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ABSTRACT 

A two-dimensional transient model for flow through saturated-unsaturated 

porous media is developed, The nodel numerically solves the pressure head 

dependent or moisture content dependent form of Richard's equation. The model 

code uses isoparametric quadratic triangular and/or quadrilateral finite 

elements for the geometric representation and for the weak Galerkin spacial 

integrations. An implicit, unconditionally stable single-step numerical time 

integration scheme with an oscilliatory noise reduction option is utilized for 

the temporal discretization. The highly efficient symmetric skyline (profile) 

solution scheme is used to solve the resulting s irr.ultar.eous equations. The 

nonlinear subsurface flow parameters are approximated using cubic spline 

interpolation. The ele~ent material properties can be independently defined 

thus permitting the modelling of layered geologic formations, Derivative 

smoothing is presented for the post-calculation of Darcian velocities. 

Currently, the program is limited to time varying specification of pressure 

head or moisture content and fluxes. Several sample problems are presented 

illustrating the accuracy and validity of the developed model. 

DESCRIPTORS: 

ID ENT IF IERS: 

Mathematical Models; Model Studies; Saturated Flow; 

Unsaturated Flow; Storm Seepage; Finite Element Method 

Subsurface Flow; Two-dimensional Transient Model 
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NOTATION 

General 

n unit inward normal vector 

t time 

x,y cartesian coordinates 

cartesian coordinate vector 

gradient operator 

Differential Equations 

e 

g 

h 

h 

q 

El 

El 
0 

soil medium dilation 

acceleration of gravity 

pressure head 

initial pressure head 

prescribed pressure head 

minimum soil surface pressure head 

hydraulic head 

prescribed flux 

solid velocity vector 

velocity vector of the fluid with respect to the solid; Darcian 
velocity vector 

cartesian components of the Darcian velocity vector 

prescribed potential flux 

elevation head 

moisture content 

initial moisture content 

vii 



El 
R 

El 
s 

r 

prescribed moisture content 

irreducible moisture content 

saturated moisture content 

domain 

boundary of n' 

pressure head/moisture content boundary 

flux boundary 

Material coefficients 

F 

K 

K!x•~y 

K;x,K;y 

Kr 

n 

s 

a 

C( I 

p 

1' ,µ 
s s 

Finite Element 

A(), C() 

B( ) 

relative soil moisture diffusivity 

generalized storage coefficient 

hydraulic conductivity tensor 

saturated hydraulic conductivity tensor 

components of the saturated hydraulic conductivity tensor 

relative hydraulic conductivity 

porosity 

degree of saturation 

coefficient of consolidation 

modified coefficient of consolidation 

fluid density 

Lame' constants for the soil medium 

lower order domain differential operators 

differential operator evaluated along the boundary 

domain differential equation 

integrand 
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Matrix 

L1,L2,L3 

Lli,L2i 

n 

N'l 
1 

w· 1 

w 

E 

I I 

{ } 

I I 

[nee)] 
[nece> J 

[JI 

triangular element area coordinates 

i-th quadrature point area coordinates 

time step 

number of element shape functions 

number Gauss quadrature points 

number of finite elements 

node i shape function for element e 

evaluation of Ni along the element boundary 

number of time steps 

residual 

smoothed Darcian velocity vector 

i-th Gauss quadrature weighting coefficient 

weighting function 

nondimensionalized local coordinates for the 
quadrilateral element 

i-th Gauss quadrature point coordinates 

prescribed convergence tolerance 

time weighting coefficient 

element subdomain 

element boundary 

signifies row vector 

signifies column vector 

signifies matrix 

moisture content dependent diffusivity matrix 

element level diffusivity matrix 

Jacobian matrix 
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/Ji 

Jr 

[K(h) I 

[Ke(h) I 

[N] 

[Nl 

{Q(h)} 

{Q(e)} 

{Qp} 

{rq} 

[S] 

[S(h)] 

cse(h) l 

[Se] 
q 

[~] 

inverse Jacobian matrix 

Jacobian determinant 

boundary Jacobian 

pressure head dependent conductivity matrix 

element level conductivity matrix 

vector of element shape functions 

vector of element shape functions for spacial 
interpolation of the material data and Darcian veloc
ity smoothing calculations 

pressure head dependent flow domain load vector 

moisture content dependent flow domain load vector 

point source/sink load vector 

quadrilateral element velocity smoothing right hand 
side vector 

triangular element velocity smoothing right hand side 
vector 

linear storage matrixfor moisture content analysis 

element level linear storage matrix 

pressure head dependent storage matrix 

element level storage matrix 

quadrilateral element velocity smoothing matrix 

triangular element velocity smoothing matrix 

.x 



involved in the preparation of environmental impact studies, water management 

planners and agriculturists. This group of beneficiaries includes county 

health departments, state water quality agencies, U.S. EPA, consulting 

engineers and other researchers. Researchers and consulting engineers will 
' 

especially benefit from this research since the program can be used separately 

or in combination for analyzing aquifer performance subjected to recharge, 

evaporation and/or transpiration, seepage through earth dams and for 

irrigation and drainage problems. 

I.2 BACKGROUND 

Early work in the numerical analysis of two-dimensional saturated-

unsaturated porous media flow was performed using the finite difference 

method, e.g., Rubin (1968) and Freeze (1971, 1972 (a) and (b) ). Due to the 

limitations of the finite difference method, researchers began using the more 

powerful and flexible finite element method. 

Neuman (1973) was one of the first investigators to use the finite 

element method for the analysis of saturted-unsaturated porous media flow. 

Neuman used a Galerkin spatial finite element formulation with linear 

triangular elements and an under relaxation scheme in time for the analysis of 

saturated-unsaturated seepage flow. He outlined the procedure for combining 

four triangular elements to form a single quadrilateral element. Neuman also 

correctly pointed out that the triangular and quadrilateral elements for two-

dimensional analysis can be extended for the analysis of axisymmetric 

subsurface flow problems. Neuman et al. (197 5) extended the finite element 

formulation of Neuman (1973) to include water uptake by roots. Feedes et al. 

(1975) compared the predicted finite element solution of Neuman et al. (1975) 

with field measured data on one-dimensional and two-dimensional problems. A 

good correlation was obtained between the predicted finite element results and 
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CHAPTER I 

INTRODUCTION 

I.l SIGNIFICANCE OF WORK 

The modelling of saturated-unsaturated groundwater zones has received 

increased activity in recent years. The reason for this activity is that the 

Environmental Protection Agency, the Kentucky Water Resources Research 

Institute and other agencies have recognized the potential hazards of 

contaminant infiltration into groundwater supplies from uncontrolled toxic 

waste dumping, municipal and industrial wastewaters, sludge from water and 

wastewater treatment plants, and solid wastes, from a broad range of 

activities, which are discharged onto farmlands, surface mining reclamation 

areas and to other open areas. Hence, a prediction of the movement of 

infiltrated contaminants in groundwater supplies is necessary to prevent long

range disasters. 

Groundwater is also one of the components of the hydrologic cycle. 

Hence, its quantity and movement are of critical importance to hydrologists 

and agronomists. 

The long term purpose of the computer model developed in this report is 

to provide a scientific analysis for subsurface flow and contaminant transport 

in porous media. Two computer programs can be used, based on the physics of 

two-dimensional subsurface flow and contaminant transport in saturated

unsaturated porous media. The moisture contents and Darcian velocities from a 

subsurface flow analysis can be used as input to the contaminant transport 

program for the prediction of non-conservative contaminant migration. 

The results of this research can be of great importance to people 
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the field observations. 

Reeves and Duguid (1975) used a spatial Galerkin finite element 

formulation with bilinear quadrilateral elements and a weighted difference 

scheme in time for their analysis of two-dimensional saturated-unsaturated 

porous media flow. Their computer program was written to include pressure

dependent boundary conditions at the ground surface. Thus, infiltration or 

seepage could be simulated. Reeves and Duguid found that their finite element 

program reduced computer running time by half when compared to the finite 

difference program by Freeze (1972 (a) and (b)). 

The representation of the nonlinear material properties has also received 

a considerable amount of attention by researchers in this area. Field data is 

not easily available and if available is not presented in a very convenient 

manner, The basic relationships are highly nonlinear and are tabulated at 

irregular intervals. A convenient but inaccurate method involves the linear 

interpolation within each interval. Campbell (1974) proposed a simple method 

of determining the relative hydraulic conductivity as a function of the degree 

of saturation from the soil water retention curve. This method assumes and is 

valid only if there is an exponential relationship between the potential and 

moisture content, i.e., water retention function plots as a straight line on a 

log - log scale, Gardner et al. (1970). If these conditions are sastisfied 

Campbell's equation can be used to find an analytic expression relating 

hydrulic conductivity and potential. Since this formulation breaks down near 

saturation, Clapp and Hornberger (1978) used a short parabolic section in this 

region to represent gradual air entry. The restricted nature of the 

exponential-parabolic representation makes it unsuitable for a general 

treatment of nonlinear material properties in groundwater flow. 
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1.3 SCOPE OF WORK 

The investigation presented in this report considers the development of a 

two-dimensional finite element model for flow through saturated-unsaturated 

porous media. The model is based on the pressure head or moisture content 

form of Richard's equation. Six node triangular and/or eight node 

quadrilateral isoparametric elements are utilized for geometric representation 

and in the weak Galerkin spacial integrations. These elements represent a 

quadratic spacial modeling. Consequently, they are generally more accurate 

than the linear finite element models discussed in the previous section. The 

transient behavior of Richard's equation is approximated using an implicit 

(unconditionally stable) single-step linear time interpolation scheme. An 

oscilliatory noise reduction technique is also presented for the implicit time 

algorithms which are oscillation prone (e.g., the Crank-Nicolson scheme). 

The analytical representation using Campbell's (1974) and Clapp & 

Hornberger's (1978) expressions is very restricted in scope and cannot be used 

generally. Consequently, cubic spline interpolation, using packaged 

subroutines from IMSL library (1982), was incorporated into the computer 

program for representation of the nonlinear material properties. Nonlinear 

material properties are input in a tabular form and a cubic spline 

interpolation, with first or second derivatives specified at the end points, 

is used to approximate the material parameters during the iterative process. 

The direct iteration or successive substitution method is presented for 

iteratively solving the saturated-unsaturated subsurface flow equations. 

Nonlinear boundary conditions associated with seepage faces and/or 

inf i1 tra tion/ evaporation are discussed. The skyline or profile simultaneous 

equation solution process is utilized in the model to minimize computer time 

and storage in generating the time dependent iterative solutions. An integral 
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least squares derivative smoothing procedure is used to obtain the element 

node Darcian velocities. 

Finally, several numerical examples are presented to demonstrate the 

validity and accuracy of the developed model. The examples include linear and 

nonlinear steady state simulations as well as linear and nonlinear transient 

simulations. 
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CHAPTER II 

GOVERNING EQUATIONS 

The mathematical model used in this study is Richard's equation, valid 

for both saturated and unsaturated subsurface flow. As with any mathematical 

model, Richard's equation is based on some simplifying assumptions. In 

particular, the assumptions utilized in this investigation are: 

1. The fluid medium is continuous. 

2. The soil matrix is continuous. 

3. The fluid is in mot ion. 

4. The soil medium undergoes consolidation. 

5. The fluid is incompressible. 

6. The air phase is continuous and is at atmospheric pressure. 

7. Flow is laminar and Darcy's law is valid. 

II.I FORMULATION OF THE PRESSURE HEAD FLOW EQUATION 

The development of Richard's equation which includes the seven 

aforementioned assumptions requires the utilization of (Reeves amd Duguid, 

1975) (1) fluid continuity, (2) solid continuity, (3) fluid motion, and (4) 

medium consolidation. These four equations will be presented in the following 

paragraphs and then combined to form a single governing equation, i.e., 

Richard's equation. 

The fluid continuity is expressed as (Cooper, 1966) 

a(Spn) + v • pnSV + V • pV = 0 at s fs 
(II.1) 
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where n is the porosity, S is the degree of saturation, p is the density of 

water, Vs is the velocity vector of the solid, Vfs is the velocity vector of 

the fluid relative to the solid and 9 is the two-dimensional gradient 

operator. The term velocity refers to Darcian velocity or Darcian flux of the 

fluid relative to the solid. 

The granular skeleton of the medium is considered compressible, however, 

the grains which make up the skeleton are considered incompressible. The 

continuity equation for the incompressible grains is 

a(l-n) + 9 · (l-n)V 
at s 

0 (II. 2) 

where (1-n) represents the volume concentration of the solids. 

The equation of motion for the fluid is Darcy's law for an anisotropic 

medium, i.e., 

-K • VH (II. 3) 

where His the hydraulic head and K is the hydraulic conductivity tensor. 

Equation II.3 can be rewritten in terms of the pressure head, h, and the 

elevation head, Z, as 

-K • (Vh + VZ) (II.4) 

The anisotrophy in the hydraulic conductivity is the result of assuming 

that the soil medium is composed of orthotropic layers. Further, the 

principal axes of orthotropy (local) are assumed to differ from the reference 

coordinate system (global), Figure II,l(a) shows a typical soil layer and its 

principal axes of orthotropy. Figure II,l(b) gives the resulting anisotropic 

tensor via a double coordinate transformation on the principal axis 
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conductivity coefficients, 

The consolidation of the medium is based on Terzaghi's (1925) one-

dimensional consolidation theory. This limitation to a one-dimensional 

consolidation theory is reasonable due to the large lateral extent of the soil 

masses being investigated, The use of Terzaghi's one-dimensional 

consolidation theory leads to (Reeves and Duguid, 1975) 

(11.5) 

where e is the soil medium dilatation, a is the coeficient of consolidation; 
1 

a = ~).---'+------c2-µ-' and i. 5 , µ 5 are Lame's constants for the soil medium. 
s s 

Since a 

one-dimensional consolidation approximation has been utilized, only the 

vertical displacement, u, is nonzero which leads to the following definitions 

e=V•u 

v 
s 

Using the relationships given by Eqs, II,5, II.6 and p = P gh leads to 

II • V 
s 

:le 
= --at 

ii!. ah 
a dh at 

(11.6) 

=a' ah (11.7) 
at 

where 

a' apg 

is the modified coefficient of consolidation for the medium. 

Now, expanding Eq. II,l gives 

8 



a(QnS) +v 
at 

pnSV
8 

+ v . pVfs 

as pS an + s v . (nv ) = pn-+ at at P s 

+ v . pVfs + nV • v (p s) = 0 (II.8) 
s 

where the last term in Eq. II.8 may be neglected as a higher-order effect 

(Reeves and Duguid, 1975). Substituting the following relationships 

de 
dh 

0 = nS 

- moisture content 

as ds ah 
n at= n dh at 

de ah 
=--

dh at 

specific moisture capacity 

an v (1-n)V -= 
at s 

v V- - v . nV
5 s 

ah nV = a - - V • at · s 

(see Eqs. II. 2 and II. 7) 

and Eq. II.4 into Eq. II.10 results in 

[e , + ~] ah = v 
-;;: " dh at 

LK(Vh + VZ)] 

Introducing 

F(h) = e(h) a'+ dS(h) 
n dh 

- a generalized storage coefficient 

9 
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where Kr{h) is the relative hydraulic conductivity (0 < Kr(h) ~ 1; Kr(h) = 1 

in the saturated zone) and KS is the saturated hydraulic conductivity tensor 

(see Fig. 1) into Eq. II.12 results the following quasilinear partial 

differential equation 

F(h) ~ + V • [Kr(h)!C'(Vh + VZ)] = 0 at 
(II.12) 

Equation II.12 reduces to the linear elastic storage equation if the aquifer 

is saturated. For unsaturated flow, Eq. II.12 is a nonlinear equation known 

as Richard's equation. Thus, Eq. II.12 is valid fo·r both saturated and 

unsaturated subsurface flow. 

II.2 FORMULATION OF THE MOISTURE CONTENT FLOW EQUATION 

The development of the governing equation in the previous section (Eq. 

II.12) was based on the pressure head being the dependent variable. Equation 

II.12 is extensively utilized when simultaneously analyzing saturated and 

unsaturated subsurface flow. However, when the main interest is the 

unsaturated or partially saturated zone soil physicists have typically used a 

moisture content based formulation. The usual procedure in a moisture content 

based flow formulation is to neglect soil consolidation which transforms Eq. 

II.12 into 

Substituting 

~~ 
dh 3t 

ah dh ae 
at 

Vh 

10 

d8 at 

dh V9 
d8 

(II .13) 



results in 

ae 
at 

V • [Kr (9) \zS <!~ Vh + VZ)] 

= v. [Kr(e)~~ R5 Vh + Kr(9)K" vz] 

dh 
where nr(a) = Kr(a) de is the relative soil-mositure diffusivity. 

(II.14) 

There are two primary advantages associated with using the a-based Eq. 

II.14. First, there is no nonlinear coefficient on the left hand side of Eq. 

II.14 (compare with Eq. II.13). Second, Dr(a) and Kr(a) are much less 

nonlinear, for soils of low saturation, than either F(h) or Kr(h). This means 

that the moisture content variations are more gradual than the corresponding 

pressure head variations (Narasimhan, 1975). Thus, the a-based equation is 

easier to solve than the corresponding h-based equation. 

The diffusivity concept and a-based equation possesses disadvantages as 

well. The concept of diffusivity must take on a different meaning in the 

pressure head range, air-entry value~ h ~ O, since desaturation cannot occur 

in this range, i.e., (dS/ dh) = O. Furthermore, if porosity is assumed 

constant then (da/dh) = 0 which means (dh/da) = 00 and nr(a)+ 00
• This anomaly 

can be overcome by taking into account the soil skeleton deformation at or 

near saturation (Narasimhan, 1975). In the air-entry value~ h ~ 0 range, the 

relative diffusity nr(a) = Kr(a) ~ should represent Kr(9) ill!. where n is the 
dn 

porsity. Thus, in this range of pressure head values the relative diffusivity 

becomes identical with the coefficient of consolidation, a (for proof, see 

Narasimhan, 1975, p. 59). 
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Another disadvantage of the 9-based flow equation is that it is limited 

to a homogenous medium. The moisture content between two different soil 

layers is not continuous whereas the pressure head is continuous. However, 

for flow regions which are homogenous and at low saturatioils, the 9--based 

equation should be used. 

II.3 INITIAL AND BOUNDARY CONDITIONS 

The solution of the pressure head flow equation (Eq. 11.12) or the 

moisture content flow equation (Eq. 11.14) requires the specification of 

initial and boudary conditions. The initial conditions consist of specifying 

h or 9 everywhere within the solution domain Q at time t = 0, i.e., 

h(x,o) = h0 Cxl (II.15a) 

(II .15b) 

The boundary conditions consist of specifying either the pressure 

head/moisture content or normal flux everywhere along the boundary r for t l. 

O. In particular, letting r1 represent the prescribed pressure head/moisture 

content boundary and S the normal flux boundary leads to the following 

boundary condition statements 

h(x ,t) = h(x,tl on rl (II.16a) 

e<x,t) = e(x,t) on rl (II.16b) 

[Kr K5(Vh + vz)] - r2 (II.17a) . n q on 

[Dr Ks V0 + Kr Ks vz] -. n q on rz (II .17b) 

The values of h,9 and q in Eqs. II.16 and 11.17 are known functions of X and 

t, and n is the unit inward normal on r 
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I S x ,K , 
x 

(a) Inclination of Soil Layer 

Ks Ks = !, xy yx 
Ks 
x' 
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y' sin2a 
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K

8
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cos 2a K + K I yy x y 

x 

(b) Transformation of the Hydraulic Conductivities 

FIG. Il. l - LAYERED ORTHOTROPIC POROUS ~IEDIA 
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CHAPTER Ill 

NUMERICAL IMPLEMENTATION 

The exact solution of the quasilinear partial differential equations 

(Eqs. II.12 and II.14) subject to the initial (Eq. II.IS) and boundary (Eqs. 

II.16 and II.17) conditions is generally not possible. Consequently, recourse 

to approximate solution techniques is required. The purpose of this chapter 

is to describe the numerical approximation for the solution of two-dimensional 

saturated-unsaturated subsurface flow problems. 

III.I FINITE ELEMENT FORMULATION 

The first step in the numerical approximation of the quasilinear partial 

differential equations is to choose the discretization strategy. This 

investigation is based on using a finite element discretization. Finite 

elements were chosen due to its ability to model irregular boundaries, mesh 

refinement/expansion capabilities and the ease in modelling complicated 

boundary conditions. 

The finite element discretization/formulation involves three basic steps, 

i.e., (1) development of an integral relationship corresponding to the 

governing differential equation, (2) definition of the element geometric forms 

and (3) approximation of the unknown field variable. In this investigation, 

the weak Galerkin weighted residual method is used to construct the finite 

element integral equations. Isoparametric quadratic triangular and 

quadrilateral finite elements (Fig. 111.1) are used to represent the flow 
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domain and the field variable variation. 

III.1.1 Galerkin Formulation - The Galerkin finite element formulation begins 

with defining the governing differential equation as 

Df (f) = 0 (III.l) 

where f signifies the pressure head h for Eq. II.12 and the moisture content 9 

for Eq. II.14. The next step in the Galerkin formulation is to approximate 

the field variable behavior, i.e., 

(III.2) 

where LNJis a row vector of shape or interpolation functions and {f} is the 
I 

column vector containing the nodal values of the appropriate field variable. 

Substituting f from Eq. III.2 into the differential operator of Eq. 111.1 

gives 

R 1' 0 ( 111.3) 

where R is the residual. If the exact solution f and the approximate solution 

f are the same, then the residual of Eq. III.3 would be zero. However, the 

approximate solution does not generally equal the exact solution resulting in 

the nonzero residual indicated in Eq. III.3. Since the governing differential 

equation cannot be satisfied point wise throughout the domain ll, its 

satisfaction is sought in the sense of a weighted average over the domain 

i.e. , 

0 
(111.4) 
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where Wis the weighting function. 

In the finite element Galerkin formulation, the weighted integral of Eq. 

III.4 is summed over all the· element subdomains ne and the element level shape 

functions are utilized as the weight functions, i.e., 

r N' 

lne WDf(f)d(l Ee Ne (0 dfl = 0 
J (l e=l J Df 

for j = 1, 2. ... ' ne (III.5) 

where Ne is the number of elements used to discretize the domain Q , · Nj is the 

jth shape function for element e and ne is the number of element shape 

functions. 

The Galerkin formulation of Eq, III,5 possesses the disadvantages of 

requiring cl interelement continuity (i.e., first derivative continuity 

between the elements), exact satisfaction of all boundary conditions and leads 

to a nonsymmetric system of equations. These disadvantages can be relaxed or 

eliminated by generating a 'weak' Galerkin formulation of Eq, III.l. The weak 

Galerkin formulation is obtained by integrating Eq, III.S by parts once using 

the divergence theorem to symbolically give 

N 
e 

- E e=l 

for j = 1, 2, .. • , ne (III .6) 

where A( ), C( ) are lower order domain differential operators, B( ) is a 

differential operator evaluated along the element boundary re of ne and N'j 

signifies evaluation of Nj along re. 
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The result of Eq, 111.6 for the pressure head analysis (Eq, 11,12) is 

N 

e~: er {N}( LNJ{F(h)}) LNJd5l 
J ne 

{h} 

+ J 
( LNJ {Kr (h) l j (a{N} (Ks _a [NJ + Ks 

e ax xx ax xy n . 

+ a{N} (KS a [Nj + Ks a [NJ) )d5l 
ay yx ax yy ay 

a tN J) 
ay 

+ f ( LNJ{Kr(h)}(a{Nl Ks + a{Nl KS )dn 
ne ax xy ay yy 

- J e {NJ q dr] = (O} r2 

and for the moisture content analysis (Eq. II.14) it is 

Ne 

E [J {N}[NJdD {B} 
e=l ne 

+ a{N} (Ks a tNJ + Ks a lNJ))dn {el 
ay yx ax yy ay 

I {NJ q dr] 
- r~ 

{ 0) 

(III. 7a) 

(III.7b) 

where the superposed dot signifies time differentiation and {N} is the vector 

of element shape functions evaluated along the flux loaded element boundary~ i• 
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The nonlinear material coefficients F{h), Kr{h), nr(9) and Kr(9) were 

spacially approximated using interpolation functions lNJ and the expressions 

in braces represent the corresponding nodal values. Note that the 

interpolation functions tNJ need not be the same as the interpolation functions 

[NJ of Eq. III.2. 

Scrutinizing Eqs. III.7(a) and III.7(b) reveals the modifications of the 

weak Galerkin versus Galerkin formulations. First, the shape functions need 

only be c0 interelement continuous, i.e, function continuity between the 

elements. Second, the vector products which multiply the pressure head and 

moisture content vectors are symmetric which results in a symmetric system of 

equations. Lastly, only the boundary conditions given by Eqs. II.16(a) and 

(b) must be exactly satisfied since the flux or flow boundary conditions of 

Eqs. II.17(a) and (b) are included in the discretized approximation. 

where 

Eqs. III.7(a) and (b) can be written in matrix form as 

[ S(h)] {h} + [K( h)] {h} = { Q( h)} 

[S]{9} + [D(9)]{9} = {Q{9)} 

N 
e 

[S(h)] = E [se(h)] 
e=l 

- pressure head dependent flow domain 
storage matrix 

[se(h)l = f {[NJ{F(h)}){N}[NJ dQ 
Ile 

- element storage matrix 

N 
e 

[K(h)] = E 
e=l 

18 
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- pressure head dependent flow domain 
conductivity matrix 

([NJ{Kr(h)}) [a{N} (Ks aLNJ + Ks aLNJ) 
ax xx 3x xy ay 

+ 3{N} (KS a [NJ s 3 [NJ)] dQ 
ay yx ax + Kyy ay 

- element conductivity matrix 

N 
e 

{Q(h)} = {Qp} + " 
e=l 

{N} q dr 

- pressure head dependent flow domain 
load vector 

- applied point source/sink load vector 

N 
e 

[s] = r [se] 
e=l 

- linear flow domain storage matrix 

- element storage matrix 

N 
e 

[D(G)] = E 
e=l 

- moisture content flow domain 
diffusivity matrix 

[a{N} (Ks ~ + KS ~) 
ax xx ax xy ay 
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+ a{N} (Ks aLNJ + Ks ~)] dll 
ay yx ax YY ay 

- element diffusivity matrix 

N 

{QC9l} = {QP} + t c
1
( (N} q dn 

e=l re 
2 

- r (LNJ {Kr(9)}) (a{N} K6 + a{N} K" )dill 
J n e ax xy ay yy 

- moisture content dependent flow 
domain load vector 

The above element summations are performed by enforcing pressure head or 

moisture content nodal equilibrium and continuity. This technique is known as 

direct assembly (e.g., Heubner, 197 5). 

III.1.2 Element Shape Functions - The next phase in the finite element 

formulation is to choose the specific finite element(s) to be used in the 

discretization. As mentioned previously, the quadratic triangular and 

quadrilateral elements of Fig. III.l were selected. The shape functions for 

the six node triangle element are expressed in terms of nondimensional 

coordinates known as area coordinates. The area (local) coordinate shape 

functions are (e.g., Zienkiewicz, 1977) 

N1 = 1 1(211 - 1), N4 = 41 11 2 

N2 =12(212 - 1), N5= 4Lz13 

N3 = 13(213 - 1), N6 = 41311 

(III.9) 

where the element nodes and area coordinates (O _s 11, 12, 13 _s 1) are shown in 

Fig. III.l(a). The three area coordinates are not independent. Thus, in 

order to utilize an isoparametric formulation of these shape functions, the 
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coordinate dependence must be removed. The coordinate dependence is easily 

eliminated by substituting 

into Eq. III.9. The local coordinate shape functions for the eight node 

quadrilateral element are (e.g., Zienkiewicz, 1977) 

Nl = (1-f;)(l-Tl){-(-Tl-1)/4 N5 = (l-s2){1-n)/2 

Nz = (l+f;){l-n)(s-n-1)/4 N6 = ( l+s){l-n2) /2 (III.IO) 

N3 = (l+f;)(l+n)(f;+n-1)/4 N7 = {l-f;2){l+n) /2 

N4 (l-f;)(l+n){-f;+n-1)/4 N3 = 0-s H l-n2) I 2 

where the element nodes and nondimensional curvilinear coordinates f;,n(-1~ 

f; ,Tl ~ 1) are shown in Fig. III. l(b ). 

The material parameter interpolation functions, {N}, were assumed to be 

linear. Thus, for the triangular element 

Nl = L1 

Nz = Lz (III.11) 

N3 = l-L1-Lz 

and for the quadrilateral element 

-
Nl = (l-;)(1-1)/4 

-
Nz (1 +E. H 1-n ) I 4 (III.12) 

-
N3 = (1 +E. ) ( I +n ) I 4 

N4 (1-f;)(l+n )/4 

As shown in Eqs. 111.11 and III.12 only the corner nodes for the elements of 
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Fig. III.l are utilized in describing the element spacial variation of the 

material coefficients. 

III.1.3 Curvilinear Coordinate Transformations - The for mu lat ion of element 

storage, conductivity and diffusivity matrices and the element load vectors, 

requires differentiation with respect to the x - and y - axes, Since the 

shape functions for the six node triangle and the eight node quadrilateral are 

written in local coordinates, a transformation of the coordinates is 

necessary. The following two-dimensional relationships are used to perform 

the transformation: 

{ 
aNi/;Jx} = -l {aN/os} 

3N./cly [J] clN./clt 
1 1 

d Q = dxdy = J JI dsdt 

x = L NJ {x} 

y = L NJ {y} 

(III.13) 

(III.14) 

(III.15) 

(111.16) 

where [J] is the Jacobian matrix; s,t = 11, 12 for the triangular elements and 

s,t = ~. n for the quadrilateral elements; and JJJ is the Jacobian determinant, 

The partial derivatives of the element shape functions with respect to sand t 

can be easily evaluated from Eqs. III.9 and III.10 and therefore will not be 

presented here, 

The Jacobian matrix is constructed from 

clN. 
1 

Ts = 

clN. 
1 

clt 

aN. clx 
1 ----+ dX dS 

aN. ax 
1 ----+ 

dX clt 
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clN. ay 
1 

ayas 

clN. cly 
1 ----

ay at 



to give 

= rax/as ay/3sl 
Lax/at ay /atj 

[ llJil {x} aLNJ { } 
as as Y 

il!U_ { J a LNJ { J at x at Y 

= 

l la:;l 
aN. 

1 

ay 

Therefore, the determinant and inverse of the Jacobian are 

and 

(III.17) 

(III.18) 

(III.19) 

The boundary integrals in the evaluation of the element load vector must 

also be transformed. The transformation of dr is 

df (III.20) 

where 
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= <dLNJ {xl)2 + <dLNJ {y})2 
ds ds 

The analysis now proceeds to the numerical evaluation of the element 

integrals. 

111.1.4 Element Quadrature - Substituting the element shape functions 

(Section 111.1.2) and the curvilinear coordinate transformations (Section 

111.1.3) into the integrals of Eqs. III.7(a) and (b) would obviously lead to 

complicated integrands. Consequently, the resulting integrals are numerically 

evaluated using quadrature formula approximations. In particular, Gaussian 

quadrature formulas are utilized since high-order integration accuracy can be 

achieved using a minimum number of function evaluations. 

Representing the resulting integrand for a typical triangular element as 

I(L1, L2), the numerical evaluation of the integral is 

(111.22) 

where Lli• L2i are the area coordinates of the i-th sampling point, wi is the 

weight associated with the i-th sample point and ng is the number of Gaussian 

quadrature points. The weights and sample point area coordinates are given by 

Cowper (1973). The order of accuracy used to evaluate the integrals of Eq. 

IIl.7(a) is fifth or sixth whereas, the integrals of Eq. III.7(b) require only 

a fourth or fifth order accurate evaluation. If the element is not distorted 

then the lower order evaluation is used. 

The numerical evaluation of the integrals for the quadrilateral elements 

is 

Jr<~,n)d~dn 
ng n 

0 
0 

E " W.W. I( ~in} 
i=l j=l 

i J 
(III. 23) 
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where ;i, nj are the curvilinear coordinates of the i-th and j-th sample 

points and wi, Wj are weights associated with the i-th and j-th sample points, 

respectively. The weights and sample point curvilinear coordinates are the 

standard Gauss - Legendre quadrature data (e.g., Zienkiewicz, 1977). 

Equations III.7(a) and (b) are evaluated using n = g 
3 for nondistorted 

elements and ng = 4 is typically used for distorted quadrilateral elements. 

The boundary integrals of Eqs. III.7(a) and (b) are also evaluated using 

Gaus a-Legendre quadrature, i.e., 

where ng = 3. 

ng 

{NCO} q(O Jrd;F i: w ffi<siHq(;i) Jr(si) 
i=l 

111.2 TEMPORAL DISCRETIZATION 

(III. 24) 

The assembled system of equations describing fluid flow through a soil 

medium are given in Eqs. III.8(a) and (b). Equations III.8(a) and (b) show 

that the fluid flow equations require a temporal discretization in addition to 

the spacial discretization presented in the previous section. In the present 

investigation a direct single-step numerical time integration scheme is used. 

The term 'direct' indicates that Eqs. III.8(a) and (b) are not transformed 

prior to the numerical time integration (Bathe and Wilson, 1976). Direct 

integration is based on two ideas: 

(1) Satisfaction of the full set of equations at discrete time intervals 

lit apart; and 

(2) A variation of the field variable is assumed within each time 
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interval, tot. 

The basis of the single-step scheme is that the filed variable varies 

linearly in a discrete time interval, tot, from time tn to time 

n:::. 0,1, ••• , Nt (III.25) 

where Nt is the number of time steps. Evaluating Eqs. III.B(a) and (b) at tn 

+ 156 t (0 ~ o~ 1) gives 

(III.26a) 

(III.26b) 

Using the linear time approximation of Fig. III.2 leads to (Damjanic and Owen, 

1982) 

(III.27) 

(III.28) 

with a similar result for the moisture content. Substituting Eq. III.27 into 

Eq. III.26(a) gives 

<
0
!t [s<~+0)l + [KC~+0)l){h}n+,5 

= {Q(hn+,5)>n+o + o~t [S(hn+,5l]{h}n (III.29) 

Equation III.29 is utilized to obtain {h}n+,5 and the pressure head at time 
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tn+l is obtained from Eq, Ill,28, i.e., 

{h}n+l c (1/o){h}n+ 0 + (1 - 1/il){h}n (III.30) 

Hughes (1977) has shown that the single-step time integration scheme is un-

conditionally stable when o~ 1/2 for both linear and nonlinear situations. 

Consequently, the present investigation is limited to 1/2 ~ a 

particular the work focuses on o = 1/2, the Crank-Nicolson scheme. 

< 1 • - ' in 

A disadvantage of using time integration schemes with 1/2 ~a< 1 is that 

the time increment must be limited to produce an oscillation free solution 

(e.g., Wood and Lewis, 197 5). Blandford and Tauchert (1984) present a 

modification to the basic single-step time discretization strategy which 

dampens the oscilliatory noise. The modified scheme is obtained by satisfying 

Eq. III.29 at time t
0 

+ Mt for the first time step only without extending the 

solution to the end of the full time step (i.e., {h} 1 via Eq. III.30 is not 

calculated). This is equivalent to employing an Euler-backward difference 

scheme (o=l) for the first time step but for 6.tl =Mt (note, for 6 =l the 

solution does not oscillate). After the first step the standard scheme (Eqs. 

III.29 and III.30) is used over the full time step, 

III.3 NONLINEAR ANALYSIS 

The discretized saturated-unsaturated subsurface flow equation (Eq, 

III.29) is nonlinearly dependent on the pressure head (similarly, the 9-based 

discretized equation is dependent on the moisture content). Thus, procedures 

are required to approximate the nonlinear material properties and solve the 

resulting nonlinear simultaneous equations. This section discusses the 

representation of the nonlinear material data, the iterative solution strategy 

and the incorporation of nonlinear boundary conditions, 
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III.3.1 Nonlinear Material Property Representation - Equation III.29 includes 

the moisture content, e, and the relative hydraulic conductivity, Kr, pressure 

head dependent material parameters. The variation of the specific moisture 

capacity, (d9/dh), can be obtained from thee versus h relationship. A typical 

graph depicting the relationships 9(h) and Kr(h) are shown in Fig. III.3. 

The process of subsurface groundwater flow is comprised of a succession 

of wetting and drying of the soil medium. The wetting/drying process results 

in hysteretic behavior as shown in Fig. III.3. The numerical model of this 

investigation assumes that the material relationships are single valued 

functions in terms of h or 9 

Consequently, the hysteresis between wetting and drying conditions in the soil 

medium layers is neglected. Obviously, the assumption is correct if the soil 

medium is uniformly wetting (infiltration) or uniformly drying (drainage) as 

shown in Fig. III.3. For simultaneous wetting/drying an average curve should 

be used. 

Generally, the nonlinear material property data is available in tabular 

form. The values are listed using regular/irregular increments in pressure 

head or moisture content. Once the nonlinear material data has been obtained 

in tabular form, the material parameter relationships must be numerically 

represented in o_rder to perform an analysis. Various techniques, which 

represent different levels of accuracy, can be used, e.g., (i) linear 

interpolation within each interval of the table, (ii) an approximate analytic 

fit to the tabulated data, or (iii) cubic spline interpolation. 

Linear interpolation has an obvious drawback in accuracy if the data is 

tabulted at large intervals. Approximate analytic fits, for nonlinear 
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material properties in groundwater flow problems, have been suggested by Moore 

(1981) but were found unsuitable for general use. Consequently, the cubic 

spline interpolation routines available in the IMSL (1982) package were used. 

Cubic spline interpolation involves the passage of a piecewise smooth 

cubic polynominal through the data points of a nonlinear relationship. Cubic 

splines have a continuous second order derivative, which makes the 

interpolation smooth. The physical nature of the nonlinear relationships 

requires the specification of the first derivative values at the table entry 

extremes. For example, in Fig. III.3 the graph becomes asymptotic to a 

vertical line which marks a minimum value of moisture content (irreducible 

water saturation) for any soil medium. The value of the first derivative, 

when 9 equals its value at minimum saturation, is specified to be zero. The 

slope of the curve, 9 vs. h, at saturation varies according to the type of 

soil being tested, and should be specified accordingly. The values of the 

first derivative for the nonlinear relationship between Kand hare specified 

according to the data for a particular soil. The piecewise smooth, continuous 

second order derivative, interpolation of 9 vs. h, facilitates the evaluation 

of d9/dh. It may be noted, that the interpolation of specific moisture 

capacity, d9/dh is continuous through first order differentiation. The cubic 

spline interpolation of nr(lt) and Kr(lt) is essentially the same as for lt(h) 

and Kr(h). Consequently, no specific details need to be provided. 

III.3.2 Nonlinear Solution Strategy - Various nonlinear solution strategies 

are available for solving Eq. III.29, e.g., (i) direct iteration, (ii) Newton

Raphson iteration and (iii) modified Newton-Raphson iteration. Each iteration 

strategy is based on a repeated formulation and solution of a linear system of 

equations. Newman (1973) recommended the direct iteration scheme for the 
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solution of saturated-unsaturated subsurface flow problems. Consequently, the 

direct iteration strategy was utilized in the present investigation. 

The direct iteration strategy for Eq. III.29 can be written as 

. i+l 
+ [K(h~+o> ])(h}n+o 

fori=0,1,2, ... (III.31) 

where superscript i is the iteration number and h~+o is approximated using 

linear extrapolation, i.e., 

The iteration via Eq. III.31 is continued until 

< E (UI.32) 

where E is a prescribed tolerance (generally choose 1 x 10-3) or until the 

number of user specified interations is equalled. The iteration strategy for 

the 9-based unsaturated subsurface flow equation is 

( o!c[sl + [D(G~+o> l) {-ll}n+o 

for i 0, 1, 2, ••• (III.33) 

The convergence criteria is the same as Eq. III.32, simply replace h with 

9. 
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A schematic of the direct iteration strategy is shown in Fig, III,4, 

Figure III.4 depicts 'the fact that several matrix assemblies (see Eqs, III.8) 

and subsequent solutions (Eq. III.31 or III.33) are required to obtain a 

convergent solution. Consequently, an efficient assembly and equation solving 

scheme should be utilized, These equations are assembled consistent with 

Gauss-Crout elimination algorithm of Taylor (1977), Taylor's skyline solution 

algorithm incorporates the symmetry of the equations and sparseness of the 

resulting finite element equations, Thus, the storage of the matrix 

coefficients and the matrix decomposition and back substitution operations are 

minimized. 

111.3.3 Nonlinear Boundary Conditions - This section discusses the boundary 

conditions on seepage and evaporation/infiltration surfaces, These surfaces 

represent nonlinear boundary conditions because they can alternate between the 

conditions given by Eqs, 11,16 and II.17. 

A seepage face (surface) is an external boundary of the saturated zone 

where water leaves the system and his uniformly zero, Unfortunately, the 

length of the seepage face varies with time in a manner that cannot be 

predicted apriori. Neuman (1973) devised a scheme to incorporate the changing 

length of the seepage face. Neuman's scheme involves considering all nodes 

which can belong to a seepage face by having zero values of hn and negative 

values of qn (qn is negative when the flow at node n is directed out of the 

system). Now assume that the position of the seepage face is known at time tk 

and it is desired to predict the seepage face position at time tk+l• During 

the first iteration (i=O), his prescribed to equal zero (pressure head 

boundary; Eq. ll,16(a)) along the initial seepage face. At the same time, q 

31 



is prescribed to equal zero (flux boundary; Eq. II.17(a)) at all seepage nodes 

where h < O. The solution should produce negative q values at nodes where h 

is zero and negative h values at nodes where q is prescribed zero. However, 

if a positive value of q is encountered at an h = 0 node, the value of q is 

set to zero for the next iteration. Similarly, if a positive h value is 

obtained at a q = 0 node, then h is prescribed to be zero for the next 

iteration. 

Neuman (1973) found that the boundary condition modifications should 

proceed sequentially from node to node starting at the saturated end of the 

seepage face. In addition, after having set q equal to zero at any node 

during a given iteration, q at all subsequent nodes must also be set equal to 

zero. The iterative solution procedure for the seepage face continues in the 

same manner as described in the previous section. 

The evaporation/infiltration surface is that part of the external 

boundary where the soil can lose water to the atmosphere by evaporation or 

gain water by infiltration due to rainfall or sprinkler irrigation. The 

potential rates for both evaporation and infiltration are governed by 

atmospheric conditions. However, the ability of the porous medium to transmit 

or absorb moisture is limited by the medium composition. Thus, the exact 

boundary conditions at the soil surface cannot be predicted apriori. 

Neuman 0975) suggested the following requirements for the 

evaporation/infiltration boundaries 

n (III. 34) 

(III .35) 

where VP is the prescribed potential flux and hL is the minimum allowed 
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pressure head at the soil surface. Equation III.35 states that, in the 

absence of water accumulation at the soil surface, his limited by hL from 

below and by atmospheric pressure from above (Neuman, 1975). The lower limit, 

hL• can be determined from equilibrium conditions between the soil water and 

atmospheric vapor (e.g., Rose, 1966, p. 157). 

Neuman (1975) suggested the following scheme for incorporating Eqs. 

III.34 and III.35. During the first iteration in each time step, the surface 

nodes are treated as a prescribed flux boundary (Eq. II.17(a)) and are 

assigned an arbitrary fraction of the potential flux, usually 0.10. If the 

computed values of hn satisfy Eq. III.35, then the flux at each node n is 

increased by I hd/ lhn I in the case of evaporation, or by I hLI / lhL-hnl in the 

case of infiltration, subject to Eq. III.34. If some value of bu lies outside 

the limits specified by Eq. III.35 then, during the subsequent iteration, node 

n is treated as a prescribed pressure head node with h = hL for evaporation 

and h = 0 for infiltration. This situation is maintained as long as Eq. 

III.34 is satisfied. If, at any stage of the computation, the calculated flux 

exceeds the potential flux such that Eq. III.34 is not satisfied, node n is 

assigned the potential flux and is treated as a prescribed flux boundary. 

The adaptation of Eqs. III.34 and III.35 for a partially saturated 

moisture content analysis is 

jKscvrca)v9 + Kr(9) w;)•ii I~ VP 

9R ~ 9 ~ 9 5 

(III.36) 

(III.37) 

where 9R is the irreducible moisture content and 9s is the saturated moisture 

content. The discussion following Eqs. III.34 and III.35 is also applicable 

to Eqs. III.36 and III.37. 
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The iteration procedure discussed in the previous section is again 

applicable to the evaporation/infiltration boundary conditions, Iteration 

continues until convergence is achieved or the number of iterations is 

exceeded. 

III,4 VELOCITY SMOOTHING 

The finite element formulations presented earlier yield nodal pressure 

head or moisture content values. As shown in Section III.3.3, the seepage and 

evaporation/infiltration boundaries require the calculation of the Darcian 

velocities. Furthermore, the local Darcian velocities are required for the 

analysis of groundwater pollutant dispersion. 

The Darcian velocities are calculated using 

= -Kr (h) xx xy x + 

~
s Ks:}({3h/3 } {O}) 

Ks Ks 3h/3 l yx y y (III. 38a) 

or 

lv l ~s Ks]~ 13 Q/3 x) {o}) x = .- xx xy 0 r (B) . + Kr (Q) · 
V · Ks Ks 3 9/3 y l 

y yx yy , (III.38b) 

Equations III.38(a) and (b) show that the Darcian velocity calculations 

involve derivatives of the field variable (pressure head or moisture content). 

The elements selected for calculating the field variable nodal values are only 

co interelement continuity. Thus, the Darcian velocities are generally 

discontinuous between the elements. 

Hinton and Campbell (1974) have presented smoothing techniques to reduce 

interelement velocity discontinuities. Generating a least squares smoothing 
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over the finite element mesh results in the "global" smoothing procedure. 

Alternatively, the smoothing process may be performed separately over each 

individual element and is referred to as "local" smoothing. Fig. III.5 is a 

schematic showing the results of global and local smoothing. As shown in Fig. 

III.5, global smoothing results in a continuous velocity field. The 

disadvantage of global smoothing is its computational expense. Thus, local 

smoothing is utilized in this study, 

The local integral least squares smoothing is based on first evaluating 

Eq, III.38(a) or Eq. III.38(b) at the Gauss quadrature points. The quadrature 

points are utilized because integration point evaluations are one order more 

accurate than other points within the domain (Zienkiew icz, 1977). The nodes, 

which are the most useful output locations, appear to be the worst sampling 

points. An explanation for this observed phenomenum is that the interpolation 

functions tend to behave badly near the extremities of the interpolation 

region. 

The next step is to define the residual between the smoothed velocities, 

V and the quadrature point velocites, V, i.e., 

R = f <v - v) 2 d SJ 
,.8 

(III.39) 

The variation of Vis taken to be 

v L NJ {V} (III.40) 

where {V} is the of smoothed velocities at the element corner nodes and the 

shape functions {N} are given in Eq. III.11 for the triangular elements and 

in Eq. III.12 for the quadrilateral elements. Substituting Eq. III,40 into 

Eq. III.39 gives 
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R = J" ClNJ{v} - v)2 Ml 
Q 

Minimizing the residual of Eq, III.41 with respect to L V Jleads to 

C<ii>tiii {v} {N}V)d Q 

( III.41) 

(III .42) 

Using Gaussian quadrature (Section III,1.4) to evaluate Eq. III,42 results in 

n.,· 

( l wi{N(L1i,L2i)}[N(Lu,L2ilJ I J(L1i•L2il IHv} 
i=l. . 

n 
g 

= ,: wi {N(Lli, Lzil > I JCL1i• Lzi) lv<L1i, Lzi) 
i=l 

(III.43) 

for the triangular element and 

n n 
g g 

( E ,: 
i=l j=l 

= (III.44) 

for the quadrilateral elements, Equations Ill,43 and III,44 can be written 

.matrix form as 

(III.45) 

and 

(III.46) 

where subscript t is used to signify triangular element and subscript q to 

signify quadrilateral element, The matrix [Se) is the symmetric velocity 

smoothing matrix and {r} is the right hand side vector. Once the corner node 

velocities are obtained from Eq. III.45 or III.46, the midside velocity values 

are obtained using linear interpolation. 
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CHAPTER IV 

l!UHERICAL RESULTS 

Several numerical simulations are presented in this chapter illustrating 

various aspects of the developed model. Both steady state and transient 

results are presented. 

IV. I STEADY STATE SIMULATIOIT 

The first problem deals with the steady state solution of nonlinear one-

dimensional aquifer problem using two-dimensional finite element meshes. The 

differential equation is 

....i k(h) dh = 0 for O<x< l 
dx dx 

subject to the boundary conditions 

dh(x = 0) 
dx 0.0 

h(x = 1) = 1.0 

(IV.I) 

(IV.2) 

The problem posed by Eqs. IV.I and IV.2 was solved using k(h) = ko, a 

constant (linear) and for k(h) = k 0(I+h), a linear function of the pressure 

head (nonlinear). Both triangular and quadrilateral finite element meshes 

were used as shown in Fig. IV.I. T'ne finite element results are compared with 

the exact results in Table IV.l. The exact nonlinear solution was obtained 

from Tauchert 0977). As shown in Table IV.I the finite eleJ:1ent results are 

exact for the linear analysis case and nearly exact for the nonlinear analysis 

case. 
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IV.2 LilTEAR TRAJ:SIENT SU!ULATIONS 

Two linear transient simulations are presented which involve solving the 

partial differential equation 

3h 
at O~x,y:,l 

subject to the initial and boundary conditions 

h(x,y,o) 0 

h(l,y,t) h(x,l,t) = l 

ah ah 
-;;-(0,y,t) = -;;-(x,o,t) = 0 
ox ay 

t,:O (IV.3) 

(IV.4) 

The exact solution to Eqs. IV.3 and IV.4 as given by Bruch and Zyvolski 0974) 

is 

h(x,y,t) 

where 

ro ro 

l + L L cnrn ~()S (2n-l) x/2 J cos [czrn-l) y/2] 
n=l m~l 

exp{-·TT2 
t [ ~ (2n-l) 2+K;y (2m-l) ~/!,} 

c 
nm 

16(-l)n+l (-l)m+l 

TT 2 (2n-1)(2m-l) 

(IV.SJ 

Physically, this problem may represent the rise of hydraulic r.ead in an 

infinite othotropic porous medium of square cross section and having 

compressive capacity of unity (Narasimhan, }1euman and Edwards, 1977). Two 

cases with different ratios between K~x and Kyy are considered in the 

following subsections. 

IV.2.l Isotropic Case - The first case is that of an isotropic medium, i.e., 

Ki'.1x = K~y = I. The finite element n:esh for this case is sr.own in Fig. IV.2. 

Only one-half of the domain needs to be discretized due to the symmetry of the 

problem. Tl b d d · · 1 h 1 · f · 311 o · 1e oun ary con 1t1.on a ong t e 1r.e o symmetry 1s - = , 1.e., a an 
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no flow boundary. 

The time history results at nodes 25 and 14 are shown in Figs. IV.3 and 

IV.4, respectively using a l!.t = 0.02 and a= 1/2. i.e., Crank-Nicolson (CN) 

scheme. Figure IV.3 shows the oscillatory behavior of the Crank-Nicholson 

scheme near the prescribed pressure head boundry whereas Fig. IV.4 reveals 

that the finite element solution does not tend to oscillate in ~·- : nterior of 

the mesh. There are several techniques available to reduce the ocillatory 

noise near the boundaries, e.g., ( 1) refine the mesh near the boundary which 

would increase the number of unknown variables, (2) use backward differencing 

which would decrease overall solution accuracy, etc. A simple and accurate 

technique was developed by Blandford and Tauchert (1984) to reduce the 

oscilliatory noise. As mentioned in Chapter Ill, the technique is based on 

first solving the discretized equations at time al!. t using backward 

differencing and then using the full time step with the appropriate o for all 

subsequent time steps. These "modified" results lead to less oscillatory 

noise as sho"'n by the modified Crank-Nicolson (MCN) results of Fig. IV.3. 

IV.2.2 Orthotropic Case - The second case is an orthotropic medium with K~x = 

s 
land Kyy = 100. The finite element mesh for the orthotropic aquifer case is 

shown in Fig. IV.5. A full domain discretization is required for this case 

since the pressure head response is not symmetric with respect to the line x = 

y. 

The time histories at nodes 49 and 33 are shown in Figs. IV.6 and IV.7, 

respectively. The time histories were obtained using Crank-Nicolson and 

modified Crank-Nicolson tit:ie integration schemes with a l!.t = 0.001. A smaller 

t,,t is required due to the orthotropic conductivity properties. Figure IV.6 

sho"'s that the modified Crank-Nicolson scheme reduces the oscillatory noise 

near the boundaries for the orthotropic case as well. Figure IV.6 also shows 
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that the initial finite element simulation is not particularly accurate. This 

is due to the strong y-axis hydraulic conductivity relative the the x-axis 

hydraulic conductivity, A more refined mesh along the x-axis would eliminte 

this problem. Only the Crank-Nicolson results are presented for interior node 

33 as shown in Fig. IV.7, The modified Crank-llicolson results for node 33 

would be exactly the average of the Crank-Nicolson results for the linear 

simulation. 

IV. 3 NONLINEAR TRANSIEKT SU:ULATIOll 

The nonliner transient simultion is infiltration into a soil slab 

(Burch, 1976) is shown schematically in Fig. IV,8(:1). The slab consists of 

initially air-dry homogeneous soil, Pachappa Loam, underlain by a horizontal 

impervious barrier along ED. The water source is along BC and is assumed to 

be maintained at 0
5 

= 0.330. The relaive soil-moisture diffusivity is 

Dr(e) = 0.00125 exp(27.80) cm2 /min 
(IV, 6) 

and the relative hydraulic conductivity is 

Kr(G) = 0.00625 (0-0.04)6 cm/min (IV.7) 
0-0.04 

in which GR= 0.04 is the irreducible moisture content. The relative soil

moisture diffusivity and the relative hydraulic conductivity were approximated 

using cubic spline interpolation of the exact function values and end slopes 

for 0.04 ~ 0 ~ 0.33 in increments of tie = 0.01. The saturated hydraulic 

conductivities are K~x = K9y = K5 = 1 and K~y = O. 

The partial differential equation given by Eq. Il,14 governs the soil 

slab infiltration problem subjected to the initial and boundary conditions 

G(X,0) Go= 0.10 (IV. 8) 
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0 0 along BC 
s 

ae = ax O along CD and EA 

r s ae r s 
D (0)K ay + K (0)K = 0 along AB and DE 

A quadratic interpolation was used for line BC,i.e., 

where point Bis the origin for Eq, IV,10, 

(IV. 9a) 

(IV.9b) 

(IV.9c) 

(IV .10) 

The finite element nesh for the soil slab infiltration analysis is shown 

in Fig, IV.S(b). The moisture content contours are plotted for t = 10 min and 

t = 20 min in Fig. IV.S(a). These moisture content contours were obtained 

using the Crank-Nicolson scheme with 4t = 0.40 min. The finite element 

integrations of Chapter III were perforn:ed using n = 3. The results of Fig. 

IV.S(a) compare favorably with the results of Burch (1976). The inexact 

comparison is due to the slightly different boundary conditions utilized by 

Burch along AB and DE. 

46 



,,.. 
..... 

Exact 
1 

x 

0.25 0.250 

0.50 0.500 

0. 75 0.750 

1.00 1.000 

lh = x 
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Linear 

FEM FEM 2 
Triangle Quadrilateral 

Exact 

0.250 0.250 0.323 

0.500 0.500 0.581 

0.750 0.750 0.803 

1.000 1.000 1.000 

Nonlinear 

FEM FEM 
Triangle Quadrilateral 

0.324 0.324 
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0.803 0.803 

1.000 1.000 
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CHAPTER V 

SUMMARY AND CONCLUSIONS AND FUTURE RESEARCH 

V.l SUMMARY AND CONCLUSIONS 

The presented research was formulated to provide a scientifically based 

procedure for the analysis of subsurface flow in saturated-unsaturated porous 

media. The research enables a prediction of subsurface flow which can be 

coupled to other programs to predict contaminant migration, floods, resevoir 

capacity, moisture profiles, etc. In particular, groundwater contamination 

from environmental, domestic, industrial and agricultural sources has far 

reaching consequences in the safe utilization of groundwater supplies by 

domestic and industrial users. 

The Galerkin finite element method is well suited for the solution of 

problems involving transient saturated-unsaturated flow in porous media. The 

finite element method coupled with the cubic spline representation of the 

material properties appears to be computationally efficient in overcoming 

difficulties arising from the nonlinear nature of such problems. Owing to its 

numerical efficiency as well as to its versatility, the finite element method 

offers several advantages over conventional finite difference techniques in 

dealing with saturated-unsaturated soils. In particular, the use of quadratic 

finite elements allows for greater spacial accuracy thus requiring much fewer 

elements and unknown pressure heads or moisture contents. The use of the 

modified Crank-Nicolson scheme was shown to result in far superior results 

than the Crank-Nicolson scheme for oscillatory prone simulations. 
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V.2 FUTURE RESEARCH 

The developments of this research investigation has left this 

investigator with a wish list of investigative ideas. At the top of the 

investigation wish list would be the implementation and testing of the 

nonlinear seepage and infiltration/evaporation boundary conditions discussed 

in Chapter .III. Obviously, this capability would enhance the computer model 

for simulating a wider variety of problems encountered by soil scientists and 

engineers. Once this is completed, a second item would be to utilize the 

model for simulating a layered unsaturated porous medium. The comparison of 

model results with field observations would strengthen the validity of the 

developed model. This wish may be possible in the near future as the result 

of research being conducted in the Department of Agricultural Engineering at 

the University of Kentucky (Warner et al., 1984). 

Other investigative ideas include: implementing an automatic time 

increment scheme compatible with the single-step algorithm of this report, and 

modelling two-dimensional soil deformation. The automatic time increment 

strategy would initially utilize small time increments when the transient 

behavior is dominant. Whereas when the transient response is less dominant, 

larger time increments would be used. This obviously would improve simulation 

accuracy and efficiency. 

The inclusion of two-dimensional soil deformation would permit realistic 

modelling of the soil consolidation and porosity. Further, many of the 

nonlinear material coefficient variations in subsurface flow are known or 

formulated in terms of the effective stress (e.g., Narasimhan, 1975; 

Narasimhan and Whiterspoon, 1977). Thus, a coupled soil deformation-flow 

model would allow for the calculation of effective stresses which would then 

be used to more realistically model the flow properties, possibly including 
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hysteresis behavior. 

Finally, coupling the subsurface flow model to a contaminant transport 

model would allow for the simulation of contaminant migration. This coupling 

would have to include simulating contaminant transport in an engineered toxic 

waste site. The computer simulation comparison with field observations would 

result in an engineering design aide for disposing hazardous wastes. 
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