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ABSTRACT 

Title: Low Pressure Membrane Separation Process 
To Remove Heavy Metal Complexes 

The overall objective of this investigation is to esta­
blish the rejection behavior of heavy metals in the presence 
of complexing agents, utilizing negatively charged ultrafil­
tration membranes. An extensive experimental investigation 
is conducted with Zn 2+, Cd 2+, cu2+, and cu1

+ in the presence 

of cyanide, ethylenediamine tetraacetic acid, and oxalates, 
under insignificant concentration polarization condition. 
The rejection dependence of the heavy metals is found to be 
a function of feed metal concentration, metal types, com­
plexing agent to metal feed molar ratio, pH and ionic stren­
gth. The dependence of rejection behavior of heavy metals 
and complexing agents on pH and concentration is explained 
in terms of metal complex species distribution and Donnan 
Exclusion model. For EDTA and oxalate systems, the rejec­
tions of metal are independent of initial metal concentration; 
whereas for the cyanide system the rejections of both metal 
and cyanide decrease with concentration. At transmembrane 
pressure of 5.6 x 10 5 N/m2 , metal rejections range between 
77% to 96%. For all cases, the rejection of metal is highly 
dependent on the size and charge of the complex metal 

2- 1-
species. For example, the rejections of Zn(CN) 4 > Zn(CN) 3 , 

2- 2- 2-and Cu(EDTA) > Cu(CN) 3 > Cu(C 2o4) are observed. 

Descriptors: 

Identifiers: 

Heavy Metals, Membrane Process, Waste 
Water Treatment 

Charged Membrane Ultrafiltration, Donnan 
Exclusion, Rejection Model, Complex Species, 

Chelating Agents 
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I. INTRODUCTION 

Membrane processes provide a broadly applicable 

technique for the separation and concentration of various 

inorganic and organic compounds from aqueous systems. 

Since the practical cellulose acetate reverse osmosis mem­

brane came into existence twenty years ago, considerable 

attempt has been made to improve the membrane capability 

and performance. The development of composite membranes by 

using in-situ interfacial polymerization technique has 

provided membranes with high solute separation character­

istics (1). By varying the materials and physical condi­

tions of the two layers on porous support, several types 

of membranes could be obtained. The composite membranes 

perform better than cellulose acetate membranes in almost 

all aspects including water flux, solute rejection, tempe­

rature effect, stability in acid and base, and pressure 

requirement. 

Another development in reverse osmosis membrane tech­

nology is the development of high pressure charged mem­

branes with good water flux characteristics. Hiroshi 

Nomura et al. (2) have investigated the properties of 

charged membranes prepared from the sulfonation and ami­

nation of SBR resins. The sulfonated membranes showed 

1 
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relatively low salt rejection and high production rate, 

whereas aminated membranes showed high rejection and low 

production rate. The low salt rejection of sulfonated 

membranes was improved by amination so that a sandwiched 

type membrane could be obtained. Although the selectivity 

based on rejection was not very high, the strong exclu­

sions of ions of higher valencies resulted in higher re­

jection. Despite its limited use in terms of selective 

removal of metal ions and metal containing species, rela­

tively high pressure is needed in order to effect the 

water recovery. 

The conventional ultrafiltration membrane process 

used to remove large organic molecules is mainly based on 

sieving mechanism. Ultrafiltration membranes with various 

pore sizes are commercially available. It is a low pres­

sure process, and is used for macromolecules. Ultrafil­

filtration membranes containing charged groups have also 

been developed with the advantage that they not only can 

remove certain small molecules, but also have high se­

lectivity for various inorganic ions. Bhattacharyya et al. 

(3-6) and Gregor et al. (7,8) have done extensive work 

along this line and have applied it in industrial pro­

cessing and separations. The above three membrane sepa­

ration processes can be best illustrated in Table 1. 



TABLE 1 

Membrane Separation Mechanisms 

Process Membrane structure Pressure range (N/m2) Mechanism 

Reverse Membranes of tight 4xl06 -7xl06 Solution-diffusion 
osmosis pore structures 

w 

Conventional Membranes with 7xl04 -7xl05 Sieving mechanism 
ultrafil- different pore and solute-membrane 
tration sizes intera,.tion 

Charged Porous membrane 3xl05-7xl05 Donnan exclusion 
membrane with charged func- mechanism 
u t sti - tional groups 
tration inside the pore 
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The basic research involving charged membrane ultra­

filtration has included separation of inorganic salts (9, 

10), organic compounds (4) and surfactants in the water 

(11). The rejections of the metal ions in the solution 

depended largely on the chemical state of that ion (cation 

form, neutral form or anion form). This finding is im­

portant in metal removal as well as metal selective 

recovery. 

Metal finishing operations use large quantities of 

rinsing water. Depending on the particular operations, the 

wastewater streams contain heavy metals such as copper 

(Cu), Cadmium (Cd), Zinc (Zn) and Cyanides, which consti­

tute undesirable effects to human health. Hydroxide pre­

cipitation of heavy metals followed by settling process 

is often used to treat waste water from metal plating 

industry. However, the presence of complexing agents such 

as cyanides prevents effective precipitation. In addition, 

the hydroscopic metal hydroxide precipitates cause 

leaching problems under various storage conditions. 

EDTA, known as ethylenediamine tetracetate, has been 

added as a powerful complexing agent in heavy met~l che­

lation process. Kamizawa (12) has shown that EDTA is an 

effective chelating agent for metal removal in the reverse 

osmosis process. 
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Oxalic acid has long been used as a chelating agent 

for metal ions. Considerable research work has been done 

on metal-oxalate chemistry, yet very few publications were 

shown in terms of membrane processing. 

Although the rejection behavior of Metal-EDTA com­

plexes with reverse osmosis membranes (12,13) has been 

studied before, the rejection behavior of metal cyanide 

and oxalate complexes have never been studied with 

reverse osmosis or with conventional ultrafiltration mem­

branes. In addition, none of these studies included the 

separation behavior of the associated free complexing 

agent. The use of charged membrane ultrafiltration for the 

simultaneous removal of metal ions and metal ion complexes 

has not been reported in the literature. 



II. LITERATURE REVIEW OF CHARGED MEMBRANE ULTRAFILTRATION 

Low-pressure ultrafiltration with negatively-charged, 

anisotropic (thin skin), noncellulosic membranes is found 

to be a promising technique for the metal recovery and 

water reuse. Gregor and coworkers (7,8) have reported the 

use of various polystyrene sulfonic acid-polyvinylidene 

fluoride charged ultrafiltration membrane in wastewater 

treatment. They found a significant improvement in the qua­

lity of treated sewage compared to that of the conven­

tional biological oxidation process. The bacteria was re­

ported to be removed completely by using his charged 

ultrafiltration membrane. Sachs et al. (14) have developed 

a new group of charged noncellulosic membranes having a 

performance intermediate to that of the conventional 

reverse osmosis membranes and conventional ultrafiltration 

membranes. High rejection (R • 0.70 to 0.90) and high water 

fluxes at moderate pressures (7.0xl05 N/m2) were found in 

their studies. Lonsdale et al. (15) have shown the re-

jection behavior of sodium citrate and sodium chloride on 

negatively-charged reverse osmosis membrane. They have been 

able to explain the result by the extension of Donnan's 

original equilibrium treatment to the non-equilibrium 

situation occurring in reverse osmosis. 

6 
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Bhattacharyya et al. have studied various single salt 

(3), multi-salt(9-ll) and actual wastewaters (3-5) with 

charged ultrafiltration membranes. The extent of sepa­

ration (at transmembrane pressure less than 6x105 N/m2) of 

several oxyanions, alkaline earth metal salts, and heavy 

metal salts is discussed. In single salt experiments, they 

observed that the rejection by charged membranes are 

expected to decrease with an increase in concentration of 

the feed solution. Results also showed that the rejection 

was highly dependent on the type of ions. The rejection of 

metal salts on negatively-charged ultrafiltration membranes 

was shown to be ZnC12>cacl2>PbC12 • The rejections of colons 

were dependent also on charge and species types (Table 2). 

It could be seen that the rejection is better for highly 

charged species, and monovalent oxyanion rejection is 

better than Cl-. This could be explained qualitatively by 

the Donnan Equilibrium Model. 
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TABLE 2 

Dependence of Rejections on Coion Charge with 

Negatively-charged Ultrafiltration Membranes (16) 

Ion Rejection 

PO 3-4 0.98 

HPO 2 -4 0.95 

so 2-4 0.94 

HAsO 2 -4 0.95 

H2As04 
1- 0.88 

0.35 



III, OBJECTIVES OF THIS INVESTIGATION 

The overall objective of this investigation is to 

establish the rejection behavior of heavy metal ions in 

the presence of complexing agents, utilizing low-pressure, 

negatively charged ultrafiltration membranes. Extensive 

bench scale experiment with noncellulosic membranes were 

conducted with several synthetic systems. 

The specific objectives are: 

1, To determine the relative rejection behavior of 

heavy metal ions in the presence of inorganic 

(cyanide) and organic (EDTA and oxalate) com­

plexing agents, 

2. To determine the rejection of free complexing 

agents in the presence of metal complexes. 

3. To establish the effects of pH, transmembrane 

pressure, complexing agent/metal feed molar 

ratio, solute concentration, and ionic strength 

on total metal and total complexing agents re­

jections. 

4. To establish the rejection behavior under high 

water recovery conditions. 

S. To develop a complex species distribution model 

in order to understand the metal rejection be-

9 
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havior in the presence of complexing agents. 



IV. MEMBRANE SEPARATION MECHANISMS 

Solute rejection by membrane processes can be defined 

in terms of a rejection parameter R: 

R • 1 - Cf/Ci • 1 - Js/ (JwCi) (1) 

where cf -solute concentration in the permeate. 

Ci• solute concentration in the feed. 

J -s solute flux. 

Jw -water flux. 

If rejection is defined in terms of anion concen­

tration, then Equation 1 could be rewritten in the fol­

lowing form: 

R • 1 - Jy/(JwCy) 

where C • anion concentration in the feed. 
y 

• anion flux. 

. (2) 

Depending on the nature of the membrane, transport of 

solute through the membrane is generally described by one 

of the following models. 

11 
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A. Solution Diffusion Model (17) 
(for tight uncharged membranes) 

According to this model, each component dissolves in 

the membrane according to a distribution law and then 

diffuses through the membrane as a result of concentration 

and pressure differences. 

The flux through the membrane is described by the 

following expression: 

The first term in Equation 3 describes the concen­

tration gradient effect on the flux while the second term 

in the same equation describes the pressure effect on the 

flux. 

For water transport, if the concentration difference 

across the membrane is small, then the above equation can 

be approximated as 

(4) 

For salt transport, 

J a -D . ( ) (ti C. ( ) /A) 
s J m J m 

(5) 



lJ 

Defining the distribution coefficient for the solute 

* to be K • Cj(m)/Cj, then Js can be further expressed 

in terms of the solute concentration in the solution (Cj) 

rather than in the membrane. 

(6) 

As a summary, the transport equation for solute and 

solvent can be written as follows: 

Jw • -A(AP - Mr) 

J s • -BACj 

where A• Dj{m)Vj{m)/(R'TA) 

(7) 

(8) 

The above equations clearly predict an increase in 

rejection with an increase in the net pressure difference 

(AP - Arr) since salt flow through the membrane is inde­

pendent of water flow. Selectivity in rejection depends on 

solute diffusivity in the membrane and the distribution 

coefficient of the solute between solution and membrane 

phases. Qualitatively, this model does predict the expe­

rimental result for solute rejection in many tight high 

pressure membranes. 
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B. Pore Model 
(porous conventional ultrafiltration membranes) 

The separations with conventional ultrafiltration 

membranes (20 A
0 

to 100 A pores) occur either because 

solutes are too large to enter the pores or because of 

frictional interactions within the pores. The Poiseulle 

law can be used to describe the water flux through the 

membrane: 

Jw • N 'ir r~ M' I (8µ>..) • .: ri AP I (By.>..) 

where N' • the number of pores per unit area. 

r'• the pore radius. 

µ•the viscosity of water • 

.: • the porosity = N ',r r?. 

(9) 

This relationship fails to account for the effect of 

pore tortuosity, and pore size distribution in the mem­

brane. Several attempts have been taken to modify this 

oversimplified Poiseulle equation (18-19). Differences in 

rejection among various solutes could be qualitatively ex­

plained by size and steric effect. 

The solution-diffusion model assumes no coupling of 

solute and water transport, while the pore model assumes 

viscous flow where the solute and water transport simul­

taneously. For conventional ultrafiltration and/or reverse 
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osmosis membranes, selectivity is not achieved by a sieving 

mechanism alone, nor do all permeating species pass 

through the membrane pore at same rate by viscous flow 

without interaction with the membrane (20). 

C. Donnan Equilibrium Model 
(charged membranes) 

When a charged membrane is immersed in a salt so­

lution as in the case of charged membrane ultrafiltration, 

a dynamic equilibrium condition is maintained (21-22). The 

counterion concentration is higher while the coion concen­

tration is lower in the membrane phase than in the bulk 

feed solution. The equilibrium Donnan potential can be 

expressed as the result of equal chemical potential of the 

components in the solution and membrane phases. 

(10) 

zm -z 
For a salt Mz Y which ionizes to M and Y Y, the 

y zm 
electroneutrality condition can be described as follows: 

* in the membrane phase: LZjCj(m) - Cm 2 0 (11) 

in the bulk feed solution: LZjcj • O (12) 

* where Cm is the charge capacity of the membrane. 
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* The charge capacity, Cm, for negatively charged 

ultrafiltration membranes typically ranges between 300-

2000 mM; thus the salt distribution between an aqueous so-

lution and membrane is expressed as: 

Define the salt distribution coefficient as: 

(14) 

* Since Z C () <<Cm, the following expression can be . y y m 

derived: 

(15) 

Thus, as an approximation, rejection could be expressed: 

{16) 

This model predicts that the ultrafiltrate concen­

tration is a function of the membrane charge capacity, the 

feed concentration and the charge of the coion. Experiments 

showed that ultrafiltrate concentration also depends on 
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the type of counterions as well as coions in the feed 

solution. The model predicts poorer rejection of the salt 

with increasing feed concencracion, and this is proved to 

be true by experiments. 

Although the model does not take into account the 

diffusion and convective fluxes which influence the salt 

rejection in charged membrane ultrafiltration processes, 

it does provide a simple qualitative picture on the solute 

rejection in charged membrane ultrafiltration processes. 

D. Nernst-Planck Model (charged membranes) 

Dresner (23) and Lakshminarayanaiah (24) used the 

extended Nernst-Planck equation to describe salt rejection 

in charged membrane ultrafiltration process. According to 

this model, the flux of ions through the membrane comes 

from convective ion flux, Donnan potential flux and dif-

fusion ion flux: 

Jj • 8jJwCj(m) + zjcj(m)Dj(m)[FE/(R'T)J 

- Dj(m)(dCj(m)/dx) - Cj(m)Dj(m)(dlnyj(m)/dx) (17) 

In Equation 17, one can see that the first term des­

cribes the convective solute flux, the second term accounts 

for the flux due to the Donnan potential while the last two 
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terms describe the diffusional salt flux, 

aj in Equation 17 is a correction factor for the 

possibility that in the pure convection mode the ions may 

not be swept along with the velocity of the permeating 

water. Dresner has integrated Equation 17 involving ultra­

filtration of multicomponent solutions through charged 

membranes for the case of good coion exclusion. 

At high water flux, (dCj(m)/dx) • 0, and the above 

solute transport equation can be written in the following 

simpler form: 

(18) 

* With good coion exclusion (i.e. Cm >> Cy(m)), the 

coion flux for single salt systems can be written as: 

(19) 

Evaluating Cy(m) by Equation 15, the solute flux JY 

can be computed by Equation 19. According to this equation, 

the flux of solute is a function of feed concentration, 

membrane charge density, charge of the ion and the dif­

fusion coefficients of ions in the membrane. The effec-

tiveness of selective metal recovery simply depends on the 
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magnitude of the fluxes of various solutes in the solution. 

The Nernst-Planck model differs from the Donnan equi­

librium model in that the Nernst-Planck model accounts for 

salt-solvent coupling. This model also makes allowance for 

the effect of convective flow, and for variation in the 

properties of different ions in terms of diffusion coef­

ficients. Both the Nernst-Planck and Donnan equilibrium 

models show a dependence of salt rejection on the feed 

concentration. 

In general, the relationship between solute ultra­

filtrate and feed concentration can be expressed empiri­

cally in the following form: 

(20) 

in which k and n are two parameters related to the nature 

of solute and the membrane. For simple metal salts, n has 

ranged between 1.0-1.5 (9-10,16). 



V. COMPLEXATION RE.ACTION MODELS 

Metal complexes are compounds that contain a central 

metal ion surrounded by a cluster of ions or molecules. 

Depending on the total charges on this entity, it may be a 

cation, an anion or a nonionic species. 

Compounds such as ethylenediamine tetracetic acid 

(abbreviated as EDTA), cyanide, and oxalic acid are 

commonly used as complexing agents. Compounds, such as 

EDTA, have several sites to bond the central metal ion and 

are called chelating agents, while molecules such as 

( 2- !-cyanide, and oxalates c2o4 , Hc2o4 ) have only one site 

called a ligand. 

Werner coordination theory is well known as the foun-

dation of coordination chemistry. His three important 

postulates are (25): 

1. Most elements exhibit two types of valence: 

(a) primary valence which corresponds to oxidation 

state. 

(b) secondary valence which corresponds to coordi-

nation number. 

2. Every element tends to satisfy both its primary and 

secondary valence. 

3. The secondary valence is directed toward fixed 

20 
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position in space. 

Although the theory is able to explain many pro-

perties of complexes, he emphasized a false postulate that 

two kinds of valence exist for inorganic substances without 

any justification for their existence. Three theories are 

currently used to describe the nature of the bonding in 

metal complexes. these are: 

1, valence bond theory (26). 

l. the electrostatic crystal field theory (27). 

3. the molecular orbital theory (28), 

A. Dissociation of Complexing Agents 

In the absence of metal ions, the complexing agent 

reaches equilibrium in the solution. For a polyprotic acid, 

the equilibria involved and the stepwise dissociation 

constants can be expressed as follows: 

HnL ~ H + Hn_1L; 

Hn-lL==;H + Hn_2L; 

HL H + L; 

K1 • [H][Hn-lL]/[HnLJ 

K2 = [HJ[Hn_2L] I [Hn-l L] 

"' [HJ[L]/ [HL] 

(21) 

(22) 

(23) 
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The corresponding stepwise dissociation constants for 

EDTA, HCN and H2c2o4 are shown in Table 3. 

Using stepwise dissociation constants, the material 

balance equation and charge balance relationship, a set of 

simultaneous equations can be solved to obtain the distri­

bution of various species in the solution under various 

conditions. As an example, diprotic acid H2L dissociate in 

the solution as follows: 

H2L ~ H+ + HL-· 
' Kl • [H+J[HL1 -]/LH2L] (24) 

HL-~ H++L2-· • K2 • [H+HL2-J/LHL-J (25) 
+ -,__ H + OH --. H20; Kw • [H+][OH-J•lO-l 4 (26) 

Material balance: 

(27) 

where CL is the total ligand concentration. 

Solving equations 24-27 simultaneously, the fraction 

of each species can be found as follows: 

oo. [H2LJ/CL • [H+JZ/([H+]Z + K [H+J + K K) 1 1 2 (28) 

Cll - [HL -]/CL • + +2 + K1 LH J/([H J + K1 [H J + K1K2) (29) 

oz .. [L2-J/CL • K1K2/([H+] 2 + K1 LH+J + K1Kz) (30) 
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TABLE 3 

Dissociation Constants of Complexing Agents (32) 

Complexing 

agent 

EDTA 

Dissociation Constant (at 25.C) 

Kl Kz K3 K4 

2.14xlu-3 

HCN 6.0xlO-lO 

-2 6.2xl0 
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Using the above procedure, the species distributions 

of three different complexing agents (cyanide, EDTA, and 

oxalate) are computed and shown in Figures 1-3, as a 

function of pH. 

B. Metal Complexation Equilibria 

l. General 

Cyanide is a well known complexing agent. It has been 

used in various separation processes, and in metal plating 

operations (29-31). It can form highly stable complexes 

with various metal ions in solution. Cyanide is a small 

charged species, (the size of CN·- is estimated to be 

2 A• ) . However, it fo.rms more than one complex with metal 

ions. For example, both Zn(CN) 3l- and Zn(CN) 4
2-

could be found in a solution which contains zinc ion and 

cyanide ion. Because of the possibility of HCN gas 

formation, cyanide is seldom used in low pH processes. 

EDTA has the structure: 
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• • The size ot this molecule ranges between 5 A -10 A 

depending on the molecular conformation. Since the 

molecule has six potential sites for bonding, it is called 

a hexadentate ligand. One of the valuable properties of 

EDTA as a titrant is that it always forms 1:1 complex with 

the metal ions it chelates. The complex is extremely stable 

as can be seen from the following proposed structure: 

·8 a{\ 
a-<(H.c-~l.~:::f~H 

'o-- er. ' I I o 
H, 

0 

EDTA exists in various forms in aqueous solution as 
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shown in Figure 2. 

Oxalate is another complexing agent used in this 

study. The size of the oxalate ion is estimated to be 

• 5.5 A. Depending on the pH of the solution, the oxalic 

acid has two forms in water solution as shown in Figure 3. 

Since oxalate forms weaker complexes with heavy metals, 

the precipitation of metals as hydroxide may occur at high 

pH values. 

2. Metal Complexation Calculations 

In the presence of metal ions, additional equilibria 

have to be taken into account for complex formation. As an 

example, the following additional equilibria occur in the 

aqueous solutions: 

M + L~ML; 

ML 

Kl• [MLJ/([M]lLJ) 

Kz. [MLz]l([ML][L]) 

(31) 

(32) 

(33) 

where Ki's are the successive stability constants 

characterizing the formation of the different species in 
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the metal complex solution, 

By successive substitution, one can obtain: 

[ML]• K1 [MJ(LJ 

[ML2 ] • K1K2 [M][L] 2 

Denoting the products of the stepwise stability 

constants by ai(overall stability constant), and the 

corresponding subscript, we have: 

S1 • [ML]/([MJLLJ) • K1 

a2 • [MLz]l([M](L] 2) • K1K2 

(3la) 

(32a) 

(33a) 

(34) 

(35) 

(36) 

The ai values for the cases in this study are 

shown in Table 4. The mole fraction of the ith complex 

species in the solution, which gives the fraction of the 
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TABLE 4 

Overall Formation Constants of Various Metal Complexes (33) 

System logS 1 logS 2 l.ogS 3 l.ogS4 

zn2+ -CN- 17.3! 19.!8 

Cd2+ -CN- 5.5 10.b 15.3 18.9 

cu1+ -CN- 24 28.b 30,3 

zn2+-EDTA lb.5 

Cd2+-EDTA lb.4b 

Cu2+-EDTA 18.80 

Cu2+ -OX 4.5 8.9 

TABLE 5 

Dissociation Constants of Various Cu-EDTA Complexes 

Complex 

Cu2+-H-L 

Cu2+ -OH-L 

-pK 

21.8 

21.2 
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total metal ion in the complex ot composition MLi is given 

by: 

ai • [MLiJ!<;i 

• Si[M][L]i/(lMJ + S1[MJ[L] + Sz[M][LJ 2 + ..... ) 

• Si[L]i/(1 + ~8 i[L]i) (37) 
1 

The mole fraction of the free metal ion is given by: 

In addition to metal-ligand reactions, metal hydro­

lysis reactions may also be important. 

M + OH ,__ M(OH) (39) --, 

M + 2(0H) ......... M(OH) 2 (40) ~ 

M + 3(0H) .......... M(OH) 3 (41) ~ 

M + 4(0H) ......... M(OH) 4 (42) --, 

Metal hydrolysis reactions have been included in all 

calculations presented here. In the case of copper-EDTA 

complexation study, species such as CuHLl- and Cu(OH)L3-

exist in solution in the presence of CuL2-. The disso­

ciation constants for CuHL1 -, Cu(OH)L3-, and CuL2- are 
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shown in Table 5. 

In the presence of other side reactions, such as the 

interaction of metal, ligands or metal-ligand complexes 

with hydrogen ions or hydroxide ions, an apparent 

stability constant (known as conditional stability 

constant) expression could be used in order to include 

these side reactions: 

LT .. L' + ML + 2ML2 + ••••• 

MT "'M' + ..... + ML+ ML2 + ..... 
where L' • L + HL + H2L + ..... 

M' = M + M(OH) + M(OH) 2 + ..... 

ML' can be defined in a similar way as follows: 

ML'• ML+ MHL + M(OH)L + ••••• 

Three new quantities (aM', aL', a ML') are defined to 

facilitate the calculation of species distribution: 

(43) 

(44) 

(45) 

(46) 

(47) 

aM' • M/M' = M/(M + M(OH) + M(OH)z + ..... ) (48) 

aL• • L/L' = L/(L + HL + H2L + ..... ) (49) 

aML' "'ML/(ML)' "'ML/(ML + MHL + M(OH)L + ..... )(50) 
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If the only complex formed is 1:1 type, the condi­

tional stability constant can be defined as follows: 

~· • [(ML)']/([M'J[L'J) (51) 

Combining Equation 31, and 48-51, the following ex-

pression can be obtained: 

(52) 

Figure 4 shows the relationship between conditional 

stability constants and pH for a number of metal-EDTA 

complexes, taking into account the effect of pH 

for EDTA and the effect of hydroxy complexes on 

curves go through a maximum. In the lower pH range, as pH 

increases, the formation of complex is favored by the 

deprotonation of the ligand, thus the conditional 

stability constant is increased. At higher pH values, the 

formation of hydroxide complexes occurs as a competing 

side reaction, thus reducing the conditional stability 

constants. For copper, even at high pH, no significant 

change in conditional stability constant occurs because of 

high stability of the complexes. 

The equilibrium concentrations of all species in 
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multi-metal, mul~i-ligand systems can be calculated by 

solving a series of simultaneous equations (Equations 

21-23,34-42) comprised of mass balance equations, the 

stability constant expressions, pH of the solution, total 

metal concentration, total ligand concentration, and the 

relevant equilibrium constants. A computer program was 

developed to get the solution (see Appendix 1). 

Due to the formation of cyanide gas, the pH of all 

the metal cyanide studies was always kept above 10. The 

precipitation problem was encountered at the total cyanide 

to total metal ratio (CNT/M.r) of less than 4. This is 

shown in the results and discussions section. 

a. Metal-Cyanide Complexes 

Species distribution in the solutions of zinc and 

cyanide mixtures at various CNT/Z°r molar ratio is shown 

in Figure 5. At 1.55 mM total zinc concentration, the pre­

dominant species is Zn(CN) 3l- at the molar ratio of 4, 

2-while Zn(CN) 4 becomes predominant at the ratio of 14 or 

above. In the same figure, it is shown that for fixed 

CNT/ZnT, more Zn(CN) 4
2- is formed at high total metal con­

centration. Similar plots for the cadmium and cyanide 

system are also calculated and shown in Figure 6. At ratio 

4 or above, Cd(CN) 4
2 - always predominates in the solution. 
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Species distribution in the solution of copper (Cu1+) 

and cyanide mixtures at various CNT/Cll-r is shown in Figure 

7. At the concentration of 1.55 mM total copper concen­

tration, Cu(CN) 3
2- predominates at a ratio 4, while 

Cu(CN) 4
3- predominates at a ratio 18 or above. At the 

higher metal concentration, Cu(CN) 4
3- predominates above 

CNT/Cll-r ratio of 10. 

b. Metal-EDTA Complexes 

In the presence of EDTA, heavy metal could form 

various species (depending on pH) in solutions. The 

distribution of species for copper complexes at various 

pH is shown in Figure 8. Since the only type of complex 

tormed is Cu(EDTA} 2 - over the range of interest (pH 4-10), 

the species distribution is not influenced by the concen­

tration of ligand present in the solution. It should also 

be noted that although complexes of different forms may 

exist, EDTA always forms 1:1 complex with heavy metals. 

c. Metal-Oxalate Complexes 

In the case of metal-oxalate complexation reactions, 

a precipitation problem was found for cadmium and zinc 

even at very high total ligand to total metal ratio in the 

pH range of 4-10. Copper oxalate precipitates above pH 7. 
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Experimental results confirmed this behavior. The species 

distribution of copper-oxalate complexes is shown in 

Figure 9. Cu(OXJ 2
2 - always predominates for 0~/C~2 8 

at pH 4. The effect of pH on species distribution is shown 

in Table o. At pH o, practically all the species present in 

the solution is Cu(OXJ 2
2-. At high total metal concen-

2-tration (15.5 mM), calculation shows that Cu(OX) 2 predo-

minates (at both pH 4 and o) at all OXT/C~ ratios greater 

than 2. 

3. Average Charge Calculations 

The behavior of the solution which contains metal 

complexes could also be characterized in terms of species 

charge by defining a new parameter --average charge n: 

-
n • Zi<li (53) 

where Zi • charge of metal containing species i. 

<li • fraction of metal containing species in 

the solution. 

-Plots of n vs. ratio of total complexing agent to 

total metal in various metal-cyanide, metal-oxalate systems 

are shown in Figure 10-13. Average charges are higher for 

higher total metal concentration at fixed ratio in all 



TABLE 6 

Copper Containing Species Distribution at Various pH 

in Cu2+-ox systems (Ci• 1.55 mM CuT, OXr/CuT a 4.0) 

pH Cu(OX) CuH(OX)l-

3.5 0.071 0.924 0.001 

4 0.032 0.967 

0.013 0.987 
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all cases. At pH 4, the average charge for copper(II)­

oxalate system is -2 at OXor/CuT ~ 6. At pH 6 (not shown 

in the Figure), the average charge is -2 for OXor/CuT ~ 2. 



VI, EXPERIMENTAL 

A. Equipment 

The membrane ultrafiltration unit consisted of a 

semi-batch cell pressurized by a nitrogen tank, The ultra­

filtrate samples were passed through a conductivity 

monitor before being collected in an erlenmeyer flask for 

further analysis. The schematic diagram of the ultra­

filtration unit is shown in Figure 14, The specification 

of the ultrafiltration cell is shown in Figure 15 where 

.the magnetic stirrer is suspended on a free rotating 

adjustable shaft, 

A mixing speed of about 600 RPM was used for each 

study in order to maintain the whole solution under highly 

turbulent flow conditions. The Reynolds. number for such a 

mixing system can be defined as follows (34): 

(54) 

where D • diameter of impeller or length normal to 

axis of rotation, cm. 

N • angular velocity of agitator, revolution 

per second or RPS. 

A Reynold number of about 40000 was used in this 

49 
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study, which is more than the Reynolds number required 

for turbulent flow for such system (Re• 10000). 

Millipore PTAL negatively-charged noncellulosic 

ultrafiltration membranes were used in this study. The 

membranes used for this study were cut from dry membrane 

sheet and then soaked for fifteen minutes in distilled 

water before being cut to the exact size and installed in 

the unit. Some properties of these membranes are shown in 

Table 7. 

B. Chemicals Used 

The following analytical reagent grade chemicals were 

used in this study: 

ammonium chloride 

ammonium hydroxide 

cadmium chloride 

cadmium nitrate 

copper(II) chloride 

copper(II) sulfate 

copper(I) cyanide 

copper(II) nitrate 

EDTA disodium salt 

hydrochloric acid 

NH4Cl 

NH40H 

CdC1 2 • 2(1/2)H2o 

Cd(N03) 2 • 4H2o 

cuc12 
Cuso4 
CuCN 

Cu(N03)2 . 3Hz0 

C10H1408N2Na2 2Hz0 

HCl 
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TABLE 7 

Properties of PTAL membranes 

Composition 

Membrane thickness 

Skin thickness 

Membrane pores 

Operating pH 

Temperature limit 

Pressure limit 

Fixed charge 

Charge capacity 

Normal operating 
pressure 

Typical water flux 
at normal operating 
pressure 

noncellulosic skin on 
noncellulosic backing 

240 µm 

" 500 ~ 

" 15 to 20 A 
1-12. 5 

1o·c 

9xl05 N/M2 

negative sulfonate group 

"350 mM 

5.5xl05 N/M2 

l .3xl0-3 cm/sec 
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oxalic acid HzCz04 . 2H20 

sodium cyanide NaCN 

sodium hydroxide NaOH 

sodium nitrate NaN03 
zinc chloride ZnC1 2 
zinc cyanide Zn(CN) 2 
zinc nitrate Zn(N03) 2 • 6H20 

C. Procedure 

Preparation of Solutions 

a. Metal-cyanide Solutions 

A known amount of Zn(CN) 2 , CuCN, or CdN03 was dis­

solved in a solution which contained a predetermined quan­

tity of NaCN, The pH was adjusted to 10 by adding known 

concentrations of NaOH and HCl stock solutions under vi­

gorous stirring. The total metal concentration was varried 

in the range of 0.31 mM to 15,5 mM, and the total cyanide 

to total metal molar ratio was varied in the range of 4.0 

r.O 40, 0. 

b. Metal-EDTA Solutions 

A known amount of ZnC1 2 , CuC12 , or CdC1 2 was weighed 
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out before adding to the solution containing EDTA (di­

sodium salt). The pH of the solution was then adjusted by 

adding known concentrations of NaOH and HCl stock solution 

under vigorous stirring. The metal concentration of 1.55 mM 

was used, and the total EDTA to total metal ratio was 

varied in the range of 0.5 to 2.0. 

c. Metal-oxalate Solutions 
2+ Only the Cu -OX system was studied here because of 

the occurrence of precipitate in Zn-OX and Cd-OX over the 

pH range (pH 4-6), concentration range (0.155-15.5 mM) and 

oxalate to metal molar ratio range (0-20). 

A known amount of CuN03 salt was weighed out and 

added to the solution containing oxalic acid, The pH was 

then adjusted by using known concentrations of NaOH and 

HCl stock solutions under vigorous stirring. The metal 

concentration was varied in the range of 0.775 to 7.75 

mM. The pH was varied from 4 to 6, and the total oxalate 

to total metal ratio was varied from 0.5 to 12. 

Distilled water of 4 umole/cm was used to prepare all 

of the above solutions. 

Experimental Procedure 

1. Runs at Negligible Water Recovery 



The cell was filled with distilled water and run for 

30 minutes. After the distilled water flux data were 

taken, the cell was emptied and filled with the feed so­

lution. At the same time, two 50 ml feed solutions were 

collected as an additional check of the prepared solution. 

One of them was filtered through a 0.45 um Millipore mem­

brane filter. The cell was run for three hours at 600 RPM. 

Frequent checks were made by using a simple salt such as 

CuC12 to insure the membrane had not deteriorated from 

previous runs. The ultrafiltrate samples were collected 

each hour. Typical runs were 2-3 hours lorig. At the end, a 

portion of the feed solution was collected as the end feed 

solution for further analysis of metal ions and complexing 

agents. The cell was washed, rinsed and filled with dis­

tilled water and run for another 30 minutes. The distilled 

water flux data were then taken as a reference. 

2. Runs at High Water Recovery 

The Zn-CN, Cu2+-EDTA, and Cu2+-ox systems were also 

studied under various recovery conditions. A total com­

plexing agent to total metal molar ratio of 4 was used for 
2+ Zn-CN and Cu -OX systems and the ratios of 2 and 4 were 

used for Cu2+-EDTA systems. The pH of the cu2+-EDTA 
2+ (EDTAr/C~ • 4) and CU -OX systems were kept at 4 while 
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the pH of Zn-CN system was kept at 10 because of the for­

mation of HCN at lower pH. The pH of 10 was also used for 

the cu2+-EDTA (EDT~/CuT • 2) system in order to compare 

with another cu2+-EDTA system. The same operating proce­

dures were used as that of the negligible water recovery 

runs. Three days were employed for each of these high 

recovery runs with frequent sampling of feed and ultra­

filtrate and the subsequent analysis of these samples. The 
• temperature was kept constant at 25 ± 1 c. 

o. Analytical Procedures 

Metal analysis of ultrafiltrate, feed, and concen­

trate samples were done by atomic absorption. A Varian 

AA 375 Atomic Abosorption Spectrophotometer was used for 

such purposes. The analytical accuracy was ±2 i, and 

Table 8 lists the principal absorption wavelength, flame 

type, and sensitivity for the three metals in this study. 

The analysis of total complexing agents was done by 

TOC (total organic carbon) measurements. The Beckman Model 

915 Total Organic Carbon Analyzer was used for such pur­

pose. The analytical accuracy was ±4%. 

Conductivity measurements were taken from samples by 

using a Leeds and Northrup Conductivity Monitor. 

The pH of the sample solutions were monitored by a 
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TABLE 8 

Atomic Absorption Characteristics 

Metal Wavelength (nm) Flame tyPe Sensitivity(mg/1) 

zn2+ 213.86 air-c2H2 0.009 

Cdz+ 228.80 air-C2H2 0.011 

Cuz+ 324.80 air-C2H2 0.003 
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Corning Model 12 Research pH meter. 

All the filtrations of feed and concentrate solutions 

were done by using Millipore 0.45 µm pore size filters. 

This step was used to check the possible precipitate for­

mation in the sample or feed solutions. 



VII. RESULTS AND DISCUSSIONS 

A. Membrane Characterization 

Previous studies (9·11) on charged membrane ultrafil· 

tration were conducted under continuous flow, steady state 

operation which required a large volume of feed solution. 

The steady state operating condition of continuous cell 

could also be effectively simulated with the semi-batch 

cell utilizing small membrane area. In order to keep the 

feed volume and feed concentration changes negligible(less 

than 5 1) over a two to three hours operating period, se· 

lection of membrane area of about 9 cm2 and a feed volume 

of 2 liters was utilized. This mode of operation provided 

water flux and ultrafiltrate concentration characteristics 

similar to that obtained with continuous cells. This type 

of cell has also been used by other investigators in their 

reverse osmosis and ultrafiltration studies (21). 

Membrane performance is found to be greatly influenced 

by the concentration polarization and fouling effects (35). 

In order to reduce and/or eliminate these undesirable 

effects, high speed magnetic stirring was used. The flux 

data of all low recovery runs were compared with the dis­

tilled water flux before and after the run. The results of 

this comparison is shown in Figure 16. No significant 

60 
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concentration polarization or fouling problem was found 

throughout the studies. 

In order to test the effect of pressure on the water 

flux through the membrane, several distilled water flux 

data were obtained under differ.enc pressures, as shown in 

Figure 17. Flux reproducibility is extremely good below 

8.0xlo5 Ntm2 for negatively charged ultrafiltration mem­

brane. The nonlinearity and the nonreproducibility of flux 

over the high pressure {above 10x105 Ntm2) was due to ir-

versible change in membrane pore structure. 

Membrane variation of different batch products is 

shown in Table 9. The results could be used to correct all 

the experimental data throughout the study whenever com­

parison among different membranes was necessary. 

B. Rejection of Individual Complexing Agents 

Cyanide rejection as a function of pH was not per­

formed in the laboratory because of possible formation of 

hydrogen cyanide gas. However, the concentration effect 

was studied for sodium cyanide and the result is shown in 

Table 10. Very low rejection was found at all concen­

tration levels. This is due to the fact that CN has rela-

tively small ionic radius with single charge on it. The 

rejection dropped significantly as the feed concentration 
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M-brane 
Batch No. 

1 

2 

3 

4 

5 
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TABLE 9 

Characteristics of New Membranes 

* Jw , (cm/sec) 

23.8xl0-4 

15. 7xl0-4 

3.33xl08 

• at ap • 5.bxl05 N/m2 

0.33 

o.34 

O.b4 

0.57 

0.61 

** CuC1 2 concentration• 1.55 mM, pH• 4 



TABLE 10 

Rejection of NaCN at pH 10 

Concentration (mM) Rejection 

3.1 0.28 

8 0.17 

560 0 
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ot CNT increased. This conforms to the Donnan equilibrium 

model and Nernst-Planck model stated before. 

The rejection of EDTA.r at various pH values is shown 

in Figure 18. The plot shows that the rejection of EDTA.r 

is relatively high at ph 4 or higher. Moreover, the re­

jection increases as pH increases. These observations can 

be rationalized by looking back to Figure 2 where it shows 

that higher charge species such as H(EDTA) 3 - or EDTA4 -

are predominant in the solution as pH increases. The rela­

tively large size of the EDTA molecules contributes to 

high rejection behavior even at low pH where the lower 
· 1- 2-charge species such as H3 (EDTA) or H2 (EDTA) predo-

minate. 

The rejection of oxalic acid at various pH values is 

shown in Figure 19. This figure shows that the rejection 

of oxalic acid is greatly enhanced as the pH value in­

creases from 4 to 7. This behavior can be explained on the 

basis of ionization (Figure 3), As pH increases, the 

higher rejection is definitely due to the conversion of the 

low charge species H(OX)l- into the higher charge species 

ox2-. The Nernst- Planck model can be used to explain the 

difference in the rejection behavior of EDTA or oxalate 

when the charge on predominant species being equal in both 

cases. It should also be noted that the rejection of mono-
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valent species may be lower in the presence of di- or tri­

valent species, and hence the prediction of overall re-

jection may not conform to the additive rule (15). 

C. Metal-Cyanide Rejection Studies 

Rejections of total zinc (ZnT) and total (CNT) at 

various total cyanide to total metal ratios (CNT/ZnT) 

were studied quite extensively here; similar experiment 

runs were carried out for Cd and Cu for comparison. In 

order to explain the results of the above studies, an ionic 

strength effect was investigated for the Zn-CN system. The 

concentration effect was also investigated in order to 

provide valuable information on water recovery. 

A pressure of 5.6xl05 N/m2 was used for most runs to 

obtain maximum (asymptotic) rejection. As shown in Figure 

20, the system is essentially free of solute diffusion 

effects above a AP of 5xio5 N/m2 • 

1. Effect of CNT/ZnI on the Total Metal and Total 
cyan de Rejection 

Rejections of MT (M • Zn, Cd, or Cu) and CNT at va­

rious CNT/MT ratios and at pH 10 are shown in Figures 21, 

22 and 23. The rejections of Z°T, CdT, and CuT were found 

to be increased considerably in the presence of complexing 

agent. This is due to the fact that the complexed metal 
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cyanide anions are rejected better than M2+ ions. The 

rejections of Cll-r and CNT were found to be highest for 

the copper(I)-cyanide solution at pH 10 under various 

CNT/MT ratios. This phenomenon could be explained by 

Figure 12. The average charge n for the cu1+-CN system 

clearly exceeds that of the Zn-CN and Cd-CN systems at all 

CNT/~ ratios. The CdT rejection is significantly lower 

than that of the Cll-r and Z~ at CNT/~ • 4. This is pro­

bably due to the formation of poorly rejected uncharged 

species Cd(CN) 2 in the solution (Figure 6). 

If the metal containing complex is treated as a coion 
z + 

[Mm (CN)yl-(Y-Zm), the Nernst-Planck equation (Equation 

19) predicts higher metal and cyanide rejection for the 

l+ Cu -CN system. The rejection of total cyanide is shown to 

be approximately equal to the rejection of metal ion at low 

ratio because of low free cyanide in water. As CNT/MT 

increases, the metal rejection should have increased. 

However, the rejection dropped as CNT/MT increased. The 

rejection drop was particularly substantial for Zn. This 

is due to the fact that rejection is a function of both 

n (average charge) and ionic strength. Ionic strength 

increases as free cyanide increases. Total cyanide re-

jection drops drastically as CNT/MT increases because of 

the large increase in poorly rejecting free cyanide ions. 
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The free cyanide concentrations in the case of CNT/Z°'f • 

4 and 40 could be calculated (using Figures 5 and 12), and 

shown in Table 11, 

2, Effect of Ionic Strength on Zn-CN System 

In order to prove the effect of excess free CN-, 

studies of the effect of ionic strength (using NaN03) on 

total zinc rejection in the Zn-CN system were carried out. 

NaN03 was selected for the adjustment of ionic strength 

because NaN03 does not form any metal complexes and that 

the rejection of NaN03 is similar to NaCN. 

The rejection of zinc is also shown (Figure 24, top) 

at various CNT/ZnT ratios and constant ionic strength, 

The result clearly indicates that the rejection of Z°T 

increases at constant ionic strength as the CNT/Z°T ratio 

increases; the increase is due to an increase in average 

negative charge as indicated in Figure 10 by n values. 

Figure 24 (bottom) shows that as ionic strength 

(i.e. added NaN03) increases rejection tends to drop in 

value. 

3, Effect of Feed Concentration on Zinc Cyanide Rejection 

As stated in the Donnan equilibrium model and Nernst 

Planck model, the rejection of simple salts decreases with 
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TABLE 11 

Calculated Concentrations of Various Species in Zn-CN 

Systems (pH• lU, Ci• 1.55 mM ZnT) 

4 

4 

4 

4 

40 

40 

40 

40 

species Feed Concentration (mM) 

Zn(CN) 3 

Zn(CN) 4z-

Free CN 

Complexed cyanide (as CN) 

Zn(CN) 3-

Zn(CN)42-

Free CN 

Complexed cyanide (as CN) 

1.4! 

0.14 

1.41 

4.1:10 

0.30 

1.25 

56.0 

5.90 
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an increase in concentration of the feed solution. This is 

again verified to be the same for zinc cyanide complex 

solution. The results are shown in Figure 25. Note also 

from this figure that the rejection of zinc at CNT/ZnT-40 

is significantly lower at the high ZnT concentration 

level. This is due to the ionic effect as discussed in the 

previous section. 

For design purposes a plot of log Cf versus log Ci 

should give useful information. According to Donnan equi­

librium, the slope should be between 1 and 2. As shown in 

Figures 26 and 27, least square lines are drawn for the 

c~se of CNT/Z°T • 4 to correlate the Cf and Ci values ob­

tained from the experiments. The corresponding parameters, 

n and k, are shown in Table 12 with excellent correlation. 

The higher k value for metal rejection is seen in the case 

of CNT/Z°T • 40, which is again due to much higher ionic 

strength even in the presence of higher average charge in 

the solution. 

Table 12 also shows negligible CNT rejection in the 

case of CNT/Z°T • 40. This is because of the much higher 

percentage of the poorly rejected free cyanide (Table 11) 

in the solution. 
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TABLE 12 

n Parameters to fit Cf• kCi for Zn-CN system 

Rejection k 

4 0.17 

4 0.16 

40 0.34 

40 

n 

1.20 

1.17 

1.34 

correlation 
coefficient 

0.9994 

0.9999 

0.9998 

* Total cyanide rejection is negligible because of 

high free cyanide (90 % of total cyanide). 



SJ 

4. Calculation of Free Cyanide (CN-) Rejection in the 
Metal-comp!ex Systems 

The relationship between Cf and Ci for the Zn-CN 

system (for CNT/Z°T • 4) could be expressed as: 

Z°T rejection: 

CNT rejection: 

cf .. o.17 ci1.20 

C O 16 C 1.17 
f - • i 

(54) 

(55) 

For the Zn-CN system where Ci= 1.55 mM Zn and 

CNT/ZnT = 4.0, the rejection of total Zn and total cyanide 

could be found to be 0.81 and 0.78, respectively, from 

Equations 54 and 55. The complex cyanide and the free 

cyanide (CN-) concentrations are 4.80 mM and 1.41 mM_, re­

spectively (Table 11). 

If the assumption is made that the rejection of free 

cyanide is zero, the total cyanide rejection could be cal-

culated in the following way: 

RCN • 1 - ((1-0.81)(4.8)+1.4]/6.2 ""0.63 
T 

The rejection of total cyanide was found to be 0.78 ex-

perimentally. Thus, the assumption of zero free cyanide 

rejection is not true. 

In order to obtain the rejection of 0.78 for total 

cyanide, free cyanide in the ultrafiltrate could be cal-
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culated as follows: 

0.78 • 1 - [(l-0.81)(4.8)+cf _]/6.2 
CN 

where cf • 0.452 mM. 
CN-

Thus, the free cyanide rejection is found to be 0.68. This 

rejection is considerably higher than that found with pure 

NaCN solution at CN- • 1.41 mM. 

The same procedures could be employed to calculate 

free complexing agent rejection for other cases as long as 

the distribution of various complexes in the solution is 

known and the experimental results for both metal and 

total complexing agent rejections are available. 

D. Metal-EDTA Rejection Studies 

1. Effect of EDT~/MT on Rejection 

The rejections of Z°T, CdT, C~ and EDT~ at various 

LT/MT ratios and at 

30. At EDT~/MT • 1, 

pH 4 are shown in Figures 28, 29 and 

MT rejection• EDT~ 

the metal containing species is primarily 

rejection since 

M(EDTA) 2-, which 

is a complex of 1:1 type. It should also be noted that the 

Cd-EDTA complexes showed lower rejection. This could be due 

to the orientation of the complexes inside the membrane 
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pores. The metal rejection remains high at EDTA.r/M.r.of 

between 1 and 2 because all the metals in the solution are 

in the highly rejected M(EDTA) 2 - complex form. 

The rejections of total metal and M(EDTA) 2 - are dif­

ferent at EDTA.r/MT < 1 (metal species: M(EDTA) 2 - and M2+) 

because of the presence of poorly rejecting free M2+ in 

the solution. Thus, the total metal rejection is less than 

that of the M(EDTA) 2 - complexes. The rejection of EDTA.r is 

lower at a EDT~/M.r < 0.5. This is probably due to the 

fact that M(EDTA) 2- complexes show lower rejection in the 

presence of significant free metal ions. The rejection of 

2-free EDTA (primarily H2 (EDTA) ) was shown to be 0.8 at 

pH 4.0 (Figure 18). However, total EDTA rejection remains 

approximately constant at 1 <EDT~~ 2 in all three 

cases. Thus, the presence of M(EDTA) 2- complexes may en­

hance the rejection of free EDTA (H2 (EDTA) 2-). 

2. Calculation of Total Metal Rejection Based on 
Rejections of Individual Components 

Total metal rejection at EDTA.r/MT < 1 could be cal­

culated if the rejection of free metal (M2+) and the 

M(EDTA) 2- complex is known and in the absence of syner­

gistic effects. For example, at a ratio of 0.4, the concen­

concentration of Cu(EDTA) 2-, and cu2+ are 0.62 and 0.93 mM, 

respectively. Hence, if the rejection of Cu(EDTA) 2 - stays 
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constant (R • 0.96, obtained from Figure 30) at a ratio 

of 1, cu2+ rejection is 0.34, the calculated cu.r concen­

tration in ultrafiltrate at EDTA.r/Cu.r • 0.4 would be 

0.93(1-0.34) + 0.62(1-0.96) or 0.64 mM. Thus, cu.r rejection 

at 0.4 ratio is 1-0.65/1,55 • 0.59. 

The calculated results of the three metals are shown 

in Table 13. Of course, as EDTA.r/Nr-.o, calculated and 

experimental rejections 111Ust be equal. At higher ratios, 

the experimental values are higher than the calculated 

values, possibly due to enhanced rejection of M2+ in the 

presence of M(EDTA) 2•• 

E. Metal-oxalate Rejection Studies 

The effects of pH, 0.le.r/MT ratio, feed concentration 

variation, and ionic strength were studied for the copper­

oxalate system. For Cd and Zn, metal oxalate precipitate 

(at the pH range of interest) was formed and hence the 

ultrafiltration behavior was not studied.Table 14 shows 

that the solute diffusion effect (which lowers rejection) 

is negligible at a pressure of 3.7xl05 N/m2 and above, and 

hence all other runs were made at 5.6xl05 N/m2 • Solution 

pH was controlled in pH 4 to 6 range so that Cu(OH) 2 
precipitate formation could be avoided. 
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TABLE 13 

Calculated Total Metal Rejection Values Based on 
2+ 2-Experimental Rejections of M and M(EDTA) 

Metal 

Zn 

L:d 

Cu 

Cu 

0,5 

o.5 

0.4 

0.2 

• Rejection of MT 

Calculated 

o.65 

0.55 

0.59 

0.46 

Experimental 

0.76 

0.58 

0.64 

0.44 
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TABLE 14 

Effect of Pressure on cu.r Rejection in cu2+-ox System 

(0:lt.r/Cu.r • 4) 

Pressure, N/m2 

2.lx!U5 

3.5xlU5 

5,6xlU5 

.,. 5 2 
Rcu /(Rcu at 5.oxlU N/m) 

u. 71:! 

0.995 

1.0 

.,. Rejection of total copper 
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1. Effect of pH on the Reje2iion of Total Copper 
and Total Oxalate in Cu -OX System 

Rejections of total copper {Cu.r) in the presence of 

oxalate at three pH values are shown in Figure 31. The re­

jection of C~ shows significant increase as the pH of the 

solution increases. This is due to the fact that more and 

more charged species Cu{OX) 2
2- is converted from uncharged 

Cu{OX) in the solution as indicated in Table 14. In the 
2-presence of uncharged Cu{OX), it appears that Cu(OX) 2 

rejection is considerably lower. Total oxalate (OXr) re­

jection is also shown in the same figure. The sharp in­

crease in OXT rejection is due to the dissociation of the 

H(OX)- at pH 3,5 to higher rejecting species ox2 - at pH 6. 

The OXr rejection behavior is similar to that observed in 

Figure 19. 

2. Effect of OXT/Cu.i, Molar Ratio on the Total Copper 
and Total Oxalate Rejection 

Rejection of copper and oxalate at various OXT/C~ 

molar ratios at pH 4 is shown in Figure 32, The rejection 

of copper does not drop at high ratio indicating that the 

charge effect (see Figure 13) is predominant over the 

presence of the ionic strength effect. The rejection of 

copper goes through a minimun at OXr/Cu.r of about 1 because 

of the presence of significant amount of uncharged Cu(OX) 
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(zero rejection) in the solution (see Figure 9). At 

OXortCu.r < 1, cu.r rejection increases because of an in­

crease in cu2+ concentration. It should also be noted that 

the rejection of cu.r is much higher at pH 6, particularly 

at ratio 10. This is because of the fact that cu.r is 

present primarily as Cu(OXJ 2
2- (see Table 15). 

The rejection of total oxalate is also shown in 

Figure 32. The total oxalate rejection is the sum of re­

jection of complexed metal oxalate and free oxalate. The 

lower rejection of OX-rat pH 4 for OXortCu.r > 4 is prin­

cipally due to the poor rejection of monovalent H(OXJ 1 -. 

At pH 6, since the predominant free oxalate species is 

divalent ox2 -, the total oxalate rejection is higher. 

3. Effect of Ionic Strength on the Rejection of Total 
Copper in the Presence of Oxalate 

The ionic strength (addition of NaN03 which does not 

form metal complexes) effect on the rejection of C~ at 

OXor/C~ • 4 is shown in Figure 33. Results show that the 

rejection of C~ decreases with the addition of sodium 

nitrate. This behavior is similar to that observed with 

the Zn-CN system. 
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TABLE 15 

Concentration of Uncharged Cu(OX) species 

t Cu{OX) species 

pH 4 pH & 

1.0 

2.0 

4.0 

10.0 

3& 

19 

3 

l 

l 

0.3 
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4. Effect of Feed Concentration on Total Copper 
and Total Oxalate Rejection 

The effect of feed copper concentration on ultrafil· 

rate concentration of cu.rand OXT was investigated for 

OXT/C'Lr • 4 at pH 4. The following correlations were ob­

tained from Figures 34 and 35. 

cu.r rejection: 

O~ rejection: 

cf. o.42 cio.90 

cf. o.56 ci1.03 

(56) 

(57) 

The power on Ci of approximately unity indicates 

constant rejection over the entire concentration range. 

In contrast to total cyanide rejection {Equation 55), OXT 

rejection is considerably lower as shown by high a "k" 

(k • 0.56) value. At Ci• 1.55 mM the concentrations 

(in mM) of individual species {calculated from Figure 3 
2-and 9) are: Cu(OX) 2 • 1.50, Cu{OX) • 0.05, and free 

- 2-oxalate • 3.15 {H{OX) • 1.96, OX • 1.19). The presence 

of a significant concentration of H(OX)- may be responsible 

for lower O~ rejection. For example, the calculated (using 

Equations 56 and 57, and species distribution information) 

rejection of free oxalate is found to be only 0.22, which 

is considerably lower than that observed with pure oxalic 

acid (see Figure 19) rejection at pH 4. 
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F, Ultrafiltration Experiments at High Water Recovery 

Since the rejection behavior of metals and complexing 

agents is a function of initial feed concentration 

(Equations 54-57), the overall solute removal would be 

dependent on the extent of water recovery. The fractional 

water recovery, r, is defined as the total volume of 

ultrafiltrate collected divided by the initial feed so­

lution volume. The overall solute removal is defined as: 

Removal at any r a 1 - Cf,av/Ci (58) 

where Cf • the average ultrafiltrate ,av 
concentration 

cf,av can easily be computed from the knowledge of 

the instantaneous Cf vs, time and water flux vs. time data. 

Equations 54-55 have been used to correlate the ex­

perimental data in the case of negligible water recovery 

runs. The parameter "n" characterizes the system, and "k" 

is smaller for membranes with higher salt rejection. Thus, 

by knowing "n", one could predict the rejection behavior 

of other membranes simply by obtaining one Cf value ex­

perimentally at a chosen C; from the negligible water 

recovery run on this new membrane. 
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The results obtained from negligible water recovery 

runs could also be used to predict the rejection behavior 

of another membrane under high water recovery conditions. 

A membrane with higher rejection was deliberately selected 

tor the high water recovery experiments. The fractional 

metal removal obtained from experiment were compared with 

the calculated values obtained from known "n" (from 

negligible water recovery run) and the adjusted "k". Zn-CN 

and Cu-OX systems show excellent fit between the experi­

mental values and calculated values (Figures 36-38, see 

Appendix 3 for calculations). The dependence of metal 

removal at different initial metal concentrations are also 

calculated, and the results are shown in Figure 39 for 

Zn-CN system. The value of "n" for EDTA has not been found 

experimentally because of the concentration polarization 

problem with EDTA. Thus, the comparison of metal removal 

between the experimental values and the calculated values 

is not possible here. However, metal removal in the 

Cu-EDTA system stays high compared with that of the two 

other systems even under the severe concentration pola­

rization condition. The metal removal behavior at all 

values of r was: 

Removal of M-EDTA > Removal of M-CN > Removal of M-OX 
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VIII. SUMMARY AND CONCLUSIONS 

An extensive investigation was conducted with nega­

tively-charged, nonce1lulosic ultrafiltration membranes to 

establish relative rejection behaviors of complexed heavy 

metals under insignificant concentration polarization con-
s 2 dition. A transmembrane pressure of 5.oxlO N/m provided 

maximum rejection. The negatively charged membranes used 

have a typical water flux of 13xl0-4 cm/sec at 5.oxlo5 

2 N/m. The charge capacity (sulfonic acid groups) is be-

tween 300-400 millimolar. 

The rejection dependence 2+ of the heavy metals (Zn , 
2+ l+ 2+ Cd , Cu and Cu ) and free complexing agents (CN-, EDTA 

and oxalate) was found to be a function of feed metal con-

centrations, types of metals, complexing agent to metal 

feed molar ratio (~/MT), pH, ionic strength, and trans­

membrane pressure difference (below S.ox105 N/m2J. The 

effect of pH and feed~/~ ratio on rejection could be 

explained in terms of metal complex species distribution 

and the Nernst-Planck model. Extensive computer cal-

culations were made to establish the distribution of 

various species in the solution. The effect of feed con­

centration on ultrafiltrate concentration wasfit by power 

function. At fixed LT/MT ratio, the total metal and total 

106 
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complexing agent drop with feed concentration for the case 

of the metal-cyanide system while for the EDTA and oxalate 

systems, the rejection is approximately constant (n = 1), 

and the concentration effect is further verified by the 

high water recovery experiments. 

In addition to feed concentration dependence, metal 

rejection is also dependent upon the type of metal in the 

solution. For example, Figure 40 (top) shows the relative 

rejection behavior of all three metals in M-CN systems. 
z + 

The average charge (n • Y-Zm) of species (Mm (CN)y)-(Y-Zm) 

is shown in Figure 40 (bottom). Copper rejects much better 

than cadmium or zinc in M-CN 

the higher average charge in 

systems. This is because of 
2+ the Cu -CN system at fixed 

CNT/MT molar ratio. Cadmium rejects better than zinc above 

CNT/MT • 20 because of the higher average charge in the 

Cd-CN system. Cadmium shows lower rejection at lower 

ratios because of the presence of uncharged Cd(CN)2 in the 

solution. 

The rejection of metals is reduced in the presence 

of high free cyanide concentration in the solution 

(CNT/ZnT > 12). This is due to the ionic effect created in 

the solution at high ratios. In order to verify this pos-

tulate, constant ionic strength runs were performed with 

the Zn-CN system. Results clearly indicates that the ZnT 
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rejection actually increases as CNT/Zttr molar ratio in­

creases at the absence of ionic strength effect (as shown 

in Figure 41). Figure 41 also shows a calculated species 

distribution curve in Zn-CN systems. The formation of 

higher negatively-charged species increases rejection. 

The relative metal rejection behavior in the presence 

of complexing agent is compared in Figure 42. The ordinate 

indicates the relative change in ultrafiltrate metal con-

centration in the presence of complexing agents. Knowing 

the metal rejection in the absence of complexing agent, 

one could use Figure 42 to predict the metal rejection 

that could be achieved at various l..rlM.r ratios. The cu2+ 

salts were used for comparison in the M-EDTA and M-OX 

systems. The zn2+ salts were used for M-CN system because 

of the nonavailability of Cu(CN) 2 salt. The zn2+-CN system 
2+ would be expected to be similar to the Cu -CN system. For 

all cases, the metal rejections show the following trend: 

Figure 42 also indicates that high metal rejections could 

be obtained at LT/MT• 1.0, pH 4-10 with EDTA; at 

Lr/MT• 4-6, pH 9-10 with cyanide; and at LT/MT• 10-12, 

pH 6-7 with oxalate. With EDTA even at LT/MT~ 1, the 
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metal concentration in the ultrafiltrate would be 1/20 th 

of the concentration that can be obtained without com-

plexing agents. With oxalate the metal rejection is poor 

at l.rlM.r < 2 because of uncharged Cu(OX) formation (as 

shown in Figure 42). 

Free complexing agent rejection is found to be dif­

ferent in the presence of metal complexes. Higher re­

jections are found for free cyanide and free EDTA in the 

presence of metal ions in the solution at LT/MT< 4. Free 

oxalate rejection is poorer at pH 4, but higher free 

oxalate rejection is found at high pH compared to the case 

where no metals are present in the solution. For M-CN 

systems, the free CN- rejection is negligible at 

LT/Mor> 10. This could be advantageous for the selective 

concentration of metal cyanide complexes. 

The approximate rejection values of various anions 

could be calculated from the experimental data, as shown 

in Table lb (see Appendix 2). The primary counterion is 
. + 

Na in all cases. The following conclusions could be drawn 

from this table for the rejection of various species: 

Cu(CN) 3
2- > Zn(CN) 4

2 - > Cd(CN) 4z­

Zn(CN)42- > Zn(CN) 3l-

Zn(EDTA)2-~ Cu(EDTA)z- > Cd(EDTA) 2 -
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TABLE 16 

Approximate Rejection Values of Various Anions Based on 

RCuClz • 0.34 at 1.55 mM, ~p • 5.6xlo5 N/m2 

Species Rejection 

Zn(CN)
3
l- O.!H 

Zn(CN) 4z- o. 90 

Cu(CN)
3
z- o. 94 

Cu(CN) 4
3 - 0.95+ 

Cu(CN) 4z- 0.77 

Zn(EDTA)z- 0.95 

Cu(EDTA)z- 0.96 

Cd(EDTA)z- 0.89 

Cu(OX)z- 0.80 

CN - 0.30 

so 2 -4 o. 81 

Hz(EDTA)z- 0.80 

H(EDTA) 3- 0.96 

ox2 - 0.93 

H(OX)l- 0.51 
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H{EDTA) 3 - > H2{EDTA) 2-

{0X)2- > H{OX)l-

M{CN)42- > M{CN)
3
l- >> CN­

M{EDTA)2- = H{EDTA)J- > H2{EDTA)z­

Cu{OX)2- < {OX) 2 -

Obviously, the species with higher charge density 

will be rejected better if similar species are compared. 

Also, higher species rejection is observed for larger 

species {low diffusion coefficient) provided that the 

charge densities are comparable. Effective selective se-

paration could be done by adjusting the pH, complexing 

agent to metal molar ratio, ionic strength, transmembrane 

pressure, and feed metal or complexing agent concentration 

in order to maximize or minimize one or more of the com-

plexing species involved. Ultrafiltration of mixed metal 

systems in the presence of complexing agents should pro­

vide precise information on selective metal recovery and 

ultrafiltrate quality. 



NOMENCLATURE 

• Ultrafiltrate concentration, mM metal or com­
plexing agents 

C • Average ultrafiltrate concentration, mM £,av 
Ci • Feed concentration, mM metal or complexing agents 

Cj • Concentration of jth ion, mM 

Cj(m)• Concentration of jth ion in membrane phase, mM 

* Cm • Membrane charge capacity, mM 

co -Concentrate concentration, mM 

cs -Solute concentration, mM 

Cy • Coion concentration in the feed, mM 

cy(m)· Co ion concentration in the membrane phase, mM 

CdT • Total cadmium molar concentration, mM 

~NT • Total cyanide molar concentration, mM 

C~ • Total copper molar concentration, mM 

D • Diameter of impeller or length normal to axis of 
rotation, cm 

Dj(m)• Diffusivity of jth ion in the membrane phase, 
cm /sec 

Dm • Diffusivity of counterion, cm2tsec 

Ds • Diffusivity of solute, cm2/sec 

Dy -Diffusivity of anion, cm2/sec 

E • Equilibrium Donnan potential, volts 

EDT~· Total EDTA molar concentration, mM 

F • Faraday constant 
115 
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• Flux of jth ion, (mmole)/(cm2 .sec) 

• Salt flux, (mmole)/(cm2 .sec) 

• Water flux (in the presence of salt), cm/sec 

• Distilled water flux (in the absence of salt), 
cm/sec · 

• Coion (anion) flux, (mmole)/(cm2 .sec) 

• Membrane parameter 

• Stepwise dissociation constant 

• Conditions! stability constant 

• salt distribution coefficient 

• Total complexing agent concentration, mM 

• Total metal concentration, mM 

• Millimolar 

• Membrane parameter (Equation 20) 

• See Equation 5 in Appendix 3 

• Average charge 

• Angular velocity of agitator, revolution per 
second or RPS 

• Number of pores per unit area 

• Total oxalate molar concentration, mM 

• Transmembrane pressure difference, Ntm2 

• Fractional water recovery 

• Pore radius, cm 

• Rejection parameter 

• Universal gas constant 



T 

v· 
x 

y 

' 
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• Resistance2of ultrafiltration membrane to water 
flux, (N/m )/(cm/sec) 

• Absolute temperature 

• Partial molar volume of jth component, cm3/mole 

• Volume of the solution 

• Distance coordinate in the membrane, cm 

• Charge on the jth ion 

• Charge on the metal cation 

• Charge on the anion 

• Total zinc molar concentration, mM 

• Fraction of metal containing species in the 
solution 

• Coupling coefficient of jth ion 

• Overall stability constant 

• Activity coefficient of the salt in solution 

• Activity coefficient of the jth ion in solution 

Y j(m)• Activity coefficient of the jth ion in the 
membrane phase 

µ 

p 

• Activity coefficient of the salt in the membrane 
phase 

• Viscosity of water, g/cm.sec 

• Porosity of the membrane 

• Membrane thickness, cm 

• Chemical potential of the jth ion 

• Transmembrane osmotic pressure difference, N/m2 

• Density of the fluid 
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APPENDIX 1 

Program for Calculating Species Distribution 
in Metal Complex (Zn-CN) System 

DOUBLE PRECISION Pt,P2,P3,P4,P5,P6,P7,P8,X?,DEX,PAST,S1,S2 
DOUBLE PRECISION F,CHECK,ZNT,CNT,CN,CN3,CN4,CONC,POH,RATIO 
DOUBLE PRECISION A,B,C,E,ANS,P9 
DINENSION A(7,7>,B<7,t),CC7,7),£C7,1>,AHS<7> 
WRITECS,999) 

999 FORMAT(/// 'PLEASE ENTER CONCENTRATION OF HETAL AND POH'l 
READCS,*>CONC,POH 
WRITECS,997) 

997 FORMAT CI// ' PLEASE ENTER X7 AND DEX' > 
READC:S,*>X7,DEX 
WRITE(S,9SJX7,DEX 
S1•X7 
S2•DEX 

98 FORMAT<2E20.7J 
WRITE<S,996) 

996 FORHAT(////1X,'HETAL • ZN',/1X,'LIGNAND • CN'J 
WRITE<S,99SJPOH,CONC 

995 FORMAT<tX,'POH • ',F4.1,/1X,'CONC. OF HETAL s ',£1S.5> 
WRITE<~,901> 

901 FORHAT(//36X,'% OF SPECIES AS TOTAL ZN',42X, 
1 '% OF SPECIES AS TOTAL CN'l 

WRITE<S,900> 
900 FORNAT(1X,'RATI0',8X,'ZNCN3',9X,'ZNCN4',10X,'ZNOH'• 

1 9X,'ZNOH2',9X,'ZNOH3',10X,'ZN',8X,SX,'CN',11X, 
1 'ZNCN3' ,9X, 'ZNCN4' > 

100 READ<:S,*>RATIO 
IF(RATIO.LE,O.JGO TO I11 
P1=10•**17.312 
P:?•10,**19,176 
P3•10·**4+4 
P4•10,**11, 1 
P:5•10,**14,4 
P6•CONC 
P7•P6*RATIO 
P8•10+*S<-POH> 
P9•10·**(-9.2) 
X7•S1 
DEX•S2 
II•O 
PAST:aO. 

15 DO 10 I•1,7 
DO 10 J=1,7 

10 A<I,JJ•O, 
A<t,2>•1+ 
A<1,6)•-P2$X7**4 
A(2,J):at. 
A(~,6>=-PJ;tPB 
A<3•4)•1. 
AC3,6J=-P4*PS**Z 
A<4,5)zt. 
A<4•6)•-P5*PS**3 
A<5,1).a1. 
AC5,2>=1, 
A<5,3>=-1. 
A(5,4>=1. 
A(5,5)=1. 
A<5,6)=1. 
A(6,1)=3. 
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AC6,2)•4. 
A<6•7>•1. 
A<7,7>=-1. 
8(1,1)•0. 
8(2,1)•0. 
8(3,1)•0. 
B:(4,1)=-0. 
BC!!,1)•P6 
BC6'1)•P7-X7 
BC7,1l•10·••<-14,J/PS*X7/P9 
Il•Il+l 
CALL INUERTCA,C,7l 
CALL HULTCC,8,7,7,1,E> 
F•EC1,1l-Pl*EC6,1l*X7**3 
IF<DABS<F>.LE.O.OOOOOOOl>GO TO 11 
GO TO 12 

11 IF<E<l,1).LE,O.>GO TO 12 
IF<E<2•1>.LE.O,>GO TO 12 
IF(ECJ,ll.LE,O,>GO TO 12 
IF<EC4,1J.L£,O.lGO TO 12 
IF<E<!!,1l,L£,O,lGO TO 12 
IF<E<6,1l,L£,O,lGO TO 12 
!F<E<7,1>,LE,O,>GO TO 12 
GO TO 14 

12 CHECK•F*PAST 
IFCCHECK.GE.o,.oR.PAST.GT.O.)GO TO 13 
F-0, 
X7•X7-DEX 
DEX•0,1*DEX 
GO TO 20 

13 X7•X7+DEX 
20 PAST•F 

GO TO 1!! 
14 ZNT•EC1,1>+E<2,1l+EC3,1l+EC4,1l+E<!!,1>+EC6,1l 

DO 30 !•1,6 
DO 30 J•1' 1 
~S<I>•E<I,Jl/ZNT*lOO. 

30 CONTINUE 
CNT•X7+3*EC1,1>+4*E(2,1l+E(7,1l 
CN-X7/CNT*100. 
CN3•3*E<1,1l/CNT*100. 
CN4a4*E<2,1)/CNT•too. 
WRITE(!!,994lRATIO,CANSCI>,I•1,6l,CN,CN3,CN4 

994 FORNAT(//1X,F4,0,6<7X,F7.4),1X,3C7X,F7,4ll 
WRITEC5,988><ECI,l>,I=-1,6>,X7,EC1,1>,E<2,1> 

988 FORMATC6X,0<2X,E12.6),1X,3(2X,E12.0)> 
WRITEC5,2.22)E<7,1) 

2~2 FORNATC9X,'HCN =- ',E12.6) 
GO TO 100 

111 STOP 
END 

SUBROUTINE INUERTCB,A,Nl 

CB INPUT HATRICES, KEEP IT AFTER INVERSE 
CA OUT NATRIX, INVERSE B 
C N DIHENSION OF A 
c· 

DOUBLE PRECISI~ A,B,C,ANAX,TEMP,PIVOT 
DIMENSION INDEXC7,2),A<7,7),8C7,7>,C<7,7l 
DO 107 I=l,N 
DO 107 J•l ,N 

107 A<I,J)38<1,J) 
00 108 I=l,N 

108 INDEX<I,1> = 0 
II=- 0 

109 AMAX~ -1. 
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DO 110 I•l,N 
IF <INDEX<I,l)) 110,111,110 

111 DO 112 J=l,N 
IF <INDEX<J,1)) 112,113,112 

113 TEMP =DABS(A(I,J)) 
IF (TEMP-AMAX> 112,112,114 

114 IROW • I 
i:COL = J 
AMAX• TEMP 

112 CONTINUE 
110 CONTINUE 

IF<ANAX> 225,11~,116 
116 INDEX CICOL,ll • !ROW 

IF <IROW-ICOLJ 119,118,119 
119 00 120 J = t,N 

TEMP= A<IROW,J) 
A(IROW,J) = A(ICOL,Jl 

120 A(ICOL,J). "TEMP'· 
II•II+l 
INDEX <II,2> • !COL 

118 PIVOT• A<ICOL,ICOLI 
A<ICOL,ICOLl • 1,0 
PIVOT• !,/PIVOT 
DO 121 J = t,N 

121 A<ICOL,J)•A<ICOL,J>*PIVOT 
DO 122 I • 1,N 
IF < I-ICOL> 1::?3,-122, 123 

123 TEMP= A<I,ICOL> 
A<I,ICOLI • 0,0 
DO 124 J = t,N 

124 A<I,J) • A<I,Jl - A(ICOL,Jl * TEMP 
122 CONTINUE 

GO TO 109 
125 ICOL • INDEX(II,2> 

IROW • INDEX<ICOL,1> 
DO 126 I• 1,N 
TEMP= A<I,IROW> 
A<I,IROW) • A<I,ICOLI 

126 A<I,ICOLl • TEMP 
II • II - l 

225 IF <II> 12,,127,125 
127 CONTINUE 

DO 130 I = l ,N 
DO 130 J • 1,N 
C<I,.J> ,. o. 
DO 130 K • 1,N 

130 CCI,J) • C<I,Jl + B<I,K>*A<K,Jl 
GO TO 134 

115 WRITE(~,133) 
133 FORMAT(11X,'ZERO PIVOT') 
134 RETURN 

END 
SUBROUTINE HULT<X,Y,L,H,N,Z> 

DOUBLE PRECISION X,Y,Z 
DIMENSION X(L ,H >,YCH ,N >,Z<L ,N > 
DO 109 I•l ,L 
DO 109 J=l ,N 
z1I,Jl=O, 
DO 110 K=t,11 

110 Z<I,J)=Z<I,Jl+X<I,K>*Y<K,J) 
109 CONTINUE 

RETURN 
END 
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APPENDIX 2 

Calculation of Approximate Rejections of Various Coions 

the 

At pH 10 and CNT/ZnT • 4, the predominant species in 
1-solution is Zn(CN) 3 (see Figure 5), A rejection 

value of 0,81 could be assigned to represent the rejection 

of such species. At very high CNT/ZnT ratio, the predo­

minant species becomes Zn(CN) 4
2•• Figure 24 (top) could be 

used to calculate the rejection of Zn(CN) 4
2• (in addition 

to Figure 21) as follows.: 

(1-0,58)/(1-0,77) • (1-0.81)/(l•Rzn(CN)42-) 

Thus, Rzn(CN) 2- • 0.90 could be assigned at the ratio of 
4 2-

4. The predominant species in the solution is Cu(CN) 3 
A rejection value of 0.94 could be assigned for Cu(CN) 3

2· 

as shown in Figure 23. 

The rejection of Cu(EDTA) could easily be assumed 

to be 0.96 (Figure 30) since it is the only species in 

the solution at EDTA.r/C~ • 1, 

A value of 0.80 could be assigned as the rejection 

of Cu(OX) 2• since the Cu(OX) 2- is the predominant species 

in the solution at pH 6 and at OX-r/C~ • 10. 
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The rejection of H(EDTA) 3- could be assigned as 0.96 

since it is the only species in the pure EDTA solution at 

pH 8.3 (see Figures 2 and 18). Similarly, H2 (EDTA) 2- re­

jection could be assigned as 0.80 due to the same reason 

(see Figures· 2 and 18). 

A rejection of 0.9 could be assigned for (OX) 2- since 

it is the only species in pure oxalic acid solution at a 

pH of 6 (see Figures 3 and 19). Similarly, a value of 0.51 

is assigned for the rejection of H(OX)l- at pH 3.5. 

CN- rejection is assigned to be 0.30 since it is the 

predominant species in the pH value we are interested in. 



APPENDIX 3 

Calculation of Solute Removal at Significant 
Water Recovery Condition 

For semi-batch ultrafiltration operation, the mass 

balance can be written as: 

d(V'C) • c~v· 

Since cf ··ken (Equation 20), 

-V'dC • CdV' - kCndV' • C(l-kCn-l)dV' 

On integration, 

Since r"' 

dC 
= 

C(l-kCn-l) 

(V '-V ')IV ' i O i ' 

v• 

- JVO' 
dV' 

V' 
l. 

the following equation can be easily derived: 

where n' "'n-1 for n • O, r • 1. 
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(2) 

( J) 
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Knowing n' and k from experimental value, the con-

centrate composition can be calculated from Equation 5 

for various water recovery, r. Knowing C
0

, Cf av can be 
• 

computed from mass balance: 

Thus, removal (as defined in Equation 58) can be cal­

culated at any value of r. 

(6) 
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