
University of Kentucky
UKnowledge

Entomology Faculty Publications Entomology

4-26-2018

Screening of Multimeric β-Xylosidases from the
Gut Microbiome of a Higher Termite, Globitermes
brachycerastes
Chunyan Liu
Hunan Agricultural University, China

Gen Zou
Chinese Academy of Sciences, China

Xing Yan
Chinese Academy of Sciences, China

Xuguo Zhou
University of Kentucky, xuguozhou@uky.edu

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/entomology_facpub

Part of the Biology Commons, and the Entomology Commons

This Article is brought to you for free and open access by the Entomology at UKnowledge. It has been accepted for inclusion in Entomology Faculty
Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

Repository Citation
Liu, Chunyan; Zou, Gen; Yan, Xing; and Zhou, Xuguo, "Screening of Multimeric β-Xylosidases from the Gut Microbiome of a Higher
Termite, Globitermes brachycerastes" (2018). Entomology Faculty Publications. 156.
https://uknowledge.uky.edu/entomology_facpub/156

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/232593435?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/?utm_source=uknowledge.uky.edu%2Fentomology_facpub%2F156&utm_medium=PDF&utm_campaign=PDFCoverPages
http://uknowledge.uky.edu/?utm_source=uknowledge.uky.edu%2Fentomology_facpub%2F156&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu?utm_source=uknowledge.uky.edu%2Fentomology_facpub%2F156&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/entomology_facpub?utm_source=uknowledge.uky.edu%2Fentomology_facpub%2F156&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/entomology?utm_source=uknowledge.uky.edu%2Fentomology_facpub%2F156&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
https://uknowledge.uky.edu/entomology_facpub?utm_source=uknowledge.uky.edu%2Fentomology_facpub%2F156&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=uknowledge.uky.edu%2Fentomology_facpub%2F156&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/83?utm_source=uknowledge.uky.edu%2Fentomology_facpub%2F156&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/entomology_facpub/156?utm_source=uknowledge.uky.edu%2Fentomology_facpub%2F156&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:UKnowledge@lsv.uky.edu


Screening of Multimeric β-Xylosidases from the Gut Microbiome of a Higher Termite, Globitermes brachycerastes

Notes/Citation Information
Published in International Journal of Biological Sciences, v. 14, 6, p. 608-615.

© Ivyspring International Publisher.

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC)
license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms
and conditions.

Digital Object Identifier (DOI)
https://doi.org/10.7150/ijbs.22763

This article is available at UKnowledge: https://uknowledge.uky.edu/entomology_facpub/156

https://creativecommons.org/licenses/by-nc/4.0/
http://ivyspring.com/terms
https://uknowledge.uky.edu/entomology_facpub/156?utm_source=uknowledge.uky.edu%2Fentomology_facpub%2F156&utm_medium=PDF&utm_campaign=PDFCoverPages


Int. J. Biol. Sci. 2018, Vol. 14 
 

 
http://www.ijbs.com 

608 

IInntteerrnnaattiioonnaall  JJoouurrnnaall  ooff  BBiioollooggiiccaall  SScciieenncceess  
2018; 14(6): 608-615. doi: 10.7150/ijbs.22763 

Research Paper 

Screening of multimeric β-xylosidases from the gut 
microbiome of a higher termite, Globitermes 
brachycerastes  
Chunyan Liu1*, Gen Zou2*, Xing Yan2, and Xuguo Zhou1,3 

1. College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China; 
2. Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.                            
3. Department of Entomology, University of Kentucky, Lexington, KY, 40546-0091, USA. 

* These authors contributed equally to this work. 

 Corresponding authors: xuguozhou@uky.edu and yanxing@sippe.ac.cn 

© Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license 
(https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. 

Received: 2017.09.09; Accepted: 2018.01.03; Published: 2018.04.26 

Abstract 

Termite gut microbiome is a rich reservoir for glycoside hydrolases, a suite of enzymes critical for 
the degradation of lignocellulosic biomass. To search for hemicellulases, we screened 12,000 clones 
from a fosmid gut library of a higher termite, Globitermes brachycerastes. As a common Southeastern 
Asian genus, Globitermes distributes predominantly in tropical rain forests and relies on the 
lignocellulases from themselves and bacterial symbionts to digest wood. In total, 22 positive clones 
with β-xylosidase activity were isolated, in which 11 representing different restriction fragment 
length polymorphism (RFLP) patterns were pooled and subjected to 454 pyrosequencing. As a 
result, eight putative β-xylosidases were cloned and heterologously expressed in Escherichia coli 
BL21 competent cells. After purification using Ni-NTA affinity chromatography, recombinant G. 
brachycerastes symbiotic β-xylosidases were characterized enzymatically, including their pH and 
temperature optimum. In addition to β-xylosidase activity, four of them also exhibited either 
β-glucosidase or α-arabinosidases activities, suggesting the existence of bifunctional hemicellulases 
in the gut microbiome of G. brachycerastes. In comparison to multimeric protein engineering, the 
involvement of naturally occurring multifunctional biocatalysts streamlines the genetic modification 
procedures and simplifies the overall production processes. Alternatively, these multimeric 
enzymes could serve as the substitutes for β-glucosidase, β-xylosidase and α-arabinosidase to 
facilitate a wide range of industrial applications, including food processing, animal feed, environment 
and waste management, and biomass conversion. 

Key words: Globitermes brachycerastes, gut microbiome, fosmid library, glycoside hydrolases, β-xylosidase, 
multimeric hemicellulase 

Introduction 
Lignocellulosic biomass is one of the most 

abundant carbon resources in nature. Following 
celluloses, hemicelluloses, the second most abundant 
polysaccharide in plants, can be utilized through the 
full-plant biomass bioconversion [1, 2]. Hemicellulose, 
unlike the crystalline cellulose, is composed of a 
random, amorphous matrix of polysaccharide 
structure containing various pentose and hexose 
sugars [3]. L-arabinoside residue exists largely in 

hemicellulose, and L-arabinoside residue is attached 
to the main chain of xylose with monomer or oligomer 
lateral branch [4]. The complete hydrolysis of 
hemicelluloses requires endo-xylanase (EC.3.2.1.8), 
exo-β-xylosidase (EC.3.2.1.37), a-L-arabinofuranosi-
dase (EC 3.2.1.53), mannanase and arabic xylanase to 
release xylose molecules [5-7]. β-xylosidase has been 
reported to synergistically act with other enzymes in 
the degradation processing of xylan, which breaks 
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down into multiple monosaccharides [8]. Specifically, 
it breaks down xylan by hydrolyzing xylobiose to 
xylose from the nonreducing end and by decreasing 
the inhibition of endo-xylanases by the end product of 
xylan hydrolysis [9]. The synergism among hemi-
cellulases leads to highly efficient degradation 
processing of xylan, which breaks down the bonds 
between backbone residues and substituent groups. 
Therefore, it is critical to identify and characterize 
individual enzymes involved in this process and to 
utilize them in the conversion of agricultural 
byproducts into products with industrial applications 
[4, 10]. 

Termites, the most efficient bioreactor in nature, 
have a substantial ecological impact on global carbon 
recycling [11]. Termite guts harbor a dense 
assemblage of microorganisms that are essential for 
lignocellulose digestion [12, 13]. The major players in 
higher termites consist of bacteria and archaea, 
whereas in lower termites cellulolytic flagellates 
contribute greatly to degrade plant biomass [14]. 
However, the relative importance of endogenous 
enzymes in the foregut and midgut to the overall 
degradation process remains to be assessed [15]. 
Recent studies have revealed that nasute termites 
possess cellulase producing microbes in three gut 
regions: foregut, midgut and hindgut [16]. Enzymatic 
properties of termite hindguts have indicated that it 
can provide large amounts of novel enzymes for 
future biorefining processes [17, 18]. Their abundance 
of digestive enzymes provided by both the symbionts 
and the host make termites a model bioreactor for 
biotechnological applications, particularly the 
conversion of lignocelluloses to biofuels.  

G. brachycerastes, a subterranean higher termite, 
belongs to the genus Globitermes and family 
Termitidae. As a common Southeast Asian wood- 
feeding genus, Globitermes has three species, and 
distributes predominantly in tropical rain forests. G. 
brachycerastes relies on the lignocellulases from 
themselves and bacterial symbionts to digest woody 
materials. The 16S rRNA analysis of G. brachycerastes 
gut metagenome showed that Spirochaetaceae, a 
group of spiral-shaped bacteria, was the most 
abundant [19]. Han et al (2013) cloned and 
characterized a bacterial xylanase, Xyl-ORF19, from 
G. brachyceraste gut symbionts [20]. 

Metagenomic screening allows us to identify 
genes-of-interest from unculturable microorganisms, 
in which the total are extracted directly from samples, 
collecting from different environments. DNA 
fragments are cloned into cosmid, fosmid or bacterial 
artificial chromosome (BAC) libraries [21-23]. Then, 
libraries are used to screen for functional clones. 
Metagenomics provides a powerful tool to search for 

lignocellulolytic enzymes for future bio-refinery 
processes. Some of these novel sequences are hitherto 
unknown from the natural environment, including 
the microbial communities of thermophilic methano-
genic digester, termite guts, biogas slurry, yak rumen 
and ocean floors [17, 24-28].  

Based on the preliminary research, we hypoth-
esized that termite guts contain novel β-xylosidases, 
which has potential for industrial application. To 
examine this hypothesis, we carried out the following 
objectives: 1) screened β-xylosidases from an existing 
fosmid library of G. brachycerastes gut metagenome 
[29]; 2) pyrosequenced selected positive clones 
containing β-xylosidase activity; 3) heterologously 
expressed resultant β-xylosidases in E. coli BL21 
competent cells; and 4) enzymatically characterized 
these recombinant enzymes and discussed their 
potential in industrial application. 

Materials and Methods  
Chemicals and reagents  

All chemicals were purchased from Sangon 
Biotech (Shanghai, China). MiniBEST plasmid 
purification kit and restrictions enzymes were 
purchased from Takara (Dalian, China). The 
large-construction DNA kit for extracting the DNA of 
positive clones was obtained from Qiagen (Shanghai, 
China), while DNA Gel Extraction Kit was purchased 
from Axygen (Hangzhou, China). Clone Express®II- 
One Step Cloning Kit was obtained from Vazyme 
(Nanjing, China) and 5-Br-4-Chl-3-Indole β-D-xylop-
yranoside was purchased from Energy chemical 
(Shanghai, China). The protein concentration was 
determined by Modified Bradford Protein Assay Kit 
(Sangon Biotech, Shanghai, China). HisSep Ni-NTA 
Agarose Resin was purchased from Yeasen (Shanghai, 
China). 

Termite collection and sample preparation  
G. brachycerastes (family Termitidae, subfamily 

Amitermitinae) was collected from an underground 
nest in Xishuang Banna, Yunnan Province, China, in 
March 2008. Termites were firstly surface sterilized in 
70% ethanol for 1 min, rinsed in phosphate-buffered 
saline (PBS), and then the entire digestive tract of the 
worker termites was immediately removed and 
transferred into a 1.5 mL sterilized Eppendorf tube 
containing 100 µl of PBS. The whole gut of about 2,500 
G. brachycerastes workers was used for the meta-
genomic DNA extraction. Intestinal microbial DNA 
extraction was carried out according to Liu et al (2011) 
[30]. pCC2FOS vector was used for the fosmid library 
construction. β-xylosidase genes were cloned into the 
expression vector pET28a, and expressed in E.coli 
BL21 competent cells (Novagen, Shanghai, China). 
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Functional screening for β-xylosidases 
5-Bromo-4-chloro-3-indolyl β-D-xylopyranoside 

was used as a chromogenic substrate to screen for 
β-xylosidase activity [31]. The plates were incubated 
at 50 °C for 30 min and the development of turquoise 
color indicates the presence of β-xylosidase activity. 
In the secondary screening, p-nitrophenyl-β-D- 
xylopyranoside (pNPX) and p-nitrophenyl-β-D-gluco-
side (pNPG) were used as the substrates to detect the 
corresponding β-glucosidase and arabinosidase 
activity, respectively. The clones with higher enzyme 
activity or higher thermal stability in the acid 
environment (pH 5.0) were subjected to 454 
pyrosequencing to identify hemicellulases. 

The fosmid clones were preserved in 384-well 
plates and the 384-pin replicator was used to inoculate 
the fosmid clones. The fosmid clones were inoculated 
in Luria-Bertani (LB) agar with 12.5 µg/mL of 
chloramphenicol and then incubated at 37 °C for 
16-18 h. To screen for β-xylosidase activity, 5-Bromo- 
4-chloro-3-indolyl β-D-xylopyranoside was added 
into the 0.7% agarose with a final concentration of 140 
µg/mL [17]. The agarose plates were incubated at 50 
°C for 30 min. Positive clones were visually observed 
based on the colony coloration or haloes around the 
colony.  

Sequencing of fosmid positive clones  
Each positive fosmid clone was extracted by the 

MiniBEST plasmid purification kit and verified by 
RFLP using BamHI digestion. Selected fosmid 
positive clones (11) were mixed and extracted by the 
large-construction DNA kit according to the 
manufacturer instruction. The DNA samples were 
sheared and then subjected to shotgun pyrosequ-
encing with 454 FLX sequencing system as described 
previously [26]. The 454 reads were assembled by 
Newbler software V.2.7 (http//www.454.com). Open 
reading frames (ORFs) were predicted by National 
Center for Biotechnology Information’s Non-Redun-
dant (NCBI-NR) database. For the eight GH genes, we 
located their nearest neighbors using BlastP (NCBI 
database), evolutionary distance was calculated by 
the maximum likehood, and the phylogenetic 
relationship was resolved using MEGA version 5.0 
[32, 33]. The bootstrap values were obtained based on 
1,000 replications. Signature domains of each protein 
were identified by the search against NCBI’s 
Conserved Domain Database (CDD). 

Cloning, expression and purification of 
β-xylosidases 

To express β-xylosidases in the recombinant 
protein systems, ORFs encoding GH1, GH3 and GH43 
enzymes were cloned from the fosmid DNA (Table 

S1). All the polymerase chain reaction (PCR) products 
were purified using DNA Gel Extraction Kit. The 
purified fragments were ligated into the pET28a (+) 
vector with BamHI/HindIII restriction site and 
transformed into E. coli BL21. Each clone was 
incubated at 37 °C overnight in LB medium 
containing 50 µg/mL of kanamycin. Protein 
expression products was subsequently induced by the 
addition of 0.2 mM isopropyl-β-D-thiogalactopyrano-
side (IPTG) when the OD value ranged between 0.6 
and 0.8 at 600 nm. The cells were incubated at 16 °C 
with shaking at 110 rpm for 18-20 h, and then 
collected by centrifugation at 12,000 × g for 5 min at 4 
°C. The pellets were washed three times using a 
phosphate buffer (20 mM; pH 7.4), and followed by 
breaking the cell under constant cell disruption 
systems (Constant Systems LTD, Northants, England) 
at 4 °C. After centrifugation at 12,000 × g at 4 °C for 15 
min, the supernatant was collected for the subsequent 
protein purification.  

With a N-Terminal 6 × His tag, all of the 
recombinant β-xylosidases were successfully purified 
by the HisSep Ni-NTA Agarose Resin (Yeasen, 
Shanghai, China) column. A total of 10 mL 
supernatant was equilibrated with equilibration 
buffer (50 mM NaH2PO4, 300 mM NaCl, 10 mM 
imidazole, pH 8.0). After binding, the column was 
rinsed with washing buffer (50 mM NaH2PO4, 300 
mM NaCl, 20 mM imidazole, pH 8.0). The bound 
enzyme was eluted with elution buffer (50 mM 
NaH2PO4, 300 mM NaCl, 250 mM imidazole, pH 8.0) 
at a flow rate of 0.5 mL/min, all the collected active 
fractions were concentrated to 1 mL. The supernatants 
were analyzed using sodium dodecyl sulfate- 
polyacrylamide gel electrophoresis (SDS-PAGE). 
Western blot analysis was used to detect the 
expression of soluble β-xylosidase protein for each 
clone by using anti-His tag antibody (Yeasen, 
Shanghai, China). The size of each enzyme was 
analyzed by SDS-PAGE. Protein concentration was 
determined by Modified Bradford Protein Assay Kit 
from Sangon [34]. The resultant β-xylosidases 
(Xyl1-Xyl8) derived from G. brachycerastes gut 
metagenome have been deposited into GenBank 
(accession number: KY618667- KY618674). 

Enzyme activity assays 
β-xylosidase, β-glucosidase and arabinosidase 

activity was measured using pNPX, pNPG and pNPA 
as substrate, respectively. For pH optimum, enzyme 
activity was measured using the following buffer 
systems, including sodium acetate (100 mM; pH 
3.0-6.0), sodium phosphate (100 mM; pH 7.0-8.0), and 
Tris-HCl buffer (100 mM; pH 9.0). To examine the 
thermal stability, enzyme activity was tested under a 
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temperature gradient between 20 °C to 80 °C. The 
enzyme activity was calculated by the hydrolysis of 4 
mM of pNPX, pNPG and pNPA, respectively, and the 
reaction was terminated by the addition of 100 μL of 1 
M Na2CO3. The released p-nitrophenol (pNP) was 
measured immediately at 405 nm using a Multiskan 
Spectrum spectrophotometer (Thermo Scientific, 
Finland). One unit (U) enzyme activity was defined as 
the release of 1 μmol of pNP per minute under the 
standard assay conditions. All assays were carried out 
in triplicate.  

Results  
Screening of β-xylosidases from a termite gut 
metagenome 

The screening process detected 22 positive clones 
containing β-xylosidase activity (turquoise color) with 
a hit rate of 1:545. The positive clones were digested 
by a single restriction endonuclease, BamH I, to check 
for RFLP. A total of 11 positive clones representing the 
different RFLP patterns were pooled and submitted to 
454 pyrosequencing [26]. A total of 37,330 reads 
averaging 536 base pairs (20 Mb raw data) were 
obtained and assembled into 41 contigs by Newbler 
software V 2.7 (Table S2). Eight ORFs were predicted 
for β-xylosidase genes based on their DNA sequences 
(Table 1). Phylogenetic analysis of the GHs suggested 
that they belong to 3 glycoside hydrolase families, 
including GH1, 3 and 43 (Figure 1). 

 

Table 1. Positive clones from G. brachycerastes metagenomic 
fosmid library  

Gene  ORF
* 

Contig 
Number 

Accession 
Number 

Annotation  Identity 
(%)** 

xyl1 32 1 KY618667  β-xylosidase /arabinosidase 63 
xyl2 109 3 KY618668 β-xylosidase /β-glucosidase 58 
xyl3 167 5 KY618669 β-xylosidase 68 
xyl4 175 5 KY618670 β-xylosidase /arabinosidase 73 
xyl5 187 6 KY618671 β-xylosidase/β-glucosidase 70 
xyl6 230 7 KY618672 β-glucosidase/β-xylosidase 57 
xyl7 304 10 KY618673 β-xylosidase /β-glucosidase 60 
xyl8 436 26 KY618674 β-xylosidase 

/arabinosidase/α-arabinofu
ranosiase 

63 

“*”: Eight β-xylosidases belong to GH1, GH3 and GH43 families, respectively. All 
the recombinant β-xylosidases derived from G. brachycerastes gut microbiome were 
expressed in the soluble fractions of E. coli and exhibited the predicted activity. 
“**”: Identity of these positive clones was obtained using NCBI’s BLAST search. 
 

Analysis of functional domains of G. 
brachycerastes symbiotic β-xylosidases 

After sequencing and assembly, β-xylosidase 
positive clones (424,401bp contig) contained eight 
putative ORFs. All the ORFs begin with the putative 
initiation codon ATG and ends with codon TAG. 
Among the eight β-xylosidases (Xyl1 to Xyl8), no 
coding sequence for an apparent signal peptide was 

identified. Non-catalytic carbohydrate-binding mod-
ules (CBMs) are carbohydrate-binding modules, 
which bind to the surface of insoluble carbohydrates 
(Figure 2). The CBM6 xylanase-like domain of Xyl1, 
Xyl4, Xyl8 enhanced the enzyme binding to substrate 
surface at C-terminal [35]. The Fn3-like domain at 
C-terminal of Xyl2, Xyl5, Xyl6, Xyl7 has no defined 
function, but is probably associated with the thermal 
stability of the enzyme. While BglX of Xyl2, Xyl5, 
Xyl6, Xyl7 represents a typical β-glucosidase-β- 
xylosidase domain, which related to the function in 
the periplasmic region in Gram-negative bacteria [36] 
(Figure 2). 

 

 
Figure 1. Phylogenetic analysis of the predicted hemicelluases from 
G. brachycerastes gut microbiome. These genes belong to three glycoside 
hydrolase families, GH1, 3, and 43, and their protein sequences were aligned 
using clustalX. This unrooted phylogenetic tree was established with MEGA 5.0 
by the neighbor-joining method. Bootstrap values were derived from 1,000 
replications. 

 

Expression and purification of G. brachycerastes 
symbiotic β-xylosidases in E. coli 

All the eight genes were cloned into pET-28a (+) 
expression vector and successfully expressed in E.coli 
BL21. The molecular mass of eight purified proteins 
were determined between 53-90 kDa by comparing 
standard protein marker in SDS-PAGE, when the gel 
was stained with Coomassie Brilliant Blue R-250 
(Figure S1). The concentration of purified proteins 
was 4.68 ± 1.63 mg/mL, 0.63 ± 0.03 mg/mL, 0.82 ± 
0.012 mg/mL, 0.64 ± 43 mg/mL, 1.10 ± 0.070 mg/mL, 
0.81 ± 0.013 mg/mL, 1.12 ± 0.079 mg/mL, 3.03 ± 0.98 
mg/mL, and 2.33 ± 0.053 mg/mL for Xyl1, Xyl2, Xyl3, 
Xyl4, Xyl5, Xyl6, Xyl7 and Xyl8, respectively. 
Theoretical pI value of the most of the purified 
proteins was around 5, while the pI value of Xyl6 
shows 7.04 (Table S3). 

Characterization of G. brachycerastes 
symbiotic β-xylosidases 

The substrate specificity of the purified proteins 
was examined by incubating the enzyme with 
different substrates (including pNPX, pNPA and 
pNPG for β-xylosidase, β-glucosidase and α- 
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arabinosidase activity, respectively) under a range of 
pH (3.0-9.0). As expected, all eight recombinant 
proteins exhibited β-xylosidase activity. The optimum 
pH for Xyl2 and Xyl4 were 5.0, while other enzymes 
were 6.0 using pNPG and pNPA as substrates (Figure 
3; Table 2). The optimum temperature ranged 
between 30-50 °C using pNPG and pNPA as 
substrates (Figure 4; Table 2). Xyl1 activity against 
pNPX and pNPA was 4.52 ± 0.41 U/mg and 0.56 ± 0.04 
U/mg of protein, respectively, while Xyl8 exhibited 
activities of 11.98 ± 1.21 U/mg and 1.05 ± 0.07 U/mg 
of protein. Xyl6 showed specific activity of 25.27 ± 1.09 
U/mg and 5.98 ± 0.45 U/mg of protein using pNPG 
and pNPX as substrate, respectively. These combined 
results from enzymatic assays suggest the existence of 
multimeric β-xylosidases in the gut microbiome of G. 
brachycerastes. 

 

 
Figure 2. Predicted functional domains of β-xylosidases from G. 
brachycerastes gut microbiome. Besides the signature motifs for GH1, 
GH3, and GH43 families, respectively, four of the recombinant G. brachycerastes 
symbiotic β-xylosidases, Xy12, Xy15, Xy16, and Xy17, possess a Fn3-like 
domain, which mostly exists at the C-terminus. BgIX, an E. coli gene encoding a 
β-D-glucosidase (EC 3.2.1.21), is a shared feature among Xy12, Xy15, and Xy17.  

Table 2. Enzymatic properties of the recombinant β-xylosidases 
from G. brachycerastes gut microbiome  

β-xylosidase Substrate pH Temperature 
(°C) 

Specific Activity 
(U/mg) 

Xyl1 pNPX/pNPA 6.0 50 4.52 ± 0.49 /0.56±0.04 
Xyl2 pNPX 5.0 40 11.51±1.03 
Xyl3 pNPX 5.5 50 0.537±0.004 
Xyl4 pNPX 5.5 40 2.59±0.53 
Xyl5 pNPX 6.0 50 8.78±0.98 
Xyl6 pNPX/pNPG 6.0 40/50 5.98±0.42/32.27±2.11 
Xyl7 pNPX/pNPG 5.0 40 14.47±1.24/0.033±0.024 
Xyl8 pNPX/pNPA 6.5 40/50 11.98 ±1.21/1.05±0.012 

 

Effects of pH and temperature on enzyme 
activity 

Recombinant β-xylosidases from termite guts 
exhibited activity across a broad range of pH (3.0-9.0) 
under optimal temperatures (Figure 3). β-xylosidases 
activity of Xyl1, Xyl6 and Xyl8 increased linearly from 
pH 2.0 to 6.5. It retained more than 80% activity in the 
pH range of 5.0-7.0. At pH 8.0, they retained about 
40% of relative activity. Xyl2 and Xyl7 activities 
decreased mildly when pH was increased from 5.5 to 
9.0. But their activities changed substantially when 
pH was increased from 3.0 to 5.0. Similarly, Xyl3, Xyl4 
and Xyl5 were sensitive to pH changes. Therefore, 
Xyl1, Xyl6 and Xyl8 showed potential for industrial 
application. 

 

 
Figure 3. Optimal pH for recombinant β-xylosidases from G. 
brachycerastes gut microbiome. Experiments were conducted at their 
optimal temperature using 4 mM pNPX as the substrate. Enzyme activity was 
measured in 100 mM sodium acetate buffer (pH 3.0~6.0), 100 mM sodium 
phosphate buffer (pH 7.0~8.0), and 100 mM Tris-HCl buffer (pH 9.0), 
respectively. Error bar represents the standard deviation between three 
independent measurements. 

 
Effect of different temperatures on the eight 

β-xylosidases activity was shown in Figure 4. The 
activities of Xyl1, Xyl3, Xyl6 and Xyl8 were active 
across a broad temperature range (20-75 °C) using 
their optimal pH. Their β-xylosidases activity 
increased linearly between 20 to 50 °C. While the 
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other four β-xylosidases, Xyl2, Xyl4, Xyl5 and Xyl7 
were only active within a narrow temperature range, 
which limit their potential in industrial applications.  

 

 
Figure 4. Optimal temperature for recombinant β-xylosidases from 
G. brachycerastes gut microbiome. Experiments were conducted at their 
optimal pH using 4 mM pNPX as the substrate. Enzyme activity was tested 
under a temperature gradient ranging from 20 to 80°C. Error bar represents 
the standard deviation between three independent measurements. 

 

Discussion  
Metagenomic analysis is a powerful tool to 

investigate microbial diversity at any given 
environment, and to search for novel biocatalyst for 
industrial applications [17, 27, 28, 37]. Termite guts 
harbor a dense and diverse microbiota that is essential 
for lignocellulose digestion. Recent progress in 
symbiotic digestion was driven by the introduction of 
high-throughput screening and sequencing 
techniques [38]. They provide sufficient resolution 
and sampling depth to explain the distribution 
patterns of microbial lineages across the wide range of 
host species. Considered as a rich reservoir for 
lignocellulosic enzymes, 0.26% of the genes identified 
in the fungus-growing termite Pseudacanthotermes 
militaris gut metagenome are hemicellulases [17], 
which is comparable to the rate in this study (0.18%). 
A slightly lower hit rate was probably due to the 
screening conditions in this study, in which enzymes 
were incubated at 50 °C for 30 min, while the 
temperature optimum for G. brachycerastes is about 
20-35 °C. In a previous study, several xylanase genes 
were discovered in the microbiome of G. brachycerastes 
[30]. Here, we screened β-xylosidases from the same 
metagenomic library. As a result, we identified, 
cloned, and expressed eight β-xylosidases with 
molecular weights ranging from 53 to 90 kDa.  

The optimal pH of these β-xylosidases ranged 
between 5.0 and 6.0, which is comparable to a model 
industrial strain, Trichoderma reesei [39]. For T. reesei, 

however, the low hemicellulase activity is one of the 
major barriers for its extensive application [40, 41]. 
Although the activity level of these newly identified 
β-xylosidases from G. brachycerastes bacterial 
symbionts is modest, Xyl1, Xyl6 and Xyl8 are 
relatively thermostable and pH tolerant, and have the 
potential for industrial application.  

In general, plant cell wall degrading enzymes are 
modular proteins containing catalytic domains linked 
to one or more CBMs. CBMs are critical components 
of glycoside hydrolases (GHs) that degrade insoluble 
polysaccharides. Up to date, 81 CBM families have 
been cataloged in the CAZy database (http://www. 
cazy.org/Carbohydrate-Binding-Modules.html). 
CBM6 is responsible for binding to the insoluble 
carbohydrate surfaces. In this study, Xyl1, Xyl4 and 
Xyl8 contain CBM6_Xylanase-like domain at the 
C-terminus, which can enhance catalytic efficiency of 
β-xylosidases binding to the xylanase surface, and 
eventually can disrupt the polysaccharide structure 
[35]. β-xylosidases are distributed throughout GH 
families, including 1, 3, 30, 39, 43, 51, 52, 54, 116, and 
120. Enzymes from GH43 and GH3 families exhibited 
bifunctional or multifunctional activities [27, 42]. In 
this study, Xyl1, Xyl6, Xyl7 and Xyl8, which belong to 
GH3 and GH43, demonstrated bifunctional activities. 
A thermostable β-xylosidase cloned from the 
ethanologenic thermophilic anaerobe Thermoanaero-
bacter ethanolicus type strain JW200 also exhibited 
α-arabinosidase activity and this bifunctional 
xylosidase–arabinosidase (xarB) showed great 
potential in industrial applications [43]. Justo et al 
(2015) reported that xynB5, a gene derived from a 
Gram-negative, oligotrophic bacterium, Caulobacter 
crescentus, encoded a multifunctional β-xylosidase 
[44]. With BglX domain at its N-terminus, xynB5 
exhibited β-glucosidase, β-xylosidase, and α- 
arabinosidase activities. The multifunctional enzymes 
usually contain several distinct catalytic domains 
within the same polypeptide structure. The multi-
modularity can facilitate the degradation of substrate 
mixtures [45]. Commercial cellulase complexes are 
typically supplemented with β-gulcosidase [46] and 
hemicelluase to stimulate lignocellulosic biomass 
hydrolysis [40]. In comparison to multimeric protein 
engineering, the involvement of naturally occurring 
multifunctional biocatalysts streamlines the genetic 
modification procedures and simplifies the overall 
synthesis processes. Due to the clean and efficient 
catalytic performance, more and more chemical 
catalysts are gradually replaced by the sustainable 
biocatalysts with high stereo-specificity. Alternati-
vely, these multimeric enzymes could serve as the 
substitutes for β-glucosidase, β-xylosidase and α- 
arabinosidase to facilitate a wide range of industrial 
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applications, including food processing, animal feed, 
environment and waste management, and biomass 
conversion [2, 47]. 

Abbreviations 
BAC: bacterial artificial chromosome; CBM: 

carbohydrate binding module; CDD: Conserved 
Domain Database; E. coli: Escherichia coli; GH: 
glycoside hydrolases; LB: Luria-Bertani; IPTG: 
isopropyl-β-D-thiogalactopyranoside; NCBI: National 
Center for Biotechnology Information; NR: Non- 
Redundant; PBS: phosphate-buffered saline; PCR: 
polymerase chain reaction; RFLP: restriction fragment 
length polymorphism; ORF: open reading frame; 
pNP: p-nitrophenol; pNPG: p-nitrophenyl-β-D- 
glucoside; pNPA: p-nitrophenyl-α-L-arabinofurano-
side; pNPX: p-nitrophenyl-β-D-xylopyranoside; SDS- 
PAGE: sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis. 

Supplementary Material  
Supplementary figures and tables.  
http://www.ijbs.com/v14p0608s1.pdf  

Acknowledgements  
This work was supported by the High-tech 

Research and Development Program of China 
(863:2013AA102806) to X.Y., and the Shen-Nong 
Visiting Scholar Funding Program of Hunan 
Agricultural University and a Hatch fund (Accession 
Number: 1004654; Project Number: KY008071) from 
the USDA National Institute of Food and Agriculture 
to X.Z. The information reported in this paper (No. 
18-08-034) is part of a project of the Kentucky 
Agricultural Experiment Station and is published 
with the approval of the Director. These agencies had 
no role in study design, data collection/analysis, 
manuscript preparation, or the decision to publish.  

Author Contributions  
X.Y, C.L designed the experiments; C.L, G.Z 

carried out the research; X.Y, X.Z contributed reagents 
/materials/analysis tools; C.L, X.Z analyzed the data; 
C.L, X.Z wrote the manuscript. All authors discussed 
the results and commented on the manuscript. 

Competing Interests 
The authors have declared that no competing 

interest exists. 

References 
1.  Aristidou A, Penttilä M. Metabolic engineering applications to renewable 

resource utilization. Curr Opin Biotechnol. 2000; 11: 187-198. 
2.  Bajpai P. Microbial xylanolytic enzyme system: properties and applications. 

Adv. Appl Microbiol. 1997; 43: 141-194. 

3.  McMillan JD. Pretreatment of lignocellulosic biomass. In: Himmel ME, 
Baker JO, Overend RP, eds. Enzymatic conversion of biomass for fuels 
production. Washington: American Chemical Society; 1994: 292–324. 

4.  Saha BC. Hemicellulose bioconversion. J Indust Microbiol Biotechnol. 2003; 30: 
279-291. 

5.  Subramaniyan S, Prema P. Biotechnology of microbial xylanases: enzymology, 
molecular biology and application. Crit Rev Biotechnol. 2002; 22: 33-64.  

6.  Biely P. Microbial xylanolytic systems. Trends Biotechnol. 1985; 3: 286-290.  
7.  De Vries R P, Kester HC, Poulsen CH, et al. Synergy between enzymes from 

Aspergillus involved in the degradation of plant cell wall polysaccharides. 
Carbohydr Res. 2000; 327: 401-410.  

8.  Wong KK, Tan LU, Saddler JN. Multiplicity of beta-1,4-xylanase in 
microorganisms: functions and applications. Microbiol Rev. 1988; 52: 305-317. 

9.  Sunna A, Antranikian G. Xylanolytic enzymes from fungi and bacteria. Crit 
Rev Biotechnol. 1997; 17: 39-67. 

10.  Polizeli ML. Xylanases from fungi: properties and industrial applications. 
Appl Microbiol Biotechnol. 2005; 67: 577-591. 

11.  Watanabe H, Noda H, Tokuda G, et al. A cellulase gene of termite origin. 
Nature. 1998; 394: 330-331. 

12.  Breznak JA, Brune A. Role of microorganisms in the digestion of lignocellulose 
by termites. Annu Rev Entomol. 1994; 39: 453-487. 

13.  Brune A. Termite guts: the world's smallest bioreactors. Trends Biotechnol. 
1998; 16: 16-21.  

14.  Ohkuma M. Termite symbiotic systems: efficient bio-recycling of 
lignocellulose. Appl Microbiol Biot. 2003; 61: 1-9.  

15.  Brune A, Ohkuma M. Role of the termite gut microbiota in symbiotic 
digestion. In: Bignell D, Roisin Y, Lo N, eds. Biology of Termites: a Modern 
Synthesis. Dordrecht, Springer; 2010: 439-475. 

16.  Brune A, Dietrich C. Dietrich. The gut microbiota of termites: digesting the 
diversity in the light of ecology and evolution. Annu Rev Microbiol. 2015; 69: 
145-166.  

17.  Bastien G, Arnal G, Bozonnet S, et al. Mining for hemicellulases in the 
fungus-growing termite Pseudacanthotermes militaris using functional 
metagenomics. Biotechnol Biofuels. 2013; 6: 78. 

18.  Scharf ME. Termites as targets and models for biotechnology. Annu Rev 
Entomol. 2015; 60: 77-102.  

19.  Long Y H, Hui X, Lei X, et al. Intra- and interspecific analysis of genetic 
diversity and phylogeny of termites (Isoptera) in East China detected by ISSR 
and COII markers. Sociobiology. 2009; 53: 411-430. 

20.  Han Q, Liu N, Robinson H, et al. Biochemical characterization and crystal 
structure of a GH10 xylanase from termite gut bacteria reveal a novel 
structural feature and significance of its bacterial Ig-like domain. Biotechnol 
Bioeng. 2013; 110: 3093-3103. 

21.  Schloss PD, Handelsman J. Biotechnological prospects from metagenomics. 
Curr Opin Biotechnol. 2003; 14: 303-310.  

22.  Streit W R, Schmitz RA. Metagenomics–the key to the uncultured microbes. 
Curr Opin Microbiol. 2004; 7: 492-498.  

23.  Helen LS, Streit WR. Metagenomics: Advances in ecology and biotechnology. 
FEMS Microbiol Lett. 2005; 247: 105-111. 

24.  Wang M, Lai G L, Nie Y, et al. Synergistic function of four novel thermostable 
glycoside hydrolases from a long-term enriched thermophilic methanogenic 
digester. Front Microbiol. 2015; 6: 509. 

25.  Zhang M, Liu N, Qian C, et al. Phylogenetic and functional analysis of gut 
microbiota of a fungus-growing higher termite: bacteroidetes from higher 
termites are a Rrich source of beta-glucosidase genes. Microb Ecol. 2014; 68: 
416-425.  

26.  Yan X, Geng A, Zhang J, et al. Discovery of (hemi-) cellulase genes in a 
metagenomic library from a biogas digester using 454 pyrosequencing. Appl 
Microbiol Biotechnol. 2013; 97: 8173-8182. 

27.  Chang L, Ding M Z, Bao L, et al. Characterization of a bifunctional 
xylanase/endoglucanase from yak rumen microorganisms. Appl Microbiol 
Biotechnol. 2011; 90: 1933-1942.  

28.  MatsuzawaT, Kimura N, Suenaga H, et al. Screening, identification and 
characterization of alpha-xylosidase from a soil metagenome. J Biosci Bioeng. 
2016; 122: 393-399.  

29. Wang Q, Qian C, Zhang X Z, et al. Characterization of a novel thermostable 
β-glucosidase from a metagenomic library of termite gut. Enzyme Microb 
Technol. 2012; 51: 319-324. 

30.  Liu N, Yan X, Zhang M, et al. Microbiome of fungus-growing termites: a new 
reservoir for lignocellulase genes. Appl Environ Microbiol. 2011; 77: 48-56. 

31.  Dougherty M J, Patrik D, Hazen T C, et al. Glycoside hydrolases from a 
targeted compost metagenome, activity-screening and functional 
characterization. BMC Biotechnol. 2012; 12: 38. 

32.  Tamura K, Daniel P, Nicholas P, et al. MEGA5: molecular evolutionary 
genetics analysis using maximum likelihood, evolutionary distance and 
maximum parsimony methods. Mol Biol Evol. 2011; 28: 2731-9. 

33.  Saitou N, Nei M. The neighbor-joining method: a new method for 
reconstructing phylogenetic trees. Mol Biol Evol. 1987; 4: 406-425.  

34.  Bradford MM. A rapid and sensitive method for the quantitation of 
microgram quantities of protein utilizing the principle of protein-dye binding. 
Anal Biochem.1976; 72: 248-254. 

35. Varnai A, Makela MR, Djajadi DT, et al. Carbohydrate-binding modules of 
fungal cellulases: occurrence in nature, function, and relevance in industrial 
biomass conversion. Adv Appl Microbiol. 2014; 88: 103-165.  



Int. J. Biol. Sci. 2018, Vol. 14 
 

 
http://www.ijbs.com 

615 

36.  Yang M, Luoh S M, Goddard A, et al. The bglX gene located at 47.8 min on the 
Escherichia coli chromosome encodes a periplasmic β-glucosidase. 
Microbiology. 1996; 7:1659–1665.  

37.  Smith WS, Hale JR, Neylon C. Applying neutral drift to the directed molecular 
evolution of a beta-glucuronidase into a beta-galactosidase: Two different 
evolutionary pathways lead to the same variant. BMC Res Notes. 2011; 4: 1-10. 

38.  Mewis K, Taupp M, Hallam SJ. A high throughput screen for biomining 
cellulase activity from metagenomic libraries. J Vis Exp. 2011; 1:489-495. 

39.  Hari Krishna S, Chowdary GV. Optimization of simultaneous saccharification 
and fermentation for the production of ethanol from lignocellulosic biomass. J. 
Agric. Food Chem. 2000; 48: 1971-1976.  

40.  Hu J, Arantes V, Saddler JN. The enhancement of enzymatic hydrolysis of 
lignocellulosic substrates by the addition of accessory enzymes such as 
xylanase: is it an additive or synergistic effect? Biotechnol. Biofuels. 2011; 4: 
1-14. 

41.  Bischof RH, Ramoni J, Seiboth B. Cellulases and beyond: the first 70 years of 
the enzyme producer Trichoderma reesei. Microb Cell Fact. 2016; 15:106.  

42.  Gruninger RJ, Gong X, Forster RJ, et al. Biochemical and kinetic characterization of 
the multifunctional β-glucosidase/β-xylosidase/α-arabinosidase, Bgxa1. Appl 
Microbiol Biot. 2014; 98: 3003-3012.  

43.  Shao W, Wiegel J. Purification and characterization of a thermostable 
β-xylosidase from Thermoanaerobacter ethanolicus. J Bacteriol. 1992; 
174:5848–5853. 

44.  Justo PI, Correa JM, Maller A, et al. Analysis of the xynB5 gene encoding a 
multifunctional GH3-BglX β-glucosidase-β-xylosidase-α-arabinosidase 
member in Caulobacter crescentus. Antonie Van Leeuwenhoek. 2015; 108: 
993-1007.  

45.  Vrzheshch P V. Steady-state kinetics of bifunctional enzymes. Taking into 
account kinetic hierarchy of fast and slow catalytic cycles in a generalized 
model. Biochemistry (Mosc). 2007; 72: 936-943. 

46.  Lassa M, Fidantsef A, Gorre-Clancy B. Variants of beta-glucosidases. Patent 
No WO2004099228A2. World Intellectual Property Organization. 2004.  

47.  Beg QK, Kapoor M, Mahajan L, et al. Microbial xylanases and their industrial 
applications: a review. Appl Microbiol Biotechnol. 2001; 56: 326-338. 

 


	University of Kentucky
	UKnowledge
	4-26-2018

	Screening of Multimeric β-Xylosidases from the Gut Microbiome of a Higher Termite, Globitermes brachycerastes
	Chunyan Liu
	Gen Zou
	Xing Yan
	Xuguo Zhou
	Repository Citation
	Screening of Multimeric β-Xylosidases from the Gut Microbiome of a Higher Termite, Globitermes brachycerastes
	Notes/Citation Information
	Digital Object Identifier (DOI)


	tmp.1543949539.pdf.mUxVB

