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ABSTRACT 

Title: Effects of Surface Application of Dairy Manure on the 
Infiltration Rate and Quality of Surface Runoff 

Dairy manure was surface spraad on 12 ft x 12 ft plots on an estab­

listed fescue pasture in the summer and fall of 1981 and 1982. The soil 

was a Maury silt loam. A simulated·rainfall was applied to plots to test 

the effects of nitrogen loading rate (75, 150, and 300 #N/acre) time delay 

between manure application and the simulated rainfall events (0, 3, 6, 24, 

48, 96 hours and a 120 hour test repeated on Ohr plot with 300 #N/acre), 

and type manure (semi-solid - 1981 and liquid - 1982) on the concentrations 

of pollutants in the surface runoff. The pollutants measured were COD, 

TSS, FSS, VSS, TS, FS, VS, N03, NH4 , N, P, and K. The simulated rainfall 

rates were 3.42 in/hr for 1981 and 4.02 in hr for 1982. The average field 

infiltration rate for the non-manured test plots were 3.40 in/hr in 1981 

and 4.42 in/hr in 1982. 

The infiltration rates of the manured plots were reduced by 5.8 to 15 

percent for semi-solid manure and 23 to 31 percent for liquid manure for 

zero hour time delay plots. The infiltration rates increased to within 

92 percent of the control plots after 120 hour time delay. The pollutant 

yields.increased with nitrogen loading rate except for FSS yield which 

remained below the control plot yields.. The N03 yields was below the con­

trol plot except for 300 #N/acre plots. The reduction in pollutant yields 

with increased time delay was foup.d to average 46 and
0

76 percent for the 

24 and 48 hour time delays for semi-solid manure and 75 and 94 percent· for 

liquid manure. The yields for TSS, FSS and VSS for liquid manured plots 

did not exceed the control plot yields until after the 48 hour time delay. 

Descriptors: Agricultural runoff,* animal wastes*, manure non-point 

pollution sources*, pollution load, soil treatment. 
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CHAPTER I 

INTRODUCTION 

Application of animal manure to the land has long been an accepted 

means of·waste disposal. However, the advent of close confinement 

livestock feeding operations with increased concentrations of manure 

have raised concerns in Kentucky about the environmental degradation of 

imrface and ground waters in th·e handling and disposal of animal wastes 
10 

that are produced. Approximately 38 million tons (3.5 x 10 kg) of 

manure are being produced annually by domestic ·animals in Kentucky with 

2 billion tons (1.8 x 1012 kg) produc~d nationally. 

Presently animal waste from daily operations in Kentucky is stored 

and disposed of primarily in the solid and semisolid forms. High solids 

liquid manure application methods continue to increase in popularity on 

dairy farms as well as most swine operations. These alternative forms 

of manure handling allow management flexibility in utilization of manure 

as a fertilizer substitute. However, the applications of manure on land 

can increase the potential for pollution of surface waterways and 

groundwater if the site is inadequate to handle the manure application 

rate or if proper management methods are not followed. 

Transport of potential pollutants from a manured field during a 

precipitation runoff event is by either attachment to suspended sediment 

particles or is in the soluble form in the runoff water. It is well 

known that clay soils and·organic fractions of sediments have active 

surfaces that can react with an array of chemicals. The pollutants that 

are absorbed than have the potential to be carried in the runoff. Also, 

chemicals can go into solution without being attached to particles and 

can then be transported in the runoff water. Walter et al. (1979) 

states that eroded soil and soluble chemicals in the runoff are the 

principle sources of potential stream water pollutants. Wadleigh (1968) 

reports that approximately 4.4 billion tons (4 x 10
12 

kg) of sediment 
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per year are deposited in U.S. streams. He also estimated that about 

2.7 million tons (1.6 x 1010 kg) of phosphorus as soluble forms in the 

runoff water or as absorbed or attached fractions of sediment are washed 

into surface waters annually. Recently, the EPA has estimated that in 

eight southeastern states, which included Kentucky, the daily load to 

streams from nonpoint agricultural sources may inc_lude 1400 tons (1.24 x 

107 kg) of total organic carbon, 160 tons (l.42 x 106 kg) of nitrogen, 
. 5 

and 60 tons (5.33 x 10 kg) of phosphate (P04) from fertilizer and 

organic wastes. Therefore, it is reasonable ·to assume that with increased 

surface application of manure, the potential for higher concentration of 

pollutants in the runoff will also increase. 

Passage of the 1972 Federal Water Pollution Control Act Ammend­

ments, Public Law (PL) 92-500, mandated the control of nonpoint source 

pollution. Agricultural practices are a major contributor to both 

surface and subsurface water pollution. To understand why most agri­

cultural-practices are considered nonpoint sources of pollution it will 

be helpful to define what is meant by point-and nonpoint sources. The 

term nonpoint source is descriptive of the manner in which pollution 

enters water, a source lacking a high degree of discreteness. On the 

other hand, a point source is any discernable confined conveyance, 

including but not limited to any pipe, ditch, conduit, well, container, 

concentrated animal feeding operation, or floating craft from which 

pollutants are or may be directly discharged into the receiving waters. 

Under section 304(e) of PL 92-500, runoff, from cropland and pasture on 

which manure is spread, is considered a nonpoint source of pollution 

which is required to be controlled. For this to be accomplished, sec­

tion 208 and section lOl(a) of the Act established a means for develop­

ment of long term management plans to control potential nonpoint pol­

lution sources. 

The major constituents in runoff waters which are considered for 

pollution analysis are biochemical oxygen demand (BOD), chemical oxygen 

demand (COD), nitrogen (inorganic and organic forms), dissolved oxygen 
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(DO), total solids (TS), suspended solids (SS), dissolved solids (DS), 

and fecal coliforms, If levels of one or more of these pollutants in 

water analyzed near -an agricultural source exceed regulatory limi_ts, the 

Environmental Protection Agency (EPA) must, by law, either investigate 

the situation and determine possible solutions or eliminate the source 

by shutting down the operation. Therefore, it is imperative that farmers 

become aware of pollution potential from their lands. 

Several research projects have dealt directly with the pollutant 

runoff problem. Mccaskey;. et al. (1971) and Overcash (1976) noted that 

different application rates of manure yield varying degrees of pollutant 

runoff concentration. More sp.ecifically, they found that plots re­

ceiving low rates of applied dairy wastes did not contaminate surface 

water as much as plots 

it has been shown that 

receiving higher rates of application. Further, 

varying 

lutant yield in runoff water. 

waste management schemes can alter pol­

Observations, made by Timmons and Holt 

(1973), indicated that nutrient losses from cropland were highest when 

there was no incorporation of applied fertilizer, intermediate with 

fertilizer broadcast on plowed ground and then disked, and least when 

the applied fertilizer was plowed under and disked before simulated 

rainfall events. Wendt and Corey (1980) hypothesized that management 

practices which reduce so_il ero.sion and runoff, such as conservation 

tillage, would reduce the pollution potential of runoff from cropland 

and therefore would reduce the overall environmental impact of agri­

culture on water quality. 

A project completed by the Agricultural Engineering Department of 

the University of Kentucky, (Ross et al. (1978)),.has shown that in­

jection of manure into the soil essentially eliminates pollutants in the 

runoff from test plots when compared to surface application of liquid 

dairy manure on 3 to 6% slopes. For example, the concentration of COD · 

in the first liter of runoff from sodded 9 ft. x 9 ft. plots receiving a 

surface application of liquid dairy manure, followed immediately by 

simulated rainfall, was 72-fold greater than the COD in the first liter 

of runoff from plots on which the manure was injected into the soil to a 
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depth of 6 inches. Likewise, the total COD yeild in the first 100 

liters of runoff from the 9 foot square plots was 17 times greater for 

surface applied plots than for 6 inch injected plots. These results show 

that injection is extremely effective in improving the quality of sur­

face runoff. The same study indicated that runoff from plots receiving 

surface applications of liquid dairy manure was affected by the time 

delay between the manure application.and the simulated rainfall. The 

first liter of runoff during a simulated rainfall innnediately following 

application of manure to sodded plots contained approximately 7200 PPM 
5 of COD, 450 PPM of N, .7300 PPM of TS, 6 x 10 colonies of fecal coliform 

per 100 ml. A 24 hour delay between the time of liquid manure appli­

cation on the rainfall event reduced the concentration of these water 

quality indicators by 80% to 97%. These results show the effectiveness 

of reducing pollutants in runoff by applying manure to soils at time 

when rainfall is not expected for one or mor_e days. A regression 

analysis of the data in this study indicated that pollutant concen­

trations of COD, total N, ·and total solids; taken as a percentage of- the 

total pollutant applied, in the runoff, from plots receiving surface 

application of liquid manure and was a function of the total quantity of 

runoff from the plots. More specifically they found the following 
2 relationships with corresponding regression coefficients (r ). 

COD 0.4958 R-0· 6838 2 = r = 

N 0.5788 R-0· 6726 2 = r = 

TS 0.5177 R-7962 2 = r = 

where, 

COD= Percent of COD applied/liter of runoff 

N =·Percent of N applied/liter of runoff 

TS= Percent of TS applied/liter of runoff 

R = Liters of runoff. 

0.95 

0.97 

0.91 

(1) 

Sharpley, et al. (198la, b, c), Chien and Clayton (1980), and 
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Westerman and Overcash (1979, 1980) observed and predicted similar re­

sults. Sharpley and his colleagues found an inverse linear relationship 

between soluble P concentrations and the log of the sediment concen­

tration in the runoff from several cropped and grassed watersheds. This 

relationship existed over a wide range of sediment concentrations. 

Similar results were found in different watersheds with the same soil 

type. Chien and Clayton used a modified Elovich equation to describe 

phosphate released from and sorption to soils. The equation consisted 

of two first-order kinetic reactions that successfully described data as 

a straight line for the entire reaction time involved. Westerman and 

Overcash developed regression fits of a simple p·ower function to estab­

lish total nutrient loss during a rainfall event from plots with surface 

applied waste. The equation was of the form M = BQA where Mis the 

average concentration of the pollutant under study, Q is the runoff 

volume collected, and A and B were fitted constants. 

Research.has also been conducted showing the effects of time delays 

from manure application to a rainfall event on the percentage of the 

applied pollutants found in the runoff. Reddy, et al. (1979a, b), 

Reddy, et al. (1980a, b), Khaleel, et al. (1979a, b, c), Reese, et al. 

(1981), Steenhuis, et al. (1979), Frere, 1975 and others have shown that 

manure decomposition by microbial action in the soil and weathering 

follows a first-order decay relationship as it applies to time from the 

initial manure application where the runoff pollutant concentrations are 

shown as a percentage of the total pollutant collected during the rain­

fall event which is a function of the amount of pollutant applied to the 

test area. It is reasonable to assume from the above observation, that 

if sufficient time is allowed to ellapse between manure application and 

a rainfall event, pollutant potential will be reduced in the runoff. 

Thus time delay can be considered a management practice useful in re­

ducing agriculture as a pollutant contributor. 

Therefore, the purpose of the research project for which results 

are presented in this report was to measure and to evalute quantit­

atively the pollutants' concentration in runoff generated by a simulated 
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rainfall event as affected by the form of the dairy manure applied, the 

nitrogen loading rate and the time delay between manure application and 

the rainfall event, The plots are on an established pasture planted 

with fescue grass. The specific objective of this project are: 

1. To assess the statistical relationship(s) between the 

total pollutant yield in the runoff and nitrogen 

loading of dairy manure. on the p'iots, form of the dairy 

manure (semi~solid or liquid), and the time delay 

between manure application and the simulated rainfall 
event. 

Also, presented in this report is an objective developed during the 

research phase: 

2. To assess the saturated or steady state infiltration 

rate of the manured plots during a simulated rainfall 

event as affected by the same parameters cited in 

objective 1. 
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CHAPTER II 

RESEARCH PROCEDURES 

Introduction 

The effects surface application of dairy manure that have on runoff 

water quality and infiltration rates of an established pasture were 

tested using a series of experiment_s described in this chapter. Runoff 

was collected from a 12 foot square (13.378 m2) field plot on which 

dairy manure had been surface applied. The variables that were tested 

to determine the effects manure application on runoff water quality 

were: form of manure, the nitrogen loading rate, and time delay to 

simulated rainfall. A runoff hydrograph was developed during the 

simulated rainfall test and samples were taken for later analysis of 

pollutants. Also, experiments were conducted to obtain the soil mois­

ture characteristics which were required inputs for infiltration analysis. 

Finally, the collected data was statistically analyzed using techniques 

found in SAS (Statistical Analysis System) (1979). 

Plot Design and Location 

The runoff test plots were enclosed with sheet metal borders on 

three sides to form 12 foot square plots as illustrated in Figure 1. 

These plots were set on an established pasture hillside located on the 

University of Kentucky Coldstream Farm near Lexington. The grass was 

primarily fescue. Time delay plots corresponding to a given nitrogen 

loading rate and replication were grouped together in the test area. The 

placement of the plot groups for the various nitrogen loading rates and 

the replications were selected randomly on the slope. Plot locations 

for each test year are presented in Figure 2 (1981 plots, using semi­

solid manure) and Figure 3 (1982 plots, using liquid manure). Tables 1 

and 2 identify the experimental conditions for plots shown in Figures 2 

and 3, respectively. Also shown in these Figures is a topographic 
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TABLE 1. 1981 PLOT IDENTIFICATION CORRESPONDING TO FIGURE 2 

Nitrogen Loading Time Delay 
Plot Number Date Rate Before Rainfall Replication 

(# N/acre) (Hrs) 

1 • 75 48 1 
2 7/10/81 75 . 24 1 
3 7/9/81 75 0 1 
4 7/7/81 0 0 1 
5 7/20/81 150 0 1 
6 7/20/81 150 3 1 
7 7/20/81 150 6 1 
8 8/14/81 0 0 2 
9 7/31/81 300 48 1 

10 7/30/81 300 24 1 
11 7/29/81 300 0 1 
11 8/5/81 300 240 1 
12 7/22/81 150 48 1 
13 7/23/81 150 72 1 
14 7/24/81 150 96 1 
15 8/25/81 150 24 2 
16 8/24/81 150 6 2 
17 8/24/81 150 · 3 2 
18 8/24/81 150 0 . 2 
19 8/21/81 75 72 2 
20 8/20/81 75 48 2 
21 8/18/81 75 0 2 
22 10/12/81 150 3 3 
23 9/29/81 0 0 4 
23 10/12/81 150 0 3 
24 10/2/81 300 48 2 
25 10/1/81 300 24 2 
26 11/4/81 0 0 3 
26 9/30/81 300 0 2 
26 10/9/81 300 240 2 
27 8/26/81 150 48 2 
28 8/31/81 150 192 .2 
29 10/16/81 150 96 3 
30 10/14/81 150 48 3 
31 10/13/81 150 24 3 
32 10/12/81 150 6 3 
33 10/21/81 75 0 3 
34 10/22/81 75 24 3 
35 10/23/81 75 48 3 
36 • 
37 10/30/81 300 48 3 
38 10/29/81 300 24 3 
39 10/28/81 300 0 3 
39 11/6/81 300 240 3 

*Plot 1dent1ficat1ons without a date specified were not run. 
10 
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TABLE 2. 1982 PLOT IDENTIFICATION CORRESPONDING TO FIGURE 3 

Nitrogen Loading Time Delay 
Plot Number Date Rate Before Rainfall Replication 

(# N/acre) (Hrs) 

1 6/26/82 0 0 1 
2 7/12/82 75 0 1 
3 7/13/82 75 24 1 
4 7/14/82 75 48 1 
5 7/27/82 150 24 1 
6 7/26/82 150 6 1 
7 7/26/82 150 3 1 
8 7/26/82 150 0 1 
9 8/3/82 75 0 2 

10 8/12/82 300 0 1 
10 8/17/82 300 120 1 
11 8/13/82 300 24 1 
12 8/14/82 300 48 1 
13 * 
14 8/4/82 75 24 2 
15 9/9/82 75 48 3 
16 9/8/82 75 24 3 
17 9/7/82 75 0 3 
18 8/18/82 300 0 2 
18 8/23/82 300 120 2 
19 8/19/82 300 24 2 
20 8/20/82 300 48 2 
21 9/20/82 150 6 2 
22- 9/20/82 150 3 2 
23 9/3/82 0 0 2 
23 9/20/82 150 0 2 
24 9/21/82 150 24 2 
25 9/22/82 150 48 2 
26 9/23/82 150 72 2 
27 10/21/82 0 0 3 
28 9/29/82 300 0 3 
28 10/4/82 ·300 120 3 
29 9/30/82 300 24 3 
30 10/1/82 300 38 3 
31 10/5/82 150 0 3 
32 10/5/82 150 3 3 
33 10/5/82 150 6 3 
34 10/6/82 150 24 3 
35 10/7/82 150 48 3 
36 * 150 96 3 

*Plot identifications without a date specified were not run. 
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representation of the natural contours of the test area. This repre­

sentation indicates a variation of the slope in the range of 4 to 8 

percent on the test field. 

Borders were driven at least 3 inches into slits cut into the sod 

to divert runoff water from manured plots during naturally occurring 

natural rainfall events and runoff from the simulated rainfall falling 

outside the plot borders. Also the borders served to retain simulated 

rainfall within the borders so that it coµld be collected. 

A trough located on the downslope edge of the plot was used to 

collect runoff for pollutant analysis and runoff rate determination. A 

detailed description of the collection devices used in this process 

follows in a later section. Validation of the plot borders effective­

ness was accomplished by flushing several barrels of water upslope from 

the plots. The borders proved effective in diverting runoff from the 

enclosed area using this procedure. 

Runoff from test plots was collected in a covered trough which 

spanned the entire downhill end of the plot. A ditch was dug across the 

lower end of the plot to hold the trough. Care was taken to make a 

smooth, straight cut at the upper edge of the plot. A standard sod 

cutter was used to accomplish this task. The method used in·preparing 

the ditch and trough set-up is shown in Figure 4. Sod was removed from 

a 1 foot by 14 foot section of ground parallel to the contour of the 

hill side. Soil was removed from this exposed area to form a 1 foot 

deep ditch. The upper edge of the ditch was made straight and smooth 

using a sod cutter. To enable the trough to be placed into the ditch, a 

slit was cut into the upslope smooth edge of the ditch approximately 2 

inches below the soil• s surface. The trough was placed in the·-di tch 

with the lip being slid into the slit as illustrated in Figure 1. This 

ensured that collection of runoff was limited to the surface layer above 

the troughs leading edge. 

Manure Application 
Manure for the experiments was obtained from the University of 

Kentucky's Coldstream o·airy Farm on which the experimental test plots 
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were located. The dairy herd is made up of Holstein and Jersey cows and 

are fed a typical dairy ration on a concrete open lot. Manure was in 

two forms: semi-solid (15-25% solids) scraped from the concrete floor 

and liquid manure (4-7% solids) obtained from an above ground liquid 

manure tank. The plots with semi-solid manure were tested from July to 

October 1981 and the liquid manure plots were tested from July to October 

1982. Well mixed grab samples of the dairy manure were taken to d_eter­

mine to.tal Kjeldahl nitrogen (_Standard Methods, 1975) to determine the 

amount of semi-solid of liquid dairy manure that was applied to a test 

plot to obtain a nitrogen loading rate of 75, 150, or 300 pounds per 

acre. The total nitrogen concentrations were found to be 3.55 pounds 

nitrogen per 1000 pounds (wet weight) for semi-solid manure and 2.13 

pounds nitrogen per 1000 pounds (wet weight) of liquid dairy manure. 

The time delay between manure application to the plot and the simulated 

rainfall event varied with nitrogen loading. The time delays were 0, 

24 and 48 hours for 7 5 pounds nitrogen per acre; and O, 3, · 6, 24, 48 and 

96 hours for 150 pounds nitrogen per acre; and 0, 24, 48, 96 hours with 

a repeat rainfall simulation onto the O hour plot at 96 hours for the 

300 pound nitrogen per acre plots. Three replications were run. 

Manured plots onto which the delayed simulated rainfall was to be 

applied at 24 hours or later were covered with a 14 foot square wooden 

frame covered with 6 mil clear plastic, as illustrated in Figure 5. The 

covers were angled to prevent condensation falling on the plots and 

elevated to allow aeration of the manure and soil for natural drying. 

Semi-solid Manure was collected directly from a feedlot floor 

located on the Coldstream Dairy using a front-end loader. The amount of 

manure needed for each test plot was determined for each nitrogen loading 

rate. From the tests of the nitrogen content of the manure. The collec­

ted manure was weighed for each application rate before.it was spread 

onto the time delay plots for a given nitrogen loading and replication. 

The technique used in spreading the semi-solid manure consisted of 

manually applying the weighed manure samples to the surface of each plot 

making sure of a uniform coverage to simulate that obtained from a 

15 
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standard manure spreader. After spreading was completed, an extra 

amount of manure was applied to a wire screen box located behind each 

test plot as illustrated in Figure 6. These samples were collected for 

analysis just prior to a simulated rainfall event for each time delay 

plot to determine the pollutant constituents in the manure as it existed 

on the plot at the beginning of the rainfall event. 

Liquid Manure was obtained from one of two 82, 000 gallon covered 

above ground storage tanks located on the Coldstream Dairy Farm. The 

manure and feed floor runoff were collected over a two month period 

prior to the testing period. The manure tank was agitated and manure 

was drained from this tank into a holding pit where it was thoroughly 

mixed by a chopper.pump. The manure was screened through two screens 

(one inch and one-quarter inch) of.·,hardware wire mesh to eliminate straw 

and large wood chips, which would clog the centrifugal pump used for 

spreading the manure. The liquid manure was weighed out for each plot 

for a given nitrogen loading rate based on a total nitrogen test. The 

weighed out manure was spread on the soil· surface by the device il­

lustrated in Figure 7. The splash plate on the outlet side simulated 

distribution from a liquid manure tank with a splash plate. Samples of 

the manure spread onto the plots were taken before distribtuion on the 

test plots to determine the actual nitrogen loading rates and to analyze 

the samples for all the pollutant constitutents. All of the time delay 

test plots were covered with the manure for a given nitrogen loading and 

replication before the runoff tests began. 

Control Plots were set aside each year on which no manure was 

applied. Each year, three to four plots, distributed throughout the 

field were used to establish the background concentrations of the pol­

lutants under study. On the average, one plot was tested each month. 

Initial Soil Moisture of each test plot at the time of manure 

application was near field capacity. A city water source was utilized 

to saturate the plots for 10 to 24 hours prior to manure application .. In 

addition, plots at field capacity would give a worst case condition of a 

precipitation runoff event since the time to surface ponding of the soil 

would be near the minimum and as a result, maximum pollutant concentrations 
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would likely be observed. Further, the earliest that a farmer can 

spread manure is when the fields are at or below field capacity. 

Rainfall Simulation Apparatus and Calibration 

The rainfall simulation apparatus used for these tests is similar 

to that presented by Hirschi, et al. (1981) and Williams, et al. (1978). 

The rainfall simulator provides the kinetic energy intensity, raindrop 

size, and raindrop fall velocity similar to natural rainfall events •. 

The rainfall simulator used throughout the experiments is pictured in 

Figures 8 and 9. The rainfall pattern produced by this rainfall simulator 

is shown in Figure 8. Not shown in the diagrams is a screen material 

that completely enclosed the rainfall simulator to reduce wind drift of 

the simulated rainfall during testing. 

Rainfall rates were determined using two methods. First, a relative 

rainfall rate was established from three standard rain gauges placed 

inside the plot during actual testing. Second, rainfall rates were 

obtained by noting the average number of pulses the rainfall simulator 

made per minute. A pulse was considered to be one sweep of the simulated 

rainfall over the plot area (Note: Hirschi, et al., 1981). Because pulse 

data was considered to be moTe reliable in determining rainfall rates, 

calibration of the field data was achieved by applying rainfall to a 12 

foot square plastic plot cover (similar in design to Figure 5) for a 

given time period at several pulse rates covering a range of rainfall 

rates and pulse rates. The slope of the plot cover was sufficient to 

give zero storage of surface water so that all the water applied could 

be collected. The collected water volume per total time was determined. 

Several replications were used for the calibration to establish the 

inches of rainfall in an hour for various pulse rates. 

The average simulated.rainfall rate applied to the plots of semi­

solid manure in 1982 was 3.42 inches/hour and a rate of 4.02 inches/hour 

was applied to liquid manure plots in 1982. The increased rainfall rate 

in 1982 was necessary because the average infiltration rate of the test 

field was found to increase from 2.08 inches/hour to 3.48 inches/hour. 
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Since the longest duration of time for a simulated rainfall test on a 

plot is dictated by the shortest_time between successive time delay 

plots (3 hours for the 150 lbs N/acre plots), the simulated rainfall 

rate had to.be increased in 1982 so that all the plots were comparable. 

The details of the infiltration rates are noted in the Data and Results 

section. 

Runoff Rate Determination and Pollutant Sample Collection 

The runoff collection trough was designed to force collected runoff 

water from the bordered test plot in the trough, to the middle. At this 

point, a self priming marine utility pump was attached as indicated in 

Figure 1. The level of runoff water in the collection trough was main­

tained by a float and switch.mechanism that activated the marine pump. 

Wh~n approximately one liter of runoff was collected in the trough, the 

float switch would activiate the pump. Runoff water was pumped from the 

trough into a sampling cylinder shown in Figure 10. Located inside the 

cylinder was a float switch mechanism similar to the one found in the 

collection trough. When 1 liter of .runoff water was pumped into the 

sampling device the switch was activated which opened a solemoid valve 

to empty the cylinder and started a timer mechanism that was overriding 

the trough float switch controlling the pump. After the runoff water 

was drained passed the -solemoid valve into either a sampling bottle or 

onto the gound for disposal, the time mechanism deactivated the solenoid 

valve and reactivated the trough float switch and marine pump of the sam­

pling mechanism, thus completing one cycle which was equivalent to one 

liter of runoff from the test plot. 

When the cylinder (sampling device) float switch activated an event 

counter was indexed to count the number of liters of runoff obtained. 

This made possible the collection of samples for chemical analysis after 

selected volumes of runoff. Usually one liter samples were collected at 

counts 1, 20, 40, 60, 100, and 150 liters. Depending upon the infiltration 

rate of the plot being tested, the time span between sampling varied. To 

establish runoff hydrograph data, time was usually recqrded by a wrist 
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watch with the second hand as each liter passed through the solenoid 

valve on the sampling device and at the beginning and end of the rain­

fall event. Once the samples had been collected they were transported 

in ice to the Department of Agriculatural Engineering Analytical Laboratory. 

LABORATORY TEST PROCEDURES 
Runoff water from the test plot was collected in one liter Nalgene 

plastic containers for chemical analysis. The containers were im­

mediately sealed and placed into a sytrofoam cooler filled with crushed 

ice. Once the rainfall ·event ceased, the rainfall simulator was readied 

for the next test plot and soil moisture samples were collected in 

Nalgene plastic containers and placed in ice. This process took approx: 

imately fifteen minutes and once completed, sampies were transported ten 

miles from the Coldstream Dairy Farm research facility to the Agricultural 

Engineering Analytical Laboratory on the University of Kentucky's main 

campus. In the waste laboratory samples were separated into two 500 ml 

Nalgene plastic containers for each collected runoff smaple. These. 

separated samples were stored at just above freezing until analyzed. 

· Each runoff sample was analyzed for chemical oxygen demand (COD), 

nitrogen as nitrate (N0
3
), nitrogen as ammonia (NH3), total Kjeldahl 

nitrogen (TKN), total phosphorus (P), total potassium (K), total sus­

pended solids (TSS), fixed suspended solids (FS), and volatile solids 

(VS). Samples to be analyzed for COD were extracted from containers 

filled with runoff waste water and acidified with concentrated sulfuric 

acid to eliminate further bacterial decomposition. 

used in the analysis of COD during the test period. 

were analyzed using procedures described by Standard 

Two methods were 

In 1981 samples 

Methods, (1975) 

modified for 20 ml samples. During 1982, COD was analyzed using the 

micro COD digestion ·procedures as described in the Hach Company Tech­

nical Information Series - Booklet Number 8 modified to use lab-filled 

Corning 9826-16 (16 x 100 mm) culture tubes with teflon lined screw caps 

and read on a Bausch and Lomb Spectronic 20. Potassium acid phythalate 
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in distilled water at concentrations of 15, 30, 45, 60, 75, 100, 120, 

150, 180, 240, 300, 480, 750, 1000, 1200 and 15oo·ppm was regressed and 

used during 1982 to calibrate the procedure. 

Nitrate and NH3 were analyzed from the original runoff sample 

within three hours of their arrival at the waste laboratory. Eighty 

milligrams of runoff solution was weighed out and allowed to warm to 

room temperature before analysis. Nitrate was analyzed using the known 

addition method with an Orion Nitrate Ion Electrode, Model 92-07 and an 

Orion Digital Ionalyzer, Model 701A .(Orion Manual, 1971). Standardization 

of the ion probe was made using dilluted Orion standards at 1, 10, and 

. 100 ppm of N03 as N with phenyl mercuric acetate as a stabilizer for 

each set of runoff samples. Ammonia was determined using the standard 

curve method with an Orion Ammonia Electrode, Model 95-10 and Orion 

Digital Ionalyzer, Model 701A (Orion Manual, 1974). Standardization of 

the ion probe was made using dillutions of an Orion standard (1000 ppm 
NH

3 
as N). 

Samples to be analyzed for TKN, P, and K were stored at just above 

freezing for periods of l to 3 months before analysis was performed at 

the Agronomy Soils Laboratory located in the Agricultural Science Building 

North on the University of Kentucky's main campus. TKN was analyzed 

using the total Kjeldahl nitrogen method modified for aqueous solutions 

as described by Bradstreet (1965). Titration of the distilled samples 

used a 0.714 N sulfamic acid solution for the nitrogen determination. 

Deionized water was used as a blank for all runoff samples during the 

testing period. Phosphorus was analyzed using 35 ml samples taken from 

digested Kjeldahl nitrogen samples as described in Fiske and Subbarow 

(1925). Using a Technicon, Auto Analyzer I, samples were tested for P 

using the method in the Technicon Auto Analyzer I Manual (1965). Solutions 

of sodi~ phosphate, monobasic, diluted (Na2HP04) in Kjeldahl.blank 

solution to give concentrations of 2, 4, 8, 12, 16 ppm of P was used for 

procedure calibration. K was obtained from the digested samples and the 

sample was filtered through number land number 42 filter paper before 

analysis on a Varian AA-6 Atomic Adsorption which was interfaced with a 

26 



HP 981A calculator. The atomic adsorption apparatus was calibrated 

using dilutions of a standard 1000 ppm K stock solution from Fisher 

Scientific t"o cncentrations of 1, 2, 3, 4, 5 ppm K or 2, 4, 6, 7, 10 ppm 

K. Analysis for TSS, FSS, VSS, TS, FS, and VS used procedures described 

in Standared Methods (1975) for samples that had been stored at just 

above freezing for periods of l to 2 weeks. TSS was analyzed using 

methods 208 D modified for a single 24 hour drying period at 103 to 

105°C. FSS and VSS were analyzed using method 208 G, 3, b, 3) and 4) 

modified-Ito use blank corrections for non-ignited filter disks and a one 

hour residue ignition. TS was analyzed using method 208. A modified for 

a single 24 hour drying period at 103 to 105°C. Finally, FS and VS were 

analyzed using method 208 E, modified for a one hour ignition at 550°C. 

Along with testing of the runoff sample, samples of manures taken 

from the plots and from the manure, were analyzed for all of the pol­

lutants and solids content previously described. To ensure accuracy of 

results of the analyical procedures used for the runoff and manure 

samples, careful attention was taken to follow storage and· analysis 

procedures of Standard Methods (1975). 

FIELD AND LABORATORY SOIL ANALYSIS 
The infiltration and runoff processes are directly related to soil 

physical properties determined from soil samples taken in situ and 

analyzed in the lab. To determine soil moisture from the testing plot 

area, soil samples were taken just before each simulated rainfall event 

started and during 1982 just after the rainfall event ended. Soil 

samples were taken 6 to 7 inches outside the bordered plot area being 

tested. The sample depth was approximately one inch below the soil 

surface. The samples were placed into 500 ml Nalgene plastic containers, 

sealed, and placed into a sytrofoam cooler filled with ice until transported 

to the University of Kentucky's Agricultural Engineering Waste Laboratory. 

Samples were stored for periods of one to three months just above freezing 

until analyzed for moisture content by weight using Methods of Soil 

Analysis (1965) (MSA). 
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Other parameters used in this evaluation of the infiltration and 

runoff rates of soils are the saturated hydraulic conductivity, bulk 

density, ·and saturated moisture content of the soil. Estimates of these 

param·eters were determined by extracting undisturbed soil cores from the 

test plot field on the Coldstream Dairy Farm during 1982 (soil core 

locations shown in Figures 2 and 3) using a 3 inch high, 3 inch diameter 

aluminum pipe in a standard core sample. The extracted soil cores were 

placed in waxed cardboard containers and sealed for transport and storage. 

Saturated hydraulic conductivity was determined by setting the soil 

cores in a device similar to the classical device used by Darcy in his 

annlysis of water flow through a soil medium as illustrated in MSA 

(1965). The method included saturating the cores for 48 hours before 

water was forced through the soil by increasing the head of water to a 

constant level above the top of the core. Once a constant head was 

established, the volume of water collected from the water flow through 

the cores over a thirty minute period was determined. Three replications 

were completed for each core and the saturated hydraulic conductivity 

was estimated using Darcy's classical flow equation. Upon completion of 

saturated hydraulic conductivity tests, the cores were immediately 

weighed on a top loading scale and dried for 24 hours using procedures 

found in MSA (1965) for determination of moisture content by weight. 

Since the cores were at saturate ·before drying, the moisture content 

obtained is the saturation moisture content of the soil. Also, know.ing 

the dimensions of the core being dried, bulk density was determined by 

dividing the volume of the core by the change in weight of the core 

before and after drying. 

Disturbed soil was obtained from the test plot field and analyzed 

for soil moisture cont~nt and matric suction potential. Soil was placed 

in one inch diameter rings on a permeable pressure·plate that could be 
. 

saturated with water for a twenty-four hour period before pressure was 

applied. Tests were replicated using ten soil filled rings at pressures 

of 1, 2, 3, 5, 10, and 15 bars following procedures found in MSA (1965) 

for determination of water retentivity of soil at specifed values of 
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matric potential. After pressure had been applied for forty-eight 

hours, it was released and the.disturbed cores were taken from the 

pressure plate, weighed, and dried to determine moisture content at 

the various pressures. From the data obtained, a moisture-suction 

curve was established to determine the average suction of the soil 

profile and relative hydraulic conductivity for the soil at a known 

moisture content. 
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CHAPTER III 

DATA AND RESULTS 

INTRODUCTION 

Research findings over the last few years has changed much of the 

basic considerations relating to the application of animal waste to 

agricultural land to reduce the pollutants in the surface runoff during 

a rainfall event. Typically, the research conducted used field trials 

on various types of wastes, crops, and land use conditions. Runoff 

pollutant data obtained in this manner was either directly reported in 

the literature, or an attempt was made to statistically analyze the 

data. The most frequent problem with these types of analysis are that 

an extensive data base was not created for a thorough analysis of 

process dynamics or process fundamentals of p.ollutants in the runoff 

water. As a means to eliminate this problem, extensive field trials were 

conducted under. controlled experimental conditions and the results are 

reported in this report. 

This chapter will deal with many of the soil parameters needed to 

evaluate the infiltration process as it is effected by the type of 

manure applied, the nitrogen loading on the test plots, and the time 

delay from the initial manure application until a simulated rainfall 

event is applied to the test plot. The soil parameters which are con­

sidered on each plot are the saturated moisture content, saturated 

hydraulic conductivity, bulk density, matric suction potential, and 

field saturated hydraulic conductivity. All data was statistically 

tested for significance using methods describe~ is SAS (1979), and then 

utilized in evaluating the infiltration process. 

A statistical evaluation of pollutant runoff data from test plots 

with surface applied dairy manure is presented. Runoff samples were 

collected and analyzed for various pollutants as previously described. 

This data was statistically fit to an exponential decay function to 
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evaluate total pollutant carried in the runoff during a rainfall event 

as compared to the total amount of pollutant applied to the test plot. 

The total amount of pollutant carried in the runoff from each plot was 

then statistically analyzed for significant differences considering time 

delay, replication, manure loading, and manure type. 

INFILTRATION ANALYSIS AND PARAMETER DETERMINATION. 

Saturated Hydraulic.Conductivity 

Twenty-four undisturbed soil cores 7.62 cm (3 in) diameter x 7.62 

cm (3 in) long were extracted in-situ during 1982 and analyzed for 

saturated hydraulic conductivity. Three cores were discarded during the 

analysis because of insect damage during storage. The remaining twenty 

·cores were tested using procedures similar to those followed by Darcy in 

his classical experime~t of flow through a porous media. A modified 

version of the Darcy equation was used to determine saturated hydraulic 

conductivity of the three replications of each core as given in Equation 

2. 

v 
K =Cllt 

s 

where, 
K = saturated hydraulic conductivity of the soil 

s 
V = volume of water passed through the soil media over the 

testing period 

6t = time of the test 

(2) 

C = a constant equal to 6L/A * 6H where 6L is the length of 

the soil column, A is the surface area of the soil core 

determined from the area of a circle, and 6H is the head 

of water above the soil core. 

The head above the soil core was maintained at a constant value of 39.2 

cm (15.4 in) for each core tested. Therefore, C was determined as 
-3 -2 -2 -2 

having a constant magnitude of 4.26 x 10 cm (2.75 x 10 in ). 
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Using the General Linear Model (GLM) of SAS (1979) and the Duncan's 

multiple range test, the saturated hydraulic conductivities were analyzed 

for statistical differences by taking into consideration the location of 

the cores in the test area, grouping of cores by row or colwnn in the 

test area, and by replications of the test procedures in the laboratory. 

Analysis indicated that no significant differences existed between the 

infiltration rates and that a large standard deviation existed between 

the mean of the entire data set as shown in Table 3. This is an expected 

phenomenon as indicated by Biggerstaff and Moore (1982), Sharma, et al. 

(1980) and others and can be explained in several ways. First, the 

values of hydraulic conductivity for a tested core may be associated 

with surface sealing caused by the manner in which the cores were pre­

pared for testing or from natural occurring phenomena. It has already 

been established that surface seals can reduce flow through a soil 

matrix. Second, large values of hydraulic conductivity may be associ.ated 

with cores that have large macropores or cores that have poor contact 

with the walls.enclosing the sample. Both of these phenomena will cause 

rapid flow of water through the sample causing an over estimation of the 

conductivity. Cores that had a high.degree of variability between the 

replications were latter withdrawn based on the above phenomena. The 

results of these two analyses are presented in Table 3. This type of 

analysis indicated that a large nwnber of cores are needed to evaluate 

the mean infiltration rate of saturated soil core samples and that a 

better estimate of matrix infiltration rate can be obtained by elimi­

nating cores that have a large degree of variation. 

Saturated Water Content and Bulk Density 

Once the soil cores had been tested for saturated hydraulic con- · 

ductivity, they were immediately taken from the test apparatus, weighed, 

and dried to obtain water content by weight. Since the soil cores were 

at saturation at the end of the hydraulic conductivity tests, the water 

content at this condition were the saturated water contents of the soil. 
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TABLE 3. MEASURED SOIL PROPERTIES OF TilE COLDSTREAM 
DAIRY FARM TEST AREA. 

Parameter 

Saturated Hydraulic Conductivity* 

(entire data set) 

Saturated Hydraulic Conductivity 

(extreme highs and lows eli­

minated) 

Saturated Hydraulic Conductivity 

(extreme highs and lows and 

cores with large variability 

in the replications eliminated) 

Saturated Water Content 

Bulk Density 

Mean 

1.934 cm H20/hour 

(0.7613 in H20/hour) 

1.529 cm H20/hour 

(0.6019 in H20/hour) 

1. 2029 cm Hz°/hour 

(0.4736 in H20/hour) 

3 3 44.12% cm /cm 

3 1.3878 g/cm 

Standard No. of 
Deviation Samples 

1. 6696 63 

1.1833 56 

0.8943 43 

1. 5948 63 

0.0463 63 

* 95% confidence limit interval of the entire data set was (1.5131 cm 

H20/hour to 2.3545 cm H20/hour). 
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Bulk density was also determined for each core by dividing the differ­

ence between the initial and final water contents of the soil by the 

.volume of the core determined from the inside dimensions of the aluminum 

sleeves containing the sample. Using the relationship shown in Equation 

3, the moisture content, determined on a weight basis, can be converted 

to moisture content on a volume basis. 

e vol 

where, 

- Y * e - b weight 

e . 
vol = moisture content volume basis 

8weight = moisture content weight 

= bulk density, g/cm3 
basis 

(3) 

All moisture contents were changed to a volume basis using Equation 3 

for analysis. A statistical analysis was performed to establish sig­

nificance of the data using SAS taking into consideration core location 

in the test field and replication. It was determined that no significant 

differences existed between the different values of saturate water 

content and the different values of bulk density at the 99 percent 

confidence interval. Therefore, it was concluded that the means of each 

of these parameters described the saturated water content and bulk 

density of the Coldstream Dairy Farm test area as shown in Table 3. 

Parameter Determination 

Several methods exist that can be used to evaluate the rate of 

infiltration into the soil. Some methods contain empirical equations 

that use parameters that.must be determined frpm observed infiltration 

data. Horton's, Holtan's and SCS's equations are ~xamples of emperical 

equations of infiltration. Horton (1939) proposed an infiltration 

equation that assumed infiltration will decrease with time because of 

swelling of the soil colloids and the closing of soil cracks, washing of 

fine particulates into the surface pores, and rain damage to the soil 
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surface. Holtan (1961) proposed an infiltration relationship that 

assumed infiltration was function of the available water storage con-· 

tained in a specified depth of soil. The Soil -Conservation"Service 

(1972) method predicts cumulative runoff as a function of cumulative 

rainfall by a curve number technique. Opposed to these ernperical equa­

tions_are physically based equations that are usually formulated from 

the equation of continunity and flow rate functions. Exampl"es of these 

are the two-phase (water and air) flow equations (Brustkern and Morel­

Seytoux, 1970 and Noblanc and Morel-Seytoux, 1972). Richard's equation 

was developed using continuity and Darcy's equation that considers the 

oil medium as a bundle of interconnected capillary tubes. Phillip's 

(1957) equation is based on an infinite series solution of the Richard's 

equation. 
A simple equation was sought to relate infiltration rates to easily 

obtainable quantities because of the complexity of many of these solutions 

and the difficulty of measuring· basic parameters appearing in others. 

The equation presented by Green and Arnpt (1911) was a reasonable aiter­

native. Their infiltration equations was physically based on Darcy's law 

using a capillary tube analogy for ponded surfaces_. The method assumed 

an init1al uniform moisture content in a hornogenous soil (i.e., that 

piston flow occurs). Although their equation is ·an approximate equation, 

considerable research in recent years has shown it to have theorectical 

basis, as well as -measurable parameters (Moore, 1981). 

If the depth of ponding is considered negligible, the Green-Ampt 

equation can be written as 

S !:,0 
f = K (1 + -f-) 

where, 

f = the infiltration rate 

F = the infiltration volume 

!:,0 = the initial moisture deficit 

E) = saturated moisture content 
s 
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0 = moisture content initially in the soil 

S = the capillary drive at the wetting front, suction w 
K = the saturated. hydraulic conductivity in the wetted zone 

· The use of Equation 4 will show that infiltration rate determined for 

each runoff plot are equal to the field saturated hydraulic conductivity 

of the soil for that plot considering steady state conditions. What 

follows are the results found using·this analogy and the statistical 

difference of measured field saturated hydraulic conductivities asso­

ciated with the application of manure to test plots. 

The Infiltration Rate. Determination of the infiltration rate of 

a soil is made by subtracting the runoff rate determined for steady 

state conditions from the constant applied rainfall rate. As outlined 

in the procedures, rainfall rates were determined during each rainfall 

event by using three standard rain gages. Also, the number of pulses 

the rainfall simulator made during each event was recorded. This data 

was statistically regressed resulting in a relationship for determi­

nation of the rainfall simulator pulses needed to produce a given gage 

rainfall rate. The resulting equation was: 

RRg = -0.707 + 0.0745 P (5) 

where, 

RRg = rainfall rate determined from standard rain gages, in/hr 

P = .number of rainfall simulator pulses in one minute 

A correlation 

equation with 
of the regression showed that the data fit the predicted 

2 
an R of .907. During 1982, calibration of the rainfall 

simulator resulted in a relationship between pulses the simulator made. 

and the actual rainfall rate occuring over the plot. An R2 = .993 of the 

data was obtained from the four rainfall events conducted for each of 

the seven pulse rates tested. The data covered the range of pulses used 

during actual rainfall events over manured plots for the two years and 

36 



resulted in the equation: 

P = 4.810 + 13.812 RRA 

where, 

RRA = actual rainfall rate for a giyen simulator pulse rate, 

in/hr 

P = number of rainfall simulator pulses in one minute 

(6) 

Combining Equations 5 and 6 a relationship was obtained between the 

actual rainfall rate applied to the test pilot and the rainfall rate 

determined from rain gauges placed inside the test area. The resulting 

equation: 

RRA = 0;339 + -.972 RRg (7) 

was used to establish rainfall rates for each pl_ot. Runoff rates were 

also determined from runoff hydrograph curves established for each- test 

plot. Runoff volume was plotted. as a function of cumulative time, and 

steady.state runoff rates were determined from the straight line portion 

of these curves. Infiltration rates were then established for each plot. 

by subtracting the runoff rate from the rainfall rate as presented in 

Table 4 for 1981 and Table 5 for 1982. 

Depth to the Wetting Front 

A volume of water will move down through the soil profile as the 

infiltration process continues. The depth to which the water has 

penetrated into the soil can be established, given a time after the 

start of the rainfall event. This is the depth of the wetting front and 

can be mathematically represented as, 

F =·F/WR (8) 

where, 
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TABLE 4. SOIL MOISTURE, RUNOFF AND INFILTRATION RATES FOR SEMI-SOLID MANURED PLOTS-1981 

Nitrogen Date Time Delay . Soil Moisture Plot Runoff 
Loading Before Rainfall (% cm3/cm3) Number Rate 
Rate (HR) (See Figure 2) (IN/HR) 

(II N/ Acre) e e 
f i 

75 7/9/81 0 44.120 33.798 3 0.590 
75 8/18/81 0 44.120 44.120 21 0.949 
75 10/21/81 0 44.120 35.436 33 0.950 
75 7 /10/81 24 44.120 33.798 2 0.396 
75 10/22/81 24 44.120 35. 796 34 0.824 
75 8/20/81 48 44.120 39.487 20 0.400 
75 10/23/81 48 44.120 34.901 35 0.737 
75 8/21/82 72 44.120 44.120 19 0.183 

150 7/20/81 0 44.120 36.018 5 0.671 
150 8/24/81 0 44.120 36. 657 18 1. 004 
150 10/12/81 0 44.120 42.859 23 0.603 
150 7/20/81 3 44.120 36.018 6 0.681 
150 8/24/81 3 44.120 41. 173 17 1.026 
150 10/12/81 3 44.120 40.881 22 0.650 
150 7/20/81 6 44.120 36.018 7 0.370 
150 8/24/81 6 44. 120 38.398 16 0.245 
150 10/12/81 6 44.120 36 .129 32 0.899 
150 8/25/81 24 44.120 34.548 15 -
150 10/13/81 24 44.120 38.051 31 · 1. 014 
150 7 /22/81 48 44.120 36.018 12 0.884 
150 8/26/81 48 44.120 34.027 27 0.817 
150 10/14/81 48 44.120 38.259 30 · 0.241 
150 7 /23/81 72 44.120 29.705 13 0.666 
150 7/24/81 96 44.120 29.705 14 · 0.511 
150 10/16/81 96 44.120 38.329 29 0.464 
150 8/31/81 192 44.120 29.705 28 0. 911 
300 7/29/81 0 44.120 44.120 11 0.869 
300 9/30/81 0 44.120 20.652 26 0.942 

Infi 1 tration 
Rate 

(IN/HR) 

2.907 
3. 763 
1.993 
2.858 
1. 857 
4.312 
2.274 
4.529 
3.555 
3.708 
2.360 
2.573 
3.200 
2.119 
3.856 
4.467 
1.947 

-
1. 948 
3.342 
3.895 
2.235 

· 3. 074 
3.229 
2.450 
3.801 
3. 357 
3.284 
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TABLE 4. (CONTINUED) 

Nitrogen Date 
Loading 
Rate 

C# N/Acre) 

300 10/28/81 
300 7 I 30/81 
300 10/1/81 
300 10/29/81 
300 7/31/81 
300 10/2/81 
300 10/30/81 
300 8/5/81 
300 10/9/81 
300 11/6/81 

0 7 /7 I 81 
0 8/14/81 
0 7/29/81 
0 11/4/81 

Time Delay 
Before Rainfall 

(HR) 

0 
24 
24 
24 
48 
48 
48 

240 
240 
240 

0 
0 
0, 
0 

Soil Moisture Plot Runoff lnfi 1 tration 
(% c1113/cm3) Number Rate Rate 

e e. (See Figure 2) (IN/HR) (IN/HR) 
f 1 

44.120 35 .110 39 0. 726 2.159 
44.120 40.070 10 1.384 2.356 
44. 120 35. 234 25 o .. 879 2.375 
44.120 35.977 38 0.635 2.619 
44.120 44. 120 9 0.385 2.870 
44.120 39.078 24 0.882 2.022 
44.120 34.055 37 o. 722 2.289 
44.120 27.090 11 0.091 3.260 
44. 120 21. 561 26 0.297 3.200 
44.120 34.818 39 0.607 3.133 
44.120 30.822 4 0.603 2.846 
44.120 30.822 8 0.182 4.287 
44.120 30.822 23 1. 037 3.189 
44.120 30.822 26 0.444 3.296 
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TABLE 5. SOIL MOISTURE, RUNOFF AND INFILTRATION RATES FOR LIQUID MANURED PLOTS~l982 

Nitrogen Date Time Delay Soil Mois3ure Plot Runoff 
Loading Before Rainfal 1 (% cm3/cm ) Number Rate 
Rate (HR) (see Figure 3) (IN/HR) 

(# N/Acre) e e. f 1 

75 7/12/82 0 44.120 35.340 2 0.434 
75 8/3/82 0 36.499 21. 906 9 1. 009 
75 9/7 /82 0 44.120 38.532 17 0.455 
75 7/13/82 24 44.120 33. 057 3 0.354 
75 8/4/82 24 40.781 18.853 14 0.237 
75 9/8/82 24 41. 780 39.025 16 0.672 
75 7/14/82 48 40,683 31. 961 4 0.264 
75 9/9/82 48 44 .120 36 .117 15 0.130 

150 7/26/82 0 44.120 27.71 8 0.820 
150 9/20/82 0 44.120 44.12 23 0.903 
150 10/5/82 0 43.001 40.468 31 0.330 
150 7/26/82 3 41.183 24.967 7 0.994 

,150 9/20/82 3 44.120 36.041 . 22. 0.995 
150 10/5/82 3 39.462 36. 569 32 0.949 
150 7/26/82 6 44.120 26.660 6 0.874 
150 9/20/82 6 42.286 34.653 23 0.987 
150 10/5/82 6 44.120 37.151 33 0.402 
150 7/27/82 24 42.189 33.800 5 0.403 
150 9/21/82 24 44. 120 35.285 24 1. 030 
150 10 /6/82 24 44. 120 38.733 34 o. 951 
150 7/28/82 48 42.224 
150 9/22/82 48 36.353 32.308 25 1. 046 
150 10/7/82 48 40.558 35. 854 35 0.992 
150 9/24/82 96 39.920 34.639 36 1.029 
300 8/12/82 0 44.120 41.648 10 1.146 
300 8/18/82 0 38.609 38.477 18 0.816 
300 9/29 /82 0 42.834 40.052 28 1.025 

Infiltration 
Rate 

(IN/HR) 

3.549 
2.177 
3.402 
4.115 
3. 960 
3.535 
4.205 
4.416 
3.221 
3.167 
3.808 
2.707 
2.978 
3. 296 
2.633 
4.211 
3.989 
3.657 
3.691 
4.130 

3.598 
3.555 
3.829 
3.672 
3.196 
2.792 
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TABLE 5. (CONTINUEQ) 

Nitrogen Date 
Loading 
Rate 

(# N/Acre) 

300 , 8/13/82 
300 8/19/82 
300 9/30/82 
300 8/14/82 
300 8/20 /82 
300 10/1/82 
300 8/17/82 
300 8/23/82 
300 10/4/82 

0 6/28/82 
0 9/3/82 
0 10/21/82 

Time Delay 
Before Rainfall 

(HR) 

24 
24 
24 
48 
48 
48 

120 . 
120 

· 120 
0 
0 
0 

Soil Moisture Plot Runoff Infiltration 
(% cm3 I cm3) Number Rate Rate 

(See Figure 3) (IN/HR) (IN/HR) 
E) 

f 
E). 

1 

44.120 40.371 11 0.901 2.120 
38.047 32,461 19 0.845 3.090 
39.760 36.909 29 1.190 3,532 
44. 120 38.026 12 0.139 3.523 
36.603 33.779 20 0.593 3.633 
38. 858 29. 713 30 1.187 2.602 
44.120 34.431 10 0.230 4.452 
44.120 38.276 18 0.087 3.955 
40.267 35.500 28 0.141 3. 725 
44.120 33.439 1 0.141 4.571 
41. 585 38.366 23 0.173 4.131 
44.120 39.074 27 0.981 4.548 



f = depth to the wetting front 

F = infiltration volume at a given time· 

~e = change in moisture between the initial moisture content 

of the soil (Gj) and the moisture content associated 

with the time at which the infiltration volume was es­

tablished (Gf). 

Infiltration volume was established by subtracting the runoff 

determined from runoff hydrograph data from the accumulated rainfall. 

Subtracting these two numbers resulted in the amount of water available 

for absorption into the soil. 

Water contents on a weight basis were determined at the beginning 

and end of each rainfall event, since it is well known that soils very 

rarely reach full saturation. They were then converted to a volume 

basis using bulk density of the soil as determined earlier. Subtracting 

these two water contents gave the water change during the rainfaU event 

which is needed in determining the depth of the wetting front given in 

Equation 4 and 8. The depth to the wetting front is determined by 

Equation 8. 

The water contents used in determining the depth of the wetting 

front are presented in Tables 4 and 5. Infiltration volumes and change 

in water content are used ·directly in Equation 3. 

Determination of the Average Soil Suction 

The amount of water that can be absorbed into the soil profile 
-

during a rainfall event is greatly influenced by the ability of the soil 

to absorb water. Over the course of the rainfall event, the potential 

suction of the soil changes as the soil profile wets. Therefore, it is 

advantageous to define an average suction of the soil over the period of 

the rainfall event. 

Moore, et al. (1980) established that the average suction during a 

rainfall event could be described by, 
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s av 

where, 

s av 

= 
Yel (Kr(0f)a - Kr(0i)~ 

a (Kr(0f) - Kr(ei)) 

Yel = 
= average suction potential 

air entry matric potential 

= (b + 3)/(2b + 3), constant a 

b = slope of.the log-log plot of water content versus 

.suction curve 

Kr(0) = relative hydraulic conductivity. of the soil at a given 

water content. 

e. = initial soil moisture content 
1 

ef = time assoicate with time at which infiltration volume 

_was established 

(9) 

He further found that the air entry matric potential could be defined 

as, 

where, 

x = intercept of the log-log plot of water content versus 

suction curve 

b = slope of the log-log plot of soil water content versus 

suction curve 

0 = saturated soil moisture content 
s 

(10) 

Mein and Larson (1971), Bloomsburg and Corey (1964) and others have 

shown that the relative hydraulic conductivity can be designated as, 

e Kr(0) = e s 
2b + 3 (11) 
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Values for b (slope) and the intercept of the line were found from 

a log-log plot of desorption and water content obtained from pressure 

plot analysis. Regression analysis showed a R2 = .979 for the data fit. 

The values of the slope b, and the intercept x, were 30.89 and 6.81 

respectively. The air entry value was then establish~d as 164.04 cm H2o 
based on saturation moisture content of the soil established earlier. 

The. constant a value was determined to be o. 59 for the soil and the 

relationship for relative hydraulic conductivity was formulated as: 

e 
Kr(0) = 44.12 16.62 (12) 

taking into consideration saturation moisture content as previously 

defined. 

Replacing all of the constants with measured values in the rela­

tionship for relative hydraulic conductivity in Equation 9. The fol­

lowing relationship for the average suction of the soil found on the 

Coldstream Dairy Farm test area is: 

S = 277.92 av 

Kr(ef)0.59 - Kr(ei).59 

Kr(0f) - Kr(0i) 

D_etermination of Field Saturated Hydraulic Conductivity. 

(13) 

Estimates of the field saturated hydraulic conductivity were for­

mulated by replacing infiltration rates, depths to the wetting front and 

the equation for average suction of the soil in Equation 4 (Note: the 

initial and final moisture content of the field, determined for each 

plot, were used in establishing Kr(0)). Results showed, using a simple 

ratio, that the infiltration rate was equal to the field saturated 

hydraulic conductivity for each plot. Since these quantities are equal, 

the assumption of steady state condition existing at the 150 liter 

runoff volume is valid. Therefore, the trends and significant differences 

found for the infiltartion rate data as a result of the test variables 

can be assumed to parallel the effects on the field saturated hydraulic 
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conductivity. Using this analogy, a statistical evaluation of the 

infiltration rates were conducted. 

Field Saturated Hydraulic Conductivity on Manured Plots 

Infiltration rates (or field saturated hydraulic conductivites) of 

each test plot were statistically analyzed using techniques found in SAS 

(1979). Significant differences between the data were determined by 

Duncan's.multiple range test and the GLM module procedures of SAS. 

Testing considered type of manure ~pplied to the plots, loading rate of 

the manure, replication of the plots, and time delay between initial 

manure application and simulated rainfall event. Time delay was con­

sidered to be nested within the manure loading rate and/or plot replication. 

Field Saturated Hydraulic Conductivity of Control Plots 

Several plots with no manure applied were used as controls and were 

tested to established background information for the field during each 

year. Results showed that mean infiltration rates of 1981 and 1982 

test years were significantly different at the 95 percent confidence 

level as shown in Table 6. Weather conditions and/or soil structure 

during the two test years may have.given rise to this· difference. 

Therefore, the remaining analysis for manured plots was split into the 

year in which the plots were tested which also split the infiltration 

rates by form of the dairy manure applied--solid manure 1981 and liquid 

manure 1982. 

Evaluation of Infiltration Rate (Field Saturated Hydraulic Conductivity 

Versus Saturated Hydraulic Conductivity Found in the Laboratory) 

The previous data analysis has shown the variations and trends of 

field saturated hydraulic conductivities through various methods. But 

how does the field saturated conductivity compare to saturated hydraulic 

conductivities obtained through laboratory analysis? Using Duncan's 

multiple range test from the general linear model of SAS, hydraulic 
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TABLE 6. MEAN INFILTRATION RATES FOR CONTROL PLOTS 

Test Year 
Mean Infiltration Rate 

(in H20/hr) 
Number of 

Observations 

1981 

1982 

3.405A 

4.4178 
4 

3 

Means with different letters are significantly different at 95% 

confidence level. 

·Year 

LAB 

1981 

1982 

·TABLE 70 FIELD SATURATED HYDRAULIC CONDUCTIVITY (KFS) 

COMPARED TO LABORATORY SATURATED HYDRAULIC 

CONDUCTIVITY (K
5

) 

Parameter 
Mean Saturated Hydraulic 
Conductivity (in H20/hr) 

No. of 
Observations 

0.7613A 

3.40458 

4.41678 

63 

4 
3 

Means with the different letters are significantly different at 95% 

confidence level. 
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conductivities determined through laboratory analysis and from runoff 

data for 1981 and 1982 were tested. Results in Table 7 show that at the 

95 percent confidence level, laboratory determined soil saturated hy­

draulic conductivites were 43 percent less than field saturated conduc­

tivites in 1981 and 56 percent less than 1982 data. 

The difference between laboratory and field data that were determined 

can be attributed to many things. Bouma,< et al. (1982) has shown that 

worm holes present in situ are n9t represented by soil cores for laboratory 

analysis, and can contribute significantly to differences in hydraulic 

conductivities of the soil matrix. Moore and Eigel (1981) have shown 

that surface sealing effects can greatly influence infiltration rates. 

In preparation of the soil core, sealing may be induced by smoothing the 

top and bottom of the core to the test cylinder. Also, Moore and Eigel 

(1981), Biggerstaff and Moore (1982), Schroeder, et al. (1982), McKeague, 

et al. (1982) and others have shown that infiltration rates obtained in 

the field may be greater because of inherent heterogeneity of the soil. 

Therefore, it is reasonable to expect that laboratory analysis of the 

saturated hydraulic conductivity of a soil will not describe the actual 

saturated conductivity of a soil matrix. 

Infiltration Rates on Zero Delay Manured Plots 

Zero hour time delay plots with manure applied were tested for 

significant differences in infiltration rates arising from the nitrogen 

loading rates. Semi-solid manure (1981) data showed no significant 

differences, but manured plots had lower infiltration rates of 5.8 to 15 

percent. Liquid (1982) manure data, indicated at the 95 percent con­

fidence level that plots with manure applied to the surface had signifi­

cantly reduced the infiltration rate from 23 to 31 percent as compared 

to the control plots as shown in Table 8. Testing the significance of 

the replication for each manure type (by year) at the various nitrogen 

loading rates showed that the 1981 infiltration rates were significantly 

different at the 95 percent confidence level while there was no significance 

at this level found for the 1982 data. This data is shown in Table 9 
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TABLE 8. INFILTRATION RATES ON ZERO TIME DELAY PLOTS CONTAINING 
SEMI-SOLID AND LIQUID MANURE COMPARED TO PLOTS CONTAINING 
NO MANURE. 

Nitrogen Loading 
(#N/acre) 

0 

75 

150 

300 

0 

75 

150 

300 

Mean Infiltration Rate 
(in H

2
0/hr) 

Semi-Solid Manure 1981 

3.4045A 

2. 8877A 

3. 2077A 

2.9333A 

Liquid Manure 1982 

4.4167A 

3. 04278 

3.39878 

3.22008 

No. of 
Observations 

4 

3 

3 

3 

3 

3 

3 

3 

Means with different letters are significantly different at 95 percent 
confidence level. 
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and indicated that either weather or changes in soil structure effected 

the infiltration process in 1981. 

An attempt was ~ade to explain the differences presented in Table 8 

for the replications of the test data. Replication 1 was conducted in 

the early summer and replication 3 was run in early fall. Although not 

presented. here in tabular form, a correlation was found when infiltra­

tion rates were compared to soil temperature data for the test months. 

At the 95 percent confidence level, 1981 data indicated that when soil 

temperature increased significantly over a range of twenty degrees 

farenheit, the infiltration rate of the soil was increased. In 1982, on 

the other hand test evaluation did not show significant differences in 

the data, primarily because a large fluctuation in soil temperature did 

not exist as it had in 1981. However.a trend in the 1982 data did exist 

that followed the same pattern as the 1981 data. This increase in 

infiltration rate because of increased soil temperatures is caused by 

the change in the viscosity of the water flowing through the pore structures. 

As the fluid mixture increases in temperature it will flow more easily 

or faster as indicated by Streeter and Wylie (1971). Thus it would be 

expected that fluctations as shown in the infiltration data, would exist 

if soil temperature changed over the test period. 

"Infiltration Rates on Manured Plots as a Function of Time Delay to 

Rainfall Event 

Zero, twenty-four, and forty-eight hour time delays for each manure 

nitrogen loading rate were compared. No significant differences (Tables 

8 and 9) existed when time delay or nitrogen loading were considered for 

semi-solid manure in 1981. Liquid manure plots in 1982 showed no 

significant differences or trends in infiltration rate when considering 

time delay but did shown a significant difference when manure nitrogen 

loading rates decreased the infiltration rate as shown in Table 10. 
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TABLE 9. INFILTRATION RATES AFFECTED BY REPLICATIONS FOR 0, 75, 150, 
300 POUNDS OF NITROGEN USING SEMI-SOLID AND LIQUID MANURE 
WI111 ZERO TIME DELAY. 

Replication 

1 

2 

3 

1 

2 

3 

Mean Infiltration Rate 
(in H20/hr) 

Semi-Solid Manure 1981 

3.1662A,B 

3.7605A 

2.42538 

Liquid Manure 1982 

3.7532A 

3.1678A 

3.637SA 

No. of 
Observations 

4 

4 

4 

4 

4 

4 

Means with different letters are significantly different at 95 percent 
confidence level. 
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TABLE 10. INFILTRATION RATES FOR TIIE VARIOUS MANURE LOADING RATES 
FOR SEMI-SOLID AND LIQUID MANURE AT 0, 24, AND 48 HOUR 
TIME DELAYS. 

Manure Loading 
(!IN/acre) 

75 

150 

300 

75 

150 

300 

Mean Infiltration Rate 
(in tt20/hr) 

Semi-Solid Manure 1981 

2.8520A 

3.0061A 

2.5923A 

Liquid Manure 1982 

3.7526A 

3.6034A,B 

3.12898 

No. of 
Observations 

7 

7 

9 

8 

8 

9 

Means with different letters are significantly different at 95% 
confidence level. 
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TABLE 11. COMBINED TIME DELAYED PLOTS FOR THE VARIOUS MANURE APPLICATIONS 
FOR SEMI-SOLID AND LIQUID MANURE WHEN ONLY ·0, 24, AND 48 HOUR 
DELAYED PLOTS CONSIDERED. 

Time Delay 
(Hrs) 

0 

24 

48 

0 

24 

48 

Mean Infiltration Rate 
(in H

2
0/hr) 

Semi-Solid Manure 1981 

3.0096A 

2.3355A 

2. 9049A 

Liquid Manure 1982 

3.4814A 

3 .5973A 

3.3284A 

No. of 
Observations 

9 

6 

8 

9 

9 

7 

Means with different letters are significantly different at 95% 
confidence level. 
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Infiltration Rates as Affected by Long Term Time Delays 

Each level of time delay for the semi-solid manure plots tested 

in 1981 showed significant differences resulting from time delay be­

tween manure application and rainfall event for the 150 pound nitrogen 

loading rate. Increased time delays on plots gave infiltration rates 

that increased and returned toward the background infiltration rate 

established for-the test area. The liquid manure plots tested in 1982 

had infiltrated rates that showed a similar pattern but no significance 

was found as shown in Table 12. 

Significant trends were found for time delays for both manure forms 

for plots receiving the 300 pounds nitrogen loading rate. Infiltration 

rates on plots receiving semi-solid mnaure (1981) had no significant dif­

ference between the means for time delay although time delay did show 

a tendency to restore infiltration rates to the background level estab­

lished for the field. The infiltration rates on plots receiving liquid 

manure (1982J also showed no significant difference between the means for 

time delay but did indicate that the mean for time delay plots (5 days), 

that had been rained on twice, were increasing toward the background in­

filtration rate level. These results are shown in Table 13. 

Summary - Infiltration Studies 

The general implication of the results presented above concerning 

the effect dairy manure has on the infiltration rate of the test plots 

is that rainfall events that occur within 96 hours of manure application 

have reduced infiltration rates thus increasing surface runoff of pol­

luted water. Increasing manure loading rates also decrease the infil­

tration rate. But the longer the time delay, greater than 96 hours, and 

repeated rainfall events on the same plot show increases in the in­

filtration rates yielding reduced surface runoff and thus reduced pol­

lutant discharge. 
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TABLE 12. TIME DELAY EFFECTS ON TI-IE APPLICATION OF 150 POUNDS 
NITROGEN/ACRE AS DAIRY MANURE TO PASTURE 

Time Delay Mean Infiltration Rate No. of 
(Hrs) (in H20/hr) Observations 

Semi-Solid Manure 1981 

0 3.2077A,B 3 
3 2.63068 

3 
6 3.4233A 3 

24 l. 9488 
1 

48 3.1573A,B 3 
96 3.2290A,B 1 

Liquid Manure 1982 

0 3.3987A 3 
3 2.9937A 3 
6 3.6110A 3 

24 3.8260A 3 
48 3.5765A 2 

96 3.8290A 1 

Means with different letters are significantly different at the 95 
percent confidence level. 
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TABLE 13. TIME DELAY EFFECTS ON TiiE APPLICATION OF 300 POUNDS OF 
NITROGEN/ACRE AS DAIRY MANURE TO PASTURE 

Time Delay No. of Times with Mean Infiltration Rate 
(in H

2
0/hr) (Hrs) Simulated Rainfall 

0 

24 

48 

5-day 

0 

24 

48 

5-day 

1 

1 

1 

2 

1 

1 

1 

2 

Semi-Solid Manure 1981 

2.9333A 

2.4500A 

2.3937A 

3.1977A 

Liquid Manure 1982 

3.2200A 

2.9140A 

3.2527A 

4.0440A 

No. of 
Observations 

3 

3 

3 

3 

3 

3 

3 

3· 

Means with different letters are significantly different at the 95% 
confidence level. 
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POLLUTANT .YIELD DURING RUNOFF EVENTS 

OF MANURED PLOTS 

The estimate of the yield for each determined pollutant was made by 

the determination of the area under the curve of pollutant concentration 

versus the volume of runoff from a test plot. The pollutant yields were 

for the first 150 liters of runoff. The pollutant yields were tested 

for statistical significance using Duncan's mllltiple range test in GLM 

of SAS (1979). 

Only a few of the pollutants yields that were statistically an­

alyzed were found to have significant differences when considering the 

effects of the nitrogen loading rate and the time delay between the 

manure application to a test plot and the simulated rainfall event. The 

yield data had a high degree of variability which thus resulted in 

finding few significant differences among the effects. But further 

analysis of the data in the future should give better precision to the 

statistical testing. The effect of manure type was not tested because 

as previously mentioned, the increased simulated rainfall rate that was 

required in 1982 Cliquid manure) over the rainfall rate in 1981 (semi­

solid manure). The following discussion concerning the pollutant yields 

will stress trends found in the means of the pollutant yields as af­

fected by the levels of each effect. Three comparisons were made for 

each pollutant yield for the semi-solid manured plots and the liquid 

manured plots: the effect of the nitrogen loading rate (0 (control 

plots), 75, 150 and 300 #N/Acre) for all time delay plots in Table 14, 

the effect of time delay (0, 24, 48, 120 hours (repeated rainfall on O 

hour plot), and the control plot) for the 300 #N/Acre plots in Table 15, 

and the effect of time delay (O, 24 and 48 hours) for all nitrogen 

· loading rates (control values are shown) in Table 16. 

Chemical Oxygen Demand (COD) 

The effect of increasing the nitrogen loading rate was to increase 

the mean COD yield for both semi-solid and liquid dairy manure. The 

mean yields increased one order of magnitude between 75 #N/Acre and 300 
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TABLE 14. TOTAL POLLUTANT YIELD FROM TEST PLOTS AS AFFECTED BV NITROGEN LOADING RATE FOR SEMI-SOLID AND LIQUID MANURE 

Nitrogen NH, NH 4 Loading COD TSS FSS vss TS FS vs H p K 
(IN/Acre) (GM) OBS (GM) OBS (GM) OBS (GM) OBS (GM) OBS (GM) OBS (GM) OBS (GM) OBS (GM) OBS (GM) OBS (GM) OBS (GM) OBS 

SEMI-SOLID MANURE - 1981 

0 5.92A 3 3e.1' 2 295.5A 2 6.4 3 ·15.5A 4 -- I.DIA 2 0.45A 4 ·-- -- 0.15' 4 0.96A 2 0.59A 4 
(Control) 

75 126.5A 8 84.9A 7 131.4' 4 23.8 7 94.6A B 29.9 8 35.2A B O. lOA B 4.7A 4 12.l 8 2.4' 6 30.3A B 

150 704.9A 14 155:eA 12 66.0A 11 557 .aA 14 169.8 13 415.4A,B 14 0.15A 12 e.5/ 5 39.5A 14 12.9A 7 70.0A 14 

300 1444.38 11 185.6A 9 122.7A 8 296.5 11 854. 7A 11 351.6 10 1005.08 11 0.38A 12 35.4A 4 B0.4B 11 20.3' 10 93.8A 10 

V1 LIQUID MANURE - 1982 
--., 

0 12.9A 3 1900.0A 2 17B1.2A 2 849. lA,B 2 4.8A 3 3.8A 3 1 .. 0 3 0, j5A 3 -- 0.2 3 1.0 3 16.2 3 

(Control) 

75 218.9A 7 178. lA 4 76.6A 4 95.48 5 94. lA 8 49.8A 8 129. 1 8 O. lBA 5 3.2A 1 12.5 3 11.3 7 17.0 

150 757 .4A 15 2884.2A 14 781. 7A 14 170.88 15 561.JA 15 257.2A 15 289.8 15 0.02A 9 86.08 4 35.3 10 45.0 15 74.9 15 

300 2458.3' 11 21420.1 8 7 16296.l 8 1655.7A 7 6235. IA 11 2153.0A 12 876.0 12 2.098 10 0.8A 4 65.3 8 604.6 8 151. 1 12 

Means with different letters are significantly different at the 95 percent confidence level. 



TABLE 15. TOTAL POLLUTANT YIELD FROM TEST PLOTS AS AFFECTED BY TIME DELAY FOR SEMI-SOLID AND LIQUID'MANURE LOADING RATE OF 300 IN/ACRE 

Time 
De Jay 
Before 

NH4 Rainfall coo TSS FSS vss TS FS vs N0 3 N p K (HR) (GM) OBS (GM) OBS (GM) OBS (GM) OBS (GM) OBS (GM) OBS (GM) OBS (GM) OBS (GM) OBS (GM) OBS (GM) OBS (GM) OBS 

SEMI-SOLID MANURE - 1981 

D 3706.3A 3 287 .6A 3 9B.9A 3 771. IA 3 1882 .SA 3 386.8 3 2111.0A 3 O. lJA 3 131.2 1 198.9A 3 37.4A 2 175.IA 3 

24 1013.48 3 179. lA 2 243.2A 1 299.0A,B 3 447 .OA 3 431.4 2 l170.3A 3 o.ol 3 6.6 I 63. 18 3 0.5A 2 66.4A 2 

48 371.58 3 117 .2A 3 136.l 3 13.58 3 233.6A 3 110.6 3 194.6A 3 0.18A 3 0.02 I 20.s8•C 3 4.8A 3 46.9A 3 

120 306.88 2 98.0A 1 33.4A I 5.68 2 856.2A 2 580.6 2 313.7A 2 l.17A 3 3.9 1 17 .58,C 2 -- -- 69.0A 2 . "' 
00 

Control 5.98 3 38. 7A 2 295.SA 2 6.48 3 15.IA 4 -- l.OA 2 0.45A 4 -- -- o.11c 4 l.OA 2 0.6A 4 

LIQUID MANURE - 1982 

0 6164.9A 3 20910A 3 22375A 3 3204.IA 3 J2588A 3 8515A 3 3243./ 3 .004A 3 0.25 2 166.8A 3 332.8A 3 219.0A 3 

24 2677.SA 3 29021A • 3 21027A 3 658, SA 3 I 0264A 3 87. 2A 3 l.2A 3 .OJA 3 0.01 I 2.7A 3 1270. ,A 3 6.5A 3 

48 l07.6A 3 146. IA I 159.4A I I.DA 1 7 .DA 3 5.7A 3 180.SA 3 2.i 2 2.5 I 12.3A I 26.0A I 31.4A 3 

120 95.6A 2 1 ,A .o I 5.4A 2 4.1A 3 79.2A 3 - 8.i 2 I .A .o 1 o.osA I 64.IA 3 

Contro 1 12.9A 3 1900.SA 2 1781.l 2 849. IA 2 4.8A 3 3.8A 3 I.DA 3 0.15A 3 0.2A 3 I.DA 3 16.2A 3 

Means with different letters are significantly different at the 95 percent confidence level. 



TABLE 16 . TOTAL P9LLUTANT YIELD FROM TEST PLOTS AS AFFECTED BY TIME DELAY FOR SEMI-SOLID ANO LIQUID MANURE 

. Time 
Delay 
Before NO J NH4 ~ainfa11 COD TSS FSS vss TS FS vs N p K 

(HR) (GM) DBS (GM) OBS (GM) OBS (GM) ,OBS (GM) OBS (GM) OBS (GM) OBS (GM) OBS (GM) OBS (GM) OBS (llM) OBS (GM> OBS 

SEMI-SOLID MANURE - 1981 

0 1533.8A 9 163.SA 9 73.9A 6 286.3 9 829. lA 9 211.2A 9 91 l.9A 9 0.06• 9 JI.DA 5 67.2A 9 26.5A 5 63.7A 9 

24 573.66 6 139.SA 5 204. lA 3 193.2 6 503.3A 6 m .s• 5 694.4' 6 0.12A 6 5. lA 3 39.28 6 5.0A 5 46.7A 5 

48 212.1 8 6 93.6A 7 114.8A 6 125.6A 8 68.6A 8 110.5• a 0.13A 8 I. IA 2 12.66 6 2.9• 7 46.9A 6 

;:'.ontrol 5.9 3 36.7 3 295.5 2 6.4 3 15.5 4 1.0 2 0.45 4 0.2 4 1.0 2 0.6 4 

"' <D 
LIQUID MANURE - 1962 

0 2436.2A 9 9178.2A 7 9677.6A 7 1339. 7A 8 4567 .6A 9 2944.2A 9 1304.6A 9 0.13A 1 1.01 4 90.4A 8 141.5A 8 104.4' 8 

24 1204.9A 8 10948A 8 7070. ,A 9 271.6A 9 3583.7A 9 92.9A 9 76.9A 9 O.OlA 5 0.01 1 3.9• 5 441.4' 9 29.6A 9 

48 118. lA 7 197 .6A 3 298.2• 3 65.6A 3 154.6A 7 113.9. 7 148.3' 1 1.14• 4 2.5 1 9. lA 2 1i.s' 5 178.5A 7 

Contro 1 12.9 3 1900.4 2 1781.2 2 849.1 2 4.8 3 3.6 3 1.0 3 0.15A 3 0.2 3 1.0 3 16.2 3 

Means with different letters are significantly different at the 95 percent confidence 1.evel. 



#N/Acre. The control COD yield was only 5 percent of the COD yield at 

75 #N/Acre. The effect of time delay before a rainfall event indicated 

that the mean COD yield was reduced with increased time delay for a 

nitrogen loading rate of 300 #N/Acre. The mean COD yield was reduced by 

95 percent after 48 hours for semi-solid manure and 98 percent for 

liquid manure. The repeated runoff test at 120 hours on the zero time 

delay plot also showed the same percent decrease in the COD yield for 

both manure forms. 

The effect of time delay for all nitrogen loading rates on the COD 

yield means were comparable with a 70 percent reduction for semi-solid 

manure and a 50 percent reduction for liquid manure after 24 hours. 

Totai Suspended Solids (TSS) 

The effect of increased nitrogen loading rate was to increase the 

mean TSS yield. Liquid manure plots gave TSS yields two to three orders 

of magnitude higher than for the semi-solid manures. The 300 #N/Acre 

loading rate gave a mean TSS yield (21420 grams) significantly higher 

than the other loading rates for liquid manure. 

The effect of time delay for the 300 #N/Acre loading rate wa~ to 

reduce the mean TSS yield. After 48 hours the mean TSS yield was re­

duced 60 percent for semi-solid manure ~nd 99 percent for liquid manure. 

The effect of time delay for all nitrogen loading rates was to re­

duce the mean TSS yield. After 24 hours only a 15 percent decrease was 

found for semi-solid manure while a 20 percent increase was found for 

liquid manure. But after 48 hours the mean TSS yield was reduced 60 

percent for semi-solid manure and 99 percent for liquid manure. 

Fixed Suspended Solids (FSS) 

The effect of nitrogen loading levels for semi-solid manure was to 

reduce FSS yield from 55~78 percent below the control and zero manure 

plot. For the liquid manure plots at 75 #N/Acre, the FSS yield was 

reduced 95 percent and for the 150 #N/Acre 55 percent. For 300 #N/Acre 

the FSS yield increased one order of magnitude over the control plots. 
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The effect of time delay of the 300 #N/Acre plots was to reduce the 

PSS yield for 48 hours delay and the repeated rainfall test at 120 

hours. All the mean FSS yields for semi-solid manure were below the 

control plot while O and 24 hour delays for liquid manure were one or­

der of magnitude higher than the control plots. The implication is that 

besides soil erosion, the liquid manure plots yield substantially higher 

PSS from the manure while the semi-solid manure reduced soil erosion and 

did not yield much PSS from the manure itself. 

Volatile Suspended Solids (VSS) 
The effect of nitrogen loading rate was to increase the ·mean VSS 

yield. The VSS was from the erosion of the applied manure. The VSS 

yields were three to four times higher for liquid manures than for semi­

solid manure. The mean VSS increased from 23.8 grams at 75 #N/Acre to 

296.5 grams/Acre at 300 #N/Acre for semi-solid manure, more than an 

order of magnitude. Similarly the mean VSS increased from 95.4 grams 

for 75 #N/Acre to 1655.7 grams for 300 #N/Acre for the liquid manure. 

The effect of increased time delay dramatically illustrated the 

reduction in the mean VSS yield. For 300 #N/Acre plots a 48 hour delay 

reduced the mean VSS yield more than 99 percent for both manure types. 

The effect of increased time delay for all manure loading rates was 

similar. After 24 hours, the mean VSS yield was reduced by 33 percent 

for semi-solid manure and 80 percent for liquid manure. 

Total Solids (TS) 
The effect of increased nitrogen loading rate was to increase the 

mean TS yield for both semi-solid and liquid manures. The TS yield for 

300 #N/Acre for semi-solid manure was an order of magnitude higher than 

at 75 #N/Acre while liquid manure showed approximately a one and one­

half order of magnitude increase. 
The effect of time delay was to decrease the mean TS yield for 300 

#N/Acre plots. After 48 hours the mean TS yield was reduced 88 percent 

for semi-solid manure and than 99.9 percent for liquid manure. The 

repeated long term test at 120 hours reduced ts by 45 percent for ·semi­

solid manure and greater than 99.9 percent for liquid manure. 
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The effect of time delay for all nitrogen loading rates was paral­

lel. A 30 percent reduction in TS, yield was found after 24 hours for 

both manure types and, at 48 hours, 85 percent for semi-solid manure and 

98 percent for liquid manure. 

Fixed Solids (FS) 

The effect increased nitrogen loading was to increase mean VS yield 

for.both semi-solid and liquid manure. The FS yield at 75 #N/Acre was 

only 9 percent of the FS yield at 300 #N/Acre for semi-solid manure but 

.only 3 percent for liquid manure. 

The effect of time delay of the 300 #N/Acre indicated no relative 

change in FS yield fer semi-solid manure but very dramatic effects for 

liquid manure where there·was· a 99.9 percent reduction in FS yield after 

48 hours and on the 120 hour repeated plot. 

The effect of time delay for all manure loading rates was that a 67 

percent decrease was found after 48 hours for semi-solid manure with 

similar yields at O and 24 hours. There was a 96 percent decrease after 

24 and 48 hour delay for liquid manures. 

Volatile Solids (VS) 

The results of the time delay and nitrogen loading effects for VS 

yield were parallel to the FS yields. The effect of increased nitrogen 

loading was increased mean VS yields with yields comparable for semi­

solid and liquid manures at the same nitrogen loading rates. The mean FS 

yields at 75 #N/Acre were 3 percent of the 300 #N/Acre loading for semi­

solid manure and 15 percent for liquid manures. 

A 24 hour time delay for 300 #N/Acre plot reduced the VS yield by 

45 percent and 90 percent at 48 hours. For liquid manure there was a 

99.9 percent reduction at 24 hours and 96% at 48 hours. The 120 hour 

repeated rainfall plots were comparable in VS yield reduction to that of 

48 hours for both manure types. 

Nitrate - Nitrogen (N032_ 

The effect of increased nitrogen loading rate showed little trend 

on mean N03 yield for semi-solid manure. All the mean N0
3 

yields were 
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less than the control of 0.45 gm N03 - nitrogen. But a 300 #N/Acre 

loading rate for liquid manure increased the mean N03 yield over the 

control and other loading rates. It gave a 2.09 gm yield of N03-

nitrogen. 
The effect of time delay showed increased mean yield of N03-

nitrogen with the liquid m~nured plots giving higher values. On the 300 

#N/Acre plots time delays of 0, 24 and 48 hours on semi-solid manure 

plots gave N0
3
-nitrogen yields less than the control yields. But the 

120 hour repeated plot gave a value of 1.17 gm. N03-nitrogen which was 

3 times that of the control. The liquid manure plot yields for 48 hours 

and 120 hour repeated plot were 2.3 and 8.2 gm. N03-nitrogen respec­

tively or between one and two orders of magnitude higher than the con­

trol plots. 
The effect of increased time delay for all nitrogen loading rates 

were that no N0
3
-nitrogen yields were greater than the control plots for 

all time delays for semi-solid manure; and only at 48 hours for liquid 

manure did the yield exceed the control plot. The value of 1.14 gm. 

N0
3
-nitrogen was an order of magnitude higher than the control plot. 

Ammonia Nitrogen (NH4) 
The NH

4
-nitrogen yields values were limited in number due to 

laboratory equipment failure and higher variability of the data. There­

fore it was difficult to assess the yields. The effect of increased 

nitrogen loading on semi-solid manure plots gave hi~her mean NH4 yields. 

The 75 IIN/Acre NH
4 

yields were only 13 percent of the 300 IIN/Acre plot 

yields. The effect of longer time delays for all nitrogen loading rates 

was to reduce the NH
4
-nitrogen yield. An 83 and a 96 percent reduction 

in NH
4
-nitrogen yield were found at 24 and 48 hours respectively when 

compared to the zero hour time delay plots. 

Total Nitrogen (N) 
The effect of increased nitrogen loading rates was found to in­

crease the mean N yield for both the semi-solid and liquid manures. The 

mean N yields were comparable for both manures at an· nitrogen foading 

63 



rates. The 75 #N/Acre plots were found to have mean N yields that were 

13 and 14 percent of the yields found at 300 #N/Acre for semi-solid and 

liquid manures respectively. 

The effect of increased time delays decreased the mean N yields 

with zero hour N yields for liquid manure and semi-solid being compar­

able. The increased time delays and the repeated plot gave lower mean N 

yields for liquid manure than· for semi-solid manure. The N yields 

decreased after a 24 hour delay by 93 to 98 percent for liquid manure 

plots with 300 #N/Acre and the repeated 120 hour plot decreasing 99 

percent. Semi-solid manure 300 #N/Acre plots gave reductions in the 

mean N yields of 68 percent at 24 hours and 90 percent at 48 hours and 

120 hour repeated plot. Similar reductions were found for the increased 

time delay plots when considering all the nitrogen loading rates. 

Phosphorus (P) 

The effect of increase nitrogen loading rate increased the mean P 

yield for both semi-solid and liquid manures. P yields were 5 to 30· 

times higher for liquid manures than the ·semi-solid manures .. The mean P 

yielqs at 75 #N/Acre was 10 percent of the P yield at 300 #N/Acre for 

semi-solid manure and on 2 percent for liquid manures. 

The effect of increased time delay indicated at different trend for 

the liquid manure or semi-solid manures than previously found. The mean 

P yield increased three to four fold after 24 hours and then decreased 

to 92 percent of the zero hour plot after 48 hours for the liquid manure. 

The semi-manure plots followed the typical trends with 80 to 85 percent 

decrease in N yields after 24 hours. 

Potassium (K) 

The effects of increased nitrogen loading rate gave increased mean 

K yields with the 75 #N/Acre loading rate being 68 percent lower than 

the 300 #N/Acre plot for semi-solid manure while being 89 percent lower 
for liquid manure. 

The effect of increased time delay on the K yield for liquid manure 

followed a trend not comparable to other pollutants. The K yield 
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decreased 97 percent after 24 hours, increased to 90 percent reduction 

from the zero hour plot at 48 hours. The same pattern occured when the 

time de lays were compared for all the nitrogen loading rates. ·The mean 

K yield decreased 70 percent at 24 hours but increased after 48 hours to 

where the K yield was 71 percent higher than the zero hour plot. 

The semi-solid manure plots followed the more typical pattern with 

K yields descreasing with increased time delays. After 24 hours K 

yields were found to decrease 45 to 60 percent from the zero hour 

plots. 

Summary - Pollutant Yields 

In general the increased nitrogen loading of plots gave increased 

pollutant yields except for FSS yields for semi-solid manure. Pollutant 

yields in general were higher for liquid manures than for the semi-solid 

manures. The pollutant yields though decreased more rapidly with in­

creased time delays with liquid manure than semi-solid manure except for 

N03 yields. Increased time delays for liquid manures increased the N03 
yields. Finally, those pollutants that interact strongly with the soil, 

P and K, showed different trends for liquid manures with increased time 

delays. There was a trend to increase pollutant yield after 24 hours for 

the P yield and then decrease. The k yield decreased at 24 hours and 

increased at 48 hours. 
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CHAPTER IV 

CONCLUSIONS 

Dairy manure was. surface spread on 12 ft x 12 ft plots on an estab­

listed fescue pasture in the summer and fall of 1981 and 1982. The soil 

was a Maury silt .loam. A simulated rainfall was applied to plots to test 

the effects ?f nitrogen loading rate (75, 150, and 300 #N/acre) time 

delay between manure application and the simulated rainfall events (0, 3, 

6, 24, 48, 96 hours and a 120 hour test repeated on Ohr plot with 300 

#N/acre), and type manure (semi-solid - 1981 and liquid - 1982) on the 

concentrations of pollutants in the surface runoff. The pollutants 

measured were COD, TSS, FSS, VSS, TS, FS, VS, N0
3

, NH
4

, N, P, and K. 

The simulated rainfall rates were 3.42 in/hr for 1981 and 4.02 in/hr for 

1982. The average field infiltration rate for the non-manured test plots 

were 3.40 in/hr in 1981 and 4.42 in/hr in 1982. The following conclusions 

were made from this study: 

Field infiltration rates:. 

1) Semi-solid manured plots with zero hour time delay were found to 

have reduced infiltration rates of 5.8 to 15 percent when compared 

to the control plots for all nitrogen loading rates. No signifi­

cance at the 95 percent confidence level was found between the 

different nitrogen loaded plots and the control plots. 

2) Liquid manured plots with zero hour time delay were found to have 

reduced infiltration rates of 23 to 31 percent when compared to 

the control plots for all nitrogen loading rates. Significant 

differences at the 95 percent level were found between the control 

plots and the nitrogen loaded plots. 

3) The infiltration rates increased to within 94 percent on the semi­

solid manured plots and 92 percent on the liquid manured plots of 

the average infiltration rates of the respective control plots on 

300 #N/acre plots after a 120 hour time delay. 

66 



Runoff pollutant yields for 150 liters of runoff: 

1) The various pollutant mean yields in the runoff from semi-solid 

manured plots increased with increased manure nitrogen loading 

rates except for FSS and N03• 

2) The pollutant mean yield for FSS in the runoff from semi-solid 

manured fields was reduced by 54 to 78 percent for the nitrogen 

loading rates when compared to the control plots. 

3) The pollutant mean yield for N03 in the runoff from semi-solid 

manured plots did not exceed the yield from the control plots. 

4) The various pollutant mean yields in the runoff from liquid 

manured plots increased with increased manure nitrogen loading 

rates .. 

5) The pollutant mean yields for TSS, FSS, VSS, and N03 in the run­

off from liquid manured plots did not exceed the control plots 

except at 300 #N/acre loading rate. 

6) The pollutant mean yields (not including FSS or N03) in the run­

off from semi-solid manured plots when compared to the zero time 

delay plots were reduced an average of 46 percent after 24 hours 

.and 76 percent after 48 hours. 

7) The pollutant mean yields for all loading rates for COD, VSS, TS, 

FS, VS, Nin the runoff from liquid manured plots when compared to. 

the zero time delay plots were reduced an average of 75 percent 

after 24 hours and 94 percent after 48 hours. 

8) The pollutant mean yields for all loading rates for FSS and N03 in 

the runoff from semi-solid manuredplots did not exceed the control 

plots yields at any time delay. 

9) The pollutant mean yields for all loading rates for TSS, FSS and 

VSS from liquid manured plots did not exceed the control plot 

yields after· a 48 hour time delay. 

10) The pollutant yield for all loading rates for N03 in the runoff 

from the liquid manured plot exceeded the control plot yield 10 

fold after 48 hours. 
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llJ The pollutant yield for all loading rates for P and K in the run­

off from the liquid manured plots exceeded the zero time delay 

plots by 3 fold at 24 hours for P and 75 percent for Kat 48 hours 

while at other time delays were below the zero hour plots .. 

12) The pollutant yield for the 120 hour repeated plot for the 300 

#N/acre plots was comparable to the 48 hour plot for COD, TSS, FSS, 

N and K for liquid manure plots and for COD, TSS, FSS, VS and K 

for liquid manure. 

13) The pollutant yield for the ·120 hour repeated plot for 300 #N/acre 

plots was comparable to the control plot yields for VSS and P of 

semi-solid manure an.d to VSS, TS, FS, N and P of liquid manure. 
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NOMENCLATURE 

Surface are of the top.of a soil core 

Constant equal to (b + 3)/(2b + 3) 

Slope of log-log plot of moisture content versus suction 
curve. 

Constant equal to (liL/A) tiH 

Percent of CO~ applied/liter of runoff 

Infiltration rate 

Infiltration volume 

Head of water above test soil core 

Saturated hydraulic conductivity in wetted soil zone 

Saturated hydraulic conductivity of the soil 

Relative hydraulic conductivity of the soil at given soil 
moisture ce) 

Length of soil core 

Percent of N applied/liter of runoff 

Simulator rainfall pulses/minute 

Liters of runoff 

Actual rainfall rate given by simulator_ pulse/rate (P) 

Rainfall rate using standard rainfall gauges 

Average soil suction 

Capillary suction at the wetting front 

Percent TS applied /liter of runoff 

Volume of water passed through the soil media over test 
period 
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x Intercept of the log-log plot of soil moisture· content 
versus suction curve · 

Yel Air entry matric potential 

Yb Soil bulk density 

ei,ef Initial and final soil moisture content - volume basis 

0 Saturated soil moisture content-volume basis 
s 

e Soil moisture content-volume basis vol 

8 . h Soil moisture content-weight basis weig t 

~e Initial soil moisture deficit (0s - 0) - volume basis 
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TABLE 18. POLLUTANT YIELDS IN RUNOFF FROM TEST PLOTS 
WITH LIQUID MANURE - 1982. 
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