
University of Kentucky
UKnowledge

Mechanical Engineering Faculty Publications Mechanical Engineering

5-3-2018

Research and Development of Powder Brazing
Filler Metals for Diamond Tools: A Review
Fei Long
Harbin Institute of Technology, China

Peng He
Harbin Institute of Technology, China

Dusan P. Sekulic
University of Kentucky, dusan.sekulic@uky.edu

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/me_facpub

Part of the Mechanical Engineering Commons, and the Metallurgy Commons

This Review is brought to you for free and open access by the Mechanical Engineering at UKnowledge. It has been accepted for inclusion in Mechanical
Engineering Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

Repository Citation
Long, Fei; He, Peng; and Sekulic, Dusan P., "Research and Development of Powder Brazing Filler Metals for Diamond Tools: A
Review" (2018). Mechanical Engineering Faculty Publications. 47.
https://uknowledge.uky.edu/me_facpub/47

http://uknowledge.uky.edu/?utm_source=uknowledge.uky.edu%2Fme_facpub%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://uknowledge.uky.edu/?utm_source=uknowledge.uky.edu%2Fme_facpub%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu?utm_source=uknowledge.uky.edu%2Fme_facpub%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/me_facpub?utm_source=uknowledge.uky.edu%2Fme_facpub%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/me?utm_source=uknowledge.uky.edu%2Fme_facpub%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
https://uknowledge.uky.edu/me_facpub?utm_source=uknowledge.uky.edu%2Fme_facpub%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=uknowledge.uky.edu%2Fme_facpub%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/288?utm_source=uknowledge.uky.edu%2Fme_facpub%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/me_facpub/47?utm_source=uknowledge.uky.edu%2Fme_facpub%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:UKnowledge@lsv.uky.edu


Research and Development of Powder Brazing Filler Metals for Diamond Tools: A Review

Notes/Citation Information
Published in Metals, v. 8, issue 5, 315, p. 1-13.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Digital Object Identifier (DOI)
https://doi.org/10.3390/met8050315

This review is available at UKnowledge: https://uknowledge.uky.edu/me_facpub/47

https://creativecommons.org/licenses/by/4.0/
https://uknowledge.uky.edu/me_facpub/47?utm_source=uknowledge.uky.edu%2Fme_facpub%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages


metals

Review

Research and Development of Powder Brazing Filler
Metals for Diamond Tools: A Review

Fei Long 1, Peng He 1,* and Dusan P. Sekulic 1,2

1 State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001,
China; justlf@126.com (F.L.); dusan.sekulic@uky.edu (D.P.S.)

2 Department of Mechanical Engineering, College of Engineering, University of Kentucky, Lexington,
KY 40506, USA

* Correspondence: hithepeng@hit.edu.cn; Tel.: +86-451-8640-2787

Received: 13 March 2018; Accepted: 24 April 2018; Published: 3 May 2018
����������
�������

Abstract: Powder brazing filler metals (PBFMs) feature a number of comparative advantages.
Among others, these include a low energy consumption, an accurate dosage, a good brazeability,
a short production time, and a high production efficiency. These filler metals have been used in the
aerospace, automobile, and electric appliances industries. The PBFMs are especially suitable for
diamond tools bonding, which involves complex workpiece shapes and requires accurate dosage.
The recent research of PBFMs for diamond tools is reviewed in this paper. The current applications are
discussed. The CuSnTi and Ni-Cr-based PBFMs have been the two commonly used monolayer PBFMs.
Thus, the bonding mechanism at the interface between both the monolayer PBFMs and a diamond
tool are summarized first. The ways to improve the performance of the monolayer PBFMs for
diamond tools are analyzed. Next, a research of PBFMs for impregnated diamond tools is reviewed.
The technical problems that urgently need solutions are discussed. Finally, the challenges and
opportunities involved with the PBFMs for diamond tools research and development are summarized,
and corresponding prospects are suggested.

Keywords: powder brazing filler metal; diamond tools; TiC layer

1. Introduction

With implementation of the current Industry 4.0 [1] manufacturing philosophy, automation
has become one of the most promising trends of global industrial development [2]. To facilitate
these general trends, complex designs often require bonding (e.g., brazing) of seemingly incompatible
materials to metals. In the field of brazing, powder brazing filler metals (PBFMs) have the advantages of
a low energy consumption, a relatively short production time, and a correspondingly high production
efficiency [3]. Besides, PBFMs can be made into a paste form by mixing with a brazing flux and
an adhesive. This modification assists with precise control and accuracy of dosage. Such a paste
can be applied by brushing, injection, and various spray techniques. This makes it suitable for
diverse workpiece shapes. Moreover, it is easy to do pre-assembling, to automatically modify the
parameters, and to get a good-looking brazing joint domain. In accordance with the listed features,
PBFMs are mainly used for automated brazing. This improves the joint quality and stability of
the final product, enhances brazing efficiency, increases production, reduces the consumption of
the brazing flux, and reduces the emissions of harmful substances. This technology conforms to the
requirements of green manufacturing. As a consequence, PBFMs have been applied in many industries,
such as aviation, aerospace, refrigeration, diamond tools production, oil drilling, electronic appliances,
and automobile industries [4,5].

Metals 2018, 8, 315; doi:10.3390/met8050315 www.mdpi.com/journal/metals

http://www.mdpi.com/journal/metals
http://www.mdpi.com
http://www.mdpi.com/2075-4701/8/5/315?type=check_update&version=1
http://dx.doi.org/10.3390/met8050315
http://www.mdpi.com/journal/metals


Metals 2018, 8, 315 2 of 13

At present, extensive studies have been conducted on PBFMs. For example, Ivanov et al. [6]
studied the solid-phase synthesis of a PBFM for the titanium alloy vacuum brazing. He et al. [7]
considered the influence of a powder containing 50% TiH2 and 50% Ni (used for brazing Ti-Al
intermetallic compounds) on the joint structure and mechanical properties. Liu et al. [8] explored
the structure and properties of the zirconia and stainless steel joints obtained with Ag-Cu brazing
filler metal and TiH2 PBFM under normal pressure (1.01 × 105 Pa). Zhang and Tu [9] investigated the
structure and properties of the lead-free solder containing micro/nano powder. Ti-Al intermetallic
compounds are extensively applied in the aerospace industry, while the lead-free solder has been
widely used in the electronics industry. Ag-Cu brazing filler metal and TiH2 powder are broadly
applied in the ceramics industry. However, the mentioned applications in the aerospace, ceramics,
and electronics industries have not been the exclusive application fields of PBFMs.

The aforementioned PBFMs cannot necessarily be used in more demanding environments, such as
high temperature, high pressure, and heavy loads. The PBFMs for diamond tools occupy a considerable
proportion of manufacturing. They has been further implemented in novel application areas, e.g.,
transportation and mining machineries.

In this paper, we review the recent research of PBFMs for diamond tools. The current application
status is discussed. The interface bonding mechanism of commonly used monolayer PBFMs for
diamond tools is also addressed. Furthermore, the ways to improve the performance of the PBFMs
for diamond tools is discussed. The studies of PBFMs for impregnated diamond tools are reviewed.
Technical problems that urgently need solutions are discussed. Finally, the limits of applications and
prospects of powder brazing filler metal are given.

2. Powder Brazing Filler Metals (PBFMs) in Diamond Tool Industry

Diamond is the hardest known material in nature, with a hardness much higher than those of
cubic boron nitride, corundum, silicon carbide, hard alloy, and high-speed steel. Compared with these
hard materials, diamond has many advantages, such as smaller material loss in processing, higher
efficiency, and longer service life. Consequently, the birth of synthetic diamonds has greatly promoted
the development of the super-hard materials industry. In China, synthetic diamond output has reached
20 billion carats in 2016, accounting for over 90% of total global production.

Synthetic diamond is mostly used in the manufacturing of diamond tools. There are two
approaches to manufacturing diamond tools. One is brazing diamond directly onto a steel substrate
by using PBFMs. The other is by utilizing powder metallurgy, with diamond and PBFMs synthesized
into the diamond tool bit, ultimately forming a diamond tool. Due to high hardness, good wear
resistance, and good thermal conductivity, diamond tools are quite suitable for the machining of hard
and brittle materials, especially non-metals, such as gems, semiconductors, stone processing, fire-proof
materials, ceramics, glasses, floor tiles, magnetic materials, and concrete. In addition, diamond tools
can also be used to process cast iron, hard alloys, nonferrous metals, composite wear-resistant materials,
and hardened steel, etc. Diamond tools have developed rapidly in the past 30 years, and they have
been used widely in various industries. The speed and efficiency of diamond drill bits are much higher
than the corresponding performances of traditional drill bits. The cutting efficiency and durability of
diamond tools are significantly better than those of hard alloy cutters.

Diamond and other super hard materials usually feature poor weldability, hence it is difficult
to use the conventional welding processes to make the bond. However, brazing technology can
achieve chemical and/or metallurgical conditions suitable for successful bonding of diamonds to
various substrates. Consequently, brazing is an essential technique to bond diamond to a substrate
for the cutting, grinding, sawing, and drilling of ultra-hard diamond tools. Because of the high
interface energy between diamond and many metal alloys, the majority of brazing filler metals have
poor wettability [10]. Additionally, diamond graphitization and oxidation tend to occur under high
temperatures, so diamond brazing temperature is limited by the graphite transition temperature range



Metals 2018, 8, 315 3 of 13

(diamond will begin to modify into graphite when the temperature reaches >760 ◦C). As a consequence,
it is difficult to do diamond brazing with traditional brazing filler metals [11].

Diamond brazing filler metals require good wettability. Excessive erosion of diamond should be
avoided as much as possible. The abrasion resistance of diamond brazing filler metals is relatively
high, and should be equal to that of the processed material. Besides, the sharpness of a cutting tool
should be guaranteed without shortening its service life. In this context, the study of brazing filler
metals for diamond tools is of great practical value and theoretical significance.

3. The Research Status of PBFMs for Monolayer Brazing Diamond Tools

The selection of a proper brazing material is the key step in the development of a technology
for diamond tool manufacture. The quality of brazing is one of decisive factors influencing the
performance of diamond tools. This factor directly impacts the quality of diamond tools.

At present, there are two types of brazing filler metals for the monolayer brazing diamond
particles. The first is a medium-temperature CuSnTi brazing filler metal with a lower melting point.
The second is a high-temperature Ni-Cr-based powder brazing filler metal with a high melting point.
The former leads to little thermal damage to the diamond substrate. However, brazed products have a
very poor grinding resistance at a high temperature. Moreover, it is difficult to achieve a high load of
grinding due to the low strength of CuSnTi. Diamonds brazed with Ni-Cr based powder brazing filler
metal have a good grinding resistance and a good resistance to high temperatures. Thus, they have a
better performance than those for sintered and electroplated products. However, Ni-Cr alloy brazing
filler metal contains catalytic elements, such as Ni and Fe, hence diamonds may transform into graphite,
and thermal damage to the joint domain may take place.

3.1. Medium-Temperature PBFMs (between 450 and 900 ◦C)

The most commonly used medium-temperature PBFMs are CuSnTi and AgCuTi. AgCuTi has a
relatively low melting point, and the brazing joint service temperature obtained should not exceed
500 ◦C. The high price of Ag greatly limits its application. The research involving CuSnTi will only be
marginally addressed in this paper.

Ternary alloy CuSnTi has been improved from the binary CuSn. The phase diagram of CuSn alloy
is shown in Figure 1. CuSn brazing filler metal generally has a good wettability, but can hardly wet
the diamond. To mitigate this problem, Ti may be added. This can not only improve the hardness
of an alloy, but also increases wettability. It should be noted that when the proportion of Sn exceeds
15%, the plasticity of the alloy will decrease. Therefore, the mass fraction of Sn in the CuSnTi alloy is
generally less than 15%. The representative CuSnTi filler metals include Cu15Sn10Ti and Cu10Sn5Ti.
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As shown in Figure 2, the melting point of CuTi alloy is relatively low when the content of Ti alloy
is 20~30%. However, Ti is a very reactive metal and tends to interact with carbon on the surface of a
diamond substrate. This results in the formation of a brittle TiC compound [13]. However, when too
much TiC is formed on the binding interface, the strength of the brazed joint will be adversely affected,
thus reducing the performance of the formed diamond tool.
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Khalid et al. [15] analyzed the diamond-CuSnTi PBFM interface. As shown in Figure 3,
the interface features two layers of TiC structures. One layer is close to the TiC grain layer of diamond.
The layer of TiC was discontinuous and cubic. The other layer is the base. Acicular and cylindrical TiC
grains grow from the cube structure. The acicular and cylindrical TiC structure has less carbon content
than the discontinuous and cubic TiC structure. The grain growth features a distinct orientation.
The total thickness of the two TiC layers is about 200 nm, as shown in Figure 3.

Deng et al. [16] used Cu10Sn5Ti brazing filler metal (Figure 4) to conduct a vacuum brazing of
Ti-coated diamond on the steel substrate. The scanning electron microscope (SEM) photo and X-ray
diffraction (XRD) patterns are shown in Figure 5. The substrate, diamond, and brazing filler metal
have formed a strong metallurgical bond. The Ti coating layer protects the diamond from thermal
damage and graphitization, hence ensuring the integrity of the diamond crystal. The thermal shock
strength at 900 ◦C is reduced by only 1.1%. In the process of grinding, shedding of the whole piece of
diamond seldom occurs, while different-sized broken pieces dominate.
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Figure 5. (a) SEM photograph; (b) XRD pattern of Ti-coated diamond particle surface [16]. Reproduced
with permission from Journal of the Chinese Ceramic Society, 2011.

The mechanism of brazing diamond by CuSnTi alloy has been studied extensively. Guo et al. [17]
have considered the interface microstructure of a vacuum brazing diamond on 45 steel with CuSnTi
alloy. They found that Ti participated in the reaction at the interface of diamond and liquid brazing
filler metal, leading to C + Ti→ TiC. The reactive wetting has been established [18]. Liu et al. [19]
studied the interface features of diamond and cubic boron nitride brazed with CuSnTi alloy. Figure 6
shows the X-ray diffraction (XRD) data of the resulting surface morphology after brazing. As can
be seen, the compounds TiC, CuTi, and Cu2Ti are formed on the bonding interface, indicating a
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metallurgical reaction between CuSnTi alloy and diamond. It can be hypothesized that an epitaxial
growth takes place on the diamond crystal, thus forming a TiC interface domain between diamond
and the liquid alloy. Hence, the CuSnTi infiltration over diamond has been transformed into an
infiltration over the TiC interface. With increasing temperature, brazing filler metal melts and spreads
over the steel substrate. The steel substrate, in turn, dissolves into the liquid brazing filler metal.
Among the elements Cu, Ti, and Fe, the Cu-Fe series binary component had a low mutual solubility
and does not form any intermetallic phases. The melting point of Sn (232 ◦C) is significantly lower
than that of Fe (1535 ◦C). Iron and tin are dissolved and spread at the brazing temperature, facilitating
a metallurgical bonding. The Fe-Ti binary phase diagram indicates that an intermetallic compound
may form between Fe and Ti, thus achieving the strong bonding between the brazing filler metal and
the steel substrate [20].
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It could be concluded that TiC plays a pivotal role in the CuSnTi brazing of diamond.
How to obtain small TiC grains (to facilitate the grain refining effect) will be the main direction
of future research.

3.2. High Temperature (≥900 ◦C) PBFMs

When the brazing temperature is low, or the dwell time at the peak temperature, is short,
the chemical reaction at the interface may not be sufficient. The effective contact area of the reaction
layer with the parent metal would be reduced, hence resulting in a lower binding force. It is also
noticed that microscopic defects, e.g., voids, may appear. The appearance of voids and the contact
area reduction clearly weaken the interface bond. Under harsh conditions, low-temperature fillers
can no longer meet service requirements. Therefore, a high-temperature powder brazing filler metal
should be considered for a high-load diamond workpiece. The most commonly-used brazing filler
metal would be Ni-Cr based PBFM such as 84Ni8Cr3B5Si and 76Ni14Cr10P.

Wang et al. [21] have studied the microstructure and corresponding properties of the brazed
diamond grit over a steel substrate using Ni-Cr-P filler metal, Figures 7 and 8. Within the interface
domain of diamond and the brazing alloy zones, A and B in Figure 7a,b, (marked with the white
arrows), were selected for a study. Zones A and B are identified as (i) the reaction layer of the brazing
alloy, and (ii) the reaction layer of diamond, respectively. The eight spots (marked as 1 through
4, and 5 through 8 in Figure 8a,b, respectively, were analyzed by EDX (energy dispersive X-ray
spectroscopy), Tables 1 and 2. From this study, we learn that the cross-diffusions of Ni, Cr and Fe
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between the brazing alloy and steel substrate occur, which will be discussed in more detail below.
Moreover, the experimental results show that the interface reaction layer and the diamond gravel were
within the well wetted area, so that the reaction layer has produced a high-strength bonding.
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Figure 8. SEM photograph of (a) interface between diamond and brazing alloy and (b) interface
between brazing alloy and steel substrate [21]. Reproduced with permission from Journal of Alloys
and Compounds, Elsevier, 2009.

Table 1. Chemical compositions (%) by EDX from different locations in Figure 7a.

Points
Elements

Cr Ni Fe C P

1 0.2 - - 99.8 -
2 0.8 - - 99.2 -
3 70.9 2.6 3.5 23.0 -
4 7.6 61.8 20.2 - 10.4

Table 2. Chemical compositions (%) by EDX from different locations in Figure 7b.

Points
Elements

Cr Ni Fe C P

5 7.8 66.2 15.5 - 10.5
6 6.5 63.5 22.5 - 7.5
7 7.1 61.6 20.4 - 10.9
8 - - 100 - -
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Trenker and Seidemann [22] have reported bonding of the substrate and diamond using both not
disclosed nickel-based brazing filler metal and not disclosed nickel-based active brazing filler metal.
This kind of bonded high-temperature brazing diamond tool has a much better performance than an
electroplating-bonded diamond tool. In terms of initial grinding performance, a high-temperature
brazed diamond tool is over three times better than an electroplated tool (expressed in terms of the
stock removal magnitude, as shown in Figure 9) [22]. Moreover, the service life of an assembled
tool is three times longer than that of an electroplated tool. The grinding performance of a brazed
diamond tool is better because the brazed tool has a larger free surface for chipping and grinding
between the diamond grits and the workpiece. Moreover, the brazed tool has more intergranular space,
which makes chip removal easier [23].

Metals 2018, 8, x FOR PEER REVIEW  8 of 14 

 

Trenker and Seidemann [22] have reported bonding of the substrate and diamond using both 

not disclosed nickel-based brazing filler metal and not disclosed nickel-based active brazing filler 

metal. This kind of bonded high-temperature brazing diamond tool has a much better performance 

than an electroplating-bonded diamond tool. In terms of initial grinding performance, a high-

temperature brazed diamond tool is over three times better than an electroplated tool (expressed in 

terms of the stock removal magnitude, as shown in Figure 9) [22]. Moreover, the service life of an 

assembled tool is three times longer than that of an electroplated tool. The grinding performance of 

a brazed diamond tool is better because the brazed tool has a larger free surface for chipping and 

grinding between the diamond grits and the workpiece. Moreover, the brazed tool has more 

intergranular space, which makes chip removal easier [23]. 

Xiao et al. [24] used Cr powder and AgCu alloy as intermediate materials to form a brazing filler 

metal to braze a steel substrate and diamond. They found that CrC forms between the brazing filler 

metal and diamond. FexCryC forms between Cr and steel substrate [25,26]. The addition of Cr 

enhances the bonding strength at the interfaces of both (i) diamond and brazing filler metal, as well 

as (ii) steel substrate and brazing filler metal. The EDS spectrum of the intermediate product is shown 

in Figure 10. The Cr energy spectrum peak indicates that Cr diffuses into the diamond. XRD analysis 

shows that Cr3C2 forms as an intermediate product. A Cr-rich layer, mainly composed of Cr-

containing carbide, is formed as well. The Fe energy spectrum peak means that the alloy layer reacts 

with the steel matrix to form FexCryC. As a result, this brazing process ensures a good bonding 

strength. 

 

Figure 9. Comparison of stock-removal with electroplated and brazed pencil grinders [22]. 
Figure 9. Comparison of stock-removal with electroplated and brazed pencil grinders [22].

Xiao et al. [24] used Cr powder and AgCu alloy as intermediate materials to form a brazing
filler metal to braze a steel substrate and diamond. They found that CrC forms between the brazing
filler metal and diamond. FexCryC forms between Cr and steel substrate [25,26]. The addition of Cr
enhances the bonding strength at the interfaces of both (i) diamond and brazing filler metal, as well as
(ii) steel substrate and brazing filler metal. The EDS spectrum of the intermediate product is shown in
Figure 10. The Cr energy spectrum peak indicates that Cr diffuses into the diamond. XRD analysis
shows that Cr3C2 forms as an intermediate product. A Cr-rich layer, mainly composed of Cr-containing
carbide, is formed as well. The Fe energy spectrum peak means that the alloy layer reacts with the
steel matrix to form FexCryC. As a result, this brazing process ensures a good bonding strength.

The main phenomenon involving an interfacial bonding mechanism for steel and diamond,
using a Ni-Cr alloy, is the cross-diffusion of Ni, Cr, and Fe between the brazing alloy and the steel
substrate [21]. Figure 11 represents a simplified diagram of the interface bonding mechanism of the
Ni-Cr alloy used for brazing diamond and a steel substrate. A brazing alloy reaction layer forms
mainly because the graphitized C infiltrates the liquid alloy on the surface of the diamond, and then
forms two interface compounds, Cr3C2 and Cr7C3. Due to the high concentration of C in the area
adjacent to the diamond, Cr3C2 nucleates in the region near diamond and grows in the direction of the
liquid alloy, while Cr7C3 forms in the carbon-depleted region. The proximity of the brazing filler metal
layer to the diamond bonding interface leads to the presence of a larger amount of Cr in that domain.
Cr would concentrate near the surface of the diamond, and reacts with C, subsequently forming Cr3C2

and Cr7C3. In turn, this becomes the key factor in achieving solid bonding [27–29].
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In addition to the formation of the brazing alloy reaction layer, a diamond reaction layer is also
formed at the interface. At the brazing temperature, the diamond surface features many crystal defects,
such as dislocations. These defects are energetically high, preferentially graphitized, and continue to
dissolve into the filler metal. Cr reacts with the graphitized C and the resulting Cr3C2 permeates into
the crystal defects, forming a diamond reaction layer. The main components of the diamond reaction
layer include graphitized C and an infiltrated Cr3C2 [30].

The degree of diamond graphitization is a topic of a particular interest and needs to be studied
more closely. Too much graphitization causes thermal damage to diamond, but too little graphitization
affects the quality of the joint [31,32]. Another major cause of the diamond thermal damage is brazing
temperature that is too high. Therefore, selecting a proper set of alloying elements, decreasing the
melting point of the brazing temperature segment, and inhibiting the transformation of diamond into
graphite (to a certain degree) can reduce the thermal damage of diamond. This may lead to a joint
performance improvement, which is yet another important research direction.
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4. The Research Status of PBFMs for Impregnated Diamond Tools

Previous sections describe the research status of the PBFM for monolayer brazed diamond tools.
However, at present these tools still have a low market share (the monolayer brazed diamond blade
tends to wear and tear). Impregnated diamond tools occupy a considerably larger proportion of the
market (the market share may reach more than 85%). Impregnated diamond tools are extensively used
in mineral mining, oil drilling, coal mining, geological drilling, stone processing, and the architectural
ceramics industry [33]. The performance of impregnated diamond tools, and in particular the service
life of a diamond cutting bit, depend largely on the performance of the PBFM used for the tool
assembly [34]. Powder filler metals for impregnated brazing diamond tools have very good prospects
in novel applications.

As already emphasized, there are two ways of manufacturing impregnated diamond tools using
PBFMs. One is directly mixing PBFM (called prealloy powders in the diamond tool industry [35–38])
and the diamond bit, and then sintering into a tool bit. By brazing the tool bit to the metal substrate,
one obtains an impregnated diamond tool. The other way is by applying a PBFM to the interface
between a cutting bit and a substrate before brazing. The braze is called as the paste brazing filler
metal [5].

Prealloy powder is added to the powder of a tool bit. It, as a “binder”, facilitates the diffusion
bonding and brazing of diamond by powder sintering [39]. Such filler metal mainly uses active
prealloy PBFMs, including strong carbide-forming elements such as Ti, Cr, and V [40]. These elements
are first smelted into prealloy, involving metals like Cu, Sn, and Ni, and then made into a reactive
PBFM through atomization [41]. The melting temperature of this reactive prealloy powder (i.e.,
a powder active brazing filler metal) matches the sintering temperature of the diamond bit. The hot
pressing sintering process is a diffusion bonding and brazing process, while the cold pressing sintering
process is a brazing process [42]. Both hot and cold pressing processes can achieve the reaction of
high melting point elements with diamond at a medium temperature, and form a braze-welding
joint. The bonding strength of the braze-welding joint with diamond is higher than the mechanical
holding strength (the maximum force at which the diamond drill bits do not fall off). In the process
of grinding, diamond has a large height of protrusion and a high cutting efficiency. Prealloy powder
for impregnated diamond tools improves the utilization rate of diamond, and prolongs the service
life of diamond tools. On the other hand, prealloy PBFM is beneficial to the homogenization and
manufacturing automation of the tool bit components. A diamond bit has a superior quality stability
compared with the tool bit produced with a single metal PBFM [43].

The bonding mechanism of an impregnated diamond tool at the brazing interface can be
interpreted as follows: At the bond interface, a chemical reaction forms columnar and acicular
structures of carbide, achieving a high-strength metallurgical bonding between the brazing filler
metal layer and diamond [44]. For example, in the case of the Ni-Cr brazing filler metal, the product of
the chemical reaction appears to be CrxCy (mainly Cr7C3, and a small amount of Cr3C2) [45,46].

Reactive prealloy brazing filler metal powder has resolved several technical drawbacks, e.g.,
the loss of low melting point elements in the brazing filler metal, a difficulty in achieving the
high melting point elements playing an assigned role, a volatility of high vapor pressure elements,
a structural segregation of components, and ultimately an instability in the bonding strength. However,
there are still many problems for the brazing of impregnated diamond tools to be resolved, e.g.,
a brazing diamond surface can feature cracks [47]. The cracks and/or crushes stem from the high
brazing temperature of the Ni-Cr brazing filler metal used in brazing impregnated diamond tools.
Moreover, considerable differences between the thermal expansion coefficients of diamond and
brazing filler metal are evident [48]. As a result, high residual stress appears in the cooling segment
of the brazing cycle, hence causing cracks of the brazing filler metal and diamond layer domain.
Current research of impregnated diamond tools brazing mainly focuses on the numerical simulation of
thermal stresses [49–51]. In these studies, the intermediate carbide layer is not prominently considered.
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Therefore, consideration of the thermal stress involving the carbide layer will become a promising
objective of impregnated diamond tool brazing investigation.

Paste brazing filler metal is used for brazing diamond tool bits following brazing automation
requirements. Compared with the flaky brazing filler metal, the paste PBFM has the advantage of
convenient implementation of automation. Moreover, the powder or paste brazing filler metals can be
flexibly added to various forms of brazing gap designs. Furthermore, the filler metal dosage can be
flexibly controlled.

Finally, with the expansion and deepening of studies of PBFM, yet another advantage in the
brazing of diamond tools is found to be the novel application of a high Sn-alloyed Ag-Cu-Zn-Sn
brazing filler metal, in the form of a PBFM [52–54]. As it is difficult to roll the Cd-free brazing filler
metals with high tin content, such brazing filler metals are difficult to make into sheet strips, limiting
their applications [55]. Still, the increased use and promotion of PBFM has widened the composition
range of silver-copper-zinc-tin brazing filler metals, broadening their applications as well.

5. Conclusions

PBFMs are characterized by accurate dosage and high brazing efficiency. Their application
characterizes an easy implementation in automated production. In recent years, researchers have done
a wealth of research on monolayer brazing filler metal for diamond tools applications. The studies
of CuSnTi PBFMs indicate that the mechanism of brazing diamond involves the reaction of Ti with
C to form TiC. However, the resulting TiC formations are brittle. Refinement of the TiC grains is
needed to avoid brittle joints. A Ni-Cr PBFM is a high-temperature brazing filler metal which can be
used on workpieces that are highly loaded. The main phenomenon involving the interfacial bonding
mechanism is the cross-diffusion of Ni, Cr, and Fe between the brazing alloy and steel substrate.
However, at high temperatures, diamond will be graphitized. Reducing the melting point of a brazing
filler metal by adding adequate alloying elements would be needed, so that the transformation of
diamond to graphite is inhibited. It should be pointed out that the brazing filler metal for impregnated
diamond tools mainly comprises active prealloy PBFMs. The research is primarily limited to thermal
stress predictions. However, thermal stress studies must also involve the formation of an intermediate
carbide layer.
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