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Human cerebral neuropathology of Type 2 diabetes mellitus⋆

Peter T. Nelson*, Charles D. Smith, Erin A. Abner, Frederick A. Schmitt, Stephen W. Scheff,
Gregory J. Davis, Jeffrey N. Keller, Gregory A. Jicha, Daron Davis, Wang Wang-Xia, Adria
Hartman, Douglas G. Katz, and William R. Markesbery
Department of Pathology, Division of Neuropathology, University of Kentucky Medical Center,
Sanders-Brown Center on Aging and Alzheimer’s Disease Center, University of Kentucky,
Lexington, KY 40536, USA

Abstract
The cerebral neuropathology of Type 2 diabetes (CNDM2) has not been positively defined. This
review includes a description of CNDM2 research from before the ‘Pubmed Era’. Recent
neuroimaging studies have focused on cerebrovascular and white matter pathology. These and prior
studies about cerebrovascular histopathology in diabetes are reviewed. Evidence is also described
for and against the link between CNDM2 and Alzheimer’s disease pathogenesis. To study this matter
directly, we evaluated data from University of Kentucky Alzheimer’s Disease Center (UK ADC)
patients recruited while non-demented and followed longitudinally. Of patients who had come to
autopsy (N=234), 139 met inclusion criteria. These patients provided the basis for comparing the
prevalence of pathological and clinical indices between well-characterized cases with (N=50) or
without (N=89) the premortem diagnosis of diabetes. In diabetics, cerebrovascular pathology was
more frequent and Alzheimer-type pathology was less frequent than in non-diabetics. Finally, a series
of photomicrographs demonstrates histopathological features (including clinical–radiographical
correlation) observed in brains of persons that died after a history of diabetes. These preliminary,
correlative, and descriptive studies may help develop new hypotheses about CNDM2. We conclude
that more work should be performed on human material in the context of CNDM2.

Keywords
Diabetes; Alzheimer’s; Cerebrovascular; Stroke; Cognition; Clinicopathological; Radiographical;
Pathology; Review

1. Introduction
More than 90% of diabetes mellitus cases in Western countries correspond to Type 2 diabetes
(“non-insulin dependent”, or DM2) [1]. Although technically a misnomer, the term “diabetes”
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is used herein to encompass clinical signs and symptoms relating to DM2. The central focus
of this review is the cerebral neuropathology of DM2 (CNDM2). We will review briefly the
scientific literature from studies in epidemiology, neuropsychology, neuroimaging, and
histopathology research that are relevant to human CNDM2. Correlative and descriptive data
will be analyzed from the University of Kentucky Alzheimer’s Disease Center (UK ADC)
autopsy cohort. These studies include a case–control series depicting clinical and pathological
indices stratified by the antemortem diagnosis of diabetes. Our study also includes a series of
photomicrographs from diabetics’ brains that help depict some of the vascular and white matter
changes along with radiographical–neuropathological correlation. A central conclusion is that
direct pathological studies of human tissues, despite all their technical challenges, are an
important experimental component to the study of CNDM2.

2. Potential confounds
Prior studies have been unable to demonstrate pathognomonic changes that discriminate the
brains of humans with diabetes from “non-diabetic” brains. This may reflect the formidable
obstacles or potential confounds in studying diabetic brain disease. Below we describe five of
the most important potential confounds relevant to research on DM2 and the human brain.

2.1. Cohort effect, case–control pitfalls, and other potential biases
In a historical sense, “diabetes” is a moving target. New treatments emerge each year.
Environmental challenges, including dietary changes [2] and medications for other diseases,
evolve also. These produce changes that impact entire generations and may affect different
groups or cohorts distinctly. Thus, there is no guarantee that a human study performed in 2008
will be relevant directly to diabetics in 2028. Another problem is that in any “case–control”
study, most individuals identified as diabetics will have been treated for diabetes, whereas
some that were not identified as diabetics will be in fact untreated diabetics. This potential
confound can be minimized by stringent inclusion/exclusion criteria and monitoring patients.
However, in a study with rigorous clinical documentation and careful case selection, the
diabetics may be even better controlled in their medical and diet regimens and their case–
control outcome differences may change commensurately. Age effects are also difficult to
determine without rigorous controls–the findings of the effects of hyperglycemia on brain
tissue in a 30-year old are impossible to project onto those in an 80-year old.

2.2. Distinct group characteristics—comorbidities, environmental factors, and genetic
factors

DM2 cases are nonrandomly distributed in populations. Rather, the disease is associated
strongly with indices related to medical comorbidities, socioeconomic factors, and genetic
factors. Many studies on diabetics have noted systematic abnormalities in blood pressure,
atherosclerosis, and blood values for pH, urate, lipids, ketones, and clotting factors [3–7].
Diabetics also tend to have concomitant environmental risks such as obesity (presumably
reflecting an altered diet) and smoking [1,2,8,9]. Other potential confounds in diabetes studies
are the socioeconomic factors that may induce case-versus-control systematic biases in
patients’ trust of, and willingness to participate in, clinical trials [10–12] much less autopsy-
based research. Finally, there are hypothesized genetic risk factors that may relate both to the
metabolic syndrome and to neurodegeneration, such as the apolipoprotein E allele [13–17]. In
summary, it is a challenge to detect whether a brain change is specific to CNDM2 –
hyperglycemia and/or insulin resistance per se – rather than a combination of other medical,
environmental, and genetic factors, that disproportionately accompany CNDM2. This
consideration amounts to multiple potential confounds that are extremely challenging to
eliminate completely, irrespective of study design.
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2.3. Hypoglycemia and other treatment effects
Insulin or other agents can induce hypoglycemia iatrogenically. Hypoglycemia induces
seizures, coma, and widespread cerebral cortical neuronal loss when glucose levels fall below
~1–1. 5 mM (18–27 mg/dl) [18–24]. The neuropathology that is associated with this
devastating condition is not identical to that of widespread ischemia or hypoxia [23,24]. The
mechanism of this special type of neuropathology is apparently excitotoxicity via the
neurotransmitter aspartate [23,24]. More relevant to many diabetics are the effects of episodic,
short stretches of hypoglycemia, aggravated perhaps by chronic recurrence with cycles of
hyperglycemia and/or respiratory depression [25]. Depending on many factors, the net effects
may be subtle and idiosyncratic. In human studies, teasing out the specific importance of
hypoglycemia, versus hyperglycemia, is not a trivial challenge. Further, hypoglycemic agents
have effects on the brain other than those that are involved in glucose regulation [26,27].
Medicinal preparations intended to lower blood glucose differentially affect albumin binding,
inflammation, blood-brain transport, and other brain and liver indices [26–29]. Additional
treatment effects may also be important. Most diabetics take many drugs concomitantly, many
of which relate to metabolism, electrolytes, lipids, platelets, hormones, immunomodulation,
and/or blood pressure. For example, in the data presented below, the diabetic patients (N=50,
average age at death, 84 years) had an average intake of over 12 different medications daily.
The biological effects of these drugs, in isolation or together, may alter observed brain
pathology.

2.4. Glucose—one sugar, many pathways, and complicated curves
Most organisms use glucose as a transportable energy source. Glucose is also a moiety that
can be attached – enzymatically or non-enzymatically – to proteins, nucleic acids, and lipids
[30–32]. Highly amenable to molecular modifications itself, glucose is a potential “player” in
many biochemical pathways [30]. Exactly how these pathways are stimulated and inhibited in
vivo is currently poorly understood; there is still debate about the basic fundamentals of cellular
glucose metabolism in the brain [33–37]. The brain glucose and insulin pathways involve
complicated, interacting ripples of effects and counter-effects. The impact on blood vessels by
hyperglycemia is thought to be partly mediated through the polyol sorbitol pathway,
myoinositol depletion, diacylglycerol pathway, platelet regulation, and many others [18,20,
38–49]. Furthermore, cardiovascular factors can have complicated and non-linear dynamics.
For example, in compelling mammalian models of cerebral infarction, hyperglycemia can be
either neuroprotective, or by contrast neurotoxic, depending on the model parameters [50–
54]. An additional example of complex non-linear cerebrovascular dynamics in humans is the
well-documented but unexplained epidemiological “J-shaped curve” effect of alcohol intake
upon stroke risk [55–61]. Given these considerations, data can be difficult to extrapolate from
an experimental model to the human brain. For example, how can we know if the effects of
hyperglycemia at blood levels of 100 mg/dl, 200 mg/dl, and 300 mg/dl on a given brain cell
parameter are linear, exponential, or opposite from each other?

2.5. Pitfalls of animal models and comparative disease-related neurobiology
Historically, diabetes research provides outstanding examples of how animal models can be
used to inform and improve treatment of human diseases [62,63]. In the context of CNDM2,
a number of hypotheses have been developed and tested based largely on animal models [64–
70]. On the other hand, there are also drawbacks in using animals to model human cognition
and human-specific pathology. Because there is not a known, specific cerebral pathological
substrate for diabetes in humans, it is instructive to review the experience in animal models of
diabetic kidney disease. A pathognomonic diabetic nephropathy lesion is known, so a mouse
model should theoretically help to understand the disease mechanisms and work toward a cure.
Unfortunately, although kidney failure is commonplace in humans [71–73], this change has
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been extremely difficult to reproduce in mouse diabetes models [74,75]. There is considerable
mouse strain-specific variation in diabetes-related nephropathy [74,75]. Commonly used
strains such as C57BL/6 are almost entirely resistant to diabetic changes in the kidney, and in
fact less than 5% of mouse strains have reported such pathology [74,75].

What about rodent models of human brain disease in diabetes? The human brain is unique, and
there are crucial differences between rodent and human aging trajectories. As such it is not
surprising that rodent models of CNDM2 have shortcomings [68,76]. Transgenic or treated
rodents have been unable to model the best-established substrate for cognitive loss in diabetic
humans, namely atherogenic cerebrovascular changes [64,68,76]. Models of other diabetes-
related changes on cognition also have varied results. These studies are compounded by the
challenges to test subtypes of cognitive domains in rodents. Some diabetes-related studies have
produced no cognitive changes in the presence of hyperglycemia, and others show
abnormalities in rodent cognitive/behavioral indices even without hyperglycemia [64].
Furthermore, the perturbations that accompany diabetes studies in animals bear consideration.
For example, intracerebral or intraperitoneal injection of streptozotocin (SZT) leads to
pathological changes analogous to Alzheimer’s disease (AD), namely increased
phosphorylated tau [69,77–81]. It should be borne in mind that SZT has direct CNS toxicity
beyond the known effects of diabetes per se [82–84], and some of the effect of SZT on tau
proteins is mediated through hypothermia [69]. The animal studies are biologically interesting
and may prove their relevance to humans. However, reciprocal validation is important because
animal research and human studies have both complementary strengths as well as
complementary weaknesses.

3. Effects of diabetes on cognition
Due partly to the challenges described above, there has been some variability in the results of
studies about changes in cognition linked to diabetes. The neurological dysfunction associated
with this disease has been designated “diabetic encephalopathy” [45,85,86], yet this term has
not been rigorously defined by a consensus of experts. Specific cognitive disturbances
associated with diabetes have been described (for reviews see [5,17,46,87–90]). Deficits have
been repeatedly observed in particular cognitive domains, including memory and psychomotor
speed [46,91]. There is some overlap between the findings of cognitive changes in DM1 and
DM2 [43,46,92–94] and an increased risk for dementia or mild cognitive impairment in DM2
and some of this literature is described below.

Research about cognitive changes in diabetics demonstrates the importance of study design.
Many experiments assessing the effects of diabetes on cognition and/or pathology (including
the research described below) have employed a case–control research design. This study format
has important advantages in that cases and controls can be carefully monitored, compared, and
described; however, these studies are prone to selection and recruitment biases. A study design
involving fewer such biases is a population-based study. These studies typically have more
patients and are more representative of a large and heterogeneous cohort. Almost one-half of
the published population studies have been interpreted to show no effect of diabetes on
cognition [17]. However, these results also may have methodological problems including
difficulty with accurate identification of cases and controls.

Future studies may overcome the many confounds and discriminate in fine details which
specific aspects of DM2 correspond to which subdomains of cognitive dysfunction. In the
meantime, the literature on the cognitive deficits related to diabetic encephalopathy produces
a general consensus that multiple cognitive domains are affected adversely in diabetics. There
is general, but by no means universal, agreement about “direction of effect”–hyperglycemia is
associated with mild cognitive dysfunction in many studies. However, there is uncertainty
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about the precise relationships to biological mechanisms. Thus, specific aspects of prior studies
should be interpreted with critical scrutiny.

4. Recent neuroimaging studies related to diabetes-linked anatomic and
cognitive changes

To the extent that diabetes can be documented to affect cognition, neuroimaging can correlate
structural brain parameters with cognitive changes. Unlike neuropathological studies, brain
scans can be used to monitor quantitatively the three dimensional effects of a disease over time
in an individual. Further, MRIs can assess neuroanatomical areas suspected of involvement in
the diabetic brain, namely the cerebrovascular and white matter disease, which are problematic
to study routinely in the context of tissue-based neuropathology. For these reasons,
neuroimaging studies are practically tailor-made to surmount many of the obstacles in assessing
the cerebral neuropathology of diabetes.

Van Harten et al. (2006) provided an outstanding meta-analysis summarizing critically the
literature on neuroimaging of diabetes [95]. This study included formal analysis of 46 studies
(including population-based, case–control, and clinical studies with various vascular risk
factors) using MRI and/or CT. All of these included at least 20 diabetics with specified criteria
for diabetes. According to this meta-analysis, the following three structural changes are
described consistently in the brains of diabetic patients:

1. White matter lesions (WMLs; 27 studies analyzed) – Some but not all studies show
a positive correlation between the presence of WMLs and DM2. When studying
cohorts with many vascular risk factors in addition to diabetes, there were weak or
no correlations between diabetes and WMLs. In outpatient case–control studies, there
was a weak association between WMLs and DM2. A typical depiction of WMLs in
the brain of a diabetic is shown (Fig. 1).

2. Lacunar infarcts (LIs; 20 studies analyzed) – A significant association was found
between the presence of lacunar infarcts and DM2 across different study designs.

3. Cortical atrophy (CA; 10 studies analyzed) – Studies assessing cortical atrophy were
too heterogeneous methodologically to summarize; however, nine of the ten
publications in the meta-analysis showed a positive correlation.

Studies performed since the meta-analysis of Van Harten (2006) have further explored the
correlation of radiographical changes with the severity of cognitive dysfunction in diabetics
[90,93,96–100]. The results of some of these studies are shown in Table 1. Note that the
importance and specificity of WMLs appears to be more accentuated in these later studies.
Thus, neuroimaging studies help to focus the question with some hope of success, by showing
that there are specific anatomical substrates for the cognitive decline seen in diabetics: WMLs,
LIs, and CA. Of these three, the two least well understood are WMLs and CA. In the future,
technology that probes both functional and structural parameters (fMRI) should provide further
insights into diabetes-related brain changes.

5. Human cerebral neuropathology of diabetes
Histopathological studies may complement epidemiological, neuropsychological, and
neuroradiographical research regarding the effects of diabetes in the human brain. The
discovery of a specific anatomical substrate for CNDM2 would provide needed traction for
other experimental systems and for developing therapies. Human CNDM2 data will be
described in subsections: first, an overview of human studies on lesions described in diabetics’
brains, including a review of the literature concerning specifically whether or not diabetes is
linked to AD pathology; second, studies from the UK ADC autopsy cohort include a case–
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control study on material from the UK ADC Brain Bank to describe our experiences regarding
neuropathological findings in the brains of diabetics, with a series of photomicrographs to
demonstrate findings in diabetics’ brains including radiographical–pathological correlations;
and finally, a summary and conclusions.

6. Peripheral and autonomic nervous system pathology of diabetes
Details about the manifestations of diabetes in the peripheral and autonomic nervous systems
are outside the scope of this review. Briefly, peripheral and autonomic neuropathic changes
are prevalent, occurring in ~15–25% of diabetic patients [101–107]. Hyperglycemia itself is
the main risk factor [103,104]. The often painful “glove and stocking” (long-fiber)
sensorimotor polyneuropathy is the most common neuropathic syndrome in Western countries
[105,106]. Autonomic neuropathy is selective but affects many systems, and cranial
neuropathy (worst in the oculomotor nerve) is also quite prevalent [108,109]. The
histopathology for these changes is relatively nonspecific. Nerves show demyelination and
remyelination, a dropout of small and large axons, impaired axonal regeneration, Schwann cell
dropout, and/or neuritic dystrophy, often with nearby microangiopathy [104,109–117]. The
pathological changes may be caused or exacerbated by the polyol sorbital pathways, glycation
reactions, oxidative/inflammatory mechanisms, and other pathways [109,110,118–120]. The
prevalent but unspecific peripheral nervous system diabetes-related pathology may be relevant
biologically to changes in the brain. However, those who have carefully evaluated both in
parallel have found the brain pathology far more difficult to discern [85] and/or often
disproportionate in degree with the PNS pathology in individual patients [97].

Ultimately, the conclusions from the Pathology of Diabetes, 4th Edition (1966) still holds true:
“there is still no agreement on the pathogenesis or basic mechanism of diabetic peripheral
neuropathy” (p.273) [121].

7. Histopathology of diabetes in the brain: literature review
7.1. Historical note

Much of the work on diabetes pathology dates from before the advent of the ‘Pubmed Era’.
Naturally, these “classical” studies could only localize diabetes-related brain changes using
techniques that are somewhat crude by modern standards. However, it is significant that highly
observant researchers, superbly trained in anatomic pathology, and in an era with widespread
un-controlled diabetes, could find meager evidence of specific changes in the brains of
diabetics.

In the Pathology of Diabetes, 4th Edition (1966) [121], the authors designate a chapter to the
CNS pathology of diabetes. Here are some relevant excerpts:

“From the brains which we have examined, and from the reports in the literature, there
are no changes distinctive of diabetes other than the abnormal glycogen deposits
reported in certain cases of diabetic coma…” [121] (p. 279) “…findings of Vonderahe
[122] and of Morgan et al. [123] of a reduced number of ganglion cells in the
paraventricular regions have not been confirmed…Hagen [124] has described
granular inclusions in nerve cells of the hypothalamic region…” [121] (p.280)

Throughout the human body, according to these authors, diabetes affects all blood vessels from
the largest to the smallest. However, special focus was merited for arterioles and capillaries:

“Ever since the distinguished studies of Bell [125–127] it has been recognized that
arteriolosclerosis is likely to be more severe and extensive in the diabetic, even in the
absence of hypertension.” [121] (p.313) “The capillaries have frequently been
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regarded as the site of ‘diabetic microangiopathy’, largely because of the importance
attributed to the nodular glomerular lesion of Kimmelsteil and Wilson as the one
specific lesion of diabetes and the popularity of the common, though nonspecific
micro-aneurysms of the retinal capillaries.” [121] (p.317)

In the specific context of brain disease, “minor changes are difficult to evaluate since a number
follow vascular damage and vascular change is very frequent in the diabetic…” [121] (p.280).
Forty-two years after this final edition of The Pathology of Diabetes, pathologists still only
appreciate two relatively specific diabetes-related lesions outside the pancreas–Kimmelstiel–
Wilson nodules in the kidney and diabetic retinopathy (Fig. 2).

7.2. Recent work on cerebral neuropathology of DM2
With regard to more recent ‘conventional’ cerebral histopathological studies, the scientific
literature on diabetes/hyperglycemia in human brains has been nearly mute for several decades.
A survey of four popular, comprehensive clinical atlases on neuropathology [85,128–130]
provides little information about diabetes-related pathology. Only the Textbook in
Neuropathology, 3rd Ed (Davis and Robertson Eds, 1997) [85] has a section dedicated to
describing the histopathology of diabetic encephalopathy. This section begins: “Most clinicians
regard the cerebral manifestations in diabetes to be due to cerebrovascular disease.” [85] (p.
590).

The same neuropathology atlas [85] goes on to enumerate several other histopathological
findings associated with diabetic encephalopathy: thickening of cerebral cortical capillary
basement membrane; possible abnormality in blood-brain barrier; diffuse degeneration of
“ganglion cells” and nerve fibers throughout the brain (attributed to Reske-Nielsen and
Lundbaek [86]) or diffuse degeneration of cortical neurons similar to those seen in anoxia and
ischemia (attributed to Olsson et al. [131]), with poor correlation to hypertension or uremia.
Since these are the only authors with a relatively recent summary of the human neuropathology
of diabetic encephalopathy, it is worth quoting their conclusions–.

“Although it is conceivable that the primary ganglion cell abnormalities in diabetic
encephalopathy may be related to microangiopathy and increased vascular
permeability, many aspects in its pathogenesis are still unknown.” [85] (p.591)

In addition to neuropathology atlases, there have been individual studies about the pathology
in diabetics’ brains. Some autopsy series have included evaluations of cerebral pathology in
relation to diabetes [86,132–138]; however, there have been few such studies published during
the past several decades. Hypothesis-based studies have sought to confirm in human tissues
features seen in animal or other models [139–141]. Various findings have been reported, none
definitive, except that there is a positive association between diabetes and various strokes
[88,132,142–144]. Of the issues pertinent to brain pathology in diabetes that have received
most attention, two are conspicuous: the role of cerebrovascular diseases in diabetics, and the
pathogenetic connection to AD.

Relatively few recent studies have described in detail the cerebrovascular histopathology linked
to diabetes. The scarcity of recent studies stands in contrast to the impressive epidemiological
and neuroimaging evidence indicating that diabetic brain dysfunction is mediated at least partly
via cerebrovascular disease [88,90,98,132,142–145] (and see below). The lack of human
histopathological studies is also remarkable since there are few animal models of diabetes-
linked atheromatous brain infarcts [76]. Furthermore, there is cause to re-examine the older
autopsy series, because in one study more than a third of patients with cerebral infarcts had an
elevated glycosylated hemoglobin although they were not known previously to be diabetics
[146,147]. There have been few large human autopsy series performed since that of Aronson
(1973) [136]. This study included 4802 non-diabetics and 677 diabetics from consecutive,
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complete autopsies performed at Kings County Hospital in Providence, RI. In this study, the
frequency of encephalomalacia –softening of the brain, often with rarefaction of white matter
– was far more frequent in the diabetics. The author concluded that this pathology reflected
small-vessel disease that was “presumably not lethal and frequently subclinical, which is
distinctly greater” in diabetics [136]. The correlation of diabetes with small-vessel disease is
important and has been repeatedly described [90,96,99,148,149]. This type of pathology is
associated with clinical manifestations in sharp contrast to the “stroke” syndromes that are
characterized by acute, catastrophic neurological deficits that often culminate in severe
disability or death. Instead, the neurological deficits referent to small-vessel disease can be
subtle but progressive over time [150,151]. The exact mechanisms that underlie small-vessel
disease are not well understood.

Although diabetes is most specifically linked to small-vessel disease, it should be underscored
that a connection is also firmly established between diabetes and other subtypes of
cerebrovascular disease [6,132,145,152–157]. This pertains to large vessel atherosclerosis,
lacunar infarcts, thromboembolic stroke, hemorrhagic stroke, and aneurismal subarachnoid
infarcts [15,158–167], all of which can produce a spectrum of clinical syndromes. The relative
risk for clinically detectable stroke overall in diabetics is in the range of 1.7 to 5.5 (see review
in ref. [146]). This is a devastating disease with an incidence of ~760,000/year in the U.S.
[168–170], and it is estimated that 11 million more Americans have clinically “silent” strokes
per year [169]. Any additional hypotheses about the effects of DM2 on cognition must include
the much higher cerebrovascular risk in diabetics as a scientific fact. If additional types of
pathological or clinical manifestations are to be suggested, then diabetes-related
cerebrovascular disease is also a strong potential experimental confound.

In contrast to the literature concerning cerebrovascular pathology related to diabetes, the
association of DM2 with AD pathology is more controversial but has attracted intense scientific
attention [171]. This topic is challenging to address from a neutral perspective because the
results of the studies are mixed and sometimes seem mutually contradictory. We describe below
some of the data and hypotheses –both “pro” and “con”– pertaining to the possibility that AD
is pathogenetically linked to DM2.

7.2.1. Data/hypotheses that suggest that AD is linked specifically to DM2
1. Numerous epidemiological and clinical–pathological studies have reported an

increased risk in DM2 patients for developing AD, possibly in connection with ApoE
allele 4 [16,154,172–180].

2. Neuroimaging studies show shrinkage of mesial temporal structures (hippocampus
and amygdala) in DM2 patients linked to loss of cognition; these are also areas
affected by AD [91,181–183].

3. The diabetic pancreas contains amyloid substance, similar histologically to that found
in AD brain [184,185].

4. There are inter-related pathways linked to the metabolic syndrome and to
dyslipidemia (including cholesterol transport and ApoE alleles) that may credibly
affect both DM2 and AD [15,183,186–189].

5. PET neuroimaging studies have shown brain glucose regulatory deficits even in young
adults at risk for developing AD decades later (finding not linked to DM2 per se)
[190–193].

6. AD is linked to hyperglycemia by the hypothesized importance of insulin/IGF-1
regulated pathways, RAGE, PPAR-gamma, and other advanced glycation end-
products in AD brain [48,49,66,79,139,140,182,194–197].
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7. DM2 may potentiate in the brain AD-stimulating pathways that are pertinent to
dysfunction in blood-brain barrier, reactive oxygen species, proteases, and leptin or
other metabolism-regulatory molecules [48,65,67,69,70,198–201].

8. Survival bias is an important potential confound that may lead to artificially decreased
diagnoses of DM2 and AD [202,203]. Persons with DM2 are at increased risk to die
of cardiovascular causes and this risk renders them less likely to die of AD, all other
things being equal. This effect may bias studies away from recognizing a positive link
between DM2 and AD (this does not explain why DM2 patients are found consistently
to have higher risk for stroke, however).

9. A number of rodent models including therapy-relevant strategies show linkage
between DM2-related effects on the rodent brain and AD-relevant pathways [65,66,
69,199,204,205].

7.2.2. Data/hypotheses that suggest that AD is not linked specifically to DM2
1. Numerous epidemiological and clinical–pathological studies have reported that risk

for decreased cognition in DM2 patients is not mediated through AD, but through
cerebrovascular disease instead [13,14,47,153,206–216].

2. Confounds related to the metabolic syndrome (hypertension, dyslipidemia, smoking,
obesity, genetic factors, and inflammatory mechanisms) also favor brain infarctions,
so DM2 may be a strong surrogate for stroke risk and/or low socioeconomic status
[8,9,142,143,152,217–220].

3. Most published neuroimaging findings in DM2 are apparently referent to
cerebrovascular disease [90,95–99,144,221,222].

4. Whatever the mechanism of DM2-related cognitive decline, the presence of that
additive dysfunction in someone developing AD would “lower the threshold” to
detection, independent of a specific contribution by DM2. This phenomenon was
previously demonstrated in AD pathology [223]. This may help explain
epidemiological data linking DM2 to AD.

5. If hyperglycemia and/or poor glycemic control induces AD, then longer-lived
juvenile-onset diabetes might be expected to lead to AD, and there is no evidence for
this. Several studies have reported that juvenile-onset diabetes patients do not show
hippocampal atrophy [224,225].

6. Whereas advanced glycation products are increased in AD brains, there is not
compelling evidence for these markers being elevated in the brains of human DM2
patients [196].

7. To date, no therapies have been described in humans connected to the hypothesis of
DM2–AD link that have worked independently of stroke risk.

8. In a microenvironment with abundant neuronal death and secondary changes such as
the AD brain, there are intuitively good reasons for there to be associations,
irrespective of DM2, with deficits in blood-brain barrier, reactive oxygen species,
advanced glycation end-products and other inflammatory molecules, and other
biochemical perturbations.

9. Findings in cell culture and rodent models must be scrutinized critically before
relevance to the aged human brain – much less to AD pathology – is accepted.
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8. The UK ADC experience: a retrospective case–control study from an
autopsy convenience sample stratified by identified diagnosis of diabetes,
and photomicrographs showing histopathology from select diabetic and
non-diabetic cases with clinical–radiographical correlation
8.1. Rationale

8.1.1. Database analyses—Analysis of data about volunteers in a UK ADC research cohort
may provide evidence relevant to the controversy about the hypothetical associations between
DM2 and cerebrovascular or AD pathology. Our autopsy series includes a group of
longitudinally followed individuals who were recruited while non-demented and followed for
years. The UK ADC database can be queried to indicate the clinical and pathological indices
are associated with DM2 before the advent of severe, debilitating dementia. We hypothesized
that pathology in patients with DM2 would reflect their differential vulnerabilities to
cerebrovascular disease and/or to AD-type pathology.

8.1.2. Photomicrographs from selected diabetics’ brains—Few recent studies have
described histopathological features in aged diabetics’ brains. Some pathological–
radiographical studies exist on small-vessel brain disease [226–235], but are not related to
diabetes per se. We performed this preliminary experiment in the context of the UK ADC older
adult research cohort. These studies include participants who underwent premortem MRI scans
to enable radiographical–pathological correlation. This strategy may provide the basis for
developing novel hypotheses about mechanism(s) of diabetic encephalopathy.

8.2. Methods: patients, assessments, neuropathology, and analyses
Research protocols were approved by the UK IRB. Details of inclusion criteria and recruitment
have been described previously [223]. Patients who had come to autopsy from the UK normal
volunteer cohorts were the basis for the study (total N=234 patients), with some patients
excluded for a variety of factors including tumors, large contusions, missing clinical data, etc.,
as described previously (N=95 excluded) [223]. These patients were relatively intact
cognitively, having been recruited as non-demented persons and followed for years. Their
pathology (if any) was presumed to represent the earlier phases of cognitive decline. Only
patients who had come to autopsy with either “Yes” (N=50) or “No” (N=89) in the UK ADC
database for a diagnosis of diabetes were used (total N=139). These diagnoses were derived
from medical examinations during life, which included blood evaluations, as well as from
extensive evaluations of medical charts as part of the UK ADC database management.
Demographic characteristics and particular clinical indices from these groups are shown in
Table 2. All initially normal individuals were contacted at 6-month intervals, had detailed
mental status testing, and had neurological and physical examinations at least annually. Mental
status testing and neuropathological assessments were described in detail previously [223].
Simple means were obtained from each group for the clinical and pathological indices shown
(Table 3). Significance was tested via Student’s t test (unpaired, two-tailed).

A sample of convenience was selected for photomicroscopy:

• Diabetes Case 1 (male) died at the age of 88 with history of DM2. Last MMSE score
was 26 out of a possible 30 (mild cognitive decline).

• Diabetes Case 2 (male) died at the age of 87 with history of DM2. Last MMSE score
was 21 out of a possible 30 (moderate-to-severe cognitive decline). MRI was obtained
within 4 months of patient’s death.
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• Diabetes Case 3 (female) died at the age of 81 with history of DM2. Last MMSE score
was 29. MRI was obtained within a year before patient’s death.

• Diabetes Case 4 (female) died at age 82 with history of DM2 and diagnosed clinically
with AD. Last MMSE score was 19 (severe cognitive decline). MRI was obtained 5
years before patient’s death.

• Diabetes Case 5 (male) died at age 75 with history of DM2. Last MMSE score was
28 (non-demented). MRI was obtained four years before patient’s death.

• Diabetic Case 6 (female) died at age 72 years with history of poorly controlled DM2,
last MMSE score 29 (non-demented).

• Control Case 1 (male) died at age 78 years with no history of diabetes, last MMSE
score of 28 (non-demented).

• Control Case 2 (male) died at age 99 years no history of diabetes but with a history
of hypertension, last MMSE score of 26 (mild cognitive impairment).

8.3. Results
This retrospective case–control study from an autopsy convenience sample includes patients
that are relatively well matched with regard to levels of formal education and ApoE alleles
(Table 2). However, the diabetics died at a slightly younger age (84 years versus 88 years,
p<0.02 by two-tailed Student’s t test), and tended to have a slightly higher final MMSE scores
(26 versus 24, p<0.1 by two-tailed Student’s t test). In terms of pathological parameters, the
diabetics tended to have more small infarcts but a slightly less degree of AD-type lesions (Table
3). AD lesions (NFTs and neuritic plaques) are directly quantified by counting or defined
according to Consortium to Establish a Registry for AD staging and Braak staging, which are
based on consensus criteria for staging AD pathological severity [236,237] (Table 3).

Photomicrographs portray a spectrum of changes in these older persons with differing cognitive
changes. The photomicrographs show hematoxylin and eosin (H and E)-stained sections with
a special focus on changes in blood vessels and white matter. Histology of cerebral blood
vessels and the surrounding Virchow–Robin spaces are shown in Fig. 3 (from Control Case 1
and Diabetes Case 1). Fig. 4 depicts a patient (Diabetes Case 2) with an MRI obtained just
prior to a significant decline in cognition as reflected in a drop in MMSE scores (down to 21
near death). In this patient, there were moderate changes referent to Alzheimer’s pathology
(Braak stage 3), but the predominant pathological changes were related to the cerebral
vasculature. In Diabetes Case 3 (Fig. 5), there were also cerebrovascular disease changes
including frank infarctions in the frontal cortices bilaterally. There were small infarcts in the
temporal lobe including the hippocampal formation, where there was also minimal
Alzheimer’s-type pathology. By contrast, in Diabetes Case 4 (Fig. 6), there was both dementia
clinically as well as advanced AD pathologically. Still, even in this case, notable small-vessel
cerebrovascular disease was present. Diabetes Case 5 (Fig. 7) had no dementia, no Alzheimer-
type pathology, but had subtle white matter pathology including some periventricular
enhancement near the basal ganglia. The photomicrograph shows the corresponding region
that contained expanded Virchow–Robin spaces and many corpora amylacea. In Diabetes Case
6 (Fig. 8), a patient with poorly controlled DM2 and mild cognitive decline, there were many
corpora amylacea within the cornu ammonis of the hippocampal formation, as well as near the
inferior horn of the lateral ventricle.

8.4. Discussion
This study focused on persons who were recruited without cognitive impairment and followed
longitudinally in a research clinic. This is an important strength of the study because long-term
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medical and neuropsychological studies could be performed on each patient. It also allowed
us to minimize various recruitment biases related to already-demented subjects. However, there
are several caveats that are germane to these data. Most importantly, the degree of glycemic
control was not thoroughly documented by an endocrinologist in all patients. This is only a
study of the association of a clinical diagnosis of diabetes, rather than an association that is
related to glycemic control per se. The importance of the age difference (average age at death
84 for diabetics, 88 for non-diabetics, p<0.02) may constitute an important confound to this
analysis. However, note that the cerebrovascular pathology, despite the age difference, was
more severe in the diabetics. There are other trends, including a trend to increased hypertension,
in the diabetics that may be contributory to the different prevalence of cerebrovascular disease.
In summary, results from our database are in agreement with prior studies indicating that DM2
is associated with increased risk for cerebrovascular disease, and yet there is no positive
association between the diagnosis of DM2 and the development of AD pathology [13,14,47,
153,206–216].

We also performed a study of a subset of patients including pathological–radiographical
correlation. This preliminary, descriptive study underscores our impression from the research
literature: cerebrovascular pathology, including extensive small-vessel disease, is an important
component of CNDM2. This type of pathology can exist in relative isolation, or together with
other diseases such as AD. It is hoped that the pathological–radiographical correlation will
help some clinicians to “visualize” at a cellular and sub-cellular level the radiographical
changes that have been recorded in the brains of DM2 patients.

In this limited sample, there were relatively many corpora amylacea in the brains of the diabetic
patients. By contrast, in the non-diabetics (Control Case 1 and Case 2) there were few or no
corpora amylacea in this location. The presence of corporal amylacea in the brains of older
patients is generally considered a nonspecific sign of tissue damage or cell loss. However, since
these lesions are indeed aberrant, ubiquitinated intracellular deposits of glycated material
[238,239], it is possible that their presence in the brains of diabetics may have specific and
pathogenetic implications.

These results are neither intended, nor statistically powered, to make comparative assessments.
They offer a preliminary, and purely descriptive, portrayal of some of the histopathological
features in a limited subset of patients with DM2. However, we hope that these
photomicrographs may help demonstrate the potential value of evaluating the histopathological
features in human brains with well-documented antemortem characteristics.

9. Summary and conclusions
In the absence of a known pathognomonic anatomic substrate for cognitive dysfunction in
diabetics, the question arises–perhaps there are no definitive histopathological changes in
diabetic brains? Many metabolic disorders induce mental changes, or delirium, out of
proportion to known neuropathological changes [240,241]. Such may be induced by fluxes in
blood levels of insulin, glucose, and other metabolic parameters in DM2. Other diseases such
as hypoxia can produce brain atrophy and cell death in the absence of a pathognomonic change
[85,128]. Hence, delirium or a disease with entirely nonspecific pathology may partly
contribute to diabetic encephalopathy.

With the above caveat about the specificity of CNDM2, several associations between DM2
and brain pathology appear to exist (Fig. 9). Neuropsychological studies have indicated that
there is enduring cognitive deficits in DM2 patients. There is compelling evidence from
neuroimaging studies in humans that there are changes in brain parenchyma that are present
disproportionately in the brains of diabetics. The specificity of these changes cannot be reliably
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ruled out because relatively few studies have tackled the histopathology of diabetes in the brain
over the past few decades. This is unfortunate because the changing times have produced new
tools available to neuropathologists. There is also increased prevalence of DM2 in Western
populations [1] and it would be helpful to evaluate brains in the context of current trends in
comorbidities and treatments.

As with many other past studies, we are unable to supply new and definitive answers about
CNDM2 based on our illustrative cases and analyses. It is somewhat surprising that there have
been so few studies specifically addressing the neuropathology of small-vessel disease in DM2.
Moreover, a few questions may be worthy of being addressed. These questions derive from a
synthesis of the known scientific literature and the preliminary and descriptive studies that are
presented above.

• Are corpora amylacea really benign and/or nonspecific in DM2 brains? Perhaps these
structures, comprising glycated material [130,239], may cause or reflect a more
specific disease process than previously thought. Corpora amylacea have previously
been noted in the context of brain pathology [238,242–244], but not correlated to the
diagnosis of diabetes per se.

• Are there specific markers for microangiopathy in DM2?

• Is there a specific process involving Virchow–Robin spaces in DM2?

• Why do the results of studies about the relationship between AD and DM2 vary so
much?

Future studies are needed to address these and the other many outstanding questions regarding
CNDM2. This field is increasingly topical as the number of DM2 patients increase, and as the
average age and longevities of Western populations increase. Many experimental systems
should be brought to bear in studying this widespread disease, including the direct evaluation
of human brain tissue.
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Fig. 1.
There are no neuroimaging findings entirely specific to diabetes per se, i.e. effects of
hyperglycemia. Shown is an axial FLAIR image from a 67-year old diabetic man. It shows
typical periventricular hyperintensities (“WMLs”) seen with diabetes (arrow). These lesions
are compounded by other factors: age, hypertension, hypercholesterolemia, and
homocysteinemia. In a meta-analysis of MRI findings linked to diabetes, population studies
found an odds ratio of ~2 for MRI-detected WMLs in diabetes.
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Fig. 2.
Universally recognized diabetes-related histopathology outside the brain is referent to vascular
complications in the kidney and eye. Because of prior studies, these lesions are
“pathognomonic” in the sense of indicating diabetes in a patient independent of whether or not
the clinical history is well-documented. Diabetic nephropathy involves glomerular vascular
lesions termed Kimmelstiel–Wilson nodules (arrow in A). Thin-walled blood vessels in the
roughly-spherical glomerulus comprise the anatomical substrate for plasma filtration. With
diabetes over a decade in duration, a nodular glomerulosclerosis may develop heralded by
albuminuria that can lead to kidney failure. Diabetic retinopathy (B and C) is evaluated using
fundus microscopy (fundus indicated by an “f”). The pathology can be parsed into two

Nelson et al. Page 27

Biochim Biophys Acta. Author manuscript; available in PMC 2010 March 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



subtypes: non-proliferative (B) and proliferative (C) retinopathy. Non-proliferative changes
(B) are less severe with small capillary micro-aneurysms, dot-type hemorrhages, and
microinfarcts (“cotton-wool” spots). This change is associated with gradual but generalized
visual dysfunction. Proliferative changes (C) involve neovascularization, fibrosis, and
hemorrhages, which can be extensive. Sudden vision loss can occur with vitreous hemorrhage
and/or retinal detachment.
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Fig. 3.
Control Case 1 (A) shows normal appearance of small arteries in white matter (arrows).
Surrounding the blood vessels, partly as an artifact of fixation, is a space without cells or
parenchyma (Virchow–Robin space). Scale bar=150 μm. (B) in some cases, such as this person
(Diabetes Case 1, an 88-year old male with mild cognitive impairment), the Virchow–Robin
space is enlarged. The lumen of the blood vessel is shown with a green “*”. Note that in the
Virchow–Robin space are extra blood vessels, and the tissue surrounding has many corpora
amylacea (arrow). Scale bar=100 μm.
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Fig. 4.
Diabetes Case 2–87-year old male with dementia and predominantly cerebrovascular disease
by pathology. A shows a chart that depicts the MMSE scores by this patient. Note that the MRI
was obtained prior to a significant decrease in the patient’s MMSE score (final score =21). B
and C show MRI scans that show hydrocephalus ex vacuo and extensive pathological white
matter enhancement. The red box in C shows the area depicted in photomicrographs D and E.
D shows a small blood vessel in the white matter of visual cortex away from the ventricle. This
vascular profile shows expansion of the Virchow–Robin space with organizing cellular
material that includes new small blood vessels (arrow). E shows the area immediately subjacent
to the ventricle with frank necrosis (vertical arrow) and calcification (horizontal arrow). Scale
bars=150 μm in D and 300 μm in E.
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Fig. 5.
Diabetes Case 3–81-year old female with mild cognitive impairment and with predominantly
cerebrovascular pathology (final MMSE score=29). (A and B) MRIs show the infarctions in
the frontal cortices (arrow in A) and the subtle hippocampal atrophy (B). Histopathology
confirmed the presence of frontal cortex infarcts (not shown). C and D show hippocampal
histopathology. In this patient, there were blood vessel profiles with expanded Virchow–Robin
spaces with many corpora amylacea (C) and there were small infarcts and areas of white matter
rarefaction in the fimbria fornix (D), however, Alzheimer’s-type pathology in CA1 of the
hippocampus was mild (not shown). Scale bar=150 μm in C, 250 μm in D.
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Fig. 6.
Diabetes Case 4–82-year old female diabetic patient with dementia and Alzheimer’s disease
diagnosis during life (last MMSE score=19). A and B show the final MRI that was obtained 4
years prior to the patient’s demise. This already showed hippocampal atrophy (arrow in A) but
also some periventricular white matter lesions (such as in arrow in B). Photomicrographs show
the histopathological features from the red boxes. C depicts a section from CA1 field of the
hippocampus stained with the Gallyas silver impregnation technique and shows severe
involvement by Alzheimer’s-type neuritic plaques (arrow) and many NFTs. This patient had
Braak stage 6 and satisfied CERAD criteria for “Definite Alzheimer’s disease” by pathology.
In addition to the AD pathology, there was also some cerebrovascular disease including areas
with rarefaction of white matter. D is a section from the left parietal lobe (box in B) which
shows an expanded Virchow–Robin space with organized cellular and acellular material. In
an 82-year old patient such as this, some degree of concomitant pathology is the rule and not
the exception. Scale bars=150 μm in C, 100 μm in D.

Nelson et al. Page 32

Biochim Biophys Acta. Author manuscript; available in PMC 2010 March 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 7.
Diabetes Case 5–75-year old male diabetic patient with no dementia and with subtle changes
on MRI (last MMSE score 29). A shows the MRI with mild periventricular white matter
changes including some enhancement near in the subependymal basal ganglia. B depicts a
photomicrograph from the same area, which includes pathology surrounding medium-sized
blood vessels with expanded Virchow–Robin spaces. Surrounding the vessels are many
corpora amylacea and gliosis. Scale bar=150 μm.
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Fig. 8.
Diabetes Case 6–72-year old female patient with poorly controlled diabetes (two confirmed
readings in excess of 150 mg/dl) and mild cognitive decline. In this case, the hippocampal
formation showed many corpora amylacea including in the cornu ammonis subfields. These
are shown in the CA4/dentate gyrus area, where there is some effacement of the normal
cytoarchitecture in association with the presence of many corpora amylacea. B shows the crux
of the inferior horn of the lateral ventricle, which also contained many corpora amylacea. By
contrast, in Control Cases 1 and 2, there were few (arrow in C) or no corpora amylacea there.
Scale bars: 300 μm in A and B, 150 μm in C and D.
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Fig. 9.
Research has provided insights into diabetes-related cognitive dysfunction. However, the
specifics are unclear about how the chemical perturbations of diabetes correlate to the
hypothesized anatomic substrates associated with “diabetic encephalopathy”. In turn, the
contribution to cognitive changes from the pathological lesions is poorly understood. The
dashed arrow and question mark at the bottom indicate the possibility that metabolic
perturbations in diabetes may produce cognitive changes in the absence of detectable anatomic
pathology.
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Table 1

Recent MRI studies that correlate anatomical changes with cognitive dysfunction

Ref. Patients
MRI findings in association with Type 2
diabetes Notes

[98] 113 DM2
51 controls

WMLs, cortical and subcortical atrophy are
associated with cognitive decline

Cognitive dysfunction correlated to WMLs
and brain atrophy. A1C was 6.9%
(moderately well-controlled)

[96] 122 DM2
56 controls

WMLs, atrophy are associated with cognitive
decline; pathology and other factors show
interactions

Cognitive dysfunction correlated with
WMLs, atrophy, hypertension,
hyperinsulinemia, and “vascular events”;
statin use was associated with improved
WMLs and with improved cognition

[90] 92 DM2
44 controls

PVH, WMLs, lacunar infarcts, and cerebral
atrophy observed; only PVH was associated
with “motor slowing”

MRI findings less well associated with
cognitive dysfunction in relation to HbA1C
and duration of diabetes, which showed
stronger correlation with cognitive
dysfunction

[93] 40 DM1
40 DM2

DM2 patients have more WMLs and cortical
atrophy in comparison to DM1 patients with
much longer disease duration

DM2 patients had more cognitive
dysfunction but also more of other
metabolic aspects including more
hypertension, lipid disorders, etc.

[97] 122 DM2
56 controls

WMLs, atrophy, which were not correlated
with peripheral neuropathy within given
patients

Authors conclude that CNS and PNS
pathology of DM2 may be unrelated
because of discrepancies within individuals

[100] 95 DM2 “White matter hyperintensities” in various
areas correlated with declines in cognitive
domains

Memory and “mental speed” deficits were
associated most strongly with white matter
hyperintensities in parietal lobe and
thalamus
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Table 2

UK ADC: demographics and clinical indices

Diabetics Non-diabetics p-value

Demographics

N 50 89 –

Age at death, yrs (mean±SD) 84.7±8.0 88.2±6.7 <0.011

Sex (%F) 54 63 NS2

Formal education, yrs (mean±SD) 15.6±2.6 16.0±2.0 NS1

ApoE alleles (2/3/4), % 4/84/12 11/76/13 NS3

Last MMSE score (mean±SD) 26.4±5.1 24.4±7.4 NS1

Interval between last evaluation and death, yrs (mean±SD) 0.64 0.96 NS1

Clinical parameters

Depression, % 20 20 NS2

CABG, % 14 7 NS3

Peripheral vascular disease, % 26 15 NS2

TIA, % 14 8 NS2

Hypertension, % 64 55 NS2

Daily intake of drugs/meds (mean±SD) 12.2±7.7 19.8±8.5 <0.00011

The demographic and clinical characteristics between diabetics (N=50) and non-diabetics (N=89) in the BRAiNS program at the UK ADC. This group,
which was recruited from non-demented individuals, has been described previously [245]. The demographic and clinical indices are similar between
diabetics and non-diabetics. The clinical parameters were dichotomous (0 or 1) except for “Number of drugs” (range: 2–39). Definitions: ApoE =
Apolipoprotein E; MMSE = Mini-mental status examination (0–30 scale); CABG = coronary artery bypass graft operation; TIA = history of transient
ischemic attack(s).

Statistical tests:

1
Two-tailed Student’s t test

2
Chi-square

3
Fisher’s exact test.
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Table 3

UK ADC: pathological indices

Diabetics Non-diabetics p-value

Pathological parameters, non-Alzheimer’s type

Lacunar infarcts, % 14 7 NS2

Micro-infarcts, % 52 30 0.012

Large infarcts, % 2 10 NS2

Hemorrhagic infarcts, % 8 4 NS2

Any infarcts, % 56 37 0.032

Hippocampal sclerosis, % 9 6 NS2

Argyrophilic grains, % 22 26 NS2

Lewy bodies in isocortex, % 6 11 NS2

Brain wgt, g (mean±SD) 1196±134 1193±139 NS1

Pathological parameters, Alzheimer’s type

Braak stage (median, range) 2 (0–6) 3 (0–6) NS3

CERAD score (median, range) 0 (0–3) 2 (0–3) 0.023

NIARI score (median, range) 0 (0–3) 1 (0–3) 0.033

Probable or definite AD, % 24 22 NS2

NFT counts (mean±SD)

Temporal lobe 1.9±4.62 3.4±8.8 NS1

Frontal lobe 0.6±1.9 1.3±3.4 NS1

Parietal lobe 0.8±2.3 1.8±4.8 NS1

Hippocampal CA1 9.5±15.2 12.1±21.4 NS1

Subiculum 10.9±16.8 25.3±40.0 0.0041

Neuritic plaque counts (mean±SD)

Temporal lobe 3.9±5.9 6.4±7.4 0.041

Frontal lobe 4.6±6.9 6.6±7.3 NS1

Parietal lobe 5.3±7.6 7.5±8.3 NS1

Hippocampal CA1 1.5±3.0 1.1±2.4 NS1

Subiculum 1.9±3.9 1.9±3.6 NS1

Pathological indices stratified by diabetics (N=50) and non-diabetics (N=89) in the BRAiNS program at the UK ADC. Note that small infarcts tended
to be present more often in diabetics, but AD-related pathology tended to be slightly more abundant in non-diabetics.

Statistical tests:

1
Two-tailed Student’s t test

2
Chi-square

3
Wilcoxon Rank Sum.
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