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ABSTRACT 

This is the first research report of a three-year project on wetland 

identification and management criteria in the western Kentucky coal field. 

The region is approximately 12,000 square kilometers and, due to its slight 

relief, contains many wetlands, some contiguous with surface coal mining 

operations. The overall objectives of the research project are 1) to 

identify, classify, and map wetlands in the western Kentucky coal field; 2) 

to evaluate the major biotic and abiotic factors that affect those wetlands; 

and 3) to develop strategies for the proper management of those wetlands. 

The first report of this three-year project has involved the following 

tasks related to wetlands in the coal fields of western Kentucky: 

1. establishment of three intensive study sites in major wetlands 
for identification and assessment of management impacts, 

2. sampling tripe in May, July, and September to the intensive study 
sites, to measure water quality and ecological structure, 

3. development of a classification specifically for wetlands in western 
Kentucky and an application of the classification to the three 
intensive study sites, and 

4. development of conceptual 111Ddels of the region, watersheds, and 
specific ecosystems, and preliminary simulations of a wetland 111Ddel. 

Our specific sites in western Kentucky are Cypress Creek Wetlands in 

Muhlenberg County, which are affected by mine drainage and channelization; 

Clear Creek Swamp in Hopkins County, which is affected by mine drainage and 

higher water levels; and Henderson Sloughs in Henderson County, which are 

affected by oil wells and clearing for agriculture. Preliminary analysis of 

field surveys demonstrates that several activities, particularly coal mining 

and oil 'extraction, may affect the health of wetlands in western Kentucky. 

Drainage, logging, channelization, and impoundments have also caused 

significant alterations. 
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Field measurements, along w1 th conceptual models, have facilitated the 

development of a classification scheme for wetlands in western Kentucky. The 

classification scheme takes into account ecological structure, system 

hydrology, and major man-made effects. Water quality parameters include pH, 

temperature, specific conductance, sulfates, turbidity, and dissolved oxygen. 

Diversity, biomass, density, size distribution, and growth of vegetation were 

measured. These chemical and biological measurements will be analyzed and 

C01Dpared with standard values to assess the significance of impacts. 

The work involves close contact and cooperation with state and federal 

agencies including the Kentucky Department for Natural Resources and 

Environmental Protection, the Kentucky Nature Preserves Commission, the 

Kentucky Department of Fish and Wildlife Resources, the U.S. Fish and Wildlife 

Service, the Office of Surface Mining and the U.S. Army Corp of Engineers. 

The research was summarized at meetings in May and in September for 

representatives from the above agencies. 

Descriptors: 

Identifiers: 

Wetlands*; Land Classification; Ecosystems 

Western Kentucky Coal Field; Wetland Management; 

Wetland Model 
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INTRODUCTION 

Wetlanda, both freshwater and coastal, have become recognized as 

important components of the landscape. Scientists, engineers, public interest 

groups, and government agencies hsve become involved in the preservation and 

careful management of wetlands throughout the United States. The importance 

of wetlands lies both in the traditional value of wetlands as areas of fish 

and wildlife protection as well as their roles in water management and 

pollution control. 

Few studies of wetlands have been carried out in Kentucky despite a 

significant number of wetland areas, particularly in the western part of the 

state. Major wetlands are found in the Jackson Purchase area of extreme 

western Kentucky and in the western coal field (see Figure 1). Our study is 

presently limited to the latter area, an area of about 12,000 square 

kilcmeters that has experienced significant coal mining activity for many 

years. Our scope of work includes wetland classification, mapping, modelling, 

and data collection for three specific sites within the western coal field. 

The specific sites were choaen so as to assess a range of impacts on the 

wetlands, particularly those due to coal mining, oil extraction, drainage, 

logging and flooding. 

Wetlands in Western Kentucky 

The Western Kentucky Coal Field (Figure 2) is located in the Shawnee 

Hills Section of the Interior Low Plateaus Physiographic Province. Kost of 

the region is undulating to hilly with wide, flat, silt-filled alluvial 

valleys along the Green, Rough, Pond, Tradewater, Barren, and Ohio Rivers 

(Harker et al., 1980). The relatively flat topography supports a wide variety 

of wetlands. We hsve tentatively identified about 40,000 hectares of wetlands 
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in the Western Kentucky Coal Field (Table 1). Many of these wetlands are over 

2,000 hectares in size. 

Coal mining, particularly coal surface mining, has affected many of 

the wetlands in the region. Acid drainage and sedimentation from mining 

have adversely impacted the water quality, hydroperiod, and vegetation of 

some wetlands. Other wetlands hsve been formed as a direct result of 

mining activity and thus display characteristics of developing ecosystems. 

Several wetlands in the region are seemingly not influenced by mining st 

all. Logging, channelization, conversion to agriculture, beaver dams, and 

highway construction are other major influences on wetlands in the region. 

Little published information has existed until recently on wetlands in 

the Western Kentucky Coal Field. Harker!.!:. al. (1980) compiled a notable 

floristic and faunistic survey of many of the wetland areas in the coal field. 

Aerial photo and LANDSAT imagery were used by Whinnery (1977) to map Clear 

Creek Swamp and nearby strip mining areas. Water quality and biotic 

parameters were examined in a marsh adjacent to Clear Creek Swamp (Neichter, 

1972; Leuthsrt, 1975; Ortiz, 1981). Grubb and Ryder (1972) described the 

effects of acid drainage on the water resources of the Tradewater River Basin. 

Major Impacts on Wetlands in Western Kentucky 

Coal Mining - Coal mining is and will continue to be one of the dominant 

activities in the western Kentucky coal field (Figure 2). The coal field, one 

of two major mining regions in the state, is part of the Eastern Interior Coal 

Basin that extends through southwestern Indiana and much of Illinois. 

The field comprises about 12,000 square kilometers and has experienced 

heavy strip mining since the technique was first introduced in !bhlenberg 

County in 1829. In 1979, the total amount of coal mined in Western Kentucky 

was 44 million metric tons, with about 23 million metric tons obtained 
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Table 1 

Representative Wetland Areas in the Western Coal Field of Kentucky 

Name County 

Clear Creek. Swamp Hopkins 

Weirs Marsh Hopkins 

Black Laite Bog Muhlenberg 

Henderson Sloughs Henderson 

·, 

Pond Creek Swamp lilhlenberg 

White City Swamp Hopkins 

Black Laite Bot toms McLean 

Rough River Bottoms Ohio 

Rockport Bottoms Daviess 

Goosepond Ditch Union 

TOTAL 

Size 
Acre 

8,400 

17,000 

5,000 

5,000 

12,800 

7,680 

12,800 

26,800 

95,480 

Description 

created partially by 
mining; acid drainage 
into swamp; partially 
forested 

adjacent to Clear Creek 
Swamp 

adjacent to Little 
Cypress Creek; evidence 
of recent changes in 
elevation 

bottomland hardwood 
forest; disturbed by 
oil extinction, drainage 
and agriculture 

mostly marsh, some 
recent interest in strip 
mining was delayed be-
cause of swamp 

owned by Ky. Dept. of 
Fish and Wildlife Re-
sources; forested and 
marsh; some abandoned 
strip mines 

Reference 

Leuthart (1975) 
Whinnery (1977) 

Stine (1977) 

Goodwin & 
Niering (1975) 

Bell (pers. 
comm.) 

Bell (pers. 
comm.) 

Ky. Dept. Fish 
& Wild. Res. 

Ky Dept. Fish 
& Wild. Res. 

Ky. Dept. Fish 
& Wild. Res. 

Ky. Dept. Fish 
& Wild. Res. 



through surface mining (Kentucky Department of Mines and Minerals, 1979). 

Tots! cosl mined in 1979 was down about 20 percent from 1976. However, 

severs! synthetic fuel plants have recently been proposed for four locations 

on the Ohio River adjacent to the Kentucky western coal fields (Louisville 

Courier-Journal, February 1, 1981). These plants, if built, could increase 

the annual cosl use in western Kentucky by 35 million metric tons per yesr 

with much of this coal coming from the Western Kentucky Cosl Field. 

6 

Coal mining, particularly surface coal mining, can cause significant 

alteration of bodies of water, including wetlands. Acid drainage and 

precipitation of ferric hydroxide hsve been shown to have dramatic effects on 

aquatic life (Robeck and'Richardson, 1969; Minear and Tschsntz, 1976; 

Letterman and Mitsch, 1978). The increased runoff and subsequent flooding due 

to surface mining is a major impact for downstresm wetlands. Sedimentation, 

due to erosion of spoil bsnks, active mines, and unreclaimed lands, may also 

cause significant problems in wetlands. 

Oil Wells - Some oil drilling bas occurred in western Kentucky, 

particularly in Henderson County near the Ohio River. Approximately 716,000 

barrels of oil were obtained from the county in 1978 (Kentucky Department of 

Mines & Minerals, 1978). While the effects of oil drilling may be less than 

cosl mining per unit of energy obtained, some impacts may be possible. 

Drainage modification is often necessary when wells are drilled, with 

subsequent changes in adjacent wetlands. Oil spillage and discharge of brine 

solutions from active wells may have certain localized yet long term effects 

on bodies of water, including 'Wetlands. 

Channelization - Wetlands, particularly riparian wetlands, will be 

affected when adjacent streams are straightened for flood control. This 

activity can prevent flooding and subsequent mineral nourishment of wetlands 
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or, alternatively, it can increase water levels in wetlands due to artificial 

levees. In both cases, the hydroperiod is altered and the wetland is forced 

to adapt to the new conditions. Channelization and flood control are 

widespread throughout the western coal field, particularly in the Cypress 

Creek watershed. 

Agriculture and Lumbering - The clearing of forested wetlands, 

particularly bottomland hardwood forests, for agriculture and timber 

production is a significant concern in southeastern United States (Clark and 

Benforado, 1981). The extent of bottomland hardwood forest removal in 

Kentucky is not known although Turner (1981) presented preliminary data that 

showed an actual increase of 5.4 percent in bottomland hardwood forests from 

1960 to 1970 in Kentucky. He suggested (personal com11111X1ication) that this may 

be due to abandoned farmland reverting back to forest, This increase probably 

does not represent conditions in the western Kentucky coal field where many 

wetlands have been converted to agriculture, particularly to soybean farms. 

Agricultural activity may also affect adjacent wetlands with increased runoff 

that contains high concentrations of sediments, nutrients, and pesticides. 

The Hierarchical Framework 

Modern techniques for the management and evaluation of wetlands require 

that decisions be made using disparate variables at different levels of 

organization. Such variables can best be dealt with if they are arranged so 

they interact within the same spatial and temporal context. In order to 

accomplish such an organizational task effectively, hierarchical models are 

often useful, Hierarchies have often been used to describe natural systems 

(Pattee, 1973; Simon, 1973), including various wetlands (Patten~ al., 1976; 

Bosserman, 1979). 
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Upper levels of such a hierarchical model involve variables that change 

over a broad spatial extent and a long time period, while lower levels involve 

more resolved variables that change over a s11aller spatial and a quicker time 

scale. For example, while the variables that describe an ecosystem can vary 

over several hectares on a week by week basis, the variables that describe an 

organism can vary over several square meters on a minute by minute basis. 

Generally, there is more than one way to model a hierarchical system; however, 

during research activities the questions asked by observers provide 

constraints and guidance for model development. Hypotheses about system 

behavior can be developed in conjunction with the hierarchical model and then 

can be tested with an appropriate experimental design (O'Neill, 1975). In 

this research project a hierarchical model provides a framework. by which 

management strategies for particular wetlands and their most important impacts 

can be developed and assessed. Techniques will then be developed which 

provide an integrated management strategy that incorporates each level of 

organization. Within our hierarchical framework, three levels of organization 

have been identified as being important to wetland assessment (Figure 3): 

regional, watershed, and ecosystem. 

Regional - The upper, most-inclusive level that we identified is the 

regional level, which encompasses the entire western coal field. Regional 

modelling is essential for dealing with large scale problems that involve 

energy procurement, development, and transportation. Among variables which are 

relevant to wetland management at this level are the location, number, and 

area of wetlands and other land categories. Man-induced impacts, such as 

agriculture, mining, and lumbering, tend to cause changes in these variables. 

The conceptual model of the regional level was developed to describe 

transfer of land area between categories of land use (Figure 4). The main 
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REGIONAL LEVEL 

ECOSYSTEM LEVEL 

Clear Creek. 
Cypress Creek 

Henderson Slough 

Figure 3. Hierarchy of Regional, Watershed and Ecosystem Levels 
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land use divisions found in the western Kentucky coal fields are 

non-agricultural upland ecosystems, wetland ecosystems, farmland, stripped 

coal fields, and reclaimed land. Non-agricultural uplands are defined as land 

with predominantly mesophytic or xerophytic vegetation, and with mainly 

nonhydric soil that is not flooded or saturated at some time each year. 

Stripped coal fields include active mines and abandoned mines that have not 

yet been reclaimed. 

Major management impacts that affect the region are mining operations, 

logging and clearing activity, reclamation operations, and drainage 

manipulation. These impacts work in a unidirectional manner causing wetlands 

to become non-agricultural uplands, farmlands, or coal fields; coal fields to 

become reclaimed land; reclaimed land to become farmland; and non-agricultural 

uplands to become coal fields or farmlands. Flows which oppose the depicted 

flows are due to natural ecosystem succession (i.e., farmlands to 

non-agricultural uplands) and are not directly controlled by management 

activities. 

Watersheds - At the second level of the hierarchy, the entire region is 

regarded as being partitioned into watersheds which contain the wetlands. 

Watersheds are an important unit in ecological studies because they are well 

defined and affect inputs to aquatic ecosystems (Odum, E.P., 1971; Bormann and 

Likens, 1969). A watershed is a hydrological and geological unit that is 

identified by the regional topography; therefore, the characteristics of a 

watershed are closely related to many relevant variables of interest: surface 

runoff, stream flow, water level, and flow volume. Because inorganic and 

organic materials are carried in water, they depend on watershed 

characteristica and can be examined at this level. Chemical and hydrologic 

parameters can be examined for each study_site in order to properly 
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characterize wetland behavior at this level of organization. Impacts include 

levee construction, channelization, and land use in the uplands. Many impacts 

affect inputs and outputs of wetlands and thereby help to determine wetland 

characteristics. 

Water flow through a watershed of the western Kentucky coal field is 

described by a conceptual hydrologic model (Figure 5). The main compartments 

through which water moves are streams, bottomland hardwood forests, and 

marshes and swamps. 

Streams include flowing, open water within a channel and exclude trees, 

shrubs, and emergent vegetation. Bottomland hardwood forests are areas that 

are flooded or saturated with water at some time of the year. The vegetation 

type can be any number of flood-tolerant hardwoods which are present in the 

area. Marshes and swamps are characterized by emergent hydrophytes and 

standing water for most of the growing season (Cowardin ,!!. al., 1979). 

Major impacts on water flow are channelization and land use, mining 

activity, logging activity, and levee building. Mining activity can affect 

water flow by actual disruption of the terrain or by increasing sediment 

loads. 

Ecosystems - Specific wetland ecosystems occur at the lowest level of our 

hierarchical framework. An ecosystem can be defined as a set of interacting 

organisms with their physical and chemical environment. In the wetland 

ecosystems, we have chosen to examine the community structure, the energy and 

nutrient flows among various ecosystem components and the important physical 

and chemical factors. 

Each of the major wetlands that we have chosen to examine has a 

significantly different community structure and is affected by different 

impacts; therefore, they are modelled separately. Descriptions of models for 

individual wetlands are in Results and Discussion. 
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Other Wetland Studies 

Much recent attention hss been paid to wetlands as unique and useful 

natural areas on the American landscape. Inland wetlands are recognized as 

important wildlife habitats (Martin et al., 1953; Shaw and Fredine, 1956), 

recreational areas (Wharton, 1970; Goodwin and Nieriog, 1975), and pollution 

treatment units (Odum~ al., 1977; Kadlec, 1978; Deghi ~ al., 1980). 

14 

Water quality in streams, rivers, lakes, and aquifers is affected by the 

presence of surroundiog wetlands (Wharton, 1970; Lee et al., 1975; Mitsch~ 

al., 1979a). Wetlands filter heavy metals, nutrients, and sediment (Grant and 

Patrick, 1969; Mitsch~.!.!•, 1979a, 1979b, 1979c; Bosserman, 1980). A large 

array of impacts threatens wetlands, includiog highway construction, miniog, 

industrial pollution, agriculture, and urbanization. Despite their known 

usefulness and threats to their existence, little research has been done to 

examine many wetland properties. Coastal wetlands hsve been studied heavily 

and are now the foci of many large research efforts. However, inland wetlands 

have received much less attention. Major inland freshwater wetland studies 

have taken place in Florida (Odum, 1977; Mitsch and Ewel, 1979; Brown, 1981), 

Georgia (Patten~ al., 1976; Bosserman, 1980), Michigan (Kadlec~ al., 1977; 

Kadlec, 1978), North Carolina (Kuenzler et al., 1977), Louisiana (Conner and 

Day, 1976), and Illinois (Mitsch et al., 1979a). 

Classification of Wetlands 

Wetlands have been classified since the early 1900's, beginniog with 

peatland classification in Europe and North America. The United States Fish 

and Wildlife Service has published two major classification schemes for 

wetlands in the United States, both as contributions to wetland inventories. 

An early version (Martin~ al., 1953; Shaw and Fredine, 1956) described 

twenty wetland types based on floodiog frequency and depth and on salinity 



regimes. A recent "Classification of Wetlands and Deepwater Habitats of the 

United States" (Cowardin et al., 1979) uses a hierarchical approach of 

five systems (marine, estuarine, riverine, lacustrine, and palustrine), 

subsystems, classes, subclasses, dominance types, and special modifiers to 

more precisely define particular wetlands and deepwater ecosystems. 

15 

Other regional wetland classifications have been developed in North 

America for North Dakota (Stewart and Kantrud, 1971), northeastern United 

States (Golet and Larson, 1974), western Canada (Millar, 1976), and Florida 

(Wharton~ al., 1976). A classification of coastal ecosystems of the United 

States based on energy sources and stresses (Odum~ al., 1974) contains 

several types of marine and estuarine wetlands. 

Models of Wetlands 

Conceptual and diagrammatic models can be useful tools for the 

identification and summary of environmental impact on ecosystems (Odum, 1972; 

Hall and Day, 1977; Farnworth~ al., 1979). Even if they are not developed 

further into mathematical simulation models, these models 1) serve as guides 

for identifying critical ecological processes, 2) focus subsequent field and 

laboratory research on pertinent measurements, and 3) summarize environmental 

impacts on one or a few pages. 

Simulation and analysis of computer models may be useful for examining 

wetland behavior and displaying effects of impact and management. Mitsch et 

al. (1982) present a review of simulation models for freshwater wetlands in 

North America. In such simulation models, the wetland is represented by a set 

of mathematical equations which describe some of its most important 

characteristics. Ecosystems such as wetlands are often too large and operate 

too slowly to examine within an appropriate space-time scale so effects of 

management alternatives or impacts can be examined only after long periods of 
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time. On a computer, however, simulations of these effects can be examined in 

a few minutes. With printouts, a number of alternative scenarios can usually 

be compared simultaneously. 

Several types of clllllputers and computiog languages are generally 

available for ecosystem IIK)delling. Analog computers, which are capable of 

simulating only small ,.,dels, can give exact, continuous solutions in a short 

period of time. Effects of rapidly changing parameters can be viewed 

visually. Large mainframe computers, such as the IBM 360/370, can run complex 

ecosystem models in short periods of time while microcomputers, such as the 

APPLE II and the Radios hack TRS 80, can run small models in moderate lengths 

of time. There are a number of computer types between these two extremes. 

Among the advantages of microcomputers are their portability, accessibility to 

researchers, graphic capabilities, simplicity of operation, and economy. Many 

microcomputers can be directly connected to a television set for displaying 

output. There are many advantages to using small models, such as 

understandability, stability, and the facility with which they can be 

simulated. 

For many models, general purpose computer languages such as FORTRAN IV 

and BASIC are useful. With these languages, one has great flexibility in 

programming integration procedures and formatting outputs. FORTRAN and BASIC 

are usually compatible with both mainframe and microcomputers. For more 

canplex ,.,dels, simulation languages such as DYNAMO and CSMP (Continuous 

Systems Modeling Program) are useful. Many essential modelling procedures 

such as integration techniques are built into these languages. They 

therefore allow the construction of models in a straightforward and simple 

fashion. DYNAMO was specifically built for simulating industrial, social and 

economic situations. The famous 'Limits to Growth' model (Forrester, 1971) 
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and various global 'World' (Meadows et al., 1972) models were done using 

DYNAMO. Because of DYNAMO's crude modelling procedures, however, simulations 

are relatively imprecise. It does, however, have good capabilities for 

displaying output. CSMP, which was designed for engineering applications, has 

more sophisticated and precise modelling procedures. Both languages greatly 

facilitate the mathematical 1110delling of ecosystems; however, they are 

generally available only on large, mainframe computers. 

Intensive Study Areas 

Three major wetland areas in the Western Kentucky coal field were chosen 

for detailed study because of significant or unique features. General 

locations of the sites are shown in Figure 6. Much of the following 

information canes from Harker et sl. (1980). 

Henderson Sloughs - These wetlands are located along the Ohio River in 

Henderson and Union Counties and are annually flooded by the river. These 

wetlands are elongated sloughs divided by low ridges and roughly parallel to 

the direction of the river. Much of the region has been drained for 

agriculture and significant environmental impact may result from oil drilling 

in the region. No coal mining impact is apparent. The major community found 

in the seasonally-inundated sloughs is dominated by Acer ssccharinum (silver 

maple) and Fraxinus pennsylvanica (green ash). Some permanent ponds 

supporting Taxodium distichum (bald cypress) or various aquatic macrophytes 

are also present. These wetlands are one of only two Kentucky wetlands cited 

by Goodwin and Niering (1975) in their survey of major wetlands in the United 

States. 

Cypress Creek Wetlands - These riparian wetlands are found along 15 

kilometers of Little Cypress and Cypress Creeks in Muhlenberg County. A major 

feature is the presence of Taxodium distichum (bald cypress) communities. The 
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cypress stands are among the most extensive and best developed in the interior 

of western Kentucky and represent some of the eastern-most cypress in the 

Mississippi-Ohio Basin. Swamp forest cOllllllUllities of Betula nigra and Acer 

rubrum and marshes of Typha sp. (cattail) are also found in this study area. 

There are signs of mine drainage although channelization and levee 

construction on all of the major streams appear to have caused the most 

impact. Cypress Creek wetlands are an important waterfowl area, especially 

for mallards and wood ducks. 

Clear Creek Swamp - This wetland, over 3400 hectares in size, is the 

largest extant wetland system in the Western Kentucky Coal Field. It is 

located in Hopkins County west of Madisonville. The wetland has been severely 

affected by a combination of logging, altered hydroperiod and, notably, 

surface mining of coal. Major wetland communities include young forest 

thickets of Betula nigra (river birch) and !!E!!.. rubrum (red maple), open water 

communities interspersed with Cephalanthus occidentalis (buttonbush), and 

stands of Liquidambar styraciflua (sweetgum). 
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MATERIALS AND METHODS 

Classification Scheme 

A classification for wetlands in western Kentucky was developed with the 

following criteria in mind: 1) simplicity, 2) flexibility, and 3) inclusion 

of ecological stress. The classification scheme is summarized in Table 2 and 

Figure 7. The major types of wetlands (palustrine) systems include seven 

types frequently found in our study sites. This simple system is compatible 

with the classification scheme developed by Cowardin !E_ al. (1979) but does 

not include as much detail. Environmental modifiers (Figure 7) describe, in 

the form of a two-by-two matrix, the flooding regime and environmental impacts 

on the wetlands. Along one axis, the flooding conditions are defined as 

unaltered (I) or altered (II). The other axis describes environmental 

impacts in general on the wetland with A indicating low impact and B 

indicating significant impact. Thus an environmental modifier of II-B 

indicates a wetland with an altered hydroperiod and significant environmental 

impact. A modifier of I-A, on the other hand, indicates a wetland in 

near-natural conditions. The impact can be further defined with a numbering 

scheme (1 through 6) to indicate coal mine drainage, oil wells, logging, 

agricultural runoff, urban influence, or other impacts. An example of a 

classification is shown in Figure 7. 

Wetland Mapping 

Mapa were developed to show major wetland ecosystems and other land use 

patterns within watershed boundaries of the three study areas. The mapping 

was based on the classification scheme described in Table 2. Watershed maps 

were drawn from 7 1/2 minute USGS topographic maps (1:24,000). Wetland 

boundaries and types were identified from land use overlays supplied by the 



Table 2 

Major Classifications Used in Wetland Mapping in Western Kentucky 

PALUSTRINE SYSTEMS 

Persistent Emergent Wetland 

Typha Marsh 
Phragmites Marsh 
Mixed Emergent Marsh 

Forested Wetland 

Cypress Swamp 
deep 
shallow 

Bottomland Hardwood 
frequently flooded 
infrequently flooded 

OTHER 

Agricultural Areas 
Residential and Commerical Areas 
Coal Mines 

active/abandoned 
reclaimed 

Upland Wooded Areas 
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Environmental Protection Agency and from color aerial photography (l:24,000). 

The color photography, from recent (1979-80) flights over the entire Western 

Kentucky coal field, was made available by the Kentucky Nature Preserve 

Commission. In many cases, ground truth observation in the field were used to 

verify the identification of wetland types. Figure 8 summarizes the process 

of mapping the wetlands. 

Water Quality Sampling and Analysis 

Surface waters were sampled at Stations l through 5 at Henderson Sloughs 

(Figure 9), Stations l through 3B at Cypress Creek (Figure 10) snd Stations l 

through 3 at Clear Creek (Figure 11). Samples were taken on 19-20 June, 
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M A P P I N G C L A S S I F I C A T I O N I M P A C T S 

High 

I B II B 

I A II A 

Low 
unaltered altered 

Floodina Rea1me 

Impact Modifiers 

1, Coal Mine Draina9e 
2, Oil Well 
3. Logging/Harvesting 
4. Aqrlcultural Runoff 
5, Urban 
6. Other 

Deep Cypress Swamp IB-1 

Cynress swamp with nor1J1al hvdroperiod but 
affected by coal draina~e 

-------·----

Figure 7. Classification Scheme Used for Identification of Wetland Impact 
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Wetland MOPS 
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22-24 July, and 18-19 September, 1981. Water conditions during these periods 

ranged from flooding to normal-low pool situations. 

Ssnples were taken using a five and one half foot polyvinyl chloride 

(PVC) extension pipe on which clean, acid washed polyethylene bottles were 

placed. Holes, 3/4 inch in diameter, were made in the pipe 2 inches above the 

insertion of the bottle neck, allowing undisturbed water to flow directly into 

the bottle. This sampling device, used in other wetlands studies, allows the 

taking of samples away from points of disturbance and contamination by 

sampling personnel. At all sites, two samples were taken, composited, and 

immediately transported on ice to the lab, where they were stored at 4°C until 

examination. No preservatives were used. 

Samples were analyzed according to standard procedures (APHA, 1975). 

Temperature, pH, dissolved oxygen, and conductivity were measured directly in 

the field with appropriate meters. Turbidity and sulfates were measured by 

turbidimeter and spectrophotometer, respectively. Table 3 summarizes 

parameters and methods used in this study. 

Vegetation Analysis 

The intensive study sites were selected with the aid of 1:24,000 color 

aerial photographs and topographic maps. Subsequent ground surveys located 

sampling plots within the sites. At each bottomland or ahallow water site, a 

100 meter transect was placed within site boundaries. Points were marked at 

10 meter intervals for point-quarter vegetation analysis (Cottam et al. 1953; 

Cottam and Curtis, 1956). Rectangular plots were established at cypress 

swamps using an optical rangefinder. 

The point-quarter method of vegetation analysis consists of identifying 

the closest tree in the four quarters at each point, recording distance from 



Table 3 

Methods Used for Water Quality Analysis 

Parameter 

Turbidity 
(NTU) 

pH 

Temperature 

Dissolved Oxygen 

Conductivity 

Sulfates S04 

Equipment/Analysis Technique 

HACH Turbidimeter 
Model 2100A (lab) 

Elan Engineering 
pH Meter (field) 

YSI Model 57 
Dissolved Oxygen Meter (field) 

YSI Model 57 
Disaolved Oxygen Meter (field) 

Beckman 
Conductivity Meter (field) 

Perkin-Elmer UV-VIS Spectrophotometer 
Barium Chloride Method 
(lab) 

the point and measuring tree diameter at breast height (dbh). Fran these 

data, the following were calculated: absolute and relative density, absolute 

and relative frequency, basal area, and relative dominance. Importance 

values, measures of the influence a species exerts upon a community, were 

calculated by summing relative frequency (RF), relative density (RDens), and 

relative dominance (RDom) for each species. Herbaceous vegetation was 

characterized by species name and relative abundance (i.e., heavy, medium, 

sparse). Simpson's (1949) diversity index was calculated for the tree 

community at each site: 

where, 

Silllpson' s D • l - E [Nj (Nj-1)) 
N(N-1) 

Nj • number of trees of the j th species 

N • total 1D1mber of trees sampled 
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Aquatic macrophytes were harvested from 0.5 m2 plots at selected sites. 

Total sample and subsample wet weights were recorded. Subsamples were 

returned to the lab, air-dryed for two weeks, then oven-dried (90°C for 24 

hours). Dry weights were recorded and dry/wet ratios calculated. 

Multiplication of the dry/wet ratio by total sample wet weight yielded an 

estimate of biomass in grams dry weight. Multiple samples were averaged to 

obtain mean dry weight per square meter for a species. 

Modelling Languages 

29 

Conceptual models were depicted with two modelling languages. Symbols 

used in this paper are shown in Figure 12, where analogous Energese (Odum and 

Odum, 1976) and DYNAMO (Forrester, 1961) symbols are presented side by side. 

In Energese, each energy module represents a dominant mode of processing 

energy such as autotrophy, heterotrophy, or passive storage. Solid lines 

demonstrate energy flows between model components and information 

interactions. Circles depict factors such as energy inputs, perturbations, or 

management efforts which originate outside the boundary of the system. 

Workgates indicate the interaction of two or more forces. In DYNAMO, state 

variables which represent storages are shown as boxes. Solid lines depict 

material flows while dotted lines depict information flows. Valves on these 

lines demonstrate points of control where external factors affect material and 

information flows between storages. In DYNAMO, circles are called auxiliary 

variables. Components of DYNAMO can be represented hierarchically by putting 

boxes within boxes and separating lines at the box boundary. 
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RESULTS AND DISCUSSION 

Henderson Sloughs 

Mapping and Classification - The wetland map of the Henderson Slough 

study area is shown in Figure 13. The parallel pattern of elongated cypress 

sloughs and bottomland hardwood forests is easily disceroable in the western 

half of the watershed. The upland areas that are less frequently flooded have 

mostly been converted to agricultural fields although one large upland wooded 

area is found near the center of the watershed. There is only a very small 

residential area in the eastern extreme of the drainage basin. 

Hydrology - Hydrology of the Henderson Slough watershed is dominated by 

sloughs with standing water or very slowly flowing water (Figure 14). During 

the spring, the Ohio River often exceeds its banks and floods the entire 

region, with drainage generally flowing from northeast to southwest. During 

the remainder of the season, Pond Creek, shown in Figure 14, carries the major 

portion of the drainage from our study region. The stream channel is poorly 

defined in certain locations and flooding of adjacent wetlands and 

agricultural fields is frequent. 

Ecosystem Model - The conceptual model of Henderson Slough (Figure 15) 

shows the influence of the annual flooding of the Ohio River on riparian 

wetlands. The flooding river contributes nutrients and organics to the 

elongated sloughs. This typical river-bottom hardwood habitat consists of 

bottomland hardwood forests, wooded sloughs, and open water areas. The 

bottomland hardwood forest of slightly raised elevation is primarily composed 

of oak-hickory (Quercus sp., Carys ovate) and maple-ash (~ rubrum, !.· 

saccharinum, Fraxinus pennsylvanica, !· americana) associations (Goodwin and 

Niering, 1975; Quarterman and Powell, 1978). In the wooded sloughs, Fraxinus 

pennsylvanica, Betula nigra (river birch), Taxodium distichum (bald cypress), 
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and Liquidambar styraciflua (sweet gum) are the dominant species. Both of 

these areas contain a living population and a standing dead crop of the above 

species. The open water areas are often interspersed with stands of bald 

cypress (Taxodium distichum). Rare Kentucky plant species 11ay also be found in 

these wetlands. The rare species are Decodon verticillatus (swamp 

loosestrife), Echinodorus rostratus (Burhead), Pontederia cordata (pickerel 

weed), and Utricularia gibba (humped bladderwort) (Harker et aL, 1980). 

Impacts which are represented in the model are oil drilling operations, 

agricultural activities, and timber harvesting. Oil operations cause chemical 

and mechanical damages to the area and to· wildlife through overflows of crude 

and brine (Goodwin and Niering 1975). Public funded agricultural practices and 

subsidies encourage drainage and clearing. Timber harvesting also has an 

impact on the area. 

Water Quality - Water quality was collected from selected sloughs, from 

flooded bottomland hardwoods, and from Pond Creek, the primary drainage channel 

for the sloughs area. Samples were taken during flooding conditions and during 

normal to low pool conditions. It was of interest to compare slough and 

bottomland waters with that of the main channel. The primary interest, 

however, was not to compare sites but to gain knowledge on the cumulative water 

quality of the entire sloughs region. Therefore, the Pond Creek stream samples 

are thought to provide the broadest and most encompassing water quality data 

for the sloughs drainage basin. 

Table 4 gives water quality data for the Henderson Sloughs area for three 

sampling trips. Refer to Figure 9 for location of the sampling sites. Since 

site 1 is a bottomland hardwood forest site, data are limited to a sample in 

June when the forest wss inundated; for the remaining dates, the site wss found 

to have no standing water. Water samples for site lB were taken from the main 
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Table 4 

Water Quality of Selected Sites in Henderson Sloughs 

Site Date Time Turbidity pH Temperature Dis.02 Cond. S04• 
Number (EDT) (N'l'U) (oC) (mg/1) (umhos) (mg/1) 

1 19 June 9:00 A.M. 5.45 23.9 1.95 
22 July 1:30 P.M. 
14 Sept. 

lB 19 June 9.25 A.M. 4.1 7.05 23.55 1.65 500 
22 July 1:40 P.M. 15.5 6.2 25.0 5.3 420 19,3 
19 Sept. 10:15 A.M. 5.95 7.4 15,8 3.7 430 13.05 

2 19 June 10:30 A,M. 2.05 6.7 22.5 1.9 700 
22 July 2:00 P.M. 2.0 6.4 25.4 1.9 200 17.35 
19 Sept. 11 :00 A.M. 4.55 7.4 15. 7 3.6 720 13.3 

2B 19 Sept, 12:00 N. 1.5 6.6 16.2 5,8 550 9.7 

3 19 June 12:00 N. 1.35 6.8 21.6 2.05 590 
22 July 5:45 P.M. 2.1 6.5 17 .o 4.2 1800 23.3 

'19 Sept. 2:00 P.M. 2.15 6.6 17.2 5.0 1500 41.8 

4 19 June 1:15 P.M. 3.4 6.55 23.0 3,62 330 
22 July 5:15 P.M. 2.1 6.1 29.0 12.2 520 12.0 
19 Sept. 1:00 P.M. 1.75 6.5 19 .o 10.0 500 10.5 

5 19 June 2:00 P.M. 3.2 6.4 25.0 5.3 3000 
22 July 4:30 P .M. 1.9 6.5 32,2 10.4 4500 24.75 
19 Sept. 12:30 P.M. 1.65 6.4 18.8 8.8 7000 56.85 

channel of Pond Creek; the site was the most downstream point for Henderson 

Sloughs. Samples for sites 2 and 3 were also taken from the main channel of 

Pond Creek, at middle and upper reaches of the drainage basin respectively. 

Site 2B, a deep cypress slough, was added as a sampling site in September. 

Sites 4 and 5 are individual sloughs which drain into Pond Creek. The two 

differ greatly, however, in water quality. 

Turbidity values for Henderson Sloughs water fall into the expected range 

for wetland areas where, by nature, moderately turbid conditions persist. An 
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extremely high value, 15.5, was observed at site lB during July and is thought 

to be attributable to evaporation and the reduced flow conditions of summer. 

Temperature and pH of these waters also fall into the range of expected or 

normal values. Temperatures varied with the season, while pH values remained 

relatively constant throughout. Dissolved oxygen reached a peak in July in 

the still sloughs and was highest in September in the streams. This may be due 

to the large numbers of aquatic macrophytes and algae which were at peak 

productivity at this time. Decline of this productivity in fall is evidenced 

by lower dissolved oxygen levels observed in September in the sloughs. 

Conductivity measurements suggest an impact of oil drilling operations on 

the Sloughs area. Site 5, a still slough, is directly affected by a nearby oil 

well which disposes of salt brines in the wetland. These brines flow directly 

into the slough via a ditch and lead to specific conductance readings of 3,000 

to 7,000 umho/cm. This is diluted dowostream at sites 3, 2 and l; site 4, 

which is not hydrologically connected to the brine discharge, shows normal 

conductivity readings. Sulfates are in normal ranges in most areas but show 

slightly higher values in the heavy brine areas (sites 3 and 5). 

Vegetation - Four of the Henderson sites were chosen for vegetation 

analysis. One of the sites is a bottomland hardwood forest, one is a shallow 

water cypress-ash swamp and two are deep cypress swamps. Henderson Site 1 is a 

bottomland hardwood forest located near the confluence of Pond Creek and 

Highland Creek. Henderson Site 2A is a forested wetland with longer 

hydroperiod then the bottomland hardwood site and lies adjacent to the middle 

reach of Pond Creek. Henderson Site 2B is located directly upstream from Site 

2A and is a deep cypress swamp. Another cypress swamp, Henderson Site 5, lies 

between the Ohio River and the upper reaches of Pond Creek, adjacent to Route 

136. 
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Henderson Site 1 is a typical bottomland forest of the Henderson Sloughs 

area. It is bordered on the east by agricultural land and, on the west, by 

one of the many, permanently-flooded sloughs of the region. Acer saccharinum 

(silver maple) is the dominant canopy species with an importance value of 117 

(Table 5) and is present at 80% of the points along the transect. 

Table 5 

Structure and Composition of Vegetation at Henderson Site 1. 

Relative Relative Relative Importance 
Species Frequency Density Dominance Value 

Acer saccharinum 30.8 32.5 53.7 117 .o 
Carpinus caroliniana 23.1 25.0 4.7 52.8 
Fraxinus pennsylvanica 11.5 15.0 13.3 39.8 
Acer rubram 7.7 7.5 21.4 36.6 
Carya cordiformis 7.7 7.5 4.7 19 .9 
Quercus bicolor 7.7 5.0 1.3 14.0 
Almus americana 7.7 5.0 0.4 13.1 
Cary a ova ta 3.8 2.5 0.5 6.8 

Total Density (trees/ha) • 1080 
Total tree species • 8 
Simpson's D-0.81 

Other canopy species, including Fraxinus pennsylvanica (green ash) and~ 

rubrum (red maple), are only occasionally encountered and have importance 

values of 39.8 and 36.6, respectively. These more water tolerant species are 

not as important at this site as st wetter sites. This site is inundated only 

during the annual spring flooding of the Ohio River, allowing dominance by 

less water tolerant species. 

The understory is dominated by Carpinus caroliniana (American hornbeam), 

present at 60% of the points and comprising 25% of all trees recorded from 

this site. Its importance value of 52.8 is higher than all other species 

except A. saccharinum. Other primary understory constituents are A. rubrum, 
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!• saccharinum, Carya cordiformis (pignut hickory), Quercus bicolor (swamp 

white oak) and Ulmus americana (American elm). The herbaceous layer is not 

well developed with Lonicera japonica (honeysuckle), Pilea pumila (clearweed), 

and Eupatorium rugosum (white snakeroot) as the principal species. 

Henderson Site 1 exhibits the highest density (1080 trees/ha) and the highest 

diversity (D-<J.81) of any similar site. 

The shallow bottomland swamp of Henderson Site 2A is frequently inundated 

and is generally much wetter than Site 1. Table 6 shows the shift of 

dominance from less water tolerant to highly water tolerant species. Fraxinus 

pennsylvanica and Taxodium distichum (bald cypress) share dominance of the 

canopy layer with a combined importance value of 245.4. These species occur 

at 100% and 90% of the points, respectively. All other species are recorded 

only once from the transect. Several tree species are present at this site at 

an average density of 660 trees per hectare and a diversity of 0.73 on 

Simpson's index. 

The understory layer is completely dominated by the shrub, Cephalanthus 

occidentalis (buttonbush). Due to the discontinuous canopy, the herbaceous 

Table 6 

Structure and Composition of Vegetation at Henderson Site 2A 

Relative Relative Relative Importance 
Species Frequency Density Dominance Value 

Fraxinus ~ennsylvanica 41.7 50.0 34.9 127 .6 
Taxoilium istichum 37.5 37.5 42.8 117 .8 
Salix nigra 4.2 2.5 8.2 14.9 
Platanus occidentalis 4.2 2.5 6.4 13.1 
Populus heterophylla 4.2 2.5 3.6 10.3 
Quercus bicolor 4.2 2.5 2.9 9.6 
Liquidambar styraciflua 4.2 2.5 0.8 7.5 

Total Density (trees/ha) • 660 
Total tree species - 7 
Simpson's n- 0.726 
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layer is well developed. Saururus cernuus (lizard's tail) is, by far, the 

most abundant plant in the herbaceous layer. Other com1110n herbaceous plants 

of this site are Leersia oryzoides (rice cutgrass), Sagittaria latifolia 

(arrowhead), and Acorus calamus (sweet flag). In the standing water, duckweed 

(Lemna minor), water fem (Azolla caroliniana), and hornwort (Ceratophyllum 

demerswa) are present. The abundance of aquatic mscrophytes indicates an 

extremely wet site. 

Site 2B is a well developed deep cypress swamp with an average density of 

290 trees per hectare. The trees do not form a continuous canopy and there 

are large areas of open water. Tsxodiwa distichwa is the only tree species 

in the swamp. The trees fall into five size classes between 10 cm dbh snd 60 

cm dbh (Table 7). The distribution centers around the two classes between 20 

cm dbh and 40 cm dbh. Seventy-one per cent of the trees fall in these two 

classes with a mean diameter of 30.3 ca. The heights of the trees range from 

4.5 m to 13.9 m with a mean height of 9.5 meters. There are few aquatic 

Table 7 

Size Class Distribution of Tsxodium distichum st Three Sites in Henderson 
Sloughs and Cypress Creek 

Size Class Number of trees 
(cm dbh) 

Henderson Site 2B Henderson Site 5 Cypress Creek Site 3B 

o- 9.9 0 0 26 
10-19 .9 8 1 13 
20-29 .9 15 1 0 
30-39.9 19 3 0 
4D-49.9 5 4 1 
50-59.9 1 0 0 
60-69.9 0 2 0 
70-79.9 0 2 0 

Total density (trees/ha): Henderson Site 2B • 290 
Henderson Site 5 • 130 
Cypress Creek Site 3B • 795 
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macrophytes present at the sample site. None occur in the deeper areas and 

only Nelumbo lutea (American lotus), Acorus calamus, and Sagittaria latifolia 

are common along the shoreline. 

The deep cypress swamp sampled at Henderson Site 5 is heavily impacted by 

brine fran nearby oil operations. Many of the smaller bald cypress trees are 

dead and the density of living trees is lower than at Site 2B (130 trees/ha). 

Table 7 shows the size class distribution of Taxodium distichum in the sample 

plot. Eighty-five per cent of the trees are greater than 30 cm in diameter. 

The range of diameters is 16.5 cm to 77 .3 cm with a mean dbh of 46.4 cm. The 

heights of the trees range fran 2.6 m to 10.9 m with a mean height of 7.7 

meters. The only aquatic macrophyte occurring in the plot is Nelumbo lutea. 

Samples of N. lutea were harvested and the biomass of the standing crop in mid 

July was estimated to be 60 grams dry weight per square meter. 

CyPress Creek 

Mapping and Classification - The wetland map for the Cypress Creek study 

region is shown in Figure 16. Wetlands in this region are found along Cypress 

Creek and its tributaries. Major types of wetlands include mixed emergent 

marsh, Typha marsh, and shallow and deep cypress swamps. Bottomland hardwod 

forests are found in very narrow bands along the major streams. A major part 

of this watershed is dominated by active surface coal mining. There are also 

substantial areas of reclaimed surface mines. The town of Central City is a 

major residential area in the eastern part of the drainage basin. 

Hydrology - Cypress Creek and its major tributary, Little Cypress Creek, 

are the major surface drainage conduits in the study site. The drainage 

pattern is shown in Figure 17. The streams are channelized along most of 

their lengths in the study area. They are prone to rapid spates of flooding 

during high rainfall and frequently exceed their channels and spill into 



42 

(I z 



,,·,, ,/ ~ ...... 
/I ,,, 

;·-·· \,, 
,... 

_./ 
r· 

...... -, ,' '· ..... 
I
,.,... ' ... --...... .. .... ,,' ·,, 

....... ,, _.- ' 

-·-----------·-
'·, 

/ ' "~ -·· ·, .-·-· 
:' ' • I - •• ,.•' \ ·y 

.,..... '• ,.-·-·-... I ' ··-- _.,.. ...... . ,· • i ---·-

/ 

• i . . /. . 

•• ---------- ! ------~ ' \ \ ·,.____ \ ./ \ ,/ '· I '· / ·,., \ -·· •.•••. ,·' \ 

•' '· \ I ·,. I \ I ,./ '·'·I ,· l 
/ '·, ; '·,., . 

' ,· '·, ·, ,· ' ., . / // ,,_ ... ---- ' . ----- \ 
( ( ') ' ·-·- - \ '\ ',,,: 

I' / \ I l 
I 

• . . 
. \ ; ',, \ 

/ ,.-----·-· '· \ ( i ·,. \ 
I ,,.,· l·( \ ' I / ,, . ' r,. I I '· ', 

J 

/ ' • -----·-. "-.. 

. ' ·--. \ ".,. i . .. /•, ' /"- . ' . . . . ' . ' ', . 
\

. . . - ' ' - ' ,·,. / ... ,, ·--
! --·- . ' 1 • ,, I ' " / ; • , . ,. . . . . . ' ' 

I rf' \ ---... ·< { \ l ''··· / I 

I f 

\ / \ -·, • 

• \ \ • I ,, / , .,--- · I .- ,,I 
, .. , / < \ I .. 1 ./ '·· • ', 
, • / ' ' ' ,. I •I 
\ , -·' ' . --- . ' ., 
I / "- ---- ( •, • ' \ i 
---, '· .... / _,... ' \ '• \ I • I ' ·-' , ' ' ' \ r--. I 

' . \ \ \ I ·, ; .... ,···· 

', / ' \ ' ' ' . ! ,, /\ • ' ,., I I ,,. \ 
', ---• I ,.__;' ' " ' I '{ ., ' I . I I ,/ 

, ......... · ; I; I \I 
, I • I ,· \ j 
I ! -·-·' / \ \ i I ·, \ \ \ ,., . .- / / I \ ·,,. . .. 
', \ ..,- ; I .• \ 1 -·./ ,, ' . . .--\ \ ' _... ,.,-, / i I . , ..... ..,, 

'- \ I/•' .. , ... (~\ I / ··, \ . ,• •, \', .... --- .. ,, \ ;
1 

I '·· ·I ........... / .. , '•.-•' 

\ .. / ··, ( 
', _..-···· ', I 

·-, ... _______________ .... ..---· . __ .., 

Figure 17. Stream Map of Cypress Creek Drainage Basin, Scale is Same as Figure 16. 

,,. 
w 



44 

adjacent wetlands and riparian ecosystems. The wetlands in the watershed were 

probably more extensive prior to channelization, but several wetlands are 

impounded behind artificial levees of the channelized streams. 

Ecosystem Model - A conceptual model of the Cypress Creek ecosystem 

(Figure 18) demonstrates the effects of upstream mining activity on energy flow 

through the system. The communities found in this area are Typha marsh, scrub 

cypress, bottomland hardwood, and two creeks: Cypress and Little Cypress. 

This wetland area is considered a high quality area which supports populations 

of restricted or declining wildlife species (Harker et al., 1980). 

The main canopy tree of the scrub cypress community is Taxodium distichum 

with scattered Fraxinus profunda (red ash) and Acer rubrum. The bottomland 

hardwood association, where flooding is only for a short period, is dominated 

by~ rubrum, Platanus occidentalis, Salix nigra, and Betula nigra. 

Major impacts on this wetland are channelization, agricultural activities, 

and mining operations. Both Cypress Creek and Little Cypress Creek have been 

channelized. Mining operations occur upstream from this system, causing some 

acid and sediment additions to the systems. Cypress Creek may act as a 

biological filter that reduces the effects of the upstream mining activity. 

Direct effects on the wetland have been through clearing for farmland and 

channelization of the streams. 

Water Quality - Water quality data were collected from the Cypress Creek 

area much the same as it was for Henderson Sloughs. Samples were taken from 

the central channel, Cypress Creek, and from adjacent still wetlands, 

particularly a shallow cypress swamp. Sampling also occurred during high and 

low flow periods. The primary interest was to gain knowledge of the 

cumulative water quality for the drainage basin and to demonstrate 

wetland-stream interrelationships. 
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Table 8 gives water quality for the Cypress Creek ares and Figure 10 shows 

sampling sites. Site 1 is located upstream on the western 11ain fork of Cypress 

Creek. Site 2, located on the eastern main fork, and site 1 comprise the 

headwater samples for the entire system. Site 3 is located approximately 7 km 

downstream from the confluence of the eastern and western branches. Site 3B is 

located in a shallow cypress swamp adjacent to stream site 3. These two sites 

are known to be connected during flooding. 

Turbidity values for Cypress Creek waters were normal throughout the 

sampling period with the exception of site 2 during the June flood. At this 

time waters of the east branch of Cypress Creek were particularly turbid. This 

may have been due to mining-related erosion or the urban influence of nearby 

Central City, Kentucky. Values for pH in Cypress Creek are surprisingly normal 

(6.3-7.4) despite the fact that other parameters suggest a lower pH. Surface 

mining effluents are probably neutralized upstream, resulting in higher pH 

readings. Water temperatures are in the expected range, elevated over the 

summer and lower in the fall. Dissolved oxygen seems to have reached peak 

values in September. Cypress Creek is unlike Henderson Sloughs, which had peak 

oxygen readings in July and showed lower values for September. 

Conductivity and sulfate values for Cypress Creek show significant 

effects by coal mining. Disturbed substrate and mine runoff upstream of sites 

1-3 probably caused increased values of these parameters in the stream water. 

Only at site 3B, which is less frequently affected by mine effluents, were the 

values near background levels in June and July. During September, water from 

the stream (site 3) flowed into the adjacent swamp (site 3B), increasing 

dramatically the levels of conductivity, dissolved oxygen, and sulfates in the 

wetlands. The wetland may be acting as a sink for certain mine wastes. 
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Table 8 

Water Quality of Selected Sites in Cypress Creek Wetlands 

Temper-
Site Date Time Turbidity pH ature Dis.02 Cond. 504• 
Number (EDT) (NW) ("C) (mg/1) (umhos) (mg/1) 

1 20 June 10.45 A.M. 1.0 6.5 22.5 6.7 2750 
24 July 9:30 A.M. 1.3 6.6 26.5 6.2 2500 620.5 
18 Sept. 6:00 P.M. 1.2 7.2 19.0 11.4 2900 853 

2 20 June 11 :45 A.M. 10.0 6.5 22.0 7.5 2400 
24 July 10:15 A.M. 0.45 6.9 27.5 8.3 4500 482 
18 Sept. 5:30 P.M. 4.45 7.4 18.4 10.0 330 7895 

3 20 June 12:15 P.M. 1.4 6.8 22.5 6.7 1700 000 
24 July 10:45 A.M. 0.85 6.9 26.8 5.1 2600 690 
18 Sept. 3:00 P .M. 0.45 7.1 17 .o 8.0 2200 809 

38 20 June 1:00 P.M. 0.5 6.3 23.5 3.1 880 
24 July 12:15 P.M. 2.7 7.4 24.5 2.2 490 13.1 
18 Sept. 4:00 P.M. 0.9 6.8 17 .5 7.1 2300 675.0 

Vegetation - The Cypress Creek wetland system is a mosaic of swamps and 

marshes lying along both Cypress Creek and Little Cypress Creek. Three 

representative sites were chosen for vegetation analysis. Cypress Creek Site 

1 is an extensive !II!!!! marsh along Cypress Creek and adjacent to Route 70. 

Sites 3A and 38 are located near the Route 81 bridge over Cypress Creek. Site 

3A is a riparian bottomland hardwood forest while Site 3B is an adjacent 

shallow cypress swamp. 

Cypress Creek Site 1 lies directly downstream from an active surface 

mine. The marsh is almost totally Typha latifolia with only a few scattered 

small trees. The trees present are Acer rubrum and Fraxinus pennsylvanica and 

are only 1 to 3 min height. Samples of !.!_ latifolia were harvested in July 

for biomass determination. The average standing crop of the five sample, was 

1060 grams dry weight per square meter. 
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The bottomland hardwood site 3A is part of a narrow band of riparian 

forest which follows most of Cypress and Little Cypress Creeks. The stream 

has been channelized through much of its length and, consequently, the 

restricted floodplain is frequently inundated for short periods. The forest 

floor is littered with large branches and fallen trees. Although the canopy 

is continuous, the forest is not dense with a total density of only 470 trees 

per hectare. 

The site is daninated by ~ rubrum, present at all points and with an 

importance value of 115.1 (Table 9). The remainder of the tree species are 

present at 30% or less of the transect points, thereby lessening their 

influence upon the community. However, individuals of Platanus occidentalis 

(sycamore) are large (mean dbh • 45 cm) which increases their relative 

daninance and creates an importance value of 53.5. Importance values of less 

than 30 were calculated for all other species. Other canopy constituents are 

Table 9 

Structure and Composition of Vegetation at Cypress Creek Site 3A 

Relative Relative Relative Importance 
Species Frequency Density Dominance Value 

Acer rubrum 33.3 42.5 39.3 115.1 
Platanus occidentalia 10.0 10.0 33.5 53.5 
Salix nigra 10.0 7.5 11.4 28.9 
Betula nigra 10.0 10.0 6.4 26.4 
Liquidambar styraciflua 10.0 10.0 2.7 22.7 
Fraxinus pennsylvanica 10.0 7.5 4.8 22.3 
Ulmus americana 6.7 5.0 0.5 12.2 
Carya cordiformis 3.3 2.5 0.6 6.4 
Fraxinus profunda 3.3 2.5 0.5 6.3 
Quercus palustris 3.3 2.5 0.4 6.2 

Total Density (trees/ha) • 470 
Total tree species• 10 
Simpson's D • 0 • 79 



Salix nigra (black willow), Betula nigra (river birch), and Liquidambar 

styraciflua (sweet gum). Principal understory trees are!• rubrum, Fraxinus 

pennsylvanica, !• profunda (pumpkin ash), and Ulmus americana. The tree 

cQIIIIIIIJllity is relatively diverse. Ten species of trees were recorded with 

Simpson's diversity index calculated at 0.79. The herbaceous layer is 

moderately developed. In descending abundance, the primary species in that 

layer are Commelina virginica (Virginia dayflower), Leersia oryzoides, Rhus 

radicans (poison ivy), and Lobelia cardinalis (cardinal flower). 
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Cypress Creek Site 3B is a shallow cypress swamp adjacent to the flood 

plain of the stream. All living trees in the plot are Taxodium distichum. 

There are small dead trees of Acer rubrum and Fraxinus profunda along the 

transect and a few living individuals scattered in other parts of the site. 

Although the density of bald cypress trees is 795 trees per hectare, no canopy 

is formed. The trees are generally small, with a mean dbh of 10.9 cm, and are 

clustered in small groups. Only one tree greater than 20 cm in diameter -s 

recorded (dbh • 47.2 cm) and 65% of the trees were less than 10 cm in diameter 

(Table 7). Cephalanthus occidentalis is the comDl>n understory constituent. 

The herbaceous layer is totally covered by Polygonum hydropiperiodes 

(smartweed) with occasional stands of Typha x glauca interspersed. The 

biomass of!.• hydropiperoides was estimated to be 460 grams dry weight per 

square meter in July. 

Clear Creek 

Mapping and Classification - Figure 19 illustrates the major wetlands 

and other land uses in our Clear Creek Study area. Major wetlands, primarily 

mixed emergent marshes, are found along the main stem of Clear Creek where 

flow is sluggish and slow. Frequently flooded bottomland hardwood forests are 

found in narrow bands along portions of the marshes. Active and abandoned 
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Figure 19. Wetland Map of Clear Creek Drainage Basin 
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coal mines dominate the southern half of the watershed while agricultural 

fields and upland forests are found in the northern third of the watershed. 
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Hydrology - The hydrology of this study site is dominated by the wide, 

slowly flowing Clear Creek. The major drainage pattern is shown in Figure 20. 

The creek flows into the Tradewater River, and water is often backed up in 

Clear Creek due to a very low gradient. Beaver dams have further contributed 

to flooding and sluggish flow in Clear Creek. Many tributaries to Clear Creek 

are channelized and drain agricultural and coal fields. 

Ecosystem Model - Energy flow through a wetland affected by coal mining 

is shown in a conceptual model of Clear Creek Swamp in western Kentucky in 

Figure 21. The main autotrophic comllllll1ities found in the Clear Creek system 

are a sweet gum COIDllllll1ity, birch/ash thicket, open water, and cattail marsh. 

The sweet gum commtmities are dominated by mature, monospecific stands of 

Liquidambar styraciflua (sweet gum). There are three associations within the 

birch/ash thicket community. One association is predominantly Betula nigra 

( river birch) and !£!!_ rubrum ( red maple). The second association is 

characterized by Fraxinus pennsylvanica (green ash) and!£!!_ rubrum. The 

third distinct association is composed of Liquidambar styraciflua and Acer 

rubrum. Open water areas are edged by the sedges Eleocharis quadrangulata 

(spike rush) and Rhynchospora corniculata. The dominant species of cattail 

found in the marsh areas is Typha latifolia. 

The main forcing ftmctions acting on the system are water flow (including 

nutrients) and stmlight. Mining, drainage management, and logging activities 

are the major impacts on the system. Mining can be divided into three types 

of impact: sedimentation, acid mine drainage, and destruction of the 

ecosystem by strip mining. 
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Figure 20. Stream Map of Clear Creek Drainage Basin. Scale is same as Figure 19. 
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Upstream land use changes also affect the flow of water and 1D1trients 

through the Clear Creek system. Inflow of water, which controls the water 

level of the wetland, affects the proportion of the system thst makes up the 

various comanmities. This control is indicated in the diagram with a 

switching function. A successional change due to water level change is 

important in the flow of energy through the system. A storage of dead trees 

is shown in both the sweet gum and birch/ash comanmities due to the longevity 

of dead standing timber after water levels rise and kill the trees. 

Water Quality - Water quality data were collected at three stream sites 

along Clear Creek swamp. These samples are thought to be sufficient in number 

since the entire area demonstrates little variability, being a patchy habitat 

throughout. This greatly contrasts with both Cypress Creek and Henderson 

Sloughs which have several definable wetland tyl"'s distributed along a central 

channel. 

Table 10 gives water quality data and Figure 11 shows the location of 

sampling sites. Site 1 is located upstream, site 2 is at midstream and site 3 

is the downstream sampling point; all are within the central channel. No 

still swamp or marsh areas were sampled in this study area due to the 

unusually uniform structure of this system. 

Turbidity data for the Clear Creek watershed present no unusual or 

unexpected values. Levels tend to increase slightly downstream. Values for 

pH indicate the severity of impact from surface mining in the Clear Creek 

basin. Values as low as 3.6 were recorded at site 1, rendering it sterile and 

uninhabitable to most aquatic organisms. Downstream, however, pH values seem 

to moderate but are slightly below optimal conditions. 

Water temperatures were high over the summer (26-27oC) and began to drop 

by September. Open areas, such as sites 2 and 3, tended to exhibit higher 
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Table 10 

Water Quality for Selected Sites in Clear Creek Swamp 

Temper-
Site Date Time Turbidity pH ature Dis.02 Cond. S04• 
Number (EDT) (NTU) (OC) (mg/1) (umhos) (mg/1) 

1 19 June 4:20 P.K. 3.5 3.9 23.0 7.5 2100 
23 July 1:45 P.K. 0.4 3.8 25.0 5.1 2500 635 
19 Sept. 5:15 P.K. 0.3 3.6 17.3 6.0 3000 926 

2 19 June 5:00 P.K. 0.6 6.4 25.0 6.5 2600 
24 July 10:30 A.K. 2.2 5.3 26.0 6.2 2800 578.5 
19 Sept. 4:45 P.K. 2.05 6.5 20 •. 3 9.3 3500 666 

3 19 June 5:45 P .K. 4.75 6.2 23.5 3.4 440 
24 July 1:00 P .K. 1.0 4.5 27.0 4.1 llOO 569 
19 Sept. 5:50 P.K. 3.35 6.2 20.2 7.9 1400 612.5 

reading than did site 1 which was shaded. Dissolved oxygen readings showed 

some fluctuation over the sampling period. The overall tendency was toward a 

peak in late swmner. 

Conductivity and sulfate values for Clear Creek exhibit the same severe 

influence of surface mining as did Cypress Creek. Extremely high conductivity 

and sulfate readings were recorded for all sites throughout the sampling 

period. Both parameters decreased slightly at site 3. During the June high 

water conditiona, conductivity at site 3 was greatly moderated due to the 

diluting effect of flood waters. 

Vegetation - Two sites of the Clear Creek wetland system were surveyed 

for vegetation. Clear Creek Site 2 is a frequently inundated bottomland 

hardwood forest located on the floodplain near Watson Bridge on Route 502. 

Clear Creek Site 3 is a permanently inundated mixed aquatic macrophyte 

can1DUDity located downstream of site 2 south of the junction of Routes 1034 

and 109. 
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An Acer rubrum-Liquidambar styraciflua (red maple-sweet gum) community 

dominates the floodplain of the middle portion of Clear Creek (Site 2). ~ 

rubrum, present at all transect points, and Liquidambar styraciflua, present at 

80% of the points, are dominants of the canopy with a composite importance 

value of 245.7 (Table 11). Canopy species of much lesser importance are Betula 

nigra (river birch), Nyssa sylvatica (black gum), and Ulmus americana (American 

elm). Understory components (treea <4.0 cm dbh) are saplings of Acer rubrum 

and Ul11t1s americana. Along the stream border, lihich is represented by points 

at each end of the transect, Betula nigra increases in importance, often 

producing thickets of young trees. 

Table 11 

Composition and Structure of Vegetation in Clear Creek Site 2 

Relative 
Species Frequency 

Acer rubrum 
Liquidambar styraciflua 
Betula nigra 
Nyssa sylvatica 
Ulmus americana 

Total density (trees/ha) • 850 
Total tree species• 5 
Simpson's D • 0.62 

40 
32 
16 
8 
4 

Relative Relative Importance 
Density Dominance Value 

57.5 51.2 148.7 
22.5 42.5 97.0 
12.5 4.8 33.3 
5.0 1.2 14.2 
2.5 0.3 6.8 

Site 2 is frequently inundated. On sampling visits of June 19 and 

September 19, the site was covered by over 40 cm of water. On the sampling 

visit of July 24, the site was not inundated; however, the wster level was very 

near the surface. Due to the extremely wet conditions and frequent floods, 

very few herbaceous species are present. Only sparsely distributed 

individuals of Pilea pumila (clearweed), Rhus radicans (poison ivy), and Carex 
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.!R.!. (sedge) were found on the July visit. Very few seedlings were noted at 

the site, also probably due to the frequent floods. The site, as a whole, is 

generally open, with a total density of approximately 850 trees/hectare. The 

litter layer is discontinuous due to the flushing of the floods. Deposits of 

ferric hydroxide are apparent throughout, especially where there are pools of 

standing water. The site also exhibits low diversity (D • 0.62) and low tree 

density cClllpared with other bottomland hardwood sites. 

Site 3 is a predaninantly open body of water with a mosaic of 

monoapecific beds of aquatic macropbytes scattered in shallow area. One of 

the dominant species in the area is Saururus cernuus (Lizard tail). The 

stands of S. cernuus are dense, with the plant spreading by means of rhizomes. 

Another important species at this site and in other parts of the wetland is 

Typha latifolia (common cattail). As another species which propagates 

vegetatively, it also occurs in nearly llK)nospecific stands. Other species 

occupying less area at the site are Dulichium arundinaceum (three-way sedge) 

and Eleocharis quadrangulata (spike rush). Submersed in deeper water were 

occasional mats of Sphagnum.!P_• No estimation of areal cover of the 

vegetation at Site 3 was determined. 

Biomass of herbaceous vegetation was determined for samples harvested in 

July. The dry weight of multiple samples per species was averaged and 

reported as mean dry weight in grams/square meter. Table 12 shows that TyPha 

latifolia had the greatest standing crop with Saururus cernuus next in 

biomass. A great portion of the dry weight of these species was due to the 

large underground parts. 
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Table 12 

Biomass of Aquatic Macrophytes st Clear Creek Site 3 

Species No. of samples Mean dry wt. (g/m2) 

~ lstifolis 2 940 
rus cernuus 3 785 

Dulichium srundinaceum. 2 610 
Eleocbaris guadrangulsts 2 400 

Wetland Simulation Model 

At this point in the research, s simulation 1110del was constructed and 

examined. The 1110del, which is shown in Figure 22, encompasses only the 

aquatic portion of the wetland ecosystems. The compartments in this model are 

primary producers (PP), zooplsnkton (Z), fish (F), benthic invertebrates (BI), 

and detritus (D). Storages in the model are in kcal m-2, while flows are in 

kcal m-2 y-1. Energy sources to the system are light energy (S) for 

photosynthesis and allochthonous organic material (A) from the watershed, from 

the terrestrial canponent of the wetland, and fran upstream. As with many 

shallow, aquatic ecosystems, the detrital food chain is regarded as being 

daninant over the grazing food chain. Acid mine drainage (AMD) is included as 

a controlling factor in the model; its influence is shown as lines to 

workgates on various energy flows. Effects of acid mine drainage are 

represented as increasing the stress on organisms through increased 

respiration, increased mortality, and decreased photosynthesis. Also, acid 

mine drainage is represented as causing a shift to a more detrital-based 

system; this shift is accomplished by increasing rates of detrital-feeding and 

decreasing rates of primary productivity. Such phenomena occur because of 

changes in species and detrital compositions due to increased acidity. 
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Figure 22. Simulation Model of Aquatic Portion of Wetland Ecosystem l.n 
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In its present state, the model is linear and donor-controlled, 

indicating that fluxes between compartments are directly proportional to the 

size of the donor compartment. A more sophisticated and realistic model would 

have more complicated formulations. Values have been taken largely from the 

literature (Jorgensen, 1979; E.P. Odum, 1971) and represent 'within the 

ballpark' estimates. Initial conditions and rate parameters are shown in Table 

13. As research progresses, data from field studies will be used to calibrate 

the model. Simulations were done in D?NAMO (Forrester, 1961; Pugh, 1970) and 

C!MP (IBM, 1968). 

Table 13 

Value of Initial Conditions and Coefficients in 
Aquatic Ecosystem Simulation Model 

Initial Conditions 

pp energy standing stock of primary producers 
z energy standing stock of zooplankton 
BI energy standing stock of benthic invertebrates 
F energy standing stock of fish 
D energy standing stock of detritus 

Coefficients 

SPP 
PBI 

PF 
PZ 
RPPR 
s 
A 
DZR 
ZF 
RZR 
BIF 
DFR 
RFR 
DBIR 
RBIR 
AD 

RD 

efficienty of light utilization 
grazing of primary producers by benthic 

invertebrates 
grazing of primary producers by fish 
grazing of primary producers by zooplankton 
respiration of primary producers 
input of light 
input of allochthonous organic matter 
eating of detritus by zooplankton 
eating of zooplankton by fish 
respiration of zooplankton 
eating of benthic invertebrates by fish 
eating of detritus by fish 
respiration of fish 
eating of detritus by benthic invertebrates 
respiration of benthic invertebrates 
conversion of allochthonous material into 

detritus 
respiration of detritus (with de~omposers) 

2000 kcal 
500 " 
500 
600 

3000 

0.1 y-1 
0.1" 

0.1 .. 
0.1 " 
o.s " 

m-2 

20000 kcal m-2 y-1 
30000 

0.1 y-1 
0.1" 
0.5" 
0.1 " 
0.1" 
0.5" 
0.1" 
0.5" 
0.5" 

0.5 .. 
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The effects of acid mine drainage are incorporated as factors (e.g., 

AMD • 0.75, 0.50, 0.25 and 0.0) that are multiplied by the affected energy 

flows. Esch value of AMD represents a different level of effect; for example, 

when AMD • 1.0 there is no effect, and when the AMD factor is 0.0, the flow is 

completely strut off. 

As the model presently exists, it is a hypothesis about the way that a 

general aquatic ecosystem operates; therefore, it should mimic the behavior of 

the aquatic portions of the study sites. Several experiments have been done 

by varying the way acid mine drainage affects the model. Effects of various 

levels of AMD on prillary producers, detritus, zooplankton, benthic 

invertebrates, and fish are shown in Figure 23 a-d. The curves for AMD • 1.0 

depict the normal simulation when no impact has occurred. Steady state values 

for various compartments are attained in 10-20 years. As the effects of acid 

mine drainage increase, primary producers decrease while detritus, 

zooplankton, benthic invertebrates, and fish increase. This phenomenon 

represents the shift towards a more detrital-based food web due to increased 

stress on the system. Steady state is reattained in 10 years. 

A sensitivity analysis has been done by individually increasing various 

inputs and parameters 10% and assessing the effect on state variables. 

Results of these analyses are shown in Table 14 for different levels of acid 

mine drainage. Increasing solar input 10% has the greatest effect on primary 

producers and has no effect on detritus. On the other hand, increasing the 

input of allochthonous materials has the greatest effect on detritus but 

causes no change in primary producers. When there is no acid mine drainage 

(AMD • 1.0), the solar input causes larger changes than when there is acid 

mine drainage effect (AMD • 0.5). Conversely, changing allochthonous inputs 

causes greater changes when there is an acid mine drainage effect. These 

results reflect the shift to a detrital-based food web when impacted by acid. 
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Figure 23. Simulation Results for Model for a) Primary Producers, b) Detritus, 
c) Benthic Invertebrates, Zooplankton, d) fish. AMD is acid mine drainage with 
AMD = l.p for no effect and AMD m 0.0 for complete effect. 

------------ ----------- --- -·-----------



Table 14 

Sensitivity(% change) of Energy Standing Stocks to 10% Increase 
in Inputs of Light and Allochthonous Organic Matter 

AMO• 1.0 
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Standing stocks 
(kcal m-2) 

% Changes Due To 
Increasing Light 

% Changes Due to Increasing 
Allochthonous Organic Matter 

PP (Primary producers) 
Z (Zooplanl<ton) 
F (Fish) 
BI (Benthic Invertebrates) 
D (Detritus) 

10.0 
3.9 
4.0 
3.9 
o.o 

AMD• 0.5 

Standing stocks 
(kcal m-2) 

% Changes Due To 
Increasing Light 

pp 
z 
F 
BI 
D 

10.1 
1.8 
1.7 
1.8 
o.o 

0 
6.0 
6.0 
6.0 

10.0 

% Changes Due to Increasing 
Allochthonous Organic Matter 

0 
8.4 
8.3 
8.4 

10.0 

Five rate coefficients have also been increased 10% at two levels of acid 

mine drainage (AMO• 1, AMD • 0.75) in Table 15. These coefficients are 

DBIR (energy conversion efficiency from detritus to invertebrates), RPPR (rate 

of energy loss from primary production), SPP (photosynthetic efficiency of 

primary producers), RFR (rate of energy loss from fish), and AD (rate of energy 

storage in detritus from allochthonous materials). Results of these analyses 

are shown in Table 15. Increasing the parameters which control energy input to 

the system (AD, SPP) causes the largest changes in state variables. An 

increase in AD and SPP causes positive increases (or no change) in all 



Table 15 

Sensitivity (% change) of Energy Standing Stocks to 10% Increase in 
Selected Coefficients of Transfer Between Compartments 

AMD • 1.0 

Coefficient Description % Changes in Standing Stocks 
(y-1) of Coefficient 

pp z F BI D 

DBIR eating of detritus o.o -1.0 o.o 5.2 1.2 
by benthic invertebrates 

RPPR respiration of primary -5,9 -2.4 -2,4 -2.4 o.o 
producers 

SPP efficiency of light utili- 10.0 3.9 4.0 3.9 o.o 
zation by primary producers 

RFR respiration of fish o.o o.o -9.1 o.o o.o 
AD conversion of allochthonous o.o 6.0 6,0 6.0 10.0 

material into detritus 

AMD • 0.75 

Coefficient Description % Changes in Standing Stocks 
(y-1) of Coefficient 

pp z F BI D 

DBIR eating of detritus o.o -1.0 -0.2 4.9 -1.1 
by benthic invertebrates 

RPPR respiration of primary -5.0 -1.5 -1.4 -1.5 o.o 
producers 

SPP efficiency of light utili- 9.7 2,7 2.7 2.7 o.o 
zation by primary producers 

RFR respiration of fish o.o o.o -7.4 o.o o.o 
AD conversion of allochthonous o.o 7.2 7.2 7.2 10.0 

material into detritus 
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compartments. An increase in RPPR and RFR causes a decrease (or no change) in 

all compartments, whereas an increase in DBIR causes an increase in BI and 

decrease in Z, D, and F. Acid mine drainage decreases the sensitivity of the 

model to changes in all parameters except for changes in detrital 

availability. The model is more sensitive to changes in detrital availability 

in the model affected by acid drainage. 

Two switches were added to the model to approximate a realistic situation 

management. The scenario is as follows: an undisturbed wetland at steady 

state is impacted by acid mine drainage at year 5. At year 10, the inflow of 

allochthonous materials increases 10% due to upstream mortality and increased 

runoff. At year 15, a management program is implemented and acid mine 

drainage is diverted or treated. The simulations of this model to 50 years 

are shown in Figures 24a and 24b. Only the simulations where AMD • 0.75 and O 

are shown since all other simulations are similar and between these two. At 

year 5, primary production begins to decrease immediately with the consumer 

levels falling after a short delay. The consumers do not decrease as much as 

might be expected due to an increase in detritus at year 10. Recovery begins 

at year 15 with an initial sharp increase and a slower recovery after year 20. 

The simulated system returns to steady state by the fiftieth year. 

A similar model to the ones described above was constructed and simulated 

on an Apple II computer. Again, the model was largely linear and donor 

controlled, with the same compartments as in Figure 23. The Apple computer 

offers the advantage of graphically displaying results on a color TV. One can 

therefore set up various impact and management scenarios which can be quickly 

computed and visualized. An additional advantage is that the Apple II 

canputer can be carried easily and can be set up for demonstration purposes. 

It therefore can be used as a valuable tool for educating wetland managers and. 
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Figure 24. Simulation of model .for acid mine drainage at year 5, increase 
in allochthonous organic matter input at year 10, and treatment of acid 
mine drainage at year 15. a} for AMD=0.75, b} for AMD=O.O. 
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public audiences. Results of manipulating a wetland can be assessed in a few 

minutes rather than waiting to see what happens in the real world. Ecosystem 

succession that often occurs in decades in reality can be simulated in seconds 

on such a computer. Such technology is inexpensive and relatively 

accessible to many agencies, It can easily be adapted for management 

purposes, 

The Hierarchical Approach and Wetland Management 

Management techniques and evaluation procedures are being developed that 

. will correspond to the levels of organization identified in our hierarchical 

. model (Figure 3), Careful coordination of these techniques is required in 

order to achieve a har111<>nious balance between natural and human needs. 

Regional - At the regional level, which encompasses the entire western 

coal field, impacts involve the destruction or creation of wetlands through 

human activities. Managing the coal region should involve control of such 

variables as number, location, areal extent, and types of wetlands in the 

region, Certain wetland types are valuable components of the regional 

landscape because of recreational use, wildlife production, flood protection, 

water quality control, and lumbering, Other wetland types may contribute 

little to environmental quality of the region, Values of various wetland 

types must be assessed before their management can be accomplished. A number 

of techniques have been developed for evaluating wetlands (Wharton, 1970; 

Gosselink ll al,, 1974; Mitsch ll al,, 1979b; Schamberg et al,, 1980), These 

methods will be adopted or new techniques will be developed in order to 

properly assess the western Kentucky wetlands, The values of different wetland 

types can be incorporated into a scheme which examines the entire mosaic of 

ecosystem types in the region. Even if a particular wetland type is valuable 

in terms of wildlife production, an excess of such acreage can lower its value 
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by adversely affecting the development of other land uses. Maintenance of an 

optimal acreage and distribution of each wetland type is a useful goal to be 

pursued at this level of organization. Maps of the wetlands and conceptual 

models such as shown in Figure 4 will be useful for generating such management 

strategies. 

As with other biological phenomena, value with respect to the amount of 

total acreage of a particular wetland type in a region can best be described 

' 
with a hump-backed curve (Figure 25). The value of a wetland · type tends to 

increase with total acreage until an optimum is reached and then the value 

tends to decrease. An area which is too small provides suboptimal conditions 

for maintenance of wildlife diversity and production, recreation, and timber 

production (Odum, 1973; Smith, 1980). On the other hand, if the total area is 

too large, that wetland category competes with other useful land categories. 

Each land use type can be represented by a similar Value/Total Acreage curve. 

A strategy of management at the regional level would be to obtain an optimal 

mosaic of all land types, including various wetland categories. A curve which 

describes the value of a wetland category with a broad peak would be desirable 

in order to maximize flexibility in decision-making and to accommodate the 

diverse opinions of interest groups. An assessment of the wetland value in 

terms of desired acreage would be useful and should involve various government 

agencies, coal companies, researchers, and community leaders. 

Wetland ReclSllllltion - Another management strategy which can be pursued at 

the regional level is to reclaim wetlands from mined areas. Wetlands tend to 

develop in any location where a depression has been created in the ground and 

where water can accumulate. Indeed, many wetlands in the western Kentucky 

coal fields were originally established by man's activities in mining, highway 

construction, and water control. By applying simple reclamation techniques to 
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TOTAL AREA 

Figure 25. Possible relationship between wetland value and total area of wetlands 
to region. 
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mined lands, wetlands csn be generated in an effective and economical fashion. 

Such techniques would include the establishment of depressions and holding 

ponds introduction of wetland species, modification of drainage patterns 

through channelization and levee construction, and maintenance of 

wetland/upland ecotones. These techniques would probably be more economical 

than traditional techniques of restoring the land to original contours and 

revegetating with a few species. A diverse mosaic of reclaimed ecosystem types 

would be more stable and more valuable than the undiverse ecosystems created 

by present reclamation techniques. 

Watersheds - Management techniques at the watershed level involve the 

modification of runoff from surrounding lands and mined areas, of rivers 

associated with wetlands, and of water levels and water flow rates in the 

wetlands. Runoff from the surrounding watershed is a major source of water, 

nutrients, sediments, and organic materials for many wetlands. The magnitude 

of these sources affects productivity and diversity in aquatic situations. 

Sediments, for example, increase turbidity and abrasion and can thereby 

decrease primary and secondary production. Nutrients, on the other hand, tend 

to increase production and successional rates but decrease the diversity of 

species. Impacts of coal mining, lumbering, and highway construction are 

varied and include changes in sediment load and type, elemental 

concentrations, water level and water flow characteristics. Acid mine 

drainage, a common problem in mining areas, has deleterious effects on many 

organisms and processes in wetlands. Many of these effects can be reduced by 

diverting water to holding ponds where it can be held while sedimentation and 

biotic processes reduce the sediment load and harmful elemental 

concentrations. Such techniques are important if the potentially affected 

wetland is a valuable wildlife management area which is sensitive to this 
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impact. However, rather than diverting "Nater from wetlands, some wetlands can 

be used and maintained as interface ecosystems between man and other aquatic 

ecosystems in order to improve water quality before it goes further downstream 

(Mitsch, 1977). Wetlands tend to slow water movement, reduce sediment load, 

take up nutrients, and in other ways reduce the magnitude of effects that are 

transmitted through hydrological processes. The location of wetlands in 

relation to disturbed areas is important in considering their use in this 

regard. Again, evaluation of wetlands must be made in order to assess which 

wetland should be protected from particular impacts and which ones should be 

used to buffer impact. 

Ecosystems - At the ecosystem level, the various impacts affect flows 

between ecosystem components. Certain components of a wetland ecosystem are 

more tolerant to such impacts than others. Organisms which are sensitive may 

be eliminated or substantially reduced, while others may become more abundant 

because of increased nutrients, reduced competition, or reduced predation. 

The sensitivities of various wetland components and processes must be assessed 

in order to make decisions about the management of wetlands at this level. 

Those organisms which are most sensitive and valuable should be protected, 

while those which are insensitive and invaluable may not need protection. 

Wetlands which are insensitive to impacts can be established and located in 

order to buffer the impact of activities. To an extent, many of these wetlands 

are self-designing and require little management; however, plants and animals 

can be introduced which tolerate the modified conditions in impacted marshes. 

Typha, the cattail, and other aqua tic plants can be introduced successfully 

into a wetland. Other reclamation techniques which should encourage 

colonization of organisms are the addition of treated sewage wastewater and 

fertilizers or lime to wetlands and other reclaimed areas or the creation of 



corridors through which immigrating organisms can pass. Addition of sewage 

materials would stimulate productivity, alter successional rates, and 

indirectly reduce effects of acid mine drainage; it would also provide a use 

for some of the municipal wastes that are accumulating in Kentucky's cities. 

Sewage recycling with wetlands has already been successfully demonstrated in 

Florida (Odum et al., 1977; Deghi .!!. al., 1980) and Michigan (Kadlec.!!. al., 

1977). 

72 

Management strategies should also include pathways and rates of 

succession in wetlands. Ecosystems are not static objects but will eventually 

change into another ecosystem type through successional processes. By 

identifying the successional sequences and the factors affecting them, 

management strategies can be adopted which accelerate, or set back, 

successional states in order to 111&intain the most valuable types of habitat 

and species composition. 
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