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ABSTRACT OF DISSERTATION 
 
 
 
 

 
PCB DISRUPTION OF GUT AND HOST HEALTH: IMPLICATIONS OF 

PREBIOTIC NUTRITIONAL INTERVENTION 
 
 
 
     Exposure to environmental pollutants poses numerous risk factors for 
human health, including increasing incidence of cardiovascular disease and 
diabetes.  Persistent organic pollutants, such as polychlorinated biphenyls 
(PCBs) have been strongly linked to the development of these chronic 
inflammatory diseases and the primary route of exposure is through 
consumption of contaminated food products.  Thus, the gastrointestinal tract 
is susceptible to the greatest levels of these pollutants and is an important 
facet to study.  
     The first two hypotheses of this dissertation tested that exposure to PCBs 
disrupts gut microbiota directly (in vitro) and within a whole body system.  
PCB exposure disrupted microbial metabolism and production of metabolites 
(i.e. short chain fatty acids) in vitro.  These disruptions in microbial 
populations were consistent in our mouse model of cardiometabolic disease, 
where we observed reductions in microbial diversity, an increase in the 
putative pro-inflammatory ratio of Firmicutes to Bacteroidetes, and reductions 
in beneficial microbial populations in exposed mice.  Furthermore, observed 
greater inflammation was observed both within the intestines and 
peripherally in PCB exposed mice as well as disruptions in circulating 
markers associated with glucose homeostasis.   
     Nutritional interventions high in prebiotic dietary fiber such as inulin may 
be able to attenuate the toxic effects of pollutant exposure. To test the 
hypothesis that consumption of the prebiotic inulin can decrease PCB-
induced disruption in gut microbial and metabolic homeostasis, LDLr-\- mice 
were fed a diet containing inulin and exposed to PCB 126.  Mice fed an 
inulin-containing diet and exposed to PCBs exhibited improved glucose 
tolerance, lower hepatic inflammation and steatosis, and distinct differences 



 

in gut microbial populations.  Overall, these data suggests that nutritional 
intervention, specifically prebiotic consumption, may reduce pollutant-
induced disease risk.  
 
 
KEYWORDS: Gut Microbiota, Cardiometabolic disease, PCBs, Inulin, 
Prebiotic, Nutrition 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                Jessie Baldwin Hoffman  
 

November 25, 2018  
 
 
 
  



 

 
PCB DISRUPTION OF GUT AND HOST HEALTH: IMPLICATIONS OF 

PREBIOTIC NUTRITIONAL INTERVENTION 
 
 
 
 

By 
 
 

Jessie Baldwin Hoffman 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

Dr. Berhnard Hennig  
    Director of Dissertation 

 
Dr. Howard Glauert  

  Director of Graduate Studies 
 

November 20, 2018  
Date



 

 iii 

ACKNOWLEDGMENTS 
 

I would like to thank everyone who helped me along this journey at the 

University of Kentucky. I would first like to thank my mentor Dr. Bernie Hennig for 

his endless support of my research, professional development, and personal 

development, for allowing me to follow my own research interests, and for putting 

up with my “stubborn” nature.  I would also like to thank Dr. Michael Flythe who 

was not only a helpful committee member, but like a second mentor.  Thank you 

for spending so much time training me and really fostering my interest and skills 

in the field of microbiology.  I would also like to thank my other committee 

members Dr. Gregory Graf, Dr. Xiang-An Li, and Dr. Rachel Schendel. Thank 

you for providing excellent guidance, challenging me, and helping me grow as a 

scientist. Next, I want to thank Dr. Michael Petriello for the countless hours of 

support and guidance in the lab, pushing me to challenge myself scientifically, 

and letting me dog sit your cute pups every now and then.  I’d also like to thank 

everyone in the Hennig lab for all of their support and help with my research.  

Importantly, I would like to thank all of the incredible friends I made during this 

time.  Nika, I am so glad that grad school brought us together.  I can’t imagine 

going through this process without you and I’m so thankful for your friendship.  

Kaia, thanks for being such an incredible cheerleader and always pushing me to 

hustle and follow my heart, despite what people may say or think.  I’d also like to 

thank my friend and mentor Paige Smathers, who has provided me with so many 

opportunities in the field of dietetics and has helped me grow professionally and 

find my place in this field.  Importantly, I’d like to thank all of the students in the 



 

 iv 

Department of Pharmacology and Nutritional Sciences for being an incredible 

support system.   

     I would especially like to thank my amazing husband, Jared, who not only 

has gone through this process with me but has put my needs over his every day 

and has supported me on my good days and on my bad days.  Clear eyes, full 

hearts, can’t lose!  To my parents, thank you so much for the support you’ve 

shown me over these past 10 years of schooling and for not asking the question 

“so when are you done?” too frequently.  Mama B, Grandma, and Grandpa, 

thank you for always being my biggest cheerleaders, for always encouraging 

me, and for fighting for me during my illness and pushing me to recover.  Papa 

B, while you were not able to physically see me accomplish this, I want to thank 

you for being such a loving and positive influence on my early life.  I hope you 

are proud of the woman I have become, and I miss you every day.  Finally, I 

would like to thank God for helping me overcome some of the hardest struggles 

of my life, providing me with the opportunity and ability to pursue an education, 

and for bringing all of these incredible people into my life.   

 
  



 

 v 

TABLE OF CONTENTS 
 
ACKNOWLEDGMENTS ...................................................................................... iii 
LIST OF FIGURES ............................................................................................ viii 
LIST OF TABLES ................................................................................................. x 

Chapter 1 Literature Review ........................................................................... 1 

1.1 Environmental Pollutants: Overview ......................................................... 1 

1.1.1 Effects of Pollutants on the Human Body ........................................... 2 

1.1.2 Polychlorinated Biphenyls- An Overview ............................................ 8 

1.1.3 Factors Influencing Pollutant-Induced Disease Risk ......................... 10 

1.2 Nutritional Modulation of Disease Risk and Pollutant Toxicity ................ 11 

1.2.1 Poor Nutrition Can Exacerbate Pollutant Toxicity ............................. 14 

1.2.2 Healthful Nutrition Can Protect Against Pollutant Toxicity ................ 15 

1.2.3 Nutritional Practices to Reduce Pollutant Body Burden .................... 16 

1.3 The Gut Microbiome and Effects on Host Health .................................... 18 

1.3.1 Microbial Metabolite Production ........................................................ 20 

1.3.2 Modulation of the Gut Microbiome .................................................... 25 

1.4 Prebiotics: An Overview .......................................................................... 28 

1.4.1 Inulin ................................................................................................. 29 

1.5 Scope of Dissertation .............................................................................. 33 

1.5.1 Aims of dissertation .......................................................................... 33 

Chapter 2 Environmental pollutant-mediated disruption of gut microbial 
metabolism of the prebiotic inulin .................................................................. 34 

2.1 Synopsis ................................................................................................. 34 

2.2 Introduction ............................................................................................. 35 

2.3 Materials and Methods ........................................................................... 37 

2.3.1 Materials and Chemicals .................................................................. 37 

2.3.2 Animals and Fecal Collection ........................................................... 38 

2.3.3 Media and Anaerobic Technique ...................................................... 38 

2.3.4 Inulin-Fermenter Enumeration, Isolation, and Characterization ........ 39 

2.3.5 Growth Experiments ......................................................................... 40 

2.3.6 Intracellular Potassium Quantification ............................................... 41 

2.3.7 Fecal Cell Suspensions .................................................................... 41 

2.3.8 Fermentation End Product Quantification ......................................... 42 

2.3.9 Statistical Analyses ........................................................................... 42 



 

 vi 

2.4 Results .................................................................................................... 42 

2.4.1 Identification of an inulin-fermenting isolate ...................................... 43 

2.4.2 Effect of PCB 126 on bacterial growth .............................................. 43 

2.4.3 Disruption of bacterial cell membrane by PCB 126........................... 44 

2.4.4 PCB 126-induced modulation of fermentation acid production from 
inulin substrate ............................................................................................. 44 

2.5 Discussion .............................................................................................. 45 

Chapter 3 Dioxin-like PCB 126 increases inflammation and disrupts gut 
microbiota and metabolic homeostasis ......................................................... 59 

3.1 Synopsis ................................................................................................. 59 

3.2 Introduction ............................................................................................. 60 

3.3 Materials and Methods ........................................................................... 63 

3.3.1 Animals, diet, and study design ........................................................ 63 

3.3.2 DNA extraction and 16S rRNA amplicon library preparation and 
sequencing ................................................................................................... 64 

3.3.3 RNA extraction and qPCR ................................................................ 65 

3.3.4 Analyses of circulating cytokines and proteins related to metabolic 
function ......................................................................................................... 66 

3.3.5 Metabolomics analysis ...................................................................... 66 

3.3.6 Quantitation of atherosclerotic lesions and glucose sensitivity ......... 67 

3.3.7 PCB 126 Quantitation ....................................................................... 68 

3.3.8 Lipopolysaccharide Binding Protein Quantitation ............................. 69 

3.3.9 Statistical analyses ........................................................................... 69 

3.4 Results .................................................................................................... 70 

3.4.1 PCB exposure induces shifts in bacterial populations over time ....... 70 

3.4.2 PCB exposure alters cecal microbial diversity and bacterial genera. 72 

3.4.3 PCB exposure increases systemic inflammation and alters 
cardiometabolic disease parameters ............................................................ 73 

3.4.4 The intestine is a target of PCB 126 toxicity ..................................... 74 

3.4.5 PCB 126 alters hepatic metabolism in ways that mirror metabolic 
diseases ....................................................................................................... 76 

3.4.6 PCB 126 induced bacterial alterations associated with metabolic 
markers ......................................................................................................... 77 

3.5 Discussion .............................................................................................. 77 

Chapter 4 Characterization of the protective effects of prebiotic 
consumption against PCB 126 toxicity ........................................................ 106 



 

 vii 

4.1 Synopsis ............................................................................................... 106 

4.2 Introduction ........................................................................................... 107 

4.3 Materials and Methods ......................................................................... 110 

4.3.1 Animals, diets, and study design .................................................... 110 

4.3.2 Glucose tolerance testing and body composition analysis .............. 111 

4.3.3 DNA Extraction and 16S rRNA Sequencing ................................... 111 

4.3.4 Hepatic histology ............................................................................ 111 

4.3.5 RNA Extraction and qPCR .............................................................. 112 

4.3.6 Analyses of circulating proteins related to metabolic function ......... 112 

4.3.7 Quantification of hepatic metabolites related to cardiometabolic 
disease and metabolic function .................................................................. 113 

4.3.8 Statistical analyses ......................................................................... 113 

4.4 Results .................................................................................................. 114 

4.4.1 Inulin consumption and PCB exposure exert differential effects on 
body composition ........................................................................................ 114 

4.4.2 Inulin protects against PCB 126 disruption of glucose tolerance. ... 114 

4.4.3 Inulin reduces PCB-induced hepatic steatosis ................................ 115 

4.4.4 Inulin and PCB 126 exert differential effects on gut microbial 
populations ................................................................................................. 115 

4.4.5 Inulin attenuates PCB-induced hepatic inflammation and alters 
markers of xenobiotic metabolism .............................................................. 116 

4.4.6 Inulin reduces metabolites associated with cardiometabolic disease
 117 

4.4.7 Inulin and PCBs differentially alter hepatic markers of glucose 
metabolism and circulating metabolic hormones. ....................................... 117 

4.5 Discussion ............................................................................................ 118 

Chapter 5 Overall Discussion .................................................................... 147 

5.1 Discussion ............................................................................................ 147 

5.1.1 Summary ........................................................................................ 147 

5.1.2 PCB 126 disrupts microbial fermentation of a prebiotic substrate .. 148 

5.1.3 Exposure to PCB 126 disrupts gut microbial and metabolic 
homeostasis ............................................................................................... 150 

5.1.4 Inulin consumption reduces gut and systemic toxicity of PCB 126 . 153 

5.2 Future directions and conclusions ........................................................ 157 

References ...................................................................................................... 163 

Vita ................................................................................................................... 185 



 

 viii 

 
LIST OF FIGURES 

 

Figure 2.1. A phylogenetic dendrogram of isolate JB12 and close relatives ....... 53 

Figure 2.2. PCB 126 reduces growth of an inulin-fermenting isolate. ................. 54 

Figure 2.3. PCB 126 is an inhibitor to an inulin-utilizing bacteria ........................ 55 

Figure 2.4. PCB 126 exposure decreases levels of intracellular potassium in 
energized inulin-fermenting strain JB12........................................................ 56 

Figure 2.5. PCB 126 treatment differentially modulates fermentative SCFA from 
moderate concentrations of the dietary fiber inulin ....................................... 57 

Figure 2.6. Increased inulin provision abolishes effects of PCB 126 treatment on 
fermentative SCFA production by isolated fecal bacteria ............................. 58 

Figure 3.1. Exposure to PCB 126 drives phyla level alterations in bacterial 
populations over time ................................................................................... 93 

Figure 3.2. PCB 126 modulates gut microbiota populations at the genra level 
over time ....................................................................................................... 95 

Figure 3.3. Exposure to PCB 126 alters cecal bacterial genera and alpha 
diversity ........................................................................................................ 97 

Figure 3.4. Principal coordinates analysis of unweighted UniFrac distances of 
microbial communities in cecum contents .................................................... 98 

Figure 3.5. Analysis of circulating cytokines and biomarkers of energy 
metabolism revealed that PCB 126 increases inflammation and alters insulin 
and related markers ...................................................................................... 99 

Figure 3.6. Plasma concentrations of lipopolysaccharide binding protein (LBP) as 
determined by ELISA .................................................................................. 100 

Figure 3.7. No differences in glucose tolerance was observed between vehicle 
and PCB 126-exposed mice at 5 or 12 weeks post exposure .................... 101 

Figure 3.8. PCB 126 exerts a modest increase in atherosclerosis development
 ................................................................................................................... 102 

Figure 3.9. PCB 126 exposure increases intestinal inflammation and alters 
markers of gut health .................................................................................. 103 



 

 ix 

Figure 3.10. Exposure to PCB 126 drives phyla level alterations in bacterial 
populations over time ................................................................................. 105 

Figure 4.1. Inulin consumption protects against PCB-induced wasting. ........... 134 

Figure 4.2. Inulin attenuates PCB-disruption in glucose tolerance ................... 135 

Figure 4.3. Inulin consumption reduces PCB-induced hepatic lipid accumulation
 ................................................................................................................... 137 

Figure 4.4. Inulin feeding drives shifts in microbial composition at the phyla level
 ................................................................................................................... 139 

Figure 4.5. Inulin and PCB exposure modulate gut microbial populations ........ 140 

Figure 4.6. Inulin attenuates PCB-induced changes in hepatic inflammatory and 
detoxification markers ................................................................................. 141 

Figure 4.7. Inulin attenuates PCB-induced increase in hepatic ceramides ....... 143 

Figure 4.8. PCB disruption of glucose metabolism is attenuated by inulin ....... 144 

Figure 4.9. PCB 126 and inulin alter circulating metabolic hormones ............... 146 

 

  



 

 x 

LIST OF TABLES 
 

Table 2.1. Substrate utilization profile of isolate JB12 and relatives ................... 52 

Table 3.1. Gut microbiota population changes over time .................................... 90 

Table 3.2. Hepatic metabolomics analysis ......................................................... 91 

Table 3.3. Fecal SCFA analysis ......................................................................... 92 

Table 4.1. Diet Formulation .............................................................................. 132 

Table 4.2.  Genera level differences in gut microbial populations ..................... 133 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 1 

Chapter 1 Literature Review 
 

Annals of the New York Academy of Sciences: PMID: 28574588 
Sections 1.1 – 1.2.3  

 
Jessie B. Hoffman, Bernhard Hennig [1] 

 
1.1 Environmental Pollutants: Overview 
 

Environmental pollution affects nearly every country throughout the world, 

and exposure to environmental pollutants is involved in the pathogenesis of 

numerous non-communicable diseases including cardiovascular disease, 

diabetes, and obesity [2].  Recent evidence from the World Health Organization 

has revealed that China and India are two of the most affected countries in terms 

of indoor and outdoor air pollution exposures with approximately 6.5 million 

associated deaths each year [3].  Pollution from non-airborne exposures (e.g., 

contaminated foods and waters) are more difficult to determine but should be 

expected to further increase these high death rates.  Despite our knowledge of 

the adverse health effects of pollution exposure, levels of environmental 

pollutants have continued to rise over the past few years, especially in 

developing countries.  Great strides have been made over the past decade to 

substantially reduce the amount of pollution generated and while total elimination 

is ideal, it is not a realistic or feasible goal in the immediate future [4].  The next 

question then becomes what can we do now, as individuals, to protect ourselves 

and future generations from pollutant toxicity and associated diseases?  Thus, if 

we can better understand the mechanisms associated with exposure to 

environmental pollutants and effects on disease risk we may be able to develop 

appropriated and effective means to tackle such issues. 



 

 2 

 

1.1.1 Effects of Pollutants on the Human Body 

     Pollutants impact nearly every system of the human body.  We are exposed to 

pollution through a variety of routes including air, the water we drink, and the 

foods that we consume [2, 5]. These routes of exposure introduce complications 

throughout the pulmonary system, digestive tract, liver and circulation, and 

ultimately impact peripheral tissues [2].  The impact of exposure within these 

systems contributes not only to localized inflammatory responses, but may also 

influence whole-body metabolic, vascular, and immune health, thus increasing 

the risk of non-communicable diseases. 

Pulmonary System 

     One common route of pollutant exposure is through inhalation, thus exerting 

detrimental effects on the pulmonary system [5].   Exposure to air pollution has 

been consistently linked with the development of conditions including asthma, 

chronic obstructive pulmonary disease, and respiratory infections [6].  There is a 

well-documented interplay between air pollution exposure and increased airway 

reactivity in children with asthma, and chronic exposure may also increase the 

risk of asthma development in children [6, 7].  Furthermore, exposure to air 

pollutants during gestational and early life has also been associated with 

disturbances in lung development and prevalence of respiratory conditions in 

childhood that may persist throughout life [8].  For example, short-term exposure 

to particulate matter (PM2.5), NO2, and ozone, is associated with lower forced 

vital capacity and lower forced expiratory volume [9].  Additionally, a recent study 
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reported that in adult patients with acute respiratory distress syndrome, chronic 

exposure to air pollution (i.e. ozone and particulate matter) is associated with an 

increase rate of mortality [10].  Importantly, the initiation of inflammatory 

responses within the lungs from pollutant exposure can impact other organ 

systems, contributing to further disease pathologies [11]. For example, acute or 

chronic exposure to airborne particulate matter can accelerate the pathology of 

atherosclerosis through increases in vascular inflammation, macrophage 

infiltration, and generation of reactive oxygen species [12, 13]. 

Gastrointestinal Tract 

     The gastrointestinal tract plays critical roles in human health and has recently 

garnered more attention in the scientific community, specifically regarding the 

intestinal barrier and gut microbiome.  The principle function of the intestine is to 

regulate the absorption of water and nutrients into circulation while also serving 

as a barrier to the infiltration of pathogens and toxic compounds [14].  

Additionally, the gut harbors trillions of bacteria that play critical roles in 

numerous facets of host metabolism and health [15]. Alterations in gut microbial 

composition is termed “dysbiosis” and has been linked to increased disease risk.  

These perturbations in gut microbial populations are associated with a decrease 

in microbial diversity and are observed in conditions of obesity and diabetes [15].  

Importantly, there is current evidence that an altered gut microbiome may 

actually be causal in the development of such chronic inflammatory 

conditions.[16, 17] Because the primary routes of exposure to many pollutants is 

through water and foods, the gastrointestinal tract is exposed to high levels of 



 

 4 

pollutants and thus be greatly affected.  Indeed, it has been observed that 

exposure to polychlorinated biphenyls (PCBs) disrupts intestinal barrier function 

through dysregulation of tight junction proteins [18]. Furthermore, oral exposure 

to the pollutant benzo[a]pyrene resulted in intestinal inflammation and ileal 

lesions, which was associated with shifts in gut microbial composition [19].  

Importantly, Zhang et al [20] have demonstrated that exposure to the persistent 

organic pollutant tetrochlorodibenzofuran (TCDF), can result in alterations of gut 

microbial populations at the level of phylum, class, and genus and these changes 

were associated with disruptions in bile acid and short chain fatty acid (SCFA) 

metabolism [20].  This study is one of the first to indicate the link between the 

effects of pollutant exposure in the gut to overall metabolic health.   

     While it is commonly thought that air pollution only affects lung health, it is 

important to note that this exposure can also affect the digestive tract and 

subsequently systemic organ systems.  It has been documented that upon 

inhalation, airborne pollutants are quickly cleared from the lungs and transported 

to the intestine via mucociliary transport [14].  Therefore, even airborne pollutants 

can alter overall gut health and microbial populations.  For example, it has been 

demonstrated that ingestion of airborne particulate matter (PM) can cause 

intestinal inflammation and alter the gut microbiota, contributing to alterations of 

SCFA production in mice [21].  Additionally, in colonic cells, exposure to PM 

caused reactive oxygen species production, nuclear factor kappa-b (NF-κB) 

activation, and disruptions in tight junction proteins, indicating that PM may 

disrupt intestinal permeability and increase intestinal inflammation [22].  Because 
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the gut lies at the interface of the outside environment and our internal organ 

systems, maintenance of a healthy intestinal environment and microbiome may 

aid in prevention of pollutant-associated diseases.   

Liver 

     Many nutrients and toxicants travel from the gut to the liver via the portal vein.  

Thus, the liver is one of the most critical organs in the body, contributing greatly 

to metabolism, secretory, excretory, and vascular functions.  In the United States, 

the incidence of liver disease has increased with expanding levels of obesity and 

is thought to be due to an increase in non-alcoholic fatty liver disease (NAFLD) 

and non-alcoholic steatohepatitis (NASH) [23].  While these liver pathologies can 

be developed through poor dietary and lifestyle choices, there is recent evidence 

that environmental pollutants can also greatly influence liver disease [24].  The 

term, toxicant-associated fatty liver disease (TAFLD) is a relatively new labeled 

type of liver disease and exhibits similar pathologies to other liver diseases [24].  

TAFLD and its more severe form, toxicant associated steatohepatitis (TASH), 

have been observed in workers highly exposed to industrial chemicals such as 

vinyl chloride [25].  These observations of TASH were associated with increased 

levels of inflammatory cytokines as well as insulin resistance, indicating the 

widespread metabolic complications that pollutant exposure can exert via the 

liver [25].  Furthermore, there is evidence that low-level pollutant exposure may 

also influence the development of liver pathologies.  For example, 

epidemiological data from the general population revealed associations between 

PCBs and increased levels of serum alanine aminotransferase (ALT), a widely 
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used biomarker of liver injury [26].  These findings support a potential association 

of chronic, low level pollutant exposure and the development of TAFLD and liver 

disease.  Because the liver is such a vital organ for metabolism, environmental 

exposures affecting the liver may also contribute to obesity and diabetes through 

disruption in glucose and lipid metabolism.  Therefore, further research is 

warranted to better understand the mechanisms behind pollutant-induced liver 

injury and avenues of potential protection against these pathologies.  

Vascular Tissues 

     Circulating nutrients, toxicants, and their metabolites can modulate vascular 

responses that can either be pro- or anti-atherogenic.  One of the key events in 

the progression of atherosclerosis is endothelial cell dysfunction.  It has been 

documented that exposure to particulate matter (PM) air pollution can disrupt the 

vasculature resulting in endothelial cell dysfunction [27].  Furthermore, there is 

also evidence that arsenic exposure is associated with endothelial cell 

dysfunction, as evidenced by the presence of circulating soluble intercellular 

adhesion molecule-1 (sICAM-1) and soluble vascular cell adhesion molecule-1 

(sVCAM-1) in Bangladeshi individuals exposed to arsenic [28].  In support of this, 

in mouse models of atherosclerosis (APOE-/-), exposure to arsenic resulted in 

increased accumulation of arsenic within the vessel walls as well as exacerbated 

aortal lesion formation [29]. There is also evidence that persistent organic 

pollutants (POPs), including PCBs, can increase atherosclerotic risk.  

Specifically, coplanar PCBs such as PCB 77 and PCB 126 bind to the aryl 

hydrocarbon receptor (AhR) within vascular endothelial cells, triggering a 
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cascade of events that leads to production of reactive oxygen species and 

disruption of cellular redox status [30].  These events ultimately lead to up-

regulation of NF-κB resulting in induction of proinflammatory gene products such 

as cytokines, chemokines, and cell adhesion molecules that contribute to 

endothelial cell dysfunction and the early stages of atherosclerosis [31].  More 

recent evidence suggests that dioxin-like pollutant exposure (PCB 126) can 

result in up-regulation of the enzyme flavin-containing monooxygenase 3 (FMO3) 

and subsequently increase circulating levels of trimethylamine-N-oxide (TMAO), 

a biomarker strongly associated with cardiovascular disease [32]. 

Peripheral Tissues 

     Upon circulation of these environmental pollutants, as discussed above, 

numerous peripheral tissues become exposed, including highly vascularized 

adipose tissue [33].  With the worldwide obesity epidemic, research on the 

toxicological interplay between pollutants and adipose tissue has become 

increasingly important.  It is no longer believed that adipose tissue is solely a 

storage of excess energy, but in fact plays numerous metabolic and endocrine 

roles within the body.  In regards to pollutant exposure, adipose tissue is capable 

of storing lipophilic pollutants, specifically persistent organic pollutants (POPs) 

[33].  While such storage can be protective to reduce availability to other organ 

systems in situations of acute and high pollutant exposures, there is evidence 

that a low and chronic release of POPs from adipose tissue can exert some toxic 

effects to other lipophilic tissues such as the brain and the liver [34].  

Furthermore, it has been demonstrated that pollutants can alter adipose tissue 
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structure and function through metabolic disruption and inflammation, which may 

increase the risk of chronic metabolic diseases [33, 35].  Some pollutants also 

have been associated with increases in adiposity and weight gain and are thus 

termed “obesogens” [36].  These pollutants, including bisphenol A (BPA), 

benzo[a]pyrene, and certain organophosphate pesticides, are thought to play a 

role in the development of obesity by disrupting lipid storage and metabolic 

mechanisms and promotion of adipocyte hyperplasia [36, 37].  

   As evidenced by the above-discussed findings, pollution has diverse and body-

wide effects on human health, thus increasing the risk of disease.  Therefore, 

identifying what makes an individual more at risk and understanding how lifestyle 

choices influence pollutant-toxicity is of utmost importance.  

1.1.2 Polychlorinated Biphenyls- An Overview 

 Polychlorinated Biphenyls, or PCBs are a group of synthetic organic 

chemicals comprised of carbon, hydrogen, and chlorine atoms.  There are over 

200 different congeners of PCBs, with their differences being the number and 

location of the chlorine atoms [2].  Due to their thermally stable and lipophilic 

nature, PCBs were utilized extensively as lubricants and coolants in electrical 

equipment and also in industrial products such as pigments and plasticizers.  

PCBs production was banned in 1979 due to the observed environmental 

persistence and potential human health effects, however because of their high 

resistance to degradation, they still are present in the environment [2].  PCBs 

biomagnify along the food chain and thus pose a risk for human exposure 

through consumption of contaminated foods.  The highest contaminated food 
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substances include fish such as catfish, salmon, and carp, as well as other 

animal products including meat and dairy.  There is increasing evidence that 

PCB exposure is associated with adverse health consequences [38].  Some of 

the most toxic PCB congeners include the dioxin-like PCBs.  These PCBs act 

similarly to the compound tetrachlorodibenzodioxin (TCDD), through strong 

binding of the aryl hydrocarbon receptor (AhR) which in turn triggers a cascade 

of events resulting in the upregulation and uncoupling of cytochrome p450 

Cyp1a1 resulting in production of reactive oxygen species [39].  This chronic 

production of ROS causes systemic inflammation and subsequent inflammatory 

health complications such as cardiovascular disease and diabetes.  Evidence of 

the effects of PCBs on specific organ systems was discussed in a prior section. 

There is also evidence that PCBs can act through specific molecular 

mechanisms such as epigenetic regulation and microRNA alterations.   For 

example, it has been demonstrated that exposure to PCB 126, a coplanar dioxin-

like PCB, induces inflammation in endothelial cells through epigenetic regulation 

of the NF-kB p65 subunit [40].  It was also shown in human umbilical vein 

endothelial cells that the PCB mixture, Aroclor 1260 alters the expression of 

microRNAs that are associated with vascular diseases, indicating yet another 

mechanism by which PCBs can induce inflammatory disease [41] Further 

research is still needed to understand the diverse mechanisms by which PCBs 

induce health complications and specifically how diet and preexisting disease 

influence the toxicity of these pollutants. 
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1.1.3 Factors Influencing Pollutant-Induced Disease Risk 

One major question to be addressed is why certain people are more 

susceptible to pollutant-associated diseases?  It has been demonstrated that 

compromised health or sub-optimal lifestyles, may exacerbate the toxicity of 

environmental pollutants. For example, it has been shown that pollutant toxicity is 

worsened in animal models with non-alcoholic fatty liver disease (NAFLD) [42]. 

This illustrates the idea that individuals in poor health or with underlying disease 

conditions may be more susceptible to environmental insult or other chemical or 

non-chemical stressors.  Additionally, it is now appreciated that events occurring 

during pregnancy can play a significant role in the future health and disease risk 

of the offspring [43].  It has been documented that the offspring of mothers 

exposed to environmental pollutants during pregnancy exhibit effects that may be 

detrimental and persist into adulthood [44, 45].  For example, particulate matter 

exposure throughout pregnancy was observed to be associated with an 

increased fetal C-reactive protein (CRP) level upon delivery, indicating that 

prenatal pollution exposure may increase fetal inflammatory responses and thus 

potentially alter long-term health outcomes [46].  Moreover, data from a 

longitudinal birth cohort study revealed an association between prenatal 

exposure to dichlorodiphenyltrichloroethane (DDT) and hypertension later in life, 

further indicating the long-term negative effects of early-life pollutant exposure 

[47].  Aside from compromised health and prenatal exposures, some individuals 

may be susceptible to disease development associated with environmental 

insults due to genetic predisposition to these non-communicable diseases.  For 
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example, certain genetic polymorphisms in oxidative stress genes and 

inflammatory genes have been demonstrated to influence the respiratory effects 

and susceptibility to air pollution [48].   

1.2 Nutritional Modulation of Disease Risk and Pollutant Toxicity 

As discussed above, the risk of pollutant-induced toxicity may be increased by 

underlying diseases, prenatal exposures, and genetic predispositions.  Because 

certain unhealthy lifestyle choices can predispose an individual to disease, it can 

be expected that this may allow for greater pollutant induced toxicity.  Thus, 

finding ways to achieve a healthy lifestyle and therefore reduce disease risk are 

significant and highly important. 

     Recent evidence has shown that while genetics do play a role in disease risk, 

it may be smaller than once thought.  In a recent study published by Khera et al. 

[49] it was observed that in participants with a high genetic risk of coronary artery 

disease, those living a “favorable lifestyle” (i.e. no obesity, no smoking, regular 

physical activity, and a healthy diet) had approximately a 50% lower relative risk 

of coronary artery disease compared to those living an “unfavorable lifestyle” 

[49].  These findings demonstrate just how influential our lifestyle choices are on 

overall disease risk independent of genetic risk.  For individuals looking to 

achieve “favorable lifestyle” choices, a logical place to start is examination of 

dietary habits.  Because nutrition is such a critical aspect of life with food being a 

fundamental component for survival, understanding how nutrition affects our 

health is essential.  Research has established that certain nutrition practices can 

worsen health outcomes while others can provide benefits.  This is well 
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evidenced with the present global obesity epidemic, which has been attributed to 

a reliance on processed, high fat, and nutrient poor foods that contribute to 

excess energy intake relative to actual nutrient requirements [50].  While body fat 

gain is the first visible complication of this chronic positive energy balance, the 

internal inflammatory processes and metabolic complications elicited pose a 

greater threat to overall well-being.  These less visible metabolic complications 

can even occur prior to any weight gain.  For example, consumption of high fat 

diets, with greater proportions of saturated, trans, and omega-6 fatty acids (e.g., 

linoleic acid) can increase inflammatory processes rapidly and thus long-term 

cardiovascular disease risks [51, 52].  Additionally, research examining the 

effects of consumption of processed meats has become a source of great 

interest and controversy in the field of nutrition.  As defined by the American 

Institute for Cancer Research, processed meats are “meats preserved by 

smoking, curing or salting, or addition of chemical preservatives”.  Interestingly, a 

meta-analysis conducted by Micha et al [53] revealed that a single serving per 

day of processed meat was associated with a 42% increase in risk of coronary 

heart disease and a 19% higher risk of diabetes mellitus [53].  

     On the other hand, it is well appreciated that many chronic diseases, such as 

cardiovascular disease and type 2 diabetes, can be prevented or attenuated with 

healthful dietary practices.  This includes diets similar to that of the 

Mediterranean diet, rich in omega-3 fatty acids, fruits, vegetables, and whole 

grains [54, 55]. These dietary components, which are rich in antioxidant and anti-

inflammatory compounds (e.g., phytochemicals and polyphenols), may reduce or 
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prevent the proinflammatory events associated with chronic metabolic diseases 

[54, 55]. Additionally, there is also evidence that consumption of polyphenolic 

compounds such as resveratrol, tea polyphenols, and curcumin can protect 

against inflammation and chronic disease through alterations in proinflammatory 

gene expression both directly and through epigenetic modifications.[56] For 

example, curcumin, a principle component of the spice turmeric, has been 

demonstrated to suppress or inhibit the expression of tumor necrosis factor-a 

(TNF-α) as well as cyclooxygenase 2 (COX-2), the target of nonsteroidal anti-

inflammatory drugs (NSAIDs) [57, 58]. Additionally, the consumption of table 

grapes, rich in polyphenolic compounds including resveratrol and anthocyanins, 

have been shown to attenuate systemic inflammatory responses, hepatic 

lipogenesis, and adiposity in mice fed a high fat diet [59].  Thus, dietary choices 

are very powerful, and when chosen appropriately can vastly influence the 

development of numerous metabolic diseases. 

     The underlying denominator of non-communicable diseases, such as those 

observed from pollutant exposure, is oxidative stress and inflammation [60].  An 

inflammatory process usually precedes other health effects, and thus it is a 

critical step to understand and identify means to protect against inflammation.  

Similar to the way in which nutrition can contribute to or protect from non-

communicable diseases, nutrition can also modulate the toxicity of environmental 

pollutants, thereby altering overall disease risk. 
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1.2.1 Poor Nutrition Can Exacerbate Pollutant Toxicity 

It has been established that certain unhealthy nutrition practices can 

actually worsen the toxicity of pollutant exposure.  The overconsumption of 

processed and refined foods contributes to diets high in inflammatory fatty acids, 

which not only exacerbate diet-induced metabolic complications, but also 

pollutant-associated inflammatory processes [61, 62].  These high-fat, processed 

foods are also low in protective bioactive nutrients, thus leading to increased 

oxidative stress and inflammation.  Additional stressors, such as environmental 

insults, added to this may result in a greater inflammatory response, which could 

be due to the fact that the mechanisms of pollutant-induced toxicity and dietary-

induced inflammatory responses are similar [62].  This detrimental interplay of 

nutrition and pollutants was illustrated comparing the effects of PCB exposure in 

mice fed corn oil (high in linoleic acid) versus mice fed olive oil (high in oleic 

acid).  In corn oil fed mice, PCB exposure resulted in further increases in 

expression of aortic vascular cell adhesion molecule 1 (VCAM-1).  Importantly, 

this observation was not observed in mice fed olive oil, indicating the selective 

interaction of specific dietary fats with PCB inflammatory processes.[63]  Others 

have also observed this toxic interplay of pollutants and nutrition.  For example, it 

has been shown that high fat diets can exacerbate arsenic-associated liver 

inflammation and fibrosis.[64]  Additionally, diet-induced obesity and non-

alcoholic fatty liver disease (NAFLD) are worsened in the presence of PCB 153, 

further illustrating the detrimental interplay of poor nutrition and pollutant 

exposure.[65] 
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1.2.2 Healthful Nutrition Can Protect Against Pollutant Toxicity  

As discussed above, individuals consuming a healthful diet already have a 

lower risk of chronic inflammatory disease and thus may be less susceptible to 

environmental insults and associated disease risks.  This is important when 

considering the observed increase in air pollution in many overpopulated parts of 

the world and the link to risks of pulmonary and peripheral diseases.  In fact, 

biological and epidemiological evidence suggests that exposure to particulate 

matter and related components of air pollution can contribute to oxidative stress 

and inflammation, suggesting that intake of diets enriched in antioxidant and anti-

inflammatory nutrients should be advised to down-regulate pulmonary disease 

risks [66-68].  There is evidence that specific nutrients can actually reduce the 

toxicity and health complications associated with pollutant exposure.  Diets rich in 

bioactive food components such as omega-3 fatty acids and polyphenols, contain 

high levels of antioxidant and anti-inflammatory compounds that are capable of 

blunting the toxic and inflammatory effects of pollutant exposure [69]. 

Resveratrol, a polyphenol found abundantly in grapes, berries, and other plants, 

has been shown attenuate hepatic steatosis and oxidative stress in mice 

exposed to 2,3,7,8- tetrachlorodibenzo-p-dioxin (TCDD)[70].  Furthermore, 

resveratrol has also been documented to combat PCB-induced disruptions in 

adipocyte glucose homeostasis, which may protect against the development of 

type 2 diabetes associated with pollutant exposure [71].  Another phenolic 

compound, epigallocatechin gallate (EGCG), found in green tea, is capable of 

attenuating cardiovascular inflammation and toxicity associated with arsenic 
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exposure [72].  In support of this, our lab has observed that consumption of 

green tea can reduce oxidative and inflammatory responses associated with PCB 

126 exposure through up-regulation of antioxidant enzymes [73].  Importantly, 

EGCG exhibits epigenetic regulation of NF-κB target genes, reducing PCB 126 

induced endothelial cell inflammation mechanisms [74]. 

1.2.3 Nutritional Practices to Reduce Pollutant Body Burden 

In addition to combatting pollutant-induced inflammation and toxicity 

directly, there is evidence that certain nutritional components can actually aid in 

reducing overall body burden of pollutants.  Interestingly, it has been observed 

that individuals consuming vegetarian or vegan diets exhibit trends towards lower 

body burden of organochloride compounds [75].  These diets tend to be high in 

polyphenols and antioxidant compounds due to their plant-based focus, and thus 

it is possible that specific bioactive and plant-derived compounds may be 

promoting greater excretion of pollutants.  However, these associations need to 

be further explored to determine if this is indeed the case.  Because nutrition and 

pollutants often interact with and alter similar mechanistic pathways, it is possible 

that nutritional targeting of some of these pathways may be able to modulate 

pollutant metabolism and excretion. One example of the overlap in nutritional and 

pollutant interactions can be observed between arsenic and folate.  For the body 

to facilitate excretion of arsenic, it must undergo methylation, with S-

adenosylmethionine (SAM) functioning as the methyl donor.  Interestingly, 

synthesis of SAM relies on a one-carbon metabolism that is folate-dependent 

[76].  Therefore, supplementation with folate may enhance the methylation and 



 

 17 

subsequent excretion of arsenic.  Indeed, Peters et al. recently observed that 12 

and 24-week supplementations of 800μg/day of folic acid significantly reduced 

blood arsenic concentration in an arsenic-exposed Bangladeshi population [76]. 

This finding is especially important due to the prevalence of chronic arsenic 

exposure worldwide and supports the importance of fostering a better 

understanding of the metabolism and excretion pathways of pollutants as 

potential targets of intervention.  In addition to nutritional modulation of molecular 

mechanisms to enhance pollutant excretion, direct disruption or binding of these 

pollutants via the enterohepatic circulation may also provide a means of 

intervention to reduce body burden.  For example, during this process, these 

pollutants become exposed to the intestinal environment, thus providing an 

avenue for potential dietary intervention.  Indeed, it has been observed that 

consumption of the dietary fat substitute, Olestra, a sucrose polyester which can 

enhance the excretion rate of PCBs and hexachlorobenzene in mice and also in 

highly exposed individuals [77-79].  This enhanced excretion is believed to be 

through interference with the enterohepatic circulation of these pollutants.  

Because of these findings, there is the potential that other nutritional components 

may act similarly and be able to bind and increase pollutant excretion and 

ultimately reduce the body burden of certain pollutants.    

    The levels of environmental pollution are on the rise worldwide, especially in 

densely populated areas including China and India.  Environmental pollution 

impacts virtually every aspect of the human body, including the pulmonary and 

gastrointestinal systems, liver, vasculature, and other peripheral tissues such as 
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the adipose tissue.  The diverse and detrimental impacts that pollutant exposure 

has on these systems contribute to the increasing occurrence of chronic 

inflammatory conditions observed worldwide.  While efforts to reduce and 

remediate pollution are underway, means of immediate protection at an individual 

level is of upmost importance.  Nutrition can have a drastic impact on the 

development of or protection against non-communicable diseases, such as those 

associated with pollutant exposure.  There is increasing evidence of the 

protective mechanisms of healthful nutrition on pollutant toxicity, specifically 

regarding components of the Mediterranean diet (i.e. omega-3 fatty acids and 

anti-inflammatory polyphenols), suggesting a means by which individuals may be 

able to control the development of pollutant-associated disease risks.  Because 

nutrition is such a critical aspect of daily life, it is important to continue to foster a 

better understanding of the ways in which the foods we consume can impact the 

toxicity of environmental pollutants.  Positive lifestyle changes such as healthful 

nutrition (e.g., diets high in phytochemicals or polyphenols) may provide the most 

sensible means to develop primary prevention strategies of diseases associated 

with many environmental toxic insults. 

1.3 The Gut Microbiome and Effects on Host Health 

     The term gut microbiota refers to the complete population of microorganisms 

colonizing the intestines, and as current knowledge stands, is comprised of over 

1000 species of bacteria [80].  The gut microbiome has been defined using 

parameters including diversity, richness, and even distribution of microbial 

communities.  To classify these parameters, 16S rRNA gene sequencing or more 
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global scale metagenomic analyses are often implemented to compare bacterial 

populations most commonly from stool samples, but also from intestinal biopsies 

[81].   

     Over recent years, interest has grown significantly on understanding the ways 

in which gut microbiota influence overall host health.  Importantly, the gut 

microbiome has been associated with numerous diseases and health conditions 

including inflammatory bowel diseases, neurological illnesses, and metabolic 

diseases [80].  Currently, the scientific community defines a “healthy” gut 

microbiome as one with greater richness and bacterial diversity, as a reduced 

bacterial diversity is often observed in obesity, diabetes, and other diseases [80].  

     Within the intestinal environment there are five main phyla of bacteria: 

Bacteroidetes, Firmicutes, Actinobacteria, Proteobacteria, and Verrucomicrobia 

[80].  It has been observed that in situations of obesity and chronic inflammatory 

diseases, the ratio of Firmicutes to Bacteroidetes is increased and that this ratio 

may not only be a result of these conditions but may actually be causal [80].  

Studies using fecal microbiota transplantation (FMT) have been instrumental in 

the scientific communities understanding of how the gut microbiome impacts 

overall host health.  For example, it has been demonstrated that performing FMT 

from mice that were obese into lean mice lead to a significant increase in weight 

gain in the mice receiving the obese microbiota [82].  Importantly, the reverse 

has also been demonstrated in obese mice transplanted with lean mice 

microbiota. Upon transplantation, the obese mice lost weight and had 

improvements markers of glucose intolerance.  While these experimental 
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observations have been made, it is important to understand the mechanisms that 

drive these findings.  Therefore, current microbiota research focuses on 

identifying core microbial species or genera that exert specific functions that may 

aid in metabolism, contribute to immunity, reduce inflammation, or function in 

communication with other organs (e.g. gut-brain axis).  For example, 

Bifidobacterium, Lactobacillus, Bacteroides, Eubacterium, Rosburia, and 

Clostridium clusters IVa and XIVa have been associated with optimal 

gastrointestinal functions and overall health in humans [83].  However, it is 

important to note that these classifications are still very broad and thus making 

generalizations at this level of taxonomy may not be most appropriate. 

1.3.1 Microbial Metabolite Production 

     The primary end products of bacterial saccharolytic fermentation of non-

digestible carbohydrates are short chain fatty acids (SCFAs).  These SCFA are 

formed when carbohydrates escape digestion and absorption in the small 

intestine and thus persist into more distal regions of the digestive tract where 

they are metabolized by the residing gut microbiota [84].  The primary SCFA 

formed by bacterial fermentation are acetate, propionate, butyrate, and formate.  

Lactate is also produced by several bacterial groups including lactic acid 

bacteria, Bifidobacteria, and Proteobacteria, primarily from rapid fermenting non-

digestible carbohydrates [85].  In addition to non-digestible carbohydrates, amino 

acids may also be fermented and contribute to SCFA production, although this is 

to a much smaller degree [84].  Through advanced metagenomic analyses, 

characterization of specific bacterial species responsible for SCFA production 
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has been made possible.  While acetate is a common metabolite for most 

bacterial species, lactate, propionate, and butyrate have been demonstrated to 

be more specific with regards to both bacterial species and substrate [86].  Within 

the the human microbiome, it has been demonstrated that a few species seem to 

be main contributors to butyrate production, including Eubacterium rectale, 

Eubacterium hallii, Faecalibacterium prausnitzii, and Ruminococcus bromii [87].  

Furthermore, Akkermansia muciniphila, a mucin degrading bacterium has been 

identified as a large contributor to propionate production [88].  This bacterium has 

garnered much attention in the scientific community due to it being linked with 

improved intestinal health and metabolic parameters in type 2 diabetic and obese 

subjects, but there is still some debate on solely classifying this bacterium as 

beneficial [88].  Nevertheless, A. muciniphila has been demonstrated to attenuate 

the high fat-induced endotoxemia that occurs as a result of an impaired intestinal 

barrier [89]. These protective effects on the intestinal barrier have also been 

demonstrated in vitro, where it was shown that this bacterium binds to the 

extracellular matrix protein laminin and strengthens the enterocyte monocyte 

layer [90].  While it still remains unknown, there is potential that some of these 

effects mediated by A. muciniphila are resultant of SCFA production.  These 

discussed specific bacterial species noted for SCFA production is by no means 

exhaustive but demonstrates how metagenomic analysis has allowed the 

functional characterization of certain bacterial species residing in the human 

intestinal environment.  
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     SCFAs exert effects locally within the intestine and systemically and serve a 

variety of purposes [91].  For example, butyrate serves as a preferential energy 

source for the colonic epithelial cells, facilitating the maintenance of an 

impermeable intestinal barrier through regulation of tight junction proteins such 

as ZO-1, occludins, and claudins [91].  A strong intestinal barrier is critical for 

preventing leakage of bacteria and toxins into systemic circulation, which can 

contribute to chronic inflammatory responses that can influence the development 

of disease [91, 92]. Additionally, SCFA concentrations are sensed by specific G-

protein coupled receptors (GPRs), GPR41 and GPR43, which are involved in 

numerous systemic processes including the regulation of glucose and lipid 

metabolism [91].   

     Another group of microbial metabolites that have been recently studied are 

involve the compound L-tryptophan.  L-tryptophan and its metabolites have been 

demonstrated to be involved in gut immune function and also play a role in 

several immune diseases [93].  Endogenous tryptophan metabolism is conducted 

through two main pathways: the kynurenine pathway and the serotonin pathway, 

which occur primarily in the liver [93].  Interestingly, the gut microbiota can utilize 

tryptophan, limiting the availability of this compound to host tissues.  It has been 

estimated that the gut microbiota can metabolize 4-6% of dietary tryptophan, 

resulting in the production of several compounds such as indole, indicant, 

tryptamine, and skatole, as well as other indole acid derivatives [93].  The 

understanding of which microbes possess the enzymes to metabolize tryptophan 

is currently limited, however it is known that members of Firmicutes including 
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Clostridium sporogenes and Ruminococcus gnavus are capable of producing 

tryptamine and skatole can be produced from indole acetic acid by bacteria 

belonging to the genera Lactobacillus, Clostridium, and Bacteroidetes [93].  

Several other bacteria undoubtedly possess the capabilities to produce 

tryptophan metabolites and as technology and understanding of the gut microbial 

field progresses, the characterization of these microbes can be anticipated.  

Studies have demonstrated that these microbial-derived tryptophan metabolites 

can exert effects on host health, specifically through actions as ligands of the aryl 

hydrocarbon receptor (AhR) [94-96].  AhR is critical to maintenance of intestinal 

immunity and it has been demonstrated that excessive degradation of AhR 

ligands can induce detrimental effects on immune homeostasis [97].  It has been 

shown that during acute colitis, dietary tryptophan can alleviate colitis symptoms 

in a DSS-inducible intestinal injury mouse model and that these effects are due 

to microbial metabolites of tryptophan, not the parent compound [95].  A diet 

containing high amounts of tryptophan can actually increase AhR mRNA 

expression and the microbial metabolites that activate AhR result in the increase 

in colonic expression of IL-22 [98].  Recently IL-22 has gotten a lot of attention 

due to its discovered involvement in the maintenance of gut barrier function and 

immune function in the intestine [99].  Furthermore IL-22 has also been shown to 

play a role in anti-bacterial immunity, increasing clearance of specific pathogenic 

bacteria, further supporting the therapeutic potential of diets rich in tryptophan 

[100].  While research on this topic has progressed significantly over the past few 
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years, there still is much research needed to investigate the potential other roles 

that microbial-derived tryptophan metabolites play in gut and host health.   

     Some bacterial metabolites can also be detrimental and potentially contribute 

to disease risk.  The bacterial derived metabolite trimethylamine n-oxide (TMAO) 

has recently been linked to coronary artery disease in the human population 

[101].  TMAO is formed from quaternary nitrogen containing compounds such as 

dietary choline, phosphatidylcholine, and carnitine.  When ingested, these dietary 

compounds are metabolized by the gut microbiota to generate trimethylamine 

(TMA) and subsequently the liver enzyme flavin-containing monooxygenase 3 

(FMO3) oxidizes it to form TMAO [101].  Evidence has shown that there are 

several bacterial families involved in the production of TMA/TMAO.  In human 

and preclinical models, Deferribacteraceae, Prevotellaceae, Enterobacteriaceae, 

and Anaeroplasmataceae have been demonstrated to contribute to the formation 

of TMA [102].  Furthermore, in vitro, several species have been identified as TMA 

producers including Anaerococcus hydrogenalis, Clostridium sporogenes, C. 

hathewayi, Escherichia fergusonii, and others [103, 104].  Circulating levels of 

TMAO have been associated with numerous deleterious disease states, from 

cardiovascular disease, to chronic kidney disease, to type 2 diabetes [102].  

Despite these findings, the debate still remains whether or not TMAO itself is 

contributing to disease progression or if it is solely a biomarker that is a result of 

a different diseae mechanism [105].  Additionally, recent research utilizing gut 

microbial modulation to attempt to reduce circulating TMAO levels have been 
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ineffective and inconclusive [106].  Due to these inconsistencies and debates, 

there is a great need for more research in this area. 

1.3.2 Modulation of the Gut Microbiome 

     The gut microbiome can be affected by to numerous factors, perhaps the 

most notable being dietary habits.  Diet has been demonstrated to rapidly and 

consistently exert changes on gut microbiota, with some of these alterations 

occurring within hours of dietary changes [107].  Studies examining the impacts 

of dietary components on the gut microbiota have focused mostly on high fat 

diets and high fiber diets, specifically looking at high fat diets as detrimental and 

high fiber diets as beneficial for gut health and host outcomes.  The evidence 

behind each of these foci is discussed below.      

     High fat diets (HFD) have been consistently shown to negatively impact gut 

microbial populations [108].  Generally, it has been shown that HFD consumption 

can lead to a decrease in Bacteroidetes and increase in Firmicutes, which has 

been associated with numerous chronic disease states [108].  One of the 

mechanisms linking the consumption of a HFD to chronic disease is 

hypothesized to be disruptions in gut permeability and increases in intestinal 

inflammation [108].  For example, HFDs have been shown to reduce intestinal 

tight junction proteins, which can increase bacterial translocation, elevate 

circulating levels lipopolysaccharide (LPS) and contribute to inflammatory 

outcomes [109].  Furthermore, HFDs have been shown to increase inflammatory 

mediators within the small and large intestine of conventionally raised mice, but 

not germ-free mice, indicating an involvement of the microbiota in HFD-induced 
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inflammatory response [110].  It is important to note that high fat diets are often 

low in dietary fiber, which is known to be a positive modulator of the microbiota.  

Importantly, the detrimental impacts of a HFD on gut microbiota is not conclusive.  

For example, gut microbiota research on the ketogenic diet, which focuses on 

very high fat and low carbohydrate consumption, has shown to actually be 

beneficial for microbial populations [111].  For example, it was shown that 

ketogenic diet-fed mice had increased abundance of Akkermansia muciniphila 

and Lactobacillus and reduced levels of supposed pro-inflammatory taxa such as 

Dulsufovibrio [112].  Due to these inconsistencies in the literature regarding high 

fat diets and effects on the gut microbiota, more research is needed to elucidate 

the specific effects of HFD on microbiota and health outcomes in a variety of 

populations.   

Diets high in fiber have been consistently demonstrated to modulate the 

microbiota.  High fiber diets are well understood to be beneficial for host health, 

specifically in regard to cardiovascular disease and diabetes prevention [113].  

Previously, it was believed that these beneficial effects were solely mediated 

through regulation of cholesterol levels and glucose homeostasis [113].  

However, as understanding of the gut microbiota has increased, new research 

has discovered that high fiber-induced modulation of the gut microbiota may play 

a role in these previously observed effects [114-116].  One mechanism behind 

the beneficial effects of diets high in fiber is increases in short chain fatty acid 

(SCFA) production.  Certain fibers are highly fermentable, meaning that they are 

metabolized by the gut microbiota to produce metabolites, primarily SCFA, that 
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can then be absorbed by the host.  As discussed previously, SCFA have diverse 

impacts both locally within the gut and systemically as metabolic substrates as 

well as through ligand binding to specific receptors (e.g. GPR41 and GPR43) 

[85].  Another mechanism by which high fiber diets may contribute to host health 

is through immune modulation [117].  For example, it was recently shown that 

fiber consumption protects against diet-induced obesity and systemic 

inflammation through restoration of interleukin-22 (IL-22), which functions in 

restoration of enterocyte function and fortification of the intestinal barrier [116].  

These observations of fiber-induced beneficial effects involving SCFA and 

immune modulation have been observed with highly fermentable fibers (e.g. 

inulin), while research examining minimally fermented fibers (e.g. cellulose) has 

not shown strong effects [118]. The fibers that are highly fermentable are termed 

prebiotics, and is discussed extensively in later sections.     

More recently, great interest has developed into specific modulation of the 

microbiota with the intention to benefit gut and host health.  This can be achieved 

through use of probiotics, prebiotics, and synbiotics.  Probiotics are defined as 

actual live bacteria that when administered in adequate amounts, confer a health 

benefit on the host [119].  In preclinical and clinical trials, the use of probiotics to 

improve conditions including inflammatory bowel diseases, neurological 

conditions, and diabetes have showed some promise [120, 121].  Unfortunately, 

the benefits of probiotic supplementation do not always seem to translate to 

healthy individuals, indicating that there may be only specific populations that can 

benefit from probiotic use [122].  One common downfall of probiotic 
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supplementations is that supplements in general are not regulated by the Food 

and Drug Administration (FDA), which calls into question the quality, purity, and 

actual bacterial content of probiotic supplements [119].  Another issue with 

consumption of probiotics involves the potential side effects of gastrointestinal 

upset and bloating, which varies between individuals and ultimately counteracts 

the goal of these supplements as therapeutic agents [123].  There clearly needs 

to be more research into the therapeutic potential and uses of probiotic 

supplements, specifically focusing on the mechanistic roles of specific bacterial 

species.  Prebiotics will be discussed in detail in the following section.  

  

1.4 Prebiotics: An Overview 

     The term prebiotic is defined as “a selectively fermented ingredient that allows 

specific changes both in the composition and/or activity in the gastrointestinal 

microbiota that confers benefits upon host well-being and health” [124].  The 

most well-known group of prebiotics are dietary fibers, however other dietary 

components may also fit this definition, seeing that they satisfy the functional 

criteria.  Currently, the literature shows that all prebiotics are fiber, however not 

all fibers are prebiotic.  It is recommended that humans consume at least 28g 

and 35g of fiber per day for females and males, respectively [125].  However, in 

the U.S., less than 3% of all Americans are meeting these recommended intakes 

[125].  Prebiotics that have been documented in the literature as having 

functional properties include inulin, fructooligosaccharides (FOS), 

galactooligosaccharides (GOS), some disaccharides, and some nonstarch 
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polysaccharides [126].  Prebiotics undergo microbial fermentation in the colon 

yielding SCFAs, of which up to 95% are absorbed in the colon and therefore may 

modulate host metabolic and inflammatory responses [126]. Consumption of a 

diet rich in prebiotics is capable of reversing dysbiosis and attenuating 

associated inflammatory conditions.  It has been documented that prebiotic 

consumption may reduce the risk of cardiovascular disease and diabetes, 

primarily through the actions of the SCFAs discussed above [126].  Further 

research is still needed to understand the diverse role of prebiotic consumption 

on gut microbial composition, SCFA production, and associated host-responses.  

As with probiotics, one complication with consumption of prebiotics is the 

potential for gastrointestinal discomfort, especially in individuals that may have a 

microbial composition unable to fully ferment the prebiotic [127].  As the literature 

regarding the efficacy and health benefits of both prebiotics and probiotics 

expands, a movement towards personalized recommendations of dietary and 

bacterial supplemental protocols can be anticipated, much like the current 

movement in the medical and nutrition field.   

 
1.4.1 Inulin 

     Understanding the action and benefits of specific prebiotics is necessary to 

better elucidate the manipulability of the gut microbiota and how this influences 

host health.  The prebiotic inulin is an inulin type fructan (ITF) containing linear 

chains of fructosyl groups that are linked by (2-1) glycosidic bonds and 

terminated with an -D(1-2)-glucopyranoside ring group on the reducing end 

[128].  The chain length of inulin varies from having two to more than 100 
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fructose units, which results in differences in fermentation by gut microbiota.  

ITFs include inulin, oligofructose, fructooligosacchardies (FOS), and bifidogenic 

oligo- or polysaccharide chains [129]. The latter compounds are smaller in size 

and thus, have a smaller degree of polymerization (DP). Inulin itself has been 

minimally processed so has a DP greater than 10 while the aforementioned 

molecules have a DP less than 10. Notably, the greater the DP, the greater 

effects will be in the distal colon with a smaller DP having more effect towards 

the proximal colon [129].  One of the most common forms of inulin that is 

available in food products or supplements is derived from chicory root, but inulin 

is also found in garlic, onions, and other vegetables.  Inulin is one of the most 

studied prebiotics and its consumption has been associated with a host of health 

benefits ranging from improved gastrointestinal function, improved glucose 

control, and improvements in energy metabolism [129-131].  Specifically, 

administration on inulin has been demonstrated to reduce adiposity and 

parameters associated with metabolic syndrome [132, 133]. The mechanisms 

behind the beneficial actions of inulin are believed to include alterations in 

gastrointestinal peptide and short chain fatty acid production, regulation of the 

immune system, and modulation of lipid metabolism.  While humans lack the 

enzymes to metabolize and garner energy from inulin, the production of SCFA is 

thought to contribute to approximately 1 kilocalorie per gram of fiber for the host 

[118].  Furthermore, it was recently shown that inulin supplementation protected 

against diet-induced obesity through improving gut microbiota populations and 

restoring enterocyte function through effects on IL-22 [116]. These observed 
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mechanisms are also dependent and linked to alterations in gut microbiota.  

Inulin is known to have strong stimulatory prebiotic activity amongst specific 

bacterial groups including Bifidiobacterium spp., Anaerostipes spp., as well as 

Lactobacillus gasseri, and Faecalibacterium prausnitzii. [134]  The latter two 

bacteria are of interest and importance due to their known production of butyrate 

and potential therapeutic contribution to host health.  Furthermore, it was recently 

observed that inulin administration resulted in reduction in Bilophila, a member of 

the Desulfovibrionacaeae family [134, 135].  This is important because 

Desulfovibrionacaeae are known sulfate-reducing bacteria that produce 

hydrogen sulfide (H2S), a genotoxic gas that can hamper intestinal health.  As 

such, reductions in Bilophila spp. following inulin administration has been 

associated with improved gut barrier function [134].  These observations offer 

another gut microbial dependent mechanistic insight into the health benefits of 

inulin consumption. 

With regards to overall human health and disease outcomes, studies have 

examined the effects of inulin consumption on outcomes related to diabetes and 

cardiovascular diseases.  For example, in prediabetic patients, inulin 

supplementation aided in weight reduction and reduced intrahepatocellular and 

intramyocellular lipid content, which the authors suggest contributed to observed 

improvements in glucose homeostasis [136].  Inulin also has potential 

applications in the prevention of cardiovascular disease with several studies 

finding an improvement in blood lipids and lipoproteins with inulin 

supplementation.  Importantly, in a meta-analysis, it was found that the most 
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profound effect of consumption of inulin-type fructans was on lowering of low 

density lipoprotein (LDL) levels, an effect well evidenced to lower the risk of 

adverse cardiovascular events [137].  Because it is still unknown if these 

discussed clinical findings are solely gut-microbial dependent, more research is 

needed to elucidate the protective mechanism of inulin on diabetic and 

cardiovascular outcomes. 
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1.5 Scope of Dissertation 

1.5.1 Aims of dissertation 

     The overall objective of this project is to elucidate the effects of PCB 126 on 

gut microbial homeostasis and cardiometabolic disease and how nutritive 

measures may be able to protect against the effects of pollutant exposure.  PCB 

126 was chosen as the model pollutant in this study due to its known effects on 

human health as well as a substantial quantifiable prevalence in human 

samples[138].  

     Our central hypothesis is that exposure to PCB 126 disrupts host health and 

increases the risk for cardiometabolic disease in a gut-microbial dependent 

manner and that prebiotic (i.e. inulin) consumption will be able to attenuate these 

effects and reduce the risk of disease.  As such, we will test our central 

hypothesis by these three specific aims:   

Specific Aim 1. Test the hypothesis that PCB 126 directly disrupts gut microbial 

fermentation and viability. 

Specific Aim 2. Test the hypothesis that PCB 126 negatively alters murine gut 

microbial populations and/or gut health, exacerbating inflammatory and metabolic 

complications involved in cardiometabolic disease.  

Specific Aim 3. Test the hypothesis that consumption of the prebiotic inulin can 

decrease PCB-induced disruption in gut microbial and metabolic homeostasis 

and ultimately protect against cardiometabolic disease.   
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Chapter 2 Environmental pollutant-mediated disruption of gut microbial 
metabolism of the prebiotic inulin 

  

Anaerobe: PMID: 30447394  

Jessie B. Hoffman, Michael D. Flythe, Bernhard Hennig [139] 

2.1 Synopsis 
 
     Exposure to environmental pollutants is associated with a greater risk for 

metabolic diseases including cardiovascular disease.  Pollutant exposure can 

also alter gut microbial populations that may contribute to metabolic effects and 

progression of inflammatory diseases.  Short-chain fatty acids (SCFAs), 

produced from gut fermentation of dietary carbohydrates, such as inulin, exert 

numerous effects on host energy metabolism and are linked to a reduced risk of 

diseases.  The hypothesis was that exposure to dioxin-like pollutants modulate 

gut microbial viability and/or fermentation processes.  An inulin-utilizing isolate 

was collected from murine feces, characterized and used in subsequent 

experiments.  Exposure to polychlorinated biphenyl, PCB 126 impeded bacterial 

viability of the isolate at concentrations of 20 and 200 µM.  PCB 126 exposure 

also resulted in a significant loss of intracellular potassium following exposure, 

indicating cell membrane disruption of the isolate.  Furthermore, total fecal 

microbe samples from mice were harvested, resuspended and incubated for 24 

hours in anaerobic media containing inulin with or without PCB 126.  HPLC 

analysis of supernatants revealed that PCB 126 exposure reduced succinic acid 

production, but increased propionate production, both of which can influence host 

glucose and lipid metabolism.  Overall, the presented evidence supports the idea 
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that pollutant exposure may contribute to alterations in host metabolism through 

gut microbiota-dependent mechanisms, specifically through bacterial 

fermentation processes or membrane disruption. 

 

2.2 Introduction 
  
Exposure to environmental pollutants can illicit numerous deleterious health 

effects.  Polychlorinated biphenyls are a class of persistent organic pollutants 

that increase development of chronic inflammatory diseases such as diabetes 

and atherosclerosis, primarily through inflammatory mechanisms [2].  Due to their 

lipophilic nature, they accumulate in the adipose tissue of living organisms and 

bioaccumulate along the food chain.  Thus, one of the primary routes of human 

exposure is through the ingestion of contaminated foods including fatty meats, 

fish, and dairy [2].  This exposure route is unique in that it has the ability to 

directly impact the gastrointestinal tract and gut microbiota.  

     The gut microbiota can be impacted by outside influences including diet and 

environmental exposures [80].  Over the past decade, greater appreciation and 

understanding has come about regarding the gut microbiota and its influence on 

overall host health and wellbeing.  The gut microbiota exerts impacts on 

neurological, metabolic, and inflammatory bowel diseases, highlighting the 

diverse and wide reaching impact of our intestinal bacterial residents [140].  

Fermentation is an innate aspect of gut microbial metabolism and the metabolites 

produced can have diverse impacts on host health.  The primary end products of 

bacterial saccharolytic fermentation of non-digestible carbohydrates are short 
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chain fatty acids (SCFAs).  These SCFA are formed when carbohydrates escape 

digestion and absorption in the small intestine and thus persist into more distal 

regions of the digestive tract where they are metabolized by the residing gut 

microbiota [91]. The primary SCFA formed by bacterial fermentation are acetate, 

propionate, and butyrate, although there are numerous other fermentation acids 

produced. SCFA exert effects both locally, within the intestine, and systemically, 

and they serve a variety of biological purposes [91].  For example, butyrate 

serves as a preferential energy source for the colonic epithelial cells, facilitating 

the maintenance of an intestinal barrier through regulation of tight junction 

proteins such as ZO-1, occludins, and claudins [86, 91].  A strong intestinal 

barrier is critical for preventing leakage of bacteria and toxins into the systemic 

circulation, which may contribute to chronic inflammatory responses that can 

influence the development of disease [91, 92]. Additionally, SCFA concentrations 

are sensed by specific G-protein coupled receptors (GPRs), GPR41 and GPR43, 

which are involved in numerous systemic processes including the regulation of 

glucose and lipid metabolism [86, 91].   

    The prebiotic inulin is a polymer of fructans containing linear chains of fructosyl 

groups that are linked by B(2-1) glycosidic bonds and terminated with an alpha 

D(1-2)-glucopyranoside ring group on the reducing end [118].  The chain length 

of inulin varies from having two to more than 100 fructose units, which results in 

differences in fermentation by gut microbiota [118].  In preclinical and clinical 

models, inulin has been demonstrated to have beneficial effects on several 

disease states including cardiovascular disease and diabetes [129, 135, 141].  
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Inulin is fermented by certain members of the gut microbial community to 

produce short chain fatty acids including acetate, propionate, and butyrate, which 

is believed to be one of the mechanisms of action in which inulin exerts host 

health effects [130].  In the human nutrition community, inulin, is commonly 

referred to as a dietary fiber based on its inability to be metabolized by 

mammalian enzymes and thus is not absorbed by the human body [142].  Due to 

the observed health effects of inulin consumption, it is commonly added to 

numerous food products to increase the dietary fiber content while adding slight 

non-caloric sweetness.   

     Our lab has demonstrated previously that PCB 126 exposure decreases gut 

microbial diversity, reduces specific bacterial populations, and impacts overall 

host metabolism in a mouse model [143].  However, little is known about the 

mechanisms by which PCBs impact the gut microbiota and how this may 

translate to effects for the host.  Therefore, the objective of this study was to 

examine the impacts of PCB 126 exposure on gut microbial viability and 

fermentation utilizing the prebiotic inulin as a substrate.   

 

2.3 Materials and Methods 
 
 
2.3.1 Materials and Chemicals 

Inulin from chicory was purchased from Sigma Aldrich (St. Louis, MO, 

USA).  3,3’,4,4’,5-pentachlorobiphenyl (PCB 126) was obtained from 

AccuStandard Inc. (New Haven, CT, USA). 
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2.3.2 Animals and Fecal Collection 

 Male C56BL6/J mice were fed a standard chow diet ad libitum, housed at 

22 C with 50% humidity, and exposed to a 12-h light/ 12-h dark cycle.  When 

fecal samples were needed for in vitro experiments, fresh fecal pellets were 

collected from mice and immediately placed in a sterile microcentrifuge tube.  

Samples were quickly transferred in an insulated container at 37 C for 

immediate experiment setup to ensure bacterial viability.  For fermentation 

experiments, fecal cell suspensions were made from pooled samples of three 

mice and repeated a total of three times.  The University of Kentucky animal care 

and use committee approved all animal procedures. 

 

2.3.3 Media and Anaerobic Technique 

     Growth medium was prepared, and cultures were transferred using the 

Hungate anaerobic method. Growth medium contained (per 1 L) 240 mg 

KH2PO4, 240 mg K2HPO4, 480 mg NaCl, 480 mg (NH4)2SO4, 100 mg MgSO4 

7H2O, 64 mg CaCl2 2H2O, and 600 mg cysteine hydrochloride [144].  Media was 

adjusted to a pH of 6.7 by adding NaOH, autoclaved to remove O2, and cooled 

under CO2, at which point 4.0 g Na2CO2 was added.  Media was then 

anaerobically transferred to Hungate tubes, capped with rubber stoppers and 

aluminum seals, and autoclaved for sterilization.  Inulin was prepared 

anaerobically and added aseptically at a concentration of 4 g/L unless otherwise 

indicated.  Cultures were routinely transferred with anaerobic technique using a 

tuberculin syringe and incubated at 37°C. 
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2.3.4 Inulin-Fermenter Enumeration, Isolation, and Characterization 

      Fecal samples (175 mg) were placed in anaerobic chamber (Coy Labs, 

Grass Lake, MI; 95% CO2, 5% H2), suspended in 1 mL dilution buffer (PBS), and 

subjected to 10-fold serial dilution in dilution buffer using sterile anaerobic 

techniques.  Samples (200 µL) from the dilutions were plated on basal medium 

agar (15 mg/mL) containing 4g/L of inulin for bacterial isolation.  Dilution plates 

were incubated in an anaerobic chamber for 72h at 37 C.  Following incubation, 

colonies were isolated and grown in liquid growth media (4 g/L inulin) at 37 C for 

24-48h.  Cultures were then characterized by Gram staining and light 

microscopy.  Phylogenetic identity was determined via 16S rRNA sequencing. 

Genomic DNA was extracted (QiaAMP DNA Mini Stool Kit; Qiagen, CA, USA) 

and amplified by PCR using PuReTaq Ready-to-Go PCR beads (GE 

Healthcare, Buckinghamshire, United Kingdom) and universal 16S primers (10 

pmol; Integrated DNA Technologies, Coralville, IA, USA; Forward-5'-

AGAGTTTGATCCTGGCTCAG-3', Reverse – 3'-

ACGGCTACCTTGTTACGACTT-5'). The PCR cycles were: denaturing (94 °C; 5 

min), 35 cycles (94 °C, 0.5 min; 55 °C, 1 min; 72 °C, 1 min), and final extension 

(72 °C; 5 min).  PCR products were sequenced by the University of Kentucky, 

sequencing core facility (Lexington, KY, USA) using an ABI 3730 DNA Analyzer 

(Applied Biosystems, CT, USA).  The closest phylogenetic relatives were 

identified using a BLAST search of GenBank [145].  The 16S sequences were 

aligned and a phylogenetic dendrogram was assembled using the Neighbor-

Joining method in Geneious (version 10.2.5).  The bacterial isolate was further 
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characterized for substrate utilization using an API 20A kit (BioMeriux, Marcy 

l'Etoile, France). 

 

2.3.5 Growth Experiments 

     Growth experiments were conducted in growth media (9mL, pH 6.7) in 

Hungate tubes.  Stock solutions of PCB 126 were solubilized in DMSO and the 

same amounts of DMSO as in PCB-treated cultures were added to control 

cultures.  The levels of DMSO in cultures was less than 0.05%.  PCB 126 (0.02 

µM) or control (DMSO) was added to growth media prior to inoculation with JB12 

cultures.  The dose of 0.2 µM was chosen as a level that has been documented a 

in exposed human populations.  Each tube was inoculated with (1% v/v) from 

stationary phase (16 h) cultures and incubated at 37*C.  Optical densities were 

determined via spectrophotometry (600 nm) to quantify bacterial growth. 

     The effect of increasing concentrations of PCB 126 on the growth of the 

inulin-fermenting isolate was conducted via broth dilution (10-fold increments).  

Isolates were transferred in growth media (9 mL, pH 6.7) containing 4 g/L of 

inulin that was prepared using sterile anaerobic technique.  PCB 126 was added 

to growth media via a Hamilton syringe in 10-fold dilutions (0.02, 0.2, 2, 20, 200 

µM).  Each tube was inoculated with a stationary phase from 16h cultures and 

incubated at 37 C.  Optical densities were recorded 24h after inoculation and the 

degree to which growth was observed was documented.  All growth experiments 

were conducted in triplicate. 
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2.3.6 Intracellular Potassium Quantification 

     Intracellular potassium was quantified using a method described in Flythe et. 

al.2007 [146].  Growing cultures were energized with glucose for 25min, at which 

point PCB 126 or vehicle control (DMSO) were introduced.  Concentrations and 

preparations of PCB 126 and DMSO were as described above.  At each 

timepoint, cells were separated from supernatant via centrifugation (13000g, 1 

min) through silicon oil using a 50:50 mixture of Dexter Hysol 550 and 560.  Cell 

pellets were removed with dog nail trimmers, and subsequently digested in 3 N 

HNO3 (25 C for 72h).  Insoluble cell material was removed via centrifugation 

(13,000g, 2 min) and the potassium concentrations were determined using flame 

photometry (Cole-Parmer 2655-00 Digital Flame Analyzer; Cole-Parmer 

Instruments, IL, USA). 

 

2.3.7 Fecal Cell Suspensions 

     Fecal samples (175 mg) were placed in an anaerobic chamber and 

suspended in 9mL of basal medium[144].  Samples were centrifuged (340g, 5 

min) to remove major undigested material.  Supernatants were collected and 

centrifuged (25,000g, 10 min) to pellet bacteria.  Bacterial pellets were 

resuspended in 9mL of growth medium and split into 3 tubes each containing 2 

mL of bacterial suspension.  PCB 126 (0.02, 0.2 or 2µM final conc.) or vehicle 

control (DMSO) and inulin (4 g/L or 10 g/L final conc.) were added to the 

bacterial suspensions.  The preparation of PCB 126 and DMSO were the same 

as described above. The pH and optical density (OD; absorbance at 600 nm) 



 

 42 

were quantified to ensure normalization.  Samples were incubated for 0h or 48h 

at 37 C, centrifuged (21,000g, 2 min) to collect supernatant for fermentation end 

product quantification, and frozen stored at -20 C until analysis.      

 
2.3.8 Fermentation End Product Quantification   

     Fermentation end product quantification was conducted as discussed 

previously.[144]  Supernatant samples were thawed and clarified in a 

microcentrifuge (21,000g, 2 min) for short-chain fatty acid (SCFA) quantifications.  

SCFAs were quantified using as Summit HPLC (Dionex; CA, USA).  Extracts 

(100 µL) were injected into an anion-exchange column (Amine HP-87H; Bio-Rad, 

Hercules, CA) at 50 C, separated isocratically with 5 mM sulfuric acid (0.4 

mL/min flow rate), and subsequently detected via refractive index and UV 

absorption at 210 nm. 

 

2.3.9 Statistical Analyses 

Each experiment was performed in triplicate.  Data were input into 

GraphPad Prism (GraphPad Software, Inc., La Jolla, CA) for statistical analyses 

and graphing.  Growth inhibition, intracellular potassium, and fermentation acid 

data were analyzed by Student’s t-test to calculate comparisons of means 

between treatment groups.  All data are presented as means + SEM and results 

were considered statistically significant with an observed p-value <0.05.  

 
2.4 Results 
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2.4.1 Identification of an inulin-fermenting isolate 

An inulin fermenting microorganism (JB12) was isolated mouse feces.  

The isolate formed smooth, white opaque colonies approximately 1mm in 

diameter on basal medium agar with 4 g/L inulin. Culture purity was confirmed 

through repeated isolation streak.  Sequence homology (16S rRNA) revealed 

that the closest characterized relative of JB12 was Acutalibacter muris (96% 

identity), a member of the Ruminococcaceae (Figure 2.1).  JB12 was Gram-

positive, and, unlike A. muris, it formed central endospores.  In addition to inulin, 

JB12 metabolized glucose, saccharose, maltose, salicin, xylose, cellobiose, 

mannose, and trehalose (Table 2.1)[147-149]. 

 
2.4.2 Effect of PCB 126 on bacterial growth 

     To elucidate the effects of PCB 126 on an isolate JB12, experiments 

examining growth effects were conducted.  For growth curve experiments, PCB 

126 (0.02 µM) or control (DMSO) was added to growth media (9 mL) and 

subsequently inoculated with a stationary phase (16h culture; 1% v/v) of JB12 

cultures.  Cultures were incubated at 37*C and growth was quantified over time 

via optical densities (600 nm).  JB12 grew rapidly in the growth medium with 

inulin as the substrate and reached an optical density of ~2.6 in 9h.  (Figure 2.2).  

PCB 126 exposure partially inhibited growth of JB12, reaching an optical density 

of ~1.6 in 9h.   

     To examine the effects of PCB 126 dose on JB12 growth, increasing doses of 

PCB 126 were added to tubes containing basal media which were subsequently 

inoculated with a stationary phase (16h) culture of JB12 and incubated at 37°C 
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for 24h.  24h after inoculation, growth was evaluated via optical density.  We 

observed a significant reduction of bacterial growth at the two highest PCB 126 

concentrations (20 µM and 200 µM) compared to control (P<0.05) (Figure 2.3).  

Apparent reduction in bacterial growth at lower PCB concentrations less than 20 

µM were not significant.   

 
2.4.3 Disruption of bacterial cell membrane by PCB 126 

    When cell suspensions of the inulin-fermenting isolate were energized with 

glucose, they accumulated intracellular potassium.  When PCB 126 was added 

to the cell suspension, energized cells continuously lost intracellular potassium 

while a control that received only vehicle continued to accumulate intracellular 

potassium (Figure 2.4).  Significantly lower levels of intracellular-potassium 

observed at 35, 45, 55, and 65 minutes compared to vehicle control. 

 

2.4.4 PCB 126-induced modulation of fermentation acid production from inulin 

substrate  

     Fecal cell suspensions were grown and maintained using inulin as a substrate 

(4g/L or 10g/L) and exposed to PCB 126 at varying doses or DMSO control for 

48h.  Examination of the fermentation acid production from inulin at 4g/L 

revealed that the highest concentrations of PCB 126 (0.2 µM and 2 µM) 

significantly reduced production of succinate (Figure 2.5).  Additionally, PCB 126 

exposure significantly increased propionate concentrations in the 2µM exposed 

cells.  The cells that were not exposed to PCB 126 produced 46 mM total 

fermentation acids, including 11 mM propionate, 12 mM butyrate, and 21 mM 



 

 45 

acetate.  To further understand the effects of PCB 126 on fermentation acid 

production, we performed a second experiment in which the inulin substrate 

concentration was increased to 10g/L.  At this increased concentration of inulin, 

PCB 126 exerted no significant effects on fermentation acid production at any of 

the exposure levels (Figure 2.6).   

 
2.5 Discussion 
 
     The objective of this study was to examine the impacts of PCB 126 exposure 

on gut fermentation utilizing the prebiotic inulin as a substrate. Previous results 

indicated that the dioxin-like PCB altered the population sizes of a variety of 

phylogenetic groups in the hindgut when mice received the toxicant in vivo [143]. 

The current study follows up by mechanistically examining the effects of PCB 

126 on bacteria isolated from murine feces.  The effects on uncultivated hindgut 

bacterial fermentation ex vivo are also shown. Bacterial fermentation is a key 

metabolic process allowing bacteria to extract energy from compounds that the 

host takes in [86, 91].  Products of fermentation of indigestible carbohydrates, 

such as inulin, include various fermentation acids or short chain fatty acids.  

SCFA are common, easily-quantifiable products of bacterial fermentation and 

thus are a good measure to examine potential pollutant-induced effects [86, 91].   

     Inulin was chosen as the host-indigestible carbohydrate substrate due to its 

increased popularity in the food and supplement industry as well as the strong 

basis of scientific evidence linking inulin consumption to beneficial host health 

outcomes [130, 150-152].  United States citizens ingest 1-4g of inulin-type 

fructans per day, which can be anticipated to rise with increasing popularity[153].  
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Administration of inulin has been demonstrated to reduce adiposity and 

parameters associated with metabolic syndrome [129, 135, 152].  The 

mechanisms behind the beneficial actions of inulin are believed to include 

alterations in gastrointestinal peptide and short chain fatty acid production, 

regulation of the immune system, and modulation of lipid metabolism [152]. For 

example, Weitkunat et. al. found that gnotobiotic mice colonized with a human 

microbiota and fed an inulin-enriched diet had significantly greater amounts of 

acetate, propionate and butyrate in the cecum as well as elevated levels of 

acetate and propionate in the plasma of the portal vein compared to mice fed 

cellulose [154].  Inulin feeding also altered hepatic genes associated with 

lipogenesis and fatty acid elongation, which was hypothesized to be due to the 

differences in short chain fatty acid levels.   These data highlight the fermentative 

capability of inulin and the role that fermentation products (SCFA) play on overall 

host health, making inulin a relevant substrate to study the effects of pollutant 

exposure.  

     An inulin-utilizing microorganism was isolated from feces in order to examine 

the inhibitory effects of PCB 126 at a physiological level.  The isolate (JB12) was 

most closely related to Acutalibacter muris which was previously isolated from 

murine feces [149]. Isolate JB12 grew rapidly in the growth medium when inulin 

was provided as the substrate, but growth slowed in an apparent stationary 

phase in the presence of PCB 126 at 0.2 µM.  However, the growth appeared to 

be diauxic because greater optical densities were observed at 24h (Figure 3).  At 

24h, there was a dose-response inhibitory effect of PCB 126 on the culture.  
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Diauxic, or biphasic, growth is not surprising because inulin is not truly a single 

substrate.  It is composed of oligofructose of different chain lengths, which are 

fermented at different rates and to different extents [155].  When polymers of 

different chain lengths are fermented as though they were different substrates, 

classical diauxic growth could occur [156].   It was also observed that 

concentrations greater than 20 µM of the polychlorinated biphenyl reduced the 

growth of JB12.  These results are consistent with the previous in vivo data that 

showed PCB 126 exposure disrupted bacterial populations and decreased 

bacterial diversity [143].  However, the antimicrobial mechanism of action of PCB 

126 on gut bacteria was unknown.  Previously, research was conducted on the 

effects of PCBs and other environmental pollutants on soil microbes [157].  It has 

been discussed that there is no convincing evidence that PCBs exert genotoxicity 

in bacteria, such as Salmonella enterica [158].  Additionally, there is some 

evidence that PCBs may be membrane active within specific soil microbial 

populations [157]; therefore, we examined the effect of PCB 126 on the 

intracellular potassium of isolate JB12.  Potassium is the main intracellular cation 

in bacterial cells and serves important roles such as acting as a cofactor for 

certain enzymes [159].  Quantification of intracellular potassium is a method that 

allows examination of potential membrane disruptions that that result in the 

leakage or loss of this intracellular cation.  We observed that upon exposure to 

PCB 126, the bacterial cells rapidly lost potassium, which is consistent with a 

loss of cell membrane integrity.  This result indicates that bacterial cell 
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membrane disruption is a potential antimicrobial mechanism of action by which 

polychlorinated biphenyls could disrupt gut microbial communities.   

     To better understand how these findings may impact the gut microbiota as a 

whole, we examined the effects of PCB 126 on fermentation acid production in a 

fecal microbial cell suspension.  PCB 126 addition (0.2 µM and 2 µM) to the fecal 

cell suspension completely inhibited succinate production and increased 

propionate production (2 µM).  This is important for the host due because 

succinate is a substrate in intestinal gluconeogenesis.  Impaired intestinal 

gluconeogenesis was shown to impact systemic glucose tolerance [160].  

Furthermore, microbiota-derived succinate was shown to improve glucose and 

insulin tolerance in wild-type mice [161].   It has been documented that PCB 126 

disrupts glucose tolerance, yielding a diabetic phenotype in mouse models, thus 

this new finding of microbial-derived succinate loss with PCB 126 may play a role 

in this previously observed phenotype [162].  An increase in propionate was also 

observed in the fecal cell suspensions exposed to PCB 126, which may have 

implications in alterations in host hepatic metabolism.  In support of this data, 

previous in vivo evidence indicated an increase in propionate producers including 

Clostridiales [163] and Akkermansia [88] in cecum samples of mice exposed to 

PCB 126 [143].   Propionate can affect hepatic de novo lipogenesis as well as 

lipolysis and in humans an increased level of propionate has been observed in 

individuals with non-alcoholic fatty liver disease [164].  It is well documented that 

exposure to dioxin-like pollutants increases hepatic lipid content and exacerbated 

non-alcoholic fatty liver disease [42, 165].  Therefore, the effects observed on 
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propionate production have the potential to contribute to these well-known 

hepatic consequences of pollutant exposure.   

     The modulatory effects of PCB 126 on fermentation acid production were not 

observed when the inulin concentration was increased to 10 g/L.  This is not 

surprising because all of the microorganisms in the gut microbiome were not 

sensitive to PCB 126 at the concentrations tested.  At higher inulin 

concentrations, lactate was a major end product.  Lactic acid production is 

common when easily fermented carbohydrate is in excess.  Many Firmicutes 

(e.g. streptococci) and Proteobacteria (e.g. E. coli) possess a 1,6- fructose 

bisphosphate (FBP)-dependent lactate dehydrogenase (LDH) [166].  Rapid 

membrane transport of sugars leads to an increase in cellular FBP, which 

triggers LDH and homolactic metabolism [166].  Abundant lactate production 

regardless of PCB 126 suggests that one or more fructanolytic lactic acid 

bacterial species were not sensitive to PCB 126.  It is important to note that 

increased lactate production from fructans fermentation is not always beneficial.  

For example, in horses, excess lactate production and resultant drop in pH in the 

hindgut can increase intestinal permeability and contribute to the development of 

laminitis, resulting in required euthanasia [144].  Our present data do not warrant 

a suggestion for excess consumption of inulin, but rather serves to highlight that 

the bacterial populations that are able to grow at higher concentrations of inulin 

are not sensitive to PCB 126.  These data indicate that PCBs might be 

selectively toxic to specific gut microbial populations.     
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     Although this present study is novel and adds to the growing body of literature 

examining the impacts of pollutant exposure on gut microbial populations, there 

are a few limitations that should be noted and addressed in subsequent studies.   

First, the mechanistic aspects of this study focus on a single isolate and thus the 

translatability of our findings to other microbial species is limited but should be 

examined in future experiments.  Additionally, It has been reported that serum 

concentrations of PCBs can be found at approximately 3µM in exposed 

individuals [167]. Due to the primary route of exposure (i.e. food consumption), it 

could be expected then that the intestinal environment sees similar or higher 

levels.  Thus, the 0.02µM, 0.2µM and 2µM concentrations used for most 

experiments in this manuscript are physiologically relevant, especially in heavily 

exposed populations.  However, the highest concentrations in utilized in the 

inhibition experiment (Figure 3) are supraphysiological.  Use of these higher 

levels, while not found in human populations, is important to help characterize 

and better understand the microbial impact of PCB 126.  Furthermore, the 

experiments conducted in the present study are representative of acute 

exposures while humans often see more chronic exposures due to the primary 

route of exposure of PCBs (i.e. food) and their participation in enterohepatic 

circulation.  Thus, gastrointestinal microbial populations are continually exposed 

to these pollutants which could elicit a different and perhaps more detrimental 

response over time. Finally, it appears that some microbiota are effected by 

exposure to PCB 126 while others are not.  This is the first study to show impacts 

of a polychlorinated biphenyl compound on fermentation by gut microbiota. It 
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remains to be seen if this interaction of the native gut microorganisms with an 

environmental toxicant is beneficial to the host. 

     PCB 126 decreased the fermentative ability and viability of an inulin-

metabolizing murine fecal bacterium.  Potassium efflux indicated that the 

mechanism of action was membrane perturbation.  The fermentation of washed 

fecal microorganisms were also impacted by PCB 126 ex vivo when the inulin 

concentration was low.  However, the toxicant was not inhibitory to fermentation 

when the inulin concentration was greater.  These results indicate that not all 

species (e.g. the lactic acid bacteria that flourish under carbohydrate excess 

conditions) were equally sensitive, a conclusion which is consistent with previous 

results by our research group using culture-independent methods [13].   
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Table 2.1. Substrate utilization profile of isolate JB12 and relatives 

 
+ positive reaction; - negative reaction; (w) weakly; n.d. not determined [134,135,136] 
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Figure 2.1. A phylogenetic dendrogram of isolate JB12 and close relatives 

 
 
Figure 2.1. A phylogenetic dendrogram of isolate JB12 and close relatives. 

Relationships were based on 16S rRNA sequences.  The tree was constructed 

using the neighbor-joining method in Geneious (version 10.2.5) and bootstrap 

values are expressed as a percentage of 1000 replications.  The scale 

represents a 2% difference in nucleotide sequence. 
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Figure 2.2. PCB 126 reduces growth of an inulin-fermenting isolate.   

 
Figure 2.2. PCB 126 reduces growth of an inulin-fermenting isolate.  A 

growing culture of JB-12 was inoculated into media containing 4 g/L of inulin with 

either PCB 126 (0.2 µM) or vehicle control (CTR; DMSO) and incubated at 37°C.  

Optical density measures were conducted at time intervals to quantify growth. 

Experiments were conducted in triplicate and representative data are shown.   
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Figure 2.3. PCB 126 is an inhibitor to an inulin-utilizing bacteria   

 

Figure 2.3. PCB 126 is an inhibitor to an inulin-utilizing bacteria.  Growing 

cultures of isolate JB12 were exposed to increasing concentrations of PCB 126 

(0.02, 0.2, 2, 20, 200 µM) and optical density was quantified after 24 hours of 

incubation (n=3).  PCB 126 impeded bacterial growth at concentrations of 20 and 

200 µM (p<0.05).  All data are presented as means + SEM.  *Statistically 

different compared to 0 µM PCB 126 control (p<0.05; Student’s t-test).   
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Figure 2.4. PCB 126 exposure decreases levels of intracellular potassium in 
energized inulin-fermenting strain JB12 

 
Figure 2.4. PCB 126 exposure decreases levels of intracellular potassium in 

energized inulin-fermenting strain JB12.  Growing cultures were energized 

with glucose at time 0 and PCB126 and vehicle control (DMSO) were introduced 

at 25m (n=3).  Samples at each timepoint were subject to centrifugation to 

remove insoluble cell material and potassium concentration was determined 

using flame photometry. PCB 126 significantly reduced intracellular potassium 

levels at 35, 45, 55, and 65 minutes compared to vehicle control.  All data are 

presented as means + SEM.  * Significantly different compared to vehicle control 

(DMSO) at specific timepoint (p<0.05; Student’s t-test) 
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Figure 2.5. PCB 126 treatment differentially modulates fermentative SCFA from 
moderate concentrations of the dietary fiber inulin 

 
Figure 2.5.  PCB 126 treatment differentially modulates fermentative SCFA 

from moderate concentrations of the dietary fiber inulin.  Bacterial cell 

suspensions were maintained on inulin substrate (4 g/L) and subsequently 

exposed to PCB 126 (0.02 µM, 0.2 µM, 2 µM) or vehicle control (DMSO) for 48h 

(n=3).  HPLC was utilized to quantify fermentation acids in the media after 

incubation.  PCB 126 significantly reduced production of succinate at 0.2 µM and 

2µM exposure concentrations and significantly increased propionate production 

at the 2 µM concentration.  All data are presented as means + SEM.  * 

Significantly different compared to vehicle control (DMSO) (p<0.05; Student’s t-

test). 
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Figure 2.6. Increased inulin provision abolishes effects of PCB 126 treatment on 
fermentative SCFA production by isolated fecal bacteria 

 
Figure 2.6. Increased inulin provision abolishes effects of PCB 126 

treatment on fermentative SCFA production by isolated fecal bacterial. 

Bacterial cell suspensions were maintained on inulin substrate (10g/L) and 

subsequently exposed to PCB 126 (0.02 µM, 0.2 µM, 2 µM) or vehicle control 

(DMSO) for 48h (n=3).  HPLC was utilized to quantify fermentation acids in the 

media after incubation.  PCB 126 had no significant effect on fermentation acid 

production from a higher inulin substrate concentration (10 g/L).  There was a 

trend towards lower total fermentation acid production (p=0.055) in bacterial 

cultures exposed to higher levels of PCB 126.  All data are presented as means 

+ SEM.  * Significantly different compared to vehicle control (DMSO) (p<0.05; 

Student’s t-test) 
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Chapter 3 Dioxin-like PCB 126 increases inflammation and disrupts gut 
microbiota and metabolic homeostasis 

 
Environmental Pollution: PMID: 30373033 

Jessie B. Hoffman*, Michael C. Petriello*, Olga Vsevolozhskaya, Andrew J. 
Morris, Bernhard Hennig [143] 

 
* both contributed equally to manuscript 

 
3.1 Synopsis 
 
 The gut microbiome is sensitive to diet and environmental exposures and 

is involved in the regulation of host metabolism. Additionally, gut inflammation is 

an independent risk factor for the development of metabolic diseases, specifically 

atherosclerosis and diabetes. Exposures to dioxin-like pollutants occur primarily 

via ingestion of contaminated foods and are linked to increased risk of 

developing cardiometabolic diseases. We aimed to elucidate the detrimental 

impacts of dioxin-like pollutant exposure on gut microbiota and host gut health 

and metabolism in a mouse model of cardiometabolic disease.  We utilized 16S 

rRNA sequencing, metabolomics, and regression modeling to examine the 

impact of PCB 126 on the microbiome and host metabolism and gut health. 16S 

rRNA sequencing showed that gut microbiota populations shifted at the phylum 

and genus levels in ways that mimic observations seen in chronic inflammatory 

diseases.  PCB 126 reduced cecum alpha diversity (0.60 fold change; p=0.001) 

and significantly increased the Firmicutes to Bacteroidetes ratio (1.63 fold 

change; p=0.044).  Toxicant exposed mice exhibited quantifiable concentrations 

of PCB 126 in the colon, upregulation of Cyp1a1 gene expression, and increased 

markers of intestinal inflammation.  Also, a significant correlation between 
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circulating Glucagon-like peptide-1 (GLP-1) and Bifidobacterium was evident and 

dependent on toxicant exposure. PCB 126 exposure disrupted the gut microbiota 

and host metabolism and increased intestinal and systemic inflammation. These 

data imply that the deleterious effects of dioxin-like pollutants may be initiated in 

the gut, and the modulation of gut microbiota may be a sensitive marker of 

pollutant exposures.  

 

3.2 Introduction 
 

Pollutant exposures are associated with numerous chronic inflammatory 

cardiometabolic diseases including cardiovascular diseases (CVD), obesity, and 

diabetes [168-170].  Dioxin-like pollutants are a class of highly toxic lipophilic 

compounds  known to accumulate in the adipose tissue of living animals and 

thus biomagnify up the food chain [168].  Using preclinical animal models 

including Ldlr and ApoE deficient mice as a tool to study cardiometabolic 

disorders, multiple groups have shown that dioxin-like pollutants can impact 

multiple pathologies through mechanisms that include induction of chronic 

inflammation in various organ systems [38, 171, 172].  The most common route 

of human exposure to these pollutants comes from consumption of contaminated 

food sources and because of this, the intestinal environment is a target organ 

that deserves further study. 

The gut is home to trillions of bacteria which are sensitive to many factors 

including diet and environmental exposures [173]. Additionally, the gut 

microbiome plays an essential role in the maintenance of energy metabolism, 
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immune function, neurological function, and overall host health and well-being 

[173]. Commensal bacteria exist in a mutualistic relationship with the host, relying 

on host energy and nutrient intake, and in turn, the gut microbiota protect against 

pathogen invasion, influence immune function, maintain gut barrier integrity, and 

produce metabolites that exert various effects on host physiology [173].  

Therefore, alterations in gut microbial composition can have deleterious effects 

on host health.  Such alterations are termed “dysbiosis” and have been 

associated with increased risk of cardiometabolic diseases [174, 175].  Dysbiosis 

is commonly associated with a decrease in gut microbial diversity, an aspect that 

has been consistently observed in mice fed atherogenic diets, and human 

pathological conditions such as atherosclerosis and diabetes [108].   Also, 

chronic gut and systemic inflammation accompanies the observed disruption of 

gut flora homeostasis in these pathologies. 

Chronic inflammation is an underlying aspect in many non-communicable 

diseases and has been strongly linked to contributing to the development of 

cardiovascular diseases (e.g., atherosclerosis) [176].  Atherosclerosis is 

influenced by inflammation through a variety of mechanisms including cytokine 

production and release, production of reactive oxygen species, and certain 

immune responses [176]. Additionally, it is well documented that low-grade 

chronic inflammation precedes and is predictive of the development of 

cardiometabolic diseases in adults [177].  Emerging evidence now implicates a 

critical role of gut microbiota in systemic and intestinal inflammation, which may 

impact on other peripheral organ systems (e.g., vascular tissue) [174].  The 
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initiation of these inflammatory processes that exert effects on the cardiovascular 

and metabolic systems, as well as the gut microbiota can come from behavioral 

factors such as diet as well as less-modifiable aspects including genetics and 

environmental pollutant exposure.    

Although there is a large body of evidence linking dietary behaviors to 

modulation of gut microbiota, only a few studies have examined the interplay 

between persistent organic pollutants (POPs) and the gut microbiota.  Zhang et 

al, found that exposure to 2,3,7,8 tetrochlorodibenzofuran in mice resulted in 

alterations in gut microbiota, bile acids, and short chain fatty acid (SCFA) 

metabolism [178].  Additionally, exposure to benzo[a]pyrene induces intestinal 

inflammation, ileal lesions, and shifts gut microbiota populations [19].  When 

examining the effects of polychlorinated biphenyls (PCBs), Choi et al. observed 

disruptions of intestinal barrier function through dysregulation of tight junction 

proteins [18].  In a later study, Choi et. al found that exposure to a mixture of 

PCBs (PCB 153, PCB 138, PCB 180) acutely altered the gut microbiota and that 

exercise was able to blunt these effects [179].  Although pollutant exposures 

have been shown to modulate gut microbiota in wild-type mice, it is not well 

established if dioxin-like pollutants can modulate gut microbiota in mice 

genetically predisposed to cardiometabolic disease.   In humans, diabetes and 

related pathologies regularly accompany or exacerbate atherosclerosis, thus, 

utilizing Ldlr deficient mice is a useful tool to study multiple diseases related to 

metabolic dysfunction [180]. Therefore, the specific objective of this study was to 

elucidate effects of the model dioxin-like pollutant PCB 126 on gut health, gut 
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microbiota, and metabolism in a well-established mouse model of 

cardiometabolic disease.  

  

3.3 Materials and Methods 

 
3.3.1 Animals, diet, and study design 

The diet and dosing schedule utilized for this study was shown previously 

to be an effective model of PCB 126-accelerated atherosclerosis [181].  The 

results described herein were collected from a subset of mice from our previous 

study [181].  Briefly, seven week-old male Ldlr -/- mice were purchased from 

Jackson Laboratories (Bar Harbor, ME, USA) and were randomly divided into 2 

groups (n = 10 per group) with one group receiving 1 µmol/kg of PCB 126 

(AccuStandard, CT, USA) and the other group receiving safflower oil vehicle 

(Dyets, Bethlehem, PA, USA) via oral gavage at weeks 2 and 4. This dose 

produces plasma PCB 126 levels that mimic human exposures of dioxin-like 

pollutants (Petriello et al. 2017).   All mice were fed a low-fat high cholesterol 

Clinton/Cybulsky diet ad libitum (Research Diets, New Brunswick, NJ, USA; 

Product # D01061401C).  Mice were housed at 22oC with 50% humidity, 

exposed to a 12-h light/ 12-h dark cycle, and given water ad libitum.  Fecal 

samples were collected at 72h, 4 weeks, and at sacrifice (12 weeks) after first 

PCB 126 exposure.  Prior to euthanasia, mice were fasted overnight, 

anesthetized, and blood was collected using retro-orbital bleed.  At the 

conclusion of the study, intestinal samples, cecum, and cecum contents were 

also collected and immediately snap frozen in liquid nitrogen and stored at -80oC 
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until analysis.  All experimental procedures were approved by the Institutional 

Animal Care and Use Committee at the University of Kentucky. 

 

3.3.2 DNA extraction and 16S rRNA amplicon library preparation and 

sequencing 

DNA extraction and 16S sequencing was conducted by the Environmental 

Sample Preparation and Sequencing Facility (ESPSF) at Argonne National 

Laboratory and analyzed by the program Quantitative Insights Into Microbial 

Ecology (QIIME).  DNA was extracted using PowerSoil 96-well DNA Isolation Kit 

(MoBio, Carlsbad, CA, USA), according to the manufacturer’s protocol with the 

addition of a 65oC heating step after the addition of solution C1.  PCR amplicon 

libraries targeting the 16S rRNA encoding gene present in metagenomic DNA 

were produced using a barcoded primer set adapted for the Illumina HiSeq2000 

and MiSeq, and DNA sequence data was generated using Illumina paired-end 

sequencing [81]. The V4 region of the 16S rRNA gene (515F-806R) was PCR 

amplified with region-specific primers that include sequencer adapter sequences 

used in the Illumina flowcell.   The conditions for PCR were as follows: 94°C for 3 

minutes to denature the DNA, with 35 cycles at 94°C for 45 s, 50°C for 60 s, and 

72°C for 90 s; with a final extension of 10 min at 72°C to ensure complete 

amplification. Amplicons were quantified using PicoGreen (Invitrogen, Carlsbad, 

CA) and a plate reader (Infinite 200 PRO, Tecan, Männedorf, Switzerland) and 

then pooled into a single tube so that each amplicon is represented in equimolar 

amounts. This pool was then cleaned up using AMPure XP Beads (Beckman 
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Coulter, Brea, CA), and quantified using a fluorometer (Qubit, Invitrogen, 

Carlsbad, CA). After quantification, the molarity of the pool was determined and 

diluted to 2 nM, denatured, and diluted to a final concentration of 6.75 pM with a 

10% PhiX spike for sequencing on the Illumina MiSeq.   Amplicons were 

sequenced on a 151bp x 12bp x 151bp MiSeq run using customized sequencing 

primers and procedures.  Operational taxonomic units (OTUs) were selected 

using open reference OTU picking against the Greengenes database and picked 

at 97% sequence identity.  OTUs were then filtered based on the default 

parameters provided by QIIME and sequences were rarified to a sampling depth 

of 10000 reads per sample.  Before statistical analyses, OTUs present in less 

than 50% of samples were filtered from the OTU table.   

 

3.3.3 RNA extraction and qPCR 

For mRNA extraction, intestinal samples from jejunum and colon were 

homogenized in TRIzol (Invitrogen, Carlsbad, CA) and isolated according to 

manufacturer’s protocols.  mRNA quality and concentrations were determined 

using a NanoDrop 2000 spectrophotometer (Thermo Scientific, Waltham, MA).  

Complementary DNA was generated using the AMV reverse transcription system 

(Promega, Madison, MI) following manufacturer’s protocols.  Expression of 

inflammatory, metabolic, and gut health markers were determined via 

quantitative qPCR utilizing Taqman fast reagents (Thermo Scientific, Waltham, 

MA) in an CFX96 Real-Time PCR system (Bio-Rad, Hercules, CA).  β-actin was 

used as the housekeeping gene for jejunum and 18S was used as the 
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housekeeping gene for colon.  Differences in gene expression were calculated 

using ΔΔCt relative quantification compared to control animals 

3.3.4 Analyses of circulating cytokines and proteins related to metabolic function 

To measure plasma metabolic hormones and cytokines the Milliplex Map 

Mouse Metabolic Hormone Magnetic Bead Panel- Metabolism Multiplex Assay 

and the Milliplex Map Mouse Cytokine/Chemokine Magnetic Bead Panel 25-plex 

(Millipore Corp, Billerica, MA, USA) were used, respectively, following 

manufacturer’s protocols.  Panels were measured on the Luminex Xmap 

MAGPIX system (Luminex Corp, Austin, TX, USA) following manufactures 

instructions.  For statistical analyses, values below the standard curve were 

represented as zero. 

 

3.3.5 Metabolomics analysis 

At the conclusion of the study, livers were snap frozen and shipped to Metabolon 

(Durham, NC) for targeted metabolomics analysis as detailed previously [182].  

Briefly, Samples were prepared using the automated MicroLab STAR (Hamilton 

Company, Reno, NV) and analyzed by Ultrahigh Performance Liquid 

Chromatography-Tandem Mass Spectroscopy (UPLC-MS/MS). All methods 

utilized a Waters ACQUITY ultra-performance liquid chromatography (UPLC) and 

a Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer 

interfaced with a heated electrospray ionization (HESI-II) source and Orbitrap 

mass analyzer.  A series of proprietary standards of known concentration was 

added to each sample extract. 4 separate analytical methodologies were utilized 
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which were optimized depending on the characteristics of compounds of interest 

(e.g., hydrophilic compounds vs. hydrophobic compounds). The MS analysis 

alternated between MS and data-dependent MSn scans using dynamic exclusion.  

For biochemical identification, three criteria were utilized: retention time, accurate 

mass match to the library, and the MS/MS compared against authentic 

standards. Peaks were quantified using area-under-the-curve. Short chain fatty 

acids (SCFAs) were quantitated by the West Coast Metabolomics Center (Davis, 

CA, USA).  Briefly, SCFAs were extracted from feces samples using Tert-butyl 

methyl ether, 2-ethylbutryic acid, and 4-methylvaleric acid and derivatized with N-

tert-butyldimethylsilyl- N-methyltrifluoroacetamide (MTBSTFA).  SCFAs were 

quantitated using GCMS (Agilent GC7890B/5977MS) and absolute 

concentrations were determined using calibration and internal standards. 

 

3.3.6 Quantitation of atherosclerotic lesions and glucose sensitivity 

To quantify atherosclerosis, aortic roots were frozen in OCT, sectioned at 10 µm 

per section, and stained with Oil Red O as described before [181, 183].  Briefly, 

serial sections were collected as close as possible to the emergence of the three 

valves, and sections were placed on microscope slides (Probe-on Plus; Fisher 

Scientific, Pittsburgh, PA) until the aortic valves disappeared. Frozen sections 

were lipid stained with Oil Red O, and images were taken using a Nikon Eclipse 

55iUpright microscope attached to a 12 MP color camera.  For the results shown 

in Suppl. Fig. 3, on average a mean of 6 serial sections per mouse were used for 

quantification.  To quantify glucose sensitivity a glucose tolerance test was 
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performed at 5 and 12 weeks post initial PCB exposure. Mice were fasted for 6h 

(7am-1pm), and fasting blood glucose levels were measured with a hand-held 

glucometer (Accu-check Avivia, Roche,Basel, Switzerland) using 1-2μL of blood 

collected through the tail vein. Glucose was given via IP injection (2mg/g body 

weight, sterile saline) and blood glucose levels were measured at 15, 30, 60, 90, 

and 120 minutes post injection. 

 

3.3.7 PCB 126 Quantitation 

PCB 126 from colons, livers, and plasma was extracted using a modified 

dispersive solid phase extraction method as before [181].  Briefly, tissue/plasma, 

internal standard (13C12-PCB 126; Cambridge Isotopes, Tewksbury, MA), 

deionized water, and acetonitrile containing 1% acetic acid were added to each 

tube and homogenized. The upper layer was transferred to an Agilent 

Bond Elut QuEChERS fatty sample dispersive 2 ml SPE column.  PCB 126 was 

analyzed using an Agilent GC-triple quadrupole MS (GC-MS/MS) 7000C system 

equipped with a multimode inlet and a HP-5MS UI column (30m, 0.25mm, 

0.25μm) in multiple reaction monitoring (MRM) mode. Ion transitions monitored 

were 325.9/255.9 for PCB 126 and 337.9/267.9 for 13C12-PCB 126 internal 

standard.  Relative quantitation was done by comparing peak area of the sample 

to peak area of an internal standard sample of known concentration.  
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3.3.8 Lipopolysaccharide Binding Protein Quantitation 

Circulating levels of LBP were determined by ELISA per manufacturer’s 

instructions (Cell Sciences, Newburyport, MA, USA).  Briefly, plasma samples 

were diluted 1:800 in dilution buffer and absorbance (450nm) was read using a 

Cytation5 imaging plate reader (Biotek, Vermont, USA). 

 

3.3.9 Statistical analyses 

qPCR and MAGPIX results were analyzed using a Student’s t-test to 

compute comparisons of means between treatment groups. Analyses were 

conducted using GraphPad Prism (GraphPad Software, Inc., La Jolla, CA).  

Metabolomics results were analyzed using a Welch’s two-sample t-test (n=6 per 

group).  These analyses were performed using ArrayStudio (Qiagen, Hilden, 

Germany) on log transformed data.    

For statistical analyses of changes in fecal bacterial genera over time, 

linear mixed-effects model was utilized with unstructured correlation matrix 

accounting for dependence among observations over time and within an animal. 

Tukey’s pair-wise multiple comparison procedure followed to assess the 

significance of change in bacterial genera at each time point. Gut hormones and 

metabolic markers were correlated with bacterial species using one of the three 

hypothesized linear models: the full model that accounted for a possible 

interaction between PCB 126 exposure and a biomarker on the gut hormones 

level; the reduced model that had an additive effect of PCB 126 exposure and a 

metabolic biomarker only; and the simple model that did not account for the PCB 
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126 exposure. The most appropriate model was determined based on the largest 

value of the adjusted-R2, and its results were Bonferroni-adjusted to account for 

multiple comparisons. Results were considered statistically significant with an 

observed p-value <0.05. 

 

3.4 Results 

3.4.1 PCB exposure induces shifts in bacterial populations over time 

It is hypothesized that the gut microbiota of Ldlr -/- mice will shift as 

cardiometabolic disease progresses, but it is unknown if pollutant exposures will 

exacerbate or modify these changes.  Using 16S rRNA sequencing and the 

QIIME analysis platform, we quantified the bacterial populations in fecal samples 

collected 72 h, 4 weeks, and 12 weeks after first PCB or vehicle gavage 

(depicted as phyla level changes in Figure 3.1 and genera level changes in 

Figure 3.2). At the phyla level, PCB 126 decreased relative Bacteroidetes (0.75 

fold change, p=0.011) and increased relative Verrucomicrobia (1.41 fold change, 

p=0.008) and species in the feces at 4 weeks post gavage, but not at 12 weeks.  

Using these relative abundances, we then analyzed the Firmicutes to 

Bacteroidetes ratio over the four timepoints (Figure 3.1B).  We found that in 

general this ratio increased throughout the study for all mice (which was 

expected as mice were fed the atherogenic diet), but interestingly, PCB treated 

mice had a significantly higher ratio at the conclusion of the study in both feces 

and cecum contents (feces: 3.29 fold change, p=0.0332; cecum: 1.63 fold 

change, p=0.044).   
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     Next, using mixed-effects modeling, we increased the resolution of our QIIME 

analyses to determine which genera differed between PCB and vehicle-treated 

mice over time. In general, we determined four major trends with which generas 

changed over time. The first pattern was one in which PCB-treated mice 

displayed decreased bacterial genera abundance, while the abundance of 

vehicle-treated mice was stable across the course of the study. For instance, by 

the conclusion of the study, Lactobacillus genera in PCB-treated mice decreased 

by 84% relative to the baseline values (Tukey-adjusted pTA = 0.0021) and was 

80% lower than that of the vehicle-treated mice (pTA = 0.0339), among which the 

abundance of Lactobacillus genera did not appreciably change from baseline 

measurements (Figure 3.2A). The second pattern was one in which neither 

vehicle nor PCB-treated mice displayed a statistically significant deviation from 

each other or from the baseline genera values. For example, the abundance of 

Oscillospira genera was not affected by PCB exposure, nor did it change or over 

time (Figure 3.2B). The third pattern was one in which PCB-treated mice 

displayed increased abundance over time, while the abundance among vehicle-

treat mice did not change. For example, by the conclusion of the study, the 

abundance of Clostridiales genera was 420% higher among PCB-exposed mice 

than among vehicle-treated mice (pTA = 0.0248; Figure 3.2C). Finally, the last 

pattern was one in which both vehicle and PCB-treated mice displayed increased 

abundance over time, but this difference was equivalent between the two groups.  

For example, relative to the baseline levels, the abundance of Allobaculum 

genera increased over tenfold by the conclusion of the study in both groups 
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(week 14) (both pTA < 0.0001; Figure 3.2D). A summary of all temporal results 

can be found in Supplemental Table 1. 

3.4.2 PCB exposure alters cecal microbial diversity and bacterial genera 

The cecum contains the greatest abundance of microbiota and is a primary site 

of fermentation and bacterial metabolism.  Using 16S rRNA sequencing and 

QIIME analysis software, we also examined the bacterial populations in cecum 

samples collected at the end of the study (week 14).  Similarly to the fecal 

results, PCB 126-treated mice exhibited significantly reduced relative 

Bacteroidetes (0.38 fold change, p=0.002) and Firmicutes (0.54 fold change, 

p=0.004) and greater relative Verrucomicrobia (1.71 fold change, p=0.021) 

abundances compared to vehicle control (Figure 3.1A).  Alpha diversity is a 

common measurement of microbial diversity within a sample and takes into 

account the richness (count of different microbes) and evenness (distribution of 

different microbes) of a sample.  PCB 126 decreased the alpha diversity 

(Shannon diversity index) in cecal samples compared to vehicle control (0.60 fold 

change, p=0.001) (Figure 3.3A).  We also examined beta-diversity in these 

samples and determined that PCB-exposed mice exhibited a significant 

difference in microbial community structures compared to vehicle treated mice 

(R=0.2924, p=0.010) (Figure 3.4).  We next examined genera level changes in 

the cecum contents and determined this source of bacteria to be more sensitive 

to pollutant-induced changes compared with the fecal samples from the same 

timepoint (i.e., conclusion of study). The abundance of S24.7 and Clostridiales as 

well as the genera Bifidobacterium, Lactobacillus, Ruminococcus, and 
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Oscillospira were all significantly decreased in PCB exposed mice by similar 

magnitudes compared to vehicle control (0.39-0.90 fold change).  Furthermore, 

PCB 126 increased the abundance of Akkermansia (1.71 fold change, p=0.021) 

in the cecal samples compared to vehicle control (Figure 3.3B). 

 

3.4.3 PCB exposure increases systemic inflammation and alters 

cardiometabolic disease parameters 

Systemic inflammation may be a marker of altered gut health and has been 

shown to be increased by PCB 126 [40, 181, 184]. Using MAGPIX multiplex 

technology, we quantified the levels of circulating cytokines in plasma at the 

conclusion of the study and found that PCB 126 significantly increased interferon 

gamma-induced protein (IP-10; Figure 3.5A).  Additionally, macrophage 

inflammatory protein-1β (Mip-1β), regulated on activation, normal T cell 

expressed and secreted (Rantes), and interleukin 12 (IL-12 p70) both increased 

in PCB 126 exposed mice, however this increase did not quite attain the 

statistical significance threshold (0.05 < p < 0.1). We also examined circulating 

levels of LBP at the conclusion of the study and determined a slight trend toward 

increased levels in PCB 126 treated mice (p=0.142; Figure 3.6) Since gut health 

is also directly related to endogenous metabolism, we also quantified levels of 

circulating mediators of glucose/insulin signaling and determined that PCB 126 

significantly increased levels of insulin (2.74 fold change, p=0.019), c-peptide 

(1.63 fold change, p=0.015), and glucose-dependent insulinotropic peptide (GIP) 

(1.41 fold change, p=0.046) as well as significantly decreased levels of glucagon-
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like peptide 1 (GLP-1; Figure 3.5B) (0.31 fold change, p=0,048).   At 5 weeks 

post initial PCB gavage and again at the conclusion of the study, we completed a 

glucose tolerance test and observed no significant differences in glucose 

sensitivity during either of the challenges.  However, fasting blood glucose of 

PCB-exposed mice trended higher at both timepoints (p= 0.07, p= 0.16) 

compared to vehicle treated controls (Figure 3.7).  Finally, we quantified Oil Red 

O-staining within aortic roots to examine the extent of atherosclerosis in these 

mice.  We previously showed acceleration of atherosclerosis due to PCB 126 

exposure using this same model in studies of shorter duration (e.g., 8 or 10 

weeks post first PCB gavage) [181].  We determined in this current study that 

PCB-exposed mice displayed similar trends as seen before, but the differences 

in lipid accumulation between the two groups was not as evident as in the shorter 

studies (Mean control; 2.05x105 ± 2.53x104 µm2, Mean PCB; 2.60 x105 ± 

3.42x104 µm2, p=0.2; Figure 3.8). 

 

3.4.4 The intestine is a target of PCB 126 toxicity 

There is currently limited evidence that PCB 126 can elicit an inflammatory 

response in intestinal tissue [18, 185].  Thus, we utilized qPCR to examine gene 

expression of markers related to inflammation, gut health, and metabolism in the 

jejunum (small intestine) and the colon (large intestine).  In general, PCB 126 

elicited similar responses in both the jejunum and colon (Figure 3.9A and 3.9B).  

PCB 126 significantly increased expression of Cyp1a1, a marker of aryl 

hydrocarbon receptor (AhR) activation, in the jejunum and the colon (11.23 fold 
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change, p<0.0001; 23.00 fold change, p<0.0001).  Additionally, PCB 126 

increased expression of the inflammatory markers hepcidin (Hamp) and tumor 

necrosis factor alpha (Tnfα) in the colon and interleukin 6 (Il-6) and interleukin 18 

(Il-18) in the jejunum.  Expression of the tight junction proteins occludin (Ocel) 

and claudin (Cldn3) were significantly increased only in the colon.  Furthermore, 

mucin 2 (Muc2) only trended towards increased expression by PCB 126 in the 

colon (0.05 < p < 0.1).  Toll like receptor 4 (Tlr4), a transmembrane receptor that 

functions in pathogen recognition and activation of innate immunity, was 

significantly decreased in the jejunum and colon of PCB 126 exposed mice.  

Interestingly, peroxisome proliferator-activated receptor delta (Pparδ), an 

important regulator of intestinal cell differentiation and potential inhibitor of 

inflammatory bowel disease, was significantly decreased in the colon of PCB 

treated mice (0.46 fold change, p=0.008).  Gene expression of glucagon (Gcg), 

the gene responsible for the production of glucagon like peptide 1 (GLP-1), was 

significantly increased in both the jejunum and colon of PCB treated mice.  

Finally, to better elucidate the presence of PCB in gut tissue, and possible 

causative mediator of gut inflammation, we followed up these gene expression 

observations by quantitating PCB 126 in colon tissue via GC-MS and determined 

that the average concentration was 0.767 + 0.608 (Mean + S.E.M.) pmoles/mg 

tissue.  In comparison, hepatic levels averaged 6.388 + 0.688 (Mean + S.E.M.) 

pmoles/mg and plasma levels were undetectable in most mice analyzed. 
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3.4.5 PCB 126 alters hepatic metabolism in ways that mirror metabolic diseases 

With the close proximity of the gut and liver, hepatic metabolism and gut health 

are tightly intertwined, exerting continual influence on each other.  It is known 

that changes in hepatic metabolism occur as cardiometabolic disease 

progresses, but it is unknown if dioxin-like pollutant exposure can modify global 

metabolomic pathways in mice genetically predisposed to cardiometabolic 

disease.  Thus, using metabolomics-based approaches we next examined the 

impact of PCB 126 on multiple metabolites related to glycolysis, lipogenesis, and 

gut microbiota (Table 3.2).  PCB 126 exposure significantly decreased glycolytic 

intermediates including glucose 6-phosphate, 2-phosphoglycerate, and 3-

phosphoglycerate and increased glycerol, glycerol 3-phosphate, and 3-

hydroxybutyrate.  Furthermore, we observed PCB induced alterations in 

metabolites that can be influenced by interactions between gut microbiota and 

host systems including reductions in N-acetylphenylalanine, hippurate, and 5-

hydroxyindoleacetate, and elevations in dimethylglycine, N-oleoyltaurine, and O-

methyltyrosine.  There were no differences in other gut microbe-influenced 

metabolites in the liver including indolelactate, indole-3-carboxylic acid, and 3-

indoxyl sulfate.  Finally, we completed fecal short chain fatty acid analysis at the 

conclusion of the study and determined that PCB 126 significantly decreased 

formic acid concentrations by nearly half (p=0.002).  Acetic, butyric, isovaleric, or 

propionic acids were not changed between groups (Table 3.3).    
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3.4.6 PCB 126 induced bacterial alterations associated with metabolic markers 

Finally, little is still known about how alterations in gut microbiota are related to 

overall host health, therefore, using regression analysis we examined the 

relationship between quantitative markers of inflammation and metabolism with 

cecal bacterial genera counts.  In general, of the correlations examined, there 

were very few statistically significant associations between cecal genera counts 

and circulating mediators of metabolism and inflammation.  For example, no 

significant association was observed between any of the cecal generas and Il-6, 

c-peptide, GIP, or insulin.  However, we did observe a statistically significant 

association between absolute counts of Bifidobacterium and GLP-1 (Figure 

3.9a).  Specifically, there was a positive association between Bifidobacterium 

counts and GLP-1 among PCB-treated mice (Bonferroni-adjusted p-value for the 

number of generas considered pBA = 0.044), while among vehicle-treated mice 

GLP-1 levels were decreasing with an increase in Bifidobacterium counts (pBA = 

0.031). Furthermore, we also observed an inverse association between 

Akkermansia and fasting blood glucose in both PCB 126 exposed mice and 

vehicle treated mice (Figure 3.9b). Moreover, at the conclusion of the study, 

overall fasting glucose levels were 23 points higher (pBA = 0.0342) among PCB-

treated mice than among unexposed mice (Figure 3.9b). 

 

3.5 Discussion 

Currently, a major exposure source of dioxin-like pollutants such as PCB 

126 is through consumption of contaminated foods [2].  Thus, the gastrointestinal 
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system is susceptible to a relatively high concentration of pollutants but is a 

comparably under studied target organ.  Importantly, the gut can have drastic 

impacts systemically because of its critical role in maintenance of overall health 

[92]. We previously showed that PCB 126 could accelerate atherosclerosis and 

increase systemic inflammation in mice genetically predisposed to 

cardiometabolic disease, but any impacts of PCB 126 on gut microbiota in this 

model were yet to be examined [181].  Therefore, in this study we employed the 

same Ldlr -/- mouse model fed a high cholesterol diet to examine the effect of 

PCB 126 on gut microbiota populations, gut health, and the interplay of these 

effects with inflammation and metabolic complications.  We observed that PCB 

126 dramatically altered gut microbial populations, primarily in the cecum, and 

consistently increased intestinal and systemic inflammation.   

        The gut microbiota are very sensitive to environmental factors including diet 

and pollutant exposure.  Dysbiosis, or the abnormal distribution of bacterial 

populations, is associated with numerous health conditions from inflammatory 

bowel diseases to obesity and cardiometabolic disease [92]. In these conditions, 

an increase in the ratio of Firmicutes/Bacteroidetes has been consistently 

observed and has been linked to increased susceptibility to inflammation, 

infection, oxidative stress, and insulin resistance [186, 187].  In Figure 3.1B we 

showed that this ratio was increased due to PCB 126 exposure by the end of the 

study in both feces and cecum.  Furthermore, individuals with type 2 diabetes, 

have been demonstrated to have a unique microbial signature comprised of a 

reduction in the number of Clostriadiales, including Roseburia spp, and 
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Faecalibacerium prausnitzii [188, 189].  In these patients with diabetes or insulin 

resistance, it has been observed that these specific alterations in gut microbial 

composition persist without alterations in carbohydrate metabolism [188, 189].  

Research examining the relationship between cardiometabolic disease and gut 

microbiota has been of great interest in the field lately.  Studies have identified a 

strong link between a gut microbial dependent metabolite, trimethylamine N-

oxide (TMAO), and the incidence of cardiometabolic disease [190-192]. In our 

metabolomics work described herein we did observe an increase in 

dimethylglycine, a possible TMAO precursor, but hepatic TMAO levels were not 

significantly different between groups (plasma metabolomics was not completed). 

Because the microbiota seems to have a strong ability to sense and respond to 

systemic inflammation, examining known causes of inflammation, such as 

pollutant exposure, on gut microbiota populations and functionality is greatly 

needed. 

     There are only a few studies examining the effects of dioxin-like pollutant 

exposure on gut microbiota and overall host health.  Similarly, to what we 

observed, Lefever et. al. found that TCDD exposure did not significantly affect 

blood glucose homeostasis but did find distinct alterations in the gut microbiota 

including an increase in the Firmicutes:Bacteroidetes ratio, which is commonly 

seen in inflammatory disease conditions [193]. Additionally, another group 

showed that exposure to TCDF induced similar changes to bacterial populations 

as what we observe with PCB exposure [178].  For example, TCDF significantly 

decreased the abundance of Firmicutes in the cecal contents similarly to what we 
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observe in the cecal contents of our exposed animals.  However, it is important to 

note that TCDF exposure significantly reduced overall the Firmicutes: 

Bacteroidetes ratio, opposite to what we observed with PCB exposure.  Finally, 

Choi et. al observed increases in Verrucomicrobia in the feces of PCB-exposed 

mice, similarly to what we observe in the present study [179].  Although many of 

these effects are similar to what we see in our current study, some differences 

may be due to the unique model of cardiometabolic disease that the present 

study utilizes.  

     Using 16S rRNA sequencing of fecal samples we examined the change in 

bacterial populations over time (Figure 3.2).  At the conclusion of the study, we 

determined that PCB treated mice displayed a significant drop in S24.7 (30%) 

and Lactobacillus (80%), as well as a significant increase in Clostridiales 

(80.9%). The repeated collection of feces samples also revealed changes in gut 

microbiota as cardiometabolic disease progressed in the Ldlr -/- mice.  For 

example, irrespective of treatment group, mice showed a significant ~70% 

decrease in Lachnospiraceae (family) counts, a near ablation of Anaerostipes 

counts, and a drastic increase (>1100 times) in Allobaculum from baseline to 

study conclusion (Supplemental Table 1).   Surprisingly, few studies in Ldlr or 

ApoE -/- mice exist describing genera level changes throughout the progression 

of cardiometabolic disease.  There is some work looking at progressive changes 

due to ageing and glucose intolerance/diabetes, but more work focused on 

vascular diseases is needed [194, 195].  In addition to studying gut microbiota 

changes over time using the collection of feces, we also examined gut microbiota 
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differences due to PCB 126 at the conclusion of the study in cecum contents.  

This medium was more sensitive to changes due to PCBs with significant 

alterations in S24.7, Clostridiales, Akkermansia, Bifidobacterium, Lactobacillus, 

Ruminococcus, and Oscillospira (Figure 3.3B).      

        Interestingly, all mice, regardless of treatment, exhibited high levels of 

Verrucomicrobia (phylum level) and subsequently Akkermansia (genus level) 

throughout the entirety of the study compared to what is typically observed in the 

murine gut microbiota [149].  We hypothesize that the high cholesterol diet all 

mice received caused an increase in Akkermansia.  Although Akkermansia is 

usually thought of as a healthful bacterial species, we are not the first to observe 

increased abundance during high cholesterol feeding.  Hamilton et. al reported 

that an obesogenic diet may increase the level of this bacteria similarly to what 

we observed [196].  Furthermore Carmody et al. observed a high proportion of 

Verrucomicrobia and thus Akkermansia with high fat, high sucrose feeding [197].  

Although the authors of both articles attributed this to the fat content, these diets 

were also high in cholesterol which may be driving the increase in this bacterium 

observed in both studies as well as ours.  Further research needs to be done to 

examine this effect.  

      We did observe that PCB 126 exposed mice exhibited higher cecum levels of 

the phylum Verrucomicrobia and Akkermansia, a genus falling within this phylum, 

at the end of the study, compared to vehicle treated mice. In support of this, a 

smaller but still significant increase in Verrucomicrobia following PCB treatment 

was observed by Choi et al [179]. The Akkermansia genus contains mucin 
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degrading bacteria, specifically A. muciniphila, and there are reports that an 

abnormally high abundance of Akkermansia may actually be detrimental due to 

the excessive degradation of the mucus layer lining the intestine in such a way 

that the mucin producing goblet cells cannot compensate [196, 198].  In support 

of this, we observed trends toward an increase in mucin (Muc2) gene expression 

in the colon of mice exposed to PCB 126.  Although we did collect and 

histologically stain Ileum tissues (H&E) in the current study, pathology analyses 

did not reveal any conclusive differences between the two groups (necrosis was 

observed in 50% of PCB treated mice and 33.3% of vehicle treated mice; data 

not shown).  

     Overall, cecum bacterial populations were impacted to a greater degree by 

PCB 126 exposure compared to feces.  The cecum is characterized by a greater 

abundance of bacterial species and is often more representative of actual gut 

microbial populations than fecal samples [199].  We observed that PCB 126 

exposed mice had reduced levels of the genera Oscillospira, Bifidobacterium, 

Lactobacillus, and Ruminococcaceae.  Oscillospira has recently been observed 

to be positively associated with leanness and health while decreases in this 

genera are observed in inflammatory diseases [200].  In our previous study, 

utilizing the same mice, we showed that PCB 126 exposed mice had higher body 

fat and lower lean mass percentages [181]. Bifidobacterium and Lactobacillus, 

two of the most commonly recognized genera and prebiotics in the food system, 

are both associated with improved gut health, glucose tolerance and reduced risk 

of disease [120].  Specifically, lower levels of Bifidobacteria has been observed in 
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the fecal microbiota of patients with irritable bowel syndrome, a condition 

characterized by high levels of inflammation, while Lactobacillus spp. 

supplementation has been demonstrated to aid in the prevention of intestinal 

inflammation [201, 202].  Importantly, both Bifidobacterium spp. and 

Lactobacillus spp. have been demonstrated to be increased by prebiotic 

supplementation, which in turn was associated with improved glucose tolerance 

and metabolic health [203, 204].  Thus, the reductions in these bacterial genera 

in PCB treated mice may be associated with the observed alterations in 

metabolic health. 

     To link the gut microbiota alterations to systemic inflammation and responses 

to PCB 126 exposure, we conducted regression analysis examining the 

relationship between markers of inflammation and metabolism with cecal 

bacterial genera.  Using this approach, we observed an inverse association 

between Akkermansia and fasting blood glucose, regardless of treatment group.  

This observation has been noted by other groups previously, demonstrating that 

decreased levels of Akkermansia were associated with glucose intolerance and 

supplementation of Akkermansia muciniphila to high fat fed mice improved 

glucose tolerance [205]. Interestingly we observed a toxicant-dependent 

association between Bifidobacterium and GLP-1, where increased levels of 

Bifidobacterium were associated with increased levels of GLP-1, only in the PCB 

126 treated group.  This is important due to GLP-1’s involvement in managing 

insulin levels.  As such, it has been demonstrated that Bifidobacterium 
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adolescentis supplementation improves insulin sensitivity in an animal model of 

metabolic syndrome [206].     

      This current study is significant because we were able to examine PCB 126-

induced changes in gut health over time.  Importantly, we observed that even 10 

weeks following a final dose of PCB 126, gene expression of Cyp1a1 remained 

highly elevated in the jejunum and colon.  Cyp1a1 is a marker of AhR activation, 

observed with exposure to PCB 126 and other dioxin-like pollutants. Our 

observations of quantifiable levels of PCB 126 in the colons of exposed mice at 

the end of the study highlight that PCBs have a long-lasting impact on the gut.  

Other investigators have discussed the circulation of these pollutants through 

enterohepatic circulation, which involves the cycling of drugs and other 

compounds from circulation into the intestine where reuptake and transport to the 

liver occurs [207].  Because we observed such an elevation in Cyp1a1 gene 

expression, we hypothesize that these compounds are continually being cycled 

through enterohepatic circulation, thus exerting a continual impact on the gut 

microbiota and contributing to chronic increases in gut inflammation. 

     Intestinal inflammation poses a risk for systemic inflammatory and metabolic 

conditions including diabetes and cardiovascular disease.  For example, patients 

with inflammatory bowel disease have increased endothelial dysfunction and 

atherosclerotic lipid profiles [208]. This association with inflammatory diseases 

and risk of cardiometabolic disease is well founded, for example in patients with 

rheumatoid arthritis and psoriasis [209].  It is important to note that these 

associations are independent of traditional cardiometabolic disease risk factors.  
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Importantly, we observed increases in intestinal markers of inflammation 

including Tnfα, Il-6, Il-18.  In our previous study using the same model system, 

we showed that PCB 126 increased circulating levels of multiple cytokines at 8 

weeks post PCB gavage, but Tnfα and Il-6 were not changed.  More work needs 

to be completed to better understand how tissue specific inflammation (as we 

see in the current study in the intestines) is related to an overall systemic 

inflammatory response.  It has been demonstrated that intestinal upregulation of 

Il-18 results in production of chemoattractants and cytokines that can reach 

circulation and initiate inflammatory responses systemically [210].  Interestingly, it 

has been shown that the gut microbiota and antigen-presenting cells in the 

intestine interact and stimulate the release of cytokines including TNF-α and IL-6 

and that this results in the exacerbation of inflammatory bowel disease as well as 

whole body inflammation [211]. Although we did see similar trends in our 

previous work showing PCB 126 accelerated atherosclerosis at earlier time 

points [181], this was no longer significantly different in mice sacrificed at 12 

weeks post first PCB gavage.  However, if we combined data points from our 

previously published work and this current study to increase statistical power, the 

acceleration of atherosclerosis due to PCB 126 becomes highly significant 

(p=0.004; data not shown).  It is not unexpected that as cardiometabolic disease 

progresses in all of the Ldlr deficient mice, the impact of PCB 126 on 

atherosclerosis is blunted at later time points.  To investigate the impact of 

dioxin-like pollutants in future longer-term studies, additional toxicant exposures 

(i.e., additional gavages) may be useful.  In fact, circulating levels in plasma of 
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PCB 126 were undetectable in many of the mice examined at the end of this 

current study.  In our previous study [181] circulating levels of PCB 126 at 8 

weeks post first PCB exposure were detected in all mice analyzed with an 

average of 0.104 picomoles PCB 126/μL plasma. 

     We also observed some potentially adaptive responses to PCB 126.  For 

example, in the colon, we observed a reduction in Tlr4.  Tlr4 is involved in the 

inflammatory signaling response through its trigger of nuclear factor κ B. (NF-κB).  

However, the observed reduction in expression of Tlr4 in PCB treated mice may 

be in an attempt to attenuate the inflammatory responses already ongoing in the 

intestine.  Indeed, it has been demonstrated that in murine macrophages, 

lipopolysaccharide stimulation actually resulted in the downregulation of Tlr4 

[212].  Additionally, we observed a small increase in mRNA expression of tight 

junction proteins in the intestine of PCB-exposed mice.  We hypothesize that this 

may also be a compensatory mechanism to repair following intestinal injury.  

Future research should look at direct measures of intestinal permeability upon 

pollutant exposure to better elucidate these effects.  Additionally, our 

observations of an increase in the bacterial genera Akkermansia was unexpected 

and may also highlight potential compensatory mechanisms of pollutant 

exposure.  Although it is well established that Akkermansia is beneficial, others 

have seen increases during proinflammatory events such as high fat feeding 

[197, 198, 213].  These findings highlight the diverse roles that specific bacterial 

populations may affect various disease states and the importance of follow up 

studies using additional model systems. 
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     This is the first study to link PCB 126-induced disruption of the gut to changes 

in systemic metabolism.  We observed that PCB treated mice had increased 

circulating levels of insulin, c-peptide, and glucose-dependent insulinotropic 

peptide (GIP) and reduced levels of glucagon-like peptide 1 (GLP-1).  While we 

did not observe differences in glucose sensitivity during a glucose tolerance test 

(Figure 3.7), the increased levels of insulin and c-peptide in PCB exposed mice 

may indicate reduced insulin sensitivity (i.e., increased level of insulin required to 

stimulate cellular glucose uptake).  Furthermore, GLP-1 and GIP are both 

insulinotropic incretins, but there is evidence that hyperinsulinemia and insulin 

resistance can cause impairments in GLP-1 secretion from intestinal L cells 

[214]. Because it is well understood that systemic inflammation can lead to 

insulin resistance, we believe that the high level of inflammation observed in PCB 

126 exposed mice is responsible for the dysregulation of insulin signaling and 

subsequently further disruption of GLP-1 secretion from the intestine. 

     This disruption in metabolism was also observed in our hepatic metabolomic 

analyses where we found that mice exposed to PCB 126 displayed disruptions of 

glycolytic metabolism, evidenced by decreased levels of glucose 6-phosphate, 2-

phosphoglycerate, 3-phosphoglycerate, and phosphoenolpyruvate.  Furthermore, 

PCB 126 treated mice exhibited increases in glycerol, glycerol-3 phosphate, and 

the ketone body 3-hydroxybutryate, indicating a shift towards a dominance of 

fatty acid metabolism for energy resulting in ketone body formation.  This shift 

away from carbohydrate metabolism to fatty acid metabolism could be due to the 

high circulating levels of insulin indicating a requirement for more insulin to 
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stimulate glucose uptake, thus causing fatty acid utilization and ketone body 

formation to be upregulated to meet energy demands more efficiently.  Finally, 

we also show for the first time that exposure to a dioxin-like PCB can decrease 

fecal concentrations of a SCFA (formic acid).  Interestingly, other SCFAs were 

not altered in this study which may implicate the disruption of specific microbe 

species by PCB 126.  In future studies, higher resolution sequencing or the use 

of species-specific qPCR primers, may be useful to better tease out the impacts 

of lipophilic persistent organic pollutants on microbiota health.      

     Although this current study adds to a growing body of knowledge detailing the 

impacts of persistent organic pollutants on gut microbiota and host health, there 

are multiple limitations that may be more thoroughly addressed in follow-up 

studies.  First off, only an IP glucose tolerance test (GTT) was completed.  As 

more insulin may be released during an oral bolus of glucose, and with the 

observed changes to incretins due to PCB 126, it is plausible that our glucose 

tolerance observations may differ slightly depending on the administration 

method.  Secondly, since all mice received a high cholesterol diet to promote 

cardiometabolic disease it is not possible to tease out how the interaction 

between cholesterol and toxicant exposure is modulating gut microbe and host 

health.  A future, larger study, with a 2x2 factorial design (2-way ANOVA) would 

be useful to tease out the effects of diet, toxicant exposure, and their interaction 

on the observed changes.  Finally, this study focused solely on male mice which 

is an important consideration since the gut microbiota may differ between sexes 

[215].  
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Our current study demonstrates that exposure to PCB 126 in a 

compromised model of cardiometabolic disease disrupts gut microbial 

populations, contributes to intestinal inflammation, systemic inflammation, and 

metabolic disruption. We hypothesize that the effects on systemic inflammation, 

intestinal inflammation, and gut dysbiosis with PCB 126 exposure may occur 

simultaneously and exert a feed-forward effect on each other.  More studies are 

needed to determine if toxicant-initiated changes in gut microbiota are a 

causative mechanism linking exposures to dioxin-like pollutants to increased risk 

of pro-inflammatory diseases in humans. 
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Table 3.1. Gut microbiota population changes over time 

 
 
     Statistically significant differences determined by mixed-effects modeling of 

absolute counts. † denotes statistical significance compared to baseline. ‡ 

denotes statistical significance between groups at specific timepoint.  *median 

instead of mean values are reported due to the skew in the distribution of the 

absolute count values.  
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Table 3.2. Hepatic metabolomics analysis 

 
Statisticaly significant differences determined by Welch’s two-sample t-tests. n=6 per group.  
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Table 3.3. Fecal SCFA analysis 

 
Bold text denotes statistically significant differences between groups as determined by student’s t-test. n=10 per group.  
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Figure 3.1. Exposure to PCB 126 drives phyla level alterations in bacterial 
populations over time   
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Figure 3.1. Exposure to PCB 126 drives phyla level alterations in bacterial 

populations over time.  Male Ldlr-/- mice were fed an atherogenic diet for 14 

weeks and exposed to PCB 126 (1µmol/kg) at weeks 2 and 4.  Fecal samples 

were collected at the start of the study, 72 hours, 4 weeks, and at sacrifice (12 

weeks) post first PCB 126 exposure. Cecum contents were also collected at the 

conclusion of the study.  16S rRNA sequencing was conducted and data was 

analyzed using QIIME.  A. Changes in the taxonomic composition of the gut 

microbiota over time at the phylum level. Significant differences were observed in 

the cecum contents at sacrifice.  Cecum contents displayed a significant increase 

in Verrucomicrobia and decreases in Firmicutes and Bacteroidetes. Data are 

presented as relative abundances. B. Firmicutes / Bacteroidetes ratio changes 

over time. PCB 126 increased the ratio of Firmicutes / Bacteroidetes in both the 

feces and cecum contents at sacrifice. Data are presented as mean + S.E.M 

(n=10 per group; Student’s t-test). Statistical significance is denoted by * 

(p<0.05).  # represents (p<0.1). 
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Figure 3.2. PCB 126 modulates gut microbiota populations at the genra level 
over time 

 
 
 
Figure 3.2. PCB 126 modulates gut microbiota populations at the genra 

level over time. Male Ldlr-/- mice were fed an atherogenic diet for 14 weeks and 

exposed to PCB 126 (1µmol/kg) at weeks 2 and 4.  Fecal samples were collected 

at the start of the study, 72 hours, 4 weeks, and at sacrifice (12 weeks) post first 

PCB 126 exposure. A representative example of each of the 4 observed trends is 

depicted.  For all generas, please see Table 3-1.  A linear mixed-effects model 
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was utilized with Tukey’s pair-wise multiple comparison procedure to assess the 

significance of change in bacterial genera at each time point.  Statistical 

significance is denoted by * (p<0.05). (n=10 per group; Student’s t-test).    
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Figure 3.3. Exposure to PCB 126 alters cecal bacterial genera and alpha 
diversity 

 
 
Figure 3.3. Exposure to PCB 126 alters cecal bacterial genera and alpha 

diversity.  Male Ldlr-/- mice were fed an atherogenic diet for 14 weeks and 

exposed to PCB 126 (1µmol/kg) at weeks 2 and 4.  Cecum contents were 

collected at the conclusion of the study. (A) Alpha diversity of cecum contents 

quantified using the Shannon Diversity Index.  PCB 126 exposure decreased 

alpha diversity in cecum contents. (B) Order and genera level changes in cecal 

gut microbiota.  PCB 126 decreased abundance of S24.7, Clostridiales, 

Bifidobacterium, Lactobacillus, Ruminococcus, and Oscillospira and increased 

Akkermansia abundance.  Data are presented as mean + S.E.M (n=10 per 

group; Student’s t-test). Statistical significance is denoted by * (p<0.05). 
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Figure 3.4. Principal coordinates analysis of unweighted UniFrac distances of 
microbial communities in cecum contents 

 
 

Figure 3.4. Principal coordinates analysis of unweighted UniFrac distances 

the microbial communities in cecum contents. PCB 126- exposed mice 

exhibited a significant difference in cecum microbial community structures 

compared to vehicle treated mice (R=0.2924, p=0.01). Analysis of similarity 

(ANOSIM) was used to identify microbial community differences.  
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Figure 3.5. Analysis of circulating cytokines and biomarkers of energy 
metabolism revealed that PCB 126 increases inflammation and alters insulin and 
related markers 

 
 
Figure 3.5. Analysis of circulating cytokines and biomarkers of energy 

metabolism revealed that PCB 126 increases inflammation and alters 

insulin and related markers. Male Ldlr-/- mice were fed an atherogenic diet for 

14 weeks and exposed to PCB 126 (1µmol/kg) at weeks 2 and 4.  Fecal samples 

were collected at the start of the study, 72 hours, 4 weeks, and at sacrifice (12 

weeks) post first PCB 126 exposure. (A) Quantification of circulating cytokines 

(MAGPIX technology).  PCB 126 increased Interferon gamma-induced protein 

(IP-10) plasma levels. (B) Quantification of circulating markers of energy 

metabolism (MAGPIX technology). PCB 126 increased plasma levels of insulin, 

c-peptide, and glucose-dependent insulinotropic peptide (GIP). PCB 126 reduced 

plasma levels of glucagon-like peptide 1 (GLP-1) Data are presented as mean + 

S.E.M (n=9-10 per group; Student’s t-test). Statistical significance is denoted by * 

(p<0.05).  
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Figure 3.6. Plasma concentrations of lipopolysaccharide binding protein (LBP) 
as determined by ELISA 

 
 

Figure 3.6. Plasma concentrations of lipopolysaccharide binding protein 

(LBP) as determined by ELISA. PCB exposed mice exhibited a trend towards 

increased circulating levels of LBP at the conclusion of the study (p=0.142; n=8). 

For group comparison, an unpaired t-test was used and significance was set at 

p<0.05.  
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Figure 3.7. No differences in glucose tolerance was observed between vehicle 
and PCB 126-exposed mice at 5 or 12 weeks post exposure 

 
 

Figure 3.7. No differences in glucose tolerance was observed between 

vehicle and PCB 126-exposed mice at 5 or 12 weeks post exposure. Mice 

were fasted for 6h (7am-1pm)., and fasting blood glucose levels were measured 

with a hand-held glucometer (Accu-check Avivia, Roche, Basel, Switzerland) 

using 1-2uL of blood collected through the tail vein. Glucose was given via IP 

injection (2mg/g body weight, sterile saline) and blood glucose levels were 

measured at 15, 30, 60, 90, and 120 minutes post injection. For group 

comparison, an unpaired t-test was used for each timepoint and significance was 

set at p<0.05  
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Figure 3.8. PCB 126 exerts a modest increase in atherosclerosis development 

 
 

Figure 3.8. PCB 126 exerts a modest increase in atherosclerosis 

development. Male Ldlr -/- mice were fed a low fat, 0.15% cholesterol diet for 14 

weeks and administered 1 μmol/kg PCB 126 at weeks 2 and 4. Aortic roots were 

frozen and serially sectioned from the emergence of the 3 valves. On average, 

the mean of 6 sections per mouse was utilized for quantitation. A. Shown are Oil 

Red O stained aortic root sections of mice exposed to vehicle control or PCB 126 

with associated lesion area quantification (n=9 control, n=8 PCB; p=0.21; 

Student’s t-test).  
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Figure 3.9. PCB 126 exposure increases intestinal inflammation and alters 
markers of gut health 

 
 

Figure 3.9. PCB 126 exposure increases intestinal inflammation and alters 

markers of gut health. Male Ldlr-/- mice were fed an atherogenic diet for 14 
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weeks and exposed to PCB 126 (1μmol/kg) at weeks 2 and 4. Intestinal samples 

were collected at the conclusion of the study. mRNA units were determined using 

the relative quantification method (ΔΔCT), normalized to control values. β-actin 

was used as the housekeeping gene for all jejunum and 18S was used for all 

colon gene expression quantifications. (A) Gene expression in the jejunum. PCB 

126 increased expression of cytochrome p450 A1 (Cyp1a1), and markers of 

inflammation such as interleukin 18 (Il-18), (B) Gene expression in the colon. 

PCB 126 increased gene expression of Cyp1a1 and markers of inflammation 

such as hepcidin (Hamp), tumor necrosis factor (Tnfα), Interleukin 6 (Il-6). PCB 

126 increased tight junction protein gene expression including occludin (Ocel) 

and claudin (Cldn3). Data are shown as mean + S.E.M. (n=10 per group; 

Student’s t-test). Statistical significance is denoted by * (p<0.05).  
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Figure 3.10. Exposure to PCB 126 drives phyla level alterations in bacterial 
populations over time 

 
 

Figure 3.10. Exposure to PCB 126 drives phyla level alterations in bacterial 

populations over time. Male Ldlr-/- mice were fed an atherogenic diet for 14 

weeks and exposed to PCB 126 (1μmol/kg) at weeks 2 and 4. Liver samples 

were collected at the conclusion of the study. Correlations between gut microbes 

and plasma markers were determined by linear regression modeling. GLP-1 

levels were toxicant dependently associated with Bifidobacterium abundance 

(unadjusted p=0.0126). Fasting blood glucose levels were inversely associated 

with Akkermansia abundance, independent of toxicant exposure (unadjusted 

p=0.0191). Intersection of lines denote significant interaction.  
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Chapter 4 Characterization of the protective effects of prebiotic 
consumption against PCB 126 toxicity 

 
4.1 Synopsis 

In chapter three it was demonstrated that exposure to PCB 126 increased 

inflammation and disrupted gut microbiota and metabolic homeostasis.  It is well 

accepted that lifestyle modification (i.e. dietary changes and exercise) can 

contribute to benefits in host health as well as protection from pollutant toxicity.  

Due to our previously observed involvement and disruption of the gastrointestinal 

tract and gut microbiota during PCB exposure, employing nutritional interventions 

that have strong effects on these could be beneficial in attenuating PCB-health 

detriments.  Inulin is a well-studied prebiotic dietary fiber that has been 

demonstrated to attenuate gut dysbiosis, improve glucose and lipid metabolism, 

and reduce cardiometabolic disease risk, making it a suitable nutritional 

intervention to combat the PCB-effects discussed in chapter three.  Therefore, 

our objective in the present study was to elucidate the role of prebiotic nutritional 

intervention (i.e. inulin) on attenuating PCB-induced disruption of cardiometabolic 

health and gut microbiota populations.  Male Ldlr-/- mice were fed an atherogenic 

diet containing 8% cellulose or 8% inulin for 12 weeks and exposed to PCB 126 

(1µmol/kg) or vehicle at weeks 2 and 4.  PCB exposure induced wasting and 

impaired glucose tolerance, which was attenuated by inulin consumption.  

Hepatic lipid accumulation, specifically microvesicularly, was observed with PCB 

exposure and lessened with inulin consumption.  To examine potential underlying 

mechanisms contributing to these observed phenotypes, examination of 

microbial populations, metabolic regulatory parameters, and inflammatory 
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markers was conducted.  16S rRNA sequencing of gut microbial populations 

revealed an overall diet effect of lowering the Firmicutes: Bacteroidetes ratio, a 

common observation observed in metabolically healthy individuals [80].  

Additionally, diet and exposure induced specific alterations in microbial 

populations at the genera level and are described within Table 4.2. It was also 

observed that PCB-induced disruption in glycolytic and gluconeogenic enzyme 

expression, which was improved by inulin feeding and may play a role in the 

improvements in glucose tolerance we observed in inulin fed mice.  Finally, PCB 

exposure increased the hepatic levels of ceramides, a biomarker of 

cardiometabolic disease, and that inulin consumption reduced these levels, 

suggesting a protective role of inulin against cardiometabolic disease.  Our 

current data of this ongoing study demonstrate that dietary intervention (i.e. 

inulin) is an effective means at attenuating PCB-induced metabolic disruption, 

inflammation, and gut microbial modulations, potentially reducing the risk of 

cardiometabolic disease.  

 
4.2 Introduction 

     The burden of environmental pollutant exposure continues to increase 

worldwide, despite reductive efforts [2-4].  Exposure to dioxin-like pollutants 

poses numerous health risks for an individual including increased risk of 

cardiometabolic diseases such as atherosclerosis and diabetes [2, 3].  Due to the 

lipophilic nature of dioxin-like pollutants, humans are primarily exposed through 

consumption of contaminated of fatty foods such as fatty fish, beef, and dairy 

products [2, 38].  Importantly, this route of exposure allows for the 
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gastrointestinal tract to receive the highest levels of dioxin-like pollutants and 

therefore makes it a critical aspect to study.  The gut and gut microbiota play an 

important role in overall host health and disruptions in these systems have been 

implicated in the development of several diseases including cardiometabolic 

diseases [80].  Our lab has previously demonstrated that exposure to the dioxin-

like pollutant PCB 126 increases intestinal inflammation, disrupts gut microbiota, 

and alters host metabolism, and can accelerate development of cardiometabolic 

disease [143, 181].  Furthermore, the data discussed in chapter two 

demonstrated that PCBs can exert toxic effects on specific bacterial populations 

through membrane disruption, leading to disruption in microbial metabolite 

production that may negatively affect the host.  Because of these findings 

demonstrating the toxicity of PCBs on the gut microbiota and gut health, 

utilization of dietary interventions by which to attenuate or reverse these negative 

effects may be a sensible means of reducing disease risks associated with PCB 

exposure.   

     Prebiotics are defined as “a selectively fermented ingredient that allows 

specific changes both in the consumption and/or activity in the gastrointestinal 

microbiota that confers benefits upon host well-being and health” [124].  The 

most widely understood and accepted prebiotics include certain types of dietary 

fiber [125].  Dietary recommendations for dietary fiber intakes are at least 28g 

and 35g for females and males, respectively.  However, it has been documented 

that less than 3% of Americans are meeting these recommendations, highlighting 

an important avenue for improvement and intervention [125].  Not all dietary 
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fibers are prebiotic and modulate the microbiota.  Fibers that have been 

documented to have functional prebiotic properties include 

fructooligosaccharides, galactooligosaccharides, some disaccharides, some 

nonstarch polysaccharides, and inulin [126].  The prebiotic inulin is an inulin type 

fructan that contains linear chains of fructosyl groups linked by (2-1) glycosydic 

bonds, terminated with an -D(1-2)-glucopyranoside ring group on the reducing 

end [128].  Inulin is found in vegetables like garlic, onions, and asparagus, but 

one of the most common forms of inulin commercially available is derived from 

chicory root [128] .  Inulin is a potent prebiotic that has been demonstrated to 

have stimulatory effects on certain bacterial populations that have been 

associated with good health, including Bifidobacterium spp, and Lactobacillus 

spp [134].  Furthermore, inulin administration was shown to reduce deleterious 

bacteria, such as the sulfate-reducing genus Bilophila [134, 135].  Aside from 

modulation of the gut microbiota, consumption of chicory-derived inulin has been 

demonstrated to reduce adiposity, improve glucose sensitivity [132, 133].  

Importantly, inulin consumption can reduce hepatic lipogenesis and plasma 

triglycerides as well as reduce atherosclerotic lesion formation, and thus may be 

protective against PCB-induced hepatic steatosis and acceleration of 

atherosclerosis [216, 217].  Thus, the objective of this study was to elucidate the 

role of prebiotic nutritional intervention (i.e. inulin) on attenuating PCB-induced 

disruption of cardiometabolic health and gut microbiota populations.   
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4.3 Materials and Methods 

 
4.3.1 Animals, diets, and study design 

     Seven-week-old male Ldlr -/- mice were purchased from Jackson 

Laboratories and maintained on a 12-h light/ 12 h dark cycle at a temperature of 

22oC with 50% humidity.  All mice received food and water ad libitum and 

measures of food intake and body weight were recorded weekly.  The base diet 

and dosing schedule for this study have been previously shown to be an 

appropriate model of pollutant-accelerated cardiometabolic disease. Following 

one week of acclimation, mice were randomly divided into 4 groups (n=10).  Mice 

were fed either a control high cholesterol diet containing 8% cellulose as the fiber 

source (2 groups; n=10 each) or a prebiotic containing high cholesterol diet with 

8% of inulin as the fiber source (2 groups; n=10 each).  The level of fiber in this 

study was chosen to represent a “high” fiber intake based on human dietary 

recommendations. The recommended intake of fiber is 14g per 1000 calories 

[218]. The traditional level of fiber in purified rodent diets is 5%, equating to 12g 

per 1000 calories.  The 8% level of fiber equates to 21g per 1000 calories, which 

can be classified as a “high” fiber diet.  Detailed diet compositions can be found 

in Table 4.1.  At weeks 2 and 4, mice received either 1 µmol/kg of PCB 126 

(AccuStandard, CT, USA) or safflower oil vehicle (Dyets, Bethlehem, PA, USA) 

via oral gavage.  At the end of the study mice were fasted for 16 h, anesthetized 

and blood was collected via retro-orbital bleed.  Liver, intestinal samples, and 

cecum samples were collected, snap frozen in liquid nitrogen, and stored at -80 
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oC until analysis.  All experimental procedures were approved by the Institutional 

Animal Care at the University of Kentucky.   

 

4.3.2 Glucose tolerance testing and body composition analysis 

     Intraperitoneal GTTs were conducted on weeks 5 and 8.  Mice were fasted for 

6 h and given an IP injection of glucose (i.e. 20% solution at 2 mg/g BW, sterile 

saline).  Blood from the tail vein was collected at baseline, 15, 30, 60, 90, and 

120 minutes post injection and blood glucose levels were quantified using a 

hand-held glucometer (Accu-check Avivia, Roche, Basel, Switzerland).  Lean 

body mass and fat mass were analyzed at week 10 using EchoMRI (EchoMRI 

LLC, Houston, TX, USA).  

 

4.3.3 DNA Extraction and 16S rRNA Sequencing 

DNA extraction and 16S rRNA sequencing were conducted by the 

Environmental Sample Preparation and Sequencing Facility (ESPSF) at Argonne 

National Laboratory as previously discussed.  Analysis was conducted using the 

program Quantitative Insights into Microbial Ecology (QIIME version 2.0) utilizing 

parameters discussed in Petriello et. al. 2018 [143]. 

 

4.3.4 Hepatic histology 

     Sections of liver were fixed in 10% neutral buffered formalin and subsequently 

embedded in paraffin for histological examinations.  Hepatic tissues sections 

were stained with hematoxylin-eosin (H&E) and examined by a pathologist via 
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light microscopy and visually scored based on macrovesicular fat percentages.  

Microvesicular fat accumulation was noted as “present” or “not present”.  

Photomicrographic images were captured at 20x magnification using a high-

resolution digital scanner.   

 

4.3.5 RNA Extraction and qPCR 

     Jejunum, colon, and liver samples were homogenized in TRIzol (Invitrogen, 

Carlsbad, CA) and mRNA was extracted according to manufacturer’s 

instructions.  Quality and concentrations were quantitated using a NanoDrop 

2000 spectrophotometer (Thermo Scientific, Waltham, MA).  Complimentary 

DNA was generated utilizing qScript cDNA SuperMix (Quantabio, Beverly, MA) 

according to manufacturer’s protocols.  Gene expression was determined via 

qPCR utilizing Taqman fast reagents (Thermo Scientific, Waltham, MA) in a 

CFX90 Real-Time PCR system (Bio-Rad, Hercules, CA).  B-actin was used as 

the housekeeping gene for intestinal samples and 18S was used as the 

housekeeping gene for liver samples.  The ΔΔCt relative quantification method 

was used to calculate fold differences in gene expression. 

 

4.3.6 Analyses of circulating proteins related to metabolic function 

     Plasma metabolic hormones were quantified using the Milliplex Map Mouse 

Metabolic Hormone Magnetic Bead Panel- Metabolism Multiplex Assay (Millipore 

Corp, Billerica, MA, USA) following manufacturer’s protocols.  Assays were 

measured on the Luminex Xmap MAGPIX system (Luminex Corp, Austin, TX, 
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USA) following manufactures instructions.  For statistical analyses, values below 

the standard curve were represented as zero. 

 
4.3.7 Quantification of hepatic metabolites related to cardiometabolic disease 

and metabolic function 

To quantify levels of specific lipids, plasma was spiked with deuterium labeled 

internal standard mixture and extracted using methyl tert-butyl ether. The 

samples were analyzed using an Ultimate 3000 ultra high performance liquid 

chromatography system coupled to a Thermo Q-Exactive Orbitrap mass 

spectrometer equipped with a heated electrospray ion source (Thermo Scientific, 

CA, USA). Lipid extracts were separated on a Waters ACQUITY BEH C8 column 

(2.1 × 100 mm, 1.7 μm) with the temperature maintained at 40 °C. The flow rate 

was 250 μL/min, and the mobile phases were consisted of 60:40 

water/acetonitrile (A), and 90:10 isopropanol/acetonitrile (B), both containing 10 

mM ammonium formate and 0.1% formic acid. The samples were eluted with a 

linear gradient from 32 % B to 97 % B over 25 min, maintained at 97 % B for 4 

min and re-equilibration with 32 % B for 6 mim. 

 
4.3.8 Statistical analyses 

     Data were analyzed using GraphPad PRISM and are presented as mean + 

SEM. Comparisons between groups were made by two-way ANOVA with post-

hoc comparisons of the means.  Statistical significance was set at a determined p 

value of p<0.05.  
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4.4 Results 

 
4.4.1 Inulin consumption and PCB exposure exert differential effects on body 

composition 

     When examining body composition, it was observed that inulin consumption 

resulted in an overall lower weight gain irrespective of exposure (Figure 4.1a).  

Furthermore, cellulose fed mice exposed to PCBs had significantly greater 

weight gain than exposed inulin fed mice.  EchoMRI measurements of body 

composition revealed that PCB exposure resulted in reductions in percent body 

fat in cellulose fed mice, but not in inulin fed mice (Figure 4.1b).  Importantly, 

there were no differences in food intake between all of the groups (Figure 4.1c).   

 

4.4.2 Inulin protects against PCB 126 disruption of glucose tolerance.  

     To assess the effects of pollutant exposure and inulin consumption on 

glucose tolerance, an intraperitoneal glucose tolerance test (IGTT) was 

conducted at weeks 5 and weeks 8.  At week 5, PCB-exposure increased fasting 

blood glucose levels in cellulose fed mice (Figure 4.2a).  Such an increase was 

not observed in inulin-fed mice.  Furthermore, cellulose fed mice exposed to 

PCBs displayed a greater area under the curve (AUC) compared in exposed 

inulin fed mice.  At week 8, no significant differences in fasting blood glucose 

were observed, but the effects of PCB exposure and inulin feeding on AUC 

observed at week 5 remained significant (Figure 4.2b).  Importantly, no 

differences in circulating insulin levels at the end of the study were observed 

(data not shown).  
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4.4.3 Inulin reduces PCB-induced hepatic steatosis 

     When examining liver composition, we observed that PCB exposure 

significantly increased liver weight in cellulose fed mice, which was attenuated 

with inulin consumption (Figure 4.3a).  Overall, inulin-fed mice exhibited lower 

liver weights compared to cellulose fed mice.  A significant overall effect of PCB 

exposure on increasing liver weights was apparent.  Interestingly, PCB exposure 

significantly reduced hepatic macrovesicular fat accumulation in cellulose fed 

mice, however increases in microvesicular fat accumulation was evident in this 

same group (Figure 4.3b).  Overall, inulin fed mice exhibited lower 

macrovesicular fat accumulation and an observation of lower microvesicular fat 

accumulation in exposed inulin fed mice compared to exposed cellulose fed mice 

was noted (Figure 4.3b).  

 

4.4.4 Inulin and PCB 126 exert differential effects on gut microbial populations 

    Upon examination of gut microbial populations via 16S rRNA sequencing, we 

observed several effects and interactions between pollutant exposure and inulin 

consumption.  At the phylum level, mice fed inulin had lower levels of 

Verrucomicrobia than cellulose fed mice, irrespective of exposure (Figure 4.4a).  

Furthermore, a significant increase in Actinobacteria in in all mice fed inulin 

compared mice fed cellulose was observed and a significant increase in 

Bacteroidetes was apparent in vehicle treated inulin fed mice compared to 

vehicle treated cellulose fed mice (Figure 4.4a).  There were no significant effects 

of pollutant exposure on the Firmicutes to Bacteroidetes ratio, however a 
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significant diet effect was observed in which inulin fed mice had a lower ratio than 

cellulose fed mice (Figure 4.4b).  Alpha diversity, as calculated using the 

Shannon Diversity Index, revealed a significant exposure effect with PCB 

exposed mice having a reduced diversity compared to non-exposed mice 

(Figure 4.4c).    

     At the genera level, a significant increase in Coprococcus in cellulose fed 

mice exposed to PCB 126 was found, which was attenuated by inulin feeding 

(Figure 4.5).  PCB exposed mice fed cellulose also exhibited a trend towards 

reductions in Allobaculum which was significantly increased by inulin feeding 

(Figure 4.5).  Furthermore, inulin exposure significantly increased the abundance 

of Bifidobacterium and Lactobacillus and reduced the abundance of 

Ruminococcus.  Inulin fed mice also exhibited lower levels of Akkermansia, 

irrespective of pollutant exposure (Figure 4.5). 

 

4.4.5 Inulin attenuates PCB-induced hepatic inflammation and alters markers of 

xenobiotic metabolism  

    When examining hepatic gene expression of markers of inflammation, it was 

observed that PCB exposure increased expression of tumor necrosis factor alpha 

(Tnfα) and lipopolysaccharide binding protein (Lbp), which was attenuated by 

inulin consumption (Figure 4.6a).  Furthermore, exposed inulin fed mice also 

exhibited reduced levels of toll like receptor 4 compared to exposed cellulose fed 

mice.  Furthermore, expression of hepcidin (Hamp) was lower in inulin fed mice, 

irrespective of exposure (Figure 4.6a).  Quantification of markers of pollutant 
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exposure and detoxification revealed that PCB exposure induced expression of 

cytochrome p450 (Cyp1a1) in both diets, however mice fed inulin exhibited 

significantly lower levels compared to cellulose fed mice (Figure 4.6b).  

Furthermore, exposed inulin fed mice exhibited lower levels of multidrug 

resistance protein (Mrp2) compared to exposed cellulose-fed mice (Figure 4.6b).   

 

4.4.6 Inulin reduces metabolites associated with cardiometabolic disease 

     To examine the effect of both PCB exposure and inulin feeding on 

cardiometabolic disease risk, hepatic metabolites associated with 

cardiometabolic disease were quantified.  Using lipidomic analyses, it was seen 

that in cellulose fed mice, PCB exposure increased hepatic levels of ceramide 

species including 18:1/20:0 and 18:1/24:1 as well as total ceramides (Figure 

4.7a).  In exposed mice fed inulin, a significant reduction in ceramide species 

18:1/20:0 was observed, with a trend towards reduction in species 18:1/24:1 as 

well as total ceramides.  Importantly, quantification of hepatic expression of 

microsomal triglyceride transfer protein (Mttp), responsible for ceramide 

transport, was decreased in PCB exposed mice fed cellulose and was rescued 

with inulin feeding (Figure 4.7b) .       

 

4.4.7 Inulin and PCBs differentially alter hepatic markers of glucose metabolism 

and circulating metabolic hormones. 

     To elucidate the effects of PCB exposure and inulin consumption on glucose 

metabolism, hepatic expression of key glycolytic and/or gluconeogenic enzymes 
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was examined (Figure 4.8).  PCB exposure significantly reduced expression of 

pyruvate kinase (Pklr) in cellulose fed mice, while the reduction in exposed inulin 

fed mice was not significant.  Additionally, an overall reductive effect of PCB 

exposure on glucokinase (Gck) and phosphoenolpyruvate carboxykinase (Pck1) 

expression was observed, regardless of diet.  However, an overall effect of inulin 

consumption on increasing Pck1 expression was observed.  Furthermore, 

glucose 6-phosphatase (G6pc) expression was significantly increased in inulin 

fed mice, regardless of exposure.  

     Magpix technology was utilized to quantify circulating metabolic hormone 

levels at the end of the study (Figure 4.9).  In cellulose-fed mice, PCB exposure 

significantly reduced circulating leptin levels while no differences in leptin levels 

were observed between the inulin-fed groups.  Additionally, a significant 

interaction of diet and exposure on leptin levels was observed.  Furthermore, 

inulin consumption had an overall significant effect of increasing circulating PYY 

levels, while a  PCB exposure had an overall reductive effect (Figure 4.9).  

 
4.5 Discussion 

     Exposure to environmental pollutants, specifically dioxin-like pollutants, poses 

numerous health threats to those exposed, including metabolic disruptions, 

hepatic lipid accumulation, and gut dysbiosis.  A common route of exposure to 

dioxin-like pollutants is through contaminated foods and thus the gastrointestinal 

system is exposed to the highest amounts of these pollutants.  Utilizing a mouse 

model of cardiometabolic disease, our lab has previously demonstrated that 

exposure to PCB 126 induces gut dysbiosis, increases systemic and intestinal 
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inflammation, accelerates atherosclerosis, and also induces metabolic 

dysfunction [143, 181].  It is well understood that nutritional modulation of 

pollutant toxicity effective means of reducing detrimental health effects of 

pollutant exposure [61].  Therefore, in this study we sought to examine the role of 

prebiotic nutritional intervention (i.e. inulin) on attenuating our previous 

observations of PCB-induced disruption of gut microbiota and cardiometabolic 

health.  While analyses remain ongoing, the data currently demonstrate that 

inulin feeding attenuated PCB-induced disruption of gut microbiota, host 

metabolism, hepatic steatosis, and inflammation.  

     Dioxin-like pollutants are known for exerting various effects throughout the 

body; one such effect being induction of significant loss of body weight, known as 

wasting [219].  PCB exposure resulted in a significant reduction in body fat 

percentage, while inulin-fed mice were protected from this effect.  Interestingly, 

throughout the study, inulin fed mice gained less weight than cellulose fed mice, 

highlighting the potential adipose specific wasting induced by toxicant exposure 

only observed in cellulose fed mice.  Our lab has previously observed this 

wasting effect upon exposure to PCB 126 in a mouse model of non-alcoholic 

steatohepatitis (NASH) [42], indicating that the liver injury may play a role in this 

wasting effect.  Other studies have noted this effect of dioxin-like pollutants on 

wasting but attributed it to reductions in food intake, which was observed in the 

present study [220, 221].  Our observations of wasting in conjunction with no 

changes in food intake are noteworthy, suggesting disruptions in energy 

metabolism and storage.  It is important to note that no observations of wasting 



 

 120 

were noted in our previous study (chapter three) using this model of 

cardiometabolic disease, which may highlight a potential unique interplay 

between the slightly elevated cellulose diet (i.e. 8% vs 5%) that altered the 

toxicity and effects of PCB exposure.  The observation of this effect is something 

that calls for further examination in future studies. 

     When examining systemic host health, the liver is of utmost importance.  The 

liver is a vital organ for responsible for metabolism of both dietary constituents 

and pollutants and is the second organ, following the gut, that comes in contact 

with polychlorinated biphenyls.  The liver has a unique and important relationship 

with most organ systems of the body and recent research has substantiated 

evidence for the interdependent relationship of the gut and liver, termed the “gut-

liver axis” as well as the liver and the heart, termed the “liver-heart axis” [222, 

223].  In individuals with gut dysbiosis and/or cardiovascular disease, it is not 

uncommon to observe liver pathologies such as nonalcoholic steatohepatitis 

(NASH) or nonalcoholic fatty liver disease (NAFLD) [222, 223].  Importantly, it is 

well accepted that exposure to persistent organic pollutants contributes to the 

pathogenesis of NASH and NAFLD and thus has been recognized as its own 

entity, “toxicant induced steatohepatitis” (TASH) [24].  Dioxin-like pollutants have 

been demonstrated to not only increase hepatic lipid accumulation, the beginning 

stages of TASH, but also to exacerbate non-alcoholic fatty liver disease, leading 

to more advanced hepatic pathologies such as fibrosis [24, 42, 65].  Our lab has 

previously studied this effect of pollutant exposure utilizing a mouse model in 

which mice are fed a methionine-choline deficient (MCD) diet to induce NAFLD.  
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In aforementioned study, exposure to PCB 126 drastically exacerbated liver and 

metabolic dysfunction induced by MCD feeding as evidenced by wasting, 

increased systemic inflammatory markers, and presence of hepatic fibrosis [42].  

     Hepatic macrovesicular fat accumulation is what is most commonly observed 

in obesity and NASH/NAFLD and is characterized by lipid droplets that 

accumulate extrahepatocellularly.  Microvesicular lipid accumulation is less 

common and is characterized intrahepatocellular lipid accumulation, giving them 

a foamy appearance and has been correlated with more advanced histology of 

NAFLD [224]. Macrovesicular lipid accumulation was apparent in unexposed 

cellulose fed mice, consistent with our previous studies and the progression of 

cardiometabolic disease that is induced using the present mouse model.  

However, in exposed cellulose fed mice, a shift from macrovesicular to 

microvesicular lipid accumulation was observed, indicating a disruption in energy 

metabolism and/or lipid transport.  Importantly inulin fed mice were protected 

from both macrovesicular and microvesicular hepatic lipid accumulation.  This 

reduction in hepatic lipid accumulation with inulin feeding is consistent across 

numerous studies [225-228].  Importantly, in humans, it was observed that inulin 

and inulin-propionate ester supplementation attenuate hepatic steatosis in 

patients with NAFLD [225].  To our knowledge, the present study is the first to 

examine inulin supplementation on dioxin-like pollutant exposure, but inulin 

feeding has been studied in context of other xenobiotics.  For example, it was 

demonstrated that inulin supplementation reduced hepatic steatosis and 

xenobiotic-induced (i.e. phenobarbital) liver injury in rats fed a high fat, high 
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sucrose diet [228].  One mechanism by which inulin may attenuate hepatic 

steatosis is hypothesized to be through the production of short chain fatty acids, 

specifically propionate [229].  It has been observed that in hepatic steatosis, 

propionate levels were significantly decreased in portal plasma [228, 230].  

Importantly, propionate has been reported to inhibit fatty acid synthesis and thus 

may provide one contributing mechanism by which inulin can attenuate hepatic 

steatosis [231, 232].  However, it is important to note that the rate of utilization of 

SCFA often make it difficult to truly capture levels present in portal or systemic 

circulation and thus more mechanistic research is needed to truly understand the 

role of inulin in attenuating hepatic steatosis.   

     Due to the liver being the central hub of metabolic processes, it is well 

understood that hepatic inflammation and lipid accumulation can alter overall 

metabolism, specially glucose metabolism [233, 234].  In the present study, PCB 

exposure in cellulose fed mice resulted in glucose intolerance at both weeks 5 

and 8 of the study, as evidenced by an increased area under the curve.  

Importantly, inulin feeding was able to attenuate these disruptions in glucose 

tolerance.  PCB impairment in glucose tolerance has been documented by other 

labs [162, 235].  To better understand the mechanisms behind these 

improvements in glucose tolerance observed with inulin feeding, gene expression 

of hepatic enzymes involved in glycolysis and gluconeogenesis were quantified.  

Examining the rate limiting enzymes of glycolysis revealed that PCB exposure 

significantly reduced pyruvate kinase (Pklr) and phosphofructokinase (Pfkl) gene 

expression in mice fed cellulose, but not in mice fed inulin.  There was also an 
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insignificant decrease in glucokinase (Gck) expression in cellulose fed mice, 

which was not present in inulin fed mice.  To our knowledge, these PCB-induced 

alterations in hepatic glycolytic enzymes have not been reported previously and 

could play a role in an inability to properly metabolize glucose. We hypothesize 

that these alterations were attenuated in inulin fed mice due to our observed 

improvements hepatic lipid accumulation and inflammation, as these factors have 

been demonstrated to contribute to metabolic dysfunction [233, 234]. 

     The gastrointestinal tract is a key organ is tightly linked to various organ 

systems including the liver, cardiovascular system, and neurological system [222, 

223, 236].  The gut microbiota, defined as the trillions of bacteria residing within 

the gastrointestinal tract can be strongly influenced by dietary and environmental 

factors and may play a role in the detrimental health effects observed with PCB 

exposure.  A common measure of gut dysbiosis, or the abnormal distribution of 

bacterial taxa, is alpha diversity.  Alpha diversity calculates the richness and 

evenness of a microbial sample and thus offers a means by which to broadly 

compare the microbial composition of samples.  Interestingly, there were no 

significant effects of inulin feeding on alpha diversity.  This finding has indeed 

been observed in the literature previously [135].  Some reports indicate that inulin 

feeding actually reduces alpha diversity, possibly due to the stimulation of a few 

specific taxa that then predominate the microbiome [135, 237].  Diversity is a 

good measure of looking at differences, but is not necessarily an indicator of 

health, like some researchers like to report [238].  Therefore, diversity should be 

treated as a starting point for further inquiry rather than as an outcome measure 
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of “health”.  A similar measure employed by researchers is to examine the 

Firmicutes/Bacteroidetes ratio as this is observed to be increased in chronic 

inflammatory diseases and metabolic syndrome.  Contradictory to our previous 

study, we observed no significant effect of exposure on this ratio, again 

highlighting a discrepancy in the level of cellulose.   However, mice fed inulin had 

a lower Firmicutes/Bacteroidetes ratio, irrespective of exposure.  This may 

suggest a “healthier” microbial composition in our inulin mice.  It is important to 

note that with these comparisons being reliant on phyla level differences, it can 

overgeneralize microbial composition and thus deeper taxonomic examination 

should always be employed. 

     When looking at more specific microbial populations,  interesting effects of 

both diet and exposure were apparent.  The levels of 

Akkermansia/Verrucomicrobia observed in our study are notably elevated in all 

groups, compared to a typical murine microbial signature [149].  This observation 

was previously noted by our lab and we hypothesize that the high levels of 

cholesterol in this model are influencing the growth of these bacteria [143].  

Akkermansia muciniphila is commonly recognized as a beneficial bacterium, 

consuming intestinal mucin and enhancing barrier function [88].  However, 

researchers have noted that an overabundance of A. muciniphila can actually 

exacerbate intestinal inflammation in mice [198].  Our consistent finding of 

strikingly elevated levels of Akkermansia/Verrucomicrobia in this high cholesterol 

model is a very important finding that should be pursued further to better 

elucidate the specific mechanisms driving the large bloom of these bacteria.   



 

 125 

     The genus Allobaculum appears to be sensitive to dietary interventions.  A 

significant diet effect of inulin increasing the level of this genus, irrespective of 

exposure was observed.  It has been demonstrated that Allobaculum decreases 

under high fat feeding and that prebiotic (oligofructose) feeding is able to 

increase the abundance of this genera [239].  This increase with prebiotic 

treatment has been reproduced several times in the scientific literature [239-241].  

Importantly, the genus Allobaculum has been associated with improved intestinal 

barrier function and also resistance to the development of NAFLD [242].  

Additionally, increases in Allobaculum have also been observed with metformin 

treatment, a clinically effective drug used for the management of diabetes [243].  

Therefore, our findings of increased Allobaculum abundance in all groups fed 

inulin may be associated with our findings of reduced hepatic 

steatosis/inflammation and improved glucose tolerance and metabolism.   

     Interestingly, PCB exposure increased the level of Coprococcus in mice fed 

cellulose, but not in mice fed inulin.  Microbial literature characterizing the genus 

Coprococcus found an inability of the strains tested to ferment inulin, potentially 

explaining why we saw a very low level of this genus in all mice fed inulin [244].  

The increases observed in exposed mice fed cellulose could be due to a toxic 

effect on other bacterial groups, allowing Coprococcus to proliferate.  The genus 

Coprococcus is a characterized butyrate producer, which is commonly regarded 

as being beneficial for intestinal health [245].  However, in chapter two, PCB 

exposure in fecal cell suspensions did not impede butyrate production, indicating 

that butyrate producing bacteria may be unsusceptible to PCB toxicity.   
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     With regards to the common probiotic bacteria Lactobacillus and 

Bifidobacterium, inulin feeding significantly increased levels of these bacteria, 

irrespective of exposure.  However, exposure to PCB 126 in inulin fed mice 

further increased the levels of these bacteria. This may be due to a toxic effect of 

PCBs on other bacterial populations, allowing the proliferation of Bifidobacterium 

and Lactobacillus.  Inulin feeding is well accepted to stimulate Bifidobacterium 

and Lactobacillus.  For example, in humans, inulin supplementation has been 

demonstrated to increase Bifidobacterium and Lactobacillus following 14 days of 

supplementation [246].  Furthermore, in a randomized, double-blind placebo-

controlled crossover study, increases in Bifidobacterium and Lactobacillus were 

observed in healthy adults administered long-chain inulin for 14 days [247].  

Additionally, studies found that these genera were not only increased following 

prebiotic supplementation, but that this increase was associated with 

improvements in metabolic health and glucose metabolism [203, 204].  

Bifidobacterium and Lactobacillus exhibit very little proteolytic activity and are 

predominantly saccrolytic, which some argue, is beneficial [127].  Along these 

lines, in inulin fed mice reductions in circulating p-cresol were observed (data not 

shown), product of microbial proteolytic fermentation.  This suggests a reduced 

capacity for proteolytic fermentation in inulin-fed mice, which may confer a health 

benefit to the host [127].  Overall, inulin exhibited pronounced effects on the 

microbiota which may contribute to our observations of improved systemic host 

health and protection against pollutant toxicity.   
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     The intestinal environment, in addition to harboring important microbial 

populations, functions in hormonal regulation of appetite and metabolism [248].  

Quantification of circulating metabolic hormone levels revealed differential effects 

of diet and exposure.  Peptide YY (PYY) is an enteroendocrine peptide that is 

secreted by intestinal L cells and aids in the regulation of body weight [249].  

PYY is known as an anorexigenic hormone, and signals to reduce appetite.  

Interestingly, PYY levels were overall higher in inulin fed mice compared to 

cellulose fed mice and exposure exhibited an overall reductive effect on PYY.  It 

is well accepted that dietary fiber consumption increases PYY secretion and 

induces satiety [249].  Furthermore, it has been observed that short chain fatty 

acid (SCFA) production from microbial fermentation of fiber can contribute to the 

regulation of PYY secretion [250, 251].  The overall exposure-induced reductions 

in PYY levels we observe could suggest that SCFA levels are modified or that 

there is disruption in intestinal L cell health.  We will further explore this potential 

mechanism through quantification of SCFA levels in the plasma and feces and 

examination gene expression coding for these metabolic hormones within the 

ileum.    

    Leptin, a well characterized adipokine, contributes to regulation of energy 

balance through inhibition of hunger and modulation of glucose and fatty acid 

metabolism [252].  Serum levels of leptin were significantly reduced in cellulose-

fed exposed mice.  This finding has been reported previously in the literature with 

exposure to persistent organic pollutants.  For example, in the Yusho cohort, a 

Japanese population of dioxin-exposed individuals, a significant reduction in 
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serum leptin levels was observed [253]. Interestingly, there are several studies 

demonstrating that leptin exerts an insulin-like effect [252].  For example, leptin 

administration has been demonstrated to contribute to normoglycemia and 

improving insulin responses in response to streptozotocin-induced diabetes 

[254].  Therefore, detriments to leptin levels in cellulose-fed exposed mice could 

contribute to our observed disruptions in glucose homeostasis.  Our observation 

of a reduced level of leptin is not surprising due to the reduced level of body fat 

observed in our cellulose-fed exposed mice, however this finding highlights a role 

of the adipose tissue in PCB toxicity and protection with inulin consumption that 

needs to be further explored.   

     Aside from microbial modulation and hormone modulation, another potential 

mechanism of inulin-induced improvements host health and metabolism is 

reduction in metabolites associated with cardiovascular disease.  In the liver, a 

significant increase in ceramide species, including 18:1/20:0 and 18:1/24:1 was 

observed in exposed mice fed cellulose, while mice fed inulin were protected 

from this increase.  It has recently been accepted that ceramides are a biomarker 

of cardiovascular disease risk, increasing inflammation, reactive oxygen species, 

and causing cellular dysfunction [255].  Ceramides are not only linked with 

cardiovascular disease but also with NAFLD [256].  For example, an increased 

serum level of ceramides was observed in obese children with NAFLD [257].  It 

has also been demonstrated that modulation of ceramide production in NAFLD 

helps reduce the progress of atherosclerosis, highlighting the strong tie between 

the hepatic and cardiovascular systems [258].  In support of our ceramide 
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concentrations in the liver, a PCB-induced decrease in Mttp was observed in 

cellulose fed mice and attenuated in inulin-fed mice.  Mttp is a critical protein 

involved in the transfer of ceramides from the liver to the plasma [259].  

Consistent with these data, PCB-induced increases in ceramides within the 

plasma were not observed. (data not shown).  Our observations of increases in 

hepatic ceramides along with presence of hepatic steatosis and inflammation are 

noteworthy in that they are major risk factors of cardiometabolic disease.  

Furthermore, to our knowledge this is the first study demonstrating that exposure 

to PCBs increases ceramide production, highlighting a new mechanism of PCB 

toxicity to be explored in future studies.        

     The present study adds significantly to the growing body of literature 

demonstrating the beneficial effects of nutrition on combatting pollutant toxicity, 

however there are a few limitations to note that should be addressed in 

subsequent experiments.  Firstly, it is recommended that humans consume 14g 

of fiber per 1000 calories [218].  The traditional level of fiber in purified diets and 

our previous study is 5%, equating to 12g per 1000 calories.  The diets in the 

current study both had fiber present at the 8% level, equating to 21g per 1000 

calories.  Therefore, the cellulose and inulin diets used in the present study can 

be considered high fiber diets and thus future studies should examine all levels of 

fiber intake (i.e. low, adequate, high) to fully understand the interactions between 

fiber consumption and pollutant exposure.  It is also important to note that the 

present study only utilizes male mice.  Future studies should employ male and 

female mice as there are various differences including that of specific aspects of 
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metabolism and gut microbiota populations.  Finally, there are still measurements 

to be made to further elucidate the mechanisms driving the observed phenotypes 

in this study.  To better understand the role of the microbiota in the inulin-driven 

protection against PCB toxicity we will quantify SCFA levels in the feces and 

plasma.  As discussed in chapter one, SCFA levels are sensed by specific G-

protein coupled receptors (GPRs), GPR41 and GPR43, which are involved in 

numerous systemic processes including the regulation of glucose and lipid 

metabolism [86, 91]. Therefore, quantification of SCFA is important to follow up 

on due to our present observed effects of PCBs on glucose metabolism and lipid 

accumulation as well as the PCB effects on SCFA production in observed both 

chapter two and chapter three.  Additionally, quantification of fecal, plasma, and 

hepatic levels of PCBs will be conducted to examine if cellulose or inulin drive 

different deposition profiles of these pollutants, thereby influencing their toxicity.  

Inulin has been well demonstrated to reduce cholesterol and improve lipid 

profiles in humans [127].  Therefore, quantification of cholesterol and 

triglycerides both in the liver and in plasma will also be conducted to observe if a 

reduction in these could be a potential mechanism by which inulin attenuates 

inflammation and hepatic steatosis.  Finally and importantly, atherosclerotic 

lesions will be quantified to examine if the observed protective effects of inulin 

translate to an attenuated atherosclerotic risk.     

     Overall, the data presented demonstrates that consumption of the prebiotic 

inulin is capable of attenuating PCB 126-induced disruption of gut microbial 

population, host metabolism and systemic inflammation.  Importantly, the 
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elevated level of fiber in the control group compared to our previous study (8% 

cellulose vs. 5% cellulose) may confer metabolic alterations and may also impact 

the toxicity of PCB 126, which is a parameter that needs further examination.  

We hypothesize that through alterations in gut microbial populations and 

microbial metabolite production, that inulin is able to reduce cardiometabolic 

disease risk.  This study is important in that increasing dietary inulin consumption 

is an easily attainable means for all human populations and poses little to no risk 

for health.  More research is needed to elucidate the direct mechanisms of 

attenuations in PCB toxicity induced by inulin feeding.   
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Table 4.1. Diet Formulation 
 8% Cellulose 8% Inulin 
 gm kcal gm kcal 

Protein 18.6 20.0 19.2 20.0 
Carbohydrate 64.9 70.0 64.0 70.0 

Fat 4.1 10.0 4.2 10.0 
Total  100.0  100.0 

Kcal/gm 3.71  3.83  
     

Ingredient     
Casein, Lactic 200 800 200 800 

L-Cystine 3 12 3 12 
     

Corn Starch 375 1500 343.1 1372.4 
Maltodextrin 10 125 500 125 500 

Sucrose 200 800 200 800 
     

Cellulose 87.5 0 0 0 
Inulin 0 0 84.8 127.2 

     
Soybean Oil 25 225 25 225 

Cocoa Butter 20 180 20 180 
     

Mineral Mix S10021 10 0 10 0 
Dicalcium Phosphate 13 0 13 0 

Calcium Carbonate 5.5 0 5.5 0 
Potassium Citrate 16.5 0 16.5 0 

     
Vitamin Mix V10001 10 40 10 40 

Choline Bitartrate 2 0 2 0 
     

Cholesterol 1.6 0 1.6 0 
     

Total 1094.10 4057 1059.50 1094.10 
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Table 4.2.  Genera level differences in gut microbial populations 
 Cellulose + 

Vehicle 
Cellulose + 

PCB 126 
Inulin +  
Vehicle 

Inulin + 
PCB 126 

Other 371.9 + 67.0 229.8 + 25.8 527.4 + 25.6* 709.4 + 73.1*‡ 
Bifidobacterium 12.1 + 3.0 24.1 + 9.7 597.2 + 136.7*  1432.5 + 

196.6*‡ 
Lactobacillus 19.8 + 6.7 13.1 + 4.8 152.1 + 41.9* 403.1 + 95.9*‡ 
Lactococcus 219.6 + 42.7 212.1 + 72.4 123.7 + 19.5 161.3 + 31.3 
Turicibacter 38.5 + 10.4 11.7 + 3.0‡ 3.6 + 0.8* 3.9 + 1.3 
Clostridium 18.4 + 4.3 19.6 + 2.9 4.2 + 1.4* 2.5 + 0.7* 
Dehalobacterium 74.2 + 8.8 43.9 + 7.7 88.3 + 23.2 46.3 + 7.9 
Coprococcus 302.0 + 38.0 863.6 + 234.4‡ 61.9 + 21.0* 108.7 + 23.5 
Dorea 126.0 + 14.7 41.2 + 13.4‡ 21.3 + 8.2* 16.4 + 4.7* 
[Ruminococcus] 462.0 + 58.0 560.4 + 35.1 129.0 + 16.3 908.0 + 193.5‡ 
rc4-4 1405.0 + 

409.1 
0.8 + 0.5‡ 211.0 + 96.1* 249.0 + 44.9* 

Oscillospira 2755.2 + 
352.2 

1784.1 + 
214.2‡ 

1251.0 + 215.7* 1115.0 + 118.4 

Ruminococcus 727.4 + 63.9 861.8 + 85.1 545.6 + 75.5 340.8 + 58.4* 
Allobaculum 5064.8 + 

1593.3 
2007.5 + 565.8 12019.1 + 

2319.5* 
14419.7 + 
1895.7* 

Coprobacillus 66.9 + 14.2 82.8 + 16.1 1.0 + 0.5* 2.8 + 1.0* 
Sutterella 772.2 + 

295.0 
1092.1 + 178.2 1585.3 + 135.0* 993.7 + 133.1 

Desulfovibrio 2129.3 + 
811.1 

6.2 + 1.4‡ 2.6 + 0.8* 7.6 + 3.6 

Akkermansia 37403.2 + 
2784.1 

43081.5 + 
3849.6 

21070.1 + 
2235.5* 

31416.8 + 
2044.5* 

*indicates a significant difference compared to cellulose diet; ‡ indicates a significant difference compared to vehicle of 

same diet (n=10).  Data analyzed by two-way ANOVA with post hoc comparisons of the means. 
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Figure 4.1. Inulin consumption protects against PCB-induced wasting.   

 
 

Figure 4.1. Inulin consumption protects against PCB-induced wasting.  

Male Ldlr-/- mice were fed an atherogenic diet containing 8% cellulose or 8% 

inulin for 12 weeks and exposed to PCB 126 (1µmol/kg) or vehicle at weeks 2 

and 4. A. Weight change (g) from baseline to the end of the study. Cellulose fed 

mice exposed to PCBs had significantly greater weight gain than exposed inulin 

mice. B. Fat composition quantified using EchoMRI.  PCB exposure reduced 

body fat percentage in the cellulose-fed group, which was attenuated by inulin 

consumption. C.  Average energy intake (kcals) per day. Data are presented as 

mean + S.E.M (n=10 per group). Statistical significance is denoted by * (p<0.05). 



 

 135 

Figure 4.2. Inulin attenuates PCB-disruption in glucose tolerance 

 
 

Figure 4.2.  Inulin attenuates PCB-disruption in glucose tolerance.  Male 

Ldlr-/- mice were fed an atherogenic diet containing 8% cellulose or 8% inulin for 

12 weeks and exposed to PCB 126 (1µmol/kg) or vehicle at weeks 2 and 4. A. 

Fasting blood glucose and glucose tolerance testing at week 5.  PCB exposure 

increased fasting blood glucose levels in cellulose fed mice and not in inulin fed 

mice.  Cellulose fed mice exposed to PCBs displayed a greater area under the 

curve (AUC) compared to exposed inulin fed mice.   B. Fasting blood glucose 

and glucose tolerance testing at week 8.  No differences were observed in fasting 

blood glucose.  The effects of PCBs and diet on AUC remained significant at 8 

weeks.  Data are presented as mean + S.E.M (n=10 per group). Statistical 
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significance is denoted by * (p<0.05).  For glucose curves, ‡ indicates a 

significant difference between “Cellulose + PCB” and “Inulin + PCB” and * 

indicates a significant difference between “Cellulose + Vehicle” and “Cellulose + 

PCB”.   
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Figure 4.3. Inulin consumption reduces PCB-induced hepatic lipid accumulation 

 
 

Figure 4.3. Inulin consumption reduces PCB-induced hepatic lipid 

accumulation. Male Ldlr-/- mice were fed an atherogenic diet containing 8% 

cellulose or 8% inulin for 12 weeks and exposed to PCB 126 (1µmol/kg) or 

vehicle at weeks 2 and 4. A. Liver weight/body weight ratio.  PCB exposure 

increased liver weight in cellulose fed mice, which was attenuated by inulin 

feeding.  B. Hematoxylin and eosin staining of hepatic tissue sections.  Increases 

in microvescicular fat accumulation was evident in PCB exposed mice fed 
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cellulose, which appeared to be attenuated by inulin consumption.  Inulin feeding 

also had an overall effect of reducing macrovesicular fat accumulation.  Data are 

presented as mean + S.E.M (n=10 per group). Statistical significance is denoted 

by * (p<0.05).  



 

 139 

Figure 4.4. Inulin feeding drives shifts in microbial composition at the phyla level 

 
 
Figure 4.4. Inulin feeding drives shifts in microbial composition at the phyla 

level.  Male Ldlr-/- mice were fed an atherogenic diet containing 8% cellulose or 

8% inulin for 12 weeks and exposed to PCB 126 (1µmol/kg) or vehicle at weeks 

2 and 4.  Cecum contents were also collected at the conclusion of the study.  

16S rRNA sequencing was conducted and data was analyzed using QIIME.  A. 

Differences in the phyla level composition of the gut microbiota.  Inulin feeding 

decreased Verrucomicrobia and increased Actinobacteria.  *indicates a 

significant difference compared to cellulose diet and ‡ indicates a significant 

difference compared to vehicle of same diet. Data are presented as relative 

abundances. B. Firmicutes/Bacteroidetes ratio. Inulin feeding had a significant 

overall effect of lowering the Firmicutes/Bacteroidetes ratio.  C. Alpha diversity 

(Shannon Diversity Index).  PCB exposure had a significant overall effect of 

lowering alpha diversity.  Data are presented as mean + S.E.M (n=10 per group; 

two-way ANOVA with post hoc comparisons of the means).  Statistical 

significance is denoted by * (p<0.05).  
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Figure 4.5. Inulin and PCB exposure modulate gut microbial populations 

 
Figure 4.5. Inulin and PCB exposure modulate gut microbial populations.  

Male Ldlr-/- mice were fed an atherogenic diet containing 8% cellulose or 8% 

inulin for 12 weeks and exposed to PCB 126 (1µmol/kg) or vehicle at weeks 2 

and 4.  Cecum contents were also collected at the conclusion of the study.  16S 

rRNA sequencing was conducted and data was analyzed using QIIME.  PCB 

exposure increased Coprococcus abundance in cellulose fed mice, which was 

attenuated in mice fed inulin.  PCB exposure increased the level of Akkermansia 

irrespective of diet.  Irrespective of exposure, inulin feeding increased levels of 

Bifidobacterium, Lactobacillus, and Allobaculum compared to cellulose feeding.   

Data are presented as mean + S.E.M (n=10 per group; two-way ANOVA with 

post hoc comparisons of the means).  Statistical significance is denoted by * 

(p<0.05)  
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Figure 4.6. Inulin attenuates PCB-induced changes in hepatic inflammatory and 
detoxification markers 

 
 
Figure 4.6. Inulin attenuates PCB-induced changes in hepatic inflammatory 

and detoxification markers.  Male Ldlr-/- mice were fed an atherogenic diet 

containing 8% cellulose or 8% inulin for 12 weeks and exposed to PCB 126 

(1µmol/kg) or vehicle at weeks 2 and 4.  Liver samples were collected at the 

conclusion of the study. mRNA units were determined using the relative 

quantification method (ΔΔCT), normalized to control values. 18S was used as the 

housekeeping gene for all hepatic gene expression quantifications. A. mRNA 

quantification of hepatic markers of inflammation.  PCB exposure increased 

expression of tumor necrosis factor alpha (Tnfα) and lipopolysaccharide binding 

protein (Lbp), which was attenuated by inulin consumption.  B. mRNA 

quantification of hepatic markers of xenobiotic detoxification.  PCB-induced 
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increases in cytochrome p450 (Cyp1a1) expression was lower in inulin fed mice 

compared to cellulose fed mice.  Multidrug resistance protein (Mrp2) expression 

was lower in exposed inulin fed mice compared to exposed cellulose fed mice. 

Data are presented as mean + S.E.M (n=10 per group). Statistical significance is 

denoted by * (p<0.05).  
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Figure 4.7. Inulin attenuates PCB-induced increase in hepatic ceramides 

 

Figure 4.8. Inulin attenuates PCB-induced increase in hepatic ceramides.  

Male Ldlr-/- mice were fed an atherogenic diet containing 8% cellulose or 8% 

inulin for 12 weeks and exposed to PCB 126 (1µmol/kg) or vehicle at weeks 2 

and 4.  Liver samples were collected at the conclusion of the study. A. Hepatic 

quantification of ceramide levels via lipidomics.  PCB exposure increased hepatic 

ceramide species 18:1/20:0 and 18:1/24:1 and total ceramides in cellulose fed 

mice but not inulin fed mice.   B. mRNA quantification of microsomal triglyceride 

transport protein (Mttp).  In mice fed cellulose, PCB exposure decreased 

expression of Mttp, which was attenuated in exposed mice fed inulin.  mRNA 

units were determined using the relative quantification method (ΔΔCT), 

normalized to control values.  18S was used as the housekeeping gene for all 

hepatic gene expression quantifications. Data are presented as mean + S.E.M 

(n=10 per group). Statistical significance is denoted by * (p<0.05). 
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Figure 4.8. PCB disruption of glucose metabolism is attenuated by inulin   

 
 

Figure 4.8. PCB disruption of glucose metabolism is attenuated by inulin.  

Male Ldlr-/- mice were fed an atherogenic diet containing 8% cellulose or 8% 

inulin for 12 weeks and exposed to PCB 126 (1µmol/kg) or vehicle at weeks 2 

and 4.  Liver samples were collected at the conclusion of the study. mRNA units 

were determined using the relative quantification method (ΔΔCT), normalized to 

control values. 18S was used as the housekeeping gene for all hepatic gene 
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expression quantifications.  PCB exposure reduced expression of rate limiting 

glycolytic enzymes glucokinase/hexokinase (Gck) and pyruvate kinase (Pklr), 

which was not observed in inulin fed mice.  Overall, inulin feeding increased 

gluconeogenic enzyme expression including PEP carboxykinase (Pck1) and 

glucose-6-phosphate (G6pc) irrespective of exposure.  Data are presented as 

mean + S.E.M (n=10 per group). Statistical significance is denoted by * (p<0.05). 
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Figure 4.9. PCB 126 and inulin alter circulating metabolic hormones 

 
 

Figure 4.9. PCB 126 and inulin alter circulating metabolic hormones.  Male 

Ldlr-/- mice were fed an atherogenic diet containing 8% cellulose or 8% inulin for 

12 weeks and exposed to PCB 126 (1µmol/kg) or vehicle at weeks 2 and 4. 

Circulating hormones related to energy metabolism were quantified via Magpix 

technology.  PCB exposure reduced leptin levels in cellulose fed mice but not in 

inulin fed mice.  An overall effect of inulin consumption on increasing PYY levels 

was observed while a reductive effect of PCB exposure on PYY was noted. Data 

are presented as mean + S.E.M (n=10 per group). Statistical significance is 

denoted by * (p<0.05). 
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Chapter 5 Overall Discussion 
 
5.1 Discussion 

 
5.1.1 Summary 

     The research presented in this dissertation discusses novel observations into 

the effects of polychlorinated biphenyl (PCB) exposure on the gut microbiota and 

how this impacts overall host health.  Our primary goal is to find means by which 

to decrease the negative health effects of pollutant exposure; thus, this 

dissertation provides insight into a novel avenue of nutritional mediation in 

pollutant exposures, the consumption of prebiotics (i.e. dietary fiber).  The gut 

microbiota is influenced by a variety of factors including dietary intake as well as 

environmental exposures and has been implicated in the development of several 

diseases, including cardiovascular disease and diabetes.  We demonstrated that 

PCB exposure detrimentally impacts the gut microbiota, specifically by 

decreasing diversity, increasing the inflammatory-associated Firmicutes to 

Bacteroidetes ratio, and decreasing specific beneficial bacterial genera.  

Furthermore, we elucidated that PCB exposure directly impacts certain bacteria 

through membrane disruption, leading to an overall change in fermentation acid 

production in the host and thus increasing the risk of metabolic diseases.  Finally, 

we demonstrated the role of prebiotic (i.e. inulin) consumption in attenuating 

PCB-induced microbial and metabolic dysfunction.   

 



 

 148 

5.1.2 PCB 126 disrupts microbial fermentation of a prebiotic substrate 

     There is evidence that exposure to environmental pollutants can impact gut 

microbial populations but the mechanisms and specific bacterial populations 

affected remains unknown.  It has been shown that pollutants including 2,3,7,8 

tetrochlorodibenzofuran, benzo[a]pyrene, and PCBs can alter gut microbial 

pollutions as well as induce intestinal inflammation [18, 19, 178, 185, 193].  

However, these studies did not address the direct impact of these various 

pollutants on the bacteria themselves.  Conversely, research on environmental 

bacterial populations and pollutants has substantiated that there is indeed an 

interplay between pollutants and bacterial populations [157, 158].  For example, 

research on the ability of particular bacterial populations to degrade pollutants 

such as polyaromatic hydrocarbons has been appreciably studied and has 

yielded promising results [260].  Due to the vast presence of PCBs in the 

environment, past research has examined their effects on soil bacterial 

populations and determined that there was no convincing evidence that PCBs 

exert genotoxicity but instead may have effects on the bacterial cell membrane 

[157, 158]. While these findings provide some insight into the interactions 

between pollutants and bacteria, it is important to note that the bacteria found in 

soil environments are primarily aerobes while the bacteria residing in the 

mammalian gut are primarily anaerobes, which may cause differences in 

metabolism and response to pollutant exposure.  The work described in chapter 

two of this dissertation attempted to address this gap in the literature by studying 

the direct effects of PCB exposure on isolated gut microbial populations.   
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     Using an inulin-fermenting isolate from murine feces, we determined that as 

concentrations of PCB 126 increased, there was a significant impediment on 

bacterial viability.  To determine if PCBs were membrane disruptive in an 

anaerobic gut microbe, we quantified intracellular potassium and confirmed our 

observed reductions in viability to be due to perturbations in the bacterial cell 

membrane.  This is important in that this is the first instance in which it has been 

demonstrated that PCBs can exert direct toxic effects on specific gut microbial 

populations.  Furthermore, our findings that these disruptions translated to overall 

alterations in fermentation acid production from a mixed fecal microbial sample 

demonstrate the impact that PCB disruption of gut microbiota can have on the 

overall host.  Importantly, upon increasing the prebiotic inulin substrate, the 

bacteria were able to overcome the disruptions in fermentation acid production. 

Fermentation acid or short chain fatty acid (SCFA) production has been more 

recently understood to influence numerous properties that affect host health [84, 

91].  The primary SCFAs acetate, propionate, and butyrate all exert differential 

effects throughout the human body.  Butyrate functions primarily within the 

intestine, serving as a preferential energy source for colonocytes and has been 

associated with improved intestinal health [245].  Acetate and propionate exert 

functions within the liver and peripherally, modulating glucose and lipid 

metabolism [85].  Therefore, PCB-induced disruptions in gut microbial production 

of SCFAs could be responsible for the observed disruptions in hepatic 

metabolism, glucose tolerance, and intestinal inflammation.   Overall, our findings 

of PCB-induced disruption of gut microbial fermentation, alleviated by increased 
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prebiotic substrate, highlights that the bacteria that can proliferate at a higher 

level of inulin are likely not sensitive to PCB exposure.  Therefore, focusing our 

research on elucidating and targeting the effected populations could be greatly 

beneficial for host health. 

 

5.1.3 Exposure to PCB 126 disrupts gut microbial and metabolic homeostasis 

     Dioxin-like pollutants are found in many animal food products and thus human 

exposure is initiated upon consumption, with the first impact being on the 

gastrointestinal tract.  Thus, in work described within chapter three of this 

dissertation we attempted to address the role of the gut in the PCB-toxicity.  We 

hypothesized that PCB toxicity initiated in the gut and influenced the 

development of peripheral inflammation and disease.   

     It has been well established that cardiometabolic disease is strongly linked to 

gastrointestinal health and the gut microbiome.  It has been demonstrated that 

individuals with cardiometabolic diseases possess unique microbial signatures, 

suggesting a potential interplay of the microbiota in the pathogenesis of these 

diseases.  For example, individuals with atherosclerosis and type 2 diabetes 

exhibit increases in Firmicutes and reductions in Bacteroidetes [261].  

Additionally, an epidemiological study investigating cardiovascular health 

indicated that stool populations of Prevotella 2 and Prevotella 7 were associated 

with an increased lifetime risk for cardiovascular disease [262].   Interestingly, 

treatment with antibiotics was able to lower circulating levels of TMAO, a 

biomarker that has been identified as a risk factor for cardiovascular disease.  
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Furthermore, these researchers demonstrated that antibiotic-induced reduction in 

TMAO correlated with a decrease in aortic plaque and a decreased number of 

macrophages within the plaque [104, 263].  These data highlight the critical 

interplay of the gut microbiota in the pathogenesis of disease.   

     It has also been well established that dioxin-like pollutant exposure can 

increase the risk of cardiovascular disease developments [38].  Recently, our lab 

demonstrated that exposure to PCB 126 increases systemic inflammation and 

accelerates the development of atherosclerosis in a mouse model of 

cardiometabolic disease [181].  To expand on this previous finding and to 

elucidate the effect of PCB exposure on the gut microbiota and how this may 

play a role in cardiometabolic disease, LDLr-\- mice were fed an atherogenic diet 

and exposed to a low dose of PCB 126 and parameters of metabolic and 

microbial health were analyzed.  We found that PCB exposure induced disruption 

of gut microbial populations, primarily in the cecum contents.  PCB exposure 

reduced gut microbial diversity and increased the Firmicutes to Bacteroidetes 

ratio, both of which are observed in chronic inflammatory conditions and 

cardiometabolic diseases.  This finding is consistent with other studies 

demonstrating that pollutant exposure, specifically dioxin, results in increases in 

the Firmicutes to Bacteroidetes ratio, which correlated with liver and immune 

toxicity [193]. 

     We also observed PCB-induced reduction of Oscillospira, Bifidobacterium, 

and Lactobacillus, all of which have been correlated with positive health 

outcomes for the host.  Importantly, we observed a significant positive correlation 
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between circulating levels of glucagon like peptide-1 (GLP-1) and 

Bifidobacterium that was dependent on PCB exposure.  This finding is important 

due to the role of GLP-1 on modulating glucose metabolism through control of 

insulin secretion as well as studies demonstrating that Bifidobacterium 

supplementation can improve insulin sensitivity [206].  Along with this, our 

observations of hyperinsulinemia in the absence of glucose intolerance in PCB-

treated mice suggest a prediabetic phenotype.  Other labs have observed 

impairments in glucose tolerance in response to PCB-exposure, but our finding is 

the first to highlight that these impairments may be linked to gut microbial 

disruption. 

     Additionally, we conducted hepatic metabolomics to examine the impact of 

PCB exposure on metabolism.  We observed that PCB exposure reduced 

glycolytic intermediates, increased fatty acid metabolism intermediates, and 

induced alterations in metabolites that have been demonstrated to be influenced 

by host-microbial interactions (e.g. N-acetylphenylalanine, dimethylglycine).  We 

hypothesized that our observed shift away from carbohydrate metabolism to fatty 

acid metabolism could be a consequence of hyperinsulinemia.  Due to these 

findings of altered liver metabolites, the subsequent study (chapter four) focuses 

on following up on this finding and examining hepatic metabolism and health 

more thoroughly.   

    Overall, we hypothesize that our findings of increased inflammation, metabolic 

disruption, and gut dysbiosis in PCB-exposed mice may occur concurrently and 

have a feed-forward effect on each other.  These findings reveal a novel 
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opportunity for intestinally-targeted nutritional intervention to attenuate the 

detrimental effects of PCBs on both gut dysbiosis and overall host health.   

 

5.1.4 Inulin consumption reduces gut and systemic toxicity of PCB 126 

     It is well understood that a healthful diet, rich in fruits, vegetables, and foods 

high in bioactive compounds, can confer a benefit on cardiometabolic disease 

risk and reduction [218].  Our lab has shown previously that flavonoids and 

polyphenols can be protective against PCB-related endothelial cell dysfunction, a 

beginning pathological step in the development of atherosclerosis [264]. 

Furthermore, we have also demonstrated that consumption of bioactive 

components can reduce pollutant-induced oxidative stress, which is a known 

player in the development of metabolic dysfunction [73].  In work described within 

chapter three of this dissertation, we attempted to expand the scope of nutritional 

modulation of PCB toxicity to parameters that are well known to have an 

influence on gut health and the gut microbiota, specifically the prebiotic fiber 

inulin.  Inulin is an inulin type fructan found in many vegetables (e.g. onions, 

leeks, and chicory root) and is composed of chains of fructosyl groups linked by 

(2-1) glycosydic bonds, terminated with an -D(1-2)-glucopyranoside ring group 

on the reducing end [128, 134].  Inulin is added to many food products to 

increase fiber content and provide sweetness without adding significant caloric 

content.  It has been found that in the US, most individuals fall below the 

recommendations of 25g or 38g of fiber per day for women and men, 

respectively [113, 125].  This provides an important avenue for intervention due 
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to fiber’s known benefits on gastrointestinal health, cardiometabolic health, and 

weight management.  Importantly, PCB exposure has been demonstrated to 

have detrimental impacts on all of these health conditions, and thus consumption 

of a diet rich in fiber is a feasible means by which to address and attenuate the 

negative effects of pollutant exposure.  In the work described within chapter four 

of this dissertation we attempted to elucidate the role of inulin in modulating 

pollutant toxicity by supplementing mice with a diet high in inulin and 

subsequently exposing them to low levels of PCB 126. 

     We found that exposure to PCB 126 induced significant fat mass loss in 

cellulose fed mice.  Interestingly, this wasting was attenuated in exposed mice 

fed inulin.  The lipophilic nature of dioxin-like pollutants such as PCBs cause 

them to accumulate in adipose tissue where they can induce inflammation and 

cause disruption in adipocyte metabolism [158].  Furthermore, research has 

shown that if PCB exposed obese mice undergo weight loss, the PCBs are 

released into circulation where they can exacerbate inflammation and diabetic 

symptoms, indicating a somewhat protective role of adipose tissue in preventing 

pollutant toxicity in other organs [162].  We hypothesize that the wasting induced 

by PCB exposure resulted in greater circulating levels of these pollutants, which 

could contribute to disruptions in host health and metabolism.  We intend to 

follow up on levels of PCBs both in circulation and within the feces to address 

this hypothesis.    

     While cellulose fed mice exposed to PCBs exhibited a lower percent body fat, 

their livers were actually heavier and harbored a greater amount of 
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microvesicular fat.  It is well accepted and understood that hepatic steatosis can 

contribute to metabolic disruptions and inflammation [233, 234]. If our hypothesis 

of greater circulating levels of PCBs in cellulose fed mice is correct, their 

participation in enterohepatic circulation could exacerbate the effects on the 

hepatic and gastrointestinal systems.  Consistent with our observations of 

hepatic steatosis, PCB-exposed mice exhibited higher levels of inflammatory 

markers and inulin feeding was able to attenuate these increases.  Furthermore, 

we observed that PCB exposure altered expression of key glycolytic and 

gluconeogenic enzymes and that inulin feeding was able to blunt these effects, 

suggesting a potential mechanism for our observations in disrupted glucose 

tolerance with PCB exposure and amelioration by inulin.    

     In chapter three, we established that PCBs induced alterations in the gut 

microbiota and that some of these alterations correlated with disruptions in 

metabolic markers.  Due to inulin’s high prebiotic capacity, we hypothesized that 

inulin feeding would attenuate PCB-induced disruptions in the microbiota and 

that these alterations would lead to overall improved host health.  Indeed, we 

observed several effects of inulin feeding on microbial populations.  Inulin is 

known to be a bifidogenic compound, stimulating the growth of Bifidobacterium 

[133].  As expected, we observed significant increases in the levels of 

Bifidobacterium in inulin fed mice, irrespective of exposure.  Interestingly, 

exposure to PCB 126 in inulin fed mice further increased the levels of these 

bacteria.  We hypothesize that this finding is due to a toxic effect of PCBs on 

other bacterial populations, thereby allowing for the proliferation of 
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Bifidobacterium.  Furthermore, we also observed that inulin fed mice exhibited a 

lower Firmicutes:Bacteroidetes ratio, irrespective of exposure, suggesting a 

“healthier” microbial signature.  Inulin appeared to exert a stronger effect on 

influencing microbial populations than did PCB exposure, which could be 

expected due to inulin’s known prebiotic capabilities.  

     Due to our more thorough exploration of hepatic effects of pollutant exposure 

in this study, we discovered an avenue that has not previously been explored by 

our lab.  In chapter four, we identified that hepatic ceramide levels were 

increased with PCB exposure.  This is important in that ceramides have been 

more recently accepted as a biomarker for cardiometabolic disease risk [255].  

Furthermore, we observed that inulin feeding was able to attenuate this increase.  

We also determined that hepatic microsomal triglyceride transfer protein (Mttp) 

expression was reduced with PCB exposure, which has been demonstrated to 

function in ceramide transport out of the liver [259].  Consistent with our findings, 

the level of Mttp expression was restored with inulin feeding, indicating a 

potential mechanism that needs to be further explored.  To our knowledge, this is 

the first instance in which ceramide levels were examined with PCB exposure 

and thus this finding opens up a new avenue of exploration into PCB-toxicity.    

     When comparing the toxicity and effects of PCB exposure in the studies 

described in chapter three and chapter four, we observed discrepancies that 

should be noted.  The only difference between the models used in these 

chapters is the level of fiber.  In chapter three, the level of fiber in the control 

group was 5% from microcrystalline cellulose, whereas in chapter four, the level 
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of fiber in the control groups (cellulose) were 8% from microcrystalline cellulose.  

While a higher level of fiber consumption is believed to be more beneficial to host 

health, in chapter four we actually observed greater toxicity of PCB exposure 

despite a higher level of fiber.  When comparing the exposed groups in both 

studies, we observed exacerbation of wasting and glucose tolerance in mice fed 

8% cellulose but this was not observed in mice fed 5% cellulose.  Interestingly, 

the microbial effects of PCB exposure in cellulose fed were not as apparent in 

the study described in chapter four compared to our previous findings in chapter 

three.  Quantification of PCB levels in the feces and plasma is an ongoing 

analysis to better compare the body burden of PCBs between these two studies.  

Overall, we observed a discrepancy between the level of cellulose fiber (5% vs 

8%) that may influence the toxicity of PCBs and will be followed up on in future 

studies.   

 

5.2 Future directions and conclusions 

The levels of environmental pollutants throughout the world continue to rise, 

despite numerous efforts towards reduction [2, 3].  Because pollutant exposure is 

mostly unavoidable, it is important to not only understand its impacts on human 

health, but also to elucidate means to provide protection against and/or 

ameliorate symptoms of exposure.  One of the primary routes of exposure to 

lipophilic pollutants such as PCBs is through the ingestion of contaminated food 

products (e.g. fatty fish, meat, and dairy) and thus, focusing on the 

gastrointestinal tract is critical to understand the whole scope of PCB toxicity [2]. 
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There are numerous future directions that can be pursued related to the work 

described within this dissertation.  Firstly, to elucidate role of the microbiota in the 

influence of pollutant-induced disease, studies utilizing mouse models in which 

the microbiota has been manipulated could provide critical information.  The 

research described in chapter two and three of this dissertation highlighted that 

PCB exposure can impact viability and fermentative properties of specific gut 

microbial populations and can do so through membrane disruptive mechanisms.  

However, it is still unknown what proportion of the impacts on the microbiota we 

observed are from direct disruption of specific bacteria or from indirect disruption 

through host inflammation and disease progression.  Therefore, utilizing means 

of eliminating, reducing, or shifting gut microbial populations could be helpful in 

elucidating their role in PCB toxicity.  One such means to do so would be the use 

of broad-spectrum antibiotic treated mice to eradicate a large proportion of the 

microbiota.  Antibiotic treated mice have been used for studies investigating the 

role of eradicating specific groups of bacteria and for investigating the effect of 

disrupting the gut microbiome at various host life stages [265].  The use of 

antibiotic-treated mice is easily attainable and maintained with minimal costs but 

does not allow complete control of microbial population and elucidation of 

specific host-microbe interactions [265].  Furthermore, there is the potential of 

drug-pollutant interactions that could influence the actions of PCBs and/or 

antibiotics.  Another, more rigorous, method of elucidating the role of the 

microbiota is to use germ free mouse models.  The terminology germ free is 

defined as an animal free of bacteria, viruses, fungi, parasites, and protozoa from 
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birth [266].  The use of a germ-free mouse model to examine PCB-induced 

toxicity would allow us to understand the role that the microbiota in a 

mechanistic, more extreme sense.  While this model will provide further insight 

into host-microbe interactions in PCB exposure, due to the extreme nature of this 

model, it can lack translatability.  GF mice often need to be supplemented with 

vitamins, specifically K and B, and have a less developed and less functional 

small intestine, making energy absorption and utilization less efficient [266].  

While utilizing GF models will provide us with critical information on the microbial 

influence of PCB toxicity, due to our labs interest on cardiometabolic disease and 

pollutant exposure, a logical next step would be the utilization of gnotobiotic 

mouse models.  Gnotobiotic, derived from the Greek “gnōtos” (known) and 

“biotic” (life), simply means that GF mice are colonized with a specific microbial 

population, often from humans, to generate a humanized mouse model [267].  

Humanized mouse models developed from GF mice have been used in a variety 

of areas of research including those focusing on cardiovascular diseases, 

neurological diseases, and metabolic diseases [267].  Thus, our lab could utilize 

the microbial population taken from individuals with 

cardiovascular/cardiometabolic disease and develop gnotobiotic mouse models 

to better understand the interactions between host physiology and a dysbiotic 

microbiota.  Employing this method would provide us with the most translatable 

data, regarding the microbiota, to date and allow us to explore novel mechanisms 

of pollutant toxicity and develop interventions that better target these 

mechanisms.  The use of the above discussed methods in a stepwise fashion 
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could allow us to garner critical data regarding host-microbe-pollutant interactions 

that examine a range potential mechanisms. 

Another future direction for the laboratory could be to look more into the 

effects of PCBs and dietary fiber on gut microbial derived metabolites that reach 

peripheral circulation.  One of the primary mechanisms that the gut microbiota 

influence host health outcomes is through the generation of metabolites that can 

exert differential effects on various host tissues [173].  The most understood 

metabolites produced by the gut microbiota are short chain fatty acids (SCFA), 

but there are numerous other metabolites that have not been explored or even 

discovered.  Discovery of novel microbial derived metabolites from PCB and/or 

fiber exposure could open new avenues of exploration of the mechanisms by 

which PCBs exert their toxicity and the observed protective effects that we 

observed with fiber consumption.   

Our lab has extensive expertise in examining the protective effects of 

polyphenols against pollutant-induced toxicity.  Because dietary fiber and 

polyphenolic compounds are found predominantly in plant matter (i.e. fruits and 

vegetables), examining the potential of these compounds in combination could 

be greatly efficacious and highly translatable to the human population.  The aryl 

hydrocarbon receptor (AhR) is critical in gut health and intestinal immunity [268].  

However, as discussed throughout this dissertation, PCBs exert their effects 

through strong binding to AhR, leading to the upregulation of cytochrome p450 

(Cyp1a1) and production of reactive oxygen species that lead to cellular 

dysfunction and inflammation [2].  It has been demonstrated that certain gut 
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microbial derived metabolites can act as AhR agonists and/or antagonists [269].  

Importantly, it was found that the tryptophan metabolite indole functioned as an 

AhR antagonist and inhibited 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced 

Cyp1a1 expression [270].  Gut microbial derived tryptophan metabolites, as 

discussed in chapter one, of this dissertation have been demonstrated to exert 

protective effects on intestinal immunity and overall host health [94, 96, 98, 270].  

High levels of tryptophan can be found in numerous food products, both animal 

and plant derived.  One of the highest tryptophan content plant foods is broccoli, 

which also is high in dietary fiber [95].  Because of our discovery that fiber 

consumption can be protective against PCB-induced toxicity and the known 

effects of tryptophan metabolites, a combination of these could be highly 

therapeutic as well as translatable. 

In conclusion, this dissertation demonstrates that exposure to PCB 126 

exerts deleterious effects on gut microbiota both directly through membrane 

disruptive mechanisms and indirectly through inflammatory mechanisms within 

the gut and peripherally.  Our lab has previously shown that nutritional 

interventions, specifically polyphenol consumption is able to modulate the toxicity 

of PCBs and thus, are a potential means by which to prevent toxicant-induced 

diseases [73, 264].  To expand the scope of nutritional modulation of pollutant 

toxicity beyond just polyphenols, in this dissertation we have shown that 

consumption of prebiotic dietary fiber is not only able to attenuate PCB-induced 

changes in the gut microbiota, but also able to prevent against peripheral 

inflammation and hepatic steatosis.  Taken together, the data presented in this 
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dissertation support the growing body of literature indicating that use of dietary 

prevention and/or intervention measures may be a practicable approach to 

diminish disease risks associated with environmental pollutant exposure.   
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