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          DISSERTATION 



 

ABSTRACT OF DISSERTATION 

 

SLEEP AND THERMOREGULATION: A STUDY OF THE EFFECT OF AMBIENT 

TEMPERATURE MANIPULATION ON MOUSE SLEEP ARCHITECTURE 

 

Good quality sleep is essential for mental and physical health. Inadequate sleep impacts 

memory consolidation, learning and cognition, immune function, autonomic regulation, 

physical performance, and other vital functions. In many neurological disorders that are 

associated with sleep problems such as epilepsy and Alzheimer’s disease, changes in brain 

circuitry affect sleep-wake regulation mechanisms; this is reflected in anomalous sleep-

wake architecture and usually accompanied by poor sleep depth. Thus, over many years, 

many approaches have been tried in humans and animal models with the goal of improving 

sleep quality. Unfortunately, each of those approaches comes with limitations or side 

effects. Thus, there is a need for a natural, safe, and low cost approach that overcomes 

many limitations to improve sleep and eventually the lives of individuals with sleep 

problems. 

Environmental temperature is one of the most important factors that affect sleep in humans 

and other animals. Studies have shown that the part of the brain governing 

thermoregulation is also involved in sleep-wake regulation. Even a mild change in 

environmental temperature can produce a significant effect on sleep. Thus, a better 

understanding of the sleep-thermoregulation interaction could lead to novel ways for 

treating many sleep disorders. As a first step on the translational pathway, experiments in 

animal models of disease conditions with disordered sleep are needed for investigating 

sleep–thermoregulation interactions and for devising and validating related approaches to 

enhance sleep quality before conducting them on humans.  



 

This dissertation explores and assesses the effect of changes in ambient temperature on 

sleep-wake architecture in control mice and epileptic mice, the latter from a model of 

temporal lobe epilepsy as an example of a disease model with disordered sleep. Then, based 

on the results of temperature effects on sleep in control and epileptic mice, different 

strategies are proposed and tested to modulate sleep through ambient temperature 

regulation in closed loop to improve sleep depth and regulate the timing of the sleep-wake 

cycle.   

The results presented in this dissertation demonstrate the feasibility of sleep enhancement 

and regulation of its timing and duration through manipulation of ambient temperature 

using closed-loop control systems. Similar approaches could foreseeably be used as more 

natural means for enhancing deep sleep in patients with epilepsy, Alzheimer’s, or 

Parkinson’s disease in which poor sleep is common and associated with adverse outcomes.    

Keywords: Sleep depth, Thermoregulation, Epilepsy, Closed-loop system, Mice. 
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CHAPTER I    INTRODUCTION 

1.1 Significance 

It is well known that sleep plays an important role in brain and body functions, thus its 

disruption may come with dangerous consequences to human health. Poor sleep is common 

in many neurological disorders including epilepsy and Alzheimer’s disease. It may present 

as reduced sleep depth, fragmented sleep, altered proportions of different sleep stages, and 

other phenomena. In this dissertation, an animal model of temporal lobe epilepsy has been 

used as an example of neurological diseases that are associated with poor sleep.  

Epilepsy is a serious neurological disorder that is characterized by recurrent spontaneous 

partial or generalized seizures. It is estimated that the proportion of the global population 

with active epilepsy (i.e. continuing seizures or with the need for treatment) is between 4 

and 10 per 1000 people. This proportion is getting higher and higher in developing 

countries and can reach 6 to 10 per 1000 people (World Health Organization 2018).     

Epileptic seizures could happen at any age as well as at different levels of severity. They 

vary from brief twitches to prolonged and severe convulsions (Megiddo et al. 2016). 

Despite the fact that there is improvement in the types of available epilepsy treatment, 

about 30-40% of epilepsy patients fail to respond to antiepileptic drugs or other types of 

interventions (Laxer et al. 2014). Considering that even patients who respond to the 

available epilepsy treatments may experience complications and medical problems such as 

depression (Fisher et al.  2000), it is important to understand the complex mechanisms and 

factors that may have an effect on epilepsy. This understanding could lead to novel 

treatments that would modify its generation/progression and eventually control or reduce 

seizures in epilepsy patients, thus avoiding at least some of the medical complications 

associated with current available treatment.  

The timing and structure of the sleep-wake cycle are mainly determined by the interaction 

of homeostatic and circadian drives. The homeostatic drive depends on the amount of 

preceding wakefulness: the longer the time spent awake, the greater the propensity to sleep. 
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Circadian drive on the other hand is independent of the amount of preceding sleep or 

wakefulness, it promotes sleep during the night and wakefulness during the daylight hours 

(Hofstra and de Weerd  2009). The interactions between sleep and epilepsy are clinically 

relevant; a better understanding of these interactions will help in the development of 

therapeutic approaches for epilepsy and eventually improve the quality of life of epilepsy 

patients. Inadequate or fragmented sleep is common in epilepsy patients, as has been 

documented in several studies. Arielle Crespel (Crespel et al.  2000) described the effect 

of epilepsy and seizures on sleep at two levels :1) acute effects of seizures during sleep that 

result in non-continuous or fragmented sleep; and 2) chronic effects of epilepsy that impairs 

the whole organization and microstructure of sleep. These two effects depend on the type 

of seizures and the location of the epileptic focus. Arielle Crespel’s study analyzed the 

occurrence of frontal and temporal lobe epileptic seizures in 30 patients using continues 

video and EEG monitoring. While patients with frontal lobe epilepsy have normal sleep 

organization in spite of the effect of seizures on sleep microstructure, patients with 

temporal lobe epilepsy experience significant sleep fragmentation, low sleep efficiency 

(defined by the ratio of total sleep time to total amount of time in bed (Reed and Sacco  

2016) )  , an increase in the number of wake episodes, and abnormalities in the architecture 

of their sleep. Patients with frontal lobe epilepsy have 61% of their seizures in sleep, 

whereas temporal lobe epilepsy patients have only 11% of their seizures in sleep (Crespel 

et al.  1998) . The effects of temporal lobe epilepsy on sleep architecture have been studied 

using polysomnographic recording (Bazil and Walczak 1997). Results showed that when 

seizures occur during the day, there is a significant reduction in REM (Rapid Eye 

Movement) sleep the following night, even in the absence of seizures that night, and 

without changing other sleep stages or efficiency. In contrast, when seizures occur early in 

night, there is a greater reduction in REM sleep with an increase in stage I of NREM (Non-

Rapid Eye Movement) accompanied by a clear reduction in sleep efficiency (Bazil and 

Walczak 1997). Since epileptic seizures have a significant effect on sleep architecture and 

very likely other physiological systems, more attention should be paid to the type, time, 

and origin of seizure.  

The sleep-epilepsy relationship is reciprocal, which means that not only do epileptic 

seizures affect sleep but different sleep stages also have an effect on seizure probability. 
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NREM sleep, particularly stage II, could facilitate epileptic episodes and their spread due 

to the broadly synchronized nature of neural activity during NREM sleep. In contrast, REM 

sleep which is marked by desynchronized discharges could inhibit epileptic episodes 

(Shouse et al.  2000). In a study that was conducted on 188 patients with more than 1000 

partial seizures, data showed that most seizures occurred during stage II of NREM sleep 

with few in stages III and IV and fewer or none in REM sleep (Bazil and Walczak  1997). 

Additionally, the results have shown that temporal lobe seizures are more likely to 

generalize when they occur in sleep while those of frontal lobe origin occur equally in sleep 

and wake states. In conclusion, the type of epileptic seizures influences sleep stages and 

sleep stages influence the facilitating or inhibiting mechanisms of sleep on epileptic 

seizures.   

Thermoregulation is an important process that has been strongly linked to sleep. It is well 

known that thermoregulatory responses to change in ambient temperature (Ta) are highly 

related to sleep regulation mechanisms (Gilbert et al.  2004). Studies have shown that the 

preoptic area in the hypothalamus plays an important role in thermoregulation. It is also 

involved in sleep-wake regulation mechanisms (Romanovsky 2006 and  Nakamura  2011). 

Though the neural pathways underlying the physiological interactions between 

thermoregulation and sleep regulation are still not very clear, studies have suggested that 

hypothalamic neurons that release hypocretin (HCRT) and receive projections from the 

preoptic area may have a major role in those pathways. The firing rate of HCRT neurons 

is state-dependent,  decreasing from active wakefulness to quiet wakefulness, NREM sleep, 

and REM sleep (Sakurai et al.  2005 and Mileykovskiy et al.  2005).  

It has been shown that changing the ambient temperature produces a significant effect on 

sleep (Jhaveri et al.  2007, Schmidek et al.  1972, Szymusiak and Satinoff  1984, Roussel 

et al.  1984). Given that temperature affects sleep and poor sleep is common in sleep-related 

disorders including epilepsy (St. Louis  2013) , here we hypothesize that manipulating Ta 

could be used as a noninvasive way to modulate sleep in a direction that enhances sleep 

quality and helps in the treatment of sleep disorders. Figure 1.1 shows a schematic diagram 

of an example of the study hypothesis of using temperature change as a simple means to 

enhance sleep in epilepsy patients and balance its effect on epileptic seizures.  
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Reproducing human diseases in animal models has a great impact on developing the 

understanding of the disease and discovering different ways that can help in its diagnosis 

and treatment. After treatment with pilocarpine, mice can go on to display symptoms of 

temporal lobe epilepsy (TLE), the most common and difficult to treat type of epilepsy in 

adults (Lévesque et al.  2016). Those symptoms include status epilepticus (SE), a latent 

period, and recurring spontaneous seizures (Shibley and Smith 2002). Considering that 

studying the correlation between thermoregulation, sleep, and epilepsy (as an example of 

neurological disorders associated with poor sleep) is difficult in humans; and that mice 

offer convenient and suitable disease models in which brain circuitry and pathology is 

similar to humans (Carlos et al.  2016), a mouse model of TLE was used in this study to 

investigate the effect of temperature changes on sleep and epileptic seizures.  

Closed- loop control systems have been applied to many neurophysiological problems. It 

has been used to alter alpha rhythm dynamics in human (Zhigalov et al. 2016), drive slow 

wave sleep through auditory stimulation (Ngo et al.  2015),  and detect and control epileptic 

seizures through optogenetic inhibition of specific neuronal circuits in mice (Krook-

Magnuson et al.  2013). Here, a closed loop temperature control system is employed to test 

the feasibility of: sleep modulation, sleep depth enhancement, and entrainment of the 

ultradian sleep-wake cycle to an externally imposed rhythm in mice. 

This dissertation addresses three key aspects in studying the effects of thermal regulation 

on sleep in control and epileptic mice: first, the effect of an acute elevation in Ta on sleep 

structure and depth in control mice has been characterized; second, the effects of Ta 

elevation on sleep and epileptic seizures in the pilocarpine mouse model of temporal lobe 

epilepsy have been investigated; and finally, different strategies for dynamic sleep 

modulation by Ta regulation in control mice have been developed as a first step toward 

using them in future as a noninvasive route to treat sleep-related disorders. In summary, 

the main contribution of the work described in this dissertation is to demonstrate the 

feasibility of sleep enhancement through Ta regulation in mice. 
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1.2 Specific aims 

Aim I: Effect of an acute elevation in Ta on sleep in control mice 

Changes in Ta elicit thermoregulatory responses that also influence the sleep-wake 

structure. Thus, this study aimed to evaluate the effect of Ta elevation on different vigilance 

states (Wake, NREM (slow wave sleep & light NREM sleep), and REM) in control mice 

with long term objective of using the findings of the study in modulating sleep and 

investigating the consequences in health and disease. Sleep quality is often identified by 

some conventional sleep metrics namely: proportion of time spent, mean bout duration, 

and mean number of bouts per state. As a first specific aim of this study, mice (n=13) were 

exposed to one of four temperatures (24, 27, 30, and 33 Celsius) in their thermoneutral 

zone on four consecutive days for several hours. Sleep metrics were computed and the 

effects of an acute elevation in Ta and the time were statistically evaluated. Sleep depth 

defined by more than one measure was the other sleep metric that has been used to 

characterize Ta effect on sleep quality. NREM sleep was further classified into light NREM 

sleep and slow wave sleep (deep sleep) using EEG zero-crossing criteria and the effect of 

Ta and time on both states was studied. Our data showed that an acute elevation in Ta 

promotes sleep depth as well as continuity significantly.  

 

Aim II: Effect of Ta on sleep and epileptic seizures in a mouse model of temporal lobe 

epilepsy (TLE)  

Seizures in individuals with epilepsy are often accompanied by poor sleep depth and 

intermittent arousals. Poor sleep quality in turn could precipitate seizures, thus sustaining 

a vicious cycle. Given that thermoregulation interacts with sleep and that sleep and epilepsy 

have mutual effects, it seems plausible that improvement in sleep quality - induced by 

deliberate changes in Ta – could possibly alleviate the seizure burden in patients with 

epilepsy if properly implemented. As a step toward this goal, we assessed the effect of 

elevated Ta on sleep dynamics and seizure yield in a chronic pilocarpine mouse model of 

TLE. Each epileptic mouse (n=4) was exposed to an elevated Ta of 30°C, the 

thermoneutral zone, every other day for up to two weeks, only during the 14-hour light 

period (7 a.m-9 p.m.). The results showed that temperature does in fact significantly affect 
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the sleep-wake architecture. There was some variability in mean seizure rate across the 

animals but no significant effect of Ta on seizure rate or timing was observed.  

 

Aim III: Sleep depth enhancement by dynamic Ta regulation 

The third aim of this study is to demonstrate the feasibility of dynamic sleep enhancement 

by manipulating ambient temperature in closed loop; i.e. in response to observed behavior 

as a step toward using it to improve sleep in patients with sleep disorders. In this context, 

the feasibility of sleep modulation through Ta regulation has been tested. Using an 

automated EEG/EMG hidden Markov Model (HMM) classifier, the vigilance state of 

control animals was predicted in real time with 1-second resolution. A control policy was 

used to trigger Ta changes in a direction that reduced the error between an estimated sleep 

metric q (sleep/wake ratio) and pre-specified q* (target sleep metric). The results suggested 

that it is feasible to modulate sleep through temperature regulation in control mice using 

any sleep quality metric.  

Given that slow wave sleep (SWS), i.e., Deep NREM sleep (DS), is beneficial to healthy 

brain and body functions, a simple closed-loop strategy for sleep depth modulation (SDM) 

was developed to guide the EEG delta (0.5-4Hz)-theta (6-9Hz) power ratio Q — a measure 

of sleep depth that is typically high in NREM, low in Wake, and still lower in REM — 

towards a target value Q* by manipulating Ta. Ta was changed by  1 ºC every 5 min in a 

direction that reduced the error between Q and Q*. The results showed that mice (n=5) 

spent more time in SWS with some other subtle changes during dynamic manipulation of 

Ta compared to baseline recordings in which Ta was held constant at 25°C. 

 

Aim IV: Sleep-wake induction by Ta regulation 

Rodents exhibit polyphasic sleep in which multiple sleep and wake bouts are distributed 

over the 24-hour cycle and their timing and duration are modulated by the circadian 

rhythm. Results from static experiments (aim I) have shown that elevation in Ta influences 

the duration of those sleep and wake bouts. Thus, we tested whether this ultradian sleep-

wake cycle can be entrained to an externally imposed rhythm by manipulating Ta. To 
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achieve this aim, a sleep-wake induction (SWI) strategy was developed in which Q* was 

programmed to follow exponential growth over 60 min and decay over 30 min between 

values of Q (EEG delta-theta power ratio) typical of NREM sleep and wake respectively. 

Trends in EEG measures Q and the Hi-Low bandpower ratio (8-30 Hz / 0.5-8 Hz) were 

compared against baseline days to determine the effect of the regulatory cycle. Results 

suggested that Q follows Q* in sleep and wake with a finite delay in switching from sleep 

to wake phases.   

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. An illustration diagram of sleep-thermoregulation interaction in epilepsy patients as an 
example of diseases associated with poor sleep. The study hypothesis based on the assumption that 
an elevation in ambient temperature promotes slow-wave sleep and REM sleep in which seizures 
are less likely to happen (model and image proposed by S. Sunderam,2011). 
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CHAPTER II   EFFECTS OF ACUTE ELEVATION IN 

AMBIENT TEMPERATURE ON MOUSE SLEEP 

ARCHTECTURE 

 

2.1 Introduction 

The purpose of sleep and its underlying mechanisms has puzzled scientists for many years. 

Sleep helps both brain and body function correctly; thus, in recent years, many studies have 

been carried out in humans and animals to understand sleep mechanisms and devise 

possible approaches for improving its quality in health and disease.  

Sleep structure generally cycles between two distinct states: Non-Rapid Eye Movement 

(NREM)/ and Rapid Eye Movement (REM) or Paradoxical sleep (PS) (Veasey et al. 2000). 

NREM itself may be subdivided into different stages : light sleep stages which 

characterized by the presence of sleep spindle and k-complex and deep sleep stages ( stage 

3 and stage 4) , also called slow wave sleep (SWS) (de Andrés  and Reinoso-Suárez  2011). 

Both NREM and REM states play important roles in mental and physical activities. In the 

last two decades, the importance of sleep in memory consolidation (defines as a task by 

which the temporary memory is transferred to a long-lasting memory) has been extensively 

studied. In human and rodents, both NREM and REM sleep are involved in the memory 

consolidation process in different ways. Research has shown that while explicit 

(declarative) memories seem to be consolidated during NREM sleep, and SWS in 

particular, REM sleep plays an important role in consolidating procedural memories 

(Payne and Nadel  2004, Plihal and Born  1997). SWS also helps in improving some 

procedural skills (non-declarative memories) (Gais et al.  2007 and  Aeschbach et al.  

2008). SWS is important not only to the brain but to the body as well. SWS contributes in 

the regulation of glucose metabolism (Cautera et al.  2008) and some autonomic functions 

such heart rate and body temperature regulation (Bellesi et al. 2014). Thus, characterization 
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of each sleep state and understanding how external stimulation (e.g., thermal stimulation) 

could affect each state are important in any sleep research investigating sleep quality 

improvement for better mental and physical health. 

Sleep is a complex physiological process that is mainly regulated by homeostatic and 

circadian drives which combine together to determine sleep timing, duration, and depth. 

Homeostasis refers to the drive for sleep that accumulates during wake and dissipates 

during sleep. When sleep pressure increases above a certain threshold, sleep onset is 

triggered, and when sleep has been adequately recovered, wakefulness commences. The 

circadian rhythm on the other side regulates the body’s internal biological processes. It has 

been suggested that the circadian rhythm promotes wakefulness more than sleep (Borbely 

and Achermann  1999, Edgar et al.  1993). Environmental temperature is an important 

factor that influences both circadian and homeostatic drives and thereby sleep. When 

ambient temperature (Ta) changes, this change is sensed by skin thermoreceptors which 

send this information to the preoptic area of the anterior hypothalamus (POAH), the 

thermoregulatory center of the brain. The information of ambient temperature change is 

then integrated with the activity of temperature-sensitive neurons in the POAH to initiate 

heat loss or heat gain, POAH neurons are also involved in sleep-wake regulation 

mechanisms (Lo Martire et al.  2012). Figure 2.1 shows a simple schematic illustration of 

the correlation between sleep and thermoregulation. The top part of the figure represents 

the circadian pacemaker that is located in the suprachiasmatic nuclei (SCN) of the 

hypothalamus and is responsible for regulating circadian rhythms of body temperature and 

the timing of the sleep-wake cycle. The left part is the control center of the 

thermoregulatory system that is located in the POAH. The thermal information about 

changes in external/internal temperature (that comes from thermal receptors distributed on 

the surface or core of the body) are integrated and sent by the POAH to effector organs as 

error signals to keep the core body temperature constant at a certain level: for example, in 

case of increasing ambient temperature the POAH will signal capillary blood vessels to 

vasodilate to increase heat loss and keep body temperature at constant level (Kräuchi, 

2007). Comparing to thermoregulation system, sleep-wake regulation system is 

homostatically regulated. The interaction between sleep-wake regulation and 

thermoregulation system remains unclear. However, studies have shown that activation of 
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temperature-sensitive neurons in POAH through peripheral thermal stimulation triggers 

NREM sleep (more sleep with an increase in ambient temperature (McGinty and 

Szymusiak, 2001). Obal explained that sleep promotion associated with an increase in 

ambient temperature is an active thermoregulatory response to prevent hypothermia (Obál 

et al. 1983).  

Several studies have shown that sleep and thermoregulatory responses induced by changes 

in Ta are closely interrelated (thermoregulation is part of the homeostatic process). Those 

thermoregulatory responses are initiated by sleepiness and arousal neurons that are located 

in the brain, sensitive to even mild changes in environmental temperature, and involved in 

sleep-wake regulation (Gilbert et al.  2004 and Van Someren 2000). However, the central 

neural pathways that coordinate the control and interaction between  thermoregulation and 

sleep-wake behavior are still inadequately understood and require more investigation (Lo 

Martire et al. 2012).  

For each species, there is a temperature zone known as the thermoneutral zone (TNZ) in 

which the metabolic rate is independent of Ta, so the energy required to maintain body 

temperature at a constant level is at a minimum. TNZ is approximately 30°C for mice and 

reported values range from 26ºC to 34ºC (Harding et al.  2018, Cannon and Nedergaard  

2011, Lodhi and Semenkovich  2009).   
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Figure 2.1. Sleep-thermoregulation interaction. Thermoregulatory responses induced by changes 
in external or internal body temperature affect sleep-wake structure. Both thermoregulatory and 
sleep/wake regulatory systems get feedback from the circadian regulatory system (SCN). POAH is 
involved in both thermoregulation and sleep/wake regulation (Kurt Kräuchi, 2007). 

 

In spite of the fact that many sleep studies have been done in humans, animal models, mice 

and rats in particular, have been invaluable in studying and developing the understanding 

of sleep physiology and its underlying mechanisms. Because of the similarities in their 

brain circuitry to humans (Carlos et al.  2016), their availability, and ease of handling, mice 

have played a key role in sleep research and the preclinical validation of treatments for 

sleep-related disorders.  

The normal sleep-wake cycle in mice is a well-orchestrated sequence of transitions 

between three distinct vigilance states: namely, wakefulness or “Wake”, REM sleep, and 

NREM sleep. NREM sleep can be further classified into light and slow wave sleep. The 

three main vigilance states can be easily distinguished based on specific criteria applied to 

EEG/EMG signals (Veasey et al.  2000). Many studies in rodents have investigated the 

effect of ambient temperature changes on sleep-wake architecture. Compared to 22°C, 

mice that are exposed to higher temperature (26 and 30°C) for 24 hours have been reported 
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to experience more NREM and REM sleep, along with a reduced EEG delta wave 

amplitude during NREM sleep which reflects a reduction in sleep depth (Jhaveri et al.  

2007). Shifting Ta from baseline temperature (25°C) to higher temperature (34°C) is 

associated with more slow wave sleep and paradoxical (REM) sleep  in mice accompanied 

with more REM bouts (Roussel et al.  1984). Chronic exposure to warm Ta (30°C) for four 

weeks increases both slow wave sleep and paradoxical sleep in rats (Mahapatra et al.  

2005). The daily amounts of light NREM sleep and deep NREM sleep are increased by 

elevating Ta to 29°C in rats (Obál  et al.  1983).  

To our knowledge no previous study has characterized the acute effect (over several hours) 

of Ta elevation on mouse sleep. A couple of studies have investigated the acute effect on 

sleep in rats, specifically the effect of Ta on some sleep parameters over a few hours on 

alternate days at different temperatures. Both studies reported a significant effect of Ta on 

sleep  (Gulia et al.  2005 and  Kumar et al. 2009).  In a different study, the effect of an 

elevated Ta (over two hours) on sleep was investigated in developing rats. Results showed 

that Ta significantly influenced the sleep-wake structure but no significant effect on sleep 

depth (defined by slow wave activity) was observed (Morrissette and Heller  1998).  

Given that sleep and thermoregulation interact closely and that sleep promotion stimulated 

by an elevation in Ta may have some implications for sleep enhancement, the key goal of 

this chapter is to evaluate the effects of acute exposure to elevated Ta over a few hours on 

some conventional sleep metrics, namely percentage of time spent, mean number of bouts, 

and mean bout duration per vigilance state, to see if an acute elevation in Ta can produce 

the same effects seen in chronic experiments.  Ta elevation effects on sleep depth and 

proportion of deep NREM sleep (SWS) are studied here using more than one measure since 

this effect has not been clarified sufficiently in previous chronic experiments. In addition 

to the temperature, time (circadian phase) is another factor that influences sleep; thus, the 

effects of time of day and its interaction with temperature on sleep are statistically 

evaluated.   
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2.2 Animal care, housing conditions, and surgical procedure 

All experimental work in this study were carried out in accordance with procedures 

approved by the Institutional Animal Care and Use Committee (IACUC) at University of 

Kentucky. All experiments were conducted on adult male wild type mice (C57BL/6; 6-12 

weeks old; 24-29 g, Jackson Laboratory) that are widely used strain in biomedical 

researches. Before starting with any experimental procedure, mice were housed 

individually in their regular home cages in the animal room with free access to food and 

water. Animal room temperature during habituation, baseline and recovery was ~ 23°C 

with a relative humidity of (50 ± 10%). Mice were housed on a 14:10 hour Light/Dark 

cycle with light turned on from 7 a.m. to 9 p.m. 

All mice were chronically implanted under 2.5% isoflurane anesthesia with Pinnacle’s 

headmount with two EEG and EMG electrodes for brain and muscle activity recording. 

Anesthetized mice were placed on a stereotactic frame with access to inhalation tube. On 

the upper part of the skull a midline incision was made in the scalp, then skull was cleaned 

and sterilized with hydrogen peroxide solution. To record the frontal-parietal EEG, a pre-

fabricated headmount (8202, Pinnacle Technology, Inc, Lawrence, KS) was placed on the 

skull so that the frontal border of the headmount located (3-3.5 mm) from Bregma. Four 

tiny stainless steel screws: 0.10" anterior and 0.12" posterior (8209 and 8212, Pinnacle 

Technology, Inc, Lawrence, KS) were placed in the four holes that were drilled in the 

frontal-parietal area corresponding to the existing holes within the headmount. For the 

purpose of conductivity enhancement, silver conductive epoxy was applied between 

screws and headmount. To record muscle activity, two stainless steel standard EMG 

electrodes were inserted bilaterally at the midline into dorsal nuchal muscle. After closing 

the incision with 2-3 stiches, a dental acrylic was applied around the headmount to seal/fix 

it. Immediately after surgery, mice were given an oral analgesic (Carprofen), returned to 

their cages, and allowed to recover for 7-10 days. Figure 2.2 shows the surgical procedure 

steps that were done on one of our mice. 

 

 



14 
 

 

 

 

 

 

 

 

 

Figure 2.2. Chronic implantation of EEG/EMG electrodes in mouse skull. (A)Anesthetized mouse 
is fixed in the stereotactic frame. (B) Bregma and Lambda (3mm front to the Bregam) are marked 
to determine the head-mount position. (C)The headmount is glued to the mouse skull. (D) Screws 
(EEG electrodes) are implanted and epoxy is applied around them for conductivity. (E) EMG 
electrodes are inserted in the muscle. (F) Surgical incision is closed with three stitches and dental 
cement is placed around the headmount to fix it.    

 

2.3 Data acquisition system and thermal chamber 

EEG and EMG signals are amplified using Pinnacle’s preamplifier (8202, Pinnacle 

Technology, Inc, Lawrence, KS) that goes into the headmount and does an amplification 

of 100x and high pass filtering with cut-off frequencies of 0.5Hz for EEG and 10Hz for 

EMG. Pinnacle’s preamplifier is connected to data acquisition/conditioning (DACS, 8206, 

Pinnacle Technology, Inc, Lawrence, KS) system via a low torque commutator above the 

mouse cage. The DACS does a secondary amplification and filtering processes (50x 

amplification and low pass filtering: 100Hz for EEG and 100Hz for EMG) before sending 

the signals to Pinnacle Sirenia acquisition software for collection using a USB cable. The 

analog EEG/EMG signals are sent to a digital acquisition board (National Instrument USB 

-6210) with sampling rate of 400Hz. In addition to the EEG/EMG system, a piezoelectric 

“piezo” motion sensor is placed on the floor of the mouse cage to capture breathing and 
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motion traces. A video monitoring system is set up to observe mouse behavior with an 

infrared (IR) LED illuminator to monitor the mouse during the Dark period.  

A custom-built thermostatic control chamber has been built to maintain cage temperature 

as required. In that chamber, two infrared ceramic filament heating lamps (150W) were 

used to warm the mouse cage above the room temperature (~23°C) and create an even 

temperature field. A Vernier thermistor was suspended in the cage and the temperature 

(Ta) read into a computer as a calibrated voltage by a data acquisition board (NI USB-

6211, National Instruments). A LabVIEW VI code was written to switch the heater on or 

off as needed to maintain cage temperature close to a desired set-point with a tolerance of 

0.5°C. The cage was housed in a larger enclosure to slow heat loss to the surroundings. 

Figure 2.3 shows the setups of data acquisition system and thermal chamber that was built 

and used in this study.  

 

 

 

 

 

 

 

 

Figure 2.3. Experimental setup. An awake mouse sitting in a plexiglass cage with a head-mounted 
preamplifier (A). Signals from the preamplifier are transmitted through the commutator (B) to the 
data acquisition system (C) that does another amplification to the signals. Temperature changes 
inside the cage are sensed by Vernier thermal sensor (D), two heating lamps were used as a source 
of heat (E).   F, G, and H are the Sirenia acquisition, video, and LabVIEW recordings. Camera (I) 
was placed on tripod to capture all animal movements in the cage. Infrared LEDs illuminator (J) 
was placed at the top of the cage to provide an adequate illumination for continuous video 
monitoring. The whole setup was placed in a glassy enclosure (K) to minimize the heat loss from 
the cage to the surroundings.  
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After recovery from surgery, each mouse (n = 13) was transferred to the thermal enclosure 

and exposed to one of four temperatures in the neighborhood of the TNZ of the mice: (24, 

27, 30, and 33 Celsius) through four consecutive days for 8 hours (9 a.m. - 5 p.m.) for 9 

mice, and room temperature (~23), 27, 30, and 33 Celsius through four consecutive days 

for 6 hours (11 a.m. -5 p.m.) for 4 mice (the first four mice that were exposed to changes 

in their cage temperature). The experimental period was selected to be during the Light 

period when mice are most somnolent. Thermal experiment was run with continuous 

recording of EEG, EMG, piezo, Ta, and video. After running the experiment on the 13 

mice, data were collected and archived for analysis. 

2.4 Manual scoring and statistical analysis 

Sleep classification is a necessary and unavoidable step in any sleep research. Despite the 

fact that visual scoring depends on human bias and can be different between the scorers, it 

is still the “gold-standard” way for sleep classification. In this study, data were scored 

manually into NREM, REM, and wake using computer assisted software (SireniaTM, 

Pinnacle Tech.) in sequential of 4-second windows of each recording based on well-known 

changes in EEG and EMG criteria between vigilance states: (1) EMG activity level to 

differentiate sleep from wake (2) EEG delta (0.5-4Hz) band activity & (3) EEG theta (6-

9Hz) band oscillations to differentiate NREM from REM sleep. When EMG activity is 

high, epochs were scored as a Wake. When EMG activity is low associated with 

predominant high amplitude/low frequency EEG delta oscillations, epochs were scored as 

NREM sleep. Epochs with low EMG amplitude and high theta rhythm were scored as REM 

sleep. Video recordings sometimes were used to help in scoring of vigilance states. Figure 

2.4 shows samples from our data of EEG1/EEG2/EMG signals and EEG2 power spectral 

density during Wake, NREM, and REM. The figure demonstrates the changes in EEG and 

EMG characteristics during the three vigilance states.   

Figure 2.5 shows sample features (EEG delta/theta power ratio and EMG power) computed 

in 4-sec epochs for one mouse at Ta =24°C along with four hypnograms (from manual 

scoring) at four different temperatures (24, 27, 30, 33°C) over six-hour period. The 
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hypnograms structure suggests a general increase in NREM and REM sleep with Ta 

associated with a reduction in wake bout duration and number of bouts.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. Typical EEG1/EEG2/and EMG signals with EEG2 power spectral density in a 10-
second window during Wake, NREM, and REM. High muscle activity is a characteristic of wake. 
Low EMG and dominant EEG delta (0.5-4Hz) power are features of NREM. Low EMG and high 
EEG theta (6-9Hz) power are features of REM sleep. EEG and EMG amplitudes are in µv.  
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Figure 2.5. Six-hour recording features trend for EEG and EMG with the corresponding scores 
(Hypnogram) of vigilance states at baseline temperature (24)°C (upper panel). EMG power is high 
in wake (W) and low in sleep. The EEG delta/theta (D-T) power ratio is high in NREM (NR) and 
low in REM (R). Scores at higher temperatures (27, 30, and 33)°C (lower panel) showing that 
mouse tends to sleep more at higher temperature. A general increase in NREM and REM sleep with 
temperature is obvious. 

 

To quantify the Ta effect on sleep clearly, three sleep metrics: time spent, number of bouts, 

and mean bout duration per state were computed from the manual scores and the effect of 

Ta was statistically evaluated using Wilcoxon signed rank test. Sleep depth has been 

characterized first by EEG delta (0.5-4Hz) power during NREM sleep as it has a good 

correlation with sleep duration and intensity  (Borbely and Achermann  1999). The effect 

of Ta on the distribution of other measures of sleep depth namely: EEG delta to theta power 

ratio, EEG low delta power (0.5-2Hz), and EEG delta wave amplitude during NREM sleep 

was assessed using Kolmogrov-Smirnov (K-S) test.  

We further computed the number of EEG zero-crossings in each NREM epoch to classify 

NREM sleep into light sleep (LS) and deep sleep (DS)/slow wave sleep (SWS). Any 
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NREM epoch was assigned to SWS if the number of zero-crossings fell below a threshold 

defined as the lowest 30th percentile of zero-crossings in NREM epochs of the recordings 

at baseline Ta (Obál  et al.  1983). Then the effect of Ta elevation on SWS time, duration, 

and number of episodes was assessed using Wilcoxon signed rank test. Since time of day 

is an important factor that influences sleep, sleep metrics were recomputed each hour with 

a two-hour moving window. An aligned rank transformation was applied to the data using 

the ARTOOL package (Wobbrock et al.  2011) to allow a non-parametric analysis of 

variance with repeated measures. Then, the non-parametric repeated measures analysis of 

variance (ANOVA) was applied to the aligned-rank-transformed data to evaluate the effect 

of Ta, time, and their interaction on sleep metrics. A false positive error probability p under 

0.05 was considered significant. 

 

2.5 Results and discussion 

2.5.1 Ta effect on sleep metrics 

The effects of Ta elevation on conventional sleep metrics (percent time spent, mean bout 

duration, and number of bouts) per state that are usually used to quantify sleep were 

assessed statistically using Wilcoxon signed rank test (Figure 2.6).  Our data showed that 

while the time spent in NREM, REM, and SWS (overall and relative to NREM) increased 

significantly with Ta, wake time decreased (p < 0.05). Compared to 24ºC and 27ºC, wake 

time decreased significantly at 30ºC and 33ºC. It also decreased significantly at 33ºC 

compared to 30ºC. Time spent in NREM sleep increased significantly at 30ºC compared to 

24 and 27ºC. It also increased significantly at 33ºC compared to 24, 27and 33ºC. REM 

sleep increased significantly at 30ºC compared to 24 & 27ºC and at 33ºC compared to 24 

& 27ºC.   Compared to 24 and 27ºC, time spent in SWS overall increased significantly at 

30 and 33ºC. It is also significantly more at 33ºC compared to 30ºC. SWS as a proportion 

of NREM increased significantly at 30ºC compared to 27ºC and at 33ºC compared to 24, 

27, and 30ºC.  REM sleep relative to NREM did not change.  The effect of Ta seemed to 

become significant upon entering the TNZ (30ºC) compared to being outside it (24 and 

27ºC).   
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While mean NREM bout duration increased with Ta (p < 0.05), the number of bouts 

decreased significantly which suggests less fragmented NREM sleep at higher 

temperatures. NREM bout duration increased significantly at: (a) 27 ºC versus 24ºC, (b) 

30ºC versus 24 and 27ºC, (c) at 33ºC versus 24,27, and 30ºC. The number of NREM 

episodes, on the other hand, decreased significantly at 30ºC compared to 24ºC and at 33ºC 

compared to 24 and 30ºC. REM bout duration increased significantly with Ta but the 

number of bouts did not change. REM bout duration was significantly longer at 33ºC 

compared to 24 and 27ºC.    

Both SWS bout duration and number of bouts increased significantly with Ta. Mean bout 

duration of SWS increased within TNZ (30 and 33ºC) compared to outside it (24 and 27ºC); 

no changes were observed between 24 and 27ºC or between 30 and 33ºC. The number of 

SWS bouts increased significantly at 30ºC compared to 27 and 24ºC and at 33ºC compared 

to 24, 27, and 30ºC. While wake time and number of bouts decreased significantly with 

Ta, mean bout duration decreased insignificantly within TNZ compared to outside TNZ.  

Our results confirm the previous observations in chronic temperature elevation 

experiments in mice that reported an increase in NREM and REM sleep associated with a 

significant reduction in wake (Jhaveri et al.  2007 and  Roussel et al.  1984). The SWS 

results are consistent with the observations in acute experiments in rats, i.e., more SWS at 

higher temperatures (Obál et al. 1983). However, our data contradicted the results for time 

in REM in an acute experiment in rats (Gulia et al.  2005). That study reported a reduction 

in REM at 33ºC compared to 30ºC which could be due to the study design or species 

differences (Gulia et al.  2005).  

Wake bouts were then classified into prolonged wake (PW) bouts if more than 5 min in 

duration and brief arousal (BA) bouts otherwise. Results showed that while PW bout 

duration decreased progressively with Ta (p < 0.05, Kolmogorov-Smirnov test) but not the 

number of bouts, the number of BA bouts decreased with Ta (p > 0.05) but not the bout 

duration (Figure 2.7). Thus, the effects on both PW and BA contributed to the overall 

reduction in wake time but in different ways.  
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Figure 2.6. Temperature effect on sleep metrics. Data are expressed as mean ± sem. * indicates a 
significant difference relative to baseline Ta, † indicates a significant difference relative to 27°C, 
and ‡ indicates a significant difference relative to 30°C.  
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Figure 2.7. Effect of Ta on wake. Left: bout duration of prolonged wake (PW) decreased 
significantly with Ta. Right: though it did not reach the significant level, number of brief arousal 
(BA) decreased with Ta. Thus; the reduction in wake with Ta seems to come from a reduction in 
both of PW bout duration and BA number of bouts.   

 

Some variation in sleep was observed across animals. The percentage of NREM sleep was 

in the expected 43-60% range for 10 out of 13 mice but abnormally low for the other three. 

Since the percentage of NREM saturates at ~60-67% with an increase in Ta to 33ºC in 

essentially all the mice, it appears to be a practical physiological limit, though the reason 

for this is unclear. In 9 out of 13 mice, there appears to be no significant change in NREM 

percentage as Ta goes from 24ºC to 27ºC (slight increase in some, decrease in others), but 

most experience a bigger jump on entry into the TNZ (~30-34ºC). In general, the increase 

in NREM percentage appears to come mostly from a steady increase in SWS relative to 

light NREM sleep and the net SWS also increases when this happens. 
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2.5.2 Temperature and time effects on sleep metrics 

As a second level of analysis in this study, we evaluated the effect of Ta, timing – which 

could be interpreted as time of day as well as time into the experiment – and their 

interaction on sleep metrics. Sleep metrics were recomputed in two-hour windows centered 

on every one hour and non-parametric repeated measures ANOVA applied on the aligned 

rank transformed data. Results showed that Ta, time, and their interaction all have a 

significant effect on sleep.  

 

2.5.2.1 Effect of Ta and time on percent time spent in each state 

Figure 2.8 shows the percent time spent in each vigilance state computed in each hour with 

a 2-hr overlapping window. Repeated measures ANOVA showed that both Ta and time 

but not their interaction have a significant effect on time spent in wake. Post-hoc analysis 

revealed that wake time decreased significantly at higher Ta (30 and 33ºC) compared to 24 

and 27ºC, and was also less at 33ºC compared to 30ºC (p < 0.05). Regarding the time effect, 

results showed that time spent in wake in the first time segment (10 a.m.) was significantly 

different from all other segments.  It was also significantly different in the second time 

segment (11 a.m.) compared to the last four segments. Wake % in the third time segment 

(12 p.m.) was significantly different from the fourth one. In general, there was a decreasing 

trend in wake % over time. No Ta-time interaction effect was observed.  

Repeated measures ANOVA showed a significant effect of Ta and time on time spent in 

NREM. Post-hoc tests showed that both Ta and time affected NREM sleep in a similar way 

to wake except that it was not significantly different at the third time segment (noon) 

compared to the fourth one (1 p.m.). In contrast to wake, there was an increasing trend in 

NREM % over time.  

REM percent at 30 and 33ºC was significantly different from 24 and 27ºC. It was almost 

significantly different at 27ºC compared to 24ºC (p = 0.07). Considering the time of day, 

it was significantly different in the first and second time segments compared to all other 

segments and at the third time segment compared to the fourth one. There was no 

interaction effect between Ta and time.  
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While there was no significant effect of time or Ta-time interaction on SWS percent 

overall, Ta did have a significant effect. Post hoc analysis showed that SWS% increased 

significantly at: 30 and 33ºC compared to the 24 and 27 ºC, and at 33ºC compared to 30ºC.  

Temperature effect on SWS percent relative to NREM was significant. The effect was the 

same as on SWS percent overall. Time also had a significant effect on SWS%; it was 

significantly different in the first time segment compared to all others; in the second, third, 

and fourth segments compared to the fifth, sixth, and seventh; and in the fifth segment 

compared to the seventh. In general, the trend of SWS during NREM sleep is consistent 

with a previous study in rats (Obál  et al.  1983) , which showed that the proportion of SWS 

during NREM sleep peaks in the first three hours of the Light period and then declines 

progressively. Since our experiment was conducted two or four hours after the onset of the 

Light period, the results suggest that the overall proportion of SWS is relatively low. With 

an increase in Ta, SWS% increased, which is shown in Figure 2.8 by upward shifts in the 

traces of SWS at elevated temperatures. Time trends seem to be consistent at elevated 

temperatures as in 24ºC (decline progressively over time). Finally, time has a significant 

effect on time spent in REM relative to NREM. It was different at the first time segment 

compared to all other segments, the second time segment compared to the last four time 

segments, and the third time segment compared to the fourth and seventh. Thus, in general 

there is a significant effect of temperature and time on time spent in each state but no Ta-

time interaction effect. Temperature effects are consistent with those observed in the first 

level of analysis of Ta effect on gross or mean sleep metrics over the entire recording.    
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Figure 2.8. Ta effect on time spent in wake, NREM, REM, SWS, REM/NREM, and SWS during 
NREM in 13 control mice exposed to four different temperatures. Each data point (represented as 
mean ± sem) was computed hourly with a 2-hr moving window. Time starts at 10 a.m. and ends at 
4 p.m. Repeated measures ANOVA showed that both Ta and time have a significant effect on the 
time spent, p-value of 0.05 was used as a level of significance. See text for details.  

 

2.5.2.2 Effect of Ta and time on bout duration 

Figure 2.9 shows the effect of Ta and time on mean bout duration of each state computed 

in each hour with a 2-hr moving window. Repeated measures ANOVA and post-hoc 

analyses showed a significant effect of temperature, time, and their interaction. The mean 

bout duration of wake was less at 30 and 33ºC compared to 24ºC (p = 0.0003) and at 30 

and 33ºC compared to 27 ºC. Considering the time effect, it was significantly more at the 

first and second time segments compared to other segments and at the third time segment 
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compared to the fourth. Results also showed that the interaction between time and Ta has 

a significant effect on wake bout duration. The interaction effect of the first time segment 

with 24ºC is significantly different from the interaction effect of the same time segment 

with 27ºC and the interaction effect of the first time segment with 27ºC is significantly 

more than the interaction with 30ºC. Third time segment and 33ºC interaction is 

significantly less than the interaction of the first time segment with 27ºC.  For the fifth time 

segment, the interaction with 24ºC and with 27ºC is significantly different from the 

interaction with 33 and 30ºC respectively.  The interaction effect of the sixth time segment 

with 24ºC is significantly less than the interaction of the fifth time segment with 30ºC and 

sixth time segment with 30 and 33ºC. Finally, the interaction of the seventh time segment 

with 24ºC is significantly less than the interaction with 27, 30, and 33ºC.  

While time has no effect on mean NREM bout duration, Ta does have a significant effect. 

NREM bout duration increased significantly at 27,30, and 33ºC compared to 24ºC, at 30 

and 33ºC compared to 27ºC, and at 33ºC compared to 30ºC. There was no significant effect 

of Ta-time interaction. The effect on REM bout duration was significant only from 

temperature. Mean bout duration of REM sleep increased at 30 and 33ºC compared to 24ºC 

and at 30ºC compared to 27ºC.  

SWS bout duration increased significantly at: 30 and 33ºC compared to 24ºC, 30 and 33ºC 

compared to 27ºC, and at 33ºC compared to 30ºC. Time has a significant effect as well, 

SWS mean bout duration decreased with time (the general trend at each temperature). Post-

hoc analysis showed that it is significantly different at the first time segment compared to 

all other segments, at second time segment compared to the seventh, at third and fourth 

time segments compared to the sixth and seventh segments, and at fifth time segment 

compared to the seventh.  
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Figure 2.9. Effect of Ta on mean bout duration of wake, NREM, REM, and SWS. Each data point 
(expressed as mean ± sem) was computed hourly with a 2-hr moving window. Time starts at 10 
a.m. and ends at 4 p.m.  Repeated measures ANOVA was applied on aligned rank data to assess 
the effect. Ta, time, and their interaction had a significant effect. p-value of 0.05 was used as a level 
of significance. See text for details.  

 

2.5.2.3 Effect of Ta and time on number of bouts 

The last sleep metric is the number of bouts of each state, figure 2.10. For wake, repeated 

measures ANOVA showed that both Ta and time have a significant effect on number of 

bouts but not their interaction. Number of wake bouts decreased significantly at:  27, 30, 

and 33ºC compared to 24ºC, 33ºC compared to 27ºC, and 33ºC compared to 30ºC. 

Considering time factor, wake number of bouts increased with time. It was less at first and 

second time segments compared to the others (p < 0.05). The effect of Ta, time, and their 

interaction on NREM number of bouts was exactly the same as in wake.  

Only time had a significant effect on REM number of bouts, it increased significantly at 

third to seventh time segments compared to the first and second. For SWS, number of bouts 
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increased at: 30 and 33ºC compared to 24, 30 and 33ºC compared to 27 ºC, and at 33ºC 

compared to 30ºC. There was a significant difference in SWS number of bouts at the second 

time segment compared to the third, fourth, and fifth, and at third and fourth time segments 

compared to the seventh.   

Considering PW and BA, both Ta and time had a significant effect on the time spent per 

state. While Ta and time had a significant effect on PW bout duration, only Ta had a 

significant effect on BA bout duration. For number of bouts, while both Ta and time had a 

significant effect on BA; only time had a significant effect on PW number of bouts (data 

not shown).    

In conclusion, it is not only the Ta that exerts a considerable effect on mouse sleep, time 

also has a significant effect and should be considered in any research that investigates the 

effect of changes in external environment on sleep-wake architecture.    

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10. Effect of Ta on number of bouts of wake, NREM, REM, and SWS. Each data point 
(expressed as mean ± sem) was computed hourly with a 2-hr moving window. Time starts at 10 
a.m. and ends at 4 p.m. Repeated measures ANOVA was applied on aligned rank data to assess the 
effect. Ta and time had a significant effect but not their interaction. p-value of 0.05 was used as a 
level of significance. See text for details.  
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2.5.3 Temperature effect on sleep depth  

In addition to the quantitative assessment on sleep metrics of SWS, the effect of Ta on 

qualitative measures of sleep depth was evaluated. EEG delta (0.5-4Hz) power and 

amplitude are well-known measures of sleep depth (Borbely and Achermann  1999,  

Jhaveri et al., 2007, and Dijk  2009). Figure 2.11 shows the distribution of EEG delta to 

theta power and EEG delta wave amplitude during NREM sleep at four different 

temperatures. Only two mice experienced a reduction in sleep depth when Ta changed from 

24ºC to 27ºC, here the data from those two mice were excluded. Sleep depth increased 

significantly at 30 and 33ºC compared to 24ºC, at 30 and 33ºC compared to 27ºC, and at 

33ºC compared to 30ºC (p < 0.5, Kolmogorov-Smirnov test). Thus, while temperature 

change outside the TNZ (24 to 27ºC) did not induce a significant effect on sleep depth, 

shifting in Ta within TNZ (from 30 to 33ºC) did. The effect was consistent for both of delta 

to theta power ratio and delta wave amplitude in all mice. Total EEG delta (0.5-4Hz) power 

and low delta (0.5-2Hz) power increased with Ta in the same way delta to theta and delta 

wave amplitude increased (data not shown).  

Figure 2.11. Ta effect on sleep depth during NREM sleep. Left: EEG delta (0.5-4Hz)/theta (6-9Hz) 
power during NREM. Right: EEG delta wave amplitude during NREM.Cumulative distribution 
function of both measures shifted rightward with Ta ; i.e.  more sleep depth at higher Ta.   
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2.6 Conclusions 

More than one study has reported that an elevation in ambient temperature (Ta) produces 

a significant effect on sleep-wake architecture in mice (Roussel et al.  1984,  Jhaveri et al.  

2007, and  Lo Martire et al.  2012). However, those studies were conducted on mice at 

least for 24 hr and typically for several days or weeks (chronic experiments). No previous 

study was done to evaluate the acute effect (over a few hours) of Ta elevation on sleep in 

mice. Here, we evaluated that effect to see if it is similar to the effect seen in chronic 

experiments in mice or acute experiments in rats.  Our results showed that mice tend to 

sleep more and deeper at higher Ta and the sleep seems to be less fragmented; i.e. longer 

in bout duration and less in number of bouts. Our results were consistent with the results 

of chronic experiments in mice in term of time spent, bout duration, and number of bouts.  

There is insufficient knowledge about how an elevation in Ta could affect sleep depth in 

mice. Results from one study showed that mice tend to have less sleep depth at higher Ta 

(Jhaveri  et al.  2007) which is opposite to the results of another study in rats that showed 

rats sleep deeper at higher Ta (Obál  et al. 1983). Using more than one measure to define 

sleep depth, our data clarified the effect of Ta on sleep depth and showed that mice sleep 

deeper at higher Ta.  

Not only does Ta affect mouse sleep-wake architecture, but time has a significant effect as 

well and should be considered in the experiments that investigate the effect of external 

stimuli on sleep in mice.  

The custom-built thermostatic control chamber used in this study was able increase cage 

temperature from room temperature (~23ºC) to the target Ta (24, 27, 30, and 33ºC) in a 

short time. Figure 2.13 shows the time needed by the chamber to get to target Ta. It took 

only few minutes to reach 24, 27, and 30ºC but longer time to get to 33ºC. 

The present findings of this study add an important information to the literature on Sleep-

Ta correlation and could have some important applications related to sleep depth 

enhancement in people with disordered sleep.   
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Figure 2.12. Time to get to target temperature from a “reference” point. The reference point defined 
by 95% of the difference between room (~23ºC) and target temperature (24, 27, 30, and 33ºC). The 
chamber took few minutes to get to 24, 27, and 30ºC but more time (median = 18 min.) to get 
to33ºC.   
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CHAPTER III   EFFECT OF DIURNAL AMBIENT 

TEMPERATURE ELEVATION ON SLEEP AND SEIZURES 

IN A MOUSE MODEL OF TEMPORAL LOBE EPILEPSY 

3.1 Introduction 

Epilepsy is one of the most common and serious neurological disorders, affecting around 

1-3% of the world’s population (World Health Organization  2005) and characterized by 

spontaneously recurring seizures. Epileptic seizures reflect abnormal electrophysiological 

activity in the brain and its physical manifestations can vary from the level of brief muscle 

twitches to severe and prolonged convulsions accompanied by loss of consciousness ( 

World Health Organization  2018). In a complex and diverse field of study like epilepsy, 

there are many different questions researchers try to address depending on their study 

goals. Since sleep is correlated with seizure occurrence in many forms of epilepsy and we 

are interested in studying the effect of temperature on sleep, this chapter explores two 

important questions: how temperature change affects sleep in an animal model of epilepsy; 

and how the effect on different stages of sleep may contribute to epileptic seizure 

facilitation or inhibition.  

The relationship between sleep and epilepsy has been recognized since ancient times by 

Hippocrates and Aristotle, as noted in Gowers’ study, which revealed that around twenty 

percent of epilepsy patients had seizures during sleep and about one third of patients with 

epilepsy had diurnal seizures (Gowers 1885). From the time of the invention of EEG up to 

the present, many studies, taken together, show that epilepsy has a complicated and 

reciprocal relationship with sleep. Epileptic seizures interrupt sleep and therefore affect its 

quality, quantity, and structure. The quantitative and qualitative changes in sleep-wake 

structure is dependent on the type of epileptic seizures and their site of origin. Although 

their sleep is interrupted by the occurrence of seizures, patients with frontal lobe epilepsy 

usually have a sleep structure similar to that of control subjects; patients with temporal lobe 

epilepsy on the other hand experience fragmented sleep, reduction in total sleep time, and 

increase in the number and duration of wake episodes during sleep, reduced sleep quality 
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and an increase in the time to the first REM bout (Crespel et al.  1998) and (Crespel et al.  

2000).  

The timing of seizure occurrence also affects sleep structure. Studies in patients with 

temporal lobe epilepsy showed that when seizures happened during the day, there was a 

significant reduction in time spent in REM sleep the following night without any significant 

changes in other sleep stages, while when they happened early in the night, a greater 

reduction in REM sleep but an increase in the first stage of NREM sleep have been 

observed (Crespel et al.  2000; Bazil and Walczak  1997).  

Sleep in turn exerts an effect on the seizure occurrence. Sleep loss can precipitate seizures 

(Matos et al.  2010). Clinical and experimental studies have shown that different vigilance 

states influence seizure occurrence differently: empirical evidence suggests that NREM 

sleep, in which electrical activity is more synchronous across the cortex, may be much 

more conductive to seizure generation and spread than desynchronized REM sleep  

(Foldvary-Schaefer 2009). During NREM sleep, thalamic nuclei provide diffuse 

synchronized afferent inputs to the cortex and are responsible for the brief, rhythmic sleep 

spindles seen in stage II of NREM sleep. This diffuse cortical synchronization can lead to 

activation of ictal foci in susceptible individuals, which is perhaps why NREM sleep 

appears to facilitate convulsive activity. On the other hand, there is an inhibition of 

thalamocortical synchronization during REM sleep and also a reduction in 

interhemispheric transmission, which prevents generalization (spreading) of epileptiform 

discharges (C Quinto 2000). Interictal epileptiform discharges, not just seizures, are 

facilitated by NREM sleep. Beside the preferential occurrence of seizures in the lighter 

stages of NREM sleep (stage I and II), it has been observed that interictal epileptiform 

discharges are activated by deeper stages of NREM sleep (Minecan et al.  2002). Thus, 

besides our knowledge that epileptic seizures affect sleep-wake structure and contribute to 

sleep fragmentation, different sleep stages affect seizure generation in different ways. In 

the study described earlier in Chapter Two, ambient temperature elevation in mice 

increases slow wave sleep (i.e., deep NREM sleep) and REM sleep, the stages of sleep in 

which epileptic seizure probability is relatively low (Herman et al.  2001). To see if an 

increase in ambient temperature exerts the same effects on sleep in an animal model of 
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epilepsy, we assessed the effect of temperature elevation on sleep and seizures in a mouse 

model of temporal lobe epilepsy (TLE). This is the most common and intractable form of 

epilepsy in humans. In addition, this serves as the first step toward eventually using 

temperature as the means for enhancing sleep in individuals with sleep problems including 

epilepsy patients.  

Most of what is known about the sleep-epilepsy relationship is based on clinical studies in 

humans. However, understanding the complex mechanisms and correlation between 

different sleep stages and epileptic seizures from clinical studies is complicated by the 

effects of antiseizure medication, stress and anxiety due to the clinical environment (Matos 

et al.  2010), and the fact that most human studies are limited to surface EEG recordings. 

Animal models offer the opportunity to reduce the effects of these limitations and study 

the relationship between epilepsy and different vigilance states more clearly. There are 

several models of epilepsy that have been established in rodents. In the present study the 

pilocarpine mouse model of temporal lobe epilepsy (TLE) is used due to the fact that 

seizures in TLE are difficult to control using antiepileptic drugs (Lévesque et al.  2016) . 

Moreover, many aspects of human TLE are mirrored in the pilocarpine mouse model 

(Kandratavicius et al.  2014).   

Not all epilepsy patients respond well to antiepileptic drugs or surgery; around a third of 

all cases remain unresolved. Even medications that help in seizure alleviation often affect 

sleep, mood, and perception negatively (St. Louis  2009, Mula and Monaco  2009, Park 

and Kwon  2008) . Alternative therapies have been developed such as electrical stimulation 

in response to developing or imminent seizure activity (Osorio et al.  2005). The timing 

and dose of the stimulation are critical factors for preventing or at least alleviating seizures, 

but some adverse effects on vigilance and autonomic function may occur (Garcia et al. 

2008,Vyazovskiy et al.  2009, Ebben et al.  2008). Given that thermoregulation is strongly 

intertwined with sleep regulation (as discussed in Chapter Two), and that sleep and seizures 

have a bidirectional correlation, it appears plausible that improving sleep quality – by 

deliberately changing ambient temperature (Ta) – could serve as an unobtrusive way to 

alleviate the seizure burden in patients with epilepsy, if properly implemented.  Thus, 

understanding the sleep-epilepsy interaction and the factors that may have an impact on it 
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(including Ta) could lead to important insights toward developing therapies that could 

contribute to epileptic seizure control/reduction. 

 

3.2 The pilocarpine mouse model of temporal lobe epilepsy  

While studies in human subjects are desirable, they are often not feasible due to the 

unpredictability of seizure occurrence.  Recordings can sometimes last on the order of 

weeks before capturing a seizure, consuming a great deal of monetary and time resources.  

Because of these limiting factors, animal models — and rodent models in particular — are 

widely used to investigate the neurophysiology of epilepsy and titrate experimental 

therapies. One such well-established animal model is the pilocarpine mouse model of TLE. 

Pilocarpine, a muscarinic receptor agonist, is widely used as a model of chronic TLE in 

rodents (Turski et al.  1989,Curia et al.  2008). The pilocarpine mouse shares many of the 

characteristics of human limbic epilepsy including morphological changes such as neuron 

loss in several hippocampal structures and reorganization of mossy fibers into the 

molecular layer of the fascia dentata, a latent period followed by intermittent and 

spontaneous seizures for life, and comorbid effects on sleep and cognition.  Implementing 

this model allows for continuous recordings over several weeks if necessary and, are 

representative of electrophysiological dynamics that occur in human subjects (Leite et al.   

2002). Pilocarpine induces status epilepticus (SE), which is a term used to define a series 

of uninterrupted seizures for an extended period of time (at least 30 min). After recovery 

from status epilepticus, pilocarpine-treated animals develop spontaneously recurring 

seizures (SRS) a few weeks later. During the silent period prior to the development of SRS, 

the brain, and especially the hippocampal formation, undergoes many changes including 

increased cell proliferation, cell death and mossy fiber sprouting  (Mello et al.  1993, Parent 

et al.  1997).  The main features of temporal lobe epilepsy can be summarized by: (i) the 

localization of seizure foci in the limbic system (ii) the frequent finding of an “initial 

precipitating injury” that precedes the appearance of TLE; (iii) a seizure-free time interval 

following the precipitating injury known as “latent period” (Curia et al.  2008).  
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In this study, following the protocol described in Shibley and Smith (2002), SE was 

induced in mice by injecting them intraperitoneally (ip) with a pilocarpine dose of 290 

mg/kg (near LD50). Fifteen minutes before pilocarpine injection, mice were injected with 

methylscopolamine (1mg/kg) ip to block peripheral cholinergic effects. Within two hours 

after pilocarpine injection, animals may develop SE, characterized by convulsive and 

intermittent seizures. The pilocarpine model of TLE is associated with high mortality (30-

40%) during SE, and only about 50% of surviving animals that reach status epilepticus 

(SE) eventually develop SRS, the hallmark of chronic epilepsy. Thus, SE induction often 

gives only a small number of viable candidates (Shibley and Smith  2002).  

According to the Racine scale, seizures are classified into five types based on the relative 

severity of observed behavior (Racine  1972):  

Racine1: Mouth and facial movements, shivering. 

Racine2: Head nodding, stiff tail. 

Racine3: Forelimb clonus, chewing. 

Racine4: Rearing with forelimb clonus, tonic immobility. 

Racine5: Rearing and falling with forelimb clonus (tonic-clonic seizures).  

Here, mice that survived SE (n = 4) were then given a sugar solution (to maintain glucose 

level in the blood) and monitored for signs of SRS over several weeks of latent period using 

piezoelectric (“piezo”) motion sensing and digital video recordings. Epileptic seizures were 

detected using the line length (LL) and Teager energy (TE) features computed from the 

piezo signal (see next section for details). After verification of SRS, each epileptic mouse 

was surgically implanted under anesthesia with a three-channel headmount (Pinnacle 

Tech., Lawrence, Kansas) for continuous tethered recording of the frontal and parietal 

electroencephalogram (EEG) and nuchal electromyogram (EMG). The implantation 

procedure is described in detail in Chapter Two. Mice were treated with an oral analgesic 

(Carprofen) both before and after surgery and allowed to recover in their home cages before 

exposing them to an elevated temperature. Figure 3.1 shows the steps of SE induction and 

seizure detection (from piezo and video recordings) in the pilocarpine mouse model of 

TLE. 
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Figure 3.1. Pilocarpine model of TLE. Steps of SE induction and seizure detection in a mouse 
model of TLE. (a)  Pilocapine injection; (b) Mouse develops SE for up to 2 hours; (c) Video/motion 
monitoring for 6-8 weeks (latent period); (d) Seizure detection using piezo line length (LL) and 
Teager energy (TE) features. The dashed black line is the threshold applied to identify seizure 
candidates before verifying them visually on video. Mice that developed SRS were then implanted 
with EEG/EMG electrodes. 

 

3.3 Experimental procedures and methods 

All procedures were performed in accordance with the prior approval of the Institutional 

Animal Care and Use Committee (IACUC) of the University of Kentucky. Four adult male 

mice (C57BL/6, Harlan), 6-8 weeks of age, survived SE and developed chronic epileptic 

seizures. After spontaneous seizures were observed, each animal was surgically implanted 

with head-mounted EEG and EMG and allowed to recover for 7-10 days. Prior to the 

experiment, each mouse was housed in an individual cage under fixed environmental 

conditions (14h:10h Light: Dark cycle, ambient temperature, and humidity) for ten days 

with continuous recording of EEG, EMG, piezo, and video. Details of animal housing 

conditions, surgery and acquisition system and thermostatic control were described earlier 
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in Chapter Two. After ten days of baseline recording at room temperature, each mouse was 

exposed to an elevated Ta of 30°C (in the thermoneutral zone) every other day for up to 

two weeks, but only during the 14-hour Light period (subjective day) with reversal to 

baseline room temperature (Ta ~ 23°C) at any other time. The protocol is therefore divided 

into “Prethermal” days at room temperature; “Off” days, again at room temperature; and 

“On” days, at elevated temperature in the Light period alone. After completion of this 

protocol, the experiment was terminated and the recordings archived for analysis.  

 

3.3.1 Sleep analysis 

Changes in vigilance state and the time of day can influence the occurrence of seizures. In 

order to track and characterize changes in vigilance dynamics at elevated and baseline Ta, 

the previously validated SegWay algorithm (Yaghouby and Sunderam 2016) was applied  

to automatically score each recording in sequential 4-s epochs into different vigilance 

states, namely wakefulness (“Wake”), NREM, and REM. Vigilance states are 

distinguished by the following EEG/EMG characteristics: muscle tone (EMG) is high in 

Wake and low in sleep,  The EEG delta (0.5-4 Hz) to theta (6-9 Hz) power ratio is high in 

NREM sleep and low in REM sleep. Figure 3.2 shows sample features (EEG delta/theta 

power ratio and EMG power) with the corresponding sleep scores computed in 4-s epochs 

for a mouse exposed to baseline and elevated Ta over a 6-h period. The feature trends 

suggest a general increase in NREM with Ta and possibly other subtle changes.  

To better quantify the effects of Ta, vigilance states (Wake, NREM, and REM) were 

scored, and three sleep metrics – the percent time, mean bout duration, and number of bouts 

of each state – were estimated from the sequence of vigilance scores. NREM sleep was 

further classified into light and deep sleep (or slow wave sleep: SWS) using an EEG zero-

crossing criterion and SWS computed as a proportion of NREM. The sleep measures were 

compared statistically for the Light period during On days versus that of the intervening 

Off days, and of the Prethermal baseline. A false positive error probability p ≤ 0.05 was 

considered statistically significant in all analyses. 
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Figure 3.2. Six-hour recording showing feature trends for the EEG and EMG and the 
corresponding sequences of vigilance scores (hypnograms) at baseline and elevated Ta. EMG 
power is high in wakefulness (W) and low in sleep. The delta/theta power ratio (D-T) is high in 
NREM (NR) and low in REM (R). An epileptic mouse spent more time in NREM and REM sleep 
and less time in wake at higher Ta. 

 

3.3.2 Seizure detection 

Several automated algorithms have been developed for the purpose of seizure detection in 

humans and rodent models because reviewing EEG signal visually to detect seizures is a 

very difficult and time-consuming task. Those automated methods usually require two 

main steps: (1) selection and computation of appropriate signal features (e.g., line length, 

Teager energy) and (2) determination and application of a threshold or other statistical 

criteria to distinguish seizures from other normal behaviors like grooming, drinking, and 

eating (Ramgopal et al.  2014). Most of those methods are based on a computational 

analysis of EEG including line length, wavelet transforms, total variation of signal, and 

others (Bergstrom et al.  2013). The EEG during epileptic seizures is marked by spike 

waveforms of high amplitude and time-varying frequency; the electrical activity is 
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accompanied by convulsive behaviors that are reflected in the EMG and piezo signals. 

Figure 3.3 shows a sample of electrophysiological recordings before, during, and after a 

seizure in a mouse model of TLE that illustrates these phenomena.  

 

 

 

 

 

 

 

 

Figure 3.3. Sample of EEG, EMG, and piezo signals during a typical seizure in a mouse model of 
TLE. Time is shown relative to seizure onset. The seizure lasts about 35 s and was graded as a 5 
on the Racine scale. High amplitude and frequency activity are observed on the EEG, EMG, and 
piezo traces during the seizure. 
 

 

In this study, seizures were detected by computing the line length (LL) and Teager energy 

(TE) features in a 4-s moving window from the piezo signal before EEG/EMG implantation 

and from both EEG and piezo signals afterwards. Both features are sensitive to high energy 

activity, and depart from their baseline levels during seizures (Figure. 3.4). The values are 

compared to a threshold at each time instant to detect possible seizures. Briefly, LL is a 

simple computational measure that has been widely used before as an efficient feature for 

seizure detection as it goes up when signal magnitude and frequency increase. It is defined 

as the sum of the vertical distance between successive samples of the signal and is 

computed as (Esteller et al.  2001): 
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where x is the sampled signal, k is the sample index in a window of length N ending at time 

t, and abs stands for absolute value. Here, LL was computed after filtering the EEG and 

piezo signals to within 0.5-45Hz and 0.5-20Hz respectively. Teager energy (TE) is a 

nonlinear operator that responds to rapid changes in the amplitude or frequency of the 

signal (Kaiser  1990). In a continuous time series x(ݐ), TE is computed as: 

 

ሻݐሺܧܶ ൌ ሻݐଶሺݔ െ ݐሺݔ െ 1ሻݔሺݐ ൅ 1ሻ 

  

Both LL and TE features from EEG and LL from piezo were computed for each recording. 

Piezo TE seemed to be more variable than piezo LL. Figure 3.4 illustrates the changes in 

EEG LL, EEG TE, and piezo LL features along with the scores of different vigilance states 

(Wake, NREM, and REM) over four hours of recording in an epileptic mouse. All seizures 

are then verified by examining the video record and counting true detections separately for 

each day and experimental condition. Seizure rates were estimated separately for Light and 

Dark periods of Prethermal, Off, and On days in the protocol. Temperature effects on 

seizure frequency and timing were assessed statistically for On days versus Prethermal and 

Off days. 
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Figure 3.4. Four-hour recording showing sample features of the EEG line length (LL) and Teager 
energy (TE), and piezo line length (LL). TE and LL show rapid surges in value during seizures. This 
example shows three seizures during Wake. The piezo LL feature is presented here because it has 
been used in favor of piezo TE since it has a smaller dynamic range in the baseline and seems to be 
less influenced by other factors including circadian rhythms. W: Wake, NR: NREM, and R: REM.  

 

3.4 Results and discussion 

Though the correlation between sleep and epilepsy is well recognized by many studies in 

humans and rodents, sleep parameters have not been documented in the pilocarpine mouse 

model of TLE well enough to enable assessment of the effects of experimental intervention. 

Thus, before conducting any thermal manipulation on the epileptic mice and to get an idea 

about the sleep structure and seizure activity in this model under baseline conditions, the 

sleep metrics and seizure parameters, specifically seizure rate and timing, were 

characterized for data collected over 10 days from each epileptic mouse before running the 

temperature elevation protocol. Then, the Ta effect on sleep and seizure was statistically 

evaluated for On days versus Off days versus Prethermal baseline during the light period.  

R 
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3.4.1 Effect of Ta on sleep 

The estimated sleep metrics during the light period for Prethermal baseline, Off, and On 

days are statistically compared in Figure 3.5 as daily averages pooled for all four animals. 

The Kruskal-Wallis test (with post hoc pairwise comparisons) was applied to assess the 

difference because the Prethermal baseline sample is unmatched with that of Off and On 

days; n equals 40 days for Prethermal baseline and 48 days each for Off and On samples. 

While time spent in wake increased significantly (p < 0.05) during Off days compared to 

Prethermal, time in NREM and REM decreased but not significantly. Compared to Off 

days, wake decreased and NREM increased (both significantly) during On days. Only 

NREM changed significantly during On days compared to Prethermal though there was a 

clear reduction in wake. An increase in wake time in Off days compared to Prethermal 

seems to come from a significant increase in bout duration associated with a non-significant 

reduction in number of bouts. There was a non-significant reduction in wake bout duration 

(p > 0.05) going from the Off to On condition that is reflected in the time spent in wake. 

Compared to Prethermal, there were no significant changes in wake bout duration or 

number of bouts during On days though the number of bouts decreased clearly. As in wake, 

NREM sleep seems to be more consolidated during Off days compared to Prethermal, i.e., 

a significant increase in bout duration associated with a significant reduction in number of 

bouts. Compared to Off days, an increase in NREM during On days appeared to come from 

a significant increase in number of bouts. No significant changes in NREM bout duration 

or number of bouts were observed in On days compared to Prethermal days. Finally, the 

reduction in REM sleep during Off days compared to Prethermal seemed to come from a 

non-significant reduction in the number of bouts rather than bout duration. 

Next, a Wilcoxon signed rank test was used to assess the effect of Ta on sleep in the 

experimental period; i.e. On days versus preceding Off days (matched samples). These 

epileptic mice spent more time in NREM sleep and less time in Wake (p < 0.05) in On days 

compared to Off days. REM sleep increased at elevated Ta but not significantly. The 

number of NREM bouts increased significantly with Ta (p = 0.0007). The numbers of 

REM and Wake bouts both increased in On days but the effect was not significant. Looking 

at sleep changes with Ta in each animal, there was a significant increase in NREM sleep 
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in two of the four mice (see Table 3.1), which coincidentally had significantly more NREM 

bouts as well. Time in Wake decreased with an increase in Ta; this was significant in three 

animals. The mean number of Wake bouts did not change significantly with Ta. Mean 

Wake bout duration decreased at elevated Ta in all animals, but significantly in only one 

of them (Ajwad et al.  2016). Time spent in REM sleep increased with Ta in three mice, 

but not significantly. The percent of REM sleep seemed to be high compared to that in 

nonepileptic controls (Jhaveri et al. 2007 and Yaghouby et al. 2016).  

To summarize: 

(a) Off versus Prethermal: Compared to Prethermal, time spent in wake in Off days 

increased significantly in bout duration not the number of bouts. NREM bout 

duration increased with a significant reduction in number of bouts. REM sleep 

decreased due to a non-significant reduction in number of bouts. 

(b) On versus Prethermal: While wake in On days decreased insignificantly due to a 

reduction in number of bouts, NREM time increased along with non-significant 

increases in number of bouts and bout duration.  

(c) On versus Off: there was some variability (as expected) in the effect of Ta on sleep 

metrics across the four mice. But in general, both NREM and REM sleep increased 

with Ta elevation due to an increase in their number of bouts. However, their mean 

bout duration did not change at elevated Ta. Time spent in Wake decreased 

significantly due to a reduction in its mean bout duration but not the number of 

bouts.  
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Figure 3.5. Different sleep-wake parameters are compared between vigilance states for Prethermal 
baseline versus Off days versus On days during the Light period. Compared to Prethermal, epileptic 
mice spent more time in wake during Off days (p < 0.05, Kruskal-Wallis test) and less time in 
NREM and REM (p > 0.05). Both wake and NREM bout duration increased significantly (i.e. more 
consolidated bouts). Compared to Off days, epileptic mice spent less time in Wake and more time 
in NREM (p < 0.05) in On days (Ajwad et al.  2016). Time spent in NREM during On days was 
significantly more than in Prethermal days.  Data are expressed as mean ± sem. * indicates a 
significant difference relative to Prethermal baseline days and † indicates a significant difference 
relative to Off days. 
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Wake bouts were further classified into: brief arousal (BA), defined as any wake bout with 

duration under 5 min, and prolonged wake (PW) otherwise. The effect of Ta elevation on 

BA and PW was statistically evaluated by comparing the distributions of their bout duration 

and number for Prethermal, On and Off samples using the Kolmogorov–Smirnov test. 

Mean bout duration and number of bouts were significantly different in Off days compared 

to Prethermal and in On days compared to Off and Prethermal days. While PW bout 

duration increased significantly in Off days compared to Prethermal, it decreased 

significantly in On days compared to Off/Prethermal days (p < 0.05). For BA, the mean 

bout duration was significantly lower for Prethermal and On days compared to Off days 

and for Prethermal compared to On days (Figure 3.6). There was a decreasing trend in the 

number of bouts for both PW and BA going from Prethermal to Off to On days; the effect 

was significant for both of them (data not shown). Thus, time spent in wake increased 

during Off days compared to Prethermal, an effect that came mainly from an increase in 

wake bout duration. A closer look revealed that the increase in bout duration originally 

came from an increase in the duration of PW and BA bouts, not their number of bouts. 

Going from Off to On days, time spent in wake reduced significantly, which seems to have 

come from a significant reduction in both PW and BA bout duration and their number of 

bouts. Finally, time spent in wake was slightly less for On days compared to Prethermal 

due to a reduction in number of bouts for both BA and PW (mainly BA).   

Figure 3.6. Effect of Ta on wake bout duration: (left) prolonged wake (PW), (right) brief arousal 
(BA) bouts. Both BA and PW bout duration decreased significantly with Ta (p < 0.05). 
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Table 3.1. Seizure rate (no. /day), (% time, number of bouts, and mean bout duration) in Wake, NREM, and 
REM during the Light period (n: number of days, L: Off Ta, H: On Ta). All values are expressed as mean ± 
sem. * indicates significant difference between values in H and L (Wilcoxon signed rank test).   

 

 

Outcome 

 

Ta 

Mouse ID 

1 (n=11) 2 (n=12) 3 (n=13) 4 (n=12) 

 

Seizure rate 

L 1.4 ± 0.5 2.5 ± 1.1 0.7 ± 0.2 1.2 ± 0.6 

H 2.1 ± 0.7 1.8 ± 0.8 1.1 ± 0.3 0.4 ± 0.2 

P
er

ce
nt

ag
e 

(%
) 

of
 e

ac
h 

 

vi
gi

la
nc

e 
st

at
e 

Wake L 53 ± 4 52 ± 2 35 ± 6 51 ± 2 

H 30 ± 2* 39 ± 2* 32 ± 3 44 ± 2* 

NREM L 33 ± 3 35 ± 3 46 ± 4 40 ± 2 

H 53 ± 3* 46 ± 2* 52 ± 2 43 ± 1 

REM L 14 ± 3 11 ± 2 19 ± 3 10 ± 2 

H 18 ± 3 14 ± 1 16 ± 2 13 ± 3 

N
um

be
r 

of
 b

ou
ts

 

 

Wake L 11 ± 1 4 ± 1 9 ± 1 4 ± 1 

H 9 ± 1 6 ± 1 10 ± 1 4 ± 1 

NREM L 6 ± 1 6 ± 1 11 ± 1 8 ± 1 

H 14 ± 3* 9 ± 1* 18 ± 7 9 ± 1 

REM L 10 ± 2 4 ± 1 22 ± 12 6 ± 1 

H 16 ± 3 8 ± 1* 8 ± 1 6 ± 1 

M
ea

n 
bo

ut
 d

ur
at

io
n 

 (
se

c)
 

Wake L 234 ± 35 640 ± 125 193 ± 55 519 ± 51 

H 157 ± 18 312 ± 53* 115 ± 12 401 ± 30 

NREM L 252 ± 24 257 ± 22 165 ± 15 199 ± 20 

H 236 ± 59 224 ± 28 169 ± 11 201 ± 20 

REM L 48 ± 8 98 ± 11 75 ± 6 60 ± 5 

H 44 ± 4 74 ± 6 80 ± 5 78 ± 6 
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3.4.2 Effect of Ta on SWS and sleep depth 

Using EEG zero-crossing criteria, any NREM epoch was classified as SWS if the number 

of EEG zero-crossings during NREM fell below the lowest 30th percentile of zero-crossing 

values in NREM epochs recorded at baseline Ta.  Results showed that the time spent in 

SWS during the Light period is significantly higher in Prethermal compared to Off days 

but significantly lower than On days (Kruskal-Wallis test) (Figure 3.7). Epileptic mice 

spent more time in SWS in On days compared to Off days (p < 0.05).   

Then Wilcoxon signed rank test was applied to test the effect of Ta elevation on the percent 

of SWS during On days versus Off days (matched data).  An elevation in Ta increased 

SWS time significantly (p < 0.05).  The changes in SWS % over time showed a different 

trend than the one seen in non-epileptic controls in which the proportion of SWS decreased 

gradually from 9 a.m. to 5 p.m. That gradual decrease in SWS % in controls has been 

supported by one study in rats (Obál et al.  1983). Looking at data pooled from four 

epileptic mice, SWS % increased gradually from 7 a.m. to around 4 p.m. before declining 

over the next five hours, the trend was the same at baseline and elevated Ta. However, the 

percent of SWS has increased with temperature each hour. The trend was consistent in 

three out of four epileptic mice; the fourth showed a decreasing trend in the first few hours 

and then increased over the rest of time. This needs to be clarified in a larger sample of 

data especially since it has not been examined before in a mouse model of TLE.  

The reduced sleep depth is common in epilepsy patients. To our knowledge neither the 

measures of sleep depth nor the effect of Ta changes on sleep have been studied before in 

a pilocarpine mouse model of TLE or other epilepsy models.  Here, EEG delta to theta 

power ratio (0.5-4Hz)/(6-9Hz) was defined to be the sleep depth measure. Figure 3.8 shows 

that the distribution of delta to theta power has shifted to the left in Off days comparing to 

Prethermal (less sleep depth) and then to the right in On days compared to Prethermal and 

Off days (more sleep depth). This is consistent with the SWS % differences between the 

three conditions.  
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Figure 3.7. Effect of Ta on %SWS during NREM sleep. Epileptic mice tend to have less SWS in 
Off days compared to Prethermal and more SWS in On days compared to Off days and Prethermal. 
* and † indicate a significant difference relative to Prethermal and Off days respectively (p-value 
< 0.05, Kruskal-Wallis test).  

 

 

 

 

 

 

 

 

Figure 3.8. Effect of Ta on sleep depth. The distribution of Delta (0.5-4Hz) to theta (6-9Hz) power 
ratio shifted leftward in Off days compared to Prethermal and then to the right in On days compared 
to both Prethermal and Off days; i.e. greater sleep depth at higher temperature. 
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  *† 
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3.4.3 Effect of Ta on seizure rate and timing 

During Prethermal days, a total of 103 seizures were detected and verified using EEG, 

EMG, piezo, and video recordings in Light and Dark periods. There was some variability 

in seizure number across the four animals. More seizures occurred in the Light period (n = 

64) than the Dark period (n = 39). While epileptic mice had 58 seizures during the Light 

period and 54 seizures during the Dark period in Off days, they had 53 seizures during the 

Light period and 79 seizures during the Dark period in On days. Figure 3.9 shows the daily 

seizure rate of data pooled from four mice in the Light and Dark periods for Prethermal, 

Off and On days.  There was no significant difference in seizure rate between Prethermal, 

Off, and On days during Light or Dark phases (p > 0.05, Kruskal-Wallis test). No 

significant changes were observed in seizure rate between : (a)  Off and On days during 

the Light and Dark periods (b) the Light and Dark periods of each condition (p > 0.05; 

Wilcoxon signed rank test).  

A closer look at the seizure rate for On days versus Off days during the Light period 

revealed that there is some variability in mean seizure rate across animals. During On days, 

the rate increased in two animals and decreased for the other two; but neither effect was 

significant (Ajwad  et al.  2016); see Table 3.1. The two animals (Mouse 2 and 4) in whom 

seizure rate was lower at elevated Ta were the same animals that demonstrated a significant 

reduction in Wake % coupled with an increase in REM % (p < 0.05; Wilcoxon signed rank 

test). This is consistent with the notion supported by a large body of literature that seizures 

are much less likely to occur in REM sleep than NREM (Foldvary-Schaefer  2009 and   

Herman et al. 2001).  
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Figure 3.9. Effect of Ta on seizure rate during the Light and Dark periods. No significant effect 
was observed between the three conditions or between the Light and Dark periods of each condition 
(p > 0.05, Kruskal-Wallis test). Median of seizure rate is zero for Prethermal (Dark period), Off 
(Dark period), and On (Light period). 

 

The seizure rate results suggest that an elevation in Ta (30ºC) during the Light period shifts 

the seizures toward the Dark period. Hence, we looked at the hourly seizure distribution 

for Prethermal, Off and On days during the Light and Dark periods. For Prethermal data; 

the hourly seizure rate varied with the time of day but interestingly (see Fig. 3.10.a) while 

it peaked at 20:00 (one hour before light off onset), no seizures were detected at 6 a.m. 

(one hour before light on onset). In three of four mice, seizures were clustered at 20:00 but 

the previous hour was seizure-free. Though the effect of the Light: Dark cycle on hourly 

seizure rate distribution is not very clear, there is an indication of this effect as shown in 

the figure below; but again this needs to be clarified in a larger sample. For Off days, 

seizure distribution seemed to be equal in the Light and Dark periods, Fig. 3.10.b. That was 

consistent for all four mice.   Figure 3.10.c shows that more seizures happened in the Dark 

period for On days, especially in the first hour after the onset of the Dark period. Those 

findings support the observed Ta effects on seizure rate. To conclude: (a) seizures in the 
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Dark period are less than the Light period for Prethermal, (b) they are equal in both periods 

for Off days, and (c) more in the Dark period than the Light period for On days.  

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. Effect of Ta on the hourly seizure rate (expressed in units per day) for data pooled 
from four epileptic mice. (a) Prethermal: fewer seizures occurred in the Dark period than the Light 
period, (b) Off Days: seizures were equally distributed in the Light and Dark periods, and (c) On 
Days: the seizures shifted toward the Dark period. Zero degrees on the polar histogram refers to 
the onset of the Light period (7 a.m.), and 210 degrees marks to the onset of the Dark period (9 
p.m.). The red arrow points to the mean seizure phase (time of day) and is of length equal to the 
mean seizure rate.    

 

(c) 

(a) (b) 
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3.5 Conclusions  

To our knowledge, the effect of Ta on sleep has not been investigated in this detail before 

in models of epilepsy. In general, the results of this study show that epileptic mice tend to 

have a reduction in Wake coupled with an increase in NREM, REM, and SWS at an 

elevated Ta compared to intervening days when Ta was kept at room temperature. The 

increase in NREM appears to come from an increase in the number of NREM bouts rather 

than the mean bout duration. Changes in time spent in REM appeared inconsistent, 

increasing in three animals and decreasing in the fourth. The increase in SWS and REM 

sleep hints at the possibility of using ambient temperature regulation as a simple and non-

invasive way to modulate sleep toward the goal of reducing seizures since both SWS and 

REM sleep mechanisms work against generation and propagation of epileptic seizures 

(Herman et al.  2001). This study also shows that elevated Ta has similar effects on sleep 

in epileptic mice as in controls but with more NREM sleep bouts associated with no change 

in their mean duration.   

All seizures in this study were classified in the range S3 to S5 on the Racine scale and they 

occurred during different vigilance states. A couple of other abnormal activities including 

absence seizures were captured on the EEG signal but with no sign of convulsion on EMG 

or piezo signals; these few events were neglected.  

Age has an important effect on epileptic seizures (Karnam et al.  2009). Our epileptic mice 

at the start of thermal experiment were different in age, 13 to 24 week. This difference 

could be a factor in the variability seen in sleep and seizures outcomes across animals.  

Due to the long latency to onset of chronic epilepsy in mice and the high mortality rate 

associated with pilocarpine SE induction, this study was severely handicapped by a small 

size.  That was the major limitation of this study; but the number of days (minimum of 10 

per animal for each condition (Prethermal, Off, and On)) is however large enough to 

suggest that the findings of this study may be more than a chance observation. The 

possibility of losing the animal due to seizure while running the experiment and having 

only one thermal chamber to run the experiment on one mouse for a month were the other 

limitations we had in this study.   
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CHAPTER IV   DYNAMIC SLEEP MODULATION IN 

CONTROL MICE THROUGH AMBIENT TEMPERATURE 

REGULATION 

 

4.1 Introduction 

Though its ultimate function is still unclear, sleep undoubtedly plays a very critical role in 

many fundamental processes associated with brain and body function such as memory 

consolidation and energy metabolism. In recent times, the importance of sleep in learning 

and memory consolidation has been extensively studied in human and rodents. Both 

NREM and REM sleep are involved in memory consolidation in different ways. While 

deep NREM sleep (also known as slow wave sleep, or SWS) enhances the consolidation 

of declarative memory by the hippocampus, REM sleep tends to support the memory 

consolidation that is not mediated by hippocampus (Giuditta et al.  1995). Other studies 

assert that while SWS helps in improving some procedural skills (also known as non-

declarative memory) (Gais et al.  2007  and  Aeschbach et al. 2008), REM sleep participates 

in enhancing declarative memory (Fogel et al.  2007  and  Rauchs et al.  2004). Stage 2 of 

NREM sleep is found to contribute to the strengthening of memories in humans and rats 

(Rebecca  et al. 2002 and  Datta  2000).  In addition to its beneficial role in brain function, 

SWS has been recognized for its importance in controlling glucose metabolism and 

regulating autonomic functions such as heart rate and body temperature (Cautera et al. 

2008 and  Bellesi et al.  2014). Thus, many studies have started investigating and trying 

different approaches to enhance SWS: some of these approaches involve pharmacological 

agents such as tiagabine and gaboxadol, which target an increase in deep sleep duration 

(Walsh  2009, Lundahl et al.  2007,  Bazil et al.  2012). Other approaches use non-

pharmacological interventions like sleep restriction as it is known to impair waking 

neurobehavioral function which in turn enhances SWS  (Van Dongen et al. 2003), auditory 

stimulation (Garcia Molina et al.  2018) or  transcranial direct current stimulation (tDCS) 

and  transcranial magnetic stimulation (TMS) applied to the human cerebral cortex at 
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specific frequencies (Marshall et al.  2006  and  Massimini et al.  2007).  However, some 

adverse effects such as nausea and vomiting in pharmacological approaches or limited 

sleep time in non-pharmacological approaches have been noted. Thus, there is a need for 

deep sleep enhancement approaches that are noninvasive, stress-free, low in cost, and with 

minimal adverse side effects.  

Deep sleep is marked by the prevalence large amplitude slow oscillations (hence the name 

slow wave sleep, or SWS) in the delta band (0.5-4 Hz) of the EEG. Sleep depth is hence 

usually measured by the strength of EEG delta band power (as discussed in Chapter Two), 

which is easily detected in surface EEG or local field potential measurements during 

NREM sleep. SWS, which occurs mainly in stage 3 of NREM sleep in humans, increases 

with sleep depth and has been studied in many species; its correlation with prior wake 

duration has been well documented (Borbely et al. 1989, Lancel et al. 1992 , Huber et al. 

2000). This chapter describes a simple non-invasive approach that has been proposed to 

test the feasibility of enhancing sleep depth and increasing the proportion of SWS in mice 

by using a closed-loop control system that manipulates ambient temperature to minimize 

the error between the actual sleep depth measure and a pre-specified target value. A 

successful outcome will provide a method of sleep modulation that avoids many limitations 

seen in other approaches and is amenable to clinical translation.   

As in any closed-loop control system, error detection and compensation are the key 

elements of our proposed approach: the designed system tries to reach a desired or specified 

target value of sleep depth (defined here as a value typically seen in deep NREM sleep); 

the system’s state (defined by the actual value of the sleep depth measure) is compared to 

the target value; and based on that error between actual and target values, the system output 

is corrected through ambient temperature regulation by either increasing or decreasing the 

mouse cage temperature. Closed-loop control theory has been applied in many areas of 

neuroscience: for instance, in optogenetic control for the purpose of stimulation, inhibition 

and modulation of neural activity in real time (Grosenick et al. 2015). EEG and transcranial 

magnetic stimulation (TMS) have been used in closed-loop protocols, to study the 

implications of this approach in neurophysiology (Zrenner et al.  2016). Auditory closed 

loop stimulation has been developed to drive sleep slow oscillations in humans (Ngo et al.  
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2015). Closed-loop techniques in seizure detection and prevention have been demonstrated 

in several studies (Paz et al.  2013,  Krook-Magnuson et al.  2013 , Salam et al.  2016). 

The quantity and timing of sleep and wake are influenced by many external factors such as 

changes in environmental temperature as was explained in Chapter Two. Changes in 

ambient temperature (Ta) also have an effect on ultradian rhythms, which are biological 

rhythms that occur with periods less than 24 hours. In contrast to humans, rodents exhibit 

polyphasic (ultradian) sleep cycles, which makes their response to environmental changes 

more flexible (Stephenson et al.  2012).  Our results from static experiments in Chapter 2 

suggested that an elevation in Ta influences the duration of sleep and wake bouts. To see 

whether this ultradian sleep-wake cycle can be entrained to an externally imposed rhythm 

by manipulating Ta, a “sleep-wake induction” strategy was developed to control the timing 

and duration of sleep/wake bouts using a closed-loop control system. 

Given that temperature changes have a significant effect on sleep in control and epileptic 

mice, this chapter covers aims III and IV of the dissertation which demonstrate the 

feasibility of sleep depth modulation and sleep-wake timing regulation in control mice in 

real time using closed-loop strategies.  Here, three different strategies for sleep modulation 

were developed and tested: 

 1. Ta was manipulated to force the proportion of time spent in sleep to approach a target 

value using a closed-loop control system to test the feasibility of thermal sleep modulation 

(n = 2).  

2. Ta was manipulated to enhance NREM sleep depth in real time based on the error 

between Q, the instantaneous EEG delta/theta bandpower ratio, and a preset target value 

typically seen in deep NREM sleep (n = 5).  

3. The setpoint for Q was programmed to exponentially decay (over 30 min) or grow (over 

60 min) to approach values typical of Wake and deep NREM sleep to see if the ultradian 

sleep-wake cycle could be entrained to an externally imposed rhythm (n = 11). 
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4.2 Experimental procedure 

All experimental procedures in this chapter were carried out with the prior approval of the 

Institutional Animal Care and Use Committee (IACUC) at the University of Kentucky. 

Mice were housed individually in 23cm × 15cm × 15cm plexiglass cages with food and 

water available ad libitum. Conditions in the animal facility during the study were 

maintained at a temperature of 20-23°C, relative humidity of about 50%, and a 14h/10h 

light/dark cycle with the lights turned on from 7 a.m. to 9 p.m. Each mouse was surgically 

implanted under anesthesia with a head-mounted preamplifier (Pinnacle Tech., Lawrence, 

KS, USA) for continuous tethered recording of frontal and parietal EEG and nuchal EMG 

(details of the surgical procedure were described in Chapter Two). For each sleep 

modulation strategy, a computer program was written in the LabVIEW environment to 

regulate Ta in the mouse cage, as measured by a suspended thermistor (details of the 

thermal system are described in Chapter Two). The system switched the heater on or off as 

needed to manipulate Ta and satisfy the objective of sleep modulation. After allowing 

about two weeks to recover from surgery, mice were transferred to the thermal chamber 

and allowed to acclimatize to the new cage for two days. Then, different protocols were 

applied to serve the purpose of each dynamic control strategy as described in the following 

sections.  

4.3 Dynamic sleep modulation strategies 

To test the feasibility of titrating sleep in mice by manipulating Ta, three dynamic strategies 

with different objectives were devised and tested.  

4.3.1 Control of sleep proportion 

After confirming that ambient temperature elevation has a significant effect on sleep in 

control and epileptic mice, the next logical step was to develop a simple strategy for 

dynamic sleep modulation by manipulating Ta in closed-loop, i.e., in response to observed 

changes in behavior. A sample trial on a control mouse (Fig. 4.1) demonstrates how 

dynamic sleep titration might be achieved. In this experiment, vigilance state labeled every 

one second in real time by an automated EEG/EMG classifier (Yaghouby et al.  2016) was 
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used to estimate the ratio R of time in sleep (REM or NREM) relative to wake in a moving 

5 min window. R was scaled to give a sleep quality metric q ϵ [0, 1] using the 

transformation (1-e-R) /(1+e-R). The error ε between q and a target value q* served as the 

basis for control of Ta (initially set to 22°C), which was raised or lowered by 1°C every 5 

min to shift the sleep-wake proportion towards q*. Here, q* was set to 0.63 (i.e., R = 2, or 

twice as much sleep as wake) and the set point Ta changed by 1°C—while remaining 

within the 22-30°C interval—every 5 min based on the following rule (Ajwad et al.  2016):  

 

ሻ࢚ሺࢇࢀ ൌ ࢚ሺࢇࢀ െ ૚ሻ െ ࢚ሺࢇࢀ∆ െ ૚ሻ	࢔ࢍ࢙ሺࢿሺ࢚ሻ െ ࢚ሺࢿ െ ૚ሻሻ, 

 

where ε(t) = |q(t)-q*(t)|. This control policy changes Ta at each time step in a direction that 

reduces the error in q.   The system compares the error ε(t) at each time with the previous 

error ε(t-1). If ε(t) is greater than ε(t-1), then the system changes Ta in the opposite direction 

to the change that was made at (t-1). If ε(t) is less than ε(t-1), the change in Ta will be in 

the same direction as in (t-1).   In effect, the algorithm follows a temperature profile in 

search of a target sleep quality. In the trial shown below, the net q over 9 hours is about 

0.5, fairly close to the target value of 0.63; by comparison, a baseline recording in which 

Ta remained at ambient conditions gave a net q of about 0.3 (Figure 4.1). There is a clear 

increase in NREM and REM episodes during the dynamic control period compared to 

baseline.  The increase in time spent in NREM and REM came mainly from an increase in 

the number of bouts and not their duration. Wake time decreased during dynamic control 

due to a reduction in bout duration though the number of wake bouts increased. A closer 

look at wake bouts showed that while the number of prolonged wake bouts decreased 

during dynamic control, the number of brief arousals increased but with a decrease in their 

duration.   This is a naïve policy in which the controller has no prior knowledge of the 

effects of Ta on sleep but still manages to gradually increase Ta to drive q toward q*. The 

results suggest the feasibility of sleep regulation in disease models such as epileptic animals 

using any sleep quality metric (e.g., REM/NREM ratio, REM bout duration), perhaps 

reducing seizure likelihood in the process.  
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Figure 4.1. Dynamic thermal sleep modulation. Left: Demonstration of dynamic regulation of Ta 
to achieve a target sleep-wake ratio of 3:2 (q*=0.63) over a 9-hour period.  Right: A recording at 
baseline Ta from the same animal on a different day is shown for comparison purposes. Here, the 
setpoint is computed but not applied: i.e., Ta remains at baseline. Comparing to baseline, it is clear 
that under dynamic control condition the mouse had more NREM (NR) and REM (R) episodes and 
less wake (W).  

 

Next, a random walk Ta control policy was applied to the same animal on a different day.  

In that trial, Ta started at room temperature (~22°C) and raised or lowered by 1°C at each 

step with 50% probability (but not to exceed the lower and upper limits of 22 and 30°C 

respectively. The purpose of this trial was to test whether it was the dynamic control of Ta 

which drove q toward q* and not arbitrary changes in Ta. For the random walk policy, mean 

q was less than 0.1 (Figure 4.2) which is far removed from q* (0.63). This confirms that the 

results of the control experiment did not occur by chance but as a consequence of the 

dynamic strategy, which changes Ta in a direction that minimizes the error between q and 

q*. Thus, the main conclusion of the first dynamic strategy is that dynamic sleep 

modulation though ambient temperature manipulation is feasible.  
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Figure 4.2. Random walk strategy. A recording from a mouse that received a random walk control 
policy over 8 hours. Temperature was incremented or decremented at random at 10-minute 
intervals regardless of the error between q and q* to see if the animal would experience q close or 
far from q*, where q is the sleep-to-wake ratio. q is zero most of the time with a mean less than 0.1. 

 

 

4.3.2 Sleep depth enhancement 

4.3.2.1 Sleep depth modulation (SDM) design 

Five C57BL/6 mice (3 females, 2 males; Envigo-Harlan), 8-12 weeks of age, were 

surgically implanted with EEG/EMG electrodes for measuring brain and muscle activity. 

After adequate recovery, each mouse was exposed to dynamic changes in Ta within the 

thermoneutral zone (TNZ) to enhance deep sleep (slow wave sleep) in real time based on 

the error between Q, the ratio of instantaneous EEG power in the delta (0.5-4Hz) to the 

theta (6-9Hz) band of the EEG, and Q*, a preset target value of Q typically observed in 

deep NREM sleep under baseline conditions. In this protocol, the EEG delta/theta power 

ratio Q was computed in real time in a moving 1-s window. The temperature setpoint Ta 
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was changed by 1°C every 5 min in inverse proportion to the error between Q and a pre-

specified target value Q* of 5 dB, which is typically observed in deep NREM sleep. With 

the assumption that an increase in Ta induces an increase in the EEG delta/theta power 

ratio (more sleep depth), Ta was regulated following the rule: 

 

ሻ࢚ሺࢇࢀ ൌ ࢚ሺࢇࢀ െ ૚ሻ െ ሻ࢚ሺࡽሺ࢔ࢍ࢙ െ  ሻ∗ࡽ

 

However, the changes in Ta were restricted to the interval 22-30ºC during the SDM 

experiment. Deep NREM sleep in control mice is greatest at the onset of the light period 

and decreases steadily thereafter (Obál et al. 1983), even as total sleep increases over the 

next 12 hours. Hence, the SDM protocol was applied to each mouse from 12-7 p.m. when 

light NREM sleep usually dominates. This was done every other day over four consecutive 

days (i.e., two repeats). Ta was kept at 25ºC from 12-7 p.m. on intervening days and 

reverted to room temperature (~ 22°C) at other times with continuous recording of EEG, 

EMG, motion, Ta, and video. Data from two experiments each on five mice were collected 

to give a total of ten recordings for analysis. However, two recordings had to be excluded 

due to some recurring artifacts. Figure 4.3 shows a five-hour sample of recorded data from 

a preliminary experiment in which the controller was active for a three-hour period. A clear 

increase in Q and in NREM bout duration (defined by high Q) are observed while the 

controller was “ON”. 
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Figure 4.3. An SDM trial performed on a mouse over five hours. Except during episodes of REM 
sleep, marked by sharp dips in Q, the squared-error (ϵSDM) between Q and Q * remains close to zero 
in the three-hour period 3-6 p.m. in which the controller was ON (upper panel) compared to a 
baseline (controller OFF) measured during the same period on the previous day (lower panel). Ta 
appears to be driven upward by the algorithm to achieve this effect. The Hi-Low EEG feature, i.e., 
(9-45 Hz)/ (0.5-9 Hz) band power ratio, is typically high in wake and low in NREM. 

 

4.3.2.2 Scoring of vigilance state 

To characterize changes in the sleep depth measure Q and other sleep parameters, data 

were scored offline into Wake, NREM, and REM in 1-sec windows using a previously 

validated hidden Markov model (HMM) algorithm (Yaghouby et al.  2016). Wakefulness 

is distinguished from sleep based on muscle activity (EMG) that is high in wake and low 

in sleep. EEG delta/theta power ratio is used to discriminate NREM from REM sleep; this 

is high in NREM and low in REM. The EEG Hi-Low ((9-45 Hz)/ (0.5-9 Hz)) helps in 

distinguishing sleep from wake. Figure 4.4 shows sample feature traces (EEG delta/theta 

power ratio, EEG Hi-Low power ratio, and EMG power) computed in 1-sec epochs over a 

6-hr period for a mouse at baseline Ta, along with the vigilance state hypnogram scored by 
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the HMM classifier. We further computed the number of EEG zero-crossings in each 

NREM epoch to classify NREM sleep into light NREM sleep (LS) and deep NREM sleep 

(denoted by DS or SWS). Any NREM epoch was assigned to DS if the number of zero-

crossings fell below a threshold defined as the lowest 30th percentile of the number of zero-

crossings in NREM epochs of any of the recordings at baseline Ta (Obál  et al. 1983).  

To quantify the effect of Ta manipulation on sleep depth, the EEG power in the low delta 

band (0.5-2Hz) and mean-squared error in Q with respect to Q* during NREM sleep were 

computed and compared for controller ON and OFF days from 12-7 p.m. using the 

Kolmogorov–Smirnov (K–S) test. Using Wilcoxon signed-rank test, the effects of dynamic 

control on conventional sleep metrics, namely; the proportion of time, mean bout duration, 

and number of bouts of each state were evaluated for the period of Ta manipulation against 

the same period on intervening days in which Ta was set to 25ºC without variation from 

12-7 p.m. and reverted to the room temperature (~22ºC) at other times; p-value under 0.05 

was considered significant. 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. Six-hour snapshot showing EEG and EMG features used by the HMM classifier to 
track changes in vigilance states. Muscle tone (EMG) is high in wakefulness (W) and low in sleep. 
Within sleep, EEG Delta-Theta power ratio is high in NREM (NR) and low in REM (R). EEG Hi-
Low power ratio is high in wake and low in NREM.   
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4.3.2.3 Results and discussion 

4.3.2.3.1 Effect of Ta manipulation on sleep depth  

The cumulative distribution function of the squared error ϵSDM in Q with respect to Q* 

during NREM sleep is compared for dynamic SDM versus baseline over all five mice in 

Figure 4.5. The error ϵSDM was significantly lower (p < 0.05) during dynamic regulation of 

Ta compared to the baseline, during which Ta was kept at 25ºC: this is evidence of a 

significant increase in sleep depth. Furthermore, EEG low delta (0.5-2Hz) power (a well-

known marker of sleep depth (Dijk  2009)) was significantly greater for SDM versus 

baseline during NREM (see Figure 4.5). This verifies that mice experienced deeper sleep 

during periods of dynamic manipulation of Ta (Ajwad et al., 2018) . 

 

 

 

Figure 4.5. Sleep depth modulation. Left: Squared error in Q with respect to Q* during NREM 
sleep shifts leftward during SDM (Dynamic); i.e. an increase in sleep depth. Right: Low delta 
power (logarithmic scale) during NREM shifts to the right in dynamic SDM period; i.e. more deep 
NREM sleep. 

 

4.3.2.3.2 Effect of Ta manipulation on theta oscillations 

REM sleep is controlled by homeostasis drive and can get affected by a mild change in Ta. 

Studies have shown that an elevation in Ta increases time spent in REM sleep (Jhaveri et 

al. 2007 and Roussel et al. 1984). EEG theta oscillations (6-9Hz) are predominant during 

REM sleep. Though there was no intention in this study to modulate REM sleep, 
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interestingly a clear increase in theta power was observed during dynamic manipulation of 

Ta; which corresponds to an increase in REM sleep.  Figure 4.6 shows the distribution of 

theta power during REM for SDM versus baseline. A clear shift in theta power to the right 

suggests REM sleep promotion.    

 

 

 

 

 

 

 

Figure 4.6. Effect of SDM on theta oscillations in REM sleep. EEG theta (6-9Hz) power during 
REM sleep shifts to the right in dynamic SDM period; i.e. more REM sleep. (p-value < 0.05, 
Kolmogorov–Smirnov test). 

 

4.3.2.3.3 Effect of Ta manipulation on sleep metrics 

Sleep metrics were estimated and compared statistically for dynamic SDM days against 

baseline days (Figure 4.7). There were no statistically significant effects of Ta 

manipulation on the time spent in each state (p > 0.05, Wilcoxon signed-rank test), but 

some subtle changes were observed. Though the time spent in NREM sleep did not change, 

the number of NREM bouts decreased (p = 0.007) while their mean bout duration increased 

(p = 0.02), which suggests that NREM sleep was less fragmented during SDM than in the 

baseline. This trend was consistent in all five mice. Mice spent more time in REM sleep. 

But while REM bout duration increased significantly (p = 0.04) in all mice, the number of 

bouts decreased (not significantly in all but one mouse, a male). Finally, time in Wake 

decreased during SDM, but there was some variability in both Wake bout duration and 

number of bouts across animals: Wake bout duration increased in three mice and decreased 

in two (one male and one female); and the mean number of Wake bouts decreased in all 

but one mouse (a female). The trends were similar when only data from the first day were 
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included in the analysis to allow for the possibility of homeostatic carry-over effects on the 

second day. However, the effects will need to be clarified in a larger sample (Ajwad et al.  

2018).  

 

 

 

 

 

 

 

	
	
	

 

	
	
	
	
	

	

Figure 4.7. Effects of SDM on sleep metrics. BL: Baseline, DY: Dynamic. * indicates a significant 
difference (p < 0.05, Wilcoxon signed-rank test), n = 8 where n is the number of recordings from 
five mice. Though SDM has no significant effect on time spent in NREM, it does affect its mean 
bout duration and number of bouts in a direction that makes it less fragmented, i.e. longer bout 
duration and less number of bouts. While REM bout duration increases significantly during SDM, 
number of bouts decreases insignificantly.  

 

4.3.2.3.4 Effect of Ta manipulation on deep sleep proportion 

Manipulating Ta in closed loop induced a significant increase in the proportion of DS 

(p = 0.02; Wilcoxon signed-rank test). This effect was consistent in all five mice (Figure 

4.8). It has been shown that DS peaks in the first three hours of the light period and then 

declines progressively (Obál et al. 1983). Since our experiment was conducted from 12-7 
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p.m. (starting at zeitgeber time 5:00 or ZT5, i.e., five hours into the light period), this 

explains the relatively low overall proportion of DS (under 10%) observed in this study.  

 

 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

 

Figure 4.8. Effect of SDM on the proportion of deep NREM sleep. * indicates a significant 
difference (p-value < 0.05, n=8 where n is the number of recordings from five mice.  All mice had 
more deep NREM sleep during SDM.  

	
	

4.3.2.3.5 Effect of Ta manipulation on breathing regularity 

The breathing trace is captured on piezo signal when the animal is relatively still or asleep. 

It changes during different vigilance states, and tends to be regular during NREM and 

irregular during REM (figure 4.9). It has been previously shown that breath rate and 

regularity measures can be estimated from piezo signal in control mice (Yaghouby et al.  

2016), estimated based on Hilbert transform. Since breathing regularity is high in deep 

NREM sleep and low in light NREM and REM sleep, it could be used as a measure of 

sleep depth. Figure 4.10 shows the changes in the estimated breathing regularity index 

during NREM and REM in a 4-hr recording from a control mouse. It is not reliable during 

wake because the motion signal dominates over the breathing trace. Though there is some 

variability in breathing regularity within a state it is clearly high in NREM and low in REM. 

Breathing regularity was estimated and the effect of SDM on it during NREM and deep 

NREM sleep were statistically compared to baseline.  

*
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Figure 4.9. A two-minute sample showing the breathing pattern on piezo signal during NREM, 
REM, and wake. Breathing trace is regular during NREM and irregular during REM. EEG is 
presented to differentiate between vigilance states: high amplitude delta waves (0.5-4Hz) are 
predominant during NREM and low amplitude/ high frequency theta oscillations (6-9Hz) are 
predominant during REM.     

 

 

 

 

 

 

 

 

Figure 4.10. A four-hour sample of recording from a control mouse shows breathing regularity 
changes during different vigilance states: W= wake, NR= NREM, R= REM. Breathing regularity 
index (BReg) is high during NREM and low during REM. Piezo line length is presented here to 
reflect the animal’s level of activity; it is low during sleep and high during wake. Some variability 
in breathing regularity could be observed within NREM sleep due to different stages going from 
light to deep sleep. The highest breathing regulatory occurs during deep NREM sleep.   

NREM REM Wake 
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Figure 4.11 shows the effect of SDM on breathing regularity for data pooled from five 

mice.  Breathing regularity during NREM sleep and SWS increased significantly (p < 0.05, 

rank sum test) during SDM compared to baseline, which add evidence that SDM increases 

SWS in mice. However, the values of breathing regularity during baseline and even during 

SDM seem low but again this can be due to the fact that SWS decreases gradually after 

light onset (Obál et al. 1983) and our SDM experiment was performed from 12 p.m-7 p.m. 

when SWS is low.   

 

 

 

 

 

 

 

 

Figure 4.11. Effect of SDM on breathing regularity during sleep. Breathing regularity increased 
significantly in NREM (left) and in deep NREM during (right) SDM. * indicates a significant 
difference (p-value < 0.05). n = 8 where n is the number of recordings from five mice.  Data are 
expressed as mean ± sem. All mice had more regular breathing in NREM and deep NREM sleep 
during SDM.  

 

This study proposes a simple approach to enhance sleep depth in mice. Results from a small 

sample of five mice showed that the SDM protocol significantly increased sleep depth over 

a 7-hour period. Mice spent more time in SWS sleep during dynamic manipulation of Ta 

compared to baseline recordings in which Ta was held constant at 25ºC, which is higher 

than the room temperature in the animal facility and closer to the TNZ. Though it did not 

reach statistical significance, REM sleep increased along with DS during SDM. This was 

not unexpected since our results on temperature elevation effects on mouse sleep (Chapter 

Two) and some previous studies that have shown a significant increase in NREM sleep 

* *
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with an elevation of Ta in mice, also showed a corresponding increase in REM sleep 

(Roussel et al. 1984  and  K. Jhaveri et al. 2007). The changes in Ta during SDM were 

limited to the neighborhood of the TNZ to avoid thermoregulatory stress associated with 

temperatures outside this range. To the best of our knowledge, no previous study has 

attempted sleep depth modulation in rodents through Ta manipulation using a closed-loop 

control system.  One study in healthy and insomniac humans employed a thermosuit to 

produce mild changes in skin temperature using an open loop system (Raymann  et al.  

2008). The results of that experiment showed that an increase in skin temperature by 0.4ºC 

produces a significant suppression in wakefulness and a shift to deeper stages. We have 

previously shown that elevation of Ta significantly increases NREM sleep in a mouse 

model of temporal lobe epilepsy (Ajwad et al.  2016).  More analysis of the data revealed 

that while the overall probability of seizures in deep NREM sleep and light sleep did not 

change significantly with Ta, the proportion of time spent in these stages of NREM sleep 

did change as we discussed in Chapter Three. Those findings suggest that SDM could 

perhaps serve as a way to alleviate epileptic seizures. Patients with insomnia who usually 

experience sleep fragmentation and poor sleep depth can benefit from this approach as well.  

In conclusion, sleep quality can be improved by manipulating ambient temperature using a 

closed loop control system. The proposed approach can be implemented in human studies 

using state feedback from EEG monitoring to a programmable thermostat. It can be 

beneficial to individuals with disordered sleep. The main goal of this small sample trial was 

to test and establish the feasibility of SDM before conducting experiments in disease models 

(e.g., Alzheimer’s disease and epilepsy). Two future goal are to : (1) perform SDM in a 

mouse model of temporal lobe epilepsy , and (2) track breathing regularity using a 

noncontact motion sensor (Yaghoub et al.  2016) and use it as a measure of sleep depth. The 

second goal will enable completely noninvasive sleep depth enhancement without the need 

for obtrusive and resource-intensive EEG/EMG monitoring. 
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4.3.3 Regulation of the ultradian sleep-wake cycle 

4.3.3.1 Sleep-wake induction (SWI) design 

Following IACUC approval, eleven adult C57BL/6 mice (6F/5M) were instrumented for 

EEG/EMG monitoring. Ta was manipulated so that the error between Q, the ratio of 

instantaneous EEG power in delta (0.5-4Hz) to theta (6-9Hz) band, and a dynamically 

varying target value Q*, was minimized. Q* was programmed to exponentially decay and 

grow in 30: 60 min cycles to alternately approach values of Q typically observed in 

wakefulness and NREM sleep. For each time step t: 

ܳ∗ሺtሻ ൌ ݇	݁ሺି
೟

೅ೌೠ
ሻ           for wake 

& 

ܳ∗ሺtሻ ൌ ݇	ሺ1 െ ݁ሺି
௧

்௔௨ሻሻ				for	sleep								 

Where: 

 

݇ ൌ 1/ሺܳ݉ܽݔ	 െ 	ܳ݉݅݊) 

 are the values of Q typically seen in sleep and wake, 5dB for NREM ݊݅݉ܳ	݀݊ܽ	ݔܽ݉ܳ

sleep and 1dB for wake in mice. 

Tau was calculated so that 95% of the response would be completed in each 30/60 min 

wake/sleep-promoting cycle.  

This 30:60 min cycle was repeated for each mouse from 7 a.m. -9 p.m. every other day for 

six days (three repeats). We looked at the data from 8:30 a.m. – 7p.m. Changes in Q and 

EEG Hi-Low band power ratio (8-30Hz/0.5-8Hz) during those 30:60 min cycles were 

compared to sham control days when Ta was kept at room temperature (~22ºC). Then, the 

effects of Ta manipulation on sleep metrics and other parameters were evaluated for the 

period of manipulation against the same period on intervening days in which Ta was kept 

at room temperature. Figure 4.12 shows a sample of sleep-wake induction data in which 

Q* was programmed in closed-loop mode to produce exponential decay and growth 

between typical values of Q in Wake and NREM sleep in a 30:60 cycle. 
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Figure 4.12. Sleep-wake induction (SWI) strategy. A 9-hour data sample from one mouse in which 
the 30:60 Q* cycle was repeated six times. While Ta appears to increase slightly when Q* 
approaches its peak, trends in Q and the EEG Hi-Low ratio (8-30Hz / 0.5-8Hz) are difficult to 
follow in each cycle and are brought out clearly only when averaged over multiple cycles, as will 
be shown in the results section. Q is high during NREM, low in wake, and even lower in REM. Hi-
Low ratio is low in NREM and high in wake. R: REM, NR: NREM, W: Wake. 
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4.3.3.2 Results and discussion 

4.3.3.2.1 Regulation of the ultradian sleep-wake cycle 

Delta to theta power ratio Q and Hi-Low ratio computed from the EEG were averaged over 

225 cycles from 11 mice (6 cycles had to be excluded due to some recurring artifacts), 

figure 4.13. During the exponential drop in Q*, Ta decreases gradually and induces a 

reduction in Q and an increase in Hi-Low, which are evidence of a wake-promoting effect. 

But when Q* grows to a peak in the following hour, the trends are reversed; i.e. Ta 

increases gradually causing an increase in Q and a reduction in Hi-Low which are 

characteristics of sleep-promoting effect. Figure 4.13 (lower panel) shows trends of Q and 

EEG Hi-Low averaged over 225 cycles from the 11 mice at room temperature (baseline). 

Q does not follow Q* as in the dynamic sleep-wake induction experiment (upper panel).  

Thus, it seems that the duration of sleep and wake bouts could be controlled, albeit with 

some delay in the response after switching between wake and sleep-promoting phases. 

Cross-correlation analysis showed that the response in Q lagged Q* by about 12 min. The 

trends were consistent for male and female and for data pooled over three days from each 

mouse.  
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Figure 4.13. Triggered average response to the SWI protocol. Upper: Q and Hi-Low computed 
from the EEG were averaged over 225 cycles from 11 mice (6 cycles were excluded due to 
recurring artifacts). During the exponential drop in Q*, Ta decreases gradually and induces a 
reduction in Q and an increase in Hi-Low, which are evidence of a wake-promoting effect. But 
when Q* grows to a peak in the following hour, the trends are reversed, thereby promoting sleep, 
black trace shows the trending lines of Q. Lower: Q and EEG Hi-Low were averaged over 225 
cycles from the 11 mice at room Ta. Q does not follow Q* as in the dynamic SWI experiment 
(upper). This indicates that the sleep and wake duration could be controlled but with some delay in 
the response after switching between wake and sleep-promoting phases. Cross-correlation analysis 
showed that there is a lag of 12 min between Q and Q*. 
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4.3.3.2.2 Effect of SWI on probabilities of vigilance state 

As in SDM , collected data from experiments of running SWI protocol were scored offline 

into Wake, NREM, and REM in 1-s windows using a validated hidden Markov model 

(HMM) algorithm (Yaghouby et al.  2016). Wakefulness is distinguished from sleep 

mainly based on muscle tone (EMG), which is high in wake and low in sleep. The EEG 

delta (0.5-4Hz) / theta (6-9Hz) power ratio discriminates NREM from REM sleep (high in 

NREM and low in REM). The EEG Hi-Low was used as an augmented feature to help 

differentiating sleep from wake. The probability of each vigilance state was computed over 

all 30:60 min cycles from 10 mice (data from one mouse had to be excluded due to bad 

quality EMG signal) to see if the trend is consistent with the trends of Q and Hi-Low during 

the 30:60 min cycles. The trends of wake and NREM sleep probabilities normalized by 

their baseline probabilities support the trends of Q and Hi-Low in wake and sleep phases, 

the probabilities were plotted as polar phases for clarity purpose (figure 4.14). Wake 

probability is high during wake-promoting phase (0 to 120º) and decreases in sleep 

promoting phase (120 º to 360 º) after some delay in switching to sleep phase. NREM sleep 

probability on other side is showing an opposite trend to wake probability, low in wake 

phase and high in sleep phase with some delay in switching to wake promoting phase. The 

plot also shows that there is a short sleep bout in the transition phase from wake to sleep 

promoting phase. The probability of REM sleep is variable because time spent in REM is 

relatively low comparing to wake or NREM. Recalling figure 4.13 the probabilities of wake 

and NREM sleep are consistent with the trends of Q and Hi-Low that have been seen during 

SWI days.  
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Figure 4.14. Probabilities of each vigilance state over 30:60 min cycles. All probabilities are 
normalized by their corresponding values during baseline. In general, wake probability is high in 
wake promoting phase (0-120º; 0-30 min) and NREM probability is high in sleep promoting phase 
(120 -360º; 30-90 min). However, wake probability starts low in the beginning of wake phase, then 
gets high and continues to be high even at the beginning of sleep phase due to the lag in switching 
from wake to sleep phase.   NREM probability on the other side starts low in the beginning of sleep 
promoting phase (during the lag time) and gets clearly high in the fourth quarter. REM probability 
is quite variable due to its relatively low percentage but in general it is low in wake phase and high 
in sleep promoting phase, it has the same trend of NREM probability. Dashed lines represent the 
mean ± standard deviation of each probability (blue for wake, red for NREM, and brown for REM).   

 

 

 

 



77 
 

4.3.3.2.3 Effect of SWI on sleep metrics 

Sleep metrics were estimated from the scores obtained from running the HMM classifier 

and compared for SWI (dynamic) against baseline (Figure 4.15). Though there were no 

statistically significant differences (p > 0.05, Wilcoxon signed-rank test), some changes 

were observed. While the time spent in Wake increased, the time in NREM decreased. This 

could be due to the delay to sleep onset after the relatively short 30-min period of wake 

induction, which may also explain the non-significant reduction in NREM bout duration. 

The number of REM bouts may have also decreased with the available sleep time but with 

a slight increase in the bout duration. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.15. Effects of SWI on sleep metrics. BL: Baseline, DY: Dynamic SWI.  No significant 

difference (p > 0.05, Wilcoxon signed-rank test) were observed. n=10, data from one mouse had 
to be excluded due to poor EMG signal quality that affects the ability to accurately determine 
vigilance states. In general, SWI resulted a slight increase in wake and decrease in NREM which 
could be due the delay in time that happened after switching from wake to sleep phases.   
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4.3.3.2.4 Effect of SWI on the proportion of deep sleep 

Using EEG zero crossing criteria, proportion of SWS was computed and the effect of SWI 

manipulation has been evaluated using Wilcoxon signed-rank test. Mice spent more time 

in SWS (p < 0.05) during the manipulation days comparing to the baseline, figure 4.16. 

Considering the fact that animals and even humans have more SWS in the first part of sleep 

phase and that in SWI experiment there is a reduction in NREM duration (due to the delay 

in switching from wake to sleep); which means that the animal has lost some of sleep in 

the late part of sleep phase (more likely light NREM sleep), those explain why our mice 

slept deeper during SWI experiment. The %SWS seems to be high comparing to the 

proportion observed in data of SDM experiments. This could be because the experimental 

period of SWI strategy included the times when SWS tends to be high, SWS is high at the 

onset of light phase and decreases progressively over time as we explained in Chapter Two.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16. Effect of SWI on the proportion of SWS during NREM sleep. * indicates a significant 
difference (p-value < 0.05, n = 29 where n is the number of recordings from 10 mice.  Mice had 
more SWS during SWI days.  
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To conclude, since many factors (including changes in environmental temperature) 

influence the sleep regulation process, it is expected that the timing and duration of sleep 

bouts can be controlled using an appropriate protocol.  Our results show that the timing 

and duration of the multiple sleep-wake bouts in mice can be modulated noninvasively 

through ambient temperature regulation. The sleep-wake induction study suggests that 

sleep and arousal can be induced by gentle manipulation of Ta in closed-loop, and that 

sleep and wake bout durations can be modulated by specifying the times of these changes, 

with some delay to be expected when switching between wake and sleep-promoting phases. 

The duration of sleep and wake bouts in this study was set at 60 min for sleep and 30 min 

for wake, which are in the neighborhood of durations typically seen in mice during the 

inactive light period under baseline conditions. Note that this refers to prolonged bouts that 

may contain multiple vigilance changes on much shorter timescales. The idea was to test 

the feasibility of controlling the timing of sleep and wake and observing the delay to sleep 

or wake onset associated with switching from one phase to the other. Increasing the 

duration of sleep and wake promoting phases should be considered in future to suit patients 

with sleep problems who may get inadequate or poor quality. Thus, the ability to control 

the timing of sleep and a better understanding sleep-thermoregulation interactions could 

help in developing more natural non-pharmacological ways to treat sleep-related disorders 

like insomnia. 

 

4.4 Conclusions 

In summary, the different strategies presented in this chapter demonstrate that it is feasible 

to enhance sleep and regulate its timing and duration non-pharmacologically by 

manipulating Ta using a closed loop control system. There are several types of sensory and 

neural stimulation that can be applied to change sleep-wake architecture but thermal 

stimulation is arguably the most non-invasive and perhaps effective way if we consider 

how even a small shift in Ta produces a significant effect on sleep. Our results add more 

significance to the literature about the Ta-sleep correlation and could be beneficial in 

developing a non-invasive approach for treating people with disordered sleep.  
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CHAPTER V CONCLUSIONS AND FUTURE 

DIRECTIONS 

5.1 Overview 

Although its underlying mechanisms and precise function remain as an enigma, sleep is 

essential to life and its disturbance affects brain and body functions negatively. Thus, it is 

very important to get sufficient sleep at an appropriate time. However, sleep disturbance is 

common in many neurologic disorders such as epilepsy, Alzheimer’s, and Parkinson’s. It 

is also common in the elderly. Pharmacological and non-pharmacological interventions to 

improve sleep are available and valuable but they are sometimes associated with adverse 

effects like nausea, vomiting, or limiting time of sleep. Thus, there is a need to put more 

effort into improving sleep quality with approaches that are non-invasive, less stressful, 

low in cost, and with minimal side effects than those currently available. In this research, 

we have proposed a simple and non-invasive approach to enhance sleep through ambient 

temperature (Ta) manipulation which was inspired by both the current body of scientific 

literature and our independent exploration of the interaction between sleep and Ta.  Several 

studies have shown that changes in Ta within the thermoneutral zone exert a significant 

effect on sleep-wake architecture in humans and animals. However, few studies have 

investigated the acute effect of temperature elevation on sleep in rats and none have done 

so in mice. In this research, we have investigated that effect and compared it with the effects 

observed in chronic thermal experiments in mice.  

The results presented in this dissertation demonstrate for the first time that: (1) An acute 

diurnal elevation in Ta produces significant effects on mouse sleep similar to those that 

have been observed in chronic experiments in which mice received thermal treatment for 

several days or weeks;  (2) Diurnal elevation of Ta to the thermoneutral zone changes sleep-

wake architecture in a mouse model of temporal lobe epilepsy as it does in controls but 

with more episodes of NREM; and (3) It is feasible to modulate sleep by dynamically 

manipulating Ta in closed-loop mode to improve sleep depth and regulate the timing and 

duration of sleep and arousal in control mice. 
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The proposed approach of ambient temperature manipulation suggests a simple strategy 

for enhancing sleep in people with sleep problems including epilepsy patients and may 

even influence epileptic seizures as they are strongly correlated to the sleep dynamics. 

Considering that there are significant changes in sleep structure in response to a mild 

change in ambient temperature, and that there is continuous development in medical 

technology (e.g., wireless EEG, programmable thermostat), further research may make the 

proposed strategy practical in humans to improve sleep as it has very important 

implications in health and disease. 

The main contribution of this dissertation is to highlight the importance of studying sleep-

temperature correlation and using it to improve sleep in patients with disordered sleep. The 

findings of our research add valuable information to the sleep-thermoregulation field. That 

information could have very important implications in treating poor sleep that is common 

in many neural diseases including epilepsy with expectation of seizures control as an 

outcome of sleep improvement by ambient temperature regulation.   

5.2 Effect of an acute elevation in Ta on mouse sleep architecture 

Sleep is a complex and dynamic physiological process that is regulated mainly by 

homeostasis and circadian rhythms. Its importance to the human body (both physically and 

mentally) is clear and there is no doubt that its disturbance has a harmful impact on 

cognitive and physical performance. Insufficient sleep and poor sleep quality are common 

in many neurological disorders.  Studying how changes in environmental factors could 

influence sleep would help gain a better understanding of its underlying mechanisms and 

develop approaches to improve its quality. Environmental temperature exerts a significant 

influence on sleep-wake behavior. As we explained in Chapter Two, research has shown 

that there is a strong relationship between sleep regulation and temperature regulation since 

the preoptic area of the hypothalamus in the brain is involved in regulating both systems. 

Even mild changes in Ta within the thermoneutral zone will induce a significant effect on 

sleep-wake architecture. Since no previous study has evaluated the effect of acute exposure 

to elevated Ta on mouse sleep, we have assessed that effect and compared it with the effect 

seen in rodents after exposure to chronically elevated Ta. This effort has produced three 

main findings: 1. An acute exposure to elevated Ta has the same effect on mouse sleep as 
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in a chronic experiment, which is to promote sleep; 2. The intensity and proportion of deep 

NREM sleep, i.e., SWS, increase significantly with Ta; and 3. Sleep tends to be less 

fragmented at higher temperatures around the thermoneutral zone. All mice studied (n =13) 

spent more time in NREM, REM, and SWS at higher temperatures. Furthermore, NREM 

sleep appeared to be less fragmented by episodes of brief arousal and REM sleep. Though 

REM sleep changes significantly with Ta, it seemed to be less sensitive to changes in Ta 

than NREM and SWS, especially in term of bout length and the number of bouts. The most 

salient aspect of this study is the distinction made between light NREM sleep and SWS.  

Sleep in mice is usually only classified into NREM and REM sleep. However, we have 

used EEG zero crossing criteria previously used in rats to label NREM sub-stages. EEG 

low delta (0.5-2Hz) power fraction has been used as well to classify NREM sleep into light 

and deep stages. Good agreement was observed in sleep metrics using EEG zero-crossing 

criteria and low delta power fraction in term of time spent and bout duration of light NREM 

sleep and SWS; the number of SWS bouts was insignificantly less using low delta power 

fraction compared to the zero-crossing method. In general, results illustrate the possibility 

of improving sleep through Ta manipulation which may be beneficial to patients with sleep 

disorders such as epilepsy, Alzheimer, Parkinson, and insomnia. However, the effects of 

Ta change should be studied in animal models of these disorders to investigate the 

influence on sleep structure. In this research, we used a mouse model of temporal lobe of 

epilepsy as a disease model and studied the effect of Ta elevation on sleep-wake 

architecture, as discussed in the following section.  

 

5.3 Effect of diurnal Ta elevation on sleep and seizures in a mouse model 

of temporal lobe epilepsy (TLE) 

Many new ways of epilepsy treatment are being proposed, but many patients still do not 

derive benefit from them.  Additionally, each type of treatment could be associated with 

some side effects. Deficits in sleep continuity and sleep depth are common in epilepsy 

patients. In many types of epilepsy, seizures and sleep are strongly influenced by each 

other. Epileptic seizures interrupt sleep and contribute to its fragmentation. While the 
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synchronizing activity of low frequency/high amplitude oscillations during NREM sleep 

helps in seizures generation and propagation, the desynchronizing activity of high 

frequency/low amplitude oscillations during REM seems to discourage them (Foldvary-

Schaefer  2014). Given that temperature changes influence sleep, sleep modulation through 

Ta regulation may offer a natural and non-invasive way that could also help in seizure 

control. Since no previous study has been conducted to evaluate the Ta effect on sleep in 

an animal model of epilepsy and as a first step toward our goal of modulating sleep in a 

disease model, we first assessed the effect of Ta elevation on sleep-wake architecture in a 

mouse model of TLE (n = 4) to see if the effect is similar to what has been seen in controls. 

Our data from chronically epileptic mice showed a general increase in NREM sleep (which 

came from an increase in the number of NREM bouts) coupled with a reduction in wake 

(which came from a reduction in the bout durations of both prolonged wake and brief 

arousal). Time in REM and number of REM bouts increased with Ta but not significantly 

(Ajwad et al.  2016). Sleep depth and the proportion of SWS increased significantly with 

Ta. In summary, the effect of Ta elevation on sleep structure in epileptic mice is similar to 

that observed in controls except that NREM number of bouts increased significantly with 

no change in bout duration. With more SWS and REM sleep expected at higher 

temperature, the chances of having epileptic seizures may be lowered because other studies 

have shown that seizure probability during those two stages of sleep is less than during 

other stages (Ng and Pavlova  2013 and Herman et al.  2001). In general, the seizure rate 

did not change significantly during days of elevated Ta compared to the baseline days; 

there was some variability in this effect across animals. However, the hourly seizure 

distribution over the 24-hr cycle suggests that the Ta elevation in the Light period pushed 

the seizures toward the Dark period, in which Ta returned to room temperature. Taken 

together, the results suggested that sleep-wake architecture changes in response to dynamic 

closed-loop manipulation of Ta could be a useful way to control seizures.  However, this 

needs to be investigated in a larger sample; the Ta effect on seizure frequency is not clear 

enough in the small sample available in this study.  
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5.4 Sleep depth enhancement through Ta manipulation in mice  

Knowing that SWS improvement has very important applications, several experiments 

have been conducted in humans and animals to improve sleep depth and increase the time 

spent in SWS. Available approaches for SWS enhancement require either pharmacological 

intervention using drugs like Tiagabine (Walsh  2009, Lundahl et al.  2007,  Bazil et al.  

2012) , or non-pharmacological interventions like sleep restriction or brain stimulation with 

electrical/magnetic currents (Marshall et al.  2006 and Massimini et al.  2007). Though 

both approaches improve SWS notably they are usually associated with some side effects 

and limitations. To overcome those unwanted side effects, we have developed a simple and 

natural way to enhance sleep depth by manipulating Ta using a closed-loop control system. 

No previous study has attempted sleep depth modulation in rodents through closed-loop 

Ta manipulation. The proposed approach changes Ta dynamically in real time based on the 

error between Q, the ratio of instantaneous EEG power in the delta (0.5-4Hz) to the theta 

(6-9Hz) band, and Q*, a preset target value of Q typically observed in deep NREM sleep. 

Data from five mice showed a consistent increase in SWS as estimated by: a reduction of 

error between Q and Q*, an increase in delta power closer to our deep-sleep target, and an 

increase in the amount of time spent in SWS (computed via a threshold on the frequency 

of zero-crossings in the EEG). REM sleep duration increased along with SWS, which was 

not surprising since our data in control and epileptic mice have shown an increase in REM 

with Ta elevation, but interestingly REM episodes seemed to be more periodic during the 

days of sleep depth modulation compared to those in baseline days. All the results suggest 

that Ta manipulation is a good non-pharmacological approach to enhance sleep depth. This 

could have important applications in several disease models. For instance, given that sleep 

depth modulation results in more SWS and longer REM episodes and that seizures are less 

likely to happen in those two stages, it seems that our approach could be used as a non-

invasive way to reduce seizures in epilepsy patients. Patients with Alzheimer’s, 

Parkinson’s, and insomnia can benefit from this approach as well. For practical application 

in humans, the proposed approach can be implemented using a surface EEG monitoring 

system and thermal sensors to assess the effects of Ta changes on sleep dynamics (which 

can be analyzed in real time), in particular SWS and REM sleep. 
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To make the animal experiments completely non-invasive (i.e., without the need to implant 

the animal with EEG/EMG electrodes), breathing regularity computed from the piezo 

motion sensor could be used as a measure of sleep depth. Breathing regularity tends to be 

relatively high during NREM (reaching the highest values during SWS) and low during 

REM (Yaghouby et al.  2016). However, this brings another challenge to the study on how 

to validate the classification of NREM into light and deep sleep based on data collected 

only from the piezo motion sensor.  

Without any doubt, the quest to enhance sleep quality will continue in both humans and 

animal models. The findings of this work can contribute to future studies of Ta 

manipulation within the TNZ to improve sleep in healthy subjects (young versus old) and 

in subjects with disordered sleep. Closed-loop Ta manipulation has not been conducted 

before in either humans or animals.  

  

5.5 Non-pharmacological regulation of the ultradian sleep-wake Cycle 
in mice 

Since our sleep habits are usually not in agreement with our circadian rhythm, the timing 

of sleep is no less important than getting a sufficient amount of it. Changes in ambient 

temperature influences both the timing and duration of sleep and arousal. In fact, 

considering that even a mild change in Ta produces a significant effect on sleep-wake 

architecture, Ta can be viewed as a strong driver of the sleep-wake cycle.   

It is well known that rodents have a polyphasic sleep-wake structure in which multiple 

sleep and wake bouts are distributed over the 24-hour cycle, and that their timing and 

duration are modulated by circadian rhythm. Chapters II and III explained how an elevation 

in Ta influences the duration of sleep and wake bouts in control and epileptic mice. In this 

study, we have tested whether the ultradian sleep-wake cycle in control mice can be 

entrained to an externally imposed rhythm by manipulating Ta. A simple strategy that we 

label “sleep-wake induction” (SWI) was developed to alternately promote sleep and wake 

states using a closed-loop control system. In brief, this strategy manipulates Ta so that the 

error between Q, the ratio of instantaneous EEG power in the delta (0.5-4 Hz) and theta (6-
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9 Hz) bands, and a dynamically varying target value Q*, was minimized. Q* was 

programmed to exponentially decay (over 30 min) and grow (over 60 min) to alternately 

approach values of Q typically observed in wakefulness and NREM sleep. Results showed 

that Q follows Q* in wake-promoting and sleep-promoting phases with some delay in 

switching from wake to sleep (and vice versa), which is reflected in a slight reduction in 

NREM time and bout duration coupled with an increase in wake time and number of bouts. 

During the exponential drop in Q*, Ta decreases gradually and induces a reduction in Q 

and an increase in Hi-Low, which are evidence of a wake-promoting effect. But when Q* 

grows to a peak in the following hour, the trends are reversed, thereby promoting sleep. 

Interestingly, regulating the timing of the sleep-wake cycle was associated with a 

significant increase in the proportion of SWS compared to the baseline. Implementation of 

SWI strategy to regulate sleep-wake timing combined with deeper sleep has very important 

implications in the sleep enhancement field.  Thus, a better understanding of the sleep-

thermoregulation interactions could help in regulating the timing of sleep-wake cycle. This 

in turn could provide insights useful for therapies of sleep-related disorders.  

In summary, we have performed various experiments related to ambient temperature 

manipulation in mice that show the feasibility of non-pharmacological improvement of 

poor sleep in people with sleep disorders. However, these thermal control strategies must 

be validated in animal models of diseases like epilepsy and Alzheimer’s before attempting 

them on human patients with those conditions.  
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