
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Theses and Dissertations--Civil Engineering Civil Engineering 

2018 

DIRECT MEASUREMENT OF CROSSTIE-BALLAST INTERFACE DIRECT MEASUREMENT OF CROSSTIE-BALLAST INTERFACE 

PRESSURES USING GRANULAR MATERIAL PRESSURE CELLS PRESSURES USING GRANULAR MATERIAL PRESSURE CELLS 

Travis James Watts 
University of Kentucky, travis.watts95@gmail.com 
Digital Object Identifier: https://doi.org/10.13023/etd.2018.440 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Watts, Travis James, "DIRECT MEASUREMENT OF CROSSTIE-BALLAST INTERFACE PRESSURES USING 
GRANULAR MATERIAL PRESSURE CELLS" (2018). Theses and Dissertations--Civil Engineering. 74. 
https://uknowledge.uky.edu/ce_etds/74 

This Master's Thesis is brought to you for free and open access by the Civil Engineering at UKnowledge. It has been 
accepted for inclusion in Theses and Dissertations--Civil Engineering by an authorized administrator of UKnowledge. 
For more information, please contact UKnowledge@lsv.uky.edu. 

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/ce_etds
https://uknowledge.uky.edu/ce
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu


STUDENT AGREEMENT: STUDENT AGREEMENT: 

I represent that my thesis or dissertation and abstract are my original work. Proper attribution 

has been given to all outside sources. I understand that I am solely responsible for obtaining 

any needed copyright permissions. I have obtained needed written permission statement(s) 

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing 

electronic distribution (if such use is not permitted by the fair use doctrine) which will be 

submitted to UKnowledge as Additional File. 

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and 

royalty-free license to archive and make accessible my work in whole or in part in all forms of 

media, now or hereafter known. I agree that the document mentioned above may be made 

available immediately for worldwide access unless an embargo applies. 

I retain all other ownership rights to the copyright of my work. I also retain the right to use in 

future works (such as articles or books) all or part of my work. I understand that I am free to 

register the copyright to my work. 

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE 

The document mentioned above has been reviewed and accepted by the student’s advisor, on 

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of 

the program; we verify that this is the final, approved version of the student’s thesis including all 

changes required by the advisory committee. The undersigned agree to abide by the statements 

above. 

Travis James Watts, Student 

Dr. Jerry G. Rose, Major Professor 

Dr. Timothy Taylor, Director of Graduate Studies 



 
 

 

 

 

DIRECT MEASUREMENT OF CROSSTIE-BALLAST INTERFACE PRESSURES 
USING GRANULAR MATERIAL PRESSURE CELLS 

 

 

 

 

 
THESIS 

 

 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of 
Science in Civil Engineering in the College of Engineering at the University of Kentucky 

 

 

By 

Travis James Watts 

Nicholasville, KY 

Director: Dr. Jerry G. Rose, Professor of Civil Engineering 

Lexington, KY 

2018 

Copyright © Travis James Watts 2018 

 

 

 

 

 

 



 

 
 

 

 

ABSTRACT OF THESIS 

 

 

DIRECT MEASUREMENT OF CROSSTIE-BALLAST INTERFACE PRESSURES 
USING GRANULAR MATERIAL PRESSURE CELLS 

 

The magnitudes and relative pressure distributions transmitted to the crosstie-ballast 
interface of railroad track significantly influences the subsequent behavior and 
performance of the overall track structure. If the track structure is not properly designed to 
distribute the heavy-axle loads of freight cars and locomotives, deficiencies and inherent 
failures of the crossties, ballast, or underlying support layers can occur, requiring 
substantial and frequent maintenance activities to achieve requisite track geometrical 
standards. Incorporating an understanding of the pressure distribution at the crosstie-ballast 
interface, appropriate designs can be applied to adequately provide a high performing and 
long-lasting railroad track. Although this can be considered a simple concept, the 
magnitudes and distributions of pressures at the crosstie-ballast interface have historically 
proven to be difficult to quantifiably measure and assess over the years.  

This document describes the development and application of a method to measure average 
railroad track crosstie-ballast interfacial pressures using timber crossties and pressure cells 
specifically designed for granular materials. A procedure was specifically developed for 
recessing the cells in the bottoms of timber crossties. The validity of the test method was 
initially verified with a series of laboratory tests. These tests used controlled loads applied 
to sections of trackbed constructed in specifically designed resilient frames.  The prototype 
trackbed section was intended to simulate typical in-track loading conditions and ballast 
response.  

Cells were subsequently installed at a test site on an NS Railway well-maintained mainline 
just east of Knoxville, TN. Six successive crossties were fitted with pressure cells at the 
ballast interface below the rail seat. Pressure cells were also installed at the center of two 
crossties where the ballast is typically not tamped or consolidated. Trackbed pressures at 
the crosstie-ballast interface were periodically measured for numerous revenue freight 
trains during a period of twenty-one months. After raising and surfacing the track, the 
ballast was permitted to further consolidate under normal train traffic before again 
measuring pressures. Having the ballast tightly and uniformly compacted under crossties 
is important to ensuring representative and reproducible pressure measurements.  

Measured maximum pressures under the rail at the crosstie-ballast interface ranged from 
20 to 30 psi (140 to 210 kPa) for locomotives and loaded freight cars with smooth wheels 



 

 
 

producing negligible wheel/rail impacts. Crosstie-ballast interface pressures were typically 
3 psi (20 kPa) maximum for empty freight cars with smooth wheels. Heavily loaded 
articulated intermodal car pressures for shared trucks tended to reach nearly 40 psi (280 
kPa), actually higher than locomotive-produced pressures. The recorded pressures under 
the center of the ties were normally negligible, less than 1 psi (7 kPa) for locomotives and 
loaded freight cars.  

Wheel-Rail force parameters measured by nearby wheel-impact load detectors (WILD) 
were compared to crosstie-ballast pressure data for the same trains traversing the test site. 
Increases in peak WILD forces, either due to heavier wheel loads or increased impacts, 
were determined to relate favorably to increases in recorded trackbed pressures with a 
power relationship. The ratios between the peak and nominal wheel forces and trackbed 
pressures also have strong relationships. 

KEYWORDS: Granular Material Pressure Cells, Crosstie-Ballast Interface Pressure, 
Railroad Ballast, Railroad Crossties, Trackbed Pressure, Wheel Impact Load Detector 
(WILD) 
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 INTRODUCTION 
 

Railroad Track Overview 
 

Railroad Track, in its conventional form, is described as a structure comprised of 

two steel rails, 56 1/2-inches (1.43 m) apart, supported by timber, concrete, steel, or 

composite crossties, resting on rock ballast and subballast, which in turn rests on the 

subgrade (Armstrong, 2008). Figure 1.1 shows the typical cross-section of the conventional 

railroad track structure described.  

 

Figure 1.1 Conventional Railroad Track Structure (REB, 2000) 

Subgrade 

No matter the wheel-axle load, or how that load is distributed, the final support 

structure in railroad track is the subgrade. As for what the subgrade provides to the track 

structure, the subgrade (Hay, 1982): 

1. Bears and distributes loading from the ballast/subballast,  

2. Facilitates drainage, and 

3. Provides a smooth platform at an established grade for which the ballast, 

crossties, and rail can be placed. 
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In order to provide an adequate subgrade for railroad construction, an 

understanding of the behavior of subgrade soils is essential, as soil is a material with 

variable composition and performance (Hay, 1982). To determine those properties for a 

specific soil type, several tests and classification systems are utilized, such as the Unified 

Soil Classification System (USCS) and compressive/shear tests. The American Railway 

Engineering and Maintenance-of-Way Association (AREMA) recommends a 

methodology similar to ASTM D 2487T to classify the predicted performance of a 

subgrade (AREMA, 2018). With an understanding of the engineering properties of 

subgrade soils, proper treatment such as lime and/or cement stabilization and mechanical 

compaction can be used if a weak soil/slope exists. Common soils seen in the subgrade and 

addressed in the railroad track structure are silts, clays, sand, and gravel (unless shallow 

bedrock is available).  

In addition to the ASTM D 2487T recommendation set by AREMA, there are 

several other laboratory and in-situ test methods available for determining the 

strength/behavioral properties of a subgrade soil. Some of the most common laboratory 

tests are ASTM D2166 (Unconfined Compression Strength Test), ASTM D3080 (Direct 

Shear), ASTM D1883 (California Bearing Ratio), and ASTM D3999 (Cyclic Triaxial) to 

name a few. As for in-situ tests, ASTM D1196 (Plate Load Test), ASTM D1586 (Standard 

Penetration Test), ASTM D3441/D5778 (Cone Penetration Test), and ASTM D4694 

(Falling Weight Deflectometer) are very common tests for determining strength and 

behavioral properties of subgrade soils. Details for each of these testing procedures and 

several other experimental domestic and international practices can be found in a Kentucky 
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Transportation Center publication cited at the end of this document (McHenry & Rose, 

2012).  

Ballast 

Similar to the subgrade, the ballast layer is a critical element of the track structure. 

The railroad term, ballast, has been suggested to be a term carried over from the sand and 

gravel ballast, that was formerly use for stability in cargo ships (Hay, 1982). For the 

railroad however, ballast refers to permeable, granular materials such as sand, gravel, 

crushed rock or slag, or cinders placed around and under the crossties to provide track 

stability. When the use of crossties was first introduced, crossties were positioned directly 

against the subgrade, but heavy loads led to subgrade failure. The addition of ballast 

allowed the track to support heavier axle loads, which in turn increased operating efficiency 

and serviceability.  

As for utility, ballast serves the following purposes (Hay, 1982): 

1. Transfers and distributes tolerable loading from the crossties to the 

underlying subballast and subgrade, 

2. Provides longitudinal and lateral track support to resist vehicle loading and 

rail thermal stress, 

3. Provides drainage through and away from the track structure, 

4. Allows for crosstie and rail adjustment (by the means of tamping, shovel 

packing, stone blowing, etc.) to achieve proper surface alignment, 

5. Prevents the growth of vegetation, and 

6. Reduces the occurrence of frost heave. 
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In order for ballast to perform these functions, ballast should be tough, hard, 

angular, and resistant to chemical and environmental weathering (Kerr, 2003). Common 

mainline ballast used today on Class I railroads are typically crushed granite, quartzite, or 

trap rock. AREMA recommends that ballast should be made in accordance to the sieve 

analysis described in ASTM C 136 (AREMA, 2018). Figure 1.2 shows typical mainline 

ballast. Table 1 provides the gradation recommended for railroad ballast.  

 

Figure 1.2 Typical Mainline Ballast 

Table 1.1  Recommended Ballast Gradation (AREMA, 2018) 

Sieve 
No. 

Nominal 
Size 

Square 
Opening 

Percent Passing 

3” 2 1/2” 2” 1 1/2” 1” 3/4” 1/2” d” No.4 No.8 

24 2 1/2” - 
3/4” 100 90-100  25-60  0-10 0-5 - - - 

25 2 1/2” - d” 100 80-100 60-85 50-70 25-50 - 5-20 0-10 0-3 - 
3 2” - 1” - 100 95-100 35-70 0-15 - 0-5 - - - 

4A 2” - 3/4” - 100 90-100 60-90 10-35 0-10 - 0-3 - - 

4 1 1/2” - 
3/4” - - 100 90-100 20-55 0-15 - 0-5 - - 

5 1” - d” - - - 100 90-100 40-75 15-35 0-15 0-5 - 
57 1” - No.4 - - - 100 95-10 - 25-60 - 0-10 0-5 

 
Note: Gradation Numbers 24, 25, 3, 4A, and 4 are main line ballast materials. Gradation Numbers 5 and 
57 are yard ballast materials.  
 
1” = 1-inch = 2.54 cm 
 

6 inches = 15.24 cm 
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Although ballast serves as a great material to promote drainage and to discourage frost 

heave, and inherent limitation occurs when an excess of fine material (< No. 200 sieve) 

fills the void space within ballast, resulting in the state called “fouled” ballast.  

When a ballast layer becomes “fouled”, the performance of that layer is compromised, 

contributing to the degradation of track geometry, and resulting in the need for additional 

maintenance. Fouled ballast, as described in the literature, is caused by one of the following 

sources (Hay, 1982): 

1. External Intrusion, by the means of wind-blown particles and locomotive sanders,  

2. Subgrade Intrusion, and 

3. Internal Abrasion and Weathering. 

Typical maintenance practices used to address this issue include track undercutting, 

shoulder cleaning, sledding, and plowing which assist in providing a cleaner and more 

stable ballast layer. Figure 1.3 shows an example of typical fouled ballast. 

 

Figure 1.3 Example of Fouled Ballast 

In order to schedule and prioritize maintenance practices, fouling can be measured 

by quantifying the amount of fine material (smaller than a specified grain size) present in 
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a particular volume of ballast. A typical relationship used to quantify the amount of fouling 

is presented in Selig and Water (1994), defined as the Fouling Index (FI): 

𝐹𝐹𝐹𝐹 = (% 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑁𝑁𝑁𝑁. 4 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) + (% 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑁𝑁𝑁𝑁. 200 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 

Equation 1.1 Fouling Index (Selig and Waters, 1994) 

With a higher fouling index, a greater need for maintenance to address fouling is 

indicated. Fouled ballast is typically attributed to 17-34% fine material passing the No. 

sieve, and 40-50% passing the No. 200 sieve. This corresponds to a Fouling Index between 

20 and 40 (Selig & Waters, 1994).  

Crossties 

  The crosstie, or tie (also referred to as a sleeper outside of the US), is typically a 9-

inch by 7-inch (22.9 cm by 17.9 cm) (width and thickness) by 102-inch (259.1 cm) (length) 

rectangular structure fastened to the rail, which interfaces the rail and ballast. In addition, 

the crosstie serves the following purposes (Hay, 1982): 

1. Secures two lines of rail transversely, holding the desired gage, 

2. Transmits a reduced pressure to the ballast layer below, and 

3. Restricts the movement of the rail in the lateral, longitudinal and vertical directions. 

 Common materials used for crossties include wood (timber), concrete, steel, and 

composite materials. In the United States however, timber and concrete crossties make up 

the majority of crossties in service. AREMA recommends species such as oaks, maples, 

spruces, and ashes that do not have defects that would compromise the strength of the 

timber tie. As for the concrete tie, a 28-day compressive strength of 7,000 psi, determined 
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by the methodology explained in ASTM C 39 is recommended. Metal and wire strand 

reinforcement within concrete ties should adhere to ASTM A 416 or ASTM A 886, and 

ASTM 421 (AREMA, 2018). Although not commonly used on mainline track, steel 

crossties are also used, but utilized mostly in a non-signalized track, such as yard tracks. 

AREMA presents guidelines for the minimum characteristics for proper steel crosstie 

performance in Chapter 30, Part 6 of the Manual for Railway Engineering. Figure 1.4 

shows the typical types and dimensions of crossties used in the United States.  

 

Figure 1.4 Typical Crossties in the United States 

 Composite crossties are also becoming a more viable and attractive substitute based 

on their improved life-cycle cost and mechanical properties. Although not commonly used 

by Class 1 Freight Railroads, the United States Army Corps of Engineers (USACE) and 

several Transit Agencies (e.g. Chicago Transit Authority (CTA)) have deployed and 

experimented with composites in recent years, particularly in special trackwork (Lampo, 

2014). AREMA has guidelines for the minimum performance properties that composite 

crossties must adhere to in Chapter 30, Part 5 of the Manual for Railway Engineering.  
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 Although crossties provide exceptional support, timber crossties can fail over time 

due to decay and service wear. Typical actions to prevent these two failure modes include 

preservation treatment of the crossties, by the use of either creosote or copper naphthenate, 

and tamping/surfacing (T&S) of the ballast. In particular interest to this study, service wear, 

in regards to the effect of center binding(cracking) failure of a crosstie over time will be 

addressed. Center-binding is a result of excessive negative bending of the crosstie at or 

near the centerline of the track due to the lack of support at each end of the crosstie (shown 

in Figure 1.5a). To prevent center-binding from occurring, maintenance-of-way crews can 

typically tamp the track to provide more support at each rail seat. Consequently however, 

instead of failing in negative bending, the crosstie can then fail due to positive flexural 

cracking (as shown in Figure 1.5b) after maintenance has been performed. This 

phenomenon is described as “end-bounding” a crosstie (Hay, 1982). Although not 

common, concrete crossties have been known to be prone to this type of rail seat failure in 

addition to typical rail seat abrasion.  

 

Figure 1.5 Crosstie Failure Mode (similar to Hay, 1982) 
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Crosstie-Ballast Interface 

 Within the track structure, there are several critical areas/interfaces of concern 

addressed by designers of railroad facilities. Those being the interface between the wheel 

and the rail to reduce impacts, the interface between the rail and the crosstie to protect 

against mechanical wear, the interface between the crosstie and the ballast to provide track 

stability and structural support, and the interface between the ballast/subballast and the 

subgrade to prevent subgrade failure. Each interface requires particular attention to perform 

adequately. This study in particular will focus on the vital interface located between the 

bottom of the crosstie and the top of the ballast, referred to as the crosstie-ballast interface. 

As alluded to previously, the crosstie-ballast interface serves an important role within the 

track structure. Specifically, the crosstie-ballast interface serves the following purposes 

(McHenry M. T., 2013): 

1. Transmits a reduced distribution of pressure through the ballast layer, 

2. Allows for adjustment of track geometry, and 

3. Provides frictional resistance for lateral and longitudinal movement. 

 For this interface to serve its intended purpose, the proper physical characterization 

and structural behavior of the crosstie and the ballast, described previously, must be 

adhered to. In addition to material properties, the levelness and surface contact between the 

ballast and the crosstie can significantly change the loads/pressures exhibited at the 

crosstie-ballast interface. With low contact and resulting high pressures between the 

crosstie and ballast, ballast particle breakage, ballast fouling, differential track settlement, 

and tie failure can occur. 
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Significance of Directly Measuring Crosstie-Ballast Pressure 

 With increasing traffic and axle loads, rail transportation is becoming an 

increasingly economical and attractive mode of transport. As a result, rail traffic has 

increased substantially in recent years, specifically in the intermodal market. With 

increased traffic and axle loads however, high quality and low maintenance railroad track 

structures are becoming more essential to deter accelerated track degradation.  

Just like any other product or component, failure in the track structure occurs when 

it experiences loads that it cannot support properly. To achieve higher performing and low 

maintenance railways, the behavior of the track structure and the inherent transmission of 

pressures needs to be measured. A thorough understanding of the pressures exhibited at the 

crosstie-ballast interface under various support conditions is critical to better understand 

the issues that adversely affect track quality (such as ballast degradation, tie failure, and 

the loss of track geometry). With this type of understanding, advances in track structure 

predictive modeling, design, policy making, and maintenance strategies can be enhanced.  

Problem Statement 
 

 Based on typical design practices, the crosstie-ballast pressure assumed to be 

present, and designed for is 65 psi for timber crossties and 85 psi for concrete (AREMA, 

2018). This assumption is based on a crosstie-ballast contact surface footprint that 

encompasses two-thirds of the entire crosstie (the outer third of each end of the crosstie). 

It is also assumed that approximately forty-percent of the wheel load is carried by the tie 

directly below the wheel load, and that an impact factor scales the pressure based on typical 

speed and wheel diameters (AREMA, 2018). This analysis, however, makes no allowance 
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for any variations in regard to the transmitted pressures along the effective length of the 

crosstie, and the early work that proposed this relationship lacked the use of high 

performing instrumentation and numerical models to validate these assumptions (Talbot, 

1940). Furthermore, the data was obtained using jointed rail rather than continuously-

welded rail (CWR) used today.  

Objectives and Methodology 

 To update the current standards-of-practice, and to better understand the actual 

loading conditions and magnitudes of pressure at the crosstie-ballast interface, it is 

desirable to directly measure these variables in simulated laboratory and in-service 

trackbeds.  

 Current technology, namely Geokon Granular Material Pressure Cells, provides a 

reliable, simple, and durable method to attain these variables at the crosstie-ballast 

interface. The following objectives have been identified for this research: 

1. Develop a methodology to adequately attain consistent crosstie-ballast 

measurements for in-service revenue train operations, 

2. Quantify typical crosstie-ballast pressures for locomotives and various car types, 

3. Provide a typical crosstie-ballast pressure distribution based on laboratory and in-

service tests, 

4. Quantify the effect of wheel imperfection and speed, and 

5. Propose recommendations and suggestions for future research and applications of 

such data. 
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Content of Thesis 

 Chapter 2 provides a review of the literature as it pertains to the crosstie-ballast 

interface. Chapter 3 discusses the theory behind and utility of Granular Material Pressure 

Cells, and their installation in the track structure. Chapter 4 presents the preliminary 

calibration procedures performed and results attained in the laboratory by the manufacturer 

at Geokon and at the University of Kentucky. Chapter 5 discusses the more detailed tests 

conducted on a laboratory simulated trackbed at the University of Kentucky, specifically 

in regard to the proposed distribution measured along the total length of a crosstie. In 

Chapter 6, the in-service track measurement procedures and results are presented and 

discussed. In Chapter 7, a more detailed analysis of such in-track measurements are 

presented in regard to correlations with wheel-rail wayside impact measurements, namely 

the Wheel Impact Load Detector (WILD). Lastly, Chapter 8 summarizes the findings and 

conclusions from this study, describes data applications, and suggests future research 

topics.  This thesis also includes various appendices containing supplementary material to 

enhance the readers understanding of the content for each chapter.  
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 LITERATURE REVIEW 
 

A review of the literature affirms the significance of the pressures transmitted from 

the crosstie to the ballast layer in railroad track.  In a study published by the National 

University Rail Center (NURail) in 2015, the crosstie-ballast interface “impacts many 

functions of both the tie and the ballast including initiating pressure distribution into the 

ballast layer, allowing for track geometry adjustments through tamping, and provides 

vertical, lateral, and longitudinal track stability”. In addition, “a better understanding of the 

fundamental properties [of the crosstie-ballast interface] … can serve as an input to track 

maintenance planning, ultimately leading to enhanced maintenance strategies and policies” 

(Rose, et al., 2015).  

Previous Pressure Measurement Studies 

 For several years, studies have been undertaken to determine the pressures 

exhibited in the track structure. Several of the early studies focused on determining the 

typical distribution of pressures along the crosstie and their potential transmitted pressures 

through the ballast layer. These studies were needed so railroad engineers could design 

more adequate structures, track components, and be able to incorporate such information 

into industry recommended practices. Although impressive in its time, many of those 

studies utilized instrumentation far outdated compared to current technology. The 

following review will outline those early studies to determine track stresses, but also 

include more recent studies that provide insight into new stress measuring technology.  

 



 

14 
 

Early Track Structure Pressure Research 

 As chairman of the Special Committee on Stresses in Railroad Track from 1918-

1940 for the American Railroad Engineering Association (AREA), A.N. Talbot is credited 

with much of the early technical work published that brought forth insight into the behavior 

and variations of stresses in the track structure. Of the four progress reports Talbot and his 

committee published during that time period, the first and second reports prove to be of 

particular interest to this study. Specifically, in the Second Progress Report Talbot 

discusses the challenges faced by his committee in regard to properly and accurately 

measuring pressures at the crosstie-ballast interface. Talbot explains the inherent issues of 

variable support conditions from one crosstie to the next, which ultimately has a significant 

effect on measurement results. He also cites the measurement problems induced by the 

installation of the instrumentation under the crossties, and the excessive amount of pressure 

capsule instruments needed to cover the effective length of the crosstie. All of which 

inhibited his committee from directly measuring the stresses exhibited at the crosstie-

ballast interface (Talbot, 1940).    

 Although Talbot cites numerous instruments used to measure trackbed stresses, the 

device referenced to be the most accurate in this early study was of the pressure capsule 

variety. These pressure capsules used a method of measuring the elastic deflection in the 

center of a thin harden steel diaphragm with a micrometer, this micrometer reading in turn 

was converted to a pressure from the material properties of the harden steel and  the active 

area of the pressure capsule. In this case, the active area was 5 square inches (32.3 cm2). 

These pressure capsules were also favored because they required little to no calibration or 

correction factors to induce a zero reading before an installation or test. This is because the 
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micrometer could be re-set for each subsequent test (Talbot, 1940). A schematic of the 

pressure capsules and their installed locations are shown in Figure 2.1. 

 

Figure 2.1 A.N Talbot Pressure Capsule (Talbot, 1940) 

 Talbot also discusses two of the various other devices attempted during this study. 

One such device was a similar capsule to the one shown in Figure 2.1, but was filled with 

water. The capsule measured the amount of pressure transmitted to the device by the 

amount of water forced out of the capsule into a small tube connected to the capsule. This 

device proved to be unreliable however, because of the effect of temperature on the water 

(Talbot, 1940). The other device used that Talbot discusses was a capsule that measured 

deflections with a spring beneath the cover of the instrument. However, the stiffness of the 

spring was not sensitive enough for this study. Talbot also discusses the attempt in using 

electrical conductivity produced in various materials under specific pressures, but mentions 

that unreliable results were produced (Talbot, 1940).    
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Although Talbot mentions the pressure capsule(s) used in this study, an indirect 

method was eventually used to derive crosstie-ballast pressures due to the variability in 

measured results. This was done by measuring the flexural curves of the ties under load. 

With the load relationship between flexure and the bending moment, the stress distributions 

could be obtained (Talbot, 1940). The higher the bending moment, the higher the stress 

would be at the crosstie-ballast interface. Although true, Talbot points out that the stresses 

at the crosstie-ballast interface are directly dependent on the conditions to which the 

crosstie is subjected. Unevenness of the ballast, in particular, can increase the intensity of 

the bearing pressure at various points along the crosstie, which also induces additional 

bending stress in the crosstie at those specific points (Talbot, 1940). For this specific 

reason, Talbot presents a series of hypothetical distributions of bearing pressure on the 

ballast along the effective length of the crosstie (shown in Figure 2.2). For each 

distribution, Talbot provides descriptions for the situations that would cause each 

distribution.   
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Figure 2.2 Hypothetical Distribution of Bearing Pressure and Corresponding Moment Diagrams at the Crosstie-Ballast 
Interface (Talbot, 1940) 

 Considering the fact that direct measurements of typical in-service crosstie-ballast 

interface pressures were not consistently feasible, Talbot and his committee later discuss 

the tests conducted in the laboratory at the University of Illinois to quantify the pressures 

transmitted to the subgrade from the ballast later (Talbot, 1940). Capsules were once again 

used, and were positioned in the track structure (at labeled location P) as shown in Figure 

2.3. 

(a)    Uniform (idealized) 

 
(b)    Uniform (practical) 

 
(c)    Uniform distribution in tamped areas 

 
(d)    From experimental data on sand ballast  
         measured with pressure capsules 
 

(e)    Principal bearing under rails and  
         tapering in each direction 
 
(f)    Maximum pressure at the ends 

 
(g)    Maximum pressure at the center 

 

(h)    Center-binding condition 

 
(i)    End-bound condition 

 

(j)    Well tamped compacted ballast 

(k)    Decreases intensity under the rail 

(l)     Ideal end-bound crosstie 

(m)    End-bound crosstie with tapering  
          distribution between rails 
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Figure 2.3 A.N. Talbot Subgrade Test Schematic (Talbot, 1940) 

 At this location in the track structure, Talbot and his committee discovered that less 

variability, less intense stresses, and more consistent behavior between the ballast and 

subgrade were apparent. As a result, more consistent results could and were measured with 

the pressure capsules described previously. Due to the success of their instrumentation at 

this interface, Talbot was able to propose the following relationship for the pressure 

transmitted to the subgrade, at the centerline of the track, with a specific depth of ballast. 

𝑝𝑝𝑐𝑐 =
16.8𝑝𝑝𝑎𝑎
ℎ1.25  

Equation 2.1 A.N. Talbot Relationship for Subgrade Pressure (Talbot, 1940) 

In Equation 2.1, pc represents the pressure at the ballast-subgrade interface, h 

represents the thickness of the ballast layer, and pa represents the pressure calculated at the 

crosstie-ballast interface. Although very useful for design practices, this relationship is 

based on the assumed crosstie-ballast pressure, pa, that Talbot also presents in his series of 

progress reports (Talbot, 1940). Since direct measurements were inconsistent, the 

assumption for the crosstie-ballast pressure was based on a uniform support under the 

crosstie, and only two-thirds of the crosstie carrying load (Hay, 1982). The relationship 

Talbot presents for this particular interface is shown in Equation 2.2. 
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𝑝𝑝𝑎𝑎 =
2𝑃𝑃

�2
3� 𝑏𝑏𝑏𝑏

 

Equation 2.2 A.N. Talbot Relationship for Crosstie-Ballast Pressure (Hay, 1982) 

In Equation 2.2, pa represents the pressure transmitted from the crosstie to the 

ballast layer, P represents the wheel load in pounds-force (lbf), b represents the width of 

the crosstie in inches (in), L represents the total length of the crosstie in inches (in), and 

2/3 represents the factor for the assumed load carrying area of the crosstie mentioned 

previously.  

This assumption however is not entirely valid, knowing the variation of support 

conditions cited previously in Talbot’s progress reports. Thus, a need for adequate 

instrumentation and measurement procedures is still needed to this day, 100-years after the 

first progress report was published.   

In an attempt to improve the pressure capsules used in the Talbot study, a study was 

conducted at the University of Illinois in 1966, which used a strain gauge type of pressure 

capsules in a statically loaded laboratory environment (Salem, 1966). Although 

improvement in technology had been made, the scope of the work primarily focused on 

determining adequate ballast depth to provide uniform distribution along the ballast-

subgrade interface. Thus, the relationship is that ballast depth for uniform ballast-subgrade 

stress distribution is typically the tie-spacing minus three-inches (Salem, 1966). An 

example used described the use of eighteen-inches of ballast for twenty-one-inch crosstie 

spacing, compared to twenty-four-inches of ballast needed for the same spacing using the 

Talbot relationship. This study also found that for all cases tested, the maximum pressure 
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transmitted to the subgrade and within the ballast layer never exceeded the estimates 

presented by Talbot. Thus, the use of the Talbot relationship would be too conservative. 

Unfortunately, throughout this study, there was no attempt to directly measure the 

pressures transmitted to the ballast by the crosstie. Until more recently, there seems to have 

been no attempt to measure this interface since the AREA Special Committee’s work back 

in the early 1900’s. Before those more recent studies are discussed, a review of the most 

commonly used practices will be presented. 

American Railway Engineering and Maintenance of Way Association (AREMA) 
Recommended Practice 

The American Railway Engineering and Maintenance-of-Way Association’s 

(AREMA) Manual for Railway Engineering serves as the most current and primary guide 

that many Railroad Maintainers and Engineers use for day-to-day practice. Of particular 

interest to this study, Chapter 1, Part 2 – Ballast, and Chapter 30 – Ties outlines the current 

practice for describing and designing the interaction between the crosstie and the ballast.  

The relationship presented in Equation 2.3 is the current practice used by AREMA 

(Ch. 30, Article 1.3.6.1), but instead of the two-third footprint assumed in the Talbot 

procedure and in the Hay text, this relationship assumes an average pressure for the entire 

tie footprint. This is because AREMA acknowledges that crosstie to ballast pressures are 

not typically uniformly distributed along the bottom of the crosstie. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝐴𝐴𝐴𝐴𝐴𝐴) =
�2𝑃𝑃 �1 + 𝐼𝐼𝐼𝐼

100� �
𝐷𝐷𝐷𝐷
100��

𝐴𝐴
 

Equation 2.3 AREMA Relationship for Ballast Pressure 
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In Equation 2.3, P represents the nominal Wheel Load in Pounds-force (lbf), IF, 

which also equals 33V/100D, represents the Impact Factor intended to estimate the 

dynamic forces due to wheel irregularities, V represents the known Velocity in miles-per-

hour (mph), D represents the nominal Wheel Diameter in inches (in), DF represents the 

Distribution Factor in percent (%), and A represents the Contact area of the crosstie.  

In regards to the distribution factor presented in Equation 2.3, AREMA estimates 

that variable by relationships of varying degrees of track modulus, crosstie type, and 

crosstie spacing. Figure 2.4 presents one such conventional relationship cited in the 

AREMA standards that provides the distribution factor needs for Equation 2.3. 

 

Figure 2.4 AREMA's Estimated Distribution of Loads (AREMA, 2018) 
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Interestingly enough however, Article 1.3.6.1 notes that there are differing methods 

presented in this AREMA manual for determining the area, A, used in Equation 2.3. In 

Chapter 30, which was just discussed, the bearing area of the crosstie appears to be the 

entire footprint of the crosstie. However, in Chapter 16, Part 10, Article 10.11.1, the bearing 

area of the crosstie is only defined as two-thirds of the crosstie footprint (as shown in Figure 

2.5).  

 

Figure 2.5 Two-Thirds Assumed Crosstie Footprint (similar to Kerr, 1989 and AREMA, 2009) 

It is presumed that the two-thirds crosstie footprint cited in Chapter 16 was 

developed for new construction of track, whereas the recommendation for the entire tie 

footprint is better suited for existing track. If you consider all of the same properties, such 

as wheel load, tie spacing, etc., the pressure limit from Chapter 16’s recommendation is 

effectively 50% of what would be considered a crosstie-ballast pressure limit in Chapter 

30. Even with that discrepancy in mind, AREMA still cites an average crosstie-ballast 

pressure maximum value of 65 psi for timber ties, whereas concrete ties have a limit of 85 

psi (AREMA, 2018).  
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Additional Design Practices & Research Attempts 

While AREMA publishes its own recommended practices, several other 

authors/agencies have published trackbed design supplements and guidelines throughout 

the years. Some of the most notable being the work published by: British Railways, 

Japanese National Railway, United States Army Corp of Engineers, G.P Raymond, and Li 

& Selig.  

The British Railway Method (Heath, Shenton, Sparrow, & Waters, 1972), is based 

on a threshold stress which protects the subgrade from potential shear failure. Based on a 

particular subgrade modulus, the method provides a chart (Figure 2.6) which guides the 

designer in selecting a granular material thickness that will support a specific axle load.  

 

Figure 2.6 British Railway Design Charts (Heath, Shenton, Sparrow, & Waters, 1972) 

However, it should be noted that the British Railway method assumes a single 

homogeneous layer encompassing the ballast/subballast and the subgrade. As a result, this 
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design method often gives very large granular material thicknesses due to the higher 

modeled stresses on the subgrade. Although this method oversimplifies the soils in the 

track structure, researchers with the British Railway did provide a basis for how they 

determined the stress dissipation below the crosstie. Based on the work Shenton presented, 

researchers actually used a series of pressure cells placed below the bottom of a single 

crosstie and measured the readings produced by a 200 kN (44. 9 kips) axle load (Heath, 

Shenton, Sparrow, & Waters, 1972) & (Shenton, 1975). It is unclear what type of pressure 

cell was used, but based on the distribution shown in Figure 2.7, it seems that a series of 

very small cells was utilized, similar in size to what was used in A.N. Talbot’s work. As 

can be seen though, the results are very erratic and vary greatly from test to test. Although 

erratic, the method utilizes the maximum field measurement directly below the rail seat, 

which is in the range of 250-300 kPa (36-44 psi).  

 

Figure 2.7 British Railway Sleeper/Ballast Contact Pressure (Shenton, 1975) 

The Japanese National Railway (Atalar, Das, Shin, & Kim, 2001) also presents a 

method which derives the thickness of granular material with the assumption that load is 

applied to only the outer portions of the crosstie (similar to AREMA). Specifically, the 

distance from the center of the rail head to the edge of the crosstie is used (shown in 

Equation 2.4). 
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𝑃𝑃𝑎𝑎 = �
𝑞𝑞𝑟𝑟

2𝑎𝑎𝑎𝑎
� × 𝐹𝐹2 → 𝜎𝜎𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 =

50 × 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

10 + ℎ1.35  

Equation 2.4 Japanese National Railway Standard 

 

Figure 2.8 Japanese National Railway Load Distribution (Indraratna, 2011) 

Where: Pa = σmax = average crosstie-ballast contact pressure (kPa), qr = maximum 

rail seat load (kN), a = distance between the rail head center and the edge of the crosstie 

(cm), B = width of the crosstie (cm), F2 = crosstie type/maintenance factor, σzmax = subgrade 

stress (kPa), and h = thickness of granular material (cm). It should be noted however that 

this method was developed for a more narrow-gauge track, thus it is not very applicable to 

freight railway track in the United States. 

In addition to the methods presented earlier, the US Army Corps of Engineers (US 

Army Corps of Engineers, 2000) also provides guidance for calculating the ballast surface 

stress and the corresponding ballast depth for their freight operations. This method 

incorporates differing rail bending moments, tie size, and load coefficient factors taking 

vehicle dimensions into account, however, it assumes the effective bearing area is uniform 

across one-half of the crosstie contact surface. Although the distribution of stress is similar 

to the other methods presented, this assumption results in an even more conservative 

design.  
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𝑝𝑝𝑚𝑚 =
𝑞𝑞0
𝐴𝐴𝑏𝑏

→ ℎ =
�50 × 𝑝𝑝𝑚𝑚

𝑝𝑝𝑐𝑐
− 10�

0.74

2.54
 

Equation 2.5 US Army Corps of Engineers Method 

Where: h = ballast thickness (in), pm = ballast surface stress (psi), pc = subgrade 

bearing capacity (psi), q0 = maximum rail seat load (lb.), Ab = effective bearing area of 

one-half crosstie on ballast (in2).  

G.P. Raymond (Raymond, 1978) and Li & Selig (Li & Selig, 1998) also provide 

guidance in the form of chart solutions for trackbed design, but primarily focused on 

preventing shear failure in the subgrade based on cumulative damage, assuming plastic 

strain (Li, Hyslip, Sussmann, & Chrismer, 2016). Both methods also assume the AREMA 

recommended threshold for crosstie-ballast pressure to model their stress dissipation for 

various track conditions.   

In India (Mundrey, 2017), some interesting design procedures exist, which are 

shown in Figures 2.9, and 2.10.  
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Figure 2.9 a) India Railways Crosstie Bearing Area, b) Minimum Depth of Ballast 

In Figure 2.9a, India Railways specify the use of a uniform bearing area that 

encompasses about 68% of the tie footprint, which is very similar to AREMA. However, 

the bearing area does not include the outer 7.5 cm (2.9 inch) of the crosstie footprint 

(Mundrey, 2017). In addition, India Railways specifies different bearing areas for the 

three unique gauges in that country (Broad (1676 mm, 65.9 inch), Metre (1000 mm, 39.4 

inch), and Narrow (762 mm, 30.0 inch)). Each bearing area is presented in Figure 2.9a.  

a 

b 
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India also has its own procedure for calculating minimum ballast depth, but, 

unlike AREMA, which bases the ballast depth calculation on the stress transmitted on the 

ballast and subgrade, India bases their calculation on crosstie spacing and crosstie 

density, as shown in Figure 2.9b (Mundrey, 2017).  

Although a crosstie-ballast stress calculation does not seem to exist for India 

Railways in the literature, Mundrey does provide a figure (Figure 2.10) that shows the 

percentage of average pressure within the track structure due to an applied wheel load. 

The author does not provide any context for what the average stress would be in order to 

apply these percentages, however, recommended ballast depths are suggested based on 

gauge classification (≈ 200-300 mm, 8-12 inch).  

 

Figure 2.10 India Railways Longitudinal Pressure Distribution (Mundrey, 2017) 
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As a precautionary note, the methodology described previously for India 

Railways was based on the details provided by one singular author (Mundrey, 2017). The 

sources for the original research/work for each design parameter is not provided in this 

particular text.  

Use of Earth Pressure Cells and TEKSCAN in the Early to Mid-2000s 

In the early 2000s, several tests were conducted at the University of Kentucky to 

understand how a Hot-Mix-Asphalt (HMA) underlayments could assist in providing 

optimal pressure distribution in the track structure. This was achieved by using Geokon 

Model 3500 Earth Pressure Cells embedded above and below the asphalt mat. The pressure 

cells consisted of two stainless steel, nine-inch (22.86 cm) diameter cylindrical disks, 

which are sealed at their periphery and filled with de-aired hydraulic fluid (Walker, 2002). 

An image of one of the pressure cells used during this study is shown in Figure 2.11. 

 

Figure 2.11 Geokon Model 3500 Earth Pressure Cell (Walker, 2002) 

As pressure is applied to the pressure cell, the fluid is forced out of a tube connected 

to the device. The tube contains a pressure transducer, which converts the pressure of the 

hydraulic fluid to an electrical signal that can be translated by the computer.  

Pressure 
Transducer 

Stainless Steel 
Pressure Plates 
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A schematic of the typical testing procedure is shown in Figure 2.12. 

 

 

Figure 2.12 Schematic of Earth Pressure Cell Tests (Walker, 2002) 

Real-time tests with these devices were conducted on both mainline heavy-haul 

track, and at highway at-grade crossings. The average axle peak pressure values ranged 

from approximately 14-17 psi (96-117 kPa) on top of the asphalt layer directly under 

locomotives and heavily-loaded coal cars. For heavily-loaded coal trucks traversing the 

same crossing, the maximum pressure transmitted on the asphalt layer was 11 psi (76 kPa) 

(Walker, 2002). A typical plot of a real-time pressure signature recorded during these series 

of tests is shown in Figure 2.13. 
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Direction of 
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Figure 2.13 Typical Pressure Reading with Asphalt Underlayment (Walker, 2002) 

As a result of this study, it was also found that pressure cells installed in the track 

structure could be used to detect wheel irregularities on trains. The added impact of wheel 

imperfections was seen to have the potential to increase the wheel load by several 

magnitudes for locomotives and train cars (Walker, 2002). This particular topic will be 

addressed further in Chapter 7.  

While completing this study in regards to asphalt underlayments, it was discovered 

that Earth Pressure Cells were not applicable to the loading requirements for measuring 

pressures in higher regions of the track structure (i.e. crosstie-ballast or rail-tie interface). 

This was primarily due to the fact that the Earth Pressure Cells used at the time had a 

maximum recording range of approximately 50 psi (345 kPa), were prone to puncture with 

angular ballast particles, and could rupture due to high loads transmitted by the rail. 

Therefore, research was focused on developing a new method to measure higher level 

4 6-Axle Locomotives 

Initial 5 Cars 
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pressures in the rack structure (Stith, 2005), (McHenry M. T., 2013), (Rose, Purcell, & Liu, 

2016), & (Liu, Lei, Rose, & Purcell, 2017).  

The initial method devised was the use of TEKSCAN, a matrix based sensor 

consisting of two flexible polyester sheets with silver electrodes printed on them (Stith, 

2005). One sheet of the device has a semi-conductive “ink” printed in rows, while the other 

sheet has “ink” printed in perpendicular columns. By exciting one row and columns at a 

time, the device system was able to isolate the location of a particular force by measuring 

the resistivity change through a circuit (Stith, 2005).  Figure 2.14 shows a schematic (a) 

and a photo of these TEKSCAN sensors (b).  

 

Figure 2.14 TEKSCAN Schematic and Photo (Stith, 2005) 

The benefit of using such a device was apparent in the 5250 model sensor of this 

variety, which had the capacity to read pressures in the magnitude of 1,200 psi (8.3 MPa) 

(Stith, 2005). This was particularly useful for measuring pressures at the rail-crosstie 

interface. However, this device had not been used before in the harsh conditions of railroad 

track. Due to the thin design of the sensor, and the polyester material composition, real 

concerns of puncture and delamination by shear force were evident. Therefore, two sheets 
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of Teflon (0.15mm thick) and two sheets of Mylar (0.18mm thick) were used to prevent 

such damage (Stith, 2005).  

After proper protection was provided, several series of calibration test were 

performed using a static loading universal testing machine to determine accuracy for this 

application. With just a few adjustments, a near perfect correlation between the applied 

load and the senor output was recorded (≈ R2 = 0.97). Thus, in-track testing ensued.  

In-track testing was performed initially with locomotives in a yard environment at 

TransKentucky Transportation Inc. (TTI) in Paris, KY. The senor was placed between the 

bottom of the rail and the top of the crosstie as shown in Figure 2.15.  

 

Figure 2.15 TEKSCAN In-Track Installation (Stith, 2005) 

After evaluating a few different arrangement methods, the research team was able 

to successfully record a locomotive traversing the sensor. Based on the success at TTI, the 

research was then focused on measuring in-service track. This was conducted shortly after 
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at a site in Conway, KY, which is open to mainline traffic on CSXT. The results of one of 

those tests is shown in Figure 2.14.  

 

Figure 2.16 TEKSCAN In-Track Results (Stith, 2005) 

As shown by example in Figure 2.16, the TEKSCAN measurement system 

recorded pressures at the rail-crosstie interface ranging from 200-900 psi (1.4-6.2 MPa) in 

real time signature of the train traversing the test site. As noted in Stith’s thesis and 

corresponding Railway Engineering publication (Rose & Stith, 2004), the distribution of 

pressures were fairly consistent, and could potentially validate design practices (Stith, 

2005).  

Too validate the results of this measurement system further, a subsequent study was 

conducted to measure the contact pressure and patch with regards to the automobile-

pavement interaction (Anderson, 2006).  
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Figure 2.17 Tire-Pavement Interaction - TEKSCAN (Anderson, 2006) 

The results of this study indicated that the recorded pressures on average were 

indeed similar to the pressures corresponding to the tire inflation pressure for cars. The 

contact patch varied based on the type of tire, which should be expected; verifying the 

sensors ability to detect the contact area. Based on this research, the results from the rail-

crosstie interface could be more comfortably accepted. Furthermore, the results of this 

validation study brought forth motivation to measure the crosstie-ballast interface. 

Recent Matrix Based Tactile Surface Sensor (MBTSS) Studies 

After the rail-crosstie interface was studied to validate the TEKSCAN measuring 

system, the motivation to measure the crosstie-ballast interface ensued. This process is 

outlined in both a thesis (McHenry M. T., 2013) and a Transportation Research Record 

(McHenry, Brown, LoPresti, Rose, & Souleyrette, 2015).  

Although the same measurement system would be used as in previous studies, a 

newer approach insured that this type of system could perform properly at an interface of 

granular material. In this case, it was decided that 3/16-inch (0.48 cm) rubber sheets should 

be used to protect the sensor (McHenry M. T., 2013). This sheeting would assist in the 

prevention of puncture and shear action, just as the Teflon and Mylar had previously.  

Test Setup 
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When Stith and Rose (Rose & Stith, 2004) performed calibration tests with a 

universal testing machine, they were able to place the sensor directly on the crosstie and/or 

tie plate which proved to have consistent and reliable calibration results. However, during 

the calibration testing for this study, it was discovered that the re-arrangement of ballast 

particles under load and the inconsistent contact areas of those particles made calibration 

difficult under those conditions. Due to those inconsistences, McHenry tried a machined 

“waffle” plate would be used to consistently control the contact area (McHenry M. T., 

2013). The squares on this machined plate were intended to mimic the individual contact 

points of the ballast surface. Figure 2.18 shows the machine plate with 0.5-inch squares 

used for the calibration tests and the calibration test setup.  

 

Figure 2.18 MBTSS Calibration for Crosstie-Ballast Interface (McHenry M. T., 2013) 

This calibration with the waffle plate was done with respect to the plate being 

placed directly against the platen of the universal testing machine, and interfaced with a 

ballast box (as shown in Figure 2.19(a)). Both testing procedures proved to have reasonable 

and repeatable results. As an interesting note of the McHenry thesis, peak pressure values 

based on induvial and groupings of ballast particles was analyzed. An example of the shape 

of those peak pressures can be seen in Figure 2.19 (b).  
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Figure 2.19 MBTSS Ballast Box Calibration (McHenry M. T., 2013) 

McHenry explains that based on the calibration tests performed on different ballast 

materials (shown in Figure 2.19b) with resulting differences in peak pressure signatures, 

that both the material type, age, geography, and tie type need to taken into consideration 

when designing and maintaining trackbed structures. Each parameter evoked a certain 

amount of “roughness” that the author recommends to be considered in practice (McHenry 

M. T., 2013). After several tests and analytics, McHenry presents the following results for 

ballast type (shown in Table 3 and Figure 2.20), in terms of peak pressures, and a 

relationship for what is called the “Ballast-Tie Contact Index” (Equation 2.6). 
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Table 2.1 Peak and Theoretical Pressures by Ballast Type (McHenry M. T., 2013) 

Ballast Material Average Peak 
Pressure (psi) 

Percent of the 
Theoretical Uniform 

Pressure (%) 

Sand 283.9 399% 
Peak Gravel 444.1 624% 

Fouled Ballast 681.3 958% 
Moderate Ballast 929.7 1307% 

New Ballast 1449.9 2036% 

 

Figure 2.20 McHenry's Peak Pressures and BTCI (McHenry M. T., 2013) 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = −11.31 �
% 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 1.65 𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑒𝑒

100 � + 12.03 

Equation 2.6 McHenry's Ballast-Tie Contact Index (BTCI) 

Following calibration tests, McHenry continued his work during an internship with 

TTCI where he was able to perform extensive in-track testing to measure and develop the 

typical distribution of pressure under a crosstie (as shown in Figure 2.21). 
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Figure 2.21 McHenry's In-Track work at TTCI (McHenry M. T., 2013) 

Based on the results McHenry was able to attain at TTCI, you can see that for a 

typical wheel load from a locomotive traversing a track, an average pressure of 

approximately 120-140 psi (0.8-0.96 MPa) can be found at the crosstie-ballast interface, 

directly below the rail. This is an interesting point to note since the maximum average 

pressure recommended by AREMA is 85 psi (0.59 MPa) for concrete (analyzed here) and 

65 psi (049 MPa) for timber tie track.  

McHenry’s work brought forth a lot of questions in regards to if changes need to 

be made to AREMA’s Manual for Railway Engineering. As of 2018 however, changes 

have yet to be made to the AREMA standards. Other than some continued work by the 

University of Illinois in terms of under-tie pads, TEKSCAN is believed to be completely 

exhausted in terms of it’s abilities. As cited by McHenry, these TEKSCAN sensors  had a 

life-span of on average about 16,000 cycles, which limits it use for any type of continuous 

measurement study for in-service track. Thus the need for a more durable sensor.  
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Recent work at the University of Kentucky, 2015-2018 

After McHenry completed his work in 2013, a focus on developing a more durable 

and reliable measurement system for the crosstie-ballast interface began. Surprisingly, this 

came in the form of pressure cells, similar to what had been used by Rose and Walker in 

2002.  

Starting in 2015, work was performed to determine if a new model of earth pressure 

cell was suitable for higher level loading (Rose, Purcell, & Liu, 2016). The Geokon model 

3500 earth pressure cell that was used during the early 2000s work was again evaluated 

after developments in technology allowed the cell to record pressures up to 290 psi (2 

MPa). Another, much thicker pressure cell (1-inch (2.54 cm) compared to 0.25-inch (0.635 

cm) with the 3500 model) was also evaluated, which shared the same capacity as the 3500 

model. These two cells were both tested in a laboratory setting using a similar ballast box 

procedure as McHenry and Stith explain in their respective thesis reports (shown in Figure 

2.22).  

 

Figure 2.22 Pressure Cell Ballast Box Testing (Rose, Purcell, & Liu, 2016) 
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Based on the ballast box testing performed, it was determined that both types of 

pressure cells could be used for crosstie-ballast interface pressure testing, but it seemed 

that the standard 3500 model would require more protection (Rose, Purcell, & Liu, 2016). 

Therefore, 3515 would be adopted for in-track ballast testing.  

As was conducted in the early stages of TEKSCAN, initial tests of in-track 

measurements were performed at the CSX/TTCI interchange in Paris, KY. Pressure cells 

were placed directly under the crosstie, and  below the rail, after the ballast shoulder was 

excavated (as shown in Figure 2.23).  

 

Figure 2.23 TTCI and Flatrock, KY In-Track Pressure Cell Installation 

Several trains were then recorded to evaluate the repeatability of in-track 

measurements, but variability of results between 0.34 and 1.72 MPa (49 to 250 psi) were 

recorded (Liu, Lei, Rose, & Purcell, 2017). After this series of tests, research was moved 

to a tangent section on Norfolk Southern’s mainline located in Flatrock, KY. Pressure cells 

were once again installed and positioned in the same manner as was performed in Paris, 

KY, and several trains traversed the test section. However, as was observed at the CSX, 

TTCI track, variable results ensued. After careful observations were made, it was 

discovered that due to the “looseness” of the ballast after installation, a gap/void would 

form between the crosstie and the pressure cell. Attempts were made to “shim” the cells to 
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bring them flush against the tie, but extremely high magnitudes of pressures were recorded 

as a result (Liu, Lei, Rose, & Purcell, 2017). Nominal pressures measured at Flatrock, KY 

however, were in the range of 0 kPa (0 psi) to 400 kPa (58 psi).  

Additional details of this work at Paris, KY and Flatrock, KY can be reviewed from 

the Master’s Research Report written by Macy L. Purcell (Purcell, 2017), whom is the 

predecessor of the current research.  

Pressure Cell Research in Australia 

In 2010, Professor Buddhima Indraratna of the University of Wollongong 

performed a study to assess the performance of ballasted track with and without 

geosynthetics (Indraratna, Nimbalkar, Christie, Rujikiatkamjorn, & Vinod, 2010). One 

parameter this study focused on was the effect that geosynthetic inclusion had on the 

horizontal and vertical stresses in the ballast layer. Interestingly enough, the author chose 

to use a similar pressure sensor that has been utilized in previous work by researchers at 

the University of Kentucky (Walker, 2002) and (Rose, Purcell, & Liu, 2016). However, 

the author states that the cell is 12 mm (0.5 in) thick rather than the 1 in (25.4 mm), thus it 

may be an experimental cell for this particular study.  

The pressure measurements however were not the focus of this study. The author 

actually justifies much of the geosynthetic inclusion on deflection results but does mention 

the pressure measurement to strengthen his argument. Similar to the work at Kentucky, the 

cells were positioned freely within the ballast layer (see Figure 2.24), but no comments are 

made on whether the positioning affected measurement results.  
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Figure 2.24 Pressure Cell Configuration: Australian Study (Indraratna, 2011) 

In addition, the author presents values for typical wheel loads stresses at the 

crosstie-ballast interface, which tend to approximately 200 kPa (29 psi). In this case the 

wheel loads transmitted to the ballast were induced by a coal train. However, unlike other 

studies, the author identifies the magnitude increase of a possible wheel irregularity. In this 

case, Figure 2.25, the wheel irregularity produced a pressure of approximately 425 kPa 

(61.6 psi). These are very similar to the pressures recorded by researchers at UK.  
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Figure 2.25 Measured Wheel Loads and Impact: Australian Study (Indraratna & Ngo, 2018) 

Work has also been recently published by researchers from Queensland University 

and Christchurch Polytechnic (New Zealand) on the use of earth pressure cells to evaluate 

track structure performance (Askarinejad, Barati, Dhanasekar, & Gallage, 2018). As shown 

in Figure 2.26, earth pressure cells were placed directly below the centerline of the rail at 

the crosstie-ballast interface with tie wires to hold the cell against the bottom of the crosstie. 

 

Figure 2.26 Earth Pressure Cells used in Australia (Askarinejad, Barati, Dhanasekar, & Gallage, 2018) 

Axle pressures measured by the researchers, as shown in Figure 2.27, for a 4-axle 

truck(bogie) were in the range of 30-40 psi (210-280 kPa). However, the author notes that 

over time, there is a significant decrease in pressure due to ballast consolidation. This is 

the same problem cited in previous work done at UK (Liu, Lei, Rose, & Purcell, 2017). 

100 kPa = 14.5 psi 
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Although this work is interesting, it is not known what particular model of earth pressure 

cell was used (i.e. Geokon Model 3500), nor does the author explain what type of train 

consist traversed over the instrumented crossties.  

 

Figure 2.27 Crosstie-Ballast Pressures Measured in Australia (Askarinejad, Barati, Dhanasekar, & 
Gallage, 2018) 

 

Recent European Trackbed Studies 

Pressure cells have also been used in recent work conducted in the United Kingdom 

and France to assess the stresses transmitted at and below the subgrade(formation) 

interface.  

70 kPa = 10.1 psi 
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In regards to the work performed in the United Kingdom, pressure plates were 

staggered along the ballast-subgrade interface in an attempt to understand subgrade 

deformation in heavy haul track (Grabe, Clayton, & Shaw, 2005). As shown in Figure 2.28, 

pressures were recorded in the range of 115-160 kPa (17-23 psi) over a 7-month period at 

the ballast-subgrade interface. These pressures are observed to be very similar to those 

measured at the ballast-HMA and HMA-subgrade interface by researcher in previous 

literature (Walker, 2002). However, only the pressures measured at the depth indicated by 

400 mm (15.7 inches; in Figure 2.28) were directly below the centerline of the rail, where 

the highest pressures are assumed to exist. Thus, the results presented may underestimate 

the magnitude of pressure for the ballast-subgrade interface. In addition, the authors of this 

particular work do not indicate the particular model of pressure cell used, but it is assumed 

it is of the earth pressure cell variety.  

 

Figure 2.28 Formation Pressures over time 

Work has also been done in France recently (2016), to understand the impact that 

train loads have on the ballast-subballast and subballast-subgrade interface (Lamas-Lopez, 

et al., 2016). In this study, pressure cells were placed directly below the centerline of the 

rail at the ballast-subballast/subballast-subgrade interface and were subject to the load of a 
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Locomotive (225 kN axle load, 25.3 kip wheel load) and a coach (105 kN axle load, 11.8 

kip wheel load). Based on a series of tests, the researchers found that pressures at the 

ballast-subballast interface were in the range of 10-15 kPa (1.5-2.2 psi) and the pressures 

at the subballast-subgrade interface are in the range of 2.5-5 kPa (0.4-0.75 psi). These are 

drastically lower pressures than those recorded in previous literature (Walker, 2002) & 

(Grabe, Clayton, & Shaw, 2005), which questions the validity/transformation methodology 

of the data, especially since the ballast and subballast depths are similar to those used in 

the United States and un the United Kingdom.  It is not known what installation procedures 

were used to place the cells, nor what particular model of pressure cell was used, thus it is 

hard to tell why such low values were measured.  

Load Cells used in Iran 

Load cells, instead of pressure cells or MBTSS, have also been used in an attempt 

to quantify the stresses transmitted to the crosstie-ballast interface. As shown in Figure 

2.29, researchers in Iran were able to cast load cells firmly and flush with the bottom of 

concrete crossties, and installed the crossties into a test track (Sadeghi, 2008). Under 

what the author refers to as “type A” freight traffic (gross weight of 70-90 tons; 17.5-22.5 

kip wheel load; 77.8-100 kN), the stress transmitted from an axle to the crosstie-ballast 

interface was in the range of 1-1.4 tons (8.9-12.5 kN). However, for design purposes, 

pressures over an average area are typically needed. The author in this case does not 

address that, and does not provide any dimensions of the load cell to calculate what the 

pressure might be. Based on Figure 2.29, if we were to assume a diameter of 6-inches for 

the load cells in questions, the pressure transmitted to the ballast would be in the range of 
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70-100 psi (483-690 kPa), which are very high for what is typically recommended in 

design for concrete crossties (AREMA, 2018). 

 

Figure 2.29 Load Cells at Crosstie-Ballast Interface 

Related Work Conducted in China/Japan 

A recent study by the Railway Technical Research Institute in Tokyo, Japan 

sought to derive relationships between the magnitudes of wheel-rail impacts and the 

resultant vibrations induced by the wheel-rail impacts (Aikawa, 2013). The research team 

performed various assessments to measure and model vibrations within the track 

structure, but interestingly enough, they also evaluated the magnitudes of peak forces 

along the footprint of a series of crossties. Figure 2.30 presents example results from a 

test that measured the first axle of a lead passenger coach bogie (truck) traveling at 125 

km/hr. The author also states that the test section these measurements were taken from 

consists of 60 kg/m (40.3 lb/ft) continuously welded rail, over PC3-type concrete mono-

block sleepers (crossties) on a 25 m (82 ft) tangent section of track. The track 
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superstructure is noted to rest on a 30 cm (11.8 in) ballast bed over “firmly tightened” 

sandy soil in Kyushu, Japan.   

  

Figure 2.30 Pressures Along Sleeper: Japan 

To measure these crosstie-ballast forces along the crosstie footprint, a series of 

“Sensing Stones” were used, which are able to quantify a particular force/pressure over a 

square (6 cm x 6 cm, 2.4 in x 2.4 in) contact surface (Aikawa, 2013). Figure 2.31 

provides a schematic (a) and view of these “Sensing Stones” attached to the bottom of a 

crosstie (b). 

     

Figure 2.31 Japanese Sensing Stones 

Based on the example results provided by the author, the pressure transmitted at 

the crosstie-ballast interface can be directly calculated based on the reported active 

surface of the measurement device. Therefore, it can be determined that the lead axle of a 

a
 

b
 



 

50 
 

passenger train transmits a pressure of approximately 56.4 psi (0.39 MPa) to the ballast 

directly between the edge of the crosstie and the rail seat. It can also be observed that a 

pressure between 16-32 psi (0.11-0.22 MPa) is recorded along the rest of the crosstie 

footprint. Most notably, the pressure is seen to increase substantially near the centerline 

of the track. Although the author’s goal was to provide evidence to support how 

vibrations induced by wheel imperfections have detrimental effects on the track structure, 

the work presented in this article provides some interesting details on potential pressure 

measurement techniques that could be used in the United States. However, it should be 

noted that the pressures transmitted by the passenger train in this study exceed those of 

heavy-axle freight trains in previous studies. Thus, the measurement technique may need 

to be further developed.  

Desirability of a New Test Procedure 

Based on the literature presented to this point, several trackbed design 

methodologies have indicated relationships that can be used to calculated interfacial 

pressures and material heights based on a series of unique loading conditions. By keeping 

several parameters constant, such as a 33,000 lb (146.8 kN) wheel load, 40 mph (64.4 

km/h) traffic, 12 inches (30.48 cm) of ballast and subballast, Figure 2.30 was created to 

acknowledge the differences in each design methodology. As can be noted from Figure 

2.32, the Japanese National Railway and US Army Corps of Engineer’s standard design 

procedure is much more conservative than the other methodologies accepted by AREMA.  
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Figure 2.32 Trackbed Design Pressure Comparison 

Based on the inconsistencies in measurement and analytical techniques cited in 

previous literature, the current research focuses on the development of a new, more-

reliable, and simple method for measuring the pressures exerted within in-service 

trackbeds, specifically at the crosstie-ballast interface utilizing pressure cells. Special 

attention will be given in regard to the positioning of instrumentation in order to secure 

consistent  and repeatable results. The following two chapters describe this new procedure.  
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 GRANULAR MATERIAL PRESSURE CELL MEASUREMENT 

SYSTEM 

Granular Material Pressure Cells  

In order to measure the pressures transmitted to the crosstie-ballast interface of 

railroad track, a durable and reliable measurement system is desirable. For this study, 

Geokon Model 3515 Granular Material Pressure Cells were used. Figure 3.1 is a view of 

this particular model of pressure cell.  

 

Figure 3.1 Geokon Model 3515 Granular Material Pressure Cell 

In previous studies (Walker, 2002), Earth Pressure Cells (Model 3500) with a 

similar size and shape were used to quantify the pressures at the top and below an HMA 

underlayment layer, typically placed under railroad ballast. Both types of pressure cells 

share the same theory of operation; designed to measure the total stress/pressure applied to 

the active area of the device. The portion of the cell that receives the load consists of two 

stainless steel circular plates that are 9 inches (22.9 cm) in diameter, and welded together 

at their periphery. Between the two plates is a small gap (void) filled with de-aired 

hydraulic fluid. The earth pressure that builds on either side of the cell squeezes the two 

plates together, thus creating fluid pressure in the cell (Geokon, 2017).  
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The only differences between a typical Earth Pressure Cell, and a pressure cell of 

the Granular variety is the shear thickness, and the “active area” of the instrument. Typical 

Model 3500 Earth Pressure Cells are constructed with a total thickness of 0.25 inches (0.64 

cm), whereas Granular Material Pressure Cells are typically 1 inch (2.54 cm) in thickness. 

This allows the plates to be sufficiently thick so that the cell does not deflect locally under 

a series of point loads applied by surrounding large aggregate particles. Granular Material 

Pressure Cells are also constructed slightly different, where an 8 inch (20.3 cm) circular 

extruded portion of the device serves as the “active area” or essentially the primary contact 

surface for measurement. Standard Earth pressure Cells however use a flat 9 inch (22.9 

cm) plate surface for measurement (Geokon, 2017). A more detailed schematic showing 

these attributes is shown in Figure 3.2. 

 

Figure 3.2 Model 3515 Pressure Cell Schematic 

In order to measure the fluid pressure, the Model 3500 and 3515 Pressure Cells use 

a semiconductor strain gauge type of transducer, which transforms the fluid pressure into 

a voltage or current signal. Geokon produces a series of transducers that can have an output 
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of either 0-100mV, 0-5 volts or 4-20 mA, depending on the measurement intent, 

environment, and data acquisition systems (Geokon, 2017). A semiconductor type of 

transducer, rather than vibrating wire, was selected in this application because of the need 

to accurately measure dynamic pressures. Semiconductor type transducers are known to 

handle dynamic responses more effectively. Additionally, the pressure transducer has a 

measurement range of 0 to 362 psi (0 to 2.5 MPa), with an additional 1.5 factor of safety, 

which allows pressures to be recorded up to 544 psi (3.75 MPa). This is very useful for this 

study, as wheel irregularities may cause significant pressure increases. Additional 

specifications for this particular type of pressure cell is presented in Appendix A.  

Derivation of Pressure 

 Although the transducer is able to transmit a corresponding electrical response 

based on earth pressure, that electrical response must be converted to a more 

understandable pressure value. This is done by using a linear or polynomial expression that 

have been provided by the manufacturer as shown in Equation 3.1 and 3.2.  

𝑃𝑃 = 𝐺𝐺(𝑅𝑅1 − 𝑅𝑅0) 

Equation 3.1 Linear Expression for Pressure 

𝑃𝑃 = 𝐴𝐴𝑅𝑅12 + 𝐵𝐵𝑅𝑅1 + 𝐶𝐶 

Equation 3.2 Polynomial Expression for Pressure 

 Where P is the pressure value, R1 represents the current (in progress) output reading 

from the transducer, R0 represents the initial output reading, and G (also A, B and C) 

represents the linear or polynomial gage factor for the device (Geokon, 2017). 

For better accuracy, the manufacturer recommends that the polynomial expression 

be used. However, this requires atmospheric pressure calibration by the user before each 
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and every test. Based on this, it was decided to use the linear expression instead, which 

only accounts for approximately 1% difference in pressure readings.  

As an example, assume that the particular model of pressure cells has a linear gage 

factor of 0.1565 (based on an input voltage of 24 VDC). This particular pressure cell also 

has polynomial gage factors of 6.82E-05, 0.1549, and -0.6194, representing A, B, and C 

respectively. Also assume that while measuring pressure, a change was obsereved in output 

reading of 127.8 mA (initially -0.5mA). Using Equations 3.1 and 3.2 presented earlier, the 

following pressure values are obtained. 

𝑃𝑃 = 𝐺𝐺(𝑅𝑅1 − 𝑅𝑅0) = 0.1565(127.8 𝑚𝑚𝑚𝑚) = 20 𝑝𝑝𝑝𝑝𝑝𝑝 

𝑃𝑃 = 𝐴𝐴𝑅𝑅12 + 𝐵𝐵𝑅𝑅1 + 𝐶𝐶 = 6.82 × 10−5(127.3 𝑚𝑚𝑚𝑚)2 + 0.1549(127.3 𝑚𝑚𝑚𝑚) − 0.6194 = 20.2 𝑝𝑝𝑝𝑝𝑝𝑝 

 As can be observed from this example, the difference in measured pressures based 

on the polynomial and the more simplified linear expression is negligible. Thus, it is 

appropriate to use the more simplified expression.  

 The gage factors correspond to the reported factors presented on calibration reports 

provided by the manufacturer for each cell. An example of one of these calibration reports 

is shown in Appendix B. Each individual cell will have its own calibration report. 

Temperature Effects 

 In addition to gage factors and conversion expressions, temperature also has an 

effect on measured pressure readings. Fluids, even hydraulic fluid, have the tendency to 

expand whenever their respective temperature increases. Considering that, and the added 

effect of the liquid being confined within a small area, the liquid may be able to deform the 

pressure cell body, thus causing variable pressure readings. Opposite of that, whenever the 



 

56 
 

temperature of the liquid decreases by a significant amount, fluid can respond by shrinking, 

thus potentially under representing pressure readings. Based on details outlined by the 

manufacturer, this effect can be considered minimal, especially if the pressure cell contains 

a fluid, such as oil or hydraulic fluid, that has a high coefficient of thermal expansion, K. 

However, the specifications do provide guidance if it is desirable to calculate this effect.  

An expression that the manufacturer recommends to calculate this effect is shown 

in Equation 3.3.   

∆𝑃𝑃 =
1.5(𝐸𝐸)(𝐾𝐾)(𝐷𝐷)

𝑅𝑅
 

Equation 3.3 Temperature Effect Expression 

Where ∆𝑃𝑃 is the potential change in pressure (psi) per °C, E represents the modulus 

of the soil media in contact with the cell (psi), K represents the coefficient of thermal 

expansion of the oil/hydraulic fluid (ppm/°C), D represents the oil/hydraulic fluid film 

thickness (in), and R represents the radius of the pressure cell (in) (Geokon, 2017).  

To provide an example of this effect, consider a pressure cell (R = 9 in (22.9 cm), 

D = 0.060 in (1.5 mm)) interfaced with railroad ballast (E = 3,000 psi (20.7 MPa)). The 

thermal expansion coefficient of the oil within the cell is approximately 700 ppm/°C. 

Knowing this information, the potential change in pressure per °C can be calculated. 

∆𝑃𝑃 =
1.5(3,000 𝑝𝑝𝑝𝑝𝑝𝑝)(700 𝑝𝑝𝑝𝑝𝑝𝑝/°𝐶𝐶)(0.060 𝑖𝑖𝑖𝑖)

9 𝑖𝑖𝑖𝑖
= 0.021 𝑝𝑝𝑝𝑝𝑝𝑝/°𝐶𝐶 

 Knowing the potential pressure change per °C, an estimate can be made as to the 

significance this will have during a typical testing day. Suppose a large temperature swing 

on a day beginning at a low of 10 °F (-12 °C) and rising to a high of 60 °F (15.5 °C).  
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15.5°C − (−12)°C = 27.5°C 

27.5°C × 0.021
psi
°C

= 0.57 𝑝𝑝𝑝𝑝𝑝𝑝 

Although one-half of a psi in some scenarios may be significant, in regards to 

measuring pressure in the railroad track structure, one-half of a psi is not considered 

significant. This example also illustrated a worst case scenario, assuming the baseline 

temperature for normal operation was 10°F (-12 °C) (usually closer to room temperature). 

In Chapter 6, temperature variations and pressure measurements over time will be further 

analyzed.  

Data Acquisition 

 To record the electrical response these pressure cells produce, a National 

Instruments Model 9203 C Series data logger was used as shown in Figure 3.3a.  

 

Figure 3.3 Data Logger and Power Supply; cable attachments and power connection highlighted 

 This particular data logger is capable of recording up to eight channels (pressure 

cells) concurrently, recording at a rate of 2 kHz (2000 samples/s). The data logger and 

pressure cells are powered by a portable 12 VDC power supply shown in Figure 3.3 b. The 
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data logger in this case was connected to the power supply with the connector outlined in 

“red” shown in Figure 3.3a.  

 As mentioned previously, the semiconductor transducer that produces an electrical 

signal, which is then converted to pressure, is manufactured to output either 100 mV, 0-5 

VDC, or 4-20 mA. In this case, a 4-20 mA current option was chosen because analog 

signals of this variety offer increased immunity to both electrical interference and potential 

signal loss over long cable runs. Voltage on the other hand does not provide this type of 

protection. In addition, the National Instrument data logger, described earlier, was also 

compatible with that type of input.  

 To connect the cells to the data logger, a connection similar to what would be used 

for automobile trailer lights was used as shown in Figure 3.4. This two-wire connection is 

compatible to the wiring specification the manufacturer recommends. The corresponding 

plug for this connector is highlighted with a red circle in Figure 3.3a. 

 

Figure 3.4 Pressure Cell Two-Wire Connector 

 To visualize the data during measurements and for post processing, the data logger 

is interfaced with a laptop computer, which has software to translate the measurements 

recorded by the data logger. This is shown in Figure 3.5.    
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Figure 3.5 Pressure Test Setup 

 The data logger is interfaced with the computer, using only a simple USB 

connection, highlighted with red in Figure 3.5. The program used to record the pressure for 

each cell was written by visiting scholar Qingjie Liu using a software LabVIEW, which 

allows users to graphically code their desired programs in a user-friendly manner. The 

home screen on the software is shown in Figure 3.6 and highlighted with orange in Figure 

3.5. 

 

Figure 3.6 Pressure Software Home Screen 

Pressure Cell Legend 
(by number and color) 

Dynamic Signal 
Output Region 
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 As can been seen in the home screen, the pressure signals can be plotted within the 

graphing area, highlighted in red, and a legend reporting the color and pressure for each 

pressure cell in real-time is presented in the top right of the screen, highlighted in orange. 

The measured data from this program is initially stored as a .TDMS file (native to National 

Instruments), but can easily be converted to a comma-delimitated .CSV file for use in 

various data processing software with a simple plug-in available through National 

Instruments. A code map of this program is presented in Appendix C. 

Pressure Cell Installation 

 Special attention was also placed on the installation procedure required to embed 

these cells into the track structure. Previous work at the University of Kentucky (Liu, Lei, 

Rose, & Purcell, 2017) attempted to insert pressure cells directly under the crosstie by the 

use of track jacks, which raised the rail and crosstie 1.5 inches (3.8 cm) to provide sufficient 

space to slide the cell in place. However, over time, settlement with an additional loss of 

ballast support under the crosstie resulted in a dramatic decrease in the pressures recorded 

in the prior tests. Metal shims were then used to fill the void between the crosstie and the 

pressure cell, which resulted in an increase of pressure for that particular cell for the next 

test train. However, this fix was short-lived as pressures would typically continue to 

decrease during subsequent tests.  

 Based on these findings, a new method was developed to mount these pressure cells 

directly to the bottom of timber crossties, virtually nullifying the effect of settlement. This 

method involved the use of a CNC machine to physically route out a recess of the pressure 

cell, in order to mount the active surface of the cell flush within the bottom of the crosstie 

(Rose, Clarke, Liu, & Watts, 2018). To do this, a series of red oak timber crossties, treated 
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with Copper Naphthenate solution, were obtained from Norfolk Southern Corporation. 

With assistance from the College of Engineering Machine Shop, the ties were routed with 

a CNC machine to conform to the shape and dimensions of the pressure cell. The CNC has 

very precise tolerances, which provided a perfect fit between the cell and the crosstie. The 

recess of the cell typically takes approximately 45 minutes to create. Figure 3.7 shows a 

picture of a) routing in progress, and b) a finished product.  

 

Figure 3.7 Routing the Pressure Cell Recess 

The typical recess created on the crosstie was made to be located directly under one 

rail seat at the crosstie-ballast interface. However, a series of crossties were also routed to 

permit measurement simultaneously beneath both rail seats, and at the center of the track, 

as shown in Figure 3.8.  

In order to route these configurations, special attention was taken to configure the 

CNC machine to route the pressure cell recess in the proper location. This was done by 

conforming to the rectangular coordinate system by which the CNC machine software 

operates, and by defining the locations to begin routing, at the center of the cell, based on 

the dimensions shown in Figure 3.8. Figure 3.9 presents a) schematic of a CNC showing 
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the rectangular coordinate systems, and b) a screenshot of the software that performs the 

routing operation. 

 

Figure 3.8 Various Routing Configurations for timber crosstie 

 

Figure 3.9 CNC Machine Configuration 
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In addition to routing, protection for the transducer housing and other electrical 

components was provided by attaching thin metal sheets with a textured surface to the 

bottom of the crosstie. This protected each critical component. The textured finish was 

necessary to restore frictional resistance between the crosstie and the ballast. A protected 

cell is shown in Figure 3.10. 

 

Figure 3.10 Electrical Component Protection 

 Chapter 6 contains more discussion on how these pressure cells and crossties are 

installed in the track structure.  

Although this procedure presents a major opportunity to obtain more reliable test 

results in the track, it is critical to verify that this procedure provides accurate and consistent 

measurements by evaluating this installation procedure in the laboratory. This is described 

in the following chapters. 
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CHAPTER 4. LABORATORY VERIFICATION OF PRESSURE CELLS 

In order to verify that Granular Material Pressure Cells can accurately measure 

crosstie-ballast interfacial pressures with the installation configuration described in 

Chapter 3, conducting a series of laboratory calibration tests, based on controlled static 

loadings, are essential.    

Previous Calibration Studies 

Recent studies based on the early work of researchers at the University of 

Kentucky, indicate that the specially designed Granular Material Pressure Cells 

manufactured by Geokon are applicable for measuring pressures at the crosstie-ballast 

interface (Rose, Purcell, & Liu, 2016). The researchers found that this particular type of 

cell was able to measure consistent pressures under various support conditions and various 

aggregate types (such as new, worn, and top-size ballast material). However, this work was 

developed under the assumption that the pressure cells would be placed below a solid tie 

without constraint. As mentioned previously, this installation method in the track proved 

to be unsatisfactory, due to the fact that firm and consistent contact between the pressure 

cell and the crosstie was impossible to develop and maintain (Liu, Lei, Rose, & Purcell, 

2017). Thus, the need for additional calibration.  

Development of Simulated Trackbed for Calibration 

To perform this calibration, the support conditions of a typical trackbed need to be 

simulated in the laboratory. This required developing a prototype trackbed. This particular 

test section incorporated a vertical resiliency so that deflections in the trackbed under 

typical loading would be in the range of 1/4 to 3/8 inch (0.64-0.95 cm), similar to that 

observed for in-service trackbeds. This deflection would inherently be achieved under 
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laboratory loading conditions. In addition to this, the ballast containment frame would 

exhibit lateral ballast confinement similar to that observed in an in-service trackbed. This 

was done by creating a resilient, yet expandable frame that would contain the ballast, but 

also provided minimal lateral support due to stress/strain produced under laboratory 

loading. Figure 4.1 shows a version of this testing frame used calibration.  

 

Figure 4.1 Simulated Trackbed for Calibration 

In Figure 4.1, a 4-inch (10.2 cm) layer of 1 inch (2.54 cm) nominal maximum size 

limestone aggregate (typically used for railroad subballast and highway pavement base; 

locally known as dense-graded aggregate DGA), was placed in the containment frame 

labeled “a” to simulate typical railroad subballast. A thick layer of plywood (5/8-inch, 1.59 

cm) with a 3/16-inch (4.8 mm) rubber mat was placed beneath the subballast frame to 

exhibit resilient behavior of the corresponding subgrade. In the area labeled “b”, a ballast 

mixture of new and worn ballast was placed within a frame restrained primarily by wood 

and lawn edging material. This lawn edging material permitted the ballast to expand 

laterally under load and contract whenever the load was released.  

a 

b 
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To achieve the condition of worn railroad ballast, new ballast was subjected to an 

LA Abrasion test to slightly round the ballast particles. Large sized ballast particles (> 1.5 

inches, 3.8 cm) were removed to provide more adequate and consistent support. To 

interface between the ballast and subballast, a 3/16-inch (4.8 mm) layer of polyester 

fiber/rubber-backed floor carpet was used. Special attention was also taken to ensure that 

adequate and uniform compaction within each of the aggregate support layers was 

produced.  

Timber Crosstie Section, Tie Plate, and Rail for Calibration Tests 

Calibration tests also employed the use of a 9 inch (22.9 cm) wide by 7 inch (17.9 

cm) thick copper naphthenate treated timber crosstie. In the interest of pressure cells 

calibration, an 11 inch (27.9 cm) length of crosstie was used to embed a single cell directly 

under the rail as shown in Figure 4.2, part a. 

 
Figure 4.2 Timber Crosstie and Rail for Calibration 

A standard 8 inch (20.3 cm) wide by 14 inch (35.6 cm) long steel tie plate was also 

positioned between the wood crosstie and rail (Figure 4.2, part b), with a 1/8 inch (3.2 mm) 

thick narrow spacer placed between the rail and tie plate to remove the cant. This allowed 

a 

b 

c 
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for vertical loads to be applied uniformly through the simulated track structure. A 10 inch 

(25.4 cm) long section of 136-lb rail conforming to AREMA specifications, Figure 4.2 – 

part c, spanned the entire width of the tie plate. 

Calibration Testing Equipment  

To apply the laboratory loading necessary to exhibit railroad conditions, a 

Baldwin/Satec hydraulic universal material testing machine was used to apply static 

compression loads in 1,500 lbf (6.7 kN) increments to a maximum load of 6,000 lbf (26.7 

kN). This range of laboratory loading provided pressures in excess of 100 psi (0.69 MPa) 

over an active area of 50.3-in2 (324.5 cm2). This range of pressure has been observed to 

exceed the typical pressure magnitudes of locomotives and loaded freight cars (Liu, Lei, 

Rose, & Purcell, 2017). In this case, the Baldwin/Satec testing machine has a test range of 

300,000 lbf (1334.5 kN).  

When measuring these pressure magnitudes induced by static loading, the data 

logger and software described in Chapter 3 are interfaced with a pressure cell and a laptop 

computer. Figure 4.3 shows the typical test equipment for laboratory calibration and 

pressure measurements. 
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Figure 4.3 Laboratory Calibration Test Setup 

Various Calibration Tests 

Since the magnitude of the loading can be selected and controlled by the testing 

machine, a series of basic calibration-type validation tests were performed to measure the 

accuracy of the cells. In addition, the effects of several variables were examined to optimize 

installation practices used for the placement of pressure cells in the trackbed. The variables 

examined during these tests are the following: 

• Validation of the accuracy of measurement procedure, 

• Measurement repeatability within and between cells, 

• Effect of cell location and position, and 

• Effect of cell attachment procedures. 

The first series of tests involved assessing measurement accuracy and pressure cell 

repeatability. Repeatability measurements employed the use of four individual cells to 
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evaluate if there was any inherent instrument bias. Six tests were performed for each cell, 

using the same loading magnitudes and routed crosstie installation method.  

Figure 4.4 illustrates the relationships of machine induced stress and the 

corresponding cell measured pressure for each of the four cells.  

 

Figure 4.4 Repeated Tests for Individual Cells (Routed Tie) 

Based on Figure 4.4, the results demonstrate a near-percent relationship (R2 = 

0.9971) between each cell’s stress response for each machine applied load. Variations, 

minimal at best, are seen at higher load magnitudes, but are not considered to be significant. 

This test suggests that the routing procedure used to install the pressure cells is valid, but 

it was desirable to evaluate the effect of several other variables.  

The effect of variable cell location and position was evaluated. This test evaluated 

whether or not there is any discrepancy between inserting the pressure cells within the 

recessed cavity of the crosstie, or placing the cell directly below the crosstie. Six repeated 
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tests were conducted with the cell placed directly below a solid 11 inch (27.4 cm) length 

of the crosstie, and was compared with the prior tests. Special attention was taken to make 

sure only the cell surface contacted the ballast. This was necessary to ensure the machine 

applied load was only supported by the pressure cell and excluded crosstie contact with the 

ballast. The comparison between each test is shown in Figure 4.5. 

 

Figure 4.5 Effect of Cell Position 

Based on the results of this repeated test, there seems to be no effect on the 

transmitted pressures between recessing the cell into the bottom of the crosstie, compared 

to placing the cell directly below the solid timber tie. The relationship found was, again, a 

near-perfect correlation between the cell’s response and the machine’s applied load (R2 = 

0.9997).  

The preceding laboratory tests involved having the cells positioned recessed in and 

below the tie without any attachment method to secure the pressure cell to the tie. The 

cell’s position for these installation procedures, without attachment, can be controlled in a 
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testing machine, but some type of attachment will be needed for in-track testing. Without 

attachment in the recessed portion of the crosstie, the cell will subsequently settle in the 

ballast, potentially causing the crosstie loading to “bridge” across the cell, resulting in 

lower pressure magnitudes than would be typical for non-instrumented ties.  

Based on the need for attachment, two methods for affixing the cells to the routed 

cavity of the crosstie were evaluated. One method involved the use of screws through the 

integral brackets of the cell body. The second method used a series of small metal corner 

braces screwed against the tie. The corner brackets were considered to evaluate the 

performance of the cell when the ballast is relied upon to hold the cells in place rather than 

directly mounting the cell to the crosstie with screws. The attachment procedures, a) no 

attachment (for tests 1 & 2), b) screws, and c) corner braces, are shown in Figure 4.6. 

 

Figure 4.6 Cell Attachment Procedures 

Similar to the previous calibration tests, each attachment procedure was evaluated 

in six repeated test sequences with the varying machine applied loading. Figure 4.7 

illustrates the relationships that developed during this series of tests. Based on Figure 4.7, 

the test data indicates very good correlation between the cell’s pressure response and the 

machine’s applied loading for each attachment procedure. Screws and Corner Braces 

accounted for R2 values of 0.9997 and 0.9996, respectively. Variations, minimal if any, 

 

 
a b c 
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were less than one psi. Therefore, varying the cell attachment procedure has no effect on 

the transmitted pressures at the crosstie-ballast interface. However, for in-track 

applications, either screws or corner braces must be used.  

 

Figure 4.7 Cell Attachment Relationships 

Additional Laboratory Evaluations 

In addition to evaluating the effect of cell accuracy, position, and attachment, the 

effect of tie length on a single pressure cell was also explored. During the preceding 

calibration tests, a 11 inch (27.9 cm) length of timber crosstie was used. For the following 

test sequence, 20 inch, 30 inch, and 40 inch lengths of crosstie sections were used to 

evaluate the effect on the measured pressure cell response, for varying machine applied 

stresses.  

Each test involved the use of a solid section of crosstie cut to the specific lengths. 

Routing did not need to be performed since the calibration testing completed prior indicated 

there was effectively no difference between installation procedures, thus no reason to rout 
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each section. The machine loading performed on each section was consistent with the 

loading performed during the calibration tests increments of 1,500 lbf (6.7 kN) to 6,000 lbf 

(26.7 kN). Figure 4.8 shows the results of these sequential tests.  

 

Figure 4.8 Effect of Longer Tie Sections 

Based on these tests, it was apparent that there was basically no effect on a single 

cell’s response in regard to the length of crosstie. This also served to validate the laboratory 

calibration procedure used in the preceding evaluations. It is interesting, however, to note 

the variation of the cell’s pressure response at higher load magnitudes. However, the higher 

loading magnitudes were in excess of those existing for in-service train operations.  

Tabulated data for each for the tests described in this chapter are included in 

Appendix D for further reference. This laboratory practice will be expanded in Chapter 5 

to evaluate the distribution of pressures along the length of the crosstie transverse to the 

track.  
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CHAPTER 5. LABORATORY EVALUATION OF THE PRESSURE DISTRIBUTION 

AT THE CROSSTIE-BALLAST INTERFACE 

Based on the successful laboratory calibration tests and evaluations, it was 

determined that a similar approach could be used for assessing the magnitudes and relative 

distributions of pressures transmitted along the crosstie-ballast interface. Knowing what 

this distribution is, and having a simple way to quantify it, can enhance the current 

understanding and applicability for design practices. 

The American Railway Engineering and Maintenance-of-Way Association 

(AREMA) recommends that designers should consider the relative distribution of stress 

underneath the effective length of the crosstie to be two-thirds of the crosstie footprint. 

That two-thirds being the outer third of each end of the tie in bearing. Although this 

estimate may seem to be correct, it’s important to note that this approximation was created 

on the basis of early analytical methods. With the current availability of accurate and 

durable instrumentation, it is desirable to test the validity of this standard to enhance the 

industry’s understanding of this concept, and to optimize the current design practices. The 

following methodology and series of tests were performed to gain a greater understanding 

of the typical load distribution at the crosstie-ballast interface.  

Simulated Trackbed Composition 

In order to determine this distribution, the responses of a typical trackbed had to be 

simulated in the laboratory; similar to the information presented in Chapter 4. This was 

done by constructing a larger ballast bed, 55 inches (1.4 m) in length, that encompassed 

the length of one-half of a crosstie, as shown in Figure 5.1. A one-half length of crosstie 
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was chosen for this particular study because the testing machine available was only capable 

of applying a load at a single location, representing one rail. Also, the one-half length was 

more manageable for one or two persons to position and make fine adjustments to both the 

crosstie and the simulated trackbed. Although testing on a full length of crosstie would 

have been ideal, the results from one-half length testing can be converted by symmetry to 

represent an entire crosstie. 

 

Figure 5.1 Simulated Trackbed for Distribution Testing 

The trackbed support was similar to the calibration tests performed in Chapter 4. 

The support consisted of a 3/16-inch (4.7 mm) thick layer of rubber mat, which interfaced 

the steel platen of the testing machine to provide vertical resiliency to the trackbed. This 

rubber mat was then topped with a 4-inch (10.2 cm) thick compacted layer of dense-graded 

limestone aggregate to simulate typical subballast. The ballast layer, was a 14-inch (35.6 

cm) thickness of new and worn #4A graded granite, with the >1.5-inch (38.1 mm) size 
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particles removed. These sizes were removed to gain more uniform and consistent 

compaction, and surface levelness.  

As an improvement, the ballast layer was increased in thickness by 5-inches (12.7 

cm), relative to what was used during the calibration tests to provide a more realistic ballast 

thickness normally observed in the track. This also allowed for more consistent deflection 

measurements in the range of 1/4-inch (6.35 mm).  

As alluded to previously, the track support bed was 55-inches (1.4 m) long and used 

a copper naphthenate treated timber (red oak) crosstie. Along the crosstie’s footprint, four 

critical points of the crosstie were instrumented with pressure cells to monitor the behavior 

at the crosstie/ballast interface. Those critical locations being the centerline to monitor any 

center binding effect (Cell #68), the rail seat (directly below the rail, Cell #70), the outer 

end of the crosstie (Cell #71), and a location equal distance between the centerline and the 

rail seat (Cell #69). However, in order to measure the pressures transmitted at the centerline 

(51-inches, 1.3 m, from the tie end) of the track, the crosstie was cut at 55-inches (1.4 m) 

long to provide sufficient length for an 8-inch (20.3 cm) diameter cell, as shown in Figure 

5.2, to be positioned properly at the centerline. Figure 5.2 presents a schematic of the test 

section used for this laboratory evaluation, showing the precise locations of each pressure 

cell along the effective length of the tie. The more transparent portion of this figure shows 

the addition of the other half of the crosstie and is intended to provide scale for how this 

test compares to the full length of the crosstie, if it had existed. 

Similar to the calibration testing procedure outline in Chapter 4, a standard 8-inch 

(20.3 cm) wide by 14-inch (35.6 cm) long steel tie plate was used with the AREMA 
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conforming 136-lb rail section. A 1/8-inch (3.2 mm) narrow spacer was also utilized to 

negate the cant effects of the tie plate.  

 

Figure 5.2 Laboratory Distribution Testing Schematic 

Laboratory Test Equipment and Data Acquisition 

The series of loads were applied to the crosstie with the same testing machine used 

during calibration. Based on the manufacturer’s loading specifications for the 

Baldwin/Satec hydraulic universal testing machine, it was determined that this particular 

machine would be able to apply greatly in excess of the load required to simulate track 

application.  

Pressures could also be recorded for all four cells simultaneously using the same 

measurement software and data logger as was used during calibration, as depicted in Figure 

5.3. Since most, if not all, of the equipment used during calibration was used again during 

this phase of testing, the effect of the minor instrument deviations was negligible. Figure 

1 in = 2.54 cm 

Ballast Bed 
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5.3 provides a detailed sketch showing the data acquisition and testing equipment used 

during this evaluation. 

 

Figure 5.3 Multi-Cell Testing Data Acquisition Setup 

Series of Tests to be Evaluated 

Based on early observations made during preliminary laboratory testing, four 

different testing arrangements for measuring the transfer of loadings from the recessed cells 

to the ballast supporting material were selected for evaluation. These four arrangements 

were: 

• Series #1: Ballast Contact against the Pressure Cells and the Crosstie, 

• Series #2: 8-inch (20.3 cm) Spacers interfacing the Pressure Cells from the 

Ballast,  

• Series #3: 2-inch (5.1 cm) by 10-inch (25.4 cm) Lumber Board interfacing 

the Crosstie from the Ballast, and 
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• Series #4: 8-inch (20.3 cm) Spacers interfacing the Crosstie and Cells from 

the 2-inch (5.1 cm) by 10-inch (25.4 cm) Board. 

A visual representation of each arrangement is presented in Figure 5.4. 

 

Figure 5.4 Testing Arrangements Evaluated 

As shown in Figure 5.4, Series #1 involves the crosstie and the pressure cells 

making full contact with the ballast bed. This arrangement was chosen because it closely 

resembles the loading conditions that would be observed in the track. The pressure cell 

surfaces, in this case, accounted for approximately 40% of the crosstie footprint area, 

Series #1 

Series #2 

Series #3 

Series #4 
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with the remaining 60% consisting of the crosstie-ballast contact area (not routed). A 

series consisting of six consecutive tests were conducted at seven equal loading 

increments from 1,500 lbf (6.7 kN) to a maximum of 10,500 lbf (46.7 kN).  

Series #2 was arranged with 8-inch (20.3 cm) diameter metal spacers between 

each cell, and the ballast, providing an interface for the pressure cells and the ballast bed. 

This arrangement was created to evaluate the distribution along the crosstie when 100% 

of the machine applied load was concentrated on the pressure cells.  

Series #3 was a little different as a 2-inch (5.1 cm) by 10-inch (25.4 cm) board 

was used to interface the crosstie and cells from the ballast bed. This was done to 

minimize the effect of localized high and low areas on the surface of the ballast bed. The 

effects of those high and low spots, as will be described later in the data presentation 

section, greatly affected the results obtained during the Series #1 and #2 tests. This was 

due to the repeated static loading of the testing machine initiated settlement in the ballast 

bed, which had to be re-leveled for each new set of tests. With the inclusion of the wood 

board, less ballast manipulation between tests had to be performed.  

Series #4 was evaluated for comparison with the results of Series #2. This 

arrangement, which minimized effect of ballast settlement, should provide an analysis of 

the pressure distribution with 100% of the machine applied load concentrated on the 

pressure cells.  A complete presentation of tests performed for each series is contained in 

Appendix E.  
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Laboratory Data Consistency/Inconsistency for Each Series 

The data was compiled to determine the consistencies and/or inconsistencies for 

each particular pressure cell for all four arrangement conditions. The data presented in 

Figure 5.5 to 5.17 contains the trends observed for each particular arrangement based on 

the applied machine loading and the pressure cell measured response (psi). 

 

Figure 5.5 Applied Load and Measured Pressure Response for Cell 68 

For pressure cell 68, which was positioned at the simulated centerline of the track, 

it is obvious that variations within particular arrangements and between arrangements 

exists, as shown in Figure 5.5.  In particular, using a linear relationship it was noted that 

the R2 correlative value for each series was 0.24, 0.74, 0.42, and 0.94, for series #1 through 

#4, respectively. Series #1, 2 and 3 in particular produced significant variations between 

test sequences. Based on observations during laboratory testing, this type of variation was 

determined to be caused by uneven concentration of compaction within the ballast bed. 

This was primarily due to the fact that the machine applied loading was concentrated at the 

rail seat, which inevitably induced localized high and low spots on the surface of the ballast. 
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Areas farther away from the load application, such as cell 68, did not receive the same 

amount of compaction. Based on these variations in compaction effort, cells in an area with 

less compaction inevitably had lower pressure readings. The adjoining cells in this case 

basically “bridged” over the surrounding ballast. Cells such as cell 70 had a much firmer 

contact with the ballast bed, resulting in higher pressure readings. 

In an effort to address this situation, a series of smaller wood boards positioned at 

each desired pressure cell location, and a 2-inch (5.1 cm) by 10-inch (25.4 cm) wood beam 

were used in an attempt to uniformly distribute the compaction effort across the entire 

length of the ballast bed. As shown in Figure 5.6, the wood beam was positioned vertically 

to take advantage of the wood’s tangential mechanical properties as the machine load was 

applied through the normal increments of testing. 

 

Figure 5.6 Ballast Bed Compaction Attempt 
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However, even with the considerable effort taken to uniformly distribute the 

compaction effort across the ballast bed, observations made, which are also reflected in the 

test results, indicate that the ballast bed still became uneven just after a few test sequences. 

Therefore, additional arrangement conditions (series #2 through #4) were conducted to 

address this problem. 

Figure 5.7 and 5.8 illustrate the variations for cell 68 based on pressure magnitude 

and load percentage among all cells. As can be seen in the figure, series #1 and #3 share 

similar results for cell 68, as results for both arrangements were similar. Only a difference 

of about 2% in load percentage exists between these sets of tests, which is typically around 

12-14% of the load. A similar relationship between series #2 and #4 can be seen as well, 

as only load percentage in comparison with the adjacent cells only varies by about 1%. 

These two series of tests suggest that the load transmitted at the centerline is around 3-4%. 

The load differential between the two similar set groupings is based entirely on the load 

concentration performed with the inclusion of 8-inch (20.3 cm) metal spacers, which 

negated any load transferring from the crosstie to the ballast. 

 

Figure 5.7 Arrangement Variations for Cell 68 via Measured Pressure 
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Figure 5.8 Arrangement Variations for Cell 68 via Load Percentage 

A similar trend can be seen for cell 69, the midpoint between the rail seat and the 

centerline, where unevenness in the ballast caused minor variations within and between 

sets of test. However, on a percentage basis, the load carried at cell 69 is fairly constant 

between 20-25%. It’s interesting to note that in regards to cell 69 and 68, a higher 

percentage of the load is seen to be carried at lower load applications. It is believed that 

this is caused by ballast rearrangement during initial load seating. This is all reaffirmed by 

the R2 relationship values of 0.44, 0.89, 0.74, and 0.99 for test series #1 through #4, 

respectively. Figure 5.9, 5.10 and Figure 5.11 shows how these tests varied by load 

application.  
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Figure 5.9 Applied Load and Measured Pressure Response for Cell 69 

 

Figure 5.10 Arrangement Variations for Cell 69 via Measured Pressure 

 

Figure 5.11 Arrangement Variations for Cell 69 via Load Percentage 
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Cell 70, which was placed directly below the rail seat and the load application, is 

interesting to analyze because the load percentage for each arrangement is fairly consistent, 

although each arrangement varies. However, there is a  the drop in load percentage between 

the full aggregate contact condition and the spacer interfaced condition. This reaffirms the 

conclusion stated prior that the ballast unevenness affecting cell 68 in particular directly 

correlated to the high spot located at the rail seat. In this case, the load carried at cell 70 

dropped 8% between test series #1 and #2, and approximately 2% to 4% of that load was 

transferred to the adjacent cell locations. This was also verified by high correlations that 

exist between the measured pressures at cell 70 and the machine applied loads for each 

arrangement condition. These R2 relationship values are 0.75, 0.96, 0.94, and 0.98, for 

series #1 through #4, respectively. Figures 5.12, 5.13 and 5.14 show the variations between 

series of tests for cell 70. Figure 5.12 in particular shows the linear relationships derived 

for the R2 values stated for cell 70. 

 

Figure 5.12 Applied Load and Measured Pressure Response for Cell 70 
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Figure 5.13 Arrangement Variations for Cell 70 via Measured Pressure 

 

Figure 5.14 Arrangement Variations for Cell 70 via Load Percentage 

Cell 71, which was positioned at the end of the crosstie, showed similar results as 

cell 69 as they were both positioned approximately the same distance from the load 

application. Very little variation occurred for this between series as R2 values for series #1 

through #4 are 0.78, 0.85, 0.93, and 0.96, respectively. Load percentage at this location 

was found to be typically 25-30%. Figure 5.15 presents the linear relationships that derived 

the R2 values stated for this location, and Figures 5.16 and 5.17 detail the variations in 

pressure and load percentage by arrangement and load application. 
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Figure 5.15 Applied Load and Measured Pressure Response for Cell 71 

 

Figure 5.16 Arrangement Variations for Cell 71 via Measured Pressure 

 

Figure 5.17 Arrangement Variations for Cell 71via Load Percentage 
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Measured Distributions 

To illustrate the data for each arrangement, a series of graphs were created to show 

the relative distribution along the effective length of the crosstie. This was performed for 

half-tie sections (55-inches, 1.4 m) in terms of measured pressure response and load 

percentage. In addition, symmetry was used across the centerline axis to represent the 

relative distribution along the entire 102-inch (2.6 m) crosstie section. 

For Series #1, where full aggregate contact was made with the ballast bed and the 

instrumented crosstie section, the distributions shown in Figures 5.18, 5.19 and 5.20 were 

calculated. 

 

Figure 5.18 Applied Load Distribution of Pressure via Series #1 

 

Figure 5.19 Applied Load Distribution of Load Percentage via Series #1 
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Figure 5.20 Assumed Distribution Along Full Length of Crosstie via Series #1 

Based on the load distribution assumption, p/2, included in figure 5.20, the average 

percentage of load that would be expected at the crosstie-ballast interface, directly below 

the rail seat, would be approximately 24% of the pressure applied along the entire footprint 

of the crosstie-ballast interface. If direct measurements are taken at the crosstie-ballast 

interface, directly below the rail seat in the track, the amount of pressure at other critical 

locations along the tie can be calculated. As an example, if 30 psi was recorded directly 

below the rail seat, no more than 5 psi would be expected at the centerline of the track. 

It is also interesting to note the dashed lines shown in the top portion of Figure 5.20. 

These represent the outer-thirds of each end of the crosstie. Assuming this recommendation 
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would indicate that the load bearing percentages on the crosstie below 12-13% are not 

considered or negligible for design purposes. Although small on a percentage basis, they 

should be considered as they can subsequently contribute to center bound failure. 

For Series #2, the same type of calculations were performed, and are presented in 

Figures 5.21, 5.22, and 5.23. 

 

Figure 5.21 Applied Load Distribution of Pressure via Series #2 

 

Figure 5.22 Applied Load Distribution of Load Percentage via Series #2 
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Figure 5.23 Assumed Distribution Along Full Length of Crosstie via Series #2 

For this series, the percentage of load expected under the rail seat would be 

approximately 18%. Using the Series #1 example already presented, this would equate to 

approximately 7 psi at the centerline of the track. It’s also important to note that a higher 

load percentage was measured on the ends of the crosstie (approx. 15-16%).   

For Series #3, the same procedure was performed for a condition considered to 

possess a more uniform ballast bed; results are shown in Figures 5.24, 5.25, and 5.26. 

 

Figure 5.24 Applied Load Distribution of Pressure via Series #3 
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Figure 5.25 Applied Load Distribution of Load Percentage via Series #3 

 

Figure 5.26 Assumed Distribution Along Full Length of Crosstie via Series #3 

For this series, the results compared favorably to series #1 in terms of percentages, 

but a lower concentration at the centerline is observed. This is to be expected for uniform 

trackbeds. In this case, the rail seat is expected to transmit around 26% of the pressure to 

the ballast. Using the example described prior, this would account to approximately 2 psi 

at the centerline of the track. 

The same procedure was used to evaluate the relative pressure distribution for 

Series #4, which was an arrangement consisting of the total load concentration on the 

pressure cells with a uniform trackbed. These are shown in Figures 5.27, 5.28, and 5.29. 
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Figure 5.27 Applied Load Distribution of Pressure via Series #4 

 

Figure 5.28 Applied Load Distribution of Load Percentage via Series #4 

 

Figure 5.29 Assumed Distribution Along Full Length of Crosstie via Series #4 
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This series compared favorably with what was seen in series #2, but similar to what 

was seen in series #3. Less load concentration is seen at the centerline, which should be 

expected for well consolidated and uniform trackbeds. In this case, approximately 20% of 

the pressure at the rail seat was transmitted to the ballast. This would equate to 

approximately 3 psi at the centerline of the track. 

An overall chart presenting the average load percentages for each particular cell 

and each particular test is included in Appendix F. In addition, the example calculations 

mentioned in this chapter are included in Appendix F. 

Additional Evaluations 

In addition to evaluating the arrangements described previously, a series of tests 

were performed to evaluate the effect that load application rate has on the pressures and 

load percentages at the crosstie-ballast interface. 

Load application rates of 0.1 in/min (2.54 mm/min), a standard used for previous 

tests, 0.2 in/min (5.08 mm/min), and 0.3 in/min (7.6 mm/min) were selected. 

Arrangement #1 with the crosstie and cells directly in contact with the ballast was also 

selected as a baseline to identify any variations. The results of those tests are shown in 

Figures 5.30, 5.31, and 5.32. 
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Figure 5.30 Load Rate Variations for Each Cell and Load Application via Pressure 

 

Figure 5.31 Load Rate Variations for Each Cell and Load Application via Percentage 

 

Figure 5.32 Assumed Distribution Along Full Length of Crosstie for Each Load Rate 



 

97 
 

These results indicate that there exists little to no change exists on the pressure 

distribution along the footprint of the crosstie for various load rates. It can be noticed that 

the pressures and load percentage obtained for cell 68 varies slightly, but this change is 

inherently related to the ballast surface variability between the 0.1 in/min and the 0.2/0.3 

in/min tests. The pressures and load percentage for cell 68 actually increase after the 0.2 

in/min test, thus reaffirming the fact that the ballast bed levelness and density change 

frequently for this condition. 

Based on the information presented in this chapter, one can notice that the support 

conditions beneath a crosstie can greatly influence the overall magnitude and distribution 

of pressures along the footprint of the crosstie. Therefore, it is imperative that these 

findings considered for in-track testing procedures. Chapter 6 outlines the procedures and 

presents the results of in-track testing conducted based on the procedures and findings from 

laboratory tests.  
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CHAPTER 6. IN-TRACK PRESSURE MEASUREMENTS 

Based on the successful and accurate results of laboratory calibration testing using 

the routing procedure described previously, research was conducted to assess the 

applicability of this method for measuring in-track pressures. The site subsequently 

selected to perform this evaluation was at Mascot, TN.  

Mascot, TN Test Site 

The Mascot, TN test site is located on a tangent section of a Norfolk Southern (NS) 

mainline track approximately 20 miles (30.2 km) east of Knoxville, TN. The track consists 

of 136 RE continuous welded rail secured with cut spike fasteners to timber crossties. 

Crossties are positioned at approximately 20-inch (50.8 cm) center-to-center spacing and 

each crosstie is box anchored. The track support at this site consists of standard NS 

mainline granite ballast on a well-seasoned roadbed. NS personnel reported that the area 

has a long record of stable roadbed/trackbed behavior requiring minimal track 

maintenance. The most recent timber and surfacing procedure was completed in November 

of 2015.  

As alluded to previously, the test site is positioned on a horizontal tangent section 

with a 0.25% vertical grade which is eastbound ascending. The track annually carries 

approximately 37 million gross tons (MGT) of traffic, with a maximum train speed of 45 

mph (72 km/hr).  

All east-west bound trains passing through Knoxville, TN traverse this test site. A 

wayside automatic equipment identification (AEI) reader adjacent to the test site 



 

99 
 

documents the passing train consist. In addition, through trains that pass over Wheel Impact 

Load Detector (WILD) sites west of Knoxville at either Ebenezer, TN or Flatrock, KY pass 

this site as well. The data from the WILD permits subsequent comparisons of the crosstie-

ballast pressures versus wheel-rail impact loads, which will be discussed in greater detail 

in Chapter 7. Figure 6.1 contains an aerial view of the test site, and two photos depicting 

the on-site conditions. 

 

Figure 6.1 Mascot, TN Test Site 
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Instrumented Crosstie Installation 

 In order to place instrumented crossties into the track at this site, special precaution 

was made in protecting the electrical components using thin metal plates to cover the 

transducer housing. Waterproof electrical boxes were used adjacent to the track to store the 

instrument wiring (as was discussed in Chapter 3). Fortunately, NS provided the equipment 

and personnel necessary to install the series of instrumented crossties. The crew took 

extreme care to avoid damage to the instrumented crossties during the installation process. 

Figure 6.2 illustrates the handling (a) and placement (b) of the instrumented ties.  

 

Figure 6.2 Handling and Placement of Instrumented Crossties 

The instrumented crossties were also immediately tamped and a testing procedure 

similar to what was used during laboratory calibration was used. Initially only the 

instrumented crossties were tamped, but after some initial testing, fifteen approach 

crossties on either side of the test section were also tamped to provide uniform ballast 

consolidation on the approaches and within the test area. Figure 6.3 shows the NS crew 

tamping the test site after installation.  
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Figure 6.3 Tamping the Test Section 

The entire installation consisted of inserting eight instrumented crossties into the 

trackbed. Four of those crossties were instrumented with a pressure cell directly under one 

rail seat. As for the other four crossties, two of them were instrumented with cells below 

both rail seats, and the others instrumented only at the centerline. Figure 6.4 illustrates and 

labels the location and identification for each particular cell.  

 

Figure 6.4 Pressure Cell Locations 

Data Acquisition 

Using the data acquisition equipment described previously, eight cells are 

connected directly to a data logger for simultaneous and dynamic logging at 2 kHz (2,000 
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samples/second). This sample rate allows for adequate sampling of wheel impacts as the 

wheels traverse the test section encompassing a full revolution of a 33-inch (83.8 cm) 

diameter wheel. In addition to recording pressures, the following information was obtained 

for each test train.  

• Train Number 

• Lead Locomotive Number 

• Time 

• Type of Train 

• Number of Locomotives 

• Number of Axles 

• Direction of Travel 

• Gallons of Fuel 

• Speed of Train 

• Length of Train 

• Tonnage of Train 

• Number of Cars 

Using this information, several relationships were derived for particular pressure 

behavior. Figure 6.5 presents a schematic for the testing procedure used at the Mascot, TN 

test site. Note that in addition to the 12 Vdc power station used to power the data logger, 

an extra 12 Vdc battery is positioned adjacent to the testing equipment. This is required for 

in-track testing as time between tests can vary from several minutes to several hours, thus 

the battery of the laptop computer may need to be charged. The extra battery can also serve 

as a backup for the existing power station.  
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Figure 6.5 Data Acquisition Setup for In-Track Testing 

Various Pressure Data Measurements 

Based on the testing procedure outlined previously, the dynamic pressure 

measurements of a revenue train can be recorded and analyzed in greater detail. Figure 6.6 

shows the pressure recording of a typical mixed train with heavy and light axle loads.  
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Figure 6.6 Typical Pressure Reading of a Revenue Train 

As noted in Figure 6.6, there are a considerable amount of unique characteristics 

and behaviors based on the interaction at the wheel-rail interface. The first being the 

distinct signature of the two 6-axle locomotives that lead the train consist (outlined with a 

solid black rectangle). Each of the twelve axles can be seen clearly and are typically 

associated with a magnitude of 30 psi (206.8 kPa). There is also an inherent shift among 

all pressure cell readings as noted in the enlarged lead locomotive in Figure 6.7. 
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Figure 6.7 Enlarged Scale of Lead Locomotive 

This shift is due to the amount of time it takes for an axle to traverse a particular 

crosstie to the adjacent crosstie. The local maximum of each pressure signature denotes the 

instance in time when an axle is directly over an instrumented tie. In the case of the example 

shown in Figure 6.7, the revenue train was moving in an east-bound direction since the 

lead axle of the lead locomotive registered pressure on Cell 89 before any of the other 

instrumented ties.  

Another unique characteristic noted in Figure 6.6 is the distinctive signatures of 

heavily loaded freight cars (timeframe of 20-35 seconds), and empty/lightly loaded freight 

cars (highlighted with a dashed line rectangle). For heavily loaded freight cars, each of the 

four axles of an individual car can be clearly identified (similar to the locomotives), and 

the pressure magnitudes for a particular axle is typically in the range of 20-30 psi (137.9-

206.8 kPa), depending on the loading and car type. A significant difference between car 

types can be noted in Figure 6.8, where a series of flex-van articulated intermodal train cars 
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traversed the test site. For a typical mixed or unit revenue train, the signatures of each axle 

for a particular car remain consistent, as the load is distributed equally on each axle. 

However, in the case of a series of articulated intermodal cars, the shared truck portion 

(highlighted with a solid black rectangle) typically registers pressures much lower than 

those not shared (dashed line rectangle).  Those trucks and axles that are not shared, 

actually behave similar to that of a locomotive, with axle pressure equal if not exceeding 

those of a locomotive (30-40 psi, 206.8-275.8 kPa). This is an interesting behavior to 

acknowledge as these more frequent and heavy axle loads can lead to more frequent 

maintenance activities.  

 
Figure 6.8 Typical Series of Intermodal Cars 
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Examining the signature of an empty/lightly loaded series of freight cars (shown in 

Figure 6.6), it is difficult to identify the axles as they pass over the instrumented ties. The 

magnitude of the pressure signature that can be seen is only in the range of 0-3 psi (0-20.7 

kPa), which is negligible. In addition to the low magnitudes, inherent noise and/or vibration 

registers with these empty/light loads, which tends to suggest that these cars vibrate and 

shift a considerable amount during travel.  

In addition to the characteristics already described, the behavior of wheel 

irregularities can also be noticed while recording tie/ballast pressures. These wheel 

irregularities, commonly referred to as wheel flats, are indicated by large spikes of pressure 

at a split-second instant of time (highlighted with black ovals in Figure 6.6). These wheel 

irregularities have been observed to increase the pressure of a particular axle by several 

orders of magnitude and can range from 50-100 psi (344.7-689.5 kPa) depending on the 

severity of the wheel irregularity. As can be noticed in Figure 6.6, the same wheel 

irregularity is typically only registered on one or two cells as only one complete wheel 

revolution is recorded. A schematic showing the span of ties needed for one complete 

wheel revolution is shown in Figure 6.9. The black and red dots represent the ends of the 

revolving wheel set.  
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Figure 6.9 One Wheel Revolution over Test Section 

 

Although somewhat insignificant, it is also important to note the behavior of the 

pressure cells located at the centerline of the track. As can be noted in Figures 6.6-6.8, the 

pressures recorded at the tie/ballast interface at the centerline of the track structure (Cells 

91 and 25) register pressures in the range of 0-2 psi (0-13.8 kPa) and are not subject to 

change over time. Due to these low readings and based on the fact that there are no 

discernable wave signatures at the centerline, it is hard to quantify any relationships or 

other unique characteristics at this location. Thus, the relationships discussed in the 

following section will be based on the pressure cell readings under the rail seat.   

Pressure Relationships Over Time 
 

Since establishing a methodology to record the crosstie-ballast pressures of revenue 

trains, several tests and maintenance procedures have been performed over the span of 

nearly two years to describe the typical behavior and pressure magnitudes at the tie/ballast 

interface. This span of time consisted of nineteen different testing days, with a total of 58 

revenue trains recorded. Of those 58 revenue trains, 42 were designated as mixed freight, 

1 in = 2.54 cm 
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and 8 of them were of the intermodal variety. The other 8 trains measured consisted of a 

few empty unit coal, loaded unit coal, rail, and auto trains. The complete listing of trains 

observed over this time can be found in Appendix G. In addition, an example recording of 

each train type is included in Appendix H.  

To describe the behavior at the crosstie-ballast interface over this span of time, 

Figure 6.10 was created, which graphically represents the average and range of pressures 

for locomotives that traversed the test section on each test date. In addition, the graphic 

denotes when a specific type of maintenance activity was performed, such as tamping or 

surfacing. Each test date is labeled with a letter for simplicity; Table 6.1 provides a guide 

for the actual test date that corresponds to each letter.  

 

Figure 6.10 Average and Range of Pressures Measured at Mascot, TN 

Table 6.1 Legend for Test Dates 

A B C D E F G H I J 
9/26/16 10/12/16 10/26/16 11/7/16 11/28/16 12/15/16 4/13/17 4/27/17 4/28/17 6/26/17 

K L M N O P Q R S 
6/27/17 8/7/17 8/8/17 8/30/17 9/27/17 11/3/17 2/9/18 3/9/18 6/25/18 

Legend: 

Single Tamped 5 Ties   Double Tamped 39 Ties   

Single Tamped 39 Ties   Raised, Surfaced, and Tamped 
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Although measurements are seen to fluctuate a minor amount over time, the 

pressure cells do indicate that for typical locomotives (33,000 lbf wheel load), the pressures 

transmitted at the crosstie-ballast interface are in the range of 20-30 psi (137.9-206.8 kPa) 

on average, and usually do not exceed 40 psi (275.8 kPa). This is an interested fact to note 

as trackbeds are designed with the assumption that the load transmission at this interface 

is in the range of 65 psi (448.2 kPa) for timber crossties.  

Although interesting, it is important to note some potential reasons for the pressure 

fluctuations that are potentially skewing these results. The first being the maintenance 

procedures deployed over the span of these tests. As mentioned previously, when the first 

series of instrumented ties were installed, only the instrumented ties were tamped. This 

procedure, as shown in Figure 6.10, actually caused non-uniform ballast settlement which 

reduced the pressures transmitted to the crosstie-ballast interface for the ensuing test 

sequence. After this was observed, 15 approach ties on either side of the test section, along 

with the ties within the test section (39 total), were single tamped to provide a more uniform 

trackbed. After this sequence, pressures did increase, but then dropped off slightly in the 

following test sequence. A double-tamping procedure was then used at two different 

instances, but results were still variable. Due to this variability, the track was actually given 

a raise and was surfaced accordingly to make certain that the ballast throughout the entire 

test section was uniformly consolidated. After the surfacing procedure, results were more 

consistent over the concluding seven test sequences.  

In addition to the concern for ballast uniformity, temperature has also been 

considered to have an effect on the recorded pressures. Figure 6.11 compares the reported 

ambient temperature (Weather Underground, 2018) and the average locomotive pressure 
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for each revenue train. Based on the figure, there does seem to be a slight trend in some 

instances due to temperature, such as the decrease in pressure during test sequence “F” 

(12/15/2017) with a decrease in temperature, but the trend is not consistent. As an example, 

between test sequences “P” and “Q”, there is a significant drop in temperature, but the 

pressures remain relatively constant. When performing a regression analysis between the 

average pressure and temperature readings, no relationship was apparent. Thus, variations 

in temperature may not have an effect. Based on the manufactures’ cell specifications 

relating to temperature discussed in Chapter 3, there should be negligible effects due to 

temperature.  

 

Figure 6.11 Average Pressure Compared to Ambient Temperature 

One of the limitations of this study is the fact that much of the information, 

specifically in regards to relative car weights is unknown, which makes it difficult to 

provide substantial justification for the trends presented in this chapter.  Even though most 

locomotives are assumed to have a wheel load of 33,000 lbs (146.7 kN), some of the 

variation in pressures presented previously may be due to the actual variation in wheel 

loads among locomotives. This is where the utilization of Wheel-Impact Load Detector 
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data can and will be useful to perform direct wheel for wheel correlations between 

wheel/rail forces and tie/ballast pressure. This will be discussed in greater detail in Chapter 

7.  
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CHAPTER 7. WHEEL IMPACT LOAD DETECTOR (WILD) RELATIONSHIPS 

 

As alluded to in the previous chapter, data produced by Wheel Impact Load 

Detectors (WILD) can provide researchers with the opportunity to directly compare the 

loads applied to the wheel-rail interface with the pressures transmitted to the crosstie-

ballast interface. With the ability to directly compare these two datasets, the data acquired 

through this study at the crosstie-ballast interface can be more adequately justified.  

Development of the Wheel Impact Load Detector 

The undesirable effects of wheel/rail impact loadings on the track and supporting 

structure have been considered and evaluated for many years. A primary reason for the 

virtual demise of jointed rail track for mainline trackage was to eliminate the need of 

incorporating joints every 39 ft (11.9 m). The impact forces that ensued from the wheels 

having to traverse the open section of the rail at the joint resulted in impact forces on the 

track and support structure with attendant settlement of the track in the vicinity of the joint. 

The individual rails became misaligned vertically across the joint and the wheels added 

additional impact forces and accelerated wear at the rail ends. This also increased impact 

forces and settlement of the track and support structure. Railroad track maintenance forces 

routinely raised and surfaced the track in the joint areas to reduce impact forces at the 

joints. This was particularly the prevailing situation when marginal quality trackbed 

support layers were often the norm, and when coupled with inadequate drainage, the 

trackbed provided less than desirable structural support.  

Technological advances beginning in the mid-1900s to produce continuously 

welded rail (CWR) resulted in the advancement of installing rail without joints which was 
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subsequently widely adopted as a standard for mainline track. A smoother and much 

improved ride quality ensued with greatly decreased impact forces at the wheel/rail 

interface. This in turn reduced track maintenance efforts and costs, which extended the life 

of the rail and track components. 

Although the adoption of CWR for mainline, high tonnage rail lines eliminated the 

primary source of wheel-rail impact forces, it alone did not completely eliminate impact 

forces. An additional source of impact forces was due to imperfections in the wheel tread 

contact surface as it rolled along the rail. These were typically flat spots, but also included 

imperfections in the steel, resulting in “rough” spots on the tread surface. The impact forces 

resulted in higher stresses in the wheel and the rail that could result in damage to the rail 

cars and lading and damage to the track and support structure. 

The technology for continuously measuring contact forces, including normal and 

added impact forces due to wheel imperfections, was developed in 1983. Salient Systems 

(recently became a wholly owned subsidiary of LB Foster Company) was involved with 

the early development and applications of this technology. The incorporation of wayside 

wheel impact load detectors (WILDs) began in 1984 and by 1995 more than sixty systems 

had been installed in North America and Europe by Salient Systems (LB Foster - Salient 

Systems, 2018). 

The incorporation of WILDs is considered a standard practice for major railroads. 

These are strategically placed at selected locations throughout the system in order to 

routinely measure and evaluate the presence and severity of wheels producing high impact 

forces at the wheel/rail interface. Wheels having imperfections exceeding specified limits 
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are detected, inspected, tracked, removed based on specified criteria, and replaced with 

new wheels based on industry standards (Wiley & Elsaleiby, 2011) & (Wiley & Elsaleiby, 

2012). 

WILD Measurement Procedure and Output 

A Wheel Impact Load Detector (WILD) consists of a series of individual strain 

gauges mounted on the neutral axis of web of the rail for a consecutive series of cribs for 

measuring vertical rail strain in order to calculate wheel loads (Van Dyk, Dersch, Edwards, 

Ruppert, & Barkan, 2014). WILD sites are located on tangent track where lateral to vertical 

load ratios are typically less than 0.1. The track and support consists of premium size rail 

on concrete ties overlying a typical thickness of premium ballast supported by a well 

compacted thickness of subballast, typically hot-mix asphalt, and a well-compacted 

subgrade. This will reduce sources of variations within the track structure due to geometry 

and support conditions irregularities. 

A WILD site normally involves about 200 to 250 ft (61 to 76 m) long section of 

track. This contains the track measurement zone, that is typically 50.5 ft (15.4m) long, and 

transitions on each end. The rail is instrumented at various intervals to capture each single 

wheel’s rotation at least two times. Peak loadings, which include impact, as well as nominal 

or average loadings are collected at 25 kHz frequency. The static wheel load is estimated 

by filtering the average or nominal forces from the peak forces by using an algorithm that 

analyzes variability along the site. 

The Peak wheel load is simply the highest recorded measurement from the strain 

gauge closest to the impact. It is the maximum impact force and is used for analyzing 

impacts for loaded cars and locomotives at a constant speed. For a given defect, the PEAK 
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will tend to increase with vehicle weight and/or speed. The Association of American 

Railroads issues industry standards (criteria for repairs) for WILD alarms. The minimum 

alert threshold is 65 kips (290 kN). The Dynamic Impact is the difference between the Peak 

Load and the Nominal Load. This term is useful for analyzing intermediately loaded 

vehicles, but there are no industry threshold standards based on Dynamic Impact. The Peak 

Load divided by the Nominal Load is the Ratio or Impact Factor. It is useful for analyzing 

empty or lightly loaded vehicles. Although there is no alert threshold for Ratio, it is 

observed that once the ratio becomes higher than 3, it is likely that the vehicle will exceed 

the established Peak threshold when heavily loaded. These relationships are shown in 

Figure 7.1. 

 

Figure 7.1 WILD Output Relationships 

The Salient WILD design, being the initial type developed in the 1980s, is the most 

widely used system in the world today, with more than 200 installed worldwide to date. 

Over 90% of the WILD systems in the U.S. are Salient products. These evaluate millions 

of wheels per day throughout the international railway systems that detect and alarm when 

excessive wheel vertical impacts occur, so that the defective wheels are identified for 

inspection, tracking, treatment, and subsequent removal as standards dictate. A view of a 
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Salient Mk-III WILD used to gather data for this study is shown in Figure 7.2. This 

represents one of NS’s fifteen WILDs designed and installed by Salient Systems. 

 

Figure 7.2 Typical Salient Mk-III WILD Installation 

The instrumented zone for the measurement of vertical forces exerted by each 

wheel of a passing train consists of a series of strain gage load circuits, micro-welded 

directly to the neutral axis of the rail. Signal processors, housed in a nearby enclosure, 

analyze the data to isolate wheel tread irregularities. If any wheel generates a force that 

exceeds a customer configured alarming threshold, a report identifies that wheel for 

subsequent action. Depending on operating procedures, multiple alarm thresholds can be 

configured. The reports are distributed in real-time to interested parties such as rail traffic 

control centers and vehicle repair shops.  

WILDs are considered a strategic device for the protection of rail infrastructure. 

High impacting wheels can dissipate on the order of 25 horsepower each, degrading track, 

ballast and bridge structures, while reducing bearing and other vehicle component lives. 

Over time, the repetitive load cycles of defective wheels may result in rail fractures. 
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Pressure Data Conversion 

WILD data is produced in an axle domain with loads (nominal, peak) in its 

corresponding range. This format allows maintenance crews to directly identify wheel 

defects for downstream remedial action. WILD reports are also based on a format that 

describes cars in an A or B-end category, and re-orients them for the convenience of 

engineering and maintenance crews. In order to perform direct wheel-for-wheel 

comparisons with trackbed pressures, NS and LB Foster (Salient Systems) provided WILD 

reports that eliminated the re-orientation procedure. Even with that however, pressure 

measurements at the crosstie-ballast interface are recorded in a frequency domain, 

complicating with WILD produced data.  

Relating the trackbed crosstie-ballast interfacial pressures with the WILD force 

measurements required conversion of the recorded pressure data from a real-

time/frequency domain to an axle domain. This was perfromed using a combination of 

bandwidth filtering and a simple waveform peak algorithm using MATLAB. The 

bandwidth filter (approx. 60 Hz) enabled production of a smooth wheel (nominal pressure) 

model of each axle (as shown in Figure 7.3). 
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Figure 7.3 Modeling the Nominal Pressure of a Revenue Train 

 A simple script could then locate, pick off, and tabulate the corresponding pressure 

for each axle (included in Appendix I). Wheel irregularities and empty loads still required 

manual attention/quality control, as the corresponding wave signatures could not be easily 

modeled (as shown in Figure 7.4).  

 

Figure 7.4 Empty Load Discrepancies 

≈ 60-80 Hz for a revenue train 
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Signal analyzing software such as DIAdem (produced by National Instruments), so 

that a user can easily trace the signal, addressed these irregularities. From the processed 

data, nominal and peak pressure values were produced in an axle domain for direct WILD 

comparisons. Dynamic pressure and pressure ratio parameters, similar to those reported by 

WILDs, were also calculated. 

Relationships between WILD and Tie/Ballast Pressure Measurements 

To examine the relationships between crosstie-ballast interfacial pressures and 

WILD parameters, each axle of eight revenue trains was aggregated together and 

compared. This dataset is comprised of two coal trains (one empty, one loaded), four 

mixed freight (three loaded, one empty), and two intermodal trains, which provided 

ample coverage of the diverse types of trains.  

To perform these comparisons, three different methodologies were used. The first 

presented individual axles with reported measurements for each individual pressure cell. 

The second methodology considered the average measurements of each particular car for 

each individual pressure cell. The third method contained the average value for each 

particular car, considering all pressure cells. The average value derived for each car, 

considering all six pressure cells averaged together, provided the most favorable 

relationships for each WILD parameter. This average reduces the variability between 

individual pressure measurements due to track levelness/position. Figure 7.5 highlights 

the relationships between each WILD parameter and each corresponding tie/ballast 

pressure variable. Appendix J provides the same relationships for the first two dataset 

methodologies.  
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Figure 7.5 Relationships between WILD and Tie/Ballast Pressure Measurement Parameters 

 

Nominal wheel loads measured at the wheel/rail interface relate very well to the 

corresponding nominal crosstie/ballast interfacial pressures. The two appeared linked in a 

power relative manner with an R-squared value of 0.97, as shown in Figure 7.5a. Based 

on the power regression relationship, an increase 50% in Nominal loading at magnitudes 

less than 10 kips (44 kN) results in an 81% increase in Nominal ballast pressure. 

However, at higher load magnitudes a 15% increase in Nominal loading results in only a 

31% increase in ballast pressure. This suggests that higher Nominal wheel loads do in 

fact affect the track substructure significantly, but decrease in severity at higher load 

magnitudes. 

a) b) 

c) d) 
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With regard to WILD Peak loadings, shown in Figure 7.5b, a similar trend is seen 

as a 50% increase in Peak wheel/rail loading  at lower magnitudes (less than 20 kips (89 

kN)) results in a 75% increase in the transmitted ballast pressure. However, a 17% 

increase in Peak loading at higher load magnitudes (60 kips (267 kN)), results in only a 

31% increase in the pressures transmitted to the tie/ballast interface. This is significant in 

that ballast degradation rates are increased substantially, but also seem to decrease in 

severity at higher load magnitudes. 

Dynamic wheel loads, shown in Figure 7.5c, did not indicate a strong relationship 

(R2 = 0.32). This is interesting since a strong relationship was found between absolute 

peak magnitude and measured peak pressure values. This could be attributed to the 

variable position along the rail of the wheel impact, which may not always fall directly 

above the instrumented crosstie. If each impact was at the same location above the 

instrumented crosstie, a stronger relationship might be apparent. 

WILD Ratio, shown in Figure 7.5d, exhibited a much stronger relationship (R2 = 

0.82). This suggests that the relative magnitude increase between nominal and peak 

wheel loads and pressures does follow a trend. This dataset shows that an approximate 

20% increase in the WILD Ratio results in a 60% increase in the calculated Pressure 

Ratio. 
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CHAPTER 8. SUMMARY FINDINGS, CONCLUSIONS AND SUGGESTED 

FUTURE RESEARCH 

The primary objectives of this study were to: 1) continue a laboratory series of test 

using controlled and measured loadings to further develop, calibrate, and determine the 

applicability of Granular Material Pressure Cells for accurately measuring timber crosstie-

ballast interfacial pressures, and 2) install a series of the cells, imbedded in consecutive 

crossties directly under the rail, in a revenue track to quantify pressures developed at the 

crosstie-ballast interface for various wheel loadings and train operations.  

Repeated laboratory test and calibrations (Chapter 4), using known loading 

conditions, revealed that these pressure cells accurately and consistently measured crosstie-

ballast interfacial pressures. Additional laboratory tests (Chapter 5) were conducted using 

a one-half length crosstie positioned on a similar length of simulated trackbed support to 

determine the relative magnitudes and distributions of pressures transmitted to the crosstie-

ballast interface along the length of the crosstie for typical applied wheel loadings. The 

subballast and ballast layers were pre-compacted to represent a seasoned track support 

system. Pressure distributions along the one-half length crosstie indicated that ballast 

pressures directly below the rail seat account for 23 to 28 percent of the rail seat load. 

Pressures in the crosstie areas to either side (the crosstie end and the mid-point between 

the rail and crosstie center) each account for 10 to 12.5 percent of the load. Pressure at the 

crosstie center normally accounts for less than 2.5 percent of the applied load. 

In-track crosstie-ballast interfacial pressure tests (Chapter 6) were obtained at a test 

site on an NS Railway well-maintained mainline just east of Knoxville, TN. The cells were 
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attached to and recessed within the bottoms of six successive timber crossties below the 

rail seat and in the center of two crossties. During a period of twenty-one months, crosstie-

ballast interfacial pressures were periodically measured for numerous revenue freight trams 

traveling on a mainline at prevailing speeds. Nominal maximum static wheel loadings 

ranged from 6,000 lbf (27 kN) for empty freight cars to 36,000 lbf (161 kN) for locomotives 

and loaded cars. 

Measured pressures at the crosstie-ballast interface ranged from 20 to 30 psi (140 

to 210 kPa) for locomotives and loaded freight cars with smooth wheels producing 

negligible wheel/rail impacts. Measured crosstie-ballast interface pressures were typically 

3 psi (20 kPa) maximum for empty freight cars with smooth wheels. Heavily loaded 

articulated intermodal car pressure measurements for shared trucks tended to reach nearly 

40 psi (280 kPa), actually higher than locomotive-produced pressures. Pressure cells were 

also installed at the crosstie center where the ballast is typically not tamped or consolidated. 

The recorded pressures were normally less than 1 psi (7 kPa) for locomotives and loaded 

freight cars. 

Wheel loading parameters (Chapter 7) obtained from nearby wayside wheel impact 

load detectors (WILDs) were compared to recorded crosstie-ballast interfacial pressure 

measurements for the same trains traversing the test site. Nominal wheel forces measured 

at the wheel/rail interface relate very well to the corresponding nominal crosstie-ballast 

interfacial pressures; linked in a power relationship manner with an R-squared value of 

0.97. Increases in peak WILD loadings, either due to heavier wheel loads or increased 

impacts, relate favorably to increases in recorded trackbed pressures. In particular, peak 
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wheel loads tend to increase pressures substantially, which can have long-term detrimental 

effects on the ballast and support layers. 

During the course of this study, considerable advancements have been made 

towards quantifying pressures imparted to the crosstie-ballast interface for a wide range of 

revenue train traffic. The procedure was initially confirmed in the laboratory using 

controlled load applications. Further in-track tests confirmed the applicability, accuracy, 

and repeatability of the measurement procedure. It is desirable to further develop and 

utilize the procedure. Several topics are suggested for future research studies. 

The in-track data was only obtained during the periods that the research team was 

on-site with data acquisition equipment. Day-long testing sequences were taken at one-to-

two month intervals. To more accurately represent the effects of weather and traffic 

fluctuations, remote sensing capabilities could be employed. More developed algorithms 

will be needed to quickly process the data. 

Pressure measurement data needs to be compared directly with currently obtained 

track deflection and stress/strain measurements along the crosstie and rail. This type of 

analysis is particularly important and useful to verify the accuracy of the pressure 

measurements and to determine how each track component dissipates its respective 

pressures. Based on the low crosstie-ballast pressure levels noted in this study, it is 

proposed that the rail actually carries more of the induced loading than commonly assumed. 

Laboratory studies should also be expanded to evaluate pressure distribution along 

the entire length of the crosstie. In this research, a half-length section was used due to the 

constraints of the laboratory test machine. The effect of the free end of the crosstie may 
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have slightly influenced the relative distributions measured and calculated, thus the use of 

two simultaneous static loading rams would more accurately depict typical loading 

configuration in the track. In addition to static loading, cyclic loading should also be 

performed on the same laboratory section to better emulate the loading cycles applied to a 

typical trackbed. 

Another area for future study is providing a methodology for assessing wheel 

impacts more accurately. In this study, the length of the six instrumented ties only provided 

for one complete wheel revolution; having a test section with twice the number of 

instrumented ties would provide two complete wheel revolutions. This would be ideal to 

assess the validity of the magnitudes of recorded pressures. In addition to having more data 

for verification, an algorithm could be produced to determine the true peak/impact of a 

wheel irregularity. As was observed, the exact location of the wheel impact is not 

necessarily known, thus if the wheel impact was not applied directly over the instrumented 

tie, the measured pressure impacts are most likely not represented accurately. Test results 

discussed in Chapter 7 indicated that the differential "dynamic" WILD reading does not 

appear to have a strong relationship with the calculated pressure differential. 

This study also focused on timber (wood) crossties; the primary type of crossties 

Norfolk Southern Railway uses for their tracks. Similar studies could be conducted to 

assess the behavior of various track conditions with varying crosstie materials. This should 

include concrete crossties, which are commonly used by the Western U.S. railroads and 

steel ties crossties, which are becoming more commonly used in yard tracks. Additionally, 

composites should be evaluated in lieu of recent material polymer improvements.  
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The trackbed at the Mascot test site consisted of unusually high and consistent 

quality all-granular support layers historically requiring minimal maintenance to maintain 

acceptable track support. A similar type of installation should be selected at a historically 

high-maintenance track site consisting of inherently soft subgrade support and requiring 

frequent maintenance to restore acceptable support. 

A final area for future research is to incorporate in-track pressure measurements to 

provide recommendations for trackbed design technology. Many of the currently used 

design guidelines are based on historical analytical analyses and empirical tests and 

observations. Applying a more data driven approach to trackbed design would not only 

assist in developing designs that would consider the stability of a trackbed; but could also 

assist railroad management in incorporating performance-driven decisions assuring more 

economical maintenance practices and new-construction designs resulting in higher quality 

extended life track. 
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Appendix A – Model 3500 Pressure Cell Technical Specifications 
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Information given in the following table can be found in the Geokon 3500/4800 Pressure 

Cell Data Specification Sheet listed in the reference section of this document. 

Transducer Type Semiconductor 

Output 
Millivolt: 100 mV (10 mV/V) 

Voltage: 0-5 VDC 
Current: 4-20 mA (2 wire) 

Standard Ranges 
100, 250, 400, 600 kPa; 

1, 2.5, 6 MPa; 
145, 362, 870 psi 

Over Range 1.5 x rated pressure 

Resolution Infinite 

Accuracy ± 0.25 % F.S. 

Linearity < 0.5 % F.S. 

Thermal Effect on Zero 0.05 % F.S. 

Typical Long-Term Drift ± 0.02 % F.S./yr. 

Cell Dimensions (H x D) 6 x 230 mm (0.25 x 9 in) 

Transducer Dimensions (L x D) 150 x 32 mm (6 x 1.25 in) 

Excitation Voltage 
Millivolt: 10 VDC regulated 

Voltage: 6.5 – 35 VDC 
Current: 24 VDC (7-35 VDC) 

Excitation Frequency n/a 

Material Stainless Steel 

Temperature Range -20 °C to +80 °C (-4 °F – 176 °F) 
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Appendix B – Typical Pressure Transducer Calibration Report 
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Appendix C – Pressure Recording Software Code Map 
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Appendix D – Tabulated Data for Calibration Testing 
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Test #1 - Repeatability 

Cell 88 

Machine 
 

Test 
       

(a) (b) (c) (d) (e) (f) 
AVG (psi) Applied 

(lbf) 
Applied 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
1500 29.8 32.8 31.5 31.1 30.8 30.7 30.8 31.1 
3000 59.7 61.7 62.3 61.5 60.7 61.1 60.9 61.1 
4500 89.5 92.6 92.2 91.8 89.9 90.2 90.1 90.9 
6000 119.4 120.1 118.8 118.1 118.2 118.3 118.1 118.7 

 

Cell 89 

 
Machine Test 

   

(a) (b) (c) (d) (e) (f) 
AVG (psi) Applied 

(lbf) 
Applied 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
1500 29.8 30.3 30.5 29.7 29.4 30.1 29.8 30.0 
3000 59.7 59.8 60.2 59.1 59.2 58.7 59.1 59.4 
4500 89.5 88.7 88.1 87.8 88.1 87.5 87.4 87.9 
6000 119.4 114.8 117.6 115.2 114.9 115.5 115.3 115.6 

 

Cell 91 

  
Test 

   
Machine 

(a) (b) (c) (d) (e) (f) 
AVG (psi) Applied 

(lbf) 
Applied 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
1500 29.8 30.7 30.8 30.7 31.1 31.2 30.3 30.8 
3000 59.7 60.4 60.7 60.5 60.8 60.9 60.1 60.6 
4500 89.5 89.5 90.4 89.8 90.1 89.7 89.8 89.9 
6000 119.4 118.6 118.3 118.1 117.8 118.5 118.2 118.3 

 

Cell 87 

 
Machine Test 

   

(a) (b) (c) (d) (e) (f) 
AVG (psi) Applied 

(lbf) 
Applied 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
1500 29.8 30.5 31.2 30.1 30.3 30.8 30.6 30.6 
3000 59.7 59.8 60.8 59.9 59.7 59.8 59.9 60.0 
4500 89.5 88.9 89.5 87.4 87.6 88.7 88.6 88.5 
6000 119.4 116.7 115.1 110.5 111.1 112.2 111.8 112.9 
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Test #2 – Position 

 

Cell Below Solid Tie – Cell 88 

Machine Test 
 

(a) (b) (c) (d) (e) (f) AVG 
(psi) Applied 

(lbf) 
Applied 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
1500 29.8 30.1 29.5 30.2 30.5 29.8 30.2 30.0 
3000 59.7 59.2 58.8 58.7 58.8 58.5 59.8 59.1 
4500 89.5 86.8 87.1 87.6 87.5 87.1 87.8 87.6 

6000 119.4 115.4 114.3 114.7 114.6 114.1 114.8 115.3 

 

Cell within Tie Recess – Cell 88 

Machine 
 

Test 
       

(a) (b) (c) (d) (e) (f) 
AVG (psi) Applied 

(lbf) 
Applied 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
1500 29.8 32.8 31.5 31.1 30.8 30.7 30.8 31.1 
3000 59.7 61.7 62.3 61.5 60.7 61.1 60.9 61.1 
4500 89.5 92.6 92.2 91.8 89.9 90.2 90.1 90.9 

6000 119.4 120.1 118.8 118.1 118.2 118.3 118.1 118.7 
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Test #3 – Attachment 

 

No Attachment – Cell 88 

Machine 
 

Test 
       

(a) (b) (c) (d) (e) (f) 
AVG (psi) Applied 

(lbf) 
Applied 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
1500 29.8 32.8 31.5 31.1 30.8 30.7 30.8 31.1 
3000 59.7 61.7 62.3 61.5 60.7 61.1 60.9 61.1 

4500 89.5 92.6 92.2 91.8 89.9 90.2 90.1 90.9 
6000 119.4 120.1 118.8 118.1 118.2 118.3 118.1 118.7 

 

Screw Attachment – Cell 88 

Machine Test 
 

(a) (b) (c) (d) (e) (f) 
AVG Applied 

(lbf) 
Applied 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
1500 29.8 30.5 30.3 31.2 30.8 30.7 31.5 30.7 
3000 59.7 59.8 60.1 61.3 60.9 60.5 60.8 60.4 
4500 89.5 89.1 89.4 89.7 89.8 89.4 89.6 89.5 

6000 119.4 117.2 117.8 118.1 118.2 117.8 117.7 118.0 

 

Corner Brace Attachment – Cell 88 

Machine Test 
 

(a) (b) (c) (d) (e) (f) 
AVG Applied 

(lbf) 
Applied 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
Measured 

(psi) 
1500 29.8 29.8 30.4 30.6 30.3 30.8 29.6 30.2 

3000 59.7 59.5 60.1 60.7 59.8 60.3 60.1 60.0 
4500 89.5 88.7 89.5 89.1 90.3 89.7 89.1 89.4 
6000 119.4 116.8 117.3 117.2 117.6 117.1 117.4 117.5 
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Test #4 – Length of Tie Effect on Single Pressure Cell 

 

 11-inch Section 

Test Machine Measured Cell Readings (psi)   
Applied 

(lbf) 
Applied 

(psi) (a) (b) (c) (d) (e) (f) (g)* AVG (psi) 

1500 29.8 28.5 29.6 29.1 30.8 30.1 30.5 28.5 29.6 
3000 59.7 56.4 58.8 57.6 59.6 59.2 59.4 56.4 58.2 
4500 89.5 84.3 86.5 85.4 87.1 86.7 86.8 83.6 85.8 
6000 119.4 112.2 114.8 112.8 115.2 114.3 114.1 111.5 113.6 

* repeated test, not considered in calculations 

20-inch Section 

Test Machine Measured Cell Readings (psi)   
Applied 

(lbf) 
Applied 

(psi) (a) (b) (c) (d) (e) (f) (g)* AVG (psi) 

1500 29.8 29.3 28.7 28.6 29.2 28.6 28.8 28.1 28.8 
3000 59.7 57.5 56.8 56.2 57.1 56.8 56.3 56.2 56.7 
4500 89.5 85.4 84.3 84.1 84.8 83.7 84.4 83.1 84.3 
6000 119.4 112.8 111.5 111.1 111.6 110.3 110.8 110.3 111.2 

* repeated test, not considered in calculations 

30-inch Section 

Test Machine Measured Cell Readings (psi) 
Applied 

(lbf) 
Applied 

(psi) (a) (b) (c) (d) (e) (f) AVG (psi) 

1500 29.8 28.5 27.4 28.1 27.8 27.1 27.1 27.7 
3000 59.7 56.3 54.6 55.7 55.8 54.5 54.5 55.2 
4500 89.5 83.8 82.5 83.3 83.4 82.7 82.7 83.1 
6000 119.4 111.4 109.1 110.2 109.8 109.1 109.1 109.8 

 

40-inch Section 

Test Machine Measured Cell Readings (psi) 
Applied 

(lbf) 
Applied 

(psi) (a) (b) (c) (d) (e) (f) AVG (psi) 

1500 29.8 26.1 27.8 27.1 26.7 26.5 27.5 27.0 
3000 59.7 53.8 55.4 55.5 54.6 54.3 55.7 54.9 
4500 89.5 81.8 82.5 82.2 80.5 81.4 81.5 81.7 
6000 119.4 109.3 109.1 108.4 106.8 107.5 107.4 108.1 
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Appendix E – Multi-Cell Testing Data Catalog 
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Test Date Loading Condition Test 
Name 

Number 
of Tests 

Number of Data 
Points 

3/28/2018 Full Aggregate Contact Against Tie and 
Cells 101 7 (a-g) 184 

4/4/2018 Full Aggregate Contact Against Tie and 
Cells 102 8 (a-h) 224 

4/18/2018 Spacers Between Cells and Ballast 201 10 (a-j) 280 

5/8/2018 Full Aggregate Contact Against Tie and 
Cells 301 6 (a-f) 168 

5/8/20181 Full Aggregate Contact Against Tie and 
Cells 302 6 (a-f) 168 

5/8/20181 Full Aggregate Contact Against Tie and 
Cells 303 6 (a-f) 168 

5/15/2018 Wood Board Interfacing Tie and Ballast 401 7 (a-g) 196 

5/15/2018 Wood Board Interfacing Tie and Ballast 402 6 (a-f) 168 

5/15/2018 Wood Board Interfacing Tie and Ballast 403 6 (a-f) 168 

5/21/2018 Wood Board Interfacing Tie and Ballast 501 6 (a-f) 168 

5/21/2018 
Spacers Interfacing Tie and Wood Board; 

Wood Board Interfacing Spacers from 
Ballast 

502 6 (a-f) 168 

5/31/2018 
Spacers Interfacing Tie and Wood Board; 

Wood Board Interfacing Spacers from 
Ballast 

602 6 (a-f) 168 

5/31/2018 
Spacers Interfacing Tie and Wood Board; 

Wood Board Interfacing Spacers from 
Ballast 

603 6 (a-f) 168 

5/31/2018 Full Aggregate Contact Against Tie and 
Cells 701 6 (a-f) 168 

5/31/2018 Wood Board Interfacing Tie and Ballast 901 6 (a-f) 168 

1Test 302 was performed with 0.2 in/min loading rate. Test 303 was performed with 0.3 in/min loading 
rate. All other tests were performed at 0.1 in/min.  

 

Total Number of Data Points:    2,732 

For Full Aggregate Contact:    1,080 

Spacers Interfacing Ballast:    280 

Wood Board Interfacing Ballast:   868 

Wood Board and Spacers Interfacing Ballast: 504 
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Picture of Series #1 

 

 

Picture of Series #3 
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Appendix F – Overall Load Percentages for Each Agreement and Pressure Cell 
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Example Calculations: 

 

Series #1 

 

Given:  30 psi rail seat tie-ballast pressure 

  24% of load varied by rail seat 

  4% of load carried by centerline 

 

Solution: 30/24% = P/4%  P = 5 psi 

 

Series #2 

 

Given:  30 psi rail seat tie-ballast pressure 

  18% of load varied by rail seat 

  4% of load carried by centerline 

 

Solution: 30/18% = P/4%  P = 7 psi 
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Series #3 

 

Given:  30 psi rail seat tie-ballast pressure 

  26% of load varied by rail seat 

  2% of load carried by centerline 

 

Solution: 30/26% = P/2%  P = 2 psi 

 

Series #4 

 

Given:  30 psi rail seat tie-ballast pressure 

  20% of load varied by rail seat 

  4% of load carried by centerline 

 

Solution: 30/24% = P/2%  P = 3 psi 
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Appendix G – Revenue Train Catalog 
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Rows highlighted did not record locomotives correctly 

Date Test 
Train Train # Lead Loco Time Type Locomotives Direction Speed Length Tonnage Cars 

9/26/2016 1 163 9411 12:24 PM Mixed 4 Six-Axle WB 25 - - 36 

9/26/2016 2 799 5142 1:42 PM Empty Coal 1 Four-Axle 
1 Six-Axle EB 25 - - 130 

 
Notes: 
 
Train 163: The five instrumented ties (six cells) were installed earlier in the day.  After installing the ties, one train passed prior to tamping the ties. 
Train 799: NS 8636 trailing. The five instrumented ties (six cells) were installed earlier in the day.  After installing the ties, one train passed prior to tamping 
the ties. 
 
10/12/2016 1 23G 3623 11:15 AM Intermodal 3 Six-Axle EB 25 8727 - 46 
10/12/2016 2 16T 9048 11:30 AM Mixed 3 Six-Axle EB 25 4100 - 62 
10/12/2016 3 135 2714 12:20 PM Mixed 3 Six-Axle WB 25 8100 - 147 

10/12/2016 4 163 8891 1:08 PM Mixed 6 Six-Axle 
1 Four-Axle WB 25 6400 - 89 

 
Notes: 
 
Train 23G: NS 7608 Trailing. 12 auto cars on front – very smooth ride. Remaining cars are container cars, many are articulated with 5 individual cars. 
Train 16T: NS 9245, NS 3608. Several empty loads about halfway. Maybe 2 or 3 empties near the rear. Most cars were loaded. 
Train 135: NS 8727, NS 2511. Lot of empty cars. Several empty coal cars on rear. 
Train 163: The track was tamped after this train.  This included tamping the test ties plus 15 ties on both ends and the ties between test ties. Attempting to 
obtain equal track stiffness throughout the area. No other tests today.  Will wait for two weeks to test. 
 
Cell 27 did not record on this day 
 
10/26/2016 1 134 7024 10:17 AM Mixed 3 Six-Axle EB 25 5163 - 81 
10/26/2016 2 16T 9253 12:45 PM Mixed 3 Six-Axle EB 25 4160 6621 63 
10/26/2016 3 163 7651 1:32 PM Mixed 5 Six-Axle WB 25 5300 7100 86 
10/26/2016 4 132 8391 2:00 PM Mixed 3 Six-Axle EB 25 5810 11580 101 
10/26/2016 5 202 7648 2:38 PM Intermodal 3 Six-Axle EB 25 8085 6396 46 
 
Notes: 
 
Train 163: Some flat wheels 
 
11/7/2016 1 163 9595 11:08 AM Mixed 3 Six-Axle WB 34 2139 1796 33 
11/7/2016 2 165 9426 1:03 PM Mixed 3 Six-Axle WB 25 4440 4548 77 
11/7/2016 3 135 CP 8632 2:00 PM Mixed 4 Six-Axle WB 26 5100 3671 91 

 
Notes: 
 
Train 165: This data is bad, no use in processing.  Go on to train 3. 
Train 135: Last train tested today.  Use trains 1 and 3. Will likely re-tamp and surface track before next tests. 
 
11/28/2016 1 27V 9943 11:30 AM Auto 2 Six-Axle WB 38 5542 3049 57 
11/28/2016 2 135 9359 12:50 PM Mixed 6 Six-Axle WB 34 1800 1268 20 

11/28/2016 3 16T BNSF 
4803 2:43 PM Mixed 3 Six-Axle EB 28 4271 6703 67 

 
Notes: 
 
Train 27V: Some flat wheels 
Train 16T: Last Train 

 
12/15/2016 1 817 8077 10:22 AM Empty Coal 4 Six-Axle WB 35 6000 6000 120 
12/15/2016 2 135 2590 12:22 PM Mixed 2 Six-Axle WB 32 2557 1710 33 
12/15/2016 3 163 7597 1:55 PM Mixed 4 Six-Axle WB 38 6799 10122 114 
12/15/2016 4 202 UP 7219 2:10 PM Intermodal 3 Six-Axle EB 32 7328 5551 42 

 
Notes: 
 
Train 817: Did not record locomotives, just the empty cars. This was the first train for this date. 
Train 135: Had 5 loaded and 28 empty. Trailing Loco # = 9647 
Train 202: Several of the cars were articulated, so Number of Cars is a bit deceiving. This was the last of the four trains for this date. 
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Date Test 
Train Train # Lead Loco Time Type Locomotives Direction Speed Length Tonnage Cars 

4/13/2017 1 134 2616 11:35 AM Mixed 3 Six-Axle EB 31 4100 5801 ? 
4/13/2017 2 15T 6769 1:13 PM Mixed 3 Six-Axle WB 32 4990 2885 ? 
4/13/2017 3 23G 7690* 1:52 PM Auto 3 Six-Axle EB 36 6200 6400 24 

 
Notes: 
 
* 8085 was on the rear 
Train 23G was through train, likely went over one of the WILDs.  It had 15 autos, ~ 84 container cars, and 1 loco on rear.  We missed recording the head locos 
and possibly a few of front end cars.  Did get most of train including the rear loco.   
Train 134 cell 29 did not record, was repaired for the following two trains.   
 
4/27/2017 1 134 9908 11:23 AM Mixed 3 Six-Axle EB 31 4784 7859 82 
4/27/2017 2 132 8958 11:49 AM Mixed 3 Six-Axle EB 32 4130 8230 71 
4/27/2017 3 16T 9364 1:44 PM Mixed 3 Six-Axle EB 39 3354 4719 51 

 
Notes: 
 
Not sure if any of these were through trains that passed over WILDs at Flat Rock or Ebenezer.  (However, train 918 the following day was a loaded rail train 
probably coming from Atlanta, so would likely have passed over Ebenezer.) 
 
4/28/2017 4 918 2801 10:14 AM Rail Train 1 Six-Axle EB 32 1664 2340 30 
4/28/2017 5 165 9233 11:50 AM Mixed 3 Six-Axle WB 40 2509 1834 42 
4/28/2017 6 135 4509 (UP) 12:26 PM Mixed 6 Six-Axle WB 33 1870 1380 24 

 
Notes: 
 
Trains 1, 2, and 3 on 4-27, Trains 4, 5, and 6 on 4-28. Train 918 had 1 loco, 1 box car, CWR rail cars, and 1 box car. Train 135 had two UP locos in lead. 
 
6/26/2017 1 135 1061 12:23 PM Mixed 2 Six-Axle WB 35 3008 2034 56 
6/26/2017 2 163 3639 2:40 PM Mixed 4 Six-Axle WB 23 2782 2600 41 
6/27/2017 3 162 9682 11:17 AM Mixed 3 Six-Axle EB 37 3059 5361 49 
6/27/2017 4 16T 7028 1:48 PM Mixed 3 Six-Axle EB 36 5700 9075 88 

 
Notes: 
 
Not sure if any of these were through trains that passed over WILDs at Flat Rock or Ebenezer.  I understand that the two EB trains on the 27th did pass over 
Ebenezer; however, a block may have been set off or picked up at Knoxville, so the consists may have changed.  Not sure about the 26th trains. 
 

8/7/2017 1 917 6769 11:09 AM Rail Train 2 Six-Axle EB 26 1600 N/A 30 
8/7/2017 2 135 9408 2:30 PM Mixed** 2 Six-Axle WB 27 5296 32000 103 
8/7/2017 3 23G 8027 2:45 PM Container 2 Six-Axle* EB 39 5050 5600 ?*** 

 
Notes: 
 
* One Pushing 
** Mainly Empty Coal Hoppers 
*** Some Articulated 
 

8/8/2017 1 163 2715 1:45 PM Mixed 3 Six-Axle WB 24 3300 4520 54 
 
Notes: 
 
Recorded pressures made during tamping/surfacing process. Test Train # 1 was first train over test site following the tamping/surfacing conducted about one 
hour earlier. Only train measured. Will wait about three weeks for follow-up testing after three weeks of train traffic. 
 
8/30/2017 1 123 8900 (CP) 10:40 AM Mixed 2 Six-Axle* EB 28 1464 2035 23 
8/30/2017 2 16T 1084 12:24 PM Mixed 3 Six-Axle EB 28 3740 5853 54 
8/30/2017 3 134 1103 1:16 PM Mixed 4 Six-Axle EB 33 2810 5507 46 

 
Notes: 
 
* Plus one CP loco pushing, the 3rd car from the rear 
Surfaced track on August 8th, no trackwork since. 
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Date Test 
Train Train # Lead Loco Time Type Locomotives Direction Speed Length Tonnage Cars 

9/27/2017 1 23G 7594 12:30 PM Intermodal 2 Six-Axle* EB 34 6239 7090 33 
9/27/2017 2 202 8710 2:40 PM Intermodal 3 Six-Axle EB 35 8035 6333 42 

 
Notes: 
 
* Plus one NS loco pushing form the rear 
Train 1 & 2 had 3010 and 2900 gal of fuel, respectively.  
Surfaced track on August 8, no trackwork since then 
 
11/3/2017 1 162 9668 2:08 PM Mixed 3 Six-Axle EB 10-20 2503 4664 39 
11/3/2017 2 15T 9631 3:46 PM Mixed 2 Six-Axle WB 22 5487 3721 83 
11/3/2017 3 819 8174 5:10 PM Empty Coal 2 Six-Axle WB 20 5317 2605 102 
11/3/2017 4 134* 9458 5:35 PM Mixed 4 Six-Axle EB 40 2560 4999 41 

 
Notes: 
 
Train 162 -- Might have been through train, not sure which WILD data 
Train 15T – Likely was a through train, likely have Flatrock WILD data 
Train 819 – Through train to Birmingham, should have Ebenezer WILD data 
* Train 134 – Reported 41 cars, we counted 45 -- was questioned, was relying on the subsequent AEI Reader (adjacent MP 117.4A), should convert to 45.  
Also, cars #1 - # 31 came in Knoxville on Train # 162 on 31st of October – see Les Hall’s e-mail to follow, likely these 31 cars went over a WILD on the 31st, so 
maybe just use these 31 cars for WILD/Pressure comparisons – Train 162 for WILD and Train 134 for Pressure.  Train 134 originated in Knoxville, but had first 
31 cars from block off of Train 162 (10/31). 
 

2/9/2018 1 165 9486 8:12 AM Mixed 2 Six-Axle WB 38 5364 4355 88 

2/9/2018 2 098 7719 
(BNSF) 10:14 AM Mixed 1 Six-Axle EB 39 696 419 11 

2/9/2018 3 16T 7600 10:35 AM Mixed 3 Six-Axle EB 32 1365 1796 18 
2/9/2018 4 163 8350 11:05 AM Mixed 3 Six-Axle WB 35 6313 11000 99 
2/9/2018 5 162 6790 12:56 PM Mixed 3 Six-Axle EB 45 6313 10949 99 

 
Notes: 
 
It was reported that Trains 165, 16T and 162 either set off or picked up block(s) of cars at Knoxville, doubtful that WILD data will match.  Will forward e-mail 
from Les Hall in this regard.  Not sure about 098 (very doubtful); possibly 163 may have stayed intact, likely the only one if any of the five trains stayed intact.   
Note that the ambient temperatures varied from 27 to 50 F. Temperatures for each test were: 27, 34, 34, 41, and 50. 
 

Date Test 
Train Train # Lead Loco Time Type Locomotives Direction Speed Length Tonnage Cars 

3/9/2018 1 15T 1075 9:35 AM Mixed 4 Six-Axle WB 35 3454 1883 49 

3/9/2018 2 710 9553 
(PRLX) 10:50 AM Unit Coal 3 Six-Axle WB 31 5800 13880 100 

3/9/2018 3 23G 7052 
(BNSF) 12:10 PM Intermodal 2 Six-Axle EB 33 6200 7542 34 

 
Notes: 
 
15T was not a through train, later set out rear 12 cars at Sevier, picked up 76 cars on rear, not sure which WILD it later traversed 
710 was loaded, later supposedly went over Ebenezer WILD  
23G was long intermodal train, had several of the multi-pacs, so total number of cars substantially greater than 34, had 1 6-axle loco pusher on rear, had 
supposedly went over Flatrock WILD 
Surfaced track on August 8, 2017 no trackwork since then 
 
6/25/2018 1 16T 8083 10:35 AM Mixed 3 EB 31 4794 8817 92 
6/25/2018 2 23G 1056 1:26 PM Intermodal 3* EB 5-40** 9061 8975 42 
6/25/2018 3 123 9075 2:03 PM Mixed 3 EB 28 4918 8913 86 

 
Notes: 
 
*The third loco was located mid-train 
** Started from stop within sight distance, thus variable speed across test area. Number of cars also variable. Over 100 flat cars observed. 
Surfaced track on August 8, 2017 no trackwork since then 
[After the Revenue Train Tests, the FRA Test Car DOTX 218 conducted Run-Through Tests at variable speeds (40, 30, 20, 10 and ~2 mph) with corresponding 
pressure measurements recorded trackside) and Static Tests at variable loadings on Tie 11 (E) @ 3, 10, 15, 20 & 22 kips and Tie 6 (C) @ 22 & 10 kips 
(abbreviated) with corresponding pressure measurements and vertical deflection measurements recorded trackside] 
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Appendix H – Various Revenue Train Measurements 
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Example of a Mixed Freight Train 
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Example of an Intermodal Freight Train 
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Example of a Rail Train 
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Example of an Auto Train 
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Example of a Unit Coal Train 
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Example of an Empty Coal Train 
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Appendix I – Nominal Tie/Ballast Pressure Modeling Script for Revenue Trains 
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Appendix J – Extended WILD/Tie-Ballast Pressure Relationships 
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Method 1 – Per Axle Per Pressure Cell 
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Method 2 – Average Per Car and Per Pressure Cell 
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