PBI and Aqp-SH 

modified PBI membranes in order to prove and quantify the change in sulfur 

concentration in the membranes after modification. Figure B.1 shows EDS analysis of 

unmodified PBI membrane. The keV corresponds to energy of X-rays emitted as 

electrons return from a higher energy shell to a lower energy shell in the element. This 

energy is a characteristic of the atomic structure of the emitting element. According to the 

database [307], carbon, nitrogen, oxygen and sulfur have peaks at 0.277 keV, 0.302 keV, 

0.525 keV, and 2.307 kev, respectively. Table B.1 shows weight percentage and 

percentage of atoms of carbon, oxygen, nitrogen and sulfur present in the membrane 

sample. It can be seen from the Table B.1 and figure 1 that the amount of sulfur is 

negligible in unmodified PBI membrane which was expected since the structure of PBI, 

does not contain any sulfur. EELS analysis of unmodified PBI membrane was done in 

order to support EDS results. Unmodified PBI membranes were analyzed with EELS for 

carbon, oxygen and nitrogen as EDS revealed that there was no sulfur present in the 

sample. Figure B.2 shows EELS analysis of a sample of unmodified PBI membrane. 

Binding energy peaks of elements were corrected after control experiments and based on 

the values of binding energies of elements in the database [308]. As shown in the 

diagram, binding energies of carbon, nitrogen, and oxygen were 284 eV, 401 eV, and 532 

eV, respectively. Based on the energy loss after incident x-ray on membrane sample, 

absolute quantification of elements was calculated. Table B.2 shows absolute and relative 

quantification of elements in the membrane samples. 
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Figure B.1. EDS analysis of unmodified PBI membranes 

Table B.1. Elemental and weight composition of elements in unmodified PBI membrane 

using EDS 

Element Weight% Atoms% 

C 88.92±-0.91 90.54±-0.93 

N 8.81±-0.45 7.69±-0.39 

O 2.32±-0.23 1.77±-0.18 

S -0.05±0.00 0.00±0.00 

 

Carbon 

Nitrogen 

Oxygen 

Sulfur 

Gallium 
Copper 



196 
 

 

Figure B.2. EELS analysis of unmodified PBI membrane 

Table B.2. Absolute quantification of elements in unmodified PBI membrane using EELS 
analysis 

Element Areal density 

(atoms/nm*2) 

Atomic ratio(/C) Percent content 

C 2.39e+013 ± 2.4e+012 1.00 ± 0.000  83.06 

N 3.51e+012 ± 3.5e+011 0.15 ± 0.021  12.24 

O 1.35e+012 ± 1.4e+011 0.06 ± 0.008  4.70 

 

Aqp-SH membranes were also analyzed for elemental composition and changes in 

composition after modification. Figure B.3 shows EDS analysis of Aqp-SH modified PBI 

membrane and Table B.3 shows weight percentage and percentage of atoms of carbon, 

oxygen, nitrogen and sulfur present in the membrane sample. It was observed that a 

significant amount of sulfur was present in the 50 nm membrane sample modified with 

Aqp-SH molecules. EELS analysis of Aqp-SH modified PBI membrane was performed 
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in order to support EDS results. Figure B.4 shows EELS analysis of a sample of Aqp-SH 

modified PBI membrane. Binding energy peaks of elements were corrected after control 

experiments and based on the values of binding energies of elements in the database 

[308]. As shown in the diagram, binding energies of carbon, nitrogen, oxygen and sulfur 

were 284 eV, 401 eV, 532 eV, and 165 eV, respectively. Table B.4 shows absolute 

quantification of elements and relative quantification of elements present in the 

membrane sample.  

 

Figure B.3. EDS analysis of Aqp-SH modified PBI membrane 

Nitrogen 

Carbon 

Oxygen 
Gallium 

Copper 

Sulfur 
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Table B.3. Elemental and weight composition of elements in Aqp-SH modified PBI 

membrane 

Element Weight% Atoms% 

C 74.41±-0.98 76.21±-1.00 

N 15.83±-0.46 14.91±-0.40 

O 5.22±-0.24 4.81±-0.18 

S 4.53±0.35 4.07±0.27 
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Figure B.4. EELS analysis of Aqp-SH modified PBI membrane 

Table B.4. Absolute and relative quantification of elements in Aqp-SH modified PBI 
membrane 

Elements Areal density(atoms/Nm2) Atomic Ratio (/C) Percent 

content 

S 3.92e+011 ± 3.9e+010 0.007±0.010 5.61 

C 5.49e+012 ± 5.5e+011 1.000±0.000 78.61 

N 8.69e+011 ± 8.8e+010 0.16±0.023 12.44 

O 2.33e+011 ± 2.8e+010 0.04±0.007 3.34 
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Appendix C. Diffusion Data 

Table C.1 NaCl concentrations measured every day for unmodified PBI, PVA-alkyl 

modified PBI, and Aqp-SH modified membranes in diffusion cell assembly 
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Appendix D. Simulation input files and generated Data 

D.1 Mesh generator 

In [ ]: from __future__ import division 

import numpy as np 

import os 

from fenics import * 

In [ ]: ### initialize mesh attributes 

numPores = 12# number of nanopores per side 

radius = 0.5#nm 

bR = np.linspace(3,8,6)#nm 

boxSize = 10#nm width of reservoir 

length = 20#nm pore length 

revH = 20#nm height of reservoir 

nm = 1e-9 

In [ ]: ### generate HDF5 files 

import nanoporousMesher as mesher 

import nanoMesherNoAQ as meshNO 

name = "AQ_NO" 

meshNO.Build(numPores,radius*nm,boxSize*nm,length*nm,revH*nm,name) 

for i,num in enumerate(bR): 

name = "AQ_{}".format(int(num)) 

mesher.Build(numPores,radius*nm,num*nm,boxSize*nm,length*nm,revH*nm,name) 

In [ ]: ### construct the command line commands 
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myPath = os.path.abspath(__file__) 

path = os.path.abspath(os.path.join(myPath,'..')) 

path = path+"/" 

noAQ = path+"AQ_NO.hdf5" 

line = "mpirun -np 20 python noAQP_simulator.py -runner {}".format(noAQ) 

print line 

os.system(line) 

x = np.full((1000,),-7.5e-10) 

y = np.full((1000,),-7.5e-10) 

zs = np.linspace(-20e-9,30e-9,1000) ### these are the points along the centerline 

points = np.stack((x,y,zs)) 

points=points.transpose() 

mesh = Mesh() 

facets = MeshFunction("size_t",mesh) 

cells = MeshFunction("size_t",mesh) 

hdf5=HDF5File(mesh.mpi_comm(),noAQ,'r') 

hdf5.read(mesh,'mesh',False) 

hdf5.read(facets,'facets') 

hdf5.read(cells,'cells') 

hdf5.close() 

hdf5_solution=HDF5File(mesh.mpi_comm(),path+"AQ_NO_solution.hdf5",'r') 

ele = FiniteElement('CG',mesh.ufl_cell(),1) 

V = FunctionSpace(mesh,ele) 
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F = Function(V) ### This is just the FEM fxn instance 

hdf5_solution.read(F,"solution") 

hdf5_solution.close() 

### to get values along axis: 

u = np.zeros_like(zs) 

for i, point in enumerate(points): 

u[i] = F(point) 

import matplotlib as mpl 

mpl.use('Agg') 

import matplotlib.pyplot as plt 

plt.figure() 

plt.plot(zs,u) 

plt.ylabel("z (m)") 

plt.xlabel("concentration (mM)") 

plt.savefig("figs/AQ_NO.png") 

plt.close() 

for i, num in enumerate(bR): 

name = path+"AQ_{}.hdf5".format(int(num)) 

line = "mpirun -np 20 python AQP_realSimulator.py -runner {} 

{}".format(name,int(print line 

os.system(line) 

mesh = Mesh() 

facets = MeshFunction("size_t",mesh) 
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cells = MeshFunction("size_t",mesh) 

hdf5=HDF5File(mesh.mpi_comm(),name,'r') 

hdf5.read(mesh,'mesh',False) 

hdf5.read(facets,'facets') 

hdf5.read(cells,'cells') 

hdf5.close() 

print "path of HDF5 file: ", path+"AQ_{}_solution.hdf5".format(int(num)) 

tempPath ="AQ_{}_solution.hdf5".format(int(num)) 

hdf5_solution=HDF5File(mesh.mpi_comm(),path + tempPath,'r') 

mele = FiniteElement('CG',mesh.ufl_cell(),1) 

V = FunctionSpace(mesh,mele) 

G = Function(V) ### This is just the FEM fxn instance 

hdf5_solution.read(G,"solution") 

hdf5_solution.close() 

plist=[] 

ulist=[] 

count = 0 

for pt in points: 

try: 

ulist.append(G(pt)) 

plist.append(zs[count]) 

count+=1 

except RuntimeError: 
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ulist.append(0) 

plist.append(zs[count]) 

count+=1 

### to get values: 

#u = np.zeros_like(np.shape(zs)) 

#for i, point in enumerate(points): 

# u[i] = ck_u(point) 

plt.figure() 

plt.plot(zs,ulist) 

plt.ylabel("concentration (mM)") 

plt.xlabel("z (m)") 

plt.savefig("figs/AQ_{}.png".format(num)) 

plt.close() 

### run the command line commands 

### sort through the resulting .txt files in PostProcessing.ipynb 

 

D.2 Post processing 

In [1]: import numpy as np 

import matplotlib.pyplot as plt 

%matplotlib inline 

In [2]: fileList =[] 

import glob, os 

for file in glob.glob("*.txt"): 
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fileList.append(file) 

In [3]: nm=1e-9 

noAQs = [] 

noAQ = {} 

AQs = [] 

AQ = {} 

AQ2 = {} 

AQ3 = {} 

noAQvals = [] 

noAQvals2 = [] 

for item in fileList: 

if item[0] == 'n': 

noAQs.append(item) 

f = open(item,'r') 

search=f.readlines() 

f.close() 

val = search[0][5:] 

val2 = search[1][5:] 

noAQ['{}'.format(item[5])] = float(val)/nm 

noAQvals.append(float(val)/nm) 

noAQvals2.append(float(val2)/nm) 

else: 

AQs.append(item) 
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AQ['{}'.format(item[3])] ={} 

AQ2['{}'.format(item[3])] ={} 

AQ3['{}'.format(item[3])] ={} 

for item in AQs: 

 

L,R = item.split(".") 

num1 = L[3] 

f = open(item,"r") 

search = f.readlines() 

f.close() 

val = search[0][5:] 

val2 = search[1][5:] 

val3 = search[2][8:] 

AQ['{}'.format(str(num1))]=float(val)/nm 

AQ2['{}'.format(str(num1))]=float(val2)/nm 

AQ3['{}'.format(str(num1))]=float(val3) 

AQkeys = AQ.keys() 

In [4]: ### So I want to compare noAQ to AQ with the same # of pores across all charges 

print AQ 

print AQ.keys() 

{'3': 0.197738752095, '5': 0.164419473368, '4': 0.176505772214, '7': 

0.11684078988299998, '6': ['3', '5', '4', '7', '6', '8'] 
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In [5]: noAQvals = 

np.stack((noAQvals,noAQvals,noAQvals,noAQvals,noAQvals,noAQvals)) 

noAQvals2 = 

np.stack((noAQvals2,noAQvals2,noAQvals2,noAQvals2,noAQvals2,noAQvals2)) 

In [6]: ### From notebook "Priyesh_update" 

D_experimental_aqp = np.mean([5.84054089e-07, 4.55903537e-07, 3.03720426e-07, 

3.17304903e-D_exp_aqp =[] 

D_experimental = np.mean([1.34204016e-06, 8.07443611e-07, 9.38828308e-07, 

1.33036245e-06])*D_exp =[] 

for i in range(6): 

D_exp.append(D_experimental) 

D_exp_aqp.append(D_experimental_aqp) 

In [15]: xs = [] 

ys=[] 

y2=[] 

ys2 = [] 

y3=[] 

count =1 

monomerics = [] 

for key in sorted(AQ.iterkeys()): 

monomerics.append((100-float(key)**2)/100*D_experimental) 

xs.append(float(key)**2/100) 

ys.append((AQ['{}'.format(key)])/2) 
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y2.append((AQ2['{}'.format(key)])) 

y3.append((AQ3['{}'.format(key)])) 

 

In [26]: plt.figure(dpi=500) 

fig, ax1 = plt.subplots() 

ax1.plot(xs,D_exp,'k--',label="Experimental diffusivity without AQP") 

ax1.plot(xs,D_exp_aqp, 'k', label="Experimental difffusivity with AQP") 

ax1.plot(xs,ys[:],'b',label="Modeled behavior with aggregated AQP") 

ax1.plot(xs,monomerics,'b.',label='Modeled behavor with monomeric AQP') 

plt.ylim(0,np.max(ys)+.02) 

ax1.set_ylabel(r"$Effective diffusivity ( \frac{m^2}{s} * 1e9)$") 

ax1.set_xlabel("Packing fraction of AQP") 

plt.axvline(x=0.64,color='r') 

#ax2 = ax1.twinx() 

#ax2.plot(xs,y3[:],'g',label="Pore occlusion rate") 

#ax2.set_ylabel("% of pores occluded") 

ax1.legend(loc=3) 

#ax2.legend(bbox_to_anchor=(0., 0.05, 1.65, 0),loc=4) 

Out[26]: <matplotlib.legend.Legend at 0x7f094dce2690> 

<Figure size 3000x2000 with 0 Axes> 

In [ ]: plt.figure(dpi=300) 

 

plt.plot(xs,y2[:],label="0mV") 
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plt.plot(xs,noAQvals2,label="noAQ") 

plt.legend() 

plt.ylim(0,np.max(y2)+.01) 

plt.xlabel("Diameter of AQP") 

plt.ylabel(r"$Deff ( \frac{m^2}{s} * 1e9)$") 

noAQ = [] AQ = {} AQ[’4’]={} AQ[’5’]={} AQ[’6’]={} for item in fileList: if item[0] 

== ’n’: 

noAQ.append(item) else: if item[3] == ’4’: if ’-10’ in item: f = open(item,"r") search = 

f.readlines() 

f.close() val = search[0][5:] AQ[’4’][’-10’]=float(val) elif ’-5’ in item: f = open(item,"r") 

search = 

f.readlines() f.close() val = search[0][5:] AQ[’4’][’-10’]=float(val elif ’_0’ in item: f = 

open(item,"r") 

search = f.readlines() f.close() val = search[0][5:] AQ[’4’][’-10’]=float(val elif ’_5’ in 

item: f = 

open(item,"r") search = f.readlines() f.close() val = search[0][5:] AQ[’4’][’-10’]=float(val 

elif ’_10’ 

in item: AQ[’4’][’10’]=item 

elif item[3] ==’5’: if ’-10’ in item: AQ[’5’][’-10’]=item elif ’-5’ in item: AQ[’5’][’-

5’]=item elif ’_0’ in 

item: AQ[’5’][’0’]=item elif ’_5’ in item: AQ[’5’][’5’]=item elif ’_10’ in item: 

AQ[’5’][’10’]=item 
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else: if ’-10’ in item: AQ[’6’][’-10’]=item elif ’-5’ in item: AQ[’6’][’-5’]=item elif ’_0’ 

in item: 

AQ[’6’][’0’]=item elif ’_5’ in item: AQ[’6’][’5’]=item elif ’_10’ in item: 

AQ[’6’][’10’]=item 
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