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Errata 

12, paragraph 2, 1 i ne 2: should read "Eq. 11" instead of 

19, Figure 5: should show Q + ~~ dx instead of Q + lQ_ 
ax 

"dx" instead of "ax" 

"Eq. 

and 

12" 

* Page 29, Table 1; line 1; should read "Leopold, et al." instead of 

''Langbein, et al." 

* Page 31, paragraph 2, line 3: should read "for Froude numbers" 

instead of "for Fronde numbers." 

* Page 40, Eq. 61b: should be changed from 

2 e=l[ 1 _Q(l-0.25 J 
2 T\Lixc 

e=}[1-
2 

Q(l-0.25 ) ] 
2T\Lixc Q 

to 

* Page 43, paragraph 1, line 10: should read "by factors of 20 or more" 

instead of "by a factor of 720. The best prediction was still in 

error by a factor of 18." 

* Page 51, reference 6: should read "Gburek, w. J. and D. E. Overton" 

instead of "Glurek, W. J. and D. G. Overton." 

* Page 52, reference 1: should real "Ponce, V. M., and Vujica Yevjevich" 

instead of "Ponce, V. M. and Vujica Yerjerich." 

* Page 52, reference 5: should read "Sonnen," instead of "Soonen." 



ABSTRACT 

Modeling the impacts of stornMater runoff on small streams , 

requires that the prediction model has the capability of simulating 

the behavior of the hydrologic and water quality components of the 

stream system. Development of such a model involves coupling the 

equations for pollutant transport during unsteady flow with the 

appropriate flood routing equations. The decision -on which 

equations to choose requires a full understanding of the pollutant 

transport and hydrograph dispersion processes. 

This research was undertaken to develop a rigorous theoretical 

evaluation of the pollutant transport and hydrograph dispersion 

processes during unsteady flow, and to recommend a suitable model 

for simulating the impact of ston1111ater on small streams. It 

was determined that the one dimensional convective - dispersive 

equation for tracers (pollutants) coupled with a form of the 

diffusive wave model for unsteady streamflow would provide the 

basis for a simulation model that is both simple and consistent 

with the principal transport processes. Evaluation of the dynamic 

tenns in the momentum equation yielded general estimators to model 

parameters and established that the Muskingum routing model is 

consistent with the modified diffusive wave model developed 

during this research. 

The coefficient for hydrograph dispersion was tested on 

tracer dispersion data and was found to be a reasonable prediction 



equation for channels with top widths less than 115 feet and bed 

slopes greater than 1.6 feet per mile. Most small streams 

satisfy these conditions. 

Descriptors: Stonn \'later, Water Pollution, Streamflow, Model Studies, 

~later Qua l i ty 

Identifiers: Storm Hater Oual ity, Nonpoint Source Pollution, Hater 

Quality Modeling, Unsteady Streamflow, Kinematic Streamflow 
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CHAPTER l 

Introduction 

Great emphasis continues at the national and state levels on 

establishing optimum local and regional water quality management 

policies. It is now recognized that the formulation of such policies 

must consider the impacts of point and nonpoint sources of pollution 

and include both large and small streams. Prior to the passage of 

Public Law 92-500, Federal Water Quality Act, Amendments of 1972, 

water quality studies and management decisions generally addressed only 

large streams impacted by municipal and industrial wastewater discharges. 

The feeling was that small streams were either not polluted or, if 

polluted, represented "open sewers" for transporting wastes to be 

discharged into larger receiving streams. This philosophy precluded 

acknowledging consumptive uses for small streams other than as 

sanitary and storm sewers, but has now changed as many small streams 

have been assigned water use classifications and in-stream quality 

standards. 

The importance of small streams and the impact of nonpoint source 

pollution on basin water quality was documented nationwide by the 

recently completed 208 areawide water quality studies. In the case 

of small streams which receive no significant point source wastewater 

discharge, the hydraulic and water quality regimes are dominated 

respectively by distributed lateral inflows of water and pollution. 

During dry weather periods, this nonpoint source pollution arises from 

groundwater discharge, septic field drainage, sanitary sewer leakage, 

etc., i.e., those sources which are unknown and/or unidentifiable and 
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whose flows cannot be concentrated at a point for proper control and 

treatment. During stonn events, stonrrwater runoff is the single largest 

contributor of nonpoint source pollution. Pollutant materials, which 

can occur with runoff range from organics, nutrients, and sediments to 

toxic materials. The type and extent of material present typically 

correlates highly with land use and human activities. 

To properly fonnulate suitable water quality management policies 

requires the capability for predicting changes in hydrologic and water 

quality response due to land use changes, implementation of best 

management practices, etc. One of the goals of the 208 studies was to 

provide a functional understanding of the relationship between nonpoint 

source pollution and land use to establish a basis for management decision 

making. Many of the studies produced less than anticipated results. 

A criticism of the data collection conducted during these studies was 

offered by Sonnen (1980) who contends that: 

We still have not designed, let alone implemented, 
even one monitoring program based on postulated 
mechanisms of fundamenta 1 physics and chemistry to 
demonstrate in one urban area, much less all of them, 
whether urban runoff poses a quality problem or not, 
and to the degree that it does, what could be done 
about it. 

This criticism is provocative, but underscores the obvious need to better 

understand the linkage mechanisms which relate land use and drainage to 

instream water quality responses. 

The primary objective of any stream water quality model development 

is to produce a tool that has the capability of simulating the behavior 

of the hydrologic and water quality components of a stream system. 

Available models such as QUAL II (Roesner, 1977) incorporate the 

various processes and reactions that control the water quality (in this 
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case, stream dissolved oxygen) but are fonnulated in terms of steady 

hydraulics, i.e. streamflow is allowed to vary in space but not in time. 

This is unrealistic for simulating the effects of stonnwater runoff 

when streamflow varies in both time and space requiring a model that 

incorporates unsteady streamflow equations. Though much work has been 

perfonned to develop and test models for unsteady streamflow, and the 

state-of-the-art in water quality modeling is well advanced, there have 

been few efforts to couple the two systems of models to provide a 

comprehensive simulation model for predicting impacts of stonnwater 

runoff. Based on this research effort, it is evident that major factors 

discouraging this development have been the large data and computer 

requirements for the complete unsteady flow model, a lack of under­

standing of the transport processes during unsteady flow, overcoming 

an inherent mathematical problem in coupling the two systems of models, 

and the absence of simple yet well founded criteria for approximating 

key model parameters. 

The objectives of this research were to develop a simple yet 

accurate model for simulating the impacts of stormwater runoff and 

quality on small receiving streams and to investigate the transport 

and flood routing processes during unsteady flow. 



CHAPTER 2 

Water Quality Model 

Pollutant Transport Processes 

* The processes for pollutant transport in turbulent streamflow 

are convection, diffusion, and dispersion. Convection is simply the 
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mass transport of the pollutant by the fluid. Diffusion and dispersion 

are basically convective transport mechanisms in that diffusion refers 

to the transport in a given direction at a point in the flow due to the 

difference between the true convection in that direction and the time 

average of the convection in that direction, and dispersion refers to 

the transport in a given direction due to the difference between the 

true convection in that direction and the spatial average of the 

convection in that direction (Holley, 1969). 

Diffusion: To illustrate the diffusive transport processes, consider 

a mass balance of some conservative pollutant (tracer) about the three 

dimensional control volume as shown in Fig. 1. The velocity components 

in the longitudinal, transverse, and vertical (x, y and z) directions 

of flow are u, v, and w, respectively, and c is the concentration of 

the conservative pollutant. If molecular diffusion is included, the 

following equation for the conservation of mass of the conservative 

pollutant in incompressible streamflow is obtained. 

2.£. + a(cu) + a(cv) + a(cw) = .1... (D 2.f.) + .1... (D 2.f.) + .1... (D lf.) (Eq. 1) 
at ax ay az ax max ay may az m az 

where Om is the molecular diffusion coefficient. 

* Generally, all open channel flow is turbulent. During low flow, the 
effects of natural roughness, alignment, etc., create turbulence; and, 
during periods of stormwater runoff, channel characterTstics, lateral 
inflow and changing stage produce turbulence. 
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Eq. 1 states that the time rate of change of the concentration at a 

point is due to convection of the pollutant with the fluid and molecular 

diffusion. Molecular diffusion was included as a transport mechanism 

to represent part of the convection because true molecular motion is not 

correctly represented by the convection terms. 

Even though it includes no turbulent diffusion terms, Eq. 1 is valid 

for turbulent flow since the velocity terms represent instantaneous point 

velocities that include the turbulent fluctuations. 

The nature of turbulence is stochastic and it has been described 

by a deterministic component (the time average at a point u, v, w) and 

the fluctuations around the mean (u', v', w'). This is characterized 

in Fig, 2 and is represented mathematically as 

u = u + u' 

v = v + v 1 

and w = w + w' 

Since the pollutant is transported by the fluid, its concentration 

is also a stochastic process and is represented as 

c = c + c' 

(Eq. 2a) 

(Eq. 2b) 

(Eq. 2c) 

(Eq. 2d) 

Combining the expressions for point velocities and concentration with 

Eq. 1 and taking a time average of both sides of the equation results in 

~ + 2- (uc) + 2- (u'c"') + 2- (vc) + 2- (~)+_a (we)+ 2- (w'c') = at :ix ax ay ay az az 

a ( 0 ac) + a ( 0 ac) + 2_ ( 0 ~ ) ax max ay may az m az ( Eq. 3) 
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FIGURE 2 

u 

T 

Figure 2: Trace of Point Velocity 



since the time average of a fluctuating tenn or product of a 

fluctuating tennis zero (e.g., uc' = 0). Recognizing that the 

conservation of mass of the fluid itself is described by 
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~ + !Y_ + aw = 0 ax ay az (Eq. 4) 

Eq. 3 reduces to 

a (D ac) + ~ (D 2..£.J + a (D ac) (Eq. 5) ax m ax ay m ay az m az 

The bars indicate the time average of the quantity under the bar. The 

last three terms on the left hand side represent the net convection 

due to turbulent fluctuations. 

It has been assumed and verified experimentally that the 

transport due to turbulent fluctuations follows a diffusive type law 

analogous to Fick's first law (Holley, 1969). That is, the transport 

is proportional to the concentration gradient, By analogy to molecular 

diffusion, turbulent diffusion coefficients can be introduced to 

represent part of the convection as follows: 

u'c' = - ac ( Eq. 6a) EX ax 

v'cT = - ac (Eq. Ey 3y 

w1-c 1 = - ac (Eq. Ez az 

where ex' ey, and ez are the turbulent diffusion coefficients in the 

x, y, and z directions, respectively. Eq. 5 may now be rewritten as 

6b) 

6c) 



ac - ac - ac - ac -+u-+v-+w-= at ax ay az 
1.... [(D + , ) ~] + [(D + ) ~] ax m x ax m 'y ay 

+ 2,. [ (D + ' ) ~ ] az m z az 

which is the pollutant mass balance equation for turbulent flow in 
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( Eq. 7) 

tenns of the time averaged quantities and a process called turbulent 

diffusion. The diffusion tenns account for the difference between 

the true convective transport and the time averaged convective transport. 

Longitudinal Dispersion: Eq. 7 describes the longitudinal, 

transverse, and vertical mixing of a pollutant discharged at a point 

in a stream as this pollutant is convected downstream with the flow. 

At some point, the pollutant concentration will become essentially 

completely mixed laterally and vertically so that there is only slight 

variation in the fl ow cross-section. Hhen this occurs, the primary 

variation in the concentration is then only in one direction - the 

longitudinal direction of flow, and a one dimensional equation rather 

than the three dimensional Eq. 7 may be used to simulate the concentration 

profile. The desired one dimensional equation may be obtained by 

integrating or averaging Eq. 7 over the cross-sectional area after the 

following substitution: 

u = U + u" (Eq. 8) 

c = C + c" ( Eq. Sb) 

where U and Care the average values of the velocity and concentration 

in a cross section. Simply replacing u with U in Eq. 7 is not sufficient 

since this provides no means for accounting for the convection due to 



the difference between u and U as seen in Fig. 3. 

The cross-sectional averaging of Eq. 7 gives 

~ + uac = ..!. [ (D + c l ~ J + a(~) 
at ax . ax m x ax ax 

10 

( Eq. 9) 

where the last term on the right hand side represents the net convection 

associated with the variation of u and c from their cross-sectional 

average values. The double bars indicate the average value for the 

cross section. The convection associated with u" is also proportional 

to the longitudinal concentration gradient so that the following replacement 

is possible. 

Eac = -u"c" + (D + c ) ~ · ax m x ax ' c" < C 

where Eis called the coefficient of longitudinal dispersion. 

Eq. 9 may now.be written as: 

( Eq. 10) 

(Eq. 11) 

which is the one-dimensional mass balance equation for turbulent flow 

in terms of cross-sectional average quantities and a process called 

longitudinal dispersion. The dispersion tennis used to account for 

the difference between the longitudinal convective mass transfer 

which is associated with the actual cross-sectional velocity distribution 

and that which is accounted for by the mean cross-sectional velocity 

distribution. When coupled with a model for unsteady streamflow, 

variations of velocity in time and space are incorporated. 

Application of Eq. 11 for simulation purposes requires that 

either predictive estimates or field determinations be made of the 
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va1ue(s) for the longitudinal dispersion coefficient, E. For open 

channel flow, predictive models based on laboratory or steady flow 

field conditions have been published and are generally of the form: 

where R is hydraulic radius, U* is shear velocity, y = 62.4 1b/ft3, 

12 

(Eq. 12) 

Sf is friction slope (=S
0

, the channel slope} and a is some constant. 

The value of a varies with streamflow and channel characteristics. As 

seen from Eq. 12, as streamflow changes it is reasonable to assume 

that the dispersion characteristics also will change. Hence, it is 

anticipatory that unsteady streamflow will be characterized by unsteady 

longitudinal dispersion. As evidenced by the literature, to date, 

little research has been conducted to quantify and/or qualify the 

dispersion process during unsteady flow. Thus, if Eq. 11 is adopted 

for simulation purposes, a means of estimating the variation of 

longitudinal dispersion with varying streamflow is required. 

Effects of Lateral Inflow 

The state-of-the-art model for one-dimensional routing of 

pollutants discharged at a point is Eq. 12. In the case of small streams 

that receive no significant point source discharges, the hydraulic and 

water quality regimes are controlled respectively by the distributed 

lateral inflow of water and pollutants vectored by the lateral inflow. 

Thus, for the purposes of simulating water quality in small streams, 
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a mathematical model is required that accepts both point and nonpoint 

sources of pollution and is descriptive of the wide range of stream­

flow conditions that are likely to occur, i.e., steady or unsteady 

and uniform or nonuniform, Additionally, the model should be easily 

coupled with stonnwater runoff and quality models. 

To derive the model governing equations, consider the mass balance 

of a pollutant during infinitesimal time dt in a volume A·dx bounded 

by two cross-sections dx apart, as shown in Fig. 4. Define C as the 

concentration of the pollutant in the stream in mg/1, CL is the pollutant 

concentration in the lateral inflow, q is the lateral inflow in 

cfs/ft-length, and the other terms are as previously defined. Any 

difference between inflow and outflow (both convective and dispersive) 

* and between natural assimilative addition and subtraction must cause 

a change in mass of pollutant stored within the reach, dx. Thus, 

during dt: 

QC + EA .£..£. - (QC + ~)dx - EA ~ - ~ (EA ~)dx dx ax ax ax ax 

+ a AC 
+ qCL dx - E S·Adx = af" dx 

Multiplying the conservation of mass for open channel flow, 

~ + aA = 
.ax at q 

( Eq. 13) 

(Eq. 14) 

which is derived in the next chapter, by the pollutant concentration, 

C, and subtracting from Eq. 13 simplifies Eq. 13 to 

* 

( Eq. 15) 

In the case of non-conservative pollutants, reaction kinetics must be 
considered. That is, a term for natural sources and sinks is included 
in the model formulation. 
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Figure 4: Elemental Channel Section with Nonpoint Source Inputs 



Coupling this equation with one of the unsteady streamflow models 

yields a model descriptive of the water quality in a stream during 

periods of stonffi'later runoff. 

This model is not without certain limitations to the range of 
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its application and it is imperative to note these limitations. The 

governing equation was derived based on the assumption that the 

pollutant concentration is well mixed across the cross-section of flow. 

Thus, for the model to be a reasonable approximation of the effects 

of lateral inflow, its application is limited to those streams that 

exhibit rapid lateral mixing characteristics so that transverse 

concentration gradients are quickly reduced. Such streams are those 

with a small width to depth ratio, natural and man-made roughness 

that induces added turbulent mixing, and numerous meanders and bends. 

Streams which have these characteristics are nonnally the smaller 

streams where the primary inputs are lateral inflows and not point 

sources. For those cases when simulations are required for larger 

streams that do not mix well laterally, either a two-dimensional 

model is required or else the assumption is made that the significant 

waste inputs are point sources, such as the discharges from municipal 

treatment plants and the confluence with lower order streams, and 

lateral inflow is neglected. In this case, the convective-longitudinal 

dispersion model may also apply. 



Flood Routing 

CHAPTER 3 

Unsteady Streamflow Model 
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Flood routing is that label applied to a set of models used to 

predict the temporal and spatial variations of a flood wave (runoff 

hydrograph) as it travels through a river reach. Routing techniques 

are classified into two categories, hydraulic or hydrologic. Hydraulic 

routing utilizes system models formulated in terms of the physics of 

the system, i.e., both the equations of continuity and momentum 

(equation of motion) are used. These equations are fully descriptive 

of one-dimensional, gradually varied, unsteady flow. 

Parallel to the simplification of Eq. 1 to the form of Eq. 11, 

through time averaging of turbulence fluctuations and spatial 

averaging of transverse and vertical velocity profiles, it can be 

shown that the popularly used hydraulic routing equations represent 

simplifications to the Navier-Stokes equations for fluid flow. It 

should be noted that one-dimensional models are consistent with the 

quality of streamflow data normally measured. 

Hydrologic routing models employ only the continuity relationship 

coupled usually with an empirically based relationship between storage 

and discharge that requires historical data for statistical parameter 

determination. Though not as exact as the hydraulic models, the 

hydrologic models are widely used due to their small data requirements 

and ease of solution, Further, research recently has begun to provide 

hydraulic based interpretations to hydrologic parameters. (Cunge, 1969 

and Doege, 1973) 



The primary interests in flood routing are (1) the extent of 

subsidence undergone by a flood wave as it moves downstream, and 

(2) the speed with which the wave crest moves downstream. These 

two constderations relate directly to the convective and dispersive 

transport properties of a flood wave (unsteady flow), 

Governing Hydraulic Equations 

The principal laws governing the movement of water (flood 

waves) in a stream are the laws for the conservation of mass and 

momentum. These laws are expressed mathematically as partial 

* 
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differential equations which, in one-dimensional form, are known as 

the gradually-varied unsteady open channel flow equations. The major 

assumptions made in their derivation are: 

1. The water surface profile varies gradually, which is 
equivalent to stating the pressure distribution is 
approximately hydrostatic, or that vertical accelerations 
are sma 11 ; 

2. Resistance to flow can be closely approximated by 
steady flow formulas; 

3. Velocity distribution across the wetted area does not 
affect substantially flood wave propagation; 

4. Momentum carried to the streamflow from lateral inflow is 
negligible; and 

5. The slope of the channel is small. 

Conservation of Mass (Continuity): The principle of conservation 

of mass states that the difference in mass flux into a control volume 

is equal to the rate of change of mass stored within the control volume. 

*These equations describe the change in streamflow in two dimensions: 
vertical and longitudinal. They are classified as one-dimensional 
since only one spatial variable occurs aS-.an independent variable. 
That is, the vertical variation is exoressed as a function of 
1 ongitudi na 1 jl_o_s i ti on. 



Consider the elemental fluid volume shown in Fig. 5, where Q is the 

streamflow rate in cubic feet per second, q is the lateral inflow 

rate in cfs per unit length of channel, y and A are depth and 

cross-sectional area of flow in feet and square feet, respectively, 

and x and tare the space and time coordinates in feet and seconds. 

Applying the continuity principle yields: 

Q + q dx - (Q + aQ dx) = aA dx ax at 

which simplifies to 

18 

( Eq. 16) 

( Eq. 14) 

which is the equation of continuity for one dimensional streamflow. 

The first term accounts for nonuniform flow, the second for unsteady 

flow, and the third for lateral inflow (stormwater runoff). 

Conservation of Momentum: This second equation is given by 

Newton's second law of motion which states that the rate of change of 

momentum is equal to the applied forces. The applied forces, as seen 

in Fig. 6, are (1) pressure, (2) gravity, and (3) resistive frictional 

forces. Considering forces in the downstream direction as positive, 

upon equating the upstream and downstream pressure forces, there results 

a pressure gradient given by: 

-pgA(ay/ax) AX 

where pis the mass density of water and g is the universal gravity 

constant. Similarly, it can be shown that the gravity or weight force 

is given by: 

pgA i1x tan" 
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where o is the angle of inclination of the bed relative to some 

horizontal datum. For gradually varied flow, tan o closely corresponds 

to the channel slope, S
0

, and may be expressed as such. Finally, the 

friction force acting to retard the flow is expressed in terms of an 

average shear stress 

where Tis shear stress and Pis wetted perimeter. Expressing head 

loss in terms of friction slope, Sf, and equating head (energy) loss 

to the work done by the shear force yields the expression for 

friction force 

( Eq. 17) 

The resultant force on the fluid volume in the direction of flow 

is the summation of the three applied external forces. 

The rate of change of momentum for the fluid volume is equal 

to the surrmation of the app)ied external forces. The rate of change 

of momentum is described by the local (temporal) and spatial (convective) 

rates of momentum change. 

The momentum of the fluid inside the control volume is (pA~x)V. 

The temporal momentum change is just the time derivative. 

a ( (AaV VaA at pA~x)V = p~X ~ + ~) (Eq. 18) 

The spatial change in momentum is the rate of momentum change across 

the control surface. The momentum flux through the control surface 

is pv2A. 



22 

The spatial change is the x-derivative 

= 2 AV 21_ + pV2 'aV 
P ax ax 

(Eq. 19) 

The total rate of momentum change is the sum of the temporal and 

spatial momentum changes. 

av aAl aA av p~X (A at+ Vat° + pV~x(V ax+ 2A ax) 

Substituting the following equivalence from continuity 

A av + v aA = -q _ aA 
ax ax at ( Eq. 20) 

allows the rate of momentum change to be written as 

(av av) pA~x at"+ V ax - pVq~x 

Finally, in accordance with Newton's second law, the external forces 

are equated to the momentum change yielding the mathematical expression 

for the conservation of momentum. 

21_ + V il + g ~ = g(S - S ) - .9.'{_ at ax ax o f A (Eq. 21) 

As with Eq. 14, this equation also accounts for the effects of 

nonuniform and unsteady flow and lateral inflow. 

Simplified Hydraulic Models 

Equation 14 and 21 are accepted as fully descriptive of one-dimensional 

flood routing. These equations describe both the forward or downstream 

wave propagation characteristics as well as backward or upstream 

characteristics. As such, these equations are known generally as the 

dynamic wave equations, where dynamic waves are characterized as 
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having both forward and backward propagation characteri sties. As 

a flood wave passes through a channel reach, the combined effects of 

channel irregularity, pool and riffle patterns, natural and manmade 

resistance characteristics and gravity forces act to reduce the flood 

* peak while lengthening the time base of the hydrograph. That is, the 

peak of the flood hydrograph is attenuated and the hydrograph shape 

is dispersed in time (also in space). The dynamic wave equations 

account well for hydrograph attenuation. However, two drawbacks to the 

wholesale general use of this modeling approach are the large data 

requirements and the necessity for numerical integration of the model 

equations. Very often, based on channel geometry and alignment and 

flood wave characteristics, it is possible to make very valid 

simplifying assumptions that allow one to utilize approximations to the 

dynamic wave equations. When this is possible, advantages in tenns 

of ease of solution and data requirements oftentimes are realized. 

Two approximations that have found wide application in engineering 

practice are the diffusion and kinematic wave models. The diffusion 

wave model assumes that the inertia terms in the equation of motion, 

Eq. 21, are negligible compared with the pressure, friction, and 

gravity terms. Thus, the diffusion model equations are continuity, Eq. 14, 

and the following simplified form of the conservation of momentum. 

~ = s s ax o - f ( Eq. 22) 

* This general statP.Ment assumes minor lateral inflow. 
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The kinematic model assumes that the inertia and pressure terms 

are negligible compared wtth the friction and gravity terms, further 

reducing Eq, 22 to 

(Eq. 23a) 

which states simply that the equation of motion can be approximated by 

a uniform flow formula of the general form 

Q = ayb ( Eq. 23b) 

where a, bare parameters. 

Although approximate, both the diffusion and kinematic models 

have been shown to be fairly good descriptions of the physical 

phenomenon in a variety of flood routing cases. The kinematic model 

has been successfully applied to overland flow (Overton and Meadows, 

1976), to small streams draining upland watersheds (Brakensiek, 1967), 

and to the description of the travel of slow-rising flood waves. This 

later case occurs both in major streams, such as the Mississippi Rive~ 

when long duration flood hydrographs resulting from,as an example, 

spring snowmelt,occurs and in small streams where the streamflow 

hydrograph results principally from lateral stormwater inflow along 

the stream reach. The subsidence (attentuation and dispersion) of 

the flood wave, however, is better described by the diffusion model 

since the kinematic model, by definition (Henderson, 1966 and Ponce, 

et.al., 1978), does not allow for subsidence. 

Kinematic Waves 

In order to better understand the physical significance of 

kinematic and non-kinematic waves and the subsequent physical 
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interpretation of hydrologic routing models, it is imperative that 

the wave speed and crest subsidence (hydrograph dispersion) charac-

teristics be investigated, 

Wave Speed: The kinematic wave speed is determined by comparing 

the continuity equation with no lateral inflow. 

to the definition of the total derivative 

dQ = ~, dX + ~ 
dt ax dt at 

An observer moving with wave speed, c, 

would observe that the flow rate is constant, i.e. 

dQ - 0 at -

For prismatic or nearly prismatic channels, since Q is a unique 

function of y alone 

!ill. 
dy 

(Eq. 24) 

(Eq. 25) 

(Eq. 26) 

(Eq. 27) 

(Eq. 28) 

where Tis the channel top width in feet. This relationship is 

analogous to that of Seddon (1900) who observed that the main body 

of flood waves on the Mississippi River moved at a rate given by 

Eq. 28. 

Eq. 28 implies that equal depths on both the leading and recession 

limbs of a hydrograph travel at the same speed. Since greater depths 

move at faster rates, Eq. 28, it follows that the leading limb of the 
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hydrograph will steepen and the recession limb will develop an 

elongated "tail.'' 

Crest Subsidence: From Eqs. 23 and 27, it is found,that to an 

observer moving with wave speed c, 

( Eq. 29) 

Manipulating this equation yields: 

(Eq. 30) 

which establishes that theoretically, the kinematic wave crest does 

not subside as the wave moves downstream. That is, to an observer, 

the depth at the crest does not change as the crest moves through a 

uniform reach with wave speed c. 

These results show that a kinematic wave can alter in shape 

but without crest subsidence. Further, the maximum discharge rate 

occurs with the maximum depth of flow. 

Hydraulic Geometry and Rating Curves: One important aspect 

of the kinematic wave model is the replacement of the momentum 

equation with a uniform flow formula, which is nothing more than a 

single valued rating between discharge and depth (area) at a point in 

the stream. As previously discussed, the fact that natural channels 

are not prismatic leads to subsidence and dispersion of a hydrograph, 

suggesting that the relationship between discharge and depth is not 

unique but varies over the hydrograph. If the dispersive characteristics 

are small such that a variable rating relationship does not differ 

significantly from the single valued rating, the conclusion can be 
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drawn that the main body of a hydrograph does move kinematically. 

In which case, the kinematic model or the diffusive wave model should 

be sufficient for most simulation purposes. This represents an 

economy of data and computational requirements over the dynamic wave 

model. 

That the flow in many streams behaves essentially kinematically 

is evident from the relationships between hydraulic geometry and 

discharge first set forth by Leopold and Maddock (1953). The fact 

that the channel characteristics of natural rivers seemed to constitute 

an interdependent system which could be described by a series of 

graphs having a simple geometric form suggested the term "hydraulic 

geometry" to Leopold and Maddock. Subsequent studies have verified 

and expanded upon this initial work with the result that hydraulic 

geometry equations may be used to provide a general estimate of 

channel characteristics at any location within the drainage system. 

Leopold and Maddock (1953), and later researchers, based their 

studies on the premise that at a given time, all points on a river 

are experiencing the same frequency of discharge; and, that at a 

given channel cross section, different discharges have different 

frequencies. Frequency of discharge is defined as the number of 

times, on the average, that a given flow will be equaled or exceeded 

in any given year. Thus a flow with a 10% frequency will, on the 

average, have a 10% chance of being equaled or exceeded in any given 

year. Based on this premise, the researchers were able to compare 

different discharges occurring at the same time at different points 

along a river system. 
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As a result of their analysis of the variation of hydraulic 

characteristics at a particular cross section in a river, Leopold 

and Maddock (1953) proposed that discharge be related to other 

hydraulic factors in the following manner: 
(Eq. 3la) 

(Eq. 3lb) 

(Eq. 3lc) 

where w is width, dis depth, Vis cross-sectional mean velocity, 

Q is discharge and a, b, c, f, k, and mare best fit constants. It 

follows that since width, depth, and mean velocity are each functions 

of discharge, then b + f + m = 1.0; and ack = 1.0. Betson (1979) 

noted that a fourth relationship is sometimes also presented 

A= nQP (Eq. 3ld) 

and that f = p - band m = l - p. The relationships shown in 

Eqs. 31 are for individual stations in that they relate channel 

measures to concurrent discharge. 

The results from several studies are shown in Table 1. It is 

notable that the values do not vary widely, particularly for the 

depth-discharge relationship. These results enforce the use of 

single valued rating curves and simplified routing models. 



29 

TABLE 1, TYPICAL STATION EXPONENT TERMS FOR GEOMORPHIC EQUATIONS 

LOCATION width 
OF BASIN(S) b 

Midwest 0.26 

Brandywine, Pa. 0,04 

158 Stations in U.S. 0. 12 

Big Sandy River, Ky. 0.23 

Cumberland Plateau, Ky. 0.245 

Johnson City, Tn. 0.08 

Theo re ti ca 1 0.23 

Exponents 

depth velocity 
f m 

0,40 0.34 

0.41 0.55 

0.45 0.43 

0,41 0.36 

0.487 0.268 

0.43 0.49 

0.42 0.35 

area 
p Reference 

0.66 Langbein, 
(1954) 

et a 1 . 

0.45 ditto 

0.57 ditto 

0.64 St~ll and Yang 
(1976) 

0,732 Betson (1979) 

0.51 Weeter and 
Meadows (1978) 

0.67 Leopold and 
Langbein (1962) 
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Non-Kinematic Waves 

The result of Eq. 30 frequently does not agree with nature. Rather, 

due to previously mentioned factors, flow peaks are seen to subside. 

This fact suggests that the applicability of the kinematic model is 

limited, and that either the diffusive or dynamic wave model is preferable. 

Differences between the two non-kinematic models can be investigated 

by examining the significance of each of the dynamic terms in the momentum 

equation, Eq. 21. First using the definition for discharge at a 

point in a stream 

Q = VA (Eq. 32) 

Eq. 21 can be rewritten as follows: 

Q Eil_ _ o2 aA + l Eil_ _ Q aA + 'fl. = 
~ ax A3 ax A at A! at g ax 

( Eq. 33) 

The partial of A with respect to time is removed in terms of the spatial 

derivative of Q using the continuity expression, Eq. 14. After this 

substitution and rearranging, Eq. 33 becomes 

2Q 
gA2 

2 
.£il. - ![_ .M_ + _l .£il. + 'fl_ = S -S 
ax gA3 ax gA at ax o f 

At any cross-section 

dA = T 
dy 

( Eq. 34) 

(Eq. 35) 

and for most natural channels, the wave speed (celerity) is approximated 

by the kinematic wave speed. If Chezy's resistance is assumed 

c = f i (Eq. 36) 



Drawing on these two relationships and the definition for Froude 

number 

2 v2 - Q2T F = - - 3 gy gA 

the various tenns in Eq. 39 can be rewritten as 

2Q ~ = 3F2 2Y.. 
gA2 ax ax 

02 aA - F2 2Y.. -
gA3 

--ax ax 

and 
1 ao - 9 F2 2Y.. 
gA at - - 4 ax 

Tracing back, the contributions of each term in Eq. 21 are found. 

and 

which allows Eq. 21 to be rewritten as 

(1 - o.2s F2l * = 5c-sf 
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(Eq. 37) 

(Eq. 38a) 

(Eq. 38b) 

( Eq. 38c) 

(Eq. 39a) 

(Eq. 39b) 

(Eq. 40) 

An equivalent expression was found by Dooge (1973) in detennining the 

cumulants of a linearized version of Eq. 21. 

Examination of Eqs. 39 and 40 reveals that the convective and 

temporal acceleration terms are of nearly equal magnitude but are of 

opposite sign, and hence, act to nearly cancel each other. These two 

tenns are significant for Fronde numbers greater than 0,60, where 
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significance is taken as 10 percent of the coefficient value in Eq. 40. 

Evidence of Froude numbers less than 0.60 for unsteady events in small 

streams is documented in the literature, e.g. (Gburek and Overton, 

1973). Further, using the theoretical values for hydraulic elements 

of Leopold and Langbein (1962) it can be shown that 

F "' Qo.14 (Eq. 41) 

demonstrating that Froude number is largely insensitive to increasing 

discharge in most natural streams for flow in bank, These results 

suggest the diffusive wave model can be confidently applied to most 

flood routing events. 

Wave Speed: The wave speed of a flood routing model composed of 

Eqs. 18 and 40 can be found by combining the two equations into a 

single expression that removes the term for friction slope, and the 

partial derivatives of A and y. Assuming Chezy's resistance, Eq. 40 

is rewritten as 

2 

-b; (Eq. 42) 

where R is hydraulic radius defined as area divided by wetted 

perimeter and C is Chezy's resistance coefficient. Taking the partial 

with respect to time of this equation, the partial with respect to 

space of the continuity equation, and combining the two, using Eq. 35 

to remove y and A, and then rearranging, the following expression 

is obtained. 

an aQ Q ....2 a2Q ft+ c(Q) ax= 2Ts [l-0.25r ] -z + c(Q)q 
o ax 

( Eq. 43) 
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Where c(Q) is wave speed or a function of discharge. This equation 

is of the form of the classical convective - diffusion (dispersion) 

relationship. See Eq. 11. Examination of this equation shows that 

the wave speed is given by 

c = c (Q) = .:!_ ~ ( Eq. 28) T uy 

which, of course, is the kinematic wave speed. Thus, the main body 

of a diffusive wave moves with kinematic speed, a result consistent 

with the observations of Seddon (1900) and subsequent researchers. 

An interesting result is obtained if the rating between area 

and discharge, Eq, 3ld, is utilized in a parallel derivation of 

Eq. 43. The following equation is obtained. 

aQ an Q 1 ---r + c(Q).::..::;. = ,,..,,,,-s [1-(- -
a ax ~' "o p 

Comparison with Eq. 43 yields the value for p=0.67, which is the 

theoretical value determined by Leopold and Langbein (1962). 

(Eq. 44) 

Crest Subsidence: From Eq. 43, it is found that to an observer 

moving with wave speed, c, that 

_gg_ o 2 a2o dt = 2fS (l-0.25f l -:--2" + c(Q}q 
o ax 

utilizing the relationship 

dQ dQ dt dQ 1 
dx = cit ' dx = cit c 

(Eq. 45) 

( Eq. 46) 
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Eq. 45 can be rewritten as 

(Eq. 47) 

which shows that the diffusive discharge hydrograph subsides as 

it moves through a river reach. 

Further properties of the crest region of a diffusive wave 

can be derived by rewriting Eq. 42 in terms of Q as 

(Eq. 48) 

where hydraulic radius has been approximated as y, the condition 

for a wide channel. Taking the derivative with respect to x and 

equating to zero yields 
2 

3 ~ [s - Cl-0.25F2J ayJ = y (1-o.2sF2J .?....L2 ax o ax ax 
(Eq. 49) 

In the region of the crest, the shape of the flood wave is 
a2 a concave, and i..-f < 0, and therefore,~ < 0, also. That is, 
ax x 

the peak flow rate does not occur where depth is a maximum, but at 

a point in advance of the maximu~ depth. 

Determination of an explicit statement for the rate of 

subsidence of the wave crest requires explicit statement of y as a 

function of x. This, obviously, will vary with each hydrograph. 

Henderson (1963) developed a first approximation to the rate of 

crest subsidence based on the assumption that the region of the 
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crest is parabolic in shape. In the region of maximum depth, he 

found that 

.<!¥_ = Q b 
dx 2TS

0
c ~ (Eq. 50) 

and in the region of maximum discharge 

(Eq. 51) 

where r is defined as the ratio of channel bed slope to the slope 

of the leading limb of the flood wave. He reported that from the 

examination of a number of flood records, r was found to never be 

less than 10 and often was greater than 100. 

The region of maximum discharge is known as the local crest and 

the region of maximum depth is known as the wave crest. At any 

moment in time, the position of the local crest represents the 

maximum discharge that will pass that point, and the river crest is 

the maximum depth along the river and occurs upstream of the local 

crest. 

Looped Rating Curves: Eq. 49 clearly demonstrates that a single 

valued rating between discharge and depth (area) does not hold for 

non-kinematic waves. An approximate expression for the discharge 

variable (looped) rating curve is given by 

Q - v' 2 
Qn - l_(l-0,25f ) ~ 

S
0 

ax 
{Eq. 52} 



where Qn is the unifonn flow at a given depth. This expression 

is rendered more useful if the spatial derivative is replaced by 
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some alternate quantity, deducible from data at-a-station, i.e. at 

one point in the stream. Making use of the kinematic relationship 

2i'.. = l 2i'.. ( Eq . 29) ax c at 

Eq. 51 can be written as 

g_ - I 2 on - 1- (1-o.25f l 2i'.. 
5ac at 

(Eq. 53) 

It must be noted that Eq. 53 is not entirely correct since the 

kinematic relationship, Eq. 29, was included. 

A typical looped rating curve is shown in Figure 7. Comparison 

with the associated discharge hydrograph illustrates that as a flood 

hydrograph passes a point, the maximum discharge is first observed, 

then the maximum depth, and finally a point where the flow is unifonn. 

The uniform flow occurs when the flood wave is essentially horizontal 

and therefore has a slope,~, that is very small relative to the 

bed slope. This, obviously, will occur close to the region of 

maximum depth. The occurence of unifonn flow is illustrated graphically 

as the point of intersection of the looped rating curve with the 

single valued unifonn flow rating curve. 

It should be noted that the scale of Figure 7 is exaggerated 

for clarity. The occurence of the three points in question likely 

occurs much closer together than implied by the figure. 
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The utility of a looped rating curve instead of a single 

valued rating curve is determined by how wide the loop is, relative 

to the single valued curve. a must be noted though that most 

published streamflow data and associated rating curves determined 

from field discharge measurements generally are better approximated 

by a single valued relationship, Looped curves can be approximated 

using Eq. 52 and time series records of river stage at a station. 

Hydrologic Routing Equations 

The family of hydrologic routing models are formulated in terms 

of a continuity relationship and an assumed relationship between 

streamflow and reach storage. As such, hydrologic models are not 

strictly founded on the physics of the system and therefore have 

parameters that must be determined by fitting to historical data. 

Muskingum River Routing: Perhaps the best known and most widely 

used of the hydrologic models is the Muskingum routing model. This 

model was originally developed for application to flood routing on 

the Muskingum River in Central Ohio, hence the origin of the name. 

The model utilizes continuity 
dS 

I-O=dt ( Eq. 54) 

where I is inflow to a river reach, O is outflow and Sin the storage 

within the reach. Continuity holds that the net flow into a reach 

must equal the rate of change of water storage within the reach. 

Coupled with continuity is the storage relationship. 
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s = K [er+ (1-e)OJ (Eq. 55) 

where K is a characteristic storage time approximated as the travel 

time through a reach, and e is a weighting coefficient. For 

attenuating waves, O ::__ e ::__ 0.5. 

Eqs. 54 and 55 are solved using a finite differencing 

technique. Defining r1 = I(t) and r2 = (t + lit), and similarly, 

o1, o2, s1 and s2, the following approximation to Eq. 54 is written 

I + I O + 0 l 2 . l 2 
---...--+ 2 = ( Eq. 56) 

The inflow hydrograph provides r1 and r2 , and o2 is the desired 

quantity. o1 is either known from initial conditions or a previous 

calculation. s1 and s2 are expressed in tenns of I and Oas follows 

Substituting Eq. 57 into Eq. 56 and simplifying gives 

where 

Co= -Ke+ 0.5t>t 
K-Ke + O.St>t 

Ke + O.St>t 
Cl = k - Ke + 0. St> t 

(Eq. 57) 

( Eq. 58) 

{Eq. 59a) 

(Eq. 59b) 



and 

K - Ka - a.Si.it 
K - Ka + a.Si.it 

Note that Kand Lit must have the same time unit and that the 

coefficients sum to 1.0, 

Estimation of Model Parameters: The success of using the 

40 

(Eq. 59c) 

Muskingum model is quite sensitive to the selection of model parameters. 

Historically, Kand a have been estimated by matching model output 

with actual inflow-outflow records. The obvious shortcoming to this 

is that the model is limited to gaged streams. Oftentimes, it is 

desired to route flood hydrographs along ungaged streams. To do 

so requires the capacity for estimating model parameters from available 

channel and hydrograph characteristics. 

Cunge (1969), while investigating the numerical properties of 

Eq. 58, used Taylor series expansions to each of the tenns in Eq. 58 

and found that it could be represented by an equivalent equation of 

the convective-diffusive fonn 

~ + \x ;~ = [ Lix(l-a)c(Q)-} t.{J q 
ax 

where Lix is the reach length. Comparison of this equation with 

Eq. 43 shows that 
K _ LiX 

- cCQT 

and 
2 e = .l [ 1 _ Q(l-0.25f )] 

2 2TSOLixc(Q) 

( Eq. 60) 

(Eq. 61a) 

(Eq. 6lb) 
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Cunge (1969) and 1 ater researchers developed similar expressions 

to Eqs. 61, but only Ponce and Yevjevich (1978) considered the 

variation of Kand e with Q. Only Dooge (1973) included the 

correction for dynamic effects, (1-0 .25f2), in the equation for e, 

but he considered c(Q) to be constant and not a function of Q. 

Therefore, in the opinion of this writer, Eqs. 61 are the most 

general expressions for Kand e to date. 

Another very important feature of Eq. 60 is that it demonstrates 

the Muskingum routing model is diffusive, and offers the same 

advantages of the diffusive wave model. 

Lateral Inflow: Examination of Eq. 58 reveals no term 

involving lateral inflow. By retracing the steps in deriving Eq. 60 

and recognizing that Eqs. 43 and 60 should be equivalent, it is 

established that Eq. 58 should be written 

(Eq. 62) 

where q is the average lateral inflow during a computational time 

interval. In summary, the steps involved in deriving Eq. 60 are 

as follows: (1) rewriting Eqs. 59 and 55 as 

dS = Q(x,t) - Q(x + i1x, t) ( Eq. 63) 
dt !It 

and 

S = K [eQ(x,t) + (1-e) Q(x+i1x,t)J (Eq. 69) 



(2) expanding the function Q(x+~x. t) in a Taylor series in x, 

truncated to second order; 
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(3) taking the time derivative of the modified Eq. 64, considering 

Kand a constants (first approximation), dropping terms with 

derivatives higher than order two and equating the result with 

the modified Eq. 63; and 

(4) utilizing the continuity equation, Eq. 14, and the equation 

for kinematic celerity. 

These steps were outlined by Kousis (1978). 

Only Ponce (1979) included a term for lateral inflow. However, 

his term was 2q~x/3 and not q~x as given in Eq. 62, and therefore, 

did not consider the full contribution of lateral inflow. 
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CHAPTER 4 

Evaluation of Longitudinal Dispersion 

Understanding the ability of streams to disperse pollutants 

is essential to the effective abatement of pollution in streams. 

As seen in the theoretical development of the longitudinal dispersion 

model, the mixing effects due to turbulence and nonuniform velocity 

are lumped into the dispersion coefficient, E. As noted by Liu (1977) 

many formulas, empirical as well as theoretical, for E have been 

proposed in the literature, but they are, for the most part, 

inapplicable to natural streams. To illustrate this point, he 

used field data to evaluate several equations and found that they 

occasionally were in error by a factor of 72D. The best prediction 

was still in error by a factor of 18. This wide range only 

highlights the fact that the state-of-the-art in predicting 

longitudinal dispersion is not that well perfected. 

Perhaps one of the shortcomings to accurately predicting Eis 

a lack of understanding of the process and the various factors 

involved. Typical equations for E include such terms as discharge, 

cross-sectional velocity, depth of flow, hydraulic radius, shear 

velocity and channel slope. Liu (1977) and later Beltaos (1980) 

concluded that the effects of channel geometry and unsteady flow 

on E are not well understood. 

The purpose of Liu's work was to propose an improved 

equation for predicting longitudinal dispersion. His equation 



can be expressed as 

E = 
0.5 T31 gRS

0 
A 

where the terms are as previous1y defined. He tested his 

equation on a large group of data and found that in most cases 

predicted E was within a factor of six of observed E. 
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(Eq. 65) 

Based on the results of Eq. 43, and resu1ts from Chapter 2 that 

dispersion is essentia11y a convective process, it was fe1t that 

the expression for dispersion of a hydrograph might a1so be a good 

predictor of the dispersion of a buoyant tracer. From Eq. 43, 

the expression for E i's 

E = ~ [1-0.25F2J 
0 

This equation was tested using the data from Liu (1977). 

The necessary fie1d data and the observed values of E for 

e1even test cases are shown in Table 2, The prediction resu1ts 

(Eq. 66) 

of Eqs 65 and 66 are shown in Table 3. It is obvious from Table 3 

that Liu's equation outperformed Eq. 66 in all cases but one. 

However, in four of the cases, Eqs. 65 and 66 predicted within a 

factor of two of each other. Both equations did poorly on test 

number 2, a very wide channel. In wide channels, the opportunity 

for secondary currents, braided channels, and large transverse 

mixing characteristics oasically violate the assumptions behind 

a one-dimensional model. 
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TABLE 2 

Dispersion Field Data, From Liu (1977) 

Test 
A ft2 s

0
,ft/ft E,Ft2/sec Number Q,cfs T,ft -·-

1 54 71 .0013 52 162 

2 323 391 .00036 221 98 

3 35 57 .00292 56 98 

4 140 261 .000324 113 289 

5 240 405 ,000329 114 213 

6 300 149 .0013 60 451 

7 3000 1091 .0004 197 120 

8 900 403 .000121 81 191 

9 950 407 .000121 81 191 

10 1800 836 .0004 194 120 

11 48 61 .0013 53 166 
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TABLE 3 

Comparison of Observed and Predicted Dispersion 

Longitudinal Dispersion, Ft2/sec 

Test 
Number Observed Liu Eg. 66 

l 162 251 405 

2 98 2,629 2,021 

3 98 524 107 

4 289 470 l ,912 

5 213 274 325 

6 451 244 1 ,908 

7 120 974 18 ,853 

8 191 93 45,556 

9 191 92 48,056 

10 120 l ,089 11 ,501 

11 166 301 348 
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In an effort to determine a range of applicability for Eq. 66, 

the ratio of E predicted to E observed were plotted versus channel 

slope and top width, as shown in Figure 8. Close examination of 

the data indicates that Eq. 66 predicts within a range of error 

less than a factor of ten for channels simultaneously satisfying 

S > 0.0003 and T < 115 feet. This result might suggest physical 
0 -

limits to the applicability of the diffusive model and the one-

dimensional approximation: respectively. 

A review of the slope of the natural channels studied by 

Betson (1979) and Stall and Yang (1970) revealed that only four of 

46 listed streams have a slope less than 0.0003. This evidence 

plus the results demonstrated in Figure 8 are encouraging 

regarding the application of the diffusive wave model to smaller 

natural streams and the estimation of longitudinal dispersion 

with Eq. 66. It must be noted that Liu's data were for steady 

flow conditions. The performance of Eq. 66 and other formulas 

remains to be tested under unsteady flow conditions. 
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CHAPTER 5 

Conclusions and Recorrrnendations 
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This research was conducted to provide a rigorous theoretical 

investigation of the various processes involved in po 11 utant 

transport and hydrograph dispersion during periods of stor1TP11ater 

runoff, and to propose a suitable model for simulating the 

impact of stonnwater on streams. Based on the results of this 

research, the following conclusions are drawn: 

1. The diffusive wave model is the appropriate flood 

routing model for small streams. 

2. The diffusive wave is accurately simulated with the 

improved Muskingum routing model. 

3. A suitable stream water quality model for simulating 

the impact of stonnwater should couple the convective -

diffusive equation, Eq. 15, with the improved version 

of the Muskingum routing model. The resultant model 

would be relatively simple and inexpensive to use, 

and would still be consistent with the principal 

transport and dispersion processes involved. 

4. An expression for longitudinal dispersion during 

unsteady flow possibly has been developed. 

5. Preliminary criteria for the applicability of the 

reco11111ended model, and perhaps one dimensional models 

in general, have been established. It is suggested 



that these models be applied only to streams with top 

width less than 115 feet and channel bed slopes greater 

than 0.0003 feet/feet (1.6 feet per mile). 

The following recormiendations are made: 

1. Investigate the complications of coupling the water 

quality and streamflow equations. 

2. Establish the best solution strategy for the 

coupled equations during unsteady streamflow. 

3. Obtain data to test Eq. 66 and other equations for 

l ongitudina 1 dispersion during unsteady fl ow. 

50 
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