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ABSTRACT OF THESIS 

A REDUNDANT MONITORING SYSTEM FOR HUMAN WELDER OPERATION 

USING IMU AND VISION SENSORS 

In manual control, the welding gun’s moving speed can significantly influence the 

welding results and critical welding operations usually require welders to concentrate 

consistently in order to react rapidly and accurately. However, human welders always 

have some habitual action which can have some subtle influence the welding process. It 

takes countless hours to train an experienced human welder. Using vision and IMU 

sensor will be able to set up a system and allow the worker got more accurate visual 

feedback like an experienced worker. 

The problem is that monitor and measuring of the control process not always easy 

under a complex working environment like welding. In this thesis, a new method is 

developed that use two different methods to compensate each other to obtain accurate 

monitoring results. Vision sensor and IMU sensor both developed to obtain the accurate 

data from the control process in real-time but don’t influence other. Although both 

vision and IMU sensor has their own limits, they also have their own advantage which 

can contribute to the measuring system. 

KEYWORDS: Manual Welding Process. Vision Sensor, IMU Sensor, Recursive Least 

Square, Real-time Image Processing 
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CHAPTER 1. INTRODUCTION 

1.1 Background 

Monitoring and measuring of the control process are the core part for the factory to 

produce high-quality product. The difficulty of the control process sensing is how to 

collect accurate and precise information under some complex environment and motion 

state like GTAW welding show in Figure 1.1 [1], usually, the production process should 

be mechanized or automated as long as it can be justified for production cycle, cost, and 

quality. However, there is a lot of problems which adversely the automation significantly. 

Mechanized systems always require a very long time for on-site installation and 

prepared for great precision, furthermore, in some situation, there is not sufficient 

space for a huge automatic machine, also, a skilled worker can always have a better 

product quality than most of the machine. Therefore, the human-machine operation is 

still meaningful. 

Figure 1.1: Illustration for GTAW welding 

However, critical control operation requires works to concentrate consistently in 

order to react rapidly and accurately. Like in the welding process, fatigue and stress 

build up quickly so that welders’ capabilities degrade rapidly. We always want to assure 

the product quality. It brings us to the mechanized welding, however, welder can’t 

interfere with the system in mechanized welding. Robotic also can’t observe the welding 

process with the same level of concentration as in manual operation. Mechanized 

systems rely on precision control of joint fit-up and welding conditions and tedious 

programming to produce repeatable results, but it’s obvious that precision control of 

joints and welding conditions is very costly and not always guaranteed. Up to date, 

there are no sensor/ways that can be conveniently carried by the torch automatically 

monitor the penetration depth or the degree of full penetration like a skilled worker. 
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There has a major difference between machine and human in the production cycle. It 

takes countless hours to train a proficient human worker to make sure that he/she has 

the ability to acquire accurate and enough quality-related information using his/her 

sophisticated sensing system to finish the work. For the automatic applications, 

repetitive and uncomplicated work has already been replaced by the machine in the 

manufacturing industry ([2],[3],[4]), since, a well-designed system has excellent stability 

and physical properties beyond the human body. 

For the control process, using the automatic machine or human workers depends on 

the different needs. the implementation of an automatic control requires worker 

understood mechanistic approaches and control algorithms. The ability of a skilled 

worker to control the producing process is not due to a fundamental understating of the 

laws of physics but based on the feedback sensory information which might be 

imprecise or partial truths. 

1.2  Objective and approach 

Robotic and manual workers both have their own advantages and limits. A human 

worker has many different experiences and can easily adjust for different circumstances, 

but, they have their physical limitation which makes human worker can’t operator some 

of the heavy machines. Robotics is suitable for precision and repeated massive 

production applications but need a long time and high cost to set up. In other words, a 

very long preparing time and not suitable for a small amount of application. The 

objective here is to design an appropriate system to detect and provide more accurate 

data to help improve the performance of human works control process. Specifically, the 

tasks of this study are

1. To take advantage of the human worker’s natural movement to facilitate
automatic process monitoring.

2. Provide more accurate and reliable information to human work help them adjust
their control process.

3. Provide a method using two different sensor’s to compensate each other to obtain
accurate monitoring results.

1.3 Organization 

In this thesis, a cooperative sensing system is developed to provide accurate and reliable 

data to assist a human worker to judge how to adjust the current process situation. 

Chapter 1: Introduction 
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The background and motivation of this dissertation are illustrated, and the objective of 

this study is also introduced. Discussed the related technologies in this field and have 

some think about future developments. 

Chapter 2: Literature review 

Introduced the related technologies in this field and have some discussion about future 

developments in the related technologies.  

Chapter 3 Image processing 

In this part, the camera techniques and computer vision technology are introduced 

about image denoise, analysis. After calibration, it can roughly be divided into three 

steps as segmentation, classification and tracking. With the feature detected from the 

processed image, it will be able to track the information that control process needed. 

Chapter 4 Inertial measurement unit sensing system 

The IMU sensors model has been set up, after calibration, we use recursive least square 

method to process the data and update the prediction model when the error surpass a 

specific value. 

Chapter 5 Conclusion and Future work 

Summarize the work which have already been finished and the future research work to 

improve this study is also introduced. 
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CHAPTER 2. LITERATURE REVIEW 

2.1 Overview 

Although automatic control process has been widely applied in manufacturing industries 

like aircraft production, automotive assembly or micro-electric components joining. It’s 

highly likely that intelligent and accurate automatic system is becoming the next trend 

for the factory production. There’s still a lot of challenge in the automatic fields like how 

to monitor and control the production process accurate, reliably and cost-effectively. 

Therefore, there’s still has various techniques underdeveloped for manual process. 

2.2 Computer Graphic 

Computer graphic has been widely applied in manufacturing industries and real life, 

such as automotive assembly, human presence detection or autonomous driving. 

Intelligent and accurate segmentation and classification is the trend for the next 

generation. The major challenge in both industry and real life is to make it fast, reliable 

safety and cost-effectively. 

Computer graphic has some typical tasks like recognition, motion analysis, scene 

reconstruction or image restoration. Usually, the approach was pretty same, from start 

to the end, it will be image acquisition, pre-processing, feature extraction, 

detection/segmentation, high-level processing and decision making. Due to the 

hardware’s fast evolution include range sensor, tomography devices, radar, ultra-sonic 

cameras, etc. Today’s most computer vision system has better performed than human 

and highly stable. There are three major categories in the computer graphic fields. First, 

image processing, doing some transform on the input image, output usually still was an 

image, which basically does not involve or rarely involves analysis of the image content. 

Typical examples were image enhancement, image denoising [18] or binary image 

processing, etc. segmentation based on threshold also falls within the scope of image 

processing. Generally dealing with a single image. Second, image analysis, analysis of the 

content of the image and extract meaningful features for subsequent processing. Still 

only process a single image. Third, computer vision, analysis the features obtained from 

image analysis, extract the semantic representation of the scene, process a sequence 

image. 

Image process is actually digital image processing, is to project the real three-

dimensional random signal in the real word to the two-dimensional plane of the sensor, 

sampled and quantized to obtain a two-dimensional matrix. Digital image process is to 

recover the three-dimensional scene from the 2-D matrix. This involves three important 

attributes about an image is continuity, two-dimensional and randomness.  
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Signal processing and pattern recognition, especially pattern recognition, was one of 

the most successful methods in the past ten years, typical like Boosting [5], Clustering 

[6], Compressive Sensing [7] or Decision tree [8], are all widely used in the computer 

vision fields. Therefore, it will be able to apply a vision-based system to act as human 

worker’s eyes, i.e., to acquire the image of the complete control and manufacturing 

process, with the information extract from the image, the related control algorithms will 

be applied to adjust the process for some specific quality requirement. 

2.3  IMU Sensor Technique 

Motion detect sensors are inertial measurement units (IMU), and it was widely used in 

specific fields like navigation and mapping tasks.  

With the help from the gyroscope, IMU sensor [9] can give us some real-time reaction 

with the acceptable error’s data which could be used to estimation the orientation of 

the torch. With some real-time’s filter’s (like unscented Kalman filter or Recursive least 

square estimation) help. The result was highly accurate and immediate, but there are 

still some problem’s like errors accumulation, also, most of the filter only works well for 

the high-speed movement like car or unmanned aerial vehicle, when the situation 

changes to some very slow and precise environment, the instrument error carried from 

the IMU sensor itself like temperature, gyro’s constant drift or degree’s random drift will 

be obviously enlargement. And because those errors were came with instruments 

measurement, it is inevitable that the calculation will contain errors we need to 

consider. 

In pure visual SLAM or VO [9]. Due to the motion blur, occlusion, fast motion, pure 

rotation, and scale uncertainty of the image, it is difficult to complete the application 

requirements of an actual scene with only one camera, In order to monitoring and 

measuring the control process with acceptable error, an IMU sensor can directly obtain 

the measurement data of the angular velocity and acceleration of the moving subject, 

thereby, it can constrain the object’s motion or complement the visual system, it can 

realizing the positioning of the fast motion or pure rotation’s process to further 

improving the reliability of SLAM/VO.  IMU’s data frequency is generally much higher 

than visual, in two visual frames, k, k + 1, it will usually have more IMU data, like angular 

data, quaternion expression and instant velocity. Although those data had constant 

errors, there still some research [10] try to reach a more accurate result with multiple 

inertial measurement units with data fusion algorithms. 

But the problem is still that in some specific process like GTAW process, how to use 

an IMU sensor measure the accurate control result in a relatively slow and smooth 

moving process is still hard, the acceleration generated from the human control is 
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relatively small compared to the acceleration from the gravity, it’s hard to use 

accelerometer in this kind of control process. 
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CHAPTER 3. IMAGE PROCESSING 

3.1 Calibration 

The calibration in this paper is in addition to the WeiJie Zhang and HongSheng’s paper 

[1]. Including the chapter and the appendix. 

In the image measurement process and machine vision application, in order to 

determine the relationship between the three-dimensional geometric position of a 

point on the surface of the space object and it’s corresponding point in the image, a 

geometric model if the camera imaging must be established. this geometric model’s 

parameters are camera parameters, under most conditions, these parameters must be 

obtained through experiments and calculations. Whether in image measurement or 

machine vision application, the calibration of camera parameters is a very critical part. 

The accuracy of the calibration results and the stability of the algorithm directly affect 

the accuracy of the results produced by the camera. 

An appropriate system calibration is necessary for the accurate image in the study. In 

the experiment set-up, there are mainly two categories of system errors. 

1. Set-up errors for the camera and the target object, which might lead to static
errors for the data collection.

2. Camera distortion may cause the deformation of the captured image.

Figure 3.1: The deformation of the camera 

The camera internal model in [11] is adopted which includes the following internal 

parameters: 

1. Focal length vector 𝑓𝑐: The focal length in pixels of the camera.
2. Principal point vector 𝑐𝑐: The principal point coordinate in the camera frame.
3. Skew coefficient 𝛼𝑐: The skew coefficient defining the angle between the 𝑥 and 𝑦

pixel axes.
4. Distortions vector 𝑘𝑐: The image radial and tangential coefficients ([12],[13]).

The focal length, principal point and the skew coefficient consist of the intrinsic matrix 

of the camera are show in Equation. 3.1. 
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𝐻 = [
𝑓𝑐𝑥 𝛼𝑐 ∗ 𝑘𝑐𝑥 𝑐𝑐𝑥

0 𝑓𝑐𝑦 𝑐𝑐𝑦

0 0 1

] (3.1) 

Where 𝑓𝑐 = [𝑓𝑐𝑥 , 𝑓𝑐𝑦] and 𝑐𝑐 = [𝑐𝑐𝑥 , 𝑐𝑐𝑦].

The target of calibration is to target the camera on a known structure, usually use a 

chessboard, because it has many individual and identifiable grid. By viewing this 

structure from a variety of angles, it will be able to compute the relative location and 

orientation of the camera at the time of each image and the internal parameter of the 

camera [14]. In this study, the chessboard is making by a chessboard paper attached on 

the image plane, as shown in Figure 3.2. In the first image, the camera is not in the 

horizontal line of the chessboard. The second and third image was the image with the 

perspective transformation with matrix 𝐻𝑃, finial, we can establish a coordinate system.  

Figure 3.2: Results of camera and imaging plane calibration: A) The original image of the 

chessboard; B) Result of camera distortion correction; C) Result of frontal parallel view 

for the chessboard; and D) The conversion to the (𝑜𝑥𝑦𝑧)𝐴2 coordinate system

Using the calibration process in ([15],[16]), radial and tangential distortion are obtained 

from Figure 3.3: How the radial and the tangential distortion of the camera influence the 

image And the 𝐻 will be are show in Equation. 3.2.  

𝐻 = [
297.5 0 250.5

0 297.5 341.4
0 0 1

] (3.2) 

The distortions vector 𝑘𝑐 are shown in Equation. 3.3. 

𝑘𝑐 = [−0.0077 −0.0053 0.0002 0.0011 0.0061] (3.3) 

The position and the orientation of the chessboard in the image can be calculate. 

Therefore, a perspective transformation matrix 𝐻𝑃 can be obtained in the Equation. 3.4. 

𝐻𝑃 = [
31.64 8.27 142.18
0.31 41.53 207.89

−0.0004 0.038 26
] (3.4) 



9 

Figure 3.3: How the radial and the tangential distortion of the camera influence the image 

3.2 Denoise 

Basically, every image from the camera has a lot of feature data, it will relatively hard to 

extract our interesting area from an original image cause the noise. 

Gaussian blur [17] is a data smoothing technology and widely used in the image 

processing field. It’s a Low-pass filter which means it can reduce image noise and reduce 

image detail. Roughly speaking, gaussian blur can be understand as each pixel takes the 

average value of the surrounding pixels. However, Images are always continuous, which 

means that closer points obviously have more influence than the long distances points. 

Therefore, the weighted average is more reasonable than the normal average. 

We will use normal distribution here. 

𝑓(𝑥) =
1

𝜎√2𝜋
ⅇ−(𝑥−𝜇)2 2𝜎2⁄

(3.5) 

𝑓(𝑥) =
1

𝜎√2𝜋
ⅇ−𝑥2 2𝜎2⁄

(3.6) 

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2
ⅇ−(𝑥2+𝑦2) 2𝜎2⁄ (3.7) 

In Equation. 3.1,  𝜇 is the mean of 𝑥, 𝜎 is the variance of 𝑥. Because the centre point is 

the origin point when calculating the average, therefore, 𝜇 can be considered as zero, 

which leads us to the Equation. 3.2. According to the one-dimensional Gaussian function, 
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a two-dimensional function can be derived as Equation.3.3. The weight of every point 

can be calculated using the two-dimensional function Equation. 3.3. 

Figure 3.4: Weight matrix of Gaussian blur 

For the edge part [18], Although the edge part only has half matrix make it impossible 

to compute the normal weight matrix. It still has an alternative way, by copy the matrix 

from the corresponding positions on the other side, it will be able to reconstruct a 

complete matrix for the weight matrix. 

Figure 3.5: Gaussian blur 

After the gaussian blur, the image needed to transform to grayscale in order to 

calculate the gradient of the image. The grayscale of the image can be considered as the 

image’s intensity, the direction of the gradient is the fastest change in the image’s 

function 𝐺(𝑥, 𝑦). When there is an edge in the image, there must be a large gradient 
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value, we can get the gradient image through computing the gradient of each pixel in 

the image. Which shows in the Equation. 3.4, 3.5, 3.6. 

𝐺(𝑥, 𝑦) = 𝑑𝑥(ⅈ, 𝑗) + 𝑑𝑦(ⅈ, 𝑗) (3.8) 

𝑑𝑥(ⅈ, 𝑗) = 𝑙(ⅈ + 1, 𝑗) − 𝑙(ⅈ, 𝑗) (3.9) 

𝑑𝑦(ⅈ, 𝑗) =  𝑙(ⅈ, 𝑗 + 1) − 𝑙(ⅈ, 𝑗) (3.10) 

L was the image’s grayscale value and I, j is the pixel’s coordinate. 

The edge of the image contains a lot of gradient information, edge detection based 

on the gradient is simple and effective. However, in order to obtain a more accurate 

positioning of the boundary, it is necessary to consider the influence of non-edge points 

with large noise and gradient. In this case, the image information needs more 

complicatedly process. 

Figure 3.6: The grayscale’s median distribution 

This Figure 3.6: The grayscale’s median distribution shows that the interesting objects 

grayscale’s level was concentrate on the right-top corner. 

3.3 Segmentation 

In order to extract the interesting area from the background in the image, an 

appropriate segmentation is required which can be determined by analyzing the 

histogram of the image, as shown in Figure 3.7, It can be observed that most pixels are 

concentrated in specific levels, Most of those pixels can be considered as the 

background and possibly part of the noise, therefore, the threshold for a binary 

segmentation will be able to decided.  
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Figure 3.7: Histogram image and threshold image 

This kind of binary can effectively identify most of the area we are interested in. 

However, it still has some noise in the image since the binary segmentation is not an 

adaptive thresholding algorithm, it can lose uncertain numbers of features we want and 

keep some fake data we don’t need. Those problems we are solved in the next part, 

Morphology process. 

Morphological image processing like dilation, or erosion, is a collection of non-linear 

operations related to the shape or morphology of features in an image, it uses a small 

shape or template called a structuring element doing the opening or closing operation. 

They are both derived from the fundamental operations of erosion and dilation and 

usually only applied to the binary image. The opening operation will eliminate small 

clumps of undesirable foreground pixels and closing operation will fill small background 

colour holes in the image. Therefore, those operations can significantly remove the 

image’s Irregular edge noise. 

Opening operation, in fact it is the processing of eroding first and then dilating, if 

dilating first and then eroding, it will be called as closing operation, showing in Equation 

3.7, 3.8.  
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dst = close(src, element) = erode(dilate(src, element)) (3.11) 

dst = open(src, element) = dilate(erode(src, element)) (3.12) 

  The closing and opening operation are shows in Figure 3.8. 

Figure 3.8: Opening and closing operation 

With the appropriate structure element, we can obtain the image in Figure 3.9. Use the 

oval element first to erase the noise and the object’s connection. Then change to the 

cross element to mark the object area. We can see that the black noise connected with 

the object has been removed after the morphological process. 

Figure 3.9: Morphology process with different struct element 
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Obviously, we will lose some part of the image in this way and the lost part might not 

able to be retrieved, but to the end, it will not influence the result cause the only data 

we interested here is the motion state of the entire object. By calculating the centroid in 

shown in Figure 3.10, the influence will not be count. 

Figure 3.10: Centroid of the objective 

3.4 Tracking 

With the image after all process, it will be an image without too many interferences, it’s 

will be relatively easy to track the feature from the image that we needed during 

experiment, with an auxiliary line swing from 0 degrees to 360 degrees. Every time the 

line crossing the object’s, we will count it. In the end, it will give us a sequence of data 

shows in Figure 3.11. It’s obvious that there has a unique degree which the line cross 

the object’s lowest times.  

Figure 3.11: relative degree of the torch and count and the degree of the torch 

The unique degree shows that we can extract a feature from the image which related 

to the object’s degree. The relative relationship of the auxiliary line’s degree and the 

object’s degree can provide us with the information that we needed to calculate the 

object’s degree in real time  
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Figure 3.12: Degree of the torch 

The results show that in the most part of the rotation process, the torch’s motion 

could be analyzed by the vision sensor but when it goes to a specific orientation, the 

vision sensor will lose the object’s characteristics features and lose the accurate degree. 

In the next inertial measurements unit sensor part, we tried to obtain another patch of 

data from a different system which has the potential to help improve the final 

monitoring results. 
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CHAPTER 4. INERTIAL MEASUREMENT UNIT

SENSING SYSTEM 

4.1 Introduction and related works 

The measurement of the object’s movement motion, using the proposed IMU sensing 

system requires to detect the object’s orientation in real-time. In this section, the 

orientation of the projective object, as an example, is estimated using a recursive least 

square-based algorithm. 

The objectives orientation is defined as the object’s posture throughout an 

experiment process. It is one of the most important features for a control system. 

Optimal quality result can only be guaranteed if the object’s orientation is accurate 

adjusted. Inappropriate control process can cause various problems ([19],[20]) on the 

result. Therefore, some accurate data about the object’s orientation was required. 

Mastering the object manipulation is challenging for a human worker to manually 

control the object with a specific posture and move smoothly under the limited of the 

human body. It is usually highly depending on the worker’s skill level and his/her 

physiological conditions [21]. Which means, the corresponding measurement scheme 

should be robust enough to make sure the measurement accuracy was able to against 

the disturbances caused by the worker’s operations and this was the basic goal of the 

chapter for.  

This chapter aims to develop an appropriate method to measure the accurate 3-D 

orientation of the torch which could be able to use in real manual welding process or 

welding training system. Based on a little change about the Recursive least square 

algorithm, we hope to reduce the noise from the sensor and can estimate the torch’s 

motion in real time. In addition, a quaternion was used to represent the angular position 

since it can reduce the time complexity and avoid gimble lock problem which Euler 

angles system have [22].  

4.2 Representation of object’s orientation 

As shown in Figure 4.1 [1]. The IMU sensor is mounted rigidly at the tail of the torch 

using a plastic fixture. The 3-D coordinate frame. Express as (𝑥𝑦𝑧)𝑠 , is the IMU sensor’s 

internal frame. It doesn’t need to be considered too much because, during the assembly 

process, the torch was first held still let the handle perpendicular to the gravitation 

direction, with the help from the external calibration tools, such as gravimeter, we can 

make sure that the gravitational acceleration only needs to be considered as 𝑍𝑠  axis. 
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The coordinate frame (𝑥𝑦𝑧)𝑡  is the internal frame for the object’s, axis 𝑍𝑡  is 

coincides with the object’s head direction, 𝑋𝑡  coincides with 𝑋𝑠 . It means that rotate 

the frame (𝑥𝑦𝑧)𝑠  with a specific angle will obtain (𝑥𝑦𝑧)𝑡 , the angle was 𝜃𝑠𝑡.

The object’s orientation is determined when the axis orientation of the coordinate 

frame (𝑥𝑦𝑧)𝑡  is obtained from an absolute 3-D Cartesian coordinate frame and 

expressed as (𝑥𝑦𝑧)𝐸 . The negative direction is a coincidence with the local gravitational 

direction and defined as 𝑍𝐸 . Depends on the different process, the other two axes 

direction may change. 

The tri-axial gyroscope in the IMU sensor measures the angular velocity of the frame 

(𝑥𝑦𝑧)𝑠  relative to frame (𝑥𝑦𝑧)𝐸 . The measurement (in rad/s) can be denoted by a 1-

by-3 row vector shown in Equation. 4.1. 

𝜔𝑠 = [𝜔𝑥, 𝜔𝑦, 𝜔𝑧] (4.1) 

Figure 4.1: The illustration of troch and IMU system, (𝑥𝑦𝑧)𝑠  and (𝑥𝑦𝑧)𝑡  denote the 3-D

coordinate system for the torch and the WIMU, respectively. 

The object’s orientation is denoted by a quaternion list below as Equation. 4.2. Where 

𝑥, 𝑦, 𝑧 express three different axes and 𝜔 express angle. Norm list as Equation. 4.3. 

|𝑞| = √ 𝑥2 + 𝑦2 +  𝑧2 +  𝜔2 (4.2) 

‖𝑞‖ = 𝑥2 +  𝑦2 +  𝑧2 +  𝜔2 (4.3) 

The quaternion and 𝑘  instant can be derived from 𝑘 − 1 instant with angular 

measurement ( 𝜔𝑠
𝑘 )  and time interval denoted by 𝑇𝑠  [5]. 

�̃�𝐸𝑠 𝑘+1 = �̃�𝐸𝑠 𝑘 ⊗  exp (
𝑇𝑠

2
𝜔𝑘) (4.4) 
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Where ⊗ is the quaternion product, which is defined in Equation. 4.5. exp(. ) defined in 

Equation. 4.7. 

𝑞1 ⊗ 𝑞2 = (𝑠1 ⋅ 𝑠2 − 𝑣1 ⋅ 𝑣2, 𝑠1 ⋅ 𝑣2 + 𝑠2 ⋅ 𝑣1 + 𝑣1 ∗ 𝑣2) (4.5) 

Because 𝑞 = 𝜔 + 𝑥ⅈ + 𝑦𝑗 + 𝑧𝑘 can be divided as scalar 𝜔 and vector 𝑥ⅈ + 𝑦𝑗 + 𝑧𝑘. It 

can be express as q = (s, v) where s is scalar 𝜔 and v is vector 𝑥ⅈ + 𝑦𝑗 + 𝑧𝑘, so, the 

product can also be denoted as Equation. 4.6. 

𝑞1 ⊗ 𝑞2 =  

(𝜔1𝜔2 − 𝑥1𝑥2 − 𝑦1𝑦2 − 𝑧1𝑧2) +
(𝜔1𝑥2 + 𝑥1𝜔2 + 𝑦1𝑧2 − 𝑧1𝑦2)ⅈ +
(𝜔

1
𝑦2 − 𝑥1𝑧2 + 𝑦1𝜔2 + 𝑧1𝑥2)𝑗 +

(𝜔
1

𝑧2 + 𝑥1𝑦2 − 𝑦1𝑥2 + 𝑧1𝜔2)𝑘

(4.6) 

ⅇ𝑥𝑝(𝑣) ≜ [cos(|𝑣|) ,
𝑣

|𝜈|
sin(|𝑣|)] (4.7) 

Where 𝑣  presents 1-by-3 row vector. With all the Equation above, the object’s 

orientation will not be able to calculate and express through an accurate coordinate 

system. 

4.3 Sensor Modeling 

The inertial measurement unit system based on the gyroscopes and accelerometers to 

measure the object’s specific force, angular rate and sometimes the magnetic fields, not 

always can measure magnetic fields because some of the IMU sensors don’t have 

magnetometer in it. Limits here is that the IMU sensor’ suffers a lot of errors like zero 

drift or scale factor problem, etc. Figure 4.2 shows that the data from the sensor has 

errors even the object didn’t move. This kind of error called zero drift or other errors 

like error accumulation or voltage fluctuations shown in Figure 4.3. Although it was a 

constant deviation and can be compensated by subtracting an average value from the 

output, it will still influence the result. The other problem is that the acceleration 

generated in smooth control process like manual welding is relatively small when 

compared to the gravity acceleration, which means that it’s hard to use the 

accelerometer in the IMU sensor in this kind of control process.  

Those errors are common in the instrument used to calculate position or velocity. 

Because those errors are in the instrument’s measurements, it is inevitable that the 

calculations will contain errors. In the next part, the error source will be analysis and the 

mathematic model will be used to deal with the errors. 
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Figure 4.2: The original output from the IMU sensor 

The gyroscope and the accelerometer in the IMU sensor measure the angular velocity 

and the acceleration of the sensor respectively. Other than the true values, 𝑠𝜔𝑡𝑟𝑢𝑒
 and 

𝑠𝑎𝑡𝑟𝑢𝑒
, there are several specific errors may affect the measurements of the IMU sensor, 

like measurement noise, bias, scale-factor instability. Therefore, the IMU sensor’s data 

and itself still needs some dispose. The  𝑠𝜔𝑡𝑟𝑢𝑒
 and 𝑠𝑎𝑡𝑟𝑢𝑒

 are shown in Equation. 4.8. and 

Equation.4.9.      

𝜔 = 𝑠 𝑆 𝑠𝜔𝑡𝑟𝑢𝑒𝜔 + 𝑏𝜔 + 𝑣𝜔 (4.8) 

𝑎 = 𝑠 𝑆 𝑠𝑎𝑡𝑟𝑢𝑒𝑎 + 𝑏𝑎 + 𝑣𝑎 (4.9) 

In the equation, 𝑠𝜔 and 𝑠𝑎 are the scale-factor matrices, 𝑏𝜔 and 𝑏𝑎 are the bias, 𝑣𝜔 

and the 𝑣𝑎 are the measurement noises. Cause this is just a simplified sensor model. 

Some minor error sources will not be considered, such as gravity-sensitivity or cross-

sensitivity. 

Usually, the measurement noises 𝑣𝜔 and the 𝑣𝑎 can be considered as white Gaussian 
noise, with a covariance matrix and a null mean respectively. The covariance matrix of 
the sensor model list as Equation 4.10. 

R = [
𝑅𝜎𝜔

2 𝐼3𝑥3
0

0 𝑅𝜎𝑎
2𝐼3𝑥3

] (4.10) 

The two components which influence the true acceleration measurements was the 

sensor acceleration and the gravitation acceleration, as expressed by Equation. 4.11. 

𝑎𝑡𝑟𝑢𝑒
𝑠 =  𝑎𝑠𝑒𝑛𝑠𝑜𝑟

𝑠 + 𝑔𝑠 (4.11) 

In here, 𝑔𝑠  is the gravitational acceleration in the sensor frame. The object should be 

moved smoothly during the experiment. Thereby, 𝑎𝑠𝑒𝑛𝑠𝑜𝑟
𝑠  is relatively small compared 

to the gravitation acceleration. Henceforth, Equation 4.11 can be expressed as Equation. 

4.12. 
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�̃�𝑡𝑟𝑢𝑒
𝑠 ≅ �̃�𝑠 (4.12) 

By using normalized gravity can eliminate the measurement error caused by localized 

gravity difference. 

Figure 4.3: IMU sensor’s error accumulation and Voltage fluctuation 

The scale and the bias factors, in Equation 4.8. and Equation 4.9. depending on the 

sensors’ imperfections and the working field. The typical gyro bias is 0.017-0.17 rad/h 

and acceleration bias is about 100-1000 𝜇𝑔 for tactical grade [23]. Also, the ambient 

temperature significantly affects the gyro’s bias. Hence, sometimes when the IMU 

sensor was put near a strong heat source, the gyro’s bias will not be constant 

throughout the measurement. That’s why a camera system could be able to help 

compensate the gyro’s drift in-line to guard the effect of the drift variation over 

temperature to the estimation accuracy. 

Although the influence of temperature on the accelerometer’s bias is much less 

intense. The in-line calibration of an accelerometer always requires the accelerometer 

remaining in a static condition for several different orientations [24]. But in this 

application, the objective was assumed to hold for a certain orientation. Therefore, the 

accelerometer bias can be assumed as constant and will be compensated by the 

calibration before use [25]. 

The scale factor drifts of IMU are known to affect the measurement accuracy to a 

much less extent than the bias drifts, also, drift variation over temperature area same 

negligible [26]. Therefore, the scale factors were only relatively small variations around 

their average values throughout the experiment process. Their nominal value will be 

determined through the sensor calibration before using [25]. 

For the calibration part. Because the system error caused by the shacking or many 

other resources will change the sensor’s internal parameter, which means that the IMU 
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sensor needs to calibration precisely every time before ready use. Which means we 

need to use current information to establish a new relation system for the sensor. 

Accuracy error of the gyro sensors which might result in the position or orientation 

measurement errors and then leads to unpredictable results. The IMU sensor used in 

this process provides a well-developed software to do the calibration process, so, we 

will not discuss the calibration process here. 

4.4 System Analysis 

Adaptive filter belongs to the category of modern filtering. It is an important application 

in the field of adaptive signal processing developed in the 1940s. Adaptive signal 

processing is mainly to study a system with variable or adjustable structure, which can 

be in contact with the outside world in order to improve the performance of signal 

processing, usually, such systems are always time-varying nonlinear systems that can 

automatically adapt to the environment and requirements of signal transmission 

without having to know the structure and actual knowledge of the signal in detail. 

The least squares method is a standard approach in regression analysis to 

approximate the solution of overdetermined systems. The original principle of least 

squares was first carried out by mathematicians such as C. F. Gauss, A. M. Legendre and 

R. Adrain. and the Recursive least squares was an adaptive filter algorithm that

recursively finds the coefficients that minimize a weighted liner squares cost function

relating to the input signals, in other words, the current solution can be calculated by

update the previously processed solution (using old observation data) with new

observations. The error function is defined as Equation. 4.13.

ⅇ(ⅈ) = 𝑑(ⅈ) − 𝑦(ⅈ) = 𝑑(ⅈ) − 𝑊𝐻(𝑛)𝑈(ⅈ) (4.13) 

 In here, 𝑑(𝑛) is expected response, 𝑈(ⅈ) is input vector, 𝑊𝐻(𝑛) is filter update with 

time. 

The recursive least squares cost function is defined as follows 

   )()(),()(

2

1

nWieinn n
n

i

 +=
=

 (4.14 

The 𝜆 here is forgotten factor, the introducing of the forgotten factor make the RLS 

algorithm able to track non-stationary signals. Roughly speaking, the reciprocal of −1  

can be used to describe the memory ability of the algorithm. 

The input vector )(iU ’s relation with average time matrix and with expected 

response vector can be express as Equation 4.15. Equation 4.16. 
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Therefore, the regular equation of the recursive least squares can be written as 

Equation 4.17. And can derive to Equation 4.18. from Equation 4.15. 

)()(ˆ)( nZnWn =  (4.17) 
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The equation in the square brackets can be expressed as )1( − n , therefore. Use the 

same theory. We will have Equation 4.19. Equation 4.20. 

 )()()1()( nUnUnn H+−=  (4.19) 

)()()1()( * ndnUnZnZ +−=   (4.20) 

The )1( − n  in here express the previous observation data, and the )()( nUnU H  acting 

as the correcting factor during the update process. With the help from the Matrix 

inversion lemma, if A and B are two MM  Positive moment and C and D are NM  ,

MN  matrix, have relation in Equation 4.21. Equation 4.22. 

 
H-1-1 CCDBA +=  (4.21) 

  BC)BCCD(BC-BA H1-H-1 +=  (4.22) 

Assume we have relation in Equation 4.23. 
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We will obtain Equation 4.24. 
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In here, we let )()( 1 nnP −=  and 
)()1(1
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, will derived Equation 

4.25. 
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)1()()()1()( 11 −−−= −− nPnUnKnPnP H (4.25) 

MM  matrix )(nP was Inverse correlation matrix, 1M vector )(nK was gain vector. 

Simplify the 
)()1(1
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, we can obtain the Equation 4.26. 

)()1()()()()1()( 11 nUnPnUnKnUnPnK H −−−= −−  (4.26) 

Therefore, same as Equation 4.27. 

  )()1()()()1()( 11 nUnPnUnKnPnK H −−−= −−  (4.27) 

The equation in the bracket was same as Equation 4.25. Which means we can derive 

Equation 4.28. 

)()()( nUnPnK = (4.28) 

Next, we need to obtain equation used to Update the tap weight vector least squares 

estimation. From the Equation 4.14. Equation 4.19. Equation 4.24. we can derive 

Equation 4.29. 

)()()()1()()()()()()(ˆ *1 ndnUnPnZnPnZnPnZnnW +−=== −  (4.29) 

Use Equation 4.25. to replace most right )(nP  will get Equation 4.30. 
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    (4.30) 

Because )()( nUnP equal to )(nK .Equation 4.30. same as Equation 4.31. 

  )()()1(ˆ)1(ˆ)()()()1(ˆ)(ˆ nnKnWnWnUndnKnWnW H  +−=−−+−=       (4.31) 

In here 

)()1(ˆ)()1(ˆ)()()( nUnWndnWnUndn HT −−=−−=   (4.32) 

Was a prior error, inner product )()1(ˆ nUnW H − express expectation response’s value

)(nd ’s estimate value based on the previous value from Tap weight vector. 

With all the Equation above, we can make a small summary here. At the start time. 

We have Equation 4.33. 
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For every iteration, we need to calculate Equation 4.34-4.37. 

)()1()(

)()1(
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nUnPnU

nUnP
nK

H −+
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=


 (4.34) 

)()1(ˆ)()( nUnWndn H −−=    (4.35) 

)()()1(ˆ)(ˆ nnKnWnW +−=       (4.36) 

)1()()()1()( 11 −−−= −− nPnUnKnPnP H  (4.37) 

Here will be all the equations we need in the RLS algorithm. )(nK is gain vector, ζhere 

are errors from previous estimate, Equation.4.36 means best filter at this moment, It 

update from old best filter and multiple by gain vector plus error, Equation 4.37 means 

updating inverse matrix which we obtain from matrix inversion lemma. 

4.5 Summary 

We still use RLS here to process the original data but with some little change, the 

change is that we always update the prediction model with time but only change the 

prediction model after the error surpasses a specific value. Which means we continue to 

use the previous prediction model and carry a current prediction with us, after error 

surpasses a specific value, we change the previous model to current model, and carry a 

new current model and continue to update it. By this particular method, we will be able 

to use the information from the camera to enhance the accuracy of the systems. 

After all of those appropriate process, finally, we can get the result as Figure 4.4: The 

results of the sensor’s output and prediction.. The horizontal axis was the time and the 

vertical axis was the object’s degree compare to the horizontal line.  

Figure 4.4: The results of the sensor’s output and prediction. 

The green mark was the original data without any process, read line is the original fit, 

we can only regression the red line after the all process use all data to do the linear 
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regression, so, red line doesn’t mean too much. Blue line here was the prediction data 

we got from the Recursive least square method in real time. It’s obvious that the 

prediction line has some delay but reduce the noise significantly, those delay came from 

the previous prediction model because we keep using the previous prediction model 

before the error surpass a specific value, so, if the object’s motion change but we didn’t 

change the prediction model, the delay will occur, after the error gets too large, the 

prediction model has been replaced and the prediction line catch up the real line. Also, 

the original data sometimes has an obvious shift which can cause observe error. Those 

shifts usually were because the human’s different habitual action, we have to admit that 

human has some random moving and those moving always didn’t have any specific 

meaning but will bring the difficult for monitoring the torch’s motion and velocity. 
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CHAPTER 5. CONCLUSIONS AND FUTURE WORK 

5.1 Conclusion 

Manual welding processes are still widely used in many manufacturing areas these days, 

such as car repair or shipbuilding industries. But the problem is that welding is also a 

skill-required operation which means a well-trained worker is very valuable and very 

lack. Since the difference between a new worker and an experienced worker is that how 

to control the process under different circumstance and how to determine what is going 

on during the welding process. Here the task of this thesis is try to provide a method 

that uses two different sensor’s compensate each other to get accurate monitoring 

result, the vision sensor’s calibration and real-time image processing, segmentation and 

track has been finished in CHAPTER 3 and the inertial measurement unit sensor’s 

calibration coordinate system set-up, mathematic model and prediction has been 

finished in CHAPTER 4.  

5.2 Future work 

The method in this thesis still can be improved by the next generation’s intelligent 

technology like machine learning. To make this method more practical and can be used. 

More future work can be done to improve the design of this method. 

  For the first improve, it is possible to build a Markov chain or decision tree to 

determined how to select data from these two sensors and how to use vision data to 

enhance the prediction model in the Recursive least square method. 

 Next Improve is to reduce the image processing algorithm’s time complex and space 

complex in order to build the system in a single-chip microcomputer, which means the 

monitoring process will be more easy to apply in a real working environment. 

  Furthermore, human welder’s behaviour can be modeling and considered as an 

adjusting parameter to develop human welder response model. Practically, a skilled 

welder may adjust torch orientation, speed or arc length during the process. A complex 

model is required in order to study human behavior during the welding process. 
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