

[Entomology Faculty Publications](https://uknowledge.uky.edu/entomology_facpub?utm_source=uknowledge.uky.edu%2Fentomology_facpub%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages) [Entomology](https://uknowledge.uky.edu/entomology?utm_source=uknowledge.uky.edu%2Fentomology_facpub%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages)

2-9-2018

Reference Gene Selection for RT-qPCR Analysis in *Harmonia axyridis*, a Global Invasive Lady Beetle

Xiaowei Yang *University of Kentucky*, xiaowei.yang@uky.edu

Huipeng Pan *University of Kentucky*, huipengpan@uky.edu

Ling Yuan *University of Kentucky*, lyuan3@uky.edu

Xuguo Zhou *University of Kentucky*, xuguozhou@uky.edu

[Right click to open a feedback form in a new tab to let us know how this document benefits you.](https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7)

Follow this and additional works at: [https://uknowledge.uky.edu/entomology_facpub](https://uknowledge.uky.edu/entomology_facpub?utm_source=uknowledge.uky.edu%2Fentomology_facpub%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages) Part of the [Entomology Commons,](http://network.bepress.com/hgg/discipline/83?utm_source=uknowledge.uky.edu%2Fentomology_facpub%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages) and the [Genetics and Genomics Commons](http://network.bepress.com/hgg/discipline/27?utm_source=uknowledge.uky.edu%2Fentomology_facpub%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages)

Repository Citation

Yang, Xiaowei; Pan, Huipeng; Yuan, Ling; and Zhou, Xuguo, "Reference Gene Selection for RT-qPCR Analysis in *Harmonia axyridis*, a Global Invasive Lady Beetle" (2018). *Entomology Faculty Publications*. 158. [https://uknowledge.uky.edu/entomology_facpub/158](https://uknowledge.uky.edu/entomology_facpub/158?utm_source=uknowledge.uky.edu%2Fentomology_facpub%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Article is brought to you for free and open access by the Entomology at UKnowledge. It has been accepted for inclusion in Entomology Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [UKnowledge@lsv.uky.edu.](mailto:UKnowledge@lsv.uky.edu)

Reference Gene Selection for RT-qPCR Analysis in *Harmonia axyridis***, a Global Invasive Lady Beetle**

Notes/Citation Information

Published in *Scientific Reports*, v. 8, article no. 2689, p. 1-10.

© The Author(s) 2018

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit [http://creativecommons.org/licenses/by/4.0/.](https://creativecommons.org/licenses/by/4.0/)

Digital Object Identifier (DOI)

https://doi.org/10.1038/s41598-018-20612-w

SCIENTIFIC REPERTS

Received: 25 October 2017 Accepted: 11 January 2018 Published online: 09 February 2018

OPEN Reference gene selection for RT**qPCR analysis in** *Harmonia axyridis***, a global invasive lady beetle**

Xiaowei Yang1,2, Huipeng Pan1,3, Ling Yuan⁴ & Xuguo Zhou ¹

Harmonia axyridis **is a voracious predator, a biological control agent, and one of the world most invasive insect species. The advent of next-generation sequencing platforms has propelled entomological research into the genomics and post-genomics era. Real-time quantitative PCR (RT-qPCR), a primary tool for gene expression analysis, is a core technique governs the genomic research. The selection of internal reference genes, however, can signifcantly impact the interpretation of RT-qPCR results. The overall goal of this study is to identify the reference genes in the highly invasive** *H. axyridis***. Our central hypothesis is that the suitable reference genes for RT-qPCR analysis can be selected from housekeeping genes. To test this hypothesis, the stability of nine housekeeping genes, including 18***S, 28S, ACTB, ATP1A1, GAPDH, HSP70, HSP90, RP49***, and** *ATP6V1A***, were investigated under both biotic (developmental time, tissue and sex), and abiotic (temperature, photoperiod,** *in vivo* **RNAi) conditions. Gene expression profles were analyzed by** *geNorm, Normfnder, BestKeeper***, and the ΔCt method. Our combined results recommend a specifc set of reference genes for each experimental condition. With the recent infux of genomic information for** *H. axyridis***, this study lays the foundation for an in-depth omics dissection of biological invasion in this emerging model.**

The multicolored Asian lady beetle, *Harmonia axyridis* (Coleoptera: Coccinellidae), a generalist predator, preys on aphids and scale insects on crops and other plants¹. *Harmonia axyridis* is native to central and eastern Asian. To exploit its ecosystem services, numerous releases were attempted in North America and Europe, as early as 191[62](#page-9-1),[3](#page-9-2) . Due to its broad range of preys and incredible consumption rate, *H. axyridis* indeed has been used to control aphids^{4-[6](#page-9-4)} and other sap-sucking arthropod pests^{7[,8](#page-9-6)}. However, the worldwide propagation of *H. axyridis* threatens the indigenous lady beetles and other non-target species^{9–11}. Considered as "the most invasive ladybird on Earth", the role of *H. axyridis* has shifted from a global biological control agent to an invasive alien species¹². Multiple factors contribute to this transition. Predation of eggs and larvae of other lady beetle species is one of the reasons which leads to the decline of native species^{13[,14](#page-10-3)}. A higher level of resistance to infection is the other major reason to benefit its competition in the field^{[15](#page-10-4)-17}. The molecular basis of this resistance, however, is poorly understood.

Double-stranded RNA (dsRNA) can induce sequence-specifc posttranscriptional gene silencing in many organisms, i.e., RNA interference (RNAi)[18,](#page-10-6)[19.](#page-10-7) RNAi can not only investigate gene functions *in vivo* or *in vitro*, but also offers a novel approach with a brand new mode-of-action to control arthropod pests^{[20](#page-10-8)[–24](#page-10-9)}. With a recent infux of genomic information for *H. axyridis*, there is an increasing need for the development of genetic tools to functionally interpret the sequencing data^{20,24-[26](#page-10-10)}.

Real-time quantitative PCR (RT-qPCR) has been used primarily for gene expression quantification^{[27–](#page-10-11)29}. RT-qPCR analysis is highly sensitive, and its accuracy can be affected by RNA quantity, transcription efficiency, amplification efficiency and experimental procedures between samples. To avoid biases, normalization of gene expression is an essential step^{[30](#page-10-13)}. The most common practice is to compare a target gene expression with an internal reference gen[e31](#page-10-14). Housekeeping genes, such as *beta-actin* (*ACTB*), *glyceraldehyde-3-phosphate dehydrogenase* (*GAPDH*), and *translation elongation factor 1-alpha* (*EF1A*[\)32](#page-10-15)[,33](#page-10-16) have been used extensively for RT-qPCR analysis.

¹Department of Entomology, University of Kentucky, Lexington, KY, 40546, USA. ²Department of Entomology, Cornell University, Geneva, NY, 14456, USA. ³Department of Entomology, South China Agricultural University, Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Guangzhou, China. ⁴Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA. Xiaowei Yang and Huipeng Pan contributed equally to this work. Correspondence and requests for materials should be addressed to X.Z. (email: xuguozhou@uky.edu)

Table 1. Primer sequence, amplicon length and RT-qPCR analysis of candidate reference genes and a target gene.

However, under any given experimental condition, the expression of these commonly used reference genes may vary substantially^{34-[37](#page-10-18)}. A systematic and customized study for each tested species is recommended for identifying appropriate reference genes $38,39$ $38,39$ $38,39$.

The overall goal of this study is to identify candidate reference genes in the highly invasive *H. axyridis*. Our objective is to determine the suitable reference genes for RT-qPCR analysis in *H. axyridis* from selected housekeeping genes, an array of constitutively expressed genes maintaining the basic cellular functions in an organism. We evaluated the stability of nine housekeeping genes under selected biotic and abiotic conditions, respectively. Te candidate genes include *18S ribosomal RNA*(*18S*), *28S ribosomal RNA* (*28S*), *Na*+*/K*+-*ATPase subunit alpha 1* (*ATP1A1*), *heat shock protein 70* (*HSP70*), *heat shock protein 90* (*HSP90*), *ribosomal protein 49* (*RP49*), *V-ATPase subunit A* (*ATP6V1A*), *ACTB* and *GAPDH* from *H. axyridis*. All these housekeeping genes have been used empirically as the reference genes for RT-qPCR analyses in other organisms, especially in insects. The specifc environmental conditions range from biotic (developmental stage, tissue type, and sex) to abiotic treatments (temperature, photoperiod, and *in vivo* RNAi). As a result, a specifc set of reference genes is recommended for each given condition.

Results

RT-qPCR analysis. For each candidate reference gene, a single amplicon was produced, as detected by agarose gel electrophoresis analysis and the melting curve analysis. Nonspecifc bands were not found, and a single peak was observed in the melting curve analysis. A standard curve was generated for each gene, using a fve-fold serial dilution of the pooled cDNA. Efficiency of RT-qPCR ranged between 90 and 110% (Table [1\)](#page-3-0), which is con-sidered standard^{[40](#page-10-21)}. Ct values of the nine candidate reference genes ranged from 8 to 27, covering all the experimental conditions (Fig. [1](#page-4-0)). While the vast majority of Ct values were found between 17 and 26, *18S* was the most abundant transcript. *ATP1A1*, *VATP6V1A*, and *RP49* were the least abundant candidate reference genes.

Stability of candidate reference genes under biotic conditions. For diferent developmental stages, geNorm ranked the stability from high to low as 18S=HSP70, 28S, ATP6V1A, ATP1A1, ACTB, HSP90, GAPDH, and RP49. Normfnder provided a ranking as 18S, HSP70, ATP6V1A, 28S, ATP1A1, ACTB, HSP90, GAPDH, and RP49. Bestkeeper ofered a list as follows: 18S, HSP70, 28S, ATP1A1, GAPDH, HSP90, ACTB, ATP6V1A, and RP49 (Table [2\)](#page-5-0). The best set of reference genes was recommended in Table [2.](#page-5-0) Integrating the results from all four programs, RefFinder identifed the consensus top three candidates, 18S, HSP70 and 28S, across diferent developmental stages. 18S was the most stable gene, while RP49 was the least stable candidate (Table [2,](#page-5-0) Fig. [2A\)](#page-6-0).

For diferent tissues, the consensus top three candidates were *28S, 18S* and *RP49* according to *RefFinder* (Table [2,](#page-5-0) Fig. [2B](#page-6-0)). Specifcally, *28S* and *ATP6V1A* were the most and the least stable genes, respectively. For diferent sexes, the top three most stable candidates in both sexes were *HSP90*, *RP40*, and *HSP70* according to *RefFinder* (Table [2,](#page-5-0) Fig. [2C](#page-6-0)). *HSP90* and *ATP1A1* were the most and the least stable genes, respectively. Based on

Figure 1. Ct value of candidate reference genes in *H. axyridis*. The Ct values of candidate reference genes in all tested samples were documented. The dot indicates the maximum or minimum value of replicated samples, while whiskers indicate the standard error of the mean.

the comprehensive ranking of *RefFinder*, the most to the least stable candidate reference genes under the biotic conditions was: *18S, 28S, ATP1A1, ACTB, HSP70, ATP6V1A, GAPDH, RP49*, and *HSP90* (Table [2;](#page-5-0) Fig. [2D\)](#page-6-0).

Stability of candidate reference genes under abiotic conditions. According to *RefFinder*, the consensus top three candidate reference genes under diferent temperature regime were *18S*, *28S* and *GAPDH* (Table [3](#page-7-0), Fig. [2E\)](#page-6-0). Specifcally, *18S* and *ATP6V1A* was the most and least stable candidate, respectively. For diferent photoperiods, the top three candidates were *18S, 28S* and *HSP90* (Table [3](#page-7-0), Fig. [2F](#page-6-0)), in which *18S* and *RP49* was the most and the least stable candidates, respectively. For *in vivo* RNAi experiments, the top three candidates were *RP49*, *ATP1A1*, and *28S* (Table [3](#page-7-0), Fig. [2G\)](#page-6-0), in which *RP49* and *HSP90* was the most and the least stable candidates, respectively. Based on the comprehensive ranking of *RefFinder*, the most to the least stable candidate reference genes under the abiotic conditions was: *18S*, *28S*, *GAPDH*, *HSP90*, *ATP6V1A*, *ACTB*, *ATP1A1*, *HSP70*, and *RP49* (Table [3](#page-7-0); Fig. [2H\)](#page-6-0).

Recommended reference genes. For repeatable and consistent results, multiple normalizers (>2 reference genes) are required for RT-qPCR analysis. GeNorm analysis evaluated all pairwise variations under each experimental conditions (Fig. [3](#page-7-1)). According to Vandesompele *et al.*³¹, a Vn/Vn + 1 cutoff value of 0.15 means the addition of $n+1$ reference gene is not necessary, i.e., the first n references genes are sufficient to normalize qRT-PCR results. Te optimal number of reference genes was recommended in Tables [2](#page-5-0) and [3](#page-7-0), respectively, for biotic and abiotic conditions. Specifcally, for diferent developmental stages, the recommended reference genes were *18S, HSP70*, and *28S*. For diferent tissues, the recommendation was *28S, 18S*, and *RP49*. For diferent sexes, the recommendation was *HSP90* and *RP49*. For diferent temperature treatments, the recommendation was *18S, 28S*, and *GAPDH*. For diferent photoperiods, the recommendation was *18S, 28S*, and *HSP90*. Finally, for *in vivo* RNAi, the best combination was *RP49* and *ATP1A1*.

Validation of selected reference genes. The expression of *TPS*, a target gene, was evaluated to validate the recommended reference genes under diferent temperature treatments. Using the most stable reference gene *18S* (NF 1), the top two stable reference genes *18S* and *28S* (NF 1–2), and the top three stable reference genes, *18S, 28S*, and *GAPDH* (NF 1–3) for normalization, *TPS* expression profles were similar throughout all three temperature regimes (Fig. [4\)](#page-8-0). In comparison, when *ATP6V1A*, the least stable candidate (NF 9), was used as the reference gene, *TPS* expression patterns were inconsistent across diferent temperature treatments. Specifcally, *TPS* expression was numerically higher at 10 °C, and lower at 22 and 30 °C (Fig. [4](#page-8-0)).

Discussion

RT-qPCR has been used extensively for quantifcation of mRNA expression and is a primary tool for genetic research. Although multiple factors, such as RNA extraction, storage, cDNA synthesis, and handling of materials and reagents, can afect the RT-qPCR analysis, a reliable reference gene (set) to overcome confounding variations in an empirical dataset is of particular importance. Normalization by internal controls is an integral part of the quantifcation process. A single or multiple stably expressed reference genes are required for the normalization process to achieve accurate and reliable results. Each candidate reference gene should be evaluated under specifc experimental conditions to ensure a constant level of expression³⁵. Following the "Minimum Information for Publication of Quantitative Real-Time PCR Experiments" (MIQE) guideline⁴¹, reference gene selection study has been carried out for many insect species^{[34](#page-10-17),[42](#page-10-24),43}, and has become a routine practice to standardize RT-qPCR analysis.

Due to diferent algorithms, stability ranking derived from the four analytical tools can vary. For example, when *H. axyridis* was injected with dsRNAs (*in vivo* RNAi), *28S* was rated as the best reference gene by *BestKeeper*, *RP49* was considered as the most stable by *Normfnder* as well as ΔCT method, whereas *ATP1A1* and *GAPDH* were the top choice by *geNorm*. Despite some discrepancies in individual rankings, *RP49* and *ATP1A1*

Table 2. Stability of candidate reference genes in response to biotic conditions.

were consistently exhibited a higher level of stability than the rest of the candidates projected by all four algorithms (Table [3\)](#page-7-0), suggesting the importance of (1) using a comprehensive analysis to interpret the dataset and (2) adopting the multiple instead of a single normalizer for RT-qPCR analysis.

In recent years, researchers have been more receptive to use multiple reference genes to replace a single normalizer in RT-qPCR analysis⁴⁴. The optimal number of reference genes is typically determined by *geNorm*. In this study, three reference genes for recommended for diferent developmental stages (*18S, HSP70*, and *28S*), tissues (*28S, 18S*, and *RP49*), temperatures (*18S, 28S* and *GAPDH*), and photoperiods (*18S, 28S* and *HSP90*), while two reference genes were required for the reliable normalization in diferent sexes (*HSP90* and *RP49*), and *in vivo* RNAi (*RP49* and *ATP1A1*). Our combined results are, in part, consistent with previous studies of other Coccinellidae predatory species (Table [4](#page-8-1)), especially for ribosome RNAs (rRNAs).

Not surprisingly, rRNAs (e.g., *18S* and *28S*) were consistently stably expressed throughout the vast majority of biotic and abiotic conditions among the four Coccinellidae species, including *H. axyridis*, *Hippodamia convergens*[45,](#page-10-27) *Coleomegilla maculate*[46,](#page-10-28) and *Coccinella septempunctata*[47](#page-10-29). Te over-representation of rRNAs in the total RNA pool ($>80\%$), however, can potentially mask the subtle changes of the target gene expression⁴⁸. Therefore, customized reference gene study is still a prerequisite for standardized RT-qPCR analysis in predatory lady beetles. A large body of works has demonstrated that there are no "universal" reference genes applicable for all cell and tissue types and various experimental conditions⁴⁹. As a major structural protein, *Actin* has been used extensively as the internal control without any validation. In this study, however, *Actin* was one of the least stable candidates under both biotic and abiotic conditions, except the temperature treatment, which is consistent with the other three Coccinellidae species⁴⁵⁻⁴⁷.

Tis study not only provides a standardized procedure for the quantifcation of gene expression, but also lays a foundation for the genomics and functional genomics dissection of *H. axyridis*, an emerging model in invasion biology⁵⁰.

Materials and Methods

Insects. *Harmonia axyridis* was originally collected from the University of Kentucky North Farm (38°07′N, 84°30′W). *Harmonia axyridis* colony was maintained at 23 ± 1 °C, 12 L:12D photoperiod, 50% relative humidity, and provisioned with pea aphids and sugar water for more than two months. Pea aphid clones were a gif from Dr. John Obrycki (University of Kentucky) and maintained on seedlings of fava beans in a glasshouse.

Experimental conditions. *Biotic conditions*. The developmental stages include eggs (N=15), four larval instars ($N=5$ for each instar, respectively), pupae ($N=1$), and adults (one male and one female). Sex of adult beetles was determined by the presence or absence of the male genitalia. Tissues, including head, midgut, and carcass, were dissected from the fourth instar larvae $(N=5)$.

Abiotic conditions. To examine the effects of temperature, third instars were exposed to 10, 22, and 30 °C for 3 hours. For photoperiod, third-instar larvae were treated with a series of light and dark regime of 16 L:8D, 12L:12D, and 8L:16D for two days. For *in vivo* RNAi, *H. axyridis ATP6V1A* was the intended molecular target.

Table 3. Stability of candidate reference genes in response to abiotic conditions.

Figure 3. Optimal number of reference genes required for accurate normalization of gene expression. Based on geNorm analysis, average pairwise variations are calculated between the normalization factors NFn and NFn + 1. Values less than 0.15 indicate that $n+1$ genes are not required for the normalization of gene expression.

Specifcally, 280ng of dsRNAs (56nl, 5μg/μl), derived from *H. axyridis ATP6V1A* (HA-dsRNA) and a plant gene, *β-glucuronidase* (GUS-dsRNA), were injected into the abdomen of third instars (N=5). GUS-dsRNA is an exogenous control for the unintended silencing efects, and H2O is the vehicle control for the delivery agent of dsRNAs. Samples were collected on day-3 for RT-qPCR analysis.

Figure 4. Validation of the recommended reference gene(s). Expression profles of *TPS* under diferent temperature treatments were investigated using diferent normalization factors. Bars represent the $means \pm standard$ error of three biological replicates.

Table 4. Recommended reference genes for RT-qPCR Analysis in Coleoptera. *Developmental stages. **Not Applicable. Please note that the abbreviation of gene names may difer among the cited references.

Total RNA extraction and reverse transcription. Total RNA was extracted separately from each developmental stage, including eggs (N = 15), pupa (N = 1), and adult (N = 1) for each sex. For other experiments involving larvae, fve individuals were pooled as one sample. Each experiment was repeated three times independently. Samples were preserved in 1.5 ml centrifuge tubes and snap frozen immediately in liquid nitrogen before storage at −⁸⁰ °C. Total RNA was extracted using TRIzol® (Invitrogen, Carlsbad, CA) following the manufacturer's instructions. Each sample of 2.0 μg RNA was reverse transcribed with random primers using the M-MLV reverse transcription kit (Invitrogen, Carlsbad, CA) according to the manufacturer's recommendations.

Primer design and cloning of candidate reference genes. Primers for *18S, 28S, ATP1A1, HSP70, HSP90*, and *RP49* (Table [1\)](#page-3-0) were designed based on their respective sequences from NCBI ([http://www.ncbi.nlm.](http://www.ncbi.nlm.nih.gov/) [nih.gov/](http://www.ncbi.nlm.nih.gov/)). Degenerate primers for *ACTB*, *GAPDH, ATP6V1A* were designed using CODEHOP ([http://blocks.](http://blocks.fhcrc.org/codehop.html) fhcrc.org/codehop.html). PCR amplifications were performed in 50 μl reactions containing 10μ l 5 × PCR Buffer $(Mg^{2+}$ Plus), 1 μl dNTP mix (10 mM of each nucleotide), 5 μl of each primer (10 μM each), 0.25 μl of Go Taq (5 u/ μl) (Promega, Madison, WI) and 25 ng first-strand cDNA. The PCR parameters were as follows: one cycle of 94 °C for 3 min; 35 cycles of 94 °C for 30s, 55 °C for 1 min and 72 °C for 1 min; a fnal cycle of 72 °C for 10 min. PCR products were purifed and cloned into the pCR™4-TOPO® vector (Invitrogen, Carlsbad, CA) for sequencing confirmation. The primers for the target gene, *TPS*, were obtained from a previous work^{[51](#page-11-9)}.

Quantitative real-time PCR (RT-qPCR). Gene-specifc primers (Table [1](#page-3-0)) were used in PCR reactions (20μl) containing 7.0μl water, 10.0 μl $2 \times$ SYBR Green MasterMix (BioRad, Hercules, CA), 1.0μl each specific primer (10μM), and 10 ng first-strand cDNA. The RT-qPCR program included an initial denaturation for 3 min at 95 °C followed by 40 cycles of denaturation at 95 °C for 10 s, annealing for 30 s at 55 °C, and extension for 30 s at 72 °C. For melting curve analysis, a dissociation step cycle (55 °C for 10 s, and then 0.5 °C for 10 s until 95 °C) was added. Three technical replicates were analyzed for each biological replicate.

Reactions were performed in a MyiQ Single Color Real-Time PCR Detection System (BioRad). The existence of one peak in melting curve analysis was used to confrm gene-specifc amplifcation and to rule out non-specifc amplification and primer-dimer generation. The RT-qPCR was determined for each gene using slope analysis with a linear regression model. Relative standard curves for the transcripts were generated with a serial dilution of cDNA. The corresponding RT-qPCR efficiencies (E) was calculated according to the equation:

$$
E = (10^{[-1/slope]} - 1) \times 100\%.
$$

Stability of gene expression. The stability of the nine candidate reference genes were evaluated using *RefFinder* ([http://www.leonxie.com/referencegene.php\)](http://www.leonxie.com/referencegene.php), a web-based analysis tool which integrates all four major computational programs, including *geNorm*[31](#page-10-14), *NormFinder*[52,](#page-11-10) *BestKeeper*[53](#page-11-11), and the comparative ΔCt method[54.](#page-11-12) *geNorm* calculates an expression stability value (M) for each gene and a pair-wise comparison. *NormFinder* ranks the set of candidate genes based on their expression stability in the given sample set. *BestKeeper* considers the Ct values of all candidate reference genes, to calculate standard deviation and coefcient of variation. ΔCt approach directly compares relative expression of 'pairs of genes' within each sample. Then, *RefFinder* assigned an appropriate weight of the four methods to an individual gene and calculated the geometric mean of their weights for the overall fnal ranking.

Validation of selected reference genes. *Trehalose-6-phosphate synthase* (*TPS*), the intermediate of tre-halose, is a key component in insect energy metabolism and resilience^{25,[51,](#page-11-9)55}. The stability of candidate reference genes was evaluated using *TPS* as the target gene. *TPS* expression levels under diferent temperature treatments were calculated based on selected sets of candidate reference genes. Two separate normalization factors (NFs) have been computed based on (1) the geometric mean of the genes with the lowest *Geomean* values (as determined by *RefFinder*), and (2) a single normalizer with the lowest or highest *Geomean* value. Relative expression of *TPS* in diferent samples was calculated using the 2−ΔΔCt method[56.](#page-11-14)

References

- 1. Brown, P. M. J. *et al*. Intraguild predation by Harmonia axyridis (Coleoptera: Coccinellidae) on native insects in Europe: molecular detection from feld samples. *Entomol Sci* **18**, 130–133, [https://doi.org/10.1111/ens.12092](http://dx.doi.org/10.1111/ens.12092) (2015).
- 2. Gordon, R. D. Te Coccinellidae (Coleoptera) of America North of Mexico. *J the New York Entomol Society* **93**, 1–912 (1985).
- Adriaens, T., Branquart, E. & Maes, D. The multicoloured Asian ladybird Harmonia axyridis Pallas (Coleoptera: Coccinellidae), a threat for native aphid predators in Belgium? *Belg J Zool* **133**, 195–196 (2003).
- 4. Rice, N. R. *et al*. Assessment of legume and nonlegume ground covers on Coleoptera: Coccinellidae density for low-input pecan management. *American J Alternative Agriculture* **13**, 111, [https://doi.org/10.1017/s0889189300007785](http://dx.doi.org/10.1017/s0889189300007785) (2009).
- 5. Musser, F. R. & Shelton, A. M. Bt sweet corn and selective insecticides: impacts on pests and predators. *J Econ Entomol* **96**, 71–80, [https://doi.org/10.1603/0022-0493-96.1.71](http://dx.doi.org/10.1603/0022-0493-96.1.71) (2003).
- 6. Wells, M. L., McPherson, R. M., Ruberson, J. R. & Herzog, G. A. Coccinellids in cotton: Population response to pesticide application and feeding response to cotton aphids (Homoptera: Aphididae). *Environ Entomol* **30**, 785–793, [https://doi.org/10.1603/0046-](http://dx.doi.org/10.1603/0046-225x-30.4.785) [225x-30.4.785](http://dx.doi.org/10.1603/0046-225x-30.4.785) (2001).
- 7. Michaud, J. P. Biological control of Asian citrus psyllid, Diaphorina citri (Hemiptera: Psyllidae) in Florida: A preliminary report. *Entomol News* **113**, 216–222 (2002).
- 8. Mcclure, M. S. Potential of the Asian Predator, Harmonia-Axyridis Pallas (Coleoptera, Coccinellidae), to Control Matsucoccus-Resinosae Bean and Godwin (Homoptera, Margarodidae) in the United-States. *Environ Entomol* **16**, 224–230, [https://doi.](http://dx.doi.org/10.1093/ee/16.1.224) [org/10.1093/ee/16.1.224](http://dx.doi.org/10.1093/ee/16.1.224) (1987).
- 9. Koch, R. L. The multicolored Asian lady beetle, Harmonia axyridis: a review of its biology, uses in biological control, and non-target impacts. *J Insect sci* **3**, 32, [https://doi.org/10.1093/jis/3.1.32](http://dx.doi.org/10.1093/jis/3.1.32) (2003).
- 10. Brown, P. M. J. *et al*. Te global spread of Harmonia axyridis (Coleoptera: Coccinellidae): distribution, dispersal and routes of invasion. *BioControl* **56**, 623–641, [https://doi.org/10.1007/s10526-011-9379-1](http://dx.doi.org/10.1007/s10526-011-9379-1) (2011).
- 11. Koch, R. L., Hutchison, W. D., Venette, R. C. & Heimpel, G. E. Susceptibility of immature monarch butterfy, Danaus plexippus (Lepidoptera: Nymphalidae: Danainae), to predation by Harmonia axyridis (Coleoptera: Coccinellidae). *BioControl* **28**, 265–270, [https://doi.org/10.1016/S1049-9644\(03\)00102-6](http://dx.doi.org/10.1016/S1049-9644(03)00102-6) (2003).
- 12. Roy, H., Brown, P. & Majerus, M. In *An ecological and societal approach to biological control* 295–309 (Springer, 2006).
- 13. Cottrell, T. E. Suitability of exotic and native lady beetle eggs (Coleoptera: Coccinellidae) for development of lady beetle larvae. *BioControl* **31**, 362–371, [https://doi.org/10.1016/j.biocontrol.2004.06.004](http://dx.doi.org/10.1016/j.biocontrol.2004.06.004) (2004).
- 14. Sato, S., Yasuda, H. & Evans, E. W. Dropping behaviour of larvae of aphidophagous ladybirds and its effects on incidence of intraguild predation: interactions between the intraguild prey, Adalia bipunctata (L.) and Coccinella septempunctata (L.), and the intraguild predator, Harmonia axyridis Pallas. *Ecol Entomol* **30**, 220–224, [https://doi.org/10.1111/j.0307-6946.2005.00688.x](http://dx.doi.org/10.1111/j.0307-6946.2005.00688.x) (2005).
- 15. Cottrell, T. E. & Shapiro-Ilan, D. I. Susceptibility of a native and an exotic lady beetle (Coleoptera: Coccinellidae) to Beauveria bassiana. *J Invertebr Pathol* **84**, 137–144, [https://doi.org/10.1016/j.jip.2003.09.003](http://dx.doi.org/10.1016/j.jip.2003.09.003) (2003).
- 16. Shapiro-Ilan, D. I. & Cottrell, T. E. Susceptibility of lady beetles (Coleoptera: Coccinellidae) to entomopathogenic nematodes. *J Invertebr Pathol* **89**, 150–156, [https://doi.org/10.1016/j.jip.2005.04.002](http://dx.doi.org/10.1016/j.jip.2005.04.002) (2005).
- 17. Vilcinskas, A., Stoecker, K., Schmidtberg, H., Rohrich, C. R. & Vogel, H. Invasive harlequin ladybird carries biological weapons against native competitors. *Science* **340**, 862–863, [https://doi.org/10.1126/science.1234032](http://dx.doi.org/10.1126/science.1234032) (2013).
- 18. Hammond, S. M., Caudy, A. A. & Hannon, G. J. Post-transcriptional gene silencing by double-stranded RNA. *Nat Rev Genet* **2**, 110–119, [https://doi.org/10.1038/35052556](http://dx.doi.org/10.1038/35052556) (2001).
- 19. Hannon, G. J. RNA interference. *Nature* **418**, 244–251, [https://doi.org/10.1038/418244a](http://dx.doi.org/10.1038/418244a) (2002).
- 20. Niimi, T., Kuwayama, H. & Yaginuma, T. Larval RNAi applied to the analysis of postembryonic development in the ladybird beetle, Harmonia axyridis. *J Insect Biotechnol Sericology* **74**, 95–102, [https://doi.org/10.11416/jibs.74.95](http://dx.doi.org/10.11416/jibs.74.95) (2005).
- 21. Roberts, A. F., Devos, Y., Lemgo, G. N. & Zhou, X. Biosafety research for non-target organism risk assessment of RNAi-based GE plants. *Front Plant Sci* **6**, 958, [https://doi.org/10.3389/fpls.2015.00958](http://dx.doi.org/10.3389/fpls.2015.00958) (2015).
- 22. Linghua, X. et al. The coming of RNA-based pest controls. *J Plant Prot* 42, 673-690, [https://doi.org/10.13140/RG.2.1.1878.4081](http://dx.doi.org/10.13140/RG.2.1.1878.4081) (2015)
- 23. Baum, J. A. *et al*. Control of coleopteran insect pests through RNA interference. *Nat Biotechnol* **25**, 1322–1326, [https://doi.](http://dx.doi.org/10.1038/nbt1359) [org/10.1038/nbt1359](http://dx.doi.org/10.1038/nbt1359) (2007).
- 24. Du, W. & Zeng, F. Identifcation of Development-Related Genes in the Ovaries of Adult Harmonia axyridis (Pallas) Lady Beetles Using a Time- Series Analysis by RNA-seq. *Sci Rep* **6**, 39109, [https://doi.org/10.1038/srep39109](http://dx.doi.org/10.1038/srep39109) (2016).
- 25. Shi, Z. *et al*. Two novel soluble trehalase genes cloned from Harmonia axyridis and regulation of the enzyme in a rapid changing temperature. *Comp Biochem Physiol B Biochem Mol Biol* **198**, 10–18, [https://doi.org/10.1016/j.cbpb.2016.03.002](http://dx.doi.org/10.1016/j.cbpb.2016.03.002) (2016).
- 26. Tang, B. *et al*. Transcriptome analysis and identifcation of induced genes in the response of Harmonia axyridis to cold hardiness. *Comp Biochem Physiol D Genomics Proteomics* **22**, 78–89, [https://doi.org/10.1016/j.cbd.2017.01.004](http://dx.doi.org/10.1016/j.cbd.2017.01.004) (2017).
- 27. VanGuilder, H. D., Vrana, K. E. & Freeman, W. M. Twenty-fve years of quantitative PCR for gene expression analysis. *BioTechniques* **44**, 619–626, [https://doi.org/10.2144/000112776](http://dx.doi.org/10.2144/000112776) (2008).
- 28. Ginzinger, D. G. Gene quantifcation using real-time quantitative PCR: An emerging technology hits the mainstream. *Exp Hematol* **30**, 503–512, [https://doi.org/10.1016/S0301-472x\(02\)00806-8](http://dx.doi.org/10.1016/S0301-472x(02)00806-8) (2002).
- 29. Heid, C. A., Stevens, J., Livak, K. J. & Williams, P. M. Real time quantitative PCR. *Genome Res* **6**, 986–994, [https://doi.org/10.1101/](http://dx.doi.org/10.1101/gr.6.10.986) [gr.6.10.986](http://dx.doi.org/10.1101/gr.6.10.986) (1996).
- 30. Bustin, S. A. Quantifcation of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. *J Mol Endocrinol* **29**, 23–39, [https://doi.org/10.1677/jme.0.0290023](http://dx.doi.org/10.1677/jme.0.0290023) (2002).
- 31. Vandesompele, J. *et al*. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. *Genome Biol* **3**, RESEARCH0034, [https://doi.org/10.1186/gb-2002-3-7-research0034](http://dx.doi.org/10.1186/gb-2002-3-7-research0034) (2002).
- 32. Lourenco, A. P., Mackert, A., Cristino, A. D. & Simoes, Z. L. P. Validation of reference genes for gene expression studies in the honey bee, Apis mellifera, by quantitative real-time RT-PCR. *Apidologie* **39**, 372–U333, [https://doi.org/10.1051/apido:2008015](http://dx.doi.org/10.1051/apido:2008015) (2008).
- 33. Macabelli, C. H. *et al*. Reference gene selection for gene expression analysis of oocytes collected from dairy cattle and bufaloes during winter and summer. *PloS one* **9**, e93287, [https://doi.org/10.1371/journal.pone.0093287](http://dx.doi.org/10.1371/journal.pone.0093287) (2014).
- 34. Li, R. *et al*. Reference gene selection for qRT-PCR analysis in the sweetpotato whitefy, Bemisia tabaci (Hemiptera: Aleyrodidae). *PloS one* **8**, e53006, [https://doi.org/10.1371/journal.pone.0053006](http://dx.doi.org/10.1371/journal.pone.0053006) (2013).
- 35. Tellin, O. *et al*. Housekeeping genes as internal standards: use and limits. *J Biotechnol* **75**, 291–295, [https://doi.org/10.1016/S0168-](http://dx.doi.org/10.1016/S0168-1656(99)00163-7) [1656\(99\)00163-7](http://dx.doi.org/10.1016/S0168-1656(99)00163-7) (1999).
- 36. Pan, H. *et al*. Selection of Reference Genes for RT-qPCR Analysis in the Monarch Butterfy, Danaus plexippus (L.), a Migrating Bio-Indicator. *PloS one* **10**, e0129482, [https://doi.org/10.1371/journal.pone.0129482](http://dx.doi.org/10.1371/journal.pone.0129482) (2015).
- 37. Zhang, S. *et al*. Identifcation and validation of reference genes for normalization of gene expression analysis using qRT-PCR in Helicoverpa armigera (Lepidoptera: Noctuidae). *Gene* **555**, 393–402, [https://doi.org/10.1016/j.gene.2014.11.038](http://dx.doi.org/10.1016/j.gene.2014.11.038) (2015).
- 38. Hruz, T. *et al*. RefGenes: identifcation of reliable and condition specifc reference genes for RT-qPCR data normalization. *BMC Genomics* **12**, 156, [https://doi.org/10.1186/1471-2164-12-156](http://dx.doi.org/10.1186/1471-2164-12-156) (2011).
- 39. Gutierrez, L. *et al*. Te lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. *Plant Biotechnol J* **6**, 609–618, [https://doi.org/10.1111/j.1467-7652.2008.00346.x](http://dx.doi.org/10.1111/j.1467-7652.2008.00346.x) (2008).
- 40. Taylor, S., Wakem, M., Dijkman, G., Alsarraj, M. & Nguyen, M. A practical approach to RT-qPCR-Publishing data that conform to the MIQE guidelines. *Methods* **50**, S1–5, [https://doi.org/10.1016/j.ymeth.2010.01.005](http://dx.doi.org/10.1016/j.ymeth.2010.01.005) (2010).
- 41. Bustin, S. A. *et al*. Te MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. *Clin Chem* **55**, 611–622, [https://doi.org/10.1373/clinchem.2008.112797](http://dx.doi.org/10.1373/clinchem.2008.112797) (2009).
- 42. Maroniche, G. A., Sagadin, M., Mongelli, V. C., Truol, G. A. & del Vas, M. Reference gene selection for gene expression studies using RT-qPCR in virus-infected planthoppers. *Virol J* **8**, 308, [https://doi.org/10.1186/1743-422x-8-308](http://dx.doi.org/10.1186/1743-422x-8-308) (2011).
- 43. Scharlaken, B. et al. Reference gene selection for insect expression studies using quantitative real-time PCR: The head of the honeybee, Apis mellifera, afer a bacterial challenge. *J Insect Sci* **8**, [https://doi.org/10.1673/031.008.3301](http://dx.doi.org/10.1673/031.008.3301) (2008).
- Veazey, K. J. & Golding, M. C. Selection of stable reference genes for quantitative rt-PCR comparisons of mouse embryonic and extra-embryonic stem cells. *PloS one* **6**, e27592, [https://doi.org/10.1371/journal.pone.0027592](http://dx.doi.org/10.1371/journal.pone.0027592) (2011).
- 45. Pan, H., Yang, X., Siegfried, B. D. & Zhou, X. A Comprehensive Selection of Reference Genes for RT-qPCR Analysis in a Predatory Lady Beetle, Hippodamia convergens (Coleoptera: Coccinellidae). *PloS one* **10**, e0125868, [https://doi.org/10.1371/journal.](http://dx.doi.org/10.1371/journal.pone.0125868) [pone.0125868](http://dx.doi.org/10.1371/journal.pone.0125868) (2015).
- 46. Yang, C. *et al*. Selection of reference genes for RT-qPCR analysis in a predatory biological control agent, Coleomegilla maculata (Coleoptera: Coccinellidae). *Sci Rep* **5**, 18201, [https://doi.org/10.1038/srep18201](http://dx.doi.org/10.1038/srep18201) (2015).
- 47. Yang, C. *et al*. Selection of Reference Genes for RT-qPCR Analysis in Coccinella septempunctata to Assess Un-intended Efects of RNAi Transgenic Plants. *Front Plant Sci* **7** (2016).
- 48. Raaijmakers, M. H. G. P., van Emst, L., de Witte, T., Mensink, E. & Raymakers, R. A. P. Quantitative assessment of gene expression in highly purifed hematopoietic cells using real-time reverse transcriptase polymerase chain reaction. *Exp Hematol* **30**, 481–487, [https://doi.org/10.1016/S0301-472x\(02\)00787-7](http://dx.doi.org/10.1016/S0301-472x(02)00787-7) (2002).
- 49. Radonic, A. *et al*. Guideline to reference gene selection for quantitative real-time PCR. *Biochem Biophys Res Commun* **313**, 856–862, [https://doi.org/10.1016/j.bbrc.2003.11.177](http://dx.doi.org/10.1016/j.bbrc.2003.11.177) (2004).
- 50. Vilcinskas, A., Mukherjee, K. & Vogel, H. Expansion of the antimicrobial peptide repertoire in the invasive ladybird Harmonia axyridis. *Proc Biol Sci* **280**, 20122113, [https://doi.org/10.1098/rspb.2012.2113](http://dx.doi.org/10.1098/rspb.2012.2113) (2013).
- 51. Zi, Q. *et al*. Molecular cloning and cold-induced expression of trehalose-6-phosphate synthase gene in Harmonia axyridis (Coleoptera: Coccinellidae). *Acta Entomol Sinica* **55**, 651–658 (2012).
- 52. Andersen, C. L., Jensen, J. L. & Orntof, T. F. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. *Cancer Res* **64**, 5245–5250, [https://doi.org/10.1158/0008-5472.CAN-04-0496](http://dx.doi.org/10.1158/0008-5472.CAN-04-0496) (2004).
- 53. Pfaffl, M. W., Tichopad, A., Prgomet, C. & Neuvians, T. P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper - Excel-based tool using pair-wise correlations. *Biotechnol Lett* **26**, 509–515, [https://doi.](http://dx.doi.org/10.1023/B:Bile.0000019559.84305.47) [org/10.1023/B:Bile.0000019559.84305.47](http://dx.doi.org/10.1023/B:Bile.0000019559.84305.47) (2004).
- 54. Silver, N., Best, S., Jiang, J. & Tein, S. L. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. *BMC Mol Biol* **7**, 33, [https://doi.org/10.1186/1471-2199-7-33](http://dx.doi.org/10.1186/1471-2199-7-33) (2006).
- 55. Tang, B. *et al*. Trehalase in Harmonia axyridis (Coleoptera: Coccinellidae): efects on beetle locomotory activity and the correlation with trehalose metabolism under starvation conditions. *Appl Entomol Zool* **49**, 255–264, [https://doi.org/10.1007/s13355-014-0244-4](http://dx.doi.org/10.1007/s13355-014-0244-4) (2014)
- 56. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods* **25**, 402–408, [https://doi.org/10.1006/meth.2001.1262](http://dx.doi.org/10.1006/meth.2001.1262) (2001).
- 57. Rodrigues, T. B. *et al*. Validation of reference housekeeping genes for gene expression studies in western corn rootworm (Diabrotica virgifera virgifera). *PloS one* **9**, e109825, [https://doi.org/10.1371/journal.pone.0109825](http://dx.doi.org/10.1371/journal.pone.0109825) (2014).
- 58. Shi, X. Q. *et al*. Validation of reference genes for expression analysis by quantitative real-time PCR in Leptinotarsa decemlineata (Say). *BMC Res Notes* **6**, 93, [https://doi.org/10.1186/1756-0500-6-93](http://dx.doi.org/10.1186/1756-0500-6-93) (2013).
- 59. Tan, Y., Zhou, X. R. & Pang, B. P. Reference gene selection and evaluation for expression analysis using qRT-PCR in Galeruca daurica (Joannis). *Bull Entomol Res* **107**, 359–368, [https://doi.org/10.1017/S0007485316000948](http://dx.doi.org/10.1017/S0007485316000948) (2017).
- 60. Rodrigues, T. B., Dhandapani, R. K., Duan, J. J. & Palli, S. R. RNA interference in the Asian Longhorned Beetle:Identifcation of Key RNAi Genes and Reference Genes for RT-qPCR. *Sci Rep* **7**, 8913, [https://doi.org/10.1038/s41598-017-08813-1](http://dx.doi.org/10.1038/s41598-017-08813-1) (2017).
- 61. Lord, J. C., Hartzer, K., Toutges, M. & Oppert, B. Evaluation of quantitative PCR reference genes for gene expression studies in Tribolium castaneum afer fungal challenge. *J Microbiol Methods* **80**, 219–221, [https://doi.org/10.1016/j.mimet.2009.12.007](http://dx.doi.org/10.1016/j.mimet.2009.12.007) (2010).
- 62. Sang, W., He, L., Wang, X. P., Zhu-Salzman, K. & Lei, C. L. Evaluation of Reference Genes for RT-qPCR in Tribolium castaneum (Coleoptera: Tenebrionidae) Under UVB Stress. *Environ Entomol* **44**, 418–425, [https://doi.org/10.1093/ee/nvv010](http://dx.doi.org/10.1093/ee/nvv010) (2015).
- 63. Wang, Y., Wang, Z. K., Huang, Y., Liao, Y. F. & Yin, Y. P. Identifcation of suitable reference genes for gene expression studies by qRT-PCR in the blister beetle Mylabris cichorii. *J Insect Sci* **14**, 94, [https://doi.org/10.1093/jis/14.1.94](http://dx.doi.org/10.1093/jis/14.1.94) (2014).

Acknowledgements

Tis work was supported by Biotechnology Risk Assessment Grant Program Competitive Grant No. 2011-33522- 30749 from the USDA National Institute of Food and Agriculture. Te information reported in this paper (No. 18-08-005) is part of a project of the Kentucky Agricultural Experiment Station and is published with the approval of the Director. Tese agencies had no role in study design, data collection/analysis, manuscript preparation, or the decision to publish.

Author Contributions

X.G.Z., X.W.Y., and H.P.P. conceived and designed research. X.W.Y. and H.P.P. conducted experiments. X.G.Z. and L.Y. contributed reagents and analytical tools. X.W.Y. and H.P.P. analyzed data. X.W.Y. and X.G.Z. wrote the manuscript.

Additional Information

Competing Interests: The authors declare no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional afliations.

G Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit [http://creativecommons.org/licenses/by/4.0/.](http://creativecommons.org/licenses/by/4.0/)

 $© The Author(s) 2018$