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ABSTRACT OF DISSERTATION 

 

CHARACTERIZING NITROGEN LOSS AND GREENHOUSE GAS FLUX 

ACROSS AN INTENSIFICATION GRADIENT IN DIVERSIFIED VEGETABLE 

SYSTEMS 

 

The area of vegetable production is growing rapidly world-wide, as are efforts to 

increase production on existing lands in these labor- and input-intensive systems. Yet 

information on nutrient losses, greenhouse gas emissions, and input efficiency is lacking. 

Sustainable intensification of these systems requires knowing how to optimize nutrient 

and water inputs to improve yields while minimizing negative environmental 

consequences. This work characterizes soil nitrogen (N) dynamics, nitrate (NO3¯) 

leaching, greenhouse gas emissions, and crop yield in five diversified vegetable systems 

spanning a gradient of intensification that is characterized by inputs, tillage and rotational 

fallow periods. The study systems included a low input organic system (LI), a 

mechanized, medium scale organic system (CSA), an organic movable high tunnel 

system (MOV), a conventional system (CONV) and an organic stationary high tunnel 

system (HT). In a three-year vegetable crop rotation with three systems (LI, HT and 

CONV), key N loss pathways varied by system; marked N2O and CO2 losses were 

observed in the LI system and NO3
– leaching was greatest in the CONV system. Yield-

scaled global warming potential (GWP) was greater in the LI system compared to HT and 

CONV, driven by greater greenhouse gas flux and lower yields in the LI system. The 

field data from CONV system were used to calibrate the Root Zone Water Quality Model 

version 2 (RZWQM2) and HT and LI vegetable systems were used to validate the model. 

RZWQM2 simulated soil NO3¯-N content reasonably well in crops grown on bare 

ground and open field (e.g. beet, collard, bean). Despite use of simultaneous heat and 

water (SHAW) option in RZWQM2 to incorporate the use of plastic mulch, we were not 

able to successfully simulate NO3¯-N data. The model simulated cumulative N2O 

emissions from the CONV vegetable system reasonably well, while the model 

overestimated N2O emissions in HT and LI systems.  
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CHAPTER 1. INTRODUCTION 

1.1 Sustainable intensification in vegetable systems  

 Meeting society’s growing need for food while minimizing harm to the natural 

resource base upon which food production depends has been characterized as the 

collective “grand challenge” for agriculture (Foley et al., 2011). There is broad 

understanding that this challenge must be met largely on existing agricultural lands, and 

through managing natural resources more efficiently than they are currently (FAO, 2011; 

Tilman et al., 2011). Sustainable intensification invokes environmental goals such as 

optimizing the use of external inputs (Matson et al., 1997; Pretty 1997, 2008), increasing 

rates of internal nutrient recycling, decreasing nutrient loss (Gliessman, 2007), and 

closing yield gaps (Mueller et al., 2012; Pradhan et al., 2015; Wezel et al., 2015). To 

date, intensification efforts have focused largely on staple grain systems, but efforts to 

sustainably intensify fruit and vegetable production systems are particularly timely due to 

a suite of economic and environmental factors.  

Similar to all sectors of crop and livestock production, global vegetable 

production has increased substantially in the past 50 years, with rising population growth 

and intensification of agricultural production systems (FAOSTAT, 2018). The five-fold 

increase observed in global vegetable yields since 1961 is a function of both increasing 

production area and increasing productivity on existing lands in production. This increase 

is largely due to conversion of lands from staple grain production to high-value specialty 

crops, particularly in small-holder farming areas experiencing declining grain prices 

(Weinberger and Lumpkin, 2007). The dual trends of diversification into vegetable 

production and intensifying production systems has been particularly strong in Asia, 
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where highly intensive, protected agricultural production systems (e.g. plastic-covered 

greenhouse systems) have grown exponentially since 1980 (Norse et al., 2014). In the 

U.S., the number of vegetable farms has consistently increased, and although vegetable 

farms are typically smaller in production area, the total average value of produce sales 

per unit area is greater than average grain crop farms.  

As such, production of vegetables and other high value specialty crops have 

created pathways for farmers to enter or remain in agriculture worldwide, with 

commensurate increase in global vegetable yields and area under specialty crop 

production. Weinberger and Lumpkin (2007) dubbed this trend “a silent horticultural 

revolution.” Certainly, there are significant benefits to increased production of nutritious, 

high value crops for farmers and the global food system. However, vegetable production 

systems span a gradient of production intensity, from very low external input, to arguably 

among the highest in water, nutrient, and agrochemical application. Such diversity in 

production practices does not lend to uniform management practices or consistent 

recommendations to sustainably intensify these expanding production systems.  

Traditionally, vegetable production often involves repeated tillage, bare soil, and 

significant use of fertilizers, pesticides, and water. In the long-term, these practices can 

reduce productivity and profitability of a production system. As such, there is a growing 

need for production practices and management techniques that can increase or at least 

stabilize productivity and profitability while increasing the efficiency of inputs while 

minimizing environmental impacts (Wells et al., 2000).  

Sustainable intensification has been proposed to increase crop yield with minimal 

loss of biodiversity, nutrients, soil, and greenhouse gas emissions. Further, the 
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sustainability of the production systems should also be associated with temporal and 

spatial stability of yield as it relates to changes key soil properties (Schrama et al., 2018). 

Agricultural intensification and the resulting increases in yields have mainly been 

attributed to intensive irrigation practices, agrochemical inputs and intensive tillage. Due 

to problems of environmental degradation and perceived public health risk, there is 

growing interest in alternative farming systems including organic (no synthetic fertilizer 

and pesticide use) and low-input farming systems, which are being explored as ways to 

improve overall soil health, agricultural sustainability, and environmental quality (Poudel 

et al., 2002). However, more study of alternative production systems is needed to 

understand how input use and production practices in these systems affect environmental 

factors (Clark and Tilman, 2017). In the sections below, the literature regarding particular 

aspects of agricultural intensification are reviewed, including nutrient and irrigation use, 

use of fallow periods, and their effects on yield.    

1.1.1 Fertilizers 

Fertilizer use in vegetable crops is routine. For example, 98 percent of tomato 

production area was fertilized in the US in 2010 at the rate of 160 kg N ha-1 (USDA 

NASS, 2011). This is relatively high rate in comparison to other agricultural systems (e.g. 

small grains, forages, etc.) in the U.S. However, it pales in comparison to excessive rates 

applied in horticultural systems in input-intensive regions in the world. For example, N 

fertilizer use has been documented to be as high as 1000 kg ha-1 in covered vegetable 

areas of China (Zhu et al., 2005; Ju et al., 2007). Although increased N fertilization rates 

within a certain range have been shown to directly correlate to increases in crop yields in 

certain crop families (e.g. cole crops, Congreves et al., 2015), the effect of increased 
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fertilizer rates may be negated by the greater influence of climate (temperature and 

precipitation) on crop yield. A recent study by Cui et al. (2018) demonstrated a 7.8-9.5 

Mg ha-1 increase in grain yield with enhanced management practice, while at the same 

time reducing N fertilizer application (kg N per unit area) by 8.5-15.6 %. Further, a 23-35 

% decrease in reactive N losses (N2O emission, NH3 volatilization, NO3¯ leaching) and 

19-29 % reduction in greenhouse gas emission were achieved (Cui et al., 2018). The 

efficiency of fertilizer uptake by crop plants, particularly N fertilizers, and the 

environmental fate of fertilizer losses vary by the nature of the fertilizer. Mineral N 

fertilizer is commonly applied in mineral (inorganic) form as urea and solutions of urea 

and ammonium nitrate, with urea being most readily volatilized as ammonia (Battye et 

al., 1994). The use of “complete” fertilizer (containing N-P-K) is also common in 

vegetable production (Blatt and McRae, 1988), with the N component of these fertilizers 

generally consisting of urea and ammoniacal N.  

In low-input and organic systems there is greater reliance on organic N sources, 

such as manures, composts, and byproducts of animal and plant processing industries 

(Gaskell and Smith, 2007). These are used in combination with crop rotations that often 

include annual and perennial cover crops or forages. Internal N cycling in these systems 

more closely mimic natural systems (Dawson et al., 2008). Compost, a source of plant 

nutrients, is also commonly used in organic and conventional vegetable production 

systems. In organic production systems, compost use is typically augmented with organic 

fertilizers during peak production and late season at periods of peak crop N demand 

(Gaskell and Smith, 2007). However, the uncertainty of nutrient content and availability 

in these biological amendments can lead to over or under-fertilization, build up and 
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leaching of nutrients, or lack of synchrony between nutrient supply and plant uptake 

(Drinkwater and Snapp, 2007). It is necessary to understand how organic inputs and their 

management influence the temporal dynamics of soil inorganic N availability in the 

context of the farming system to balance the essential soil functions of providing crop 

fertility while reducing N losses to the environment (Norris and Congreves, 2018). 

1.1.2 Irrigation  

Vegetables are often irrigated. Surface and sub-surface drip irrigation has been 

increasingly used to irrigate vegetable crops around the world. Relative to other methods 

of irrigation such as flood, furrow or sprinkler irrigation systems, drip irrigation has 

greater water use efficiency than other water application methods (Darwish et al., 2003). 

Drip irrigation has been consistently shown to increase crop yield and water use 

efficiency in vegetable production systems (e.g. Singadhupe et al., 2003; Yaghi et al., 

2013). Drip irrigation provides water directly to the plant root zone, and when coupled 

with practices that supply water in small quantity but frequent application, generally 

produces higher ratios of yield per unit area and yield per unit volume of water than 

typical surface or sprinkler systems (Darwish et al., 2003). In rain-protected agriculture 

systems, including high tunnels, all water is supplied via irrigation. Drip irrigation is the 

recommended irrigation method in these systems. Although all crop water is supplied via 

irrigation, the use of water is often reduced compared to irrigated open field production 

due to evapotranspiration loss (Fernandez et al., 2007).  Some of the greatest growth in 

vegetable production systems has been in the use of such protected culture systems which 

include the use of greenhouses and polyethylene tunnels (e.g. high tunnels, hoop houses) 

in which vegetables are grown in-ground in a semi-controlled environment. Growth in 
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horticultural crops produced in protected culture rose by 44% from 2009 to 2014 (USDA 

NASS, 2014). This pales in comparison to the adoption of protected agriculture in China, 

which accounts for 90% of global greenhouse structures (Chang et al., 2013) through 

rapid intensification of the agriculture sector since the 1980’s (Norse and Ju, 2015). Yield 

in the protected agriculture can be twice as high as that over open culture (Chang et al., 

2013). High tunnels are also commonly used to produce high value crops. With proper 

planning and management techniques, high tunnels can optimize yields, increase fruit 

quality, and provide season extension opportunities for high-value vegetable crops 

(O’Connell et al., 2012). Generally, high tunnels provide the opportunity for earlier crop 

planting and earlier harvest compared to open field conditions. O’Connell et al. (2012) 

reported similar yield in the first year and 33 % more tomato yield in the second year in 

high tunnels compared to open field conditions. 

1.1.3 Crop rotation and managed fallow periods  

Crop rotation is a key strategy to control environmental stresses and improve crop 

performance in conventional and organic vegetable systems. However, the need for 

biological inputs to replace synthetic inputs, and an emphasis on soil organic matter 

management in organic production drive organic growers to adopt major changes 

compared to their conventional counterparts. Higher cover crop diversity, frequent cover 

crop rotation, use of legume crops, and intercropping are more common in low input and 

organic farming. The increased complexity and diversity of crop rotations are likely to 

provide strong environmental benefits and enhanced ecosystem services (Barbieri et al., 

2017), although more study of how the elements of rotation, tillage, cover crop use, and 

fertilizers/amendments interact is needed. 
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Cover crops, such as annual grasses or legumes, are often included between 

vegetable crops to prevent erosion, provide organic matter and nutrients for subsequent 

crops and minimize leaching (Thorup-Kristensen et al., 2003; Robacer et al., 2016). 

Although cover crops are not able to provide enough total N for a high N-demanding 

vegetable crop, or mineralize in synchrony with plant N demand (Drinkwater and Snapp, 

2007) they may still increase the net economic returns (Muramoto et al., 2011) by 

trapping N otherwise lost. In temperate regions, cool season cover crops are most 

common, and are planted in the late summer or early fall, after harvest of warm season 

vegetables. They are terminated in the subsequent spring prior to planting. They may also 

be used in other temporal windows in the rotation vegetable systems. For example short-

season summer cover crops provide weed suppression and nutrients for fall-planted 

vegetable crops (Creamer and Baldwin, 2000). 

The interaction between cover crops (managed fallow) and the subsequent crop 

fertility regime affects the nature and magnitude of nutrient input losses in 

agroecosystems. Shelton et al. (2018) quantified N loss via leaching, NH3 volatilization, 

N2O emissions, and N retention in plant and soil pools of corn agroecosystems in 

Kentucky. Cover crop species and fertilization schemes affect N loss and availability in 

corn systems and dominant N loss pathways varied by season. NO3¯-N leaching was the 

primary loss pathway during the cover crop growing season, especially in treatments 

using leguminous monocultures (hairy vetch only), while N loss via N2O-N and NH3-N 

emissions was dominant during the corn growing season. Nitrogen contribution of 

legume-grass cover crop mixture into fertilizer application rates may reduce N loss 

without sacrificing yield (Han et al., 2017).  
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Pasture-crop rotations, which utilize a multiple year period of grazed pasture 

fallow followed by crop production, are popular in Argentina, Brazil, and Uruguay 

(Garcia-Prechac et al., 2004) and have significant effects on soil properties. Soil 

aggregate stability increases quickly by including pasture in the rotation with crops, due 

to the combination of a) the absence of tillage operation during the pasture cycle; (b) the 

dense and fibrous grass root systems that promote aggregation (Haynes et al., 1991). The 

combined use of cropping and pasture in rotation results in reduced soil erosion 

compared to continuous cropping (Garcia-Prechac et al., 2004). Agricultural soils benefit 

from the re-introducing perennial grasses and legumes into the crop field by gaining 

organic matter and strengthening their capacity for long-term productivity and 

environmental resiliency (Franzluebers et al., 2014). Crop-pasture rotation systems, as 

reported by Franzluebbers et al. (2014) exist in the US in some integrated livestock and 

crop production systems. Perennial forages in pasture add organic matter to soil, provide 

soil C sequestration, improve nutrient cycling, and support biological diversity. 

1.1.4 Effect of intensification on yields  

Intensification packages such as drip irrigation and plastic mulch have been 

generally found to increase crop yield while increasing water use efficiency. Singadhupe 

et al. (2003) reported 3.7-12.5% increases in tomato fruit yield, 31-37% water savings, 

and 8-11% increase in N uptake by plants by using drip irrigation system in tomato crops. 

Similar results have been found in potato (Zhang et al., 2017), and a suite of other crops. 

Intensification packages in vegetable systems can involve significant nutrient, water, 

plastic, and pesticide inputs. The net effects of these efforts have increased yields and 

decreased labor, improved nutrient and water use (Steffaneli et al., 2010), and reduced N 
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losses to the environment, even when viewed relative to other intensified production 

systems, such as row crop agriculture systems (Goulding, 2000). Yield improvements 

through careful and efficient management of crop nutrients and water, precision farming, 

less intensive tillage could reduce future greenhouse gas emissions rather than clearing 

the lands for crop production (Burney et al., 2010). 

The effects of intensification on crop yields has also been framed in the context of 

farm management philosophies or certifications. Specifically, organic and conventional 

systems have been compared as proxies for low and high intensity systems, respectively 

(e.g. Seufert et al., 2012). Examining the effect of these systems-level comparisons has 

been the subject of several recent meta-analyses of yield and ecosystems services in these 

systems. Relative yield stability (i.e., yield stability per unit yield produced) was higher   

in conventionally managed fields by 15% compared to organically managed fields 

(Knapp and van der Heijden, 2018). However, compared to conventional agriculture, 

organic agriculture generally had a positive effect on a range of environmental benefits, 

including above and belowground biodiversity, soil carbon stocks and soil quality. 

Similarly, de Ponti et al. (2012) reported 20% lower yield in organic systems compared to 

conventional systems. However, the difference in crop yield between organic systems 

and conventional systems were highly site specific; such as, in rain-fed legumes and 

perennials on weakly acidic to weakly alkaline soil, the yield difference was below 5 % 

(Seufert et al., 2012; Kniss et al., 2016). Kniss et al. (2016) also concluded that organic to 

conventional yield ratios vary widely among crops. In an analysis of organic yield data 

collected from over 10,000 organic farmers representing nearly 800,000 hectares of 

organic farmland in the United States, their results demonstrated that the organic yield 
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average for all crops was 80% of conventional yield. Yield of organically produced cereal 

crops maize and barley was 65% and 76% of conventional yield, respectively. Organic 

squash, snap bean, sweet maize, and peach yields were not statistically different from 

conventional yields. Despite consistency in the literature indicating that crop yields in 

organic production are generally lower than conventional production, a meta-analysis of a 

global dataset by Crowder and Reganold (2015) suggested the price premiums for 

organic products may offset the lower yield with respect to net economic returns.  

 Recent meta-analyses (Garbach et al., 2016; Ponisio et al., 2015) identified 

organic systems as exemplars of systems that frequently experience significant gaps in 

actualized yield relative to potential yield (yield gaps). In these systems, relatively minor 

increases in inputs and subtle modifications of management practices can offer the 

potential of substantial yield increases, if these practices correct critically limiting 

production factors (Foley et al., 2011). Such yield gaps are most pronounced in low-input 

organic systems, attributed to the relatively low N concentration in biologically-based 

amendments. However, correcting yield gaps in organic systems in ways that minimize 

environmental impact may not strictly be a function of increasing inputs. Organic 

vegetable production may include very intensive practices, such as year-round cropping 

with lack of fallow periods, heavy irrigation and fertilization, and the use of protected 

agriculture systems such as plastic covered greenhouses or high tunnels. The 

simplification of these systems as binary components masks the diverse management 

practices and input intensity within any given system, be they organic or conventional.   

Vegetable production systems are highly diversified, and the soil plant water 

balance, nutrient uptake and variability between vegetable crops within a system and 
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among the production systems have been poorly addressed (Gary et al., 1998). The 

mechanisms and interaction of biotic and abiotic factors driving nutrient losses in 

vegetable production systems have yet to be fully elucidated. With this general framing 

of sustainable intensification in vegetable production systems in mind, this dissertation 

focuses on the N dynamics related to intensification in diversified vegetable production 

systems. In the sections below, the literature on N cycling in these systems from 

empirical studies and simulation modeling literature is reviewed.  

1.2 Nitrogen dynamics in vegetable cropping systems  

1.2.1 N cycling and retention  

The N cycle in agroecosystems includes assimilation, mineralization, 

immobilization, nitrification, denitrification, ammonia volatilization, nitrate leaching, 

runoff, and erosion processes (Neeteson and Carton, 2001). The N fertilizer applied to 

soil is lost through volatilization, denitrification, nitrification (Galloway et al., 2004). 

Although this work has strong focus on N cycling and fate, these processes are 

stoichiometrically linked to carbon (C) processes via microbially-mediated activities. As 

such, a brief discussion of the effect of N fertilizers on soil C stocks is warranted, 

particularly as it relates to sustaining soil fertility. 

Excess synthetic fertilizer application in some intensive vegetable production 

systems has been linked to declines in soil inorganic carbon levels through soil 

acidification and reduction of calcium carbonates (Barak et al., 1997, Ju et al., 2007). 

Reduction in soil organic carbon has been hypothesized to occur via microbial priming 

by labile inputs leading to mineralization of old native organic carbon (McCarty and 

Meisinger, 1997). The soil organic matter pools and the C:N ratio in the biological 



12 
 

amendment (such as compost and manures) influence the soil C dynamics and the net N 

mineralization. The long-term application of N fertilizer increases the slow pool 

proportion of soil organic carbon but decreases the passive pool proportion (Cong et al., 

2014). Irrigation reduces carbon storage through soil respiration, but it may increase the 

soil C storage by increased crop biomass if incorporated in to soil (Zhou et al., 2016). 

Increases in soil C content have been attributed to manure (Chang et al., 2013), however 

these increases have often been observed in systems where manures have been applied at 

rates much higher than recommended (Chang et al., 2013; Norse and Ju, 2015), leading to 

potential manure associated-nutrient losses to the environment. In addition to the nature 

of the inputs, soil management practices such as crop rotation and tillage along with 

environmental factors such as temperature and irrigation affect the soil C and N 

mineralization and immobilization processes (Neeteson and Carton, 2001). Intensively 

cultivated vegetable crop production is characterized by high N-fertilizer application rates 

(Shennan et al., 1992). Sub-surface drip irrigation, inclusion of cover crops, less frequent 

and less intensive tillage, and crop rotation might be options to reduce N loss from the 

soil under vegetable production. 

1.2.2 N leaching in vegetable cropping system  

Crop lands have been shown to be key sources of N inputs to ground water. For 

example, in California, approximately 90 % of N flow to the ground water was linked to 

N leaching (Liptzin and Dahlgren, 2016). Nitrogen fertilization above 150-180 kg N ha-1 

year-1 typically increases leaching rates (Goulding, 2000). This rate is on the upper end of 

commercial vegetable production recommendations for sustainable nutrient management, 

but is not uncommon for many long-season crops (ID-36) (UK Cooperative Extension 
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Service, 2014). Globally, NO3¯ leaching has been demonstrated in areas of intensive 

vegetable production (Neeteson and Carton, 2001). For example, NO3¯-N concentrations 

leached from 1.2 m depth from fertilized vegetable fields in Oregon exceeded the EPA’s 

standard of 10 mg L-1 for drinking water NO3¯-N (Feaga et al., 2009). Generally, N 

losses are pronounced in irrigated intensive vegetable production, as dissolved inorganic 

N moves with free water through the soil profile. Improved irrigation systems such as 

drip irrigation help to improve N use efficiency (Darwish et al., 2003). For example, 

Singadhupe et al. (2003) reported 20- 40% of reduction in N loss in drip irrigation 

compared to furrow irrigation in tomato. Protected agriculture systems have also been 

touted for their ability to prevent NO3¯ leaching compared to open field vegetable 

production systems (Xu et al., 2016). However, much of this depends on irrigation and 

fertility management. Across systems, adaptive nutrient management (Zebarth et al., 

1991), decreasing total fertilizer N, splitting N applications, and irrigation management 

preventing irrigation water from adding to existing soil water below the rooting zone 

have been suggested as strategies to reduce NO3¯ loading from irrigated vegetable 

production systems (Kraft and Stiles, 2003). 

1.2.3 Trace gas emissions  

Approximately 20 % of the global anthropogenic greenhouse gas emissions and 

60 % of total nitrous oxide (N2O) emission is attributed to agricultural activities 

(Lokupitiya and Paustian, 2006). Nitrous oxide has a global warming potential 

approximately 298 times that of carbon dioxide (CO2) (Forster et al., 2007), and 

exponential increases in N2O emissions have been reported with increasing soil mineral 

N content (e.g. Grassini and Cassman, 2012; Cui et al., 2013).   
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Intensive vegetable production systems may have high soil mineral N values, 

often attributed to relatively high N recommendation rates. Simply reducing N 

fertilization may offer opportunities to reduce N2O. Deng et al. (2013) reported reducing 

N fertilizer by 25%, resulting in N2O emission reduction of 31% without compromising 

yields. However, in addition to soil NO3¯ content, soil water content and soil 

temperature, and their interaction, are also major factors affecting N2O emissions. Wet-

dry regimes, also driving N2O emissions, may be considerably different in these 

frequently irrigated systems than in cereal crops production system, which are typically 

unirrigated.  

N2O emissions in highly fertilized vegetable production systems are highest early 

in the season, immediately after the initial transplant, irrigation, and fertilization events. 

This effect is more pronounced when the soil is dry prior to the transplant and wetting 

event (Kusa et al., 2002; Sehy et al., 2003; He et al., 2007). The initial irrigation event 

upon transplanting may increase organic matter decomposition and N availability and 

accelerate soil nitrification and denitrification providing aerobic and anaerobic conditions 

for N2O emission (Davidson et al., 1993; Sehy et al., 2003; He et al., 2007). Further, 

excessive and frequent irrigation in intensive systems may increase N loss. Dobbie and 

Smith (2003) found that the highest N2O emissions occurred when soil water-filled pore 

space (WFPS) was greater than 60% in arable cropping systems. Similarly, Schaufler et 

al. (2010) reported a non-linear increase of N2O and CO2 emissions with increasing 

temperature, and positive correlation with soil water content. Higher temperature and 

lower soil water content may lead to lower N2O emissions from N-fertilized agricultural 

soils (Xu et al., 2016). The total N2O emissions from urea treated vegetable soil in the 
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greenhouse were significantly lower than those from the open field soil. Further, N2O 

emissions may be reduced to some extent by irrigation management. Tian et al. (2017) 

reported a 13.8 % reduction in N2O emission with drip irrigation, and 7.7 % reduction 

with drip fertigation compared to flood irrigation using maize as a model crop.  

Typically, greenhouse gas emission research in agriculture is not focused on 

vegetable cropping systems; especially linking management practices to greenhouse gas 

emissions. It is necessary to understand the contribution of vegetable production system 

to global greenhouse gas inventories, and to develop strategies to mitigate emissions in 

vegetable systems (Norris and Congreves, 2018). Further, the processes controlling CO2 

and N2O emissions are highly influenced by spatially and temporally varying conditions 

such as temperature, soil water, and soil physical, chemical and biological properties, and 

these variations are unlikely to be adequately addressed on national level aggregate data 

(Lokupitiya, and Paustian, 2006). As such, site-specific data are needed to better 

understand these processes and recommendations for sustainable management.  

1.3 Simulation modelling in vegetable production systems 

Frequent field measurement to understand soil N and C processes over the long 

term is laborious and costly (Jiang et al., 2019). Process-based models allow to simulate 

soil N and C dynamics (Ma et al., 2012), and predict future N2O emissions (Fang et al., 

2015) and crop production (Uzoma et al., 2015; Jiang et al., 2019). Many process-based 

models have been developed to understand C and N processes in agro-ecosystems, 

although these have largely been designed for grain crop and forage systems. The 

process-based model helps to quantify N2O emissions and N leaching from agricultural 

production systems and thereby providing important information for optimizing fertilizer 
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use for producing crops (Deng et al., 2013). ExpertN (Engel and Priesack,1993) and 

VegSyst (Gallardo et al., 2011) are simulation models for N recommendation and N 

uptake simulation in vegetable systems, but these models lack the ability to simulate 

greenhouse gas emission and do not have widespread use. Many agro-ecosystem models 

are available and used to simulate soil water, soil N dynamics, greenhouse gas emissions, 

and crop yield. DNDC (Li et al., 1992), APSIM (McCown et al., 1996), Ecosys (Grant 

and Pattey,1999), DAYCENT (Parton et al., 1998; Del Grosso et al., 2000), RZWQM 

(Ahuja et al., 2000), FASSET (Olesen et al., 2002), NOE (Henault et al., 2005), and 

WNMM (Li et al., 2007) are the major simulation models used in agro-ecosystems.  

RZWQM2 is an agro-ecosystem model, which simulates soil water content, soil 

temperature, soil N, N leaching, and crop yield (Ahuja et al., 2000). The agricultural 

management input options are crop and crop cultivar selection, planting date, manure and 

fertilizer application, tillage, irrigation, and pesticide application (Ma et al., 2011). 

Brooks–Corey equations are used to relate volumetric soil water content (θ) and soil 

suction head (h) (Ma et al., 2012). The potential evaporation and crop transpiration are 

described by the Shuttle-Wallace equation. Fang et al. (2014) incorporated the 

Simultaneous Heat and Water (SHAW) (Flerchinger and Saxton, 1989) model into 

RZWQM (Ahuja et al., 2000), and used it to simulate surface energy balance and canopy 

temperature along with crop growth and production in different climate and cropping 

seasons. More importantly, this model provides opportunity to simulate soil and plant 

processes under plastic culture (Fang et al., 2014), which is a common practice in 

vegetable system. RZWQM2 provides soil water content, root distribution, soil 

evaporation, soil transpiration, leaf area index, and plant height at each time step to 
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SHAW and then SHAW provides soil ice content, updated soil water content due to ice 

and freezing, and soil temperature to RZWQM (Fang et al., 2014). The RZWQM model 

has been used widely to simulate NO3¯ leaching (Yu et al., 2006; Gillette et al., 2018; 

Jiang et al., 2019). RZWQM has not been widely used in vegetable production systems, 

save a notable exception by Cameira et al. (2014), who used the model to study water and 

N budgets for organically and conventionally managed urban vegetable gardens. 

However, RZWQM2 has been used successfully to simulate N processes in number of 

other systems. Fang et al. (2015) combined the NOE model and DAYCENT model and 

incorporated them into RZWQM to simulate N2O emissions, allowing other researchers 

to simulate N2O emission (Gillette et al., 2017, 2018; Jiang et al., 2019). Wang et al. 

(2017) reported very negligible effect of tillage intensity on RZWQM2 simulated N2O 

emission, which is in contradiction to the other field  studies which reported increased 

N2O emission with conventional tillage compared to no tillage (Sainju et al., 2012; 

Zurovec et al., 2017). Gillette et al. (2017) used the model to simulate crop production 

and N2O emissions from conventional till and no-till at different N fertilization rates. 

Gillette et al. (2018) also used RZWQM to test N2O emissions in a corn-soybean system 

with a winter rye cover crop. Similarly, Jiang et al. (2019) used RZWQM2 to study the 

effect of inorganic nitrogen (N) fertilization rates and timing, and water table 

management practices on N2O and CO2 emissions. Jiang et al. (2019) used RZWQM2 to 

simulate N2O emission from a corn field and reported lower N2O emission with split 

application of N fertilizer. RZWQM has been used to simulate NO3¯ leaching from soil 

in corn-soybean rotations (Gillette et al., 2018), and in wheat-maize double cropping 

system (Yu et al., 2006). Given the utility of RZWQM2 and the recent modifications to 
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allow for simulating soil water and temperature in plastic mulches, additional modelling 

of vegetable systems using this newly released model version are particularly timely. 

The mechanisms and interactions of biotic and abiotic factors driving N leaching, 

and N2O emissions in vegetable production systems, have yet to be fully elucidated. The 

quantification of the N2O and CO2 emissions through field measurement or simulation 

modelling, and understanding the factors associated in a wide variety of production 

systems are necessary to formulate strategies that help mitigating those losses. Therefore, 

in this dissertation, my research objectives were to 1) relate crop yield to global warming 

potential (GWP) caused by N2O and CO2 losses in vegetable production systems 2) to 

simulate soil water, N2O emission, soil NO3¯N processes and crop yield in these systems; 

3) to characterize inputs, crop N uptake, and leaching to compare vegetable production 

systems. 
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CHAPTER 2. NITROGEN LOSS AND GREENHOUSE GAS FLUX ACROSS AN 
INTENSIFICATION GRADIENT IN DIVERSIFIED VEGETABLE 
ROTATIONS 

2.1 Introduction 

Demand for increased food production is driving agricultural input intensification 

around the world (Tilman et al., 2011). Improved understanding of the interrelations 

between potential yield gains and environmental trade-offs would enable identification of 

areas where input-driven intensification could drive higher yields, while minimizing 

environmental impacts (Liu et al., 2018). To date, research on agricultural intensification 

has focused largely on staple grain systems. However, efforts to sustainably intensify 

fruit and vegetable production systems are particularly timely due to the rapid growth of 

vegetable production area, which has increased from 20.5 million ha in 1964 to 55.2 m ha 

in 2014 (FAOSTAT, 2018).  In the U.S., the number of vegetable farms has consistently 

increased, and although vegetable farms are typically smaller in production area, total 

average value of produce sales per unit area is greater than average grain crop farms.  

To date, agricultural intensification work in vegetable production systems has 

focused on use of irrigation, fertilizer, pest management practices, and decreasing fallow 

periods (Steffaneli et al. 2010). Fertilizer input rates in vegetable production systems are 

often greater than in other plant production systems. For example, in Salinas, California, 

a lettuce-broccoli rotation receives 300 to 550 kg N ha-1 yr-1 (Rosenstock and Tomich, 

2016), and annual N fertilization may be as high as 1000 kg N ha-1 in covered vegetable 

areas of China (Ju et al., 2007; Zhu et al., 2005). Although increased N fertilization rates 

have been shown to directly correlate to increase in crop yields in certain crop families 

(e.g. cole crops), fertilizer N inputs above 150-180 kg N ha-1 year-1 typically increase 
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leaching rates (Goulding, 2000), and extensive NO3¯ leaching has been demonstrated in 

areas of widespread vegetable production. Adaptive nutrient management (Zebarth et al., 

1991), decreasing total fertilizer N, splitting N applications, and irrigation management 

preventing irrigation water from adding to existing soil water below the rooting zone 

have been suggested as strategies to reduce NO3¯ loading from irrigated vegetable 

production systems (Kraft and Stiles, 2003). 

In addition to NO3¯ leaching, work in agronomic systems has linked exponential 

increase in N2O emissions to increased soil available N contents, and peaked after soil 

management activities, irrigation after fertilization events, and particularly N fertilizer 

inputs exceed crop N demand (Millar et al., 2018). Although vegetable systems may 

contain high levels of mineral N, wet-dry regimes may vary considerably in these 

frequently irrigated systems from cereal crops production system. As such, patterns 

observed in grain crop systems may not be directly applied to vegetable production 

systems. 

Some of the greatest growth in vegetable production systems has been in the use 

of protected culture, including the use of greenhouses and polyethylene tunnels (e.g. high 

tunnels, hoop houses).  In the U.S., production in protected agriculture systems increased 

by 44% from 2009 to 2014 (USDA NASS, 2014). In parts of East Asia and Europe, 

protected agriculture systems are common place, with the majority of vegetables, and to 

some extent fruits, produced under protective cover.  Although yields may be increased, 

and foliar disease decrease due to lack of soil splash in these controlled environments, 

protected culture systems are prone to soil quality issues due to high input use and lack of 

flushing rains. For example, in protected culture areas of China, extremely high fertilizer 
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use has been shown to cause degradation of soil and water quality, soil acidification, and 

soil salinization primarily due to NO3¯ accumulation (Ju et al., 2007, Guo et al., 2010) 

and low nitrogen use efficiency (Zhang et al., 2015). 

Although some vegetable systems may be prone to input levels that may have 

undesirable environmental effects, vegetable production systems are diverse and variable 

in terms of production practices.  There are many low input vegetable systems around the 

world in which intensification efforts may be sustainable and timely. For example, recent 

meta-analyses have found that yield gaps are most pronounced in low-input organic 

systems, particularly in systems with inadequate nutrient supply to the system, attributed 

to the relatively low nitrogen concentration in biologically-based amendments. Targeted 

and additional inputs may increase yields in the low input systems without substantive 

off-farm nutrient losses. Relatively minor increases in inputs and subtle modifications of 

management practices can offer the potential of substantial yield increases, if these 

practices correct critically limiting production factors (Foley et al., 2011). However, there 

are a number of factors affecting input use efficiency, yield increases, and soil and water 

quality impacts, and the mechanisms and interaction of biotic and abiotic factors driving 

losses in vegetable production systems have yet to be fully elucidated. Further, the 

interactive effect (and restrictive effect) of soil N, soil temperature, and soil moisture 

content on N2O emissions varies not only between climates, but within a single climate, 

between agricultural ecosystems with different management practices (Xu et al., 2016).  

The objectives of this study were to 1) characterize soil mineral N pools and NO3¯ 

leaching, 2) quantify CO2 and N2O fluxes and 3) relate crop yield to global warming 

potential (GWP) caused by N2O and CO2 losses in three vegetable production systems. 
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2.2 Materials and Methods 

2.2.1 Research sites  

  This three-year rotational study was initiated in early spring, 2014. Two sites in 

central Kentucky with Maury silt loam soil (a fine, mixed, active, mesic Typic 

Paleudalfs) were utilized, 1) The University of Kentucky Horticulture Research Farm 

(UK HRF) in Lexington, KY (37°58'29"N, 84°32'05"W), and 2) a local organic farm in 

Scott County, Kentucky (38°13'20"N, 84°30'38"W). Both farms are in the central 

Bluegrass region of Kentucky, with similar rainfall, temperature, and soil type (annual 

precipitation of 1209, 1475 and 1011 mm; average air temperature of 12 ºC, 13.3 ºC and 

14.2 ºC in 2014, 2015 and 2016, respectively). Each system contained six replicate plots 

measuring 9 m x 1.5m. Initial soil conditions for each system are listed in Table 2.1.  

2.2.2 Cropping systems  

  The three vegetable production systems were selected to represent a gradient of 

intensification, as characterized by duration of fallow periods, tillage intensity, and 

irrigation and nutrient inputs (Table 2.2). The Low Input Organic system (LI) consisted 

of an 8-year rotation beginning with five-year mixed grass/legume pasture that is 

rotationally grazed or cut for hay for grass-finished beef and calf production. After the 

five-year fallow period, the pasture was broken with deep inversion plowing, disking and 

surface rototilling to transition fields into a three-year rotation of annual crops. No 

supplemental fertilizer was added, and drip irrigation was used exclusively for sweet 

peppers (Capsicum annum L., ‘Aristotle’) produced using a plasticulture system. Table 

beets (Beta vulgaris L., ‘Red Ace’), collards (Brassica oleracea var medullosa L., 

‘Champion’) and beans (Phaseolus vulgaris L., ‘Provider’) produced on bare ground 
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received only natural rainfall, and no supplemental irrigation. For the past 15 years, the 

farm has grown diversified organic vegetables in the annual crop portion of the rotation, 

after transitioning from two generations of conventional tobacco production in a similar 

rotation. This experiment follows the three-year vegetable crop rotation.  

The two more intensive systems (Conventional and High Tunnel) are 

representative of common commercial vegetable production systems, and were located at 

the UK HRF. The Conventional system (CONV) consisted of a winter wheat (Triticum 

aestivum) cover crop terminated with tillage in early spring (Table 2.2) followed by 

seasonal annual vegetable production (Table 2.3). Inputs included mineral fertilizers 

applied pre-plant and in-season, split-application via fertigation when required for the 

crop as per commercial vegetable production recommendations for the study region (UK 

Cooperative Extension Service, 2014). Crops were scouted weekly for insects and 

pathogens, and treated with prophylactic fungicides (sweet pepper and table beets) and 

insecticides (collards only) according to recommendations. All crops were drip irrigated 

in every 2-3 days interval in summer and 3-4 days interval in winter season depending on 

rainfall. All crops were drip irrigated. 

The organic high tunnel system (HT) consisted of three, replicated unheated 9.1 m 

x 22 m steel structures with polyethylene film coating. As is typical for management of 

these structures, crops are grown in soil without supplemental heat or light, and are only 

passively ventilated through manual opening of doors and side curtains. High tunnel 

systems are “season extending” technologies used in specialty crop production, allowing 

for lengthening the growing season of warm-season crops by approximately one month 

each in the spring and fall, and allowing for cool-season vegetable production throughout 
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the winter in the study region. Also typical to these systems, cover crops are not used, as 

these intensive production systems often are used for production of high value crops. The 

use of managed fallows not considered economically efficient unless they address a 

production issue, such as pathogen or pest management. Crop residues were removed 

from the system to minimize pathogen presence. Pre-plant fertilizer consisted of 

composted horse manure (C:N ratio 25:1) and granular organic fertilizer (Harmony 5-4-3, 

BioSystems, LLC, Blacksburg, VA) were incorporated into the soil before crop planting 

at a rate of 67 kg N ha-1, and 45 kg N ha-1 respectively. Supplemental fertigation with 

liquid organic fertilizer (Brown’s Fish Fertilizer 2-3-1, C.R. Brown Enterprises, 

Andrews, NC) was applied in-season only to the sweet pepper crop, at flowing and heavy 

fruit set (twice total) at the recommended rate constituting an additional 28 kg N ha-1 at 

each fertigation event. Water inputs in the HT system are via irrigation, as the plastic 

cover over the structure excluded all rainfall. All crops were drip irrigated in every 2-3 

days interval in summer and 3-4 days interval in winter season. The crop rotation and 

timing of management activities are detailed in Table 2.3. 

2.2.3 Soil sampling 

Soils were sampled monthly at 0-15, 15-30, and 30-50 cm depths for mineral N 

(NH4
+-N and NO3¯-N). On each sampling date, three cores were taken per plot at each 

depth, homogenized, and bulked for a single analysis per plot. Fresh soil samples were 

kept refrigerated (~ 4.4⁰ C) until processing, passed through a 2 mm sieve and processed 

within 24 h of sampling. Soil mineral N was extracted from a 5 g subsample of fresh soil 

in 1M KCl (Rice et al., 1984) and analyzed by a microplate spectrophotometer (Epoch 

Model, BioTek Instruments, Inc., Winooski, VT), after NO3¯ was reduced using a 
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cadmium reduction device (ParaTechs Co., Lexington, KY) (Crutchfield and Grove, 

2011).   

Ion exchange resin (IER) methods were used to assess net N mineralization via 

IER resin bags placed at the mid-depth point of the 0-15 cm and 15-30 cm depths (7.5 cm 

and 22.5 cm depths, respectively). NO3¯ leaching was assessed using IER lysimeters 

placed below the plant rooting zone (50 cm depths). A mixed bed resin was used in both 

resin bags and lysimeters (Purolite MB400, Bala Cynwyd, PA). IER bags were made 

from 1000 mm2 knit swimwear fabric, filled with 1 teaspoon (5 ml size) of resin and 

sealed with a ~0.10 m-long cable tie. Resin bags were replaced monthly, at the time of 

soil sampling. After recovery, resin bags were rinsed of loose soil using DI water, resin 

mineral N extracted in 2M KCl, and analyzed by colorimetric analysis, as described 

above. IER lysimeters were constructed from PVC tubing after the method of Susfalk and 

Johnson (2002), using 2 teaspoonfuls of resin per lysimeter. Lysimeters were inserted 

carefully under soil that had not been disturbed through previous excavation by digging a 

horizontal installation trench approximately 50 cm perpendicular to the main vertical 

excavation trench. IER lysimeters were replaced every three months, and once recovered, 

disassembled, with resin mineral N extracted using the 2M KCl method described above.   

 Trace gas fluxes (N2O, NH3, CO2, and CH4) were measured weekly in 2014 and 

bi-weekly in 2015 and 2016 (excluding periods when the ground was frozen) using a 

FTIR-based field gas analyzer (Gasmet DX4040, Gasmet Technologies Oy, Helsinki, 

Finland). The static chamber method (Parkin and Venterea, 2010) was used, with 

rectangular stainless-steel chambers (16.35 cm x 52.70 cm x 15.24 cm) installed in each 

plot. Chambers were installed after planting of initial crops in the rotations, and kept in 
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the soil for the duration of the three-year study, except during tillage operations. When 

pans were removed periodically, chambers were replaced at least 24 hours prior to 

sampling events. At the time of gas sampling, the gas analyzer was connected to the field 

chamber by affixing a matching rectangular gas pan connected to the analyzer, clamped 

tightly in place, and measured continuously for ten minutes. The gas fluxes were 

calculated by using the following equation (Iqbal et al., 2013): 

                         (𝐹𝐹) = 𝛥𝛥𝛥𝛥
𝛥𝛥𝛥𝛥

 𝑉𝑉
𝐴𝐴

 𝜌𝜌  

Where F is the gas flux rate (mg m−2 h−1), ΔC/Δt indicates the increase/decrease 

of gas concentration (C) in the chamber over time (t), V is the chamber volume (m3), A is 

the chamber cross-sectional surface area (m2), 𝜌𝜌 denotes density of gas (kg m-3) at 25°C. 

Cumulative gas fluxes were estimated by interpolating trapezoidal integration of flux 

versus time between sampling dates and calculating the area under the curve (Venterea et 

al., 2011).  

Soil water potential was measured using granular matrix sensors (After December 

2014) (Watermark, Irrometer Co., Riverside, CA) installed at three depths in the soil 

profile (10, 30, and 50 cm depths), with one sensor per depth and per plot. Watermark 

sensor data was transmitted continuously wirelessly to a data logger (Watermark Monitor 

900M, Irrometer, Co., Riverside, CA), with readings taken each time water potential 

changed. Additional hand-made Tensiometers were constructed of 21.5 mm diameter 

plastic pipe with 22.2 mm diameter ceramic porous cups at lower end and installed at 10 

cm, 30 cm, 50 cm and 70 cm depth in each plot. Tensiometer readings were taken weekly 

using a digital Tensimeter (Soil Measurement System, Tucson, AZ).  The soil water 
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potential data from watermark sensors and Tensiometers were converted to volumetric 

soil water content (m3 m-3) using the van Genuchten (1980) equation:  

 

 

 

where θr = 0.067, θs = 0.45, α =0.02, n = 1.41, m = 1-1/n for silty loam for all soil depths 

(van Genuchten et al., 1991). 

2.2.4 Plant sampling 

Fresh vegetable yields were measured from the entire plot area from each plot. 

Sweet pepper fruit, collard leaves and beans were harvested at multiple times as the 

harvestable portion reached marketable stage, and table beets were harvested once, as 

roots reached marketable size. Plant biomass samples were collected from 2, 0.25 m2 

samples per plot at the end of the growing season, dried at 60⁰ C until a constant mass 

was achieved. Dried samples were homogenized on a Wiley Mill and a subsample ground 

on a jar mill (U.S. Stoneware, East Palestine, OH). Crop plant samples were analyzed for 

C and N content via flame combustion (Flash EA 1112 elemental analyzer, CE Elantech 

Inc., Lakewood, CA).    

2.2.5 Statistical analysis 

Shapiro-Wilk’s W-test was used to test for normality of data. CO2 and N2O flux 

data were log-transformed to meet normality conditions. Non-parametric Spearman rank 

correlations were conducted using JMP Pro 13.2 (SAS Institute, Cary, NC) for CO2, N2O 

fluxes with soil temperature and soil mineral N content.  

𝜃𝜃 = 𝜃𝜃𝑟𝑟 +
𝜃𝜃𝑠𝑠 −  𝜃𝜃𝑟𝑟

[1 + ׀𝛼𝛼ℎ׀
𝑛𝑛

]𝑚𝑚
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2.3 Results 

2.3.1 Time series data 

2.3.1.1 Low input system 

Soil mineral N (NH4
+-N and NO3

¯-N) and NO3
¯ -N leaching rates (expressed by 

IER lysimeter data), were consistently greatest in the LI system at the start of the rotation, 

however Figure 2.1 shows that soil NH4
+-N peaked at the end of the rotation. After this 

initial period of high soil mineral N content, values were low compared to the other 

systems and peaked seasonally at each sampling depth in late spring of each year, with 

annual peak values declining throughout the rotation. The highest soil mineral N contents 

at the surface layer (0-15 cm) were 64 kg ha-1 in May 2014, 55 kg ha-1 in April 2015, and 

50 kg ha-1 in June 2016 (see Figure 2.1 for additional depths). Cumulative mineral N 

trapped in resin bags summed for the entirety of the rotation from 2014 to 2016 in LI 

system was 3274 μg g-1 resin for the 7.5 cm depth and 3492 μg g-1 for the 22.5 cm depth. 

Cumulative NO3¯ collected from lysimeters over the entire cropping period from 2014 to 

2016 was 1826 μg g-1. It is of note that NH4
+-N content was greater than ~40 % of total 

mineral N during the beans portion of the rotation (2016), but was typically less than 12 

% during the remainder of the rotation, excepting for seasonal peaks in the early spring.  

In both soil and resin bag samples, for most of the sampling dates throughout the rotation 

(Figure 2.1), soil and resin N values were lower in the LI system compared to the other 

systems, which received external fertilizer. Complementary IER data indicate the 

mineralization rates were low at these times as well, with monthly IER values < 200 µg g-

1 resin. Soil volumetric water content was consistently driest in the sparsely irrigated LI 

system among the three systems.  
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CO2 fluxes were seasonally-dependent and significantly correlated to soil 

temperature (Table 2.4). The greatest CO2 flux rates were observed in mid-summer each 

year, on 2 July 2014 (950 mg m-2 hr-1), 22 June 2015 (732 mg m-2 hr-1) and 10 August 

2016 (732 mg m-2 hr-1) (Figure 2.1). CO2 fluxes were negligible from November to early 

April each year. Similarly, N2O fluxes were seasonally-influenced, with peak rates 

typically occurring after rainfall or irrigation events, early in summer as soils warmed and 

after tillage events. Peak daily N2O fluxes occurred on 11 June 2014 (522 µg N m-2 hr-1), 

29 June 2015 (393 µg N m-2 hr-1), and 8 June 2016 (58 µg N m-2 hr-1). N2O emissions 

were not strongly correlated with soil mineral N, soil temperature, or soil water content 

values. As with soil mineral N content, fluxes and peak fluxes declined over the three-

year rotation.  

2.3.1.2 Conventional system 

Soil mineral N content in the CONV system was seasonally-dependent, with peak 

values at the beginning of the cropping season (Figure 2.2). Peak values declined over the 

duration of the rotation, concomitant with decreasing quantities of fertilizer applied for 

the crops in the rotation. The greatest soil mineral N contents were 170 kg ha-1 in May 

2014, 51 kg ha-1 in June 2015, and 26 kg ha-1 in June 2016. Cumulative mineral N 

collected in resin bags from 2014 to 2016 was 6539 μg g-1 at 7.5 cm and 8975 μg g-1 at 

22.5 cm depths. Cumulative NO3¯-N collected in lysimeters was 2326 μg g-1. As in the 

LI system, the relative percentage of NH4
+-N in total mineral N (NH4

+-N + NO3¯-N) was 

greater than 30% of the overall mineral N composition in soil and resin bag samples at 

the majority of the sampling dates throughout the rotation (Figure 2.2).  
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Soil moisture content in the CONV system exhibited some drying at the 10-cm-

depth, but was generally consistently near saturation for the silt loam soil type [Saturation 

= 0.45 cm3 cm-3 (van Genuchten et al., 1991)]. This relatively high soil water content is 

reflective of precipitation and regular irrigation inputs consistent with commercial 

vegetable production recommendations (UK Cooperative Extension Service, 2014). 

CO2 fluxes in the CONV system were seasonally-dependent, and were correlated 

to soil temperature (Table 2.4) although the correlation was weaker than in the other two 

systems. The greatest CO2 fluxes were observed in mid-summer each year, with the 

greatest fluxes on 23rd June 2014 (428 mg m-2 hr-1), 6 July 2015 (511 mg m-2 hr-1) and 10 

August 2016 (478 mg m-2 hr-1). CO2 fluxes were negligible from November to early April 

in 2014, and low but with occasional fluxes during the same period in 2015, likely due to 

warmer soil temperatures and more moderate temperatures in winter of 2015. N2O fluxes 

were seasonally-influenced, with peak rates typically occurring early in the cropping 

season, coinciding with pre-plant tillage and fertilizer incorporation. N2O fluxes in the 

CONV system were the lowest of the three systems, with daily peak values occurring on 

31 May 2014 (65 µg m-2 hr-1), 22 April 2015 (145 µg m-2 hr-1), and 8 June 2016 (144 µg 

m-2 hr-1). It is notable that after peak N2O events, low and negative fluxes were observed.  

2.3.1.3  High tunnel system 

Soil mineral N content remained consistently higher in the HT system than in the 

other studied systems throughout the experiment, particularly at the 30-50 cm depth. 

Similar to the other systems, mineral N decreased over the duration of the rotation. The 

greatest soil mineral N contents were observed after fertilization events in May 2014 (147 

kg ha-1), September 2014 (198 kg ha-1), June 2015 (91 Kg ha-1), and June 2016 (57 kg ha-
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1) (Figure 2.3). Cumulative mineral N adsorbed in resin bags for the entirety of the 

rotation was 2754 μg g-1 for the 7.5 cm depth, and 3841 μg g-1 for 22.5 cm depth. 

Cumulative lysimeter NO3¯ was 2161 μg g-1. 

Soil water content in the HT system fluctuated between saturation and 75% of 

field capacity during active crop production periods. Soil water content is solely 

representative of irrigation inputs, as rainfall is excluded in this system. When fallow, 

soils were not irrigated and exhibited soil water content as low as ~ 0.20 cm3 cm-3 for the 

2 week – 3 month fallow periods (Figure 2.3).  

Peak CO2 fluxes in the HT system were comparatively lower than the other 

systems, and occurred ~1 month earlier than the open field systems. CO2 flux was well 

correlated with soil temperature (Table 2.4). Peak CO2 flux rates occurred on 23 June 

2014 (274 mg m-2 hr-1, 8 May 2015 (313 mg m-2 hr-1), and 8 June 2016 (303 mg m-2 hr-1). 

CO2 fluxes rates were consistently higher in the HT system than the open field systems 

during winter, and correlated to higher soil temperatures in the HT structures. Similarly, 

N2O emissions were greater than in the other systems during winter, although fluxes were 

still low, even given the relatively high mineral N content throughout the soil profile. 

Peak annual N2O flux coincided with tillage and incorporation of pre-plant fertilizer. 

Peak N2O fluxes occurred on 26 June 2014 (95 µg m-2 hr-1), 29 July 2015 (257 µg m-2 hr-

1) and 8 June 2016 (153 µg m-2 hr-1).  

2.3.2 Cumulative CO2 and N2O fluxes 

CO2 flux for the entire length of the rotation was greatest in the LI system (12.85 

+ 0.12 ton CO2-C ha-1), followed by the CONV system (8.45 + 0.31 ton CO2-C ha-1), and 
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the HT system (8.26 + 0.34 ton CO2-C ha-1). N2O flux was the entire length of the 

rotation was greatest in the LI system (5.67 kg N2O-N ha-1 + 0.70), followed by the HT 

system (4.52 kg N2O-N ha-1 + 0.97), and the CONV system (2.81 kg N2O-N ha-1 + 0.31). 

Trends in flux data presented according to the global warming potential (GWP, ton CO2 

equivalent ha-1) demonstrate that the cumulative differences between systems across the 

rotation are driven by differences in the first 1.5 y in the rotation (Figure 2.4a).  

2.3.3 Yield and yield scaled GWP 

Crop yields were consistently lowest in the LI system (Figure 2.4b). Yields were 

similar between the CONV and HT systems. Yield-scaled GWP, a relative measure of 

yield to cumulative GWP for the rotation, demonstrated consistently greater GWP per 

unit of yield in the LI system, driven both by greater fluxes as well as lower yields for 

each crop (Figure 2.4c).  

2.4 Discussion 

2.4.1 Soil mineral N 

Soil mineral N peak annual values decreased throughout the rotation in all systems. 

This is likely an artifact of the crop rotation, which was patterned after the LI system. The 

rotation was farmer-designed and included crops with consistently strong market demand 

in the study region, grown in order of decreasing nutrient demand. Vegetable crop 

rotations are highly variable, based on adaptive management informed by factors such as 

environmental conditions and markets (Dury et al., 2012). Further, organic vegetable 

farmers frequently view crop selection and rotation design as a multi-criteria decision 

framework, optimizing for nutrient demand, pest management, and markets (Mohler and 

Johnson, 2009; Nair and Delate, 2016). Utilizing standard fertilizer recommendations in 
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the HT and CONV systems, nutrient inputs declined throughout the crop sequence, likely 

affecting mineral N values as well as N loss pathways. Despite decreasing inputs, HT 

soils maintained consistently greater levels of mineral N in the top 30 cm layers, likely 

due to lack of leaching rains in this system (Zikeli et al., 2017), consistent with literature 

in both conventional and organic HT systems (Shi et al., 2009). 

Resin mineral N pools have not been found to consistently correlate well with soil 

mineral N content, or driving abiotic parameters. Particularly in surface soil layers, some 

literature has found good correlation of resin N to soil water content (Binkley et al., 

1983), mineral N (Kramer et al., 2006), and soil temperature (Johnson et al., 2005). Our 

results are consistent with data finding no consistent correlation between resin N and soil 

mineral N pools (Hanselman et al., 2004, Johnson et al., 2005) or soil water content 

(Allaire-Leung et al., 2001). Further, resin N content revealed less variability within and 

between systems than soil samples. This may indicate that in this application, resin N was 

a less sensitive methodology in detecting changes in soil mineral N pools than soil 

sampling. We did single KCl extraction as described in methods, but a research has 

reported insufficient nutrient desorption from the single extraction and suggested a series 

of KCl extractions compared to single extraction (Kolberg et al., 1999).  

 The greatest NO3¯ leaching measured via IER resin lysimeters were observed in 

the CONV system. These losses mainly occurred after planting of crops as the small 

seedlings were unable to capture the applied initial fertilizer. Fertilizer inputs in this 

system were from inorganic fertilizer sources, and applied according to recommended 

best practices for commercial vegetable production in the study region (UK Cooperative 

Extension Service, 2014). Lowering fertilizer inputs in vegetable production systems to 
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reduce nutrient losses has not been focused upon to the degree that it has been in 

agronomic systems (Quan et al., 2015). However, with the increase in vegetable 

production acreage world-wide and its environmental impact becoming more apparent, 

there is a growing body of literature indicating that recommended fertilizer rates for 

vegetable production may be reduced and still not negatively affect yield while leaching 

rates can be reduced (Zhang et al., 2017). Relatively high leaching rates from CONV 

system indicate that additional research on fertilizer rates and timing; amount and 

frequency of irrigation in the study region may be warranted to sustainably intensify 

CONV vegetable production.  

2.4.2 Soil water content measurements 

Tensiometers and watermark sensors were compared in this study in order to 

assess the variability and reliability of watermark sensors to tensiometric methods. 

Watermark sensors are typically used as low-cost instrumentation for irrigation 

monitoring that can be deployed year-round, including during low temperature conditions 

when the water in tensiometers may freeze and render them unusable.  During the main 

growing season, watermark sensors demonstrated greater sensitivity to changes in soil 

moisture content than the tensiometers did in moister soil conditions, presumably when 

the conductivity across the sensor was better due to the intact ion bridge (Thompson et 

al., 2007).  During dry and unirrigated fallow conditions, the tensiometers performed at a 

lower range of water content than the watermark sensors, which began to fail at 0.18 cm3 

cm-3.  Overall, soil water content data were not well correlated between the watermark 

sensors and tensiometer data, and watermark data were more variable.   
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2.4.3 Trace gases 

CO2 fluxes were found to be strongly correlated with temperature in all systems, 

although peak values varied by system (Table 2.4). Higher correlation between CO2 flux 

and temperature in LI system (R2 = 0.80) value might be related to the higher total soil C 

in the LI system as well as the composition of soil C (Benbi et al., 2014), which may be 

comprised of carbon substrate with greater availability for organic matter decomposition. 

This is notable, as the three systems differed substantially in tillage regime, fallow 

management, and inputs. Except for the initially large fluxes in the LI system at the 

beginning of the rotation after inversion tillage and breaking of the pasture fallow, annual 

CO2 peaks were not substantively different from CONV after two years. This may 

indicate that within annual vegetable production systems, CO2 flux may vary more 

between climates and soil types than by management within a given region.  

N2O fluxes were not well correlated to any single abiotic factor, but did peak 

seasonally in the mid-late summer in all systems, with mid-season peaks after organic or 

synthetic N fertilizer application and tillage events in all systems. In particular, N2O 

fluxes were not well correlated with soil mineral N content. This is notable, in particular, 

in the HT system, which maintained consistently greater soil mineral N content in the top 

30 cm soil layers, compared to two other systems but did not exhibit greater N2O peaks 

or cumulative flux. We hypothesize this may be due to the relatively consistent water 

content and decreased frequency of wet-dry cycles in the HT system, thereby reducing 

the high magnitude N2O fluxes measured after rainfall or high-volume application of 

water (Jamali et al., 2016). Along with this, reduced N2O fluxes might be due to 

overriding effect of dry soil conditions during fallow period in the HT even though high 
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temperature and high soil N was observed (Xu et al., 2016). The interactive effect of 

changed temperature and soil moisture content on N2O emissions varies with different 

agro-ecosystems with different agricultural management. Decreased N2O emissions 

might be attributed to an overriding effect of dry soil moisture conditions on N2O 

emissions in N-fertilized vegetable soil even though enough soil N substrate was present 

(Xu et al., 2016). The greatest N2O flux peaks and cumulative values were observed in 

the LI system, particularly after incorporation of the pasture residue. Tillage in pastures 

has been shown to increase the mineralization of organic N that produces N2O by both 

nitrification and denitrification. Furthermore, irrigation at the time of planting elevates 

N2O emissions (Estavillo et al., 2002; Pinto et al., 2004). It is notable in our results that 

throughout the LI rotation soil mineral N content was considerably less than the other 

systems, but the initial total N and total C were highest in LI (Table 2.1). CO2 flux was 

well correlated with N2O flux in LI system. Carbon dioxide emissions are also used as an 

indicator of microbial activity or respiration in soil (Parkin et al., 1996).The higher N2O 

fluxes in our study might be correlated with higher soil C content in the LI system. 

Denitrification is one biological process producing N2O, that requires an electron donor 

such as carbon (Loick et al., 2017) and is stimulated by higher soil organic matter in this 

compared to the other two systems (Cheng et al., 2017). 

2.4.4 Harvested crop yields 

The HT system, an intensively-managed, organic production system, did not 

experience a “yield gap” when compared to the CONV system, a common issue in 

organic production systems (e.g. Seufert et al., 2012; de Ponti et al., 2012). The 

difference in yield of some crops between the HT and CONV systems may be explained 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/microbial-activity
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in part by differences in crop sensitivities to the inputs or environmental factors. The HT 

system exhibited greater sweet pepper yield than the CONV system. This crop benefits 

from the protective cover of the structure in decreasing fungi-foliar disease incidence 

(Powell et al., 2014). The CONV system had greater bean yield, which may be due to 

flower drop in HT due to higher daily max temperatures (Monterroso and Wien, 1990) in 

the summer. Yields in the LI system were highly variable across the rotation, with two of 

the crops experiencing near crop-failures (table beets and collards). It is important to note 

that this study occurred in one field of a highly diversified LI farm. In these extensive 

systems, variability in a given location or crop is buffered on the farm-scale by practices 

such as crop and variety diversification, successional planting, and production on an 

extensive scale with lower yields on a per unit area (Liebman and Davis, 2000). As such, 

the data presented here reflect field-scale observations, and not whole farming system 

productivity.  

2.4.5 Sustainable intensification of horticultural systems 

Yield-scaled GWP is used as one integrated measure to relate yield to environmental 

impact per unit output (Schellenberg et al., 2012). Due to low yields in some crops (as 

discussed above), and high fluxes after the pasture fallow incorporation, the LI system 

had much greater GWP per unit yield in each crop in the rotation. The comparatively 

intensive and CONV systems did not differ greatly. It is of note that this calculated 

measure of system impact per unit output does not account for “footprint” of inputs in the 

associated systems that are critically linked to the sustainability of the production system 

inputs, such as energy embodied in inputs, irrigation water usage, etc. Further, this 

approach does not relate to future yield levels or resiliency via changes in the soil 
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resources, such as soil organic matter, salinity, or reduced biological activity due to 

decreases in fallow periods.  

However, our yield data are consistent with others that show that lower-input 

organic farming systems may be good candidates for sustainable intensification (Garbach 

et al., 2016; Ponisio et al., 2015). Relatively minor increases in irrigation at critical times, 

more efficacious weed management, or small applications of fertilizer at critical crop 

phenological stages may have strong influence on yields.  

2.5 Conclusion 

This study quantified the CO2 and N2O fluxes from a suite of diversified vegetable 

systems representing a gradient of input and management intensification. Key loss 

pathways in the low input (LI) system were via greenhouse gas fluxes, whereas in the 

conventional system (CONV) they were via leaching. Despite higher soil mineral N 

content in the high tunnel (HT), N2O fluxes were not higher compared to low input (LI) 

system. Yield-scaled GWP was greater in the LI system compared to CONV and HT 

system, driven both by greater fluxes and lower yields. From the perspective of 

sustainable intensification in these three systems, our study suggests CONV systems may 

benefit from reduced fertilizer inputs in combination with irrigation management to 

minimize downward directed hydraulic gradients particularly just after planting of crops; 

LI systems may benefit from targeted additional fertilizer and irrigation inputs. This work 

supports literature indicating the need to examine long-term soil impacts in HT systems 

over longer timelines.    
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2.6 Tables and figures 

 

Table 2.1 Initial soil conditions at study depths of three study agroecosystems. 

Agricultural System 
Soil 
Depth 
(cm) 

Soil 

 pH 

Soluble Salts 
(mmhos m-1) 

Total N 
(%) 

P 

(Kg ha-1) 

K 

(Kg ha-1) 

Total C (%) POX C 

(mg kg-1 of 
soil) 

Soil 
NO3¯-N 
kg ha-1 

Low Input Organic 
(LI) 

0-15 5.4±0.05 18±0.8 0.16±0.010 580±19 196±14 1.75±0.05 317±19  
61±7 

15-30 5.4±0.02 13±1.5 0.11±0.005 668±33 170±12 1.31±0.05 133±18 
 
39±5 

30-50 5.3±0.04 10±0.8 0.07±0.004 828±48 163±12 0.87±0.05 63±40  
27±2 

Conventional 
(CONV) 

0-15 5.3±0.07 16±3.1 0.07±0.020 153±9 473±28 1.10±0.03 63±17  
45±8 

15-30 5.2±0.08 13±1.1 0.08±0.003 134±6 399±10 1.09±0.03 64±12 
 
28±2 

15-30 5.2±0.01 9±0.4 0.07±0.005 92±9 357±14 0.83±0.06 43±22  
19±1 

Organic High Tunnel 
(HT) 

0-15 6.1±0.25 30±8.0 0.13±0.030 254±58 388±61 1.56±0.28 329±40  
76±14 

15-30 5.9±0.17 27±6.2 0.13±0.010 237±40 358±13 1.48±0.09 117±8  
19±3 

30-50 5.7±0.12 16±1.1 0.09±0.010 173±17 313±54 1.12±0.06 207±156  
19±1 
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Table 2.2 Management characterization of three study agroecosystems, as characterized 
by cropping system duration, and tillage, nutrient and irrigation input intensities. 
Agricultural 
System 

Cash Crop 
Production 
(typical 
months/year) 

Tillage Frequency 
(approx. depth in 
m) 

Nutrient Input 
Regime 

Irrigation 
Method  

Low Input 
Organic (LI) 

8-9 Semi-annual soil 
preparation with 
primary inversion 
tillage (0.30 m), 
Secondary soil 
preparation with disc 
(0.20 m). In-season 
weed control via 
sweep cultivation 
(0.15 m). 

Five-year fallow 
prior to cropping 
cycle, annual cool-
season cover crop 
between cash crops. 

Drip 
irrigation in 
plasticulture 
beds applied 
at the time of 
planting. Bare 
ground crops 
depended 
only on 
precipitation. 

Conventional 
(CONV) 

8-9 Semi-annual soil 
preparation with a 
soil spader 
(historically 
inversion tillage, 30 
cm), secondary soil 
preparation with disc 
(0.20 m). In season 
weed control via 
sweep cultivation 
(0.10 m).  

Annual cool-season 
cover crop between 
cash crops, 
Synthetic fertilizer 
applied pre-plant 
and split-
application via 
fertigation in long-
season crops. 

Drip-
irrigated.  

Organic 
High Tunnel 
(HT) 

12 Quarterly secondary 
tillage with rototiller 
(0.20 m). In season 
weed control via 
surface cultivation 
(0.05 m) with hand 
tools. 

Semi-annual 
compost 
application, pre-
plant granular 
organic fertilizer 
(pelletized poultry 
litter-based). 

Drip-
irrigated. 
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Table 2.3 Crop timing and fertilizer rates in three study agroecosystems. Timing of the crop rotation is detailed by planting date (PD) 
to final termination date (TD) by primary tillage or crop removal. 
  Crop Rotation 
               2014         2015-2016     2016 
System  

Sweet pepper 
(Capsicum annum L., 
‘Aristotle’) 

Head lettuce 
(Letuca sativa, 
‘Dov’) 

Table beets (Beta 
Vulgaris, ‘Red 
Ace’) 

 
Collards (Brassica 
oleracea var. 
medullosa, 
‘Champion’)  

Beans (Phaseolus 
vulgaris, ‘Provider’) 

Low Input 
Organic (LI) PD to TD 14 May – 9 Sept -- 8 June – 3 Sept 11 Oct – 23 March  28 May – 4 Aug 

Conventional 
(CONV) 

PD to TD 20 May – 1 Aug -- 24 April – 7 Aug 19 Aug – 26 Feb 7 May – 26 July 

Fertilizer 

78 kg N ha-1 at 
planting on 20 May; 
split application of 9 
kg N ha-1 on 29 May, 
8 June, 16 June, 20 
June, 27 June, 9 July  

-- 
56 kg N ha-1 at 
planting on 24 
April 

56 kg N ha-1 at 
planting on 19 Aug; 
split application of 9 
kg N ha-1 on 8 Sept, 
15 Sept, 22 Sept, 28 
Sept, 2 Oct 

56 kg N ha-1 at 
planting on 16 May 

Organic High 
Tunnel (HT) 

PD to TD 22 April – 29 July 15 Sept – 21 Nov     12 March – 12 June 25 Sept – 26 Feb 28 April – 8 July 

Fertilizer  

Horse manure 
compost equiv. to 24 
ton ha-1, 45 kg N ha-1 
of pelleted organic 
fertilizer (5-4-3) at 
planting 

Same as for Sweet 
pepper  

Same as for Sweet 
pepper  

Same as for Sweet 
pepper  

Same as for Sweet 
pepper  
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Table 2.4 Spearman rank correlation values for N2O flux and soil mineral nitrogen 
(NO3¯-N and NH4

+-N) and soil temperature, and carbon dioxide flux and soil 
temperature in three study vegetable production systems. 

Environmental Variables 

N2O 

Low Input 
Organic Conventional High Tunnel 

Soil mineral N  

(0-15 cm) 
r = 0.30 r = 0.08 r = 0.20 

Soil mineral N  

(15-30 cm) 
r = 0.14 r = 0.02 r = 0.32 

Soil mineral N  

(30-50 cm) 
r = 0.28 r = 0.12 r = 0.13 

CO2 r = 0.46 r = 0.26 r = 0.16 

Soil temperature  

(⁰C, 10 cm) 

r = 0.35 r = 0.07 r = 0.15 

CO2 

r = 0.80 r = 0.55 r = 0.55 
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Figure 2.1 Time series data from the Low Input (LI) system from 2014 – 2016, including 
CO2 and N2O flux, soil water content and precipitation, and soil NH4

+-N and NO3¯-N, 
total mineral N extracted from ion exchange resin bags, and leaching measured via ion 
exchange resin lysimeters. 
  

 



44 
 

 

Figure 2.2 Time series data from the Conventional (CONV) system from 2014 – 2016, 
including CO2 and N2O flux, soil water content and precipitation, and soil NH4

+-N and 
NO3¯-N, total mineral N extracted from ion exchange resin bags, and leaching measured 
via ion exchange resin lysimeters. 
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Figure 2.3 Time series data from the High Input Organic (HT) system from 2014 – 2016, 
including CO2 and N2O flux, soil water content and precipitation, and soil NH4

+-N and 
NO3¯-N, total mineral N extracted from ion exchange resin bags, and leaching measured 
via ion exchange resin lysimeters. 
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*Yield Scaled GWP of LI beets (7.2 ±0.6) not included in graph for better view. 

Figure 2.4 Systems-level comparison of (a) Cumulative greenhouse gas (GHG) emission, 
(b) Crop yield, (c) Yield-scaled global warming potential (GWP), and (d) Crop N uptake 
in the 2014-2016 crop rotation.
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CHAPTER 3. USING RZWQM2 TO SIMULATE NITROGEN DYNAMICS AND 
NITROUS OXIDE EMISSIONS IN VEGETABLE PRODUDUCTION 
SYSTEMS 

3.1 Introduction 

Vegetable production area has increased consistently in the U.S, from 1949 to 

2014 (USDA NASS, 2014). Although production area is expanding, the body of literature 

on the effect of vegetable production on soil processes, greenhouse gas emissions, and 

nutrient leaching is limited (Zhang et al., 2018). This is due, in part, to highly variable 

production practices due to variability in crop choice, input and management intensity, 

and the adoption of diverse conservation practices (Rezaei Rashti et al., 2015). Inorganic 

fertilizers, cover crops, manure, and compost are sources of N, necessary for crop 

production. However, increased N application significantly contributes to air and water 

pollution and global warming (Galloway et al., 2004).  

Agricultural soils contribute approximately 60% to total anthropogenic emissions 

of N2O (Lokupitiya and Paustian, 2006), a potent greenhouse gas with global warming 

potential 298 times greater than CO2 (IPCC, 2014). Primary source of N pollution to 

groundwater and water bodies is from agricultural soils applied with N fertilizers (Tilman 

et al., 2011). Although smaller in production area relative to staple grain crops, vegetable 

production systems are often fertilized with higher rate of N fertilizer (Rosenstock and 

Tomich, 2016) and most often irrigated. These inputs are likely driving the increased 

N2O emissions and NO3¯ leaching losses that have been reported from vegetable 

production systems (Liptzin and Dahlgren, 2016; Xu et al., 2016). 

High temporal and spatial variability of fluxes in gases such as N2O fluxes (Fang 

et al., 2015) makes it difficult to quantify emissions across variable agricultural 
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production systems. Further, process-based models allow an opportunity to simulate soil 

N and C dynamics (Ma et al., 2012), predict N2O emissions (Fang et al., 2015) and crop 

production (Jiang et al., 2019; Uzoma et al., 2015). However, the majority of process-

based models have been developed for grain crop and pasture-based systems, and many 

do not incorporate production methods and technologies common in vegetable 

production.   

For example, the use of plastic mulches is one of the components of intensive 

production of vegetable crops, which continues to grow worldwide (Lament, 1993). Drip 

irrigation in conjunction with plastic mulch reduces evaporation from mulched soil and 

decreases irrigation requirements. Drip irrigation has been increasingly used to irrigate 

vegetable crops globally and reported to have greater water use efficiency compared to 

flood, furrow or sprinkler irrigation methods (Darwish et al., 2003). Vegetable production 

in protected agriculture systems, in which covered structures exclude rainfall are also 

increasingly common world-wide. In the US, the use of high tunnels, which are passively 

heated and ventilated structures with crops grown in-ground production is also increasing 

(USDA NASS, 2014). These semi-controlled environments are protected from rainfall 

and typically have higher temperatures than the open field, allowing for extension of the 

growing season of warm season crops and production throughout the winter season in 

many temperate climates. However, these temperature and moisture regimes differ 

substantially from the open field. In such protected structures, as with many of the 

vegetable production technologies and practices mentioned above affect soil temperature 

and soil water dynamics, which are major drivers of soil N dynamics and other 

agroecosystem processes. Many of these technologies and production practices are 
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difficult to simulate in process-based models developed for open field grain or forage 

systems.     

     Root Zone Water Quality Model 2 (RZWQM2) is a comprehensive ecosystem model 

that simulates soil water, temperature, N and C dynamics and crop yield (Ahuja et al., 

2000). RZWQM2 has been extensively applied to better understand soil water, soil N and 

C dynamics, N leaching, and crop yield in agronomic crop production systems such as 

corn, wheat, and soybean (Ma et al., 2007; Malone et al., 2007; Yu et al., 2006). 

RZWQM2 has not been widely used in vegetable production systems, save a notable 

exception by Cameira et al. (2014), who used the model to study water and N budgets for 

organically and conventionally managed urban vegetable gardens. However, recent 

additions to the model by Fang et al. (2014) incorporated the Simultaneous Heat and 

Water (SHAW) (Flerchinger and Saxton, 1989) model in to RZWQM. The updated 

RZWQM2 can be used to simulate soil water and temperature under plastic mulch, a 

common vegetable production technique. Drip irrigation is also supported by the model, 

as are a number of vegetable crops, making RZWQM2 an ideal candidate for evaluating 

for its ability to simulate a wide variety of vegetable production systems.   

RZWQM2 require detailed input data for weather, soil physical, chemical and 

hydraulic information, and agronomic management to run the model (Malone et al., 

2004; Gillette et al., 2018). Provided with this information and appropriately calibrated 

and validated, RZWQM has been used widely to simulate NO3¯ leaching (Yu et al., 2006; 

Gillette et al., 2018; Jiang et al., 2019). Further, Fang et al. (2015) combined the nitrous 

oxide emission (NOE) model and DAYCENT model and incorporated them into 

RZWQM to simulate N2O emissions, and then it has been used to simulate N2O emission 
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by other researchers (Gillette et al., 2017, 2018; Jiang et al., 2019). As such, RZWQM2 is 

a strong process-based model to help researchers better understand the soil water, N 

dynamics and N leaching across the complex array of crop management, fertilizer use, 

crop rotation, and tillage frequency characteristic of vegetable production systems. The 

objective of this study was to simulate soil water, N2O emission, soil NO3¯-N processes, 

and crop yield in diversified vegetable rotations that include a variety of common 

vegetable production practices. 

3.2 Materials and methods 

3.2.1 Research sites 

This three-year rotational study was initiated in early spring 2014 in two sites in 

central Kentucky with Maury silt loam soil (a fine, mixed, active, mesic Typic 

Paleudalfs). Each system contained six replicate plots. Details about research sites for this 

chapter was utilized from previous chapter. Initial soil conditions for each system are 

listed in Table 2.1.  

3.2.2 Cropping systems description 

The three vegetable production systems utilized in this study were characterized 

by fallow periods, tillage intensity, and irrigation and nutrient inputs. They are presented 

in Table 2.3. Additional management and input descriptions are provided in Shrestha et 

al. (2018). The Conventional system (CONV) consisted of a winter wheat (Triticum 

aestivum L.) cover crop during winter 2014, planted in late fall and terminated with 

tillage in early spring (Table 2.3), followed by vegetables. 

The Organic High Tunnel system (HT) consisted of three, replicated unheated 9.1 

m x 22 m greenhouse structures. Horse manure compost and granular organic fertilizer 
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(Harmony 5-4-3, BioSystems, LLC, Blacksburg, VA) were incorporated into soil at a rate 

of 67 kg N ha-1 before planting each crop. Details about amount and timing of fertilizer 

application are presented in Table 2.3. All crops were drip irrigated. 

The Low Input Organic system (LI) consisted of a long-term rotation of a five-

year mixed grass/legume pasture followed by a three-year rotation of annual crops. No 

supplemental fertilizer was added, and drip irrigation was used exclusively for pepper. 

Irrigation was applied only if precipitation was insufficient at critical stages of crop 

development. Both the HT and LI systems were certified organic under the US National 

Organic Program Guidelines (USDA, 2018).  

3.2.3 Measured data 

Soil, plant and N2O flux sampling methods are presented in detail in Shrestha et 

al. (2018). Briefly, soils were sampled monthly at 0-15 cm, 15-30, and 30-50 cm depths 

for mineral N (NH4
+ and NO3¯) from six replicate plots. On each sampling date, three 

cores were taken per plot at each depth, homogenized, and bulked for a single analysis 

per plot. N2O flux was sampled bi-weekly (excluding periods when the ground was 

frozen) using a FTIR-based field gas analyzer (Gasmet DX4040, Gasmet Technologies 

Oy, Helsinki, Finland). The static chamber method (Parkin and Venterea, 2010) was 

used, with rectangular stainless-steel chambers (16.4 cm x 52.7 cm x 15.2 cm) installed in 

each plot. Gas fluxes were calculated by using the following equation (Iqbal, 2013): 

                         (𝐹𝐹) = 𝛥𝛥𝛥𝛥
𝛥𝛥𝛥𝛥

 𝑉𝑉
𝐴𝐴

 𝜌𝜌  

Where F is the gas flux rate (mg m−2 h−1), ΔC/Δt indicates the increase/decrease 

of gas concentration (C) in the chamber over time (t), V is the chamber volume (m3), A is 

the chamber cross-sectional surface area (m2), 𝜌𝜌 denotes the gas density at 25°C. 
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Cumulative gas fluxes were estimated by interpolating trapezoidal integration of flux 

versus time between sampling dates and calculating the area under the curve (Venterea et 

al., 2011).  

Soil water potential was measured using granular matrix (Watermark) sensors 

(Irrometer Co., Riverside, CA) installed at three depths in the soil profile (10, 30, and 50 

cm depths), with one sensor per depth, for a total of three per plot. Watermark sensor data 

was transmitted continuously via wireless transmitters to a data logger (Watermark 

Monitor 900M, Irrometer, Co., Riverside, CA), with readings logged each time when the 

water potential changed. Soil temperature was measured at the time of N2O flux 

measurement with digital soil thermometer inserting at of 10 cm depth from soil surface.  

Fresh vegetable yields were measured from the entire plot area of 13.5 m2 from 

each of the plots. Pepper fruits, collard leaves and green beans were harvested at multiple 

times as the harvestable portion reached marketable stage, and table beets were harvested 

once, as roots reached marketable size. Plant C and N content were analyzed from a 

subsample plant material collected from each plot at the final biomass harvest. Final 

biomass samples were dried at 60 ⁰C until a constant mass was achieved, homogenized 

on a Wiley Mill (Thomas Scientific, Swedesboro, NJ), and a subsample ground on a 

roller mill (C.Z-22072, U.S. Stoneware, East Palestine, OH). One plant sample from each 

plot for each crop was analyzed for percent C and N on an elemental analyzer (Thermo 

Scientific FlashSmart, CE Elantech, Lakewood, NJ). 

3.2.4 Model description 

RZWQM2 is a one-dimensional agricultural system model, which simulates 

mineralization and immobilization of crop residues, mineralization of soil N, 
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volatilization, nitrification, and denitrification (Ahuja et al, 2000). Soil water content, 

nutrient leaching and crop yield are also simulated. The agricultural management input 

options are crop and crop cultivar selection, planting date, manure and fertilizer 

application, tillage, irrigation and pesticide application (Ma et al., 2012). Brooks–Corey 

equations are used to relate volumetric soil water content (θ) and soil suction head (h) 

(Ma et al., 2012). The potential evaporation and crop transpiration are described by the 

Shuttle-Wallace equation. Fang et al. (2014) incorporated the simultaneous Heat and 

Water (SHAW) (Flerchinger and Saxton, 1989) model into RZWQM (Ahuja et al., 2000), 

and used to simulate surface energy balance and canopy temperature along with crop 

growth and production in different climate and cropping seasons. RZ-SHAW model was 

able to quantify the effect of crop growth on the energy balance under different 

agronomic management practices. RZWQM2 provides soil water content, root 

distribution, soil evaporation, soil transpiration, leaf area index, and plant height at each 

time step to SHAW and then SHAW provides soil ice content, updated soil water content 

due to ice and freezing, and soil temperature to RZWQM (Fang et al., 2014). RZWQM2 

provides soil evaporation (AE), which is used by SHAW to compute the energy balance 

of the surface soil layer by forcing water vapor flux from the soil surface, and therefore 

latent heat flux, to equal the soil evaporation (Fang et al., 2014). Soil heat flow and 

temperature in the soil matrix, considering convective heat transfer by liquid and latent 

heat transfer by vapor for freezing soil is given by 
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where Cs and T are volumetric heat capacity (J kg-1 K-1) and temperature (°C) of the soil, 

ρi is density of ice (kg m-3), θi is volumetric ice content (m3m-3), Kt(s) is soil thermal 

conductivity (W m-1K-1), ρl is density of water, cl is specific heat capacity of water (J kg-1 

K-1), θi is liquid water flux (m s-1), qv is water vapor flux (kg m-2 s-1), Lf is latent heat of 

fusion (335,000 J kg-1) and ρv is vapor density (kg m-3) within the soil (Fang et al., 2014).  

The N2O emission algorithm in RZWQM2, as described in Fang et al. (2015), was 

partly taken from the DAYCENT model (Parton et al., 1998; Del Grosso et al., 2000) and 

Nitrous Oxide Emission (NOE) model (Henault et al., 2005). N2O emission from 

nitrification (N2O_nit) is calculated as following (Del Grosso et al., 2000) and presented 

below: 

 

 

 

 

where FrN2O-Nit is the fraction of nitrification for N2O emissions, and 0.02 was used as the 

default value in DAYCENT (Del Grosso et al., 2000; Parton et al., 2001); FSWnit is the 

soil water factor for the oxygen availability effect on N2O emission during nitrification 

(Khalil et al., 2004) taken from the NOE model. 

N2O emission from denitrification (N2Oden) is calculated as following (Del Grosso et al., 

2000): 

 

 

 

N2Oden=FrN2O-den × Rden  

FrN2O-den=
1

1+RNO-N2O+RNO-N2O 
 

N2Onit=FrN2O-nit  × FSWnit
 R

nit
  

FSW_nit=
0.4 WFPS -1.04

WFPS+1.04 
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where FrN2O-den is the fraction of denitrification for N2O emissions; RNO- N2O is the ratio of 

NO to N2O; RN2-N2O is the ratio of N2 to N2O; [NO3] is soil NO3¯-N; D is gas diffusivity 

in soil (Davidson and Trumbore, 1995); WFPS is water filled pore space. 

3.2.5 Model input, calibration and validation 

Weather input data for the CONV and LI systems, including daily minimum and 

maximum air temperature, wind speed and direction, shortwave radiation and relative 

humidity were entered as daily summary data local to the research sites (KYMESONET, 

2018). Daily precipitation data for LI was taken from a Georgetown-Scott County 

Regional Airport, Scott county (8 km from research site) downloaded from NOAA 

(NOAA, 2018). For the HT system, daily maximum, minimum temperature and relative 

humidity values were summarized from data loggers measuring on 15-minute intervals, 

mounted 2 m high in the center of the structures (WatchDog B102, Spectrum 

Technologies, Aurora, IL). The calculation of daily solar radiation inside tunnels was 

taken from VegSyst V2 model (Gallardo et al., 2016) and calculated as the product of 

solar radiation outside and tunnel plastic roof transmissivity: 

SRin = SRout x τ 

RNO-N2O=4+
9  tan-1{0.75π (10 D-1.86)} 

π
 

RN2-N2O= max  {0.16 k1, k1 exp (
-0.8 [NO3]

[CO2]
)} max (0.1, 0.015 WFPS 100-0.320) 

k1= max  (1.5, 358.4-350 D) 
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τ for double layer polyethylene sheet for high tunnel = 0.7 (Biernbaum, 2013)  

where SRin is the incoming solar radiation, SRout is the outgoing solar radiation, and τ is 

the transmissivity of polyethylene sheet cover on high tunnel. RZ-SHAW model was 

used for pepper in 2014 in all three system and only in CONV collard, as these crops 

were grown under black plastic mulch (Plastic emissivity - 0.95, albedo - 0.05 and 

transmissivity - 0.86), RZWQM2 was used for the other crops.  

           Model simulations were done for each crop separately. For pepper, the model was 

started on April 1st, 2014 and ended on 10th September 2014 in all systems. Final soil C, 

N pools from the pepper were used to initialize the model for the following crops. Model 

simulation for cover crop in CONV, lettuce in HT and fallow in the LI system was started 

on 11th September 2014. Starting date for model run for beet, collard and bean were 1st 

March 2015, 16th August 2015 and 1st March 2016 in all systems. The cumulative N2O 

emissions were calculated for each crop season separately. Soil bulk density was 

measured from field samples (Table 3.1), while soil texture data and soil water content at 

1/3 and 15 bar of soil (Table 3.1) were obtained from USDA NRCS Web soil survey 

(Web Soil Survey, 2018), and calibrated in CONV system (Table 3.1). Saturated 

hydraulic conductivity, soil water content at 1/3 bar and 15 bar for the 50 cm depth were 

calibrated in relation to the measured soil water content in the CONV system; and then 

followed by calibration at 30 cm and 10 cm soil depth. Initial values for fast and slow 

residue pools; slow, medium and fast soil humus pools; and microbial pools were 

calculated based on measured soil carbon data (Table 3.1) by conducting a “warm up” 

run (to get stable soil residue and microbial pool) for 10 years under current weather and 

management practices for the CONV and HT system. Initial carbon pool for the LI 
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system were obtained by running the grass module to mimic the pasture production 

system (Feng et al., 2015). Model default values were used for soil chemistry data. Crop 

parameters were calibrated with the measured yield component data from CONV system 

and validated by HT and LI system. For the pepper crop, the crop parameters were 

obtained from DSSAT pepper variety ‘Capistrano’, as plant height, leaf structure and 

fruit type were similar to pepper variety ‘Aristotle’. For bean, dry bean variety ‘Andean 

Habit 1’ was chosen, as plant characteristics were close to variety ‘Provider’. For the 

table beet, the DSSAT sugar beet var ‘SVRR1142E’ was chosen and we modified the 

crop parameters G2 leaf expansion rate during stage 3 to 130 cm2 cm-2 day-1, G3 Root 

tuber growth rate to 14.5 g m-2 day-1 and plant biomass at half of maximum height to 9.07 

g plant-1 (Tei et al., 1996). The DSSAT cabbage variety ‘990001 Tastie 4’parameter was 

modified to simulate the collard crop. The specific leaf area of cultivar under standard 

growth conditions (SLAVR) was modified to 80 cm2 g-1 (Uzun and Kar, 2004) and 

maximum size of full leaf (three leaves) (SIZLF) was measured, 350 cm2. The HT system 

included an additional crop in the rotation, due to the year-round production capacity of 

the system. The DSSAT cabbage crop parameters; SLAVR modified to 100 cm2 g-1 (Tei 

et al., 1996) and SIZLF modified to 250 cm2, as measured to simulate a lettuce crop. The 

model performance in simulating the soil water, soil NO3¯, N2O emissions and crop 

biomass was evaluated by root mean square error (RMSE) and coefficient of 

determination (R2).  
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3.3 Results and discussion  

3.3.1 Soil temperature 

RZWQM2 simulated soil temperature was compared with the measured values 

(Table 3.2). In all cropping systems, RZWQM2 underestimated the soil temperature for 

all crops except for peppers, which were grown under black plastic mulch. In the CONV 

system, RZWQM2 underestimated average soil temperature (Figure 3.1 (d)) by 3, 2.3, 0.2 

and 1.5 °C during the cover crop, beet, collard and bean growing seasons, respectively. In 

the HT system, RZWQM2 underestimated average soil temperature by 7.6, 3.6, 3.8 and 

2.5 °C during lettuce, beet, collard and bean growing season, and shown in Figure 3.2(d). 

Similarly, the average soil temperatures were underestimated by 4.3, 0.9, 4.4 and 3.3 °C 

during fallow, beet, collard and bean growing seasons, respectively in LI system. The 

underestimation might be related to timing of temperature measurement; as soil 

temperatures were measured during the day time, while the model simulated the 

temperature values as an average of daily temperature (Jiang et al., 2019). The R2 and 

RMSE values ranged from 0.43-0.86 and 1.22-3.68 °C in CONV; 0.63-0.86 and 1.26-

3.15 °C in HT; 0.24-0.93 and 1.93-3.55 °C in LI system (Table 3.2). 

3.3.2 Soil water content 

The simulated soil water content in three different layers (15 cm, 30 cm and 50 

cm) were evaluated using measured values for CONV, HT and LI systems (Table 3.3). 

The simulated water contents in different soil layers showed reasonably good agreement 

with measured soil water (Table 3.3). The model overestimated the soil water content 

values at 10 cm and 30 cm during pepper and collard green growing season in all systems 

and values were close to the measured value at the layer 50 cm. It should be noted that 
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pepper and collard were grown in a raised bed, while other crops were grown in a flat 

bed. In the CONV system, RZWQM2 was able to simulate soil water well during pepper, 

and beet growing seasons, but collard and bean were not well simulated at 30 cm depth 

(Figure 3.1). RZWQM2 was able to simulate soil water content well in the HT system 

except for the collard growing season (Figure 3.2), where the R2 values were lower than 

0.33 for all soil layers. RZWQM2 was able to simulate the soil water in the LI system 

well (Figure 3.3), as R2 values are more than 0.65 in all cases except for bean growing 

season (Table 3.3). The lower agreement between the simulated and measured soil water 

values in the CONV and LI systems might be related to additional water uptake by 

weeds, which were neither simulated nor measured. R2 values may be lower during the 

overwinter grown collard in the CONV and HT systems, as the soil water sensors used 

tend to record lower soil water content values during freezing soil conditions.  

3.3.3 Soil nitrate content 

The simulated soil NO3¯-N content in three different layers (0-15 cm, 15-30 cm 

and 30-50 cm) were compared using measured values for CONV, HT, and LI systems 

(Table 3.4). During the pepper growing season, RZWQM2 underestimated the soil NO3¯-

N content in all systems in all three soil layers. In the CONV system, the model was able 

to simulate soil NO3¯-N well during the cover crop, beet and bean growing seasons 

(Figure 3.4(a), 3.4(b), 3.4(c)), showing the R2 values ranging from 0.38 to 0.97 (Table 

3.4). However, there was not good agreement between simulated values and the 

measured values during pepper and collard growing season in the CONV system. It 

should be noted that the pepper and collard in the CONV system were grown under black 

plastic mulch in an approximately 15 cm high raised beds spaced ~ 1m apart, with the 
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field consisting of a series of such plastic-covered raised beds. Initial fertilizer was 

broadcast evenly over the field prior to raising the beds. However, subsequent fertilizer 

was applied with drip irrigation during the growing season, which narrowed the fertilizer 

application to the soil water pattern dispersed by the drip irrigation. The model simulated 

soil NO3¯-N well during the cover crop, beet, and bean portion of the rotation, where the 

crops were planted in flat bed and the row-to-row distance was small (Table 3.4). The 

largest difference between RZWQM2 simulated and field measured soil NO3¯-N values 

were in CONV pepper, a system in which the standard best management practice in the 

growing region is to split the fertilizer application between pre-plant and in-season 

fertigation. In this practice, 2/3 of the fertilizer is applied during the growing season 

weekly (though this may be more frequent) at a commercially-recommended rate. The 

measured values were taken from samples within the middle 50% of the bed, which may 

have a greater concentration of NO3¯-N than the edges of the bed. From our results, we 

could say that the model simulated soil NO3¯-N well in beet and bean in all systems, 

which were grown in flat bed conditions and in which the row to row distances were 

lower than pepper and collard. 

In the HT system, soil NO3¯-N values in the 0-15 cm layer were poorly simulated 

throughout the rotation (Figure 3.5a), with R2 values below 0.29 (Table 3.4). This might 

be attributed to the high denitrification N loss and N immobilization, despite high 

simulated mineralization (Table 3.7). However, the model was able to simulate the soil 

NO3¯-N reasonably well at 15-30 cm soil layer (Figure 3.5b). The model did not do well 

(R2 < 0.03) in simulating soil NO3¯-N content in the 30-50 cm layer during pepper, 

lettuce and beans growing season. The inability of the RZWQM2 model to simulate the 
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soil NO3¯-N content in the upper 15 cm of soil in the high tunnel grown vegetable system 

might be associated with the source of fertilizer used, tillage intensity, soil temperature 

and moisture regime. In the HT system, only organic fertilizer and horse manure compost 

were used to fertilize the vegetable crops in all cropping seasons. A small tiller which 

turns over only the top 10 cm of soil, was used; concurrently, almost all fertilizer applied 

to crops remains in the top 10 cm. As some researchers reported, N decomposition, 

denitrification, and nitrification processes are not straightforward in organic manure 

applied soil (Chen et al., 2013), and resulted in differences in timing and the amount of 

simulated and observed soil NO3¯-N under high tunnels. RZWQM2 simulated results 

showed continuous N mineralization and denitrification process during the fallow period 

in HT system, that simulated loss (the major contribution being from denitrification), and 

resulted in decreased simulated soil NO3¯-N concentration present in soil during fallow 

period. Cassman and Munns (1980) reported that there is significant interactive effect of 

soil water and temperature on N mineralization. Sharp decline in net N mineralization 

occurs between 0.3 and 2-bar and thereafter it decreases gradually over the 2- to 10-bar 

range at all temperatures (Cassman and Munns, 1980). Reduced soil microbial activity 

could be expected in fallow periods without irrigation in the high tunnels (Knewtson et 

al., 2012), which are protected from rainfall, and are only irrigated during the crop 

growing period. Despite having higher soil temperature in the tunnel, a driver of 

microbial activities in soil, is overridden by the reduced organic decomposition when 

moisture is a limiting factor (Knewtson et al., 2012). Nitrate leaching was also 

significantly reduced from greenhouse grown vegetables in elevated temperature 
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conditions, which led to higher NO3¯ concentrations in greenhouse condition than in 

open field conditions. 

In the LI system, simulated soil NO3¯-N values in the surface layer (0-15 cm) 

were not in good agreement with the observed values throughout the rotation, with R2 

values below 0.10 and RMSE values ranging between 4.59 to 31.82 kg ha-1 during crop 

growing seasons (Table 3.4). However, the simulated 15-30 cm soil NO3¯-N content 

were in good agreement with the measured values, except for the bean growing season. 

The simulated soil NO3¯-N content values at 30-50 cm depth were in excellent agreement 

with the measured values showing the R2 values more than 0.70 for all crops except 

collard (R2 = 0.18) and pepper and, RMSE values ranging between 2.09 – 4.24 kg ha-1 

(Table 3.4). 

3.3.4 Nitrous oxide emissions 

The measured and simulated cumulative N2O-N emissions during each cropping 

season in CONV, HT and LI system are presented in Table 3.5 and daily N2O fluxes are 

shown in Figure 3.4(d) for CONV, Figure 3.5(d) for HT and Figure 3.6(d) for LI system. 

In the CONV system, RZWQM2 simulated the cumulative N2O-N emission well from 

2014 to 2016, while the model generally overestimated fluxes in HT system and 

underestimated fluxes in LI system the total N2O-N emission throughout the crop 

rotation.  

In the CONV system, observed cumulative N2O-N emissions were 0.25, 0.29, 

1.10, 0.25, and 0.93 kg N2O-N ha-1 during pepper, cover crop, beet, collard and bean 

growing season, while the simulated N2O-N emissions were 0.74,0.10, 0.67, 0.62 and 

0.68 0.96 kg N2O-N ha-1 during pepper, cover crop, beet, collard and bean growing 
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season (Table 3.5). For the CONV system, RZWQM2 reliably simulated the N2O 

emissions, showing the R2 values 0.36 to 0.78 except for cover crop and RMSE values 

between 0.90 to 6.83 g N2O-N ha-1 day-1. RZWQM2 overestimated the emission during 

the pepper and collard growing season while underestimating emission during cover crop, 

beet and bean growing season. It should be noted that the pepper and collard were grown 

under plastic mulch. The model was able to reliably simulate the peaks of N2O emission 

in the CONV system (Figure 3.4(d)) but simulated higher fluxes than measured just after 

the tillage and incorporation of fertilizer after pepper planting. The better simulation of 

magnitude and timing of soil NO3¯-N and N2O fluxes in the CONV system might be 

related to the source of N, and the spatial pattern of synthetic N fertilizer application. 

Fang et al. (2015) and Gillette et al. (2017) also reported good agreement between 

RZWQM2 simulated and measured N2O emissions from synthetic N fertilizer field 

with/without tillage. In the CONV system, the overestimation of N2O during the pepper 

(which were grown under plastic mulch) growing season might be related to the 

overestimation of soil temperature. Kim et al. (2014) also reported greater simulated N2O 

emissions than measured values with radish grown under plastic mulch and fertilized 

with 50-150 kg N ha-1.  

In the HT system, the measured cumulative N2O-N emissions were 0.59, 0.39, 

0.69, 1.20 and 1.59 kg N2O-N ha-1, whereas simulated values were 2.11,0.45, 0.71, 1.42 

and 3.03 kg N2O-N ha-1, during the pepper, cover crop, beet, collard and bean growing 

season (Table 3.5). In the HT systems, RZWQM2 simulated cumulative N2O-N 

emissions were close to measured values during the lettuce, beet and collard growing 

season, but overestimated the cumulative N2O-N emission during the pepper and bean 
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portions of the rotation. This overestimation of the N2O-N emission in high tunnels might 

be related to the simulation of higher peaks just after fertilizer application. In general, 

simulations underestimated the soil NO3¯-N content but overestimated soil N2O 

emissions. There are various practices that may not be well simulated in RZWQM2 that 

contribute to this discrepancy. First, high tunnels are structures that exclude rainfall from 

the growing environment. As such, water for crops was provided exclusively by 

irrigation; soil temperature and moisture dynamics vary from the open field conditions in 

which the model was developed and is typically used. Irrigation inputs were applied via 

drip irrigation, as discussed above. Finally, this system utilized compost applications 

prior to crop planting, which may mineralize at rates greater than predicted in the 

simulation. The net effects of these discrepancies resulted in a variation in timing of 

denitrification and nitrification and other N processes between simulated and observed 

conditions in high tunnels. These issues are demonstrated in simulation results such as 

those shown in Figure 3.5(d), which show N2O peaks on August 11th, 2014 and August 

20th, 2015, that were larger than the measured values, and which contributed largely to 

the cumulative fluxes in the HT system. RZWQM2 simulated higher N2O emissions in 

the HT system, but lower N2O emissions in the HT were observed in our work. Most of 

the literatures showed that N2O fluxes increased exponentially with increasing soil 

moisture, temperature and NO3¯ content and decreases with reduced soil moisture 

content (Dobbie et al., 1999). The algorithms for N2O emission, adopted by Fang et al. 

(2015) to incorporate into RZWQM2 model, are based on soil water content, soil 

temperature, and soil N content. The interactive effect of changed temperature and soil 

moisture content on N2O emissions varies with different agro-ecosystems with different 
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agricultural management. Decreased N2O emissions indicated might be attributed to an 

overriding effect of dry soil moisture conditions on N2O emissions in N-fertilized 

vegetable soil even though enough soil N substrate was present (Xu et al., 2016). Warmer 

and drier conditions, as in high tunnels, could affect both the population abundance and 

community structure of nitrifiers and denitrifiers in the vegetable soil (Xu et al., 2016). 

In the LI system (Table 3.5), the measured N2O-N emissions were 2.73, 0.13, 

1.38, 0.98 and 0.39 kg N2O-N ha-1, whereas the RZWQM2 simulated values were 0.36, 

0.12, 0.22, 0.41 and 0.14 kg N2O-N ha-1 during the pepper, cover crop, beet, collard and 

bean growing seasons, respectively (Table 3.5). RZWQM2 underestimated the 

cumulative N2O-N emission for all crop in the LI system. The plots in the LI system were 

converted from rotational grazing pasture into crop fields to grow vegetable in 2014. At 

the start of the crop in 2014, we observed large peaks of N2O flux but that decreased in 

subsequent years. The model could not simulate the large peaks at the starting of the 

planting season in 2014. The first month after pepper planting was the major contributor 

to the overall observed emission in LI system, which contributed 25 % of observed 

cumulative emission during entire cropping period from 2014 to 2016. Pinto et al. (2004) 

reported high N2O flux after tillage operations followed by rapid reduction in perennial 

grasslands. The RZWQM2 model estimated the N2O emission based on the existing soil 

N content and the soil water content. The role of crop residue on N2O emission is 

complex and is not taken into account by RZWQM2. The addition of the crop residue not 

only supply the N for N2O production, it also enhanced oxygen depletion by stimulating 

microbial respiration and promoted anaerobic conditions for denitrification and N2O 

production (Chen et al., 2013). In a laboratory study by Kravchenko et al. (2017), 
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gravimetric soil water content of the plant residue (separated from soil-residue mixture) 

exceeded gravimetric soil water content of soil from soil residue mixture by a factor of 4-

10, accelerated N2O emission. Deng et al. (2013) reported the significantly increased N2O 

emission from soil from vegetable production systems after addition of the organic 

matter. In LI, the simulated N2O emissions were lower than the measured values. The 

simulated N leaching from LI vegetables were higher than from the other two systems. 

The major simulated N leaching loss in LI systems were contributed by the fallow period 

and the collard growing period. Elevated N leaching was reported by Evanylo et al. 

(2008) during winter when soil is without an actively growing crop and precipitation 

exceeds evaporation. Simulation results also showed the 60 and 74 kg ha-1 of mineralized 

N during the fallow period and collard in LI system. The higher N leaching from the crop 

field converted from pasture might be attributed to underestimating mineralized N from 

residues and higher infiltration rate (Evanylo et al., 2008).  

3.3.5 Crop yield and biomass 

The measured and simulated crop yield on dry matter basis in CONV, HT and LI 

systems are shown in Table 3.6. RZWQM2 was reliably able to estimate the pepper, beet 

and bean yield in all systems. Collard yield were overestimated, as we did not sample 

total plant biomass at each green leaf harvesting, rather only harvestable yield, whereas 

the model included all the leaves on the plant. Measured beet yields were low due to 

weed pressure in LI system. Collard yields were low due to low seasonal temperatures 

during the collard growing season, which was expected and is well simulated by 

RZWQM2. Green bean yields were overestimated by RZWQM2 in the LI system 
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compared to the measured yield, which may be due to model not accounting for N uptake 

by weeds during bean growing season. 

3.3.6 Model simulated outputs through the soil profile  

The simulated soil N mineralization, immobilization as well as denitrification, 

runoff, seepage and emission losses of N from the 100 cm soil profile from each crop 

growing season from CONV, HT and LI system are presented in Table 3.7. In LI system, 

The N simulated seepage losses were higher during the fallow period and crop growth 

failure during beets (due to weed pressure) and collards (due to very low temperature 

during early growth). This shows the lack of growth of plant not only results in loss of 

crop yield, but also leads to the losses of N from the field. 

3.4 Conclusion 

RZWQM2 was selected for this purpose due to recent modifications to 

accommodate vegetable production and for its widespread use in simulating soil N and C 

processes, and provision to simulate soil water and temperature under plastic mulch. Our 

results suggest that RZWQM2 may effectively simulate soil temperature, soil water and 

N dynamics and vegetable yields grown for crops grown on bare ground (e.g. beet, 

collard and bean). RZWQM2 underestimated the soil temperature for all crops except for 

pepper, which were grown under black plastic mulch. RZWQM2 simulated soil NO3¯-N 

content reasonably well during beet, collard and bean growing seasons in CONV and LI 

systems, but could not simulate well during pepper crops which were grown under plastic 

mulch. RZWQM2 simulated cumulative N2O emission from 2014 to 2016 reasonably 

well compared to field measured values in the CONV system, while the model 

overestimated it in the HT system and underestimated it in the LI system. Crop yields 
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were simulated well in all systems. RZWQM2 simulated soil water content well in 

CONV, HT, and LI vegetable systems. Although vegetable systems are very complex in 

terms of the crop use, fertilizer use, crop rotation, tillage frequency, the use of a well 

calibrated model helps researchers better understand the soil N dynamics and leaching.  
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3.5 Tables and figures 

Table 3.1 Measured soil bulk density (BD) and texture and calibrated saturated hydraulic conductivity (Ksat), saturation (θs), 1/3 bar 
(θ1/3), 15 bar (θ15) and residual (θr) soil water content 

  
        Uncalibrated   Calibrated        

Soil 
depth 
(cm)  

BD Sand Silt Clay Ksat   θ1/3 θ15 
 

Ksat   θ1/3 θ15 
 
θs θr 

 (g cm-3) %  % % cm hr-1  (cm3 cm-3)   cm hr-1   (cm3 cm-3)   (cm3 cm-3) 

0-15 1.41 7 76 17 0.68 0.285 0.135  0.48 0.305 0.125  0.46 0.015 

15-30 1.43 7 76 17 0.68 0.295 0.153  0.48 0.305 0.133  0.46 0.015 

30-50 1.45 6 65 29 0.15 0.321 0.204  0.15 0.312 0.174  0.45 0.04 

50-70 1.45 6 65 29 0.15 0.318 0.215  0.15 0.312 0.215  0.45 0.04 

70-100 1.47 6 62 32 0.15 0.325 0.225   0.15 0.324 0.225   0.44 0.04 

 

 

 

 

 

 

 



70 
 

Table 3.2 Measured and simulated daily average temperature, R2 and RMSE values of soil temperature (ST) in Conventional (CONV), 
High Tunnel Organic (HT), and Low Input (LI) system during 2014-2016. 

Cropping system  Crops 

Mes soil 
temperature 

(°C) 

Sim soil 
temperature 

(°C) 
RMSE 
(°C) R2 

 Pepper 24.2 26.5 1.22 0.43 
 Cover crops 7.0 4.0 3.68 0.81 
CONV Beets 17.3 15.0 2.49 0.85 
 Collards 14.2 14.0 3.27 0.86 
 Beans 21.1 19.6 2.85 0.60 
 Pepper 21.1 21.2 1.26 0.86 
 Lettuce 11.2 3.6 3.02 0.84 
HT Beets 15.1 11.5 2.90 0.78 
 Collards 15.7 11.9 2.83 0.81 
 Beans 22.7 20.2 3.15 0.63 
 Pepper 26.0 27.6 2.35 0.24 
 Fallow 7.9 3.6 3.21 0.93 
LI Beets 19.2 18.3 1.93 0.92 
 Collards 15.4 11.0 3.03 0.76 
 Beans 23.0 19.7 3.55 0.49 

*Mes = Measured, Sim = Simulated, RMSE = Root Mean Square Error 
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Table 3.3 Measured and simulated average, R2 and RMSE values of volumetric soil water content in Conventional (CONV), High 
Tunnel Organic (HT), and Low Input (LI) system during 2014-2016. 

      10 
cm       30 cm     50 cm    

Cropping 
system  Crops Mes Sim RMSE R2 Mes Sim RMSE R2 Mes Sim RMSE R2 

  cm3 cm-3  cm3 cm-3  cm3 cm-3  

 Pepper  0.39 0.43 0.08 0.44 0.41 0.44 0.03 0.83 0.43 0.43 0.01 0.71 
 Cover crops            

CONV Beets 0.36 0.41 0.05 0.6 0.37 0.42 0.05 0.57 0.41 0.41 0.04 0.16 
 Collards  0.37 0.42 0.02 0.18 0.39 0.43 0.01 0.14 0.41 0.42 0.01 0.4 
  Beans 0.37 0.35 0.04 0.33 0.4 0.36 0.05 0.07 0.42 0.36 0.02 0.18 
 Pepper 0.37 0.41 0.01 0.74 0.41 0.41 0.03 0.41 0.41 0.4 0.02 0.57 
 Lettuce  0.26 0.2 0.02 0.62 0.3 0.22 0.01 0.87 0.34 0.26 0.001 0.91 
HT Beets 0.24 0.3 0.05 0.77 0.29 0.31 0.04 0.81 0.34 0.33 0.02 0.89 
 Collards 0.31 0.36 0.06 0.12 0.35 0.36 0.04 0.17 0.38 0.36 0.04 0.18 
  Beans 0.25 0.24 0.04 0.74 0.29 0.26 0.04 0.74 0.31 0.29 0.03 0.66 

 Pepper 0.3 0.35  1 0.35 0.36  1 0.38 0.37  1 
 Fallow             

LI  Beets 0.36 0.33 0.05 0.7 0.35 0.36 0.04 0.81 0.38 0.37 0.04 0.65 
 Collards 0.29 0.35 0.03 0.84 0.32 0.37 0.02 0.92 0.35 0.38 0.03 0.86 
  Beans 0.27 0.26 0.06 0.36 0.28 0.29 0.05 0.33 0.31 0.31 0.06 0.46 

*Mes = Measured, Sim = Simulated, RMSE = Root Mean Square Error 
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Table 3.4 Measured and simulated average, R2 and RMSE values of soil NO3¯-N content in Conventional (CONV), High Tunnel 
Organic (HT), and Low Input (LI) system during 2014-2016. 
Cropping 
System  0-15 cm   15-30 cm    30-50 cm    
 Crops  Mes Sim RMSE R2 Mes Sim RMSE R2 Mes Sim RMSE R2 
  kg N ha-1  kg N ha-1  kg N ha-1  
 Pepper  107 13 89.19 0.34 67 10 37.50 0.54 76 10 43.13 0.27 

 
Cover 
crops 29 13 9.48 0.95 34 12 17.64 0.38 40 10 10.92 0.44 

CONV Beets 16 5 3.31 0.97 7 5 2.87 0.54 8 5 6.44 0.17 
 Collards  5 6 6.22 0.09 3 10 2.31 0.16 3 5 1.75 0.38 
 Beans 16 9 10.25 0.39 12 5 7.21 0.55 12 4 2.92 0.85 
 Pepper 88 24 48.73 0.06 28 10 11.09 0.38 66 10 59.06 0.03 
 Lettuce  107 20 78.85 0.09 26 4 4.93 0.90 76 1 54.93 0.00 
HT Beets 54 50 24.12 0.26 21 5 7.27 0.00 26 3 10.28 0.46 
 Collards 33 65 27.76 0.13 11 31 3.60 0.87 25 21 15.47 0.64 
 Beans 38 75 20.27 0.12 17 24 17.27 0.05 18 21 9.74 0.00 
 Pepper 45 6 31.82 0.10 21 16 5.10 0.95 35 20 4.24 0.84 
 Fallow 10 4 4.59 0.29 8 8 1.40 0.84 8 13 2.09 0.71 
LI Beets 22 13 18.31 0.07 9 10 7.21 0.10 13 9 3.77 0.80 
 Collards 7 19 8.06 0.02 7 15 3.54 0.66 7 12 2.45 0.18 
 Beans 14 12 11.35 0.07 13 5 10.85 0.03 8 5 3.51 0.77 

*Mes = Measured, Sim = Simulated, RMSE = Root Mean Square Error 
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Table 3.5 Measured and simulated cumulative N2O-N flux during each crop period, R2 

and RMSE values in Conventional (CONV), High Tunnel Organic (HT), and Low Input 
(LI) system during 2014-2016. 
Cropping 
system 

Crops 

Measured 
cumulative 
kg N ha-1 

Simulated 
cumulative 
kg N ha-1 

RMSE 
g N2O -N 
ha-1 day-1 

 

R2 

 Pepper  0.25 0.74 2.45 0.60 

 
Cover 
crops 0.29 0.10 1.78 0.01 

CONV Beets 1.10 0.67 6.83 0.36 
 Collards  0.25 0.62 0.90 0.78 
 Beans 0.93 0.68 4.54 0.63 
 Pepper 0.59 2.11 4.09 0.04 
 Lettuce  0.39 0.45 4.54 0.04 
HT Beets 0.69 0.71 11.17 0.14 
 Collards 1.20 1.42 2.93 0.84 
 Beans 1.59 3.03 8.03 0.31 
 Pepper 2.73 0.36 23.80 0.29 
 Fallow 0.13 0.12 1.00 0.10 
LI  Beets 1.38 0.22 19.74 0.20 
 Collards 0.98 0.41 2.25 0.01 
 Beans 0.39 0.14 3.30 0.07 

*RMSE = Root Mean Square Error 
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Table 3.6 Measured and simulated crop yield during the cropping season 2014-2016. 
  Yield (Dry matter kg ha-1)  
 Crops  Measured Simulated  

 Pepper  4128 4398  
CONV Beet 5805 6884  
 Collards 3599 6892  
 Beans 2739 3336  

 Pepper  5944 6403  
HT Beet 4936 4810  
 Collards 4488 3839  
 Beans 1220 1230  
 Pepper  2669 4871  
LI  Beet 487 312  
 Collards 469 192  
 Beans 576 2073  
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Table 3.7 Simulated soil N processes and loss pathways from 100 cm soil profile in three vegetable systems 

 Crops  Mineralization  
Immobili
zation  

Denitrifi
cation  

N 
Runoff  N Seepage  

N2O 
Emission  

NxO 
Emission  

Plant N 
uptake  

    kg N ha-1      

 Pepper 173 3 168 3 30 18 3 134 

 Cover crops 45 0 29 0 19 4 1 24 
CONV Beets 66 3 43 6 23 5 1 69 

 Collards 109 7 51 0 26 9 5 163 

 Beans 150 3 53 1 16 7 2 146 

 Pepper 358 18 77 2 11 10 4 265 

 Lettuce 144 25 115 0 1 10 4 108 
HT Beets 291 23 50 0 6 4 1 91 

 Collards 194 27 57 0 22 8 2 175 

 Beans 349 22 38 0 9 6 3 109 

 Pepper 181 17 32 0 59 3 1 168 

 Fallow 60 5 12 0 70 1 0 0 
LI Beets 69 3 12 1 36 2 1 26 

 Collards 74 10 12 0 69 2 1 2 

 Beans 124 3 7 1 11 2 1 131 
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Figure 3.1 Measured and simulated soil water content at (a) 10 cm (b) 30 cm and (c) 50 cm and (d) soil temperature at 10 cm in 
Conventional System (CONV) during the year 2014-2016. 
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Figure 3.2 Measured and simulated soil water content at (a) 10 cm (b) 30 cm and (c) 50 cm and (d) soil temperature at 10 cm in High 
Tunnel Organic System (HT) during the year 2014-2016. 
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Figure 3.3 Measured and simulated soil water content at (a) 10 cm (b) 30 cm and (c) 50 cm and (d) soil temperature at 10 cm in Low 
Input System (LI) during the year 2014-2016. 
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Figure 3.4 Measured and simulated soil NO3¯-N in layer (a) 0-15 cm (b) 15-30 cm (c) 
30-50 cm and (d) N2O emission in the Conventional System (CONV) during the year 
2014-2016. 
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Figure 3.5 Measured and simulated soil NO3¯-N in layer (a) 0-15 cm (b) 15-30 cm (c) 
30-50 cm and (d) N2O emission in the High Tunnel Organic System (HT) during the year 
2014-2016. 
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Figure 3.6 Measured and simulated soil NO3¯-N in layer (a) 0-15 cm (b) 15-30 cm (c) 
30-50 cm and (d) N2O emission in Low Input System (LI) during the year 2014-2016. 
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CHAPTER 4. CHARACTERIZING THE SUSTAINABILITY OF INTENSIFICATION 
IN VEGETABLE SYSTEMS 

4.1 Introduction 

Sustainable intensification, and related concepts, are increasingly being advocated 

as frameworks to reconcile needs for increasing agricultural yields with maintaining 

environmental integrity (Wezel et al., 2015). Agricultural input efficiency (AIE) has been 

proposed as a holistic metric to evaluate agriculture’s environmental impact relative to 

yields (e.g. Robertson and Swinton, 2005; Clark and Tilman, 2017). Measured as the 

amount of food produced per unit of input, AIE has utility in evaluating the point at 

which when additional inputs do not equate to additional yields, and subsequently are 

linked to impacts on the environment (Clark and Tilman, 2017). AIE has been used as a 

unifying concept for discussions linking input:output efficiencies to the broader impacts 

of agriculture on the environment, including energy use, land use, nutrient impact on 

waterways, and greenhouse gas emissions (Clark and Tilman, 2017). Among these, 

nitrogen (N) losses from agricultural systems to the environment have been considered 

the most problematic (e.g. Robertson and Swinton, 2005). The nitrogen use efficiency 

(NUE) of a cropping system can be increased by achieving greater N uptake efficiency 

from applied N and reducing the amount of N lost from soil organic and inorganic N 

pools (Cassman et al., 2002). 

Sustainable agriculture-oriented vegetable production systems, whether managed 

according to an environmentally-minded certification (e.g. USDA organic, etc.) or 

utilizing conservation-minded best practices are managed with explicit intention to 

minimize environmental impact while optimizing yields. However, evaluating NUE, and 

AIE more generally in such alternative systems is lacking (Clark and Tilman, 2017). 
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Historically system comparisons have been binary, pitting conventional vs. organic (e.g. 

Seufert et al., 2012), or greenhouse vs. open field (Clark and Tilman, 2017). However, 

specific production practices related to the intensity of production systems are highly 

variable, even among sustainable and organic vegetable production systems. 

A finer-scale understanding of how organic inputs and their management in the context 

of the farming system influences the temporal dynamics of soil inorganic N availability is 

needed to balance the essential soil functions of providing crop fertility while reducing N 

losses to the environment (Norris and Congreves, 2018).This work aims to characterize 

AIE, specifically NUE and the N dynamics driving uptake and losses, across a gradient of 

sustainable vegetable production systems utilized in the mid-southern region of the US. 

Intensification in these systems is characterized by fertilization, water use, tillage, and 

use of fallow periods. Such data offer the opportunity to evaluate the “trade-offs” 

between specific environmental impacts and yield, utilizing model crops produced in the 

spring, summer, and fall.  

4.2 Materials and methods  

Three model crops, representing typical crops grown seasonally in the region, were 

studied for three years in each of five production systems, beginning in early spring, 2014 

(Table 4.1). The five systems spanned two sites in central Kentucky with Maury silt loam 

soil (a fine, mixed, active, mesic Typic Paleudalfs); 1) The University of Kentucky 

Horticulture Research Farm (UK HRF) in Lexington, KY (37°58'29"N, 84°32'05"W); 2) 

a local organic farm in Scott County, Kentucky (38°13'20"N, 84°30'38"W). Both farms 

are in the central Bluegrass region of Kentucky, with similar rainfall, temperature, and 

soil type (annual precipitation of 1209, 1475 and 1011 mm; average air temperature of 12 
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ºC, 13.3 ºC and 14.2 ºC in 2014, 2015 and 2016, respectively). Each system contained 

three replicate plots measuring 9 m x 0.75m.  

4.2.1 Cropping systems 

The five vegetable production systems were selected to represent a gradient of 

intensification, as characterized by duration of fallow periods, tillage intensity, irrigation, 

and fertilization (Figure 4.1). General management aspects of each of these systems are 

described below. 

4.2.1.1 Low input system (LI) 

The LI system is based on an 8-year rotation consisting of a five-year period of 

mixed grass/legume pasture that is rotationally grazed or cut for hay for grass-finished 

beef and calf production. After the five-year fallow period, the pasture was broken with 

deep inversion plowing, disking and surface rototilling to transition fields into a three-

year rotation of annual crops. No supplemental fertilizer was added, and drip irrigation 

was provided only for the pepper crop. Crops produced on bare ground received only 

natural rainfall and no supplemental irrigation. Tillage and fertilizer for model crops are 

detailed in Table 4.1. For the past 15 years, the farm has grown diversified organic 

vegetables in the annual crop portion of the rotation, after transitioning from two 

generations of conventional tobacco production in a similar rotation. This system is 

representative of a low external input commercial organic vegetable farming system, and 

is a working partner farm marketing a diversity of organic vegetable crops and animal 

products through local market channels. 
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4.2.1.2 Community supported agriculture system (CSA) 

The CSA system is characterized by the seasonal production of vegetable crops 

with inclusion of cover crops once per year in rotation. The rotation involves production 

of over 40 different vegetable crops, grown in a rotation based on alternation of botanical 

families. Vegetable crops were supplied with 25 ton ha-1 compost one time per year, in 

the Fall, typically followed by a cool season (Winter) cover crop. A granular, manure-

based organic fertilizer (Nature Safe 10-2-8, Darling Ingredients, Irvine, TX) applied at 

the time of planting to bring the crop fertility to the commercial production recommended 

fertilizer rate (UK Cooperative Extension Service, 2014) using a nutrient budget 

approach which accounts for roughly for the nutrient contribution of the compost 

additions and legume cover crop. All crops were irrigated with sub-surface drip 

irrigation. All crops were drip irrigated in every 2-3 days interval in summer and 3-4 days 

interval in winter season depending on rainfall. Annual primary tillage using a rotary 

spader (Imants, ImantsUSA, Perkiomenville, PA) was used to incorporate cover crop 

residue and prepare fields, followed by frequent shallow cultivation utilizing ground-

driven rolling basket weeders or finger weeders for weed control. Tillage and fertilization 

for model crops are detailed in Table 4.1. This system is representative of a medium-

scale, input- and mechanization-intensive commercial organic vegetable farming 

operation utilizing best management practices for open-field organic production. This is a 

working demonstration and education farm on the UK Horticulture Research Farm site, 

marketing a diversity of organic vegetable crops primarily through a community 

supported agriculture program.  
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4.2.1.3 Movable high tunnel system (MOV) 

Movable high tunnels are full size (9.1 m x 22 m) passive solar greenhouses made 

of steel framing with a polyethylene film coating that are moved once per year (see High 

Tunnel system for additional description). MOV structures were rotated through a series 

of three positions such that crops are grown under the cover of the structure for one year 

continuously, then the structures were moved, and cropped area is planted into legume 

and cereal cover crops for two years. After 2 years, tunnels moved back to previous place 

to grow organic vegetable crops. In the MOV system, 24 ton ha-1 horse manure compost 

and 45 kg N ha-1 of pelleted organic fertilizer (Harmony 5-4-3, BioSystems, LLC, 

Blacksburg, VA) were applied in to soil before planting each crop. Irrigation in the MOV 

system was via drip irrigation, as the plastic cover over the structure excluded all rainfall. 

All crops were drip irrigated in every 2-3 days interval in summer and 3-4 days interval 

in winter season. Tillage and fertilization for model crops are detailed in Table 4.1. This 

system is representative of an alternative production system for organic high tunnel 

production focused on maintaining soil health and reducing disease incidence in these 

typically production-intensive systems.  

4.2.1.4 Conventional system (CONV) 

The CONV system consisted of a winter wheat (Triticum aestivum) cover crop 

terminated by mowing and tillage in early spring utilizing a rotary spader, followed by 

seasonal annual vegetable production. Fertilization included complete, balanced mineral 

fertilizers (Miller 19-19-19, Miller Chemical and Fertilizer, Hanover, PA) applied pre-

plant and in-season, split-application of calcium nitrate fertilizer (13-0-0, PureCal, Master 

Plant-Prod Inc., Brampton, ON) via fertigation when required for the crop as per 
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commercial vegetable production recommendations for the study region (UK 

Cooperative Extension Service, 2014). All crops were drip irrigated in every 2-3 days 

interval in summer and 3-4 days interval in winter season depending on rainfall. Tillage 

and fertilization for model crops are detailed in Table 4.1. This system is representative 

of an input-intensive conventional vegetable production system utilizing best 

management practices. 

4.2.1.5 High tunnel system (HT) 

The HT consisted of three, replicated static unheated 9.1 m x 22 m steel structures 

with polyethylene film covering. As is typical for management of these structures, crops 

are grown in soil without supplemental heat or light, and are only passively ventilated 

through manual opening of doors and side curtains. High tunnel systems are “season 

extending” technologies used in specialty crop production, allowing for lengthening the 

growing season of warm-season crops by approximately one month each in the spring 

and fall, and allowing for production of cool-season vegetables throughout the winter in 

the study region. Also typical to these systems, cover crops were not used, as these 

intensive production systems often are used to produce of high value crops at times when 

market premiums are captured through early or late season production. As such, fallow 

periods are not considered economically efficient unless they address a production issue, 

such as pathogen or pest management. All crop residues were removed from the system 

to minimize pathogen presence. In the HT system, 24 ton ha-1 horse manure compost 

(Wet mass) and 45 kg N ha-1 of pelleted organic fertilizer (Harmony 5-4-3, BioSystems, 

LLC, Blacksburg, VA) was applied to soil before planting each crop. Supplemental 

fertigation with liquid organic fertilizer (Brown’s Fish Fertilizer 2-3-1, C.R. Brown 
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Enterprises, Andrews, NC) was applied in-season only to the sweet pepper crop, at 

flowering and heavy fruit set (twice total) at the recommended rate constituting an 

additional 28 kg N ha-1 at each fertigation event. Irrigation in the HT system was via drip 

irrigation, as the plastic cover over the structure excluded all rainfall. All crops were drip 

irrigated in every 2-3 days interval in summer and 3-4 days interval in winter season. 

Tillage and fertilizer inputs for model crops are detailed in Table 4.1. The system is 

representative of year-round, organic high tunnel production systems that are input- and 

production-intensive.  

4.2.2 Model crops and management 

Model crops were selected based upon crops that would be representative of 

production practices in each model system (Table 4.1). As this project takes a systems 

approach, timing of production varies slightly between systems, particularly between the 

open field systems (LI, CSA and CONV) and the protected agriculture systems (MOV 

and HT). Model crops were selected representing spring, summer, and fall production; 

table beet (Beta vulgaris L., ‘Red Ace’), sweet pepper (Capsicum annum L., ‘Aristotle’) 

and collard greens (Brassica oleracea L. var. medullosa, ‘Champion’), respectively. 

Three plots measuring 13.5 m2 each were randomly assigned within crop rows in each of 

the systems. Rows were located in fields consisting of diversified vegetables in the LI 

and CSA systems, with adjacent rows in plants of the same botanical family and/or 

management regime. Fields in the CONV system were monocultures of the model crop. 

Rows in the HT and MOV systems were within diversified tunnel systems consisting of 

varies of crops being grown for season extension purposes. Model crops were in different 

fields/rows each year, following the rotation scheme representative of each system. 
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4.2.3 Soil sampling  

Soils were sampled monthly at 0-15, 15-30, and 30-50 cm depths for mineral N 

(NH4
+ and NO3¯). On each sampling date, three cores were taken per plot at each depth, 

homogenized, and bulked for a single analysis per plot. Fresh soil samples were kept 

refrigerated (~ 4.4⁰ C) until processing, passed through a 2 mm sieve and processed 

within 24 h of sampling. Soil mineral N was extracted from a 5 g subsample of fresh soil 

in 20 ml of 1M KCl (Rice et al., 1984) and analyzed via microplate spectrophotometer 

(Epoch, BioTek Instruments, Inc., Winooski, VT), after NO3¯ was reduced using a 

cadmium reduction device (ParaTechs Co., Lexington, KY) (Crutchfield and Grove, 

2011). Nitrate leaching was assessed using ion exchange resin (IER) lysimeters placed 

below the plant rooting zone (50 cm depth). IER lysimeters were constructed from PVC 

tubing after the method of Susfalk and Johnson (2002), using 2 teaspoonfuls of resin per 

lysimeter. IER lysimeters were replaced every three months, and once recovered, 

disassembled, with resin mineral N extracted using 100 ml of 2M KCl in the method as 

described above.  

4.2.4 Yield and plant biomass sampling  

Fresh vegetable yields for each system were measured from the entire plot area 

from each plot. Yields represent marketable yield for each system, which includes all 

direct market quality yields for the LI and CSA systems, and combined USDA grade 1 

and 2 for each crop in the MOV, HT and CONV systems. Sweet pepper fruit, collard 

leaves and beans were harvested at multiple times as the harvestable portion reached 

marketable stage, and table beets were harvested once, as roots reached marketable size. 

Plant biomass samples were collected from 2, 0.25 m2 samples per plot at the end of the 
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growing season, dried at 60⁰ C until a constant mass was achieved. Dried samples were 

homogenized on a Wiley Mill and a subsample ground on a jar mill (U.S. Stoneware, 

East Palestine, OH). Crop plant samples were analyzed for C and N content via elemental 

analysis (Flash EA 1112, CE Elantech Inc., Lakewood, CA).    

4.3 Results and discussion  

4.3.1 Fresh vegetable yield  

The average fresh beet, pepper fruit and collard leaves yield from 2014 to 2016 in 

all five systems are presented in Table 4.2. Yields were consistently higher in the MOV 

system, and lowest in the LI system across all crops. The movable tunnels were moved 

every year, so the crops in the MOV system benefitted from the additional N supply by 

the cover crops compared to the HT system. CSA and CONV yields were not markedly 

different for any crop. Beet yields may have been low in the LI system due to low stand 

density, or poor germination due to lack of irrigation, compared to the other study 

systems, as well as higher weed pressure. Pepper yields may have been depressed in the 

LI system due to weed pressure as well. Collard greens were also consistently planted 

later in the LI system than in other systems, as is typical for the management of this 

production system. In this system, management preference is for extensive production 

with minimal input per unit area, with overall farm yields buffered by large cropping 

areas and great crop diversity to buffer low yields or a crop failure. Overall, high tunnel 

yields were greater due to improved crop quality grown under the protective structures, as 

well as higher planting density common in these systems.   
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4.3.2 N leaching 

The average (of three growing season of a crop) NO3¯-N leaching per lysimeter 

from 2014 to 2015 are presented in Figure 4.2. Among the crops, the greatest mean 

NO3¯-N leaching values were observed during the spring beet crop, ranging from the 

smallest values in the MOV system (3.3 mg NO3¯-N per lysimeter) to a nearly four-fold 

increase in greatest values in the CSA system (12.8 mg NO3¯-N per lysimeter). It should 

be noted that these are numerical comparisons, as these characterization data have not 

been compared statistically. During the summer pepper crop, the greatest leaching loss 

were observed in the CONV system (7.7 mg NO3¯-N per lysimeter) and smallest in the 

HT system (1.5 mg NO3¯-N per lysimeter). During the fall collard crop, the greatest 

NO3¯-N leaching values were observed in the CSA system (10.5 mg NO3¯-N per 

lysimeter) and MOV system (6.7 mg NO3¯-N per lysimeter). Surprisingly, 4.5 mg NO3¯-

N per lysimeter was observed in LI system, although no additional fertilizer or compost 

were applied to the pepper crops. The pepper crop was consistently in fields that were in 

the first year of vegetable production after the five-year pasture fallow, and experienced 

high levels of N mineralization with the decomposition of the incorporated fallow. 

Leaching in the fall collard crop were highest in the CSA, which may be due to bare 

ground production of collards in this system, while in the CONV system, collards were 

grown with plastic mulch. Generally, the leaching were lower in crops produced under 

protected structures (MOV and HT systems), in spite of greater soil mineral N content in 

these systems (Table 4.3). When compared among the open field systems, the higher 

leaching in CSA system might be attributed the higher N fertilizer application, in which 

crops were fertilized with 25 ton ha-1 of compost and supplemented by organic fertilizers.  
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4.3.3 Soil mineral N content  

Mean soil NO3¯-N at 0-15, 15-30 and 30-50 cm soil layer for each crop and 

system are presented in Table 4.3. Mean values were calculated from monthly samples, 

and averaged across the growing season for each model crop to characterize relative N 

availability in the model systems. Soil surface layer (0-15 cm) values were greatest in all 

crops and systems. Average soil NO3¯-N content in the 0-15 cm soil layer for the cool 

season beet and collard crops was below 31 kg N ha-1 in the open field systems, whereas 

values in the covered MOV and HT systems were more than 60 kg N ha-1. Average soil 

NO3¯-N content in the 15-30 cm and the 30-50 cm soil layers followed similar trends as 

the 0-15 cm layer.  

Average soil NO3¯-N was generally greater in the pepper crop than in the beet or 

collard crops, which may be attributed to greater total fertilization in each system to meet 

crop demand. In all systems except for the LI system, the pepper crop received split 

application of fertilizer, with several fertigation events throughout the season. The 

additional fertilizer applications maintained greater soil NO3¯-N throughout the growing 

season, compared to pre-plant only fertilizer application in other crops.  

In the beet and collards crops, the average soil NO3¯-N content in all layers was 

greater in the tunnel systems (HT and MOV) compared to open field systems (CONV, 

CSA and LI). In the pepper crop, the LI, MOV, and HT systems had greater soil average 

soil NO3¯-N content in all layers. The elevated NO3¯-N content in the LI systems in this 

crop may be explained by the timing of the pepper in the crop rotation in the LI system. 

Crops with high nutrient demand, such as pepper, are typically grown in the first year of 
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the crop portion of the eight-year rotation, immediately after incorporating the five-year 

pasture fallow.  

4.3.4 N uptake relative to fertilization 

Total plant N uptake was calculated from the combined N content from the yield, 

aboveground, and belowground plant biomass fractions. Total N inputs were calculated 

from external fertilizer and compost N inputs for each system (Table 4.1). Compost N 

inputs were calculated from an estimated mineralization rate of 50% of the applied 

compost in the year of application (Leikam and Lamond, 2003). In the LI system, there 

were no external N fertilization, and so a value of 0 was applied. Average crop N uptake 

and N fertilizer applied in each system for each crop is presented in Table 4.4.  

In the LI system, N uptake was greater than N applied for all crops, due to the zero 

value used for the quantity of N applied. This method accounts for only external inputs in 

this evaluation of efficiency, and is not reflective of total N inputs to the system. In the LI 

system, pepper uptake was greater than that of beet or collards. In the CSA system, N 

applied was consistently greater than crop N uptake. This may indicate that in the CSA 

system, in which fertility levels are guided by commercial vegetable production 

recommendations, there may be opportunities for reducing fertilization without 

sacrificing yields. In the MOV system, uptake was greater than N applied, driven by high 

yields relative to N fertilization. It should be noted that the two-year cover crop rotation 

prior to production in the MOV systems contributed to the relatively high yields in this 

system. Cover crop inputs are not accounted for using this method. In the CONV system, 

crop N uptake was greater than N applied in the beet and pepper crops and was nearly 

balanced in the collard crop. In the HT system, beet crop N uptake was greater than the 



94 
 

quantity of N applied, whereas the uptake and application quantities were nearly balanced 

in the pepper and collard crops. Variability in crop N uptake values and the ratio of N 

uptake: N applied is largely a function of variability in crop yield from year-to-year. 

Many factors contribute to yield variability, including weather, crop management, and 

weed control, to name a few.  

4.4 Conclusion 

Overall the parameters evaluated in this study allow for relative comparisons of 

productivity, inputs, and efficiencies between the five study systems. The LI system 

demonstrated low yields relative to the other systems, and had high soil mineral N 

content and leaching in the first year after the incorporation of the pasture fallow. Soil 

mineral N content and leaching decrease in subsequent years of the vegetable crop 

rotation. The CSA system maintained yields and soil NO-
3-N content consistent with the 

CONV commercial vegetable system. However, N inputs were in excess of crop N 

uptake for all model crops in the CSA system, and leaching were high during the beet and 

pepper crops, which were grown in the open field. The CONV system maintained N 

levels via fertigation of synthetic fertilizers and use of plastic mulches. Leaching values 

were particularly high in the beet crop, in which plastic mulches were not used and the 

spring season in which the crop was grown is typically cool with abundant rainfall. Crop 

N uptake in the CONV system was generally greater or equal to the quantity of N 

applied. In both high tunnel systems (HT and MOV), soil NO3¯-N was high throughout 

the soil profile. Yield was greatest in the MOV system when compared to the other five 

systems, likely due to the two-year cover crop rotation prior to production under the 

MOV structures. Yields in the HT system were also greater than the open field systems.  
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These results demonstrate that there are no clear categorical ranking of systems as 

characterized by input use, rotational fallow, nutrient losses, or yields. However, these 

results may provide opportunities for evaluating the efficiency of fertilizer inputs to 

yields. Such analyses are important metrics for assessing the sustainability of 

intensification efforts in agricultural systems.   
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4.5 Tables and figures 

Table 4.1 Fertility and irrigation management for model crops in the five study systems. 

System Table Beets (Beta vulgaris L., 
‘Red Ace’) 

Sweet Pepper (Capsicum annum 
L., ‘Aristotle’) 

Collards (Brassica oleracea 
L. var. medullosa, 
‘Champion’)  

Timing Spring crop (2014, 2015 and 
2016) 

Summer crop (2014, 2015 and 
2016) Fall crop (2014 and 2015) 

Plant 
Spacing  

5 cm between plants in double 
rows per 50 cm bed, with 1 m 
between bed midpoints.  

45 cm between plants in double 
rows per 75 cm bed, with 2 m 
between bed midpoints.   

45 cm between plants in 
double rows per 75 cm bed, 
with 2 m between bed 
midpoints.  

Low Input 
Organic (LI) 

No compost or fertilizer 
No irrigation (rainfall only) 

No compost or fertilizer 
Drip irrigation  
Black plastic mulch  

No compost or fertilizer 
No irrigation (rainfall only) 

 
Community 
Supported 
Agriculture 
(CSA) 

 
 
 

25 ton ha-1 compost. 57 kg N ha-1 
(2014), 67 kg N ha-1 (2015 and 
2016) of organic fertilizers 
 
 
Sub-surface drip irrigation 
No mulch flat  

25 ton ha-1 compost.  
57 kg N ha-1 (2014), 100 N kg ha-1 
(2015 and 2016) of organic 
fertilizers  
33 kg N ha-1 of sodium nitrate (16-
0-0) fertigation 
Sub-surface drip irrigation  
Black plastic mulch  

25 ton ha-1 compost.  
57 kg N ha-1 (2014), 67 kg N 
ha-1 (2015 and 2016) of 
organic fertilizers 
Sub-surface drip irrigation 
No mulch  
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Table 4.1 continued…………….. 

Movable 
High Tunnel 
system 
(MOV) 

 

24 ton ha-1 horse manure compost 
45 kg N ha-1 of pelleted organic 
fertilizer  
 
Drip irrigation 
Rainfall protection 

24 ton ha-1 horse manure compost 
45 kg N ha-1 of pelleted organic 
fertilizer  
28 kg N ha-1 fertigation with liquid 
fish fertilizer  
Drip irrigation  
Rainfall protection  

24 ton ha-1 horse manure 
compost  
45 kg N ha-1 of 
pelleted organic fertilizer  
 
Drip irrigation 
Rainfall protection 

Conventiona
l system 
(CONV) 

56 Kg N ha-1 balanced fertilizer at 
planting  
 
 
 
Drip irrigation 

78 Kg N ha-1 balanced fertilizer at 
planting  
60 kg N ha-1 calcium nitrate 
fertigation in split 
Drip irrigation 
Black plastic mulch  

56 Kg N ha-1 balanced 
fertilizer at planting  
60 kg N ha-1 calcium nitrate 
fertigation in split 
 
Drip irrigation 
Black plastic mulch  

High Tunnel 
(HT) 

24 ton ha-1 horse manure compost  
45 kg N ha-1 of pelleted organic 
fertilizer  
 
Drip irrigation 
Rainfall protection 

24 ton ha-1 horse manure compost  
45 kg N ha-1 of pelleted organic 
fertilizer  
28 kg N ha-1 fertigation with liquid 
fish fertilizer  
Drip irrigation  
Rainfall protection 

24 ton ha-1 horse manure 
compost  
45 kg N ha-1 of 
pelleted organic fertilizer  
 
Drip irrigation 
Rainfall protection 
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Table 4.2 Mean marketable (USDA grades 1&2) fresh yield of pepper, beet and collard 
from 2014, 2015 and 2016 in the five study systems. 
System   Fresh crop yield (kg ha-1) 
 

Beet Pepper Collard 
 

LI 9,686±2350 19,637±806 3,524±356 
 

CSA 30,681±2491 35,395±4427 25,819±1286  

MOV  54,224±3972 56,130±3341 47,843±3634  

CONV 28,933±4219 30,860±985 32,076±1126   

HT 35,223±3642 44,936±3197 36,145±1864   
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Table 4.3 The averages soil NO3¯-N during pepper, beet and collard growing season 
from 2014, 2015, and 2016 in low input, community supported agriculture, movable high 
tunnel, conventional and high tunnel system 

    Average soil NO3¯-N (kg N ha-1) 

Soil layer 

(cm) System  Beet Pepper Collard 

 
LI 24 ± 1 66 ± 8 19 ± 4 

 
CSA 31 ± 5 41 ± 7 7 ± 1 

0-15 MOV  74 ± 6 67 ± 13 72 ± 21 

 
CONV 23 ±3 44 ± 7 12 ± 3 

 
HT 61 ± 5 72 ± 10 63 ± 10 

  LI 16 ± 0 25 ± 4 13 ± 2 

 
CSA 14 ± 2 16 ± 2 15 ± 6 

15-30 MOV  29 ± 5 15 ± 2 32 ± 13 

 
CONV 14 ± 1 22 ± 3 5 ± 1 

  HT 21 ± 2 31 ± 8 19 ± 6 

 
LI 14 ± 0 43 ± 6 14 ± 2 

 
CSA 16 ± 1 21 ± 5 7 ± 2 

30-50 MOV  38 ± 5 54 ± 11 48 ± 13 

 
CONV 10 ± 1 27 ± 4 4 ± 0 

  HT 32 ± 3 53 ± 8 53 ± 10 
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Table 4.4 The Average crop N uptake and N fertilizer applied in five systems. 
System  Beet  Pepper Collard 

 
N uptake 

(kg N ha-1) 

N applied 

(kg N ha-1) 

N uptake (kg 

N ha-1) 

N applied 

(kg N ha-1) 

N uptake 

(kg N ha-1) 

N applied 

(kg N ha-1) 

LI 41±10 0 107±2 0 13±1 0 

CSA 115±9 167 164±16 200 74±3 167 

MOV  171±8 145 240±12 201 179±13 145 

CONV 100±22 56 148±3 138 120±4 116 

HT 116±16 145 199±11 201 135±7 145 
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Figure 4.1 Overview of five model farming systems representing a gradient of intensification, as characterized by timing of production 
and fallow periods, tillage frequency, and nutrient inputs.
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Figure 4.2 Mean NO3-N per lysimeter values in model crops in the five study systems 
from 2014, 2015 and 2016 
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CHAPTER 5. CONCLUSIONS  

Chapters 2 and 3 of this dissertation quantified the soil mineral N dynamics, CO2 

and N2O fluxes and characterize NO3¯ leaching from three different vegetable production 

systems viz. low input organic system (LI), conventional system (CONV) and high tunnel 

organic system (HT). Along with this, we calculated yield-scaled global warming 

potential (GWP) for three vegetable production systems. Key loss pathways in the low 

input (LI) system were via greenhouse gas fluxes, whereas in the conventional system 

(CONV) they were via leaching. Although HT was expected to produce higher gas fluxes 

due to greater soil mineral N content, this was not observed, although the peak timing and 

basal flux patterns differed from the open field systems. Yield-scaled GWP was greater in 

the LI system compared to CONV and HT system, driven both by greater fluxes as well 

as lower yields. From the perspective of sustainable intensification in these three systems, 

our study suggests CONV systems may benefit from reduced fertilizer inputs in 

combination with irrigation management to minimize downward directed hydraulic 

gradients particularly just after planting of crops; LI systems may benefit from targeted 

additional fertilizer and irrigation inputs; and this work supports literature indicating the 

need to examine long-term soil impacts in HT systems over longer timelines. These 

results indicated that the soil mineral N content and N2O emission varied with vegetable 

production systems with varied management practices. The N losses were high in LI, 

although the total yield was not higher. Increasing the crop N uptake in LI system by 

effectively managing weeds and targeted and timely irrigation might decrease the N2O 

losses and N leaching, which was pronounced at the starting of cropping period. 



104 
 

However, such losses may be difficult to manage due to the nature of fallow conversion 

to vegetable production. 

In addition to this, RZWQM2 model was used to simulate soil water, N2O 

emission, soil NO3¯-N processes and crop yield in diversified vegetable rotations 

representing a gradient of production intensities. RZWQM2 simulated soil NO3¯-N 

content reasonably well during beet, collard and bean growing seasons in CONV and LI 

system, but could not simulate well during pepper crops which were grown under plastic 

mulch. RZWQM2 simulated cumulative N2O emission from 2014 to 2016 was 

reasonably well compared to field measured values in CONV system, while the model 

overestimated in HT system and underestimated in LI system the cumulative N2O 

emission. Crop yield and soil water content were simulated well in all systems. Overall, 

this work contributes to key gaps in the literature characterizing environmental processes 

contributing to evolution of sustainable intensification in vegetable production system. 

The limitations in our study is lacking detail physiological crop growth parameters of 

model crops for better simulation.  
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