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ABSTRACT 

MODELING OF OVERLAND FLOW BY THE DIFFUSION WAVE APPROACH 

One of the major issues of present times, i.e. 
water quality degradation and a need for precise answers to 
transport of pollutants by overland flow, is addressed with 
special reference to the evaporator pits located adjacent to 
streams in the oil-producing regions of Eastern Kentucky. 
The practical shortcomings of the state-of-the-art kinematic 
wave are discussed and a new mathematical modeling-approach 
for overland flows using the more comprehensive diffusion 
wave is attempted as the first step in solving this problem. 
A Fourier series representation of the solution to the 
diffusion wave is adopted and found to perform well. The 
physically justified boundary conditions for steep slopes is 
considered and both numerical and analytical schemes are 
developed. The zero-depth-gradient lower condition is used 
and found to be adequate. The steady state analysis for mild 
slopes is found to be informative and both analytical and 
numerical solutions are found. The effect of imposing 
transients on the steady state solution are considered. 
Finally the cases for which these techniques can be used are 
presented. 

Descriptors: Model Studies, Overland Flow, Oil Fields, Oily 
Pollution, Flow Characteristics, Flow Pattern 
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CHAPTER .L_ INTRODUCTION 

1.1 MOTIVATION FOR THE PROJECT:-

The mathematical ·modeling of overland flow is an 

important problem when considering issues such as water 

quality degradation and transport of pollutants from land 

surface to streams. Most of the evaporator pits in the oil 

producing regions of Eastern Kentucky are located on land 

adjacent to streams. The oil obtained from secondary oil 

recovery operations contains significant quantit.ies of 

brines (or saltwater). These brines are separated from the 

oil and dumped into evaporator pits and are then transported 

by overland flow into the nearby streams. This phenomenon 

causes serious degradation of surface water quality in the 

streams in these regions. 

In order to be able to develop surface water 

pollution abatement strategies, the time-space evolution of 

the pollutants needs to be determined. The effects of 

pollution sources can be precisely qualified only after such 

a determination. The transport of pollutants in surface 

waters is a complicated problem and a superficial empirical 

analysis will leave the solution with many uncertainties, 

This will lead to undermining of the reliability of any 

abatement strategies based upon such an analysis. A precise 

mathematical modeling approach is needed to provide accurate 
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numerical answers to the time-space evolution of pollutants 

in surface waters. 

The transport process of pollutants by surface 

waters can be separated into the overland flow and the 

channel flow phases. The first phase of transfer through 

overland flow carries the pollutant from land surface to 

neighbouring streams as in the evaporator pits of Eastern 

Kentucky's oil producing regions. In order to solve this 

problem one needs to know the flow depth h(x,t) and the 

discharge per unit width q(x,t) over the flow domain. This 

study will provide approximate analytical solutions to the 

hydraulic problem of flow using the diffusion wave 

approximation. The state-of-the-art approach to the overland 

flow modeling is the kinematic wave. The practical 

shortcomings of this method are discussed and the more 

comprehensive diffusion wave is used for the purposes of 

this study. The solutions obtained will provide the 

requisite depth and discharge values over the overland flow 

domain under realistic initial and end conditions. 

The problem attempted in this report is of a very 

fundamental nature and therefore has application in many 

larger problems. It is a small element when considering 

catchment-stream problems. The equations of channel flow are 

of similar nature and the concepts developed during this 

study may be extended to solve the equations governing such 

flows. Thus it may be possible to obtain analytical (or 

semi-analytical) solutions for flood propagation in channels 
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and new solutions to flows in channel networks. These 

networks may be looked upon as a collection of overland flow 

reaches and converging sections interlaced by channels. The 

problem under consideration is a simpler version of the two 

dimensional overland flow and thus needs to be solved before 

attempting the more difficult case. 

1.2 FRAMEWORK OF THE REPORT:-

This report presents a new solution to the 

diffusion wave equation under some acceptable initial and 

end conditions. It has been presumed that the wave profile 

is made up of many components which when properly 

superimposed together sum up to the true wave form. A 

Fourier series representation to the solution has been found 

to be most appropriate for this purpose and has been adopted 

for a major part of this study. 

The present chapter considers the justification of 

such an effort. Pollution transport, flood waves, channel 

networks, two-dimensional overland flows are some of the 

benefits to be derived from this solution. This chapter also 

states the objectives and aims of the project. A brief 

review of past work directly connected with the problem of 

interest has also been included. A critical appraisal of the 

methods adopted by previous researchers and their relative 

merits and demerits have been discussed. 

The second section deals with the solution to the 

flow equation when applied to steep slopes. The associated 

end conditions and numerical and analytical solutions of the 
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resulting system have been developed. A sine series solution 

has been found to be very effective numerically and many 

ca_ses have been demonstrated to show its performance (Fig. 

2.2). The analytical solution for this case reduces to an 

eigenvalue problem after effecting a simple Taylor series 

expansion. The resulting solution is found to be good near 

the steady state and a similar procedure adopted for the 

recession region has been found to give reasonable results 

(see Fig. 2.3). 

The solution for mild slopes is dealt with in the 

third chapter. The solution is split up into two components; 

a steady state solution and transient solution•. The 

complete· solution is obtained when sufficient number of 

transients are added on the steady state, 

dictated by the accuracy desired by the 

this number being 

user. The steady 

state numerical solutions are presented for the diffusion 

wave (Fig. 3.4). The effect of adding one term transient on 

to the steady state solution is considered for the zero

depth-gradient downstream boundary condition (Fig. 3.5). 

Analytical solutions for the steady state for this case are 

considered in the form of polynomials (Fig. 3.3). The 

numerical solution to the steady state for critical flow 

downstream condition is also presented (Fig. 3.4). 

The last chapter presents a global picture of the 

report and states the conditions under which any particular 

approximation may be used. Important conclusions regarding 

the accuracy and justification of these solutions are 
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presented. The consequences of this solution procedure are 

stated. Results obtained by other investigators have also 

been included in the figures for comparison purposes. 

References for these are given in the Appendix. 

1.3 SURVEY OF PREVIOUS WORK:-

It is known from literature that the flow in open 

channels is governed by the gradually varied, unsteady,one 

dimensional shallow water equations known as Saint- Venant 

equations (see, for example, Vieira [1982]). These are given 

by equations (1.1) and (1.2). The flow is one dimensional in 

the x- direction, t is the time, his the depth, u is the 

average velocity at (x,t) and q is the lateral inflow per 

unit area per unit time. 

The continuity equation, then, for unit width of plane is: 

( 1.1 ) 

and the momentum equation is: 

~ + u ~ + g cose 2.h. - g(sine - Sf) - ~hu at ax ax 
( 1. 2 ) 

where g is the acceleration due to gravity; e the angle of 

the slope, assumed constant; and oghSf = the frictional 

retarding force exerted by the plane on the water. Sf is 

usually defined by the Chezy equation: 

( 1. 3 ) 

C being the Chezy roughness of the plane. In the case of 

overland flow q is the rainfall plus any seepage less any 
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infiltration from the ground 

Grace and Eagleson [1966] developed the continuity 

and momentum equations governing vertical two dimensional 

flow over a plane surface. All equations are expressed in 

vector form with components in the horizontal (x) and the 

vertical ( 11) directions as shown in figure (1.1). 

' 

Fig. 1.1 OVERLAND FLOW 

The momentum equation for flow through a control 

volume fixed in inertial space is: 

.... 
F S + ! ! ! B • p dv 

CV 

... ... ... 
= ! ! V (p V • dA) + a~ 

cs 

.... 
ffj V • (pdv) 

CV 
( 1.4 

and the continuity equation for incompressible flows is: 

....... 
If V.dA 

a 
= -- ff f dv at 

( 1. 5 

) 

) 

Grace and Eagleson [1966] assumed the velocity 

vector to be varying linearly with depth, parallel to 

channel bottom, the mean velocity vector being given by: 
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V = v(i cose + j sin8) 
( 1. 6 ) 

When the momentu~ equation for overland flow is 

expressed in its 'x' and 'ri ' components , we have 

[yy cos 2e + p* cose-1- ~pv2cose 11f + [2SpVycoseJ !~ 
av ap. . 

(py)-t + y - case = 2p*tane + yys,na --r a ax + ( 1. 7 a ) 

sine + ( av . ) . 2 . e 1.£.l. p* 2 +~sine =-[yy sine cose + BPV sin ax 

[28pVysin8J~ - [pytaneJ !~ - (pVtanel-ff-

- ,tans - yycose + yy 
( l.7b ) 

where, P* is the average pressure intensity in excess of the 

hydrostatic value and is caused by momentum flux in the 

vertical direction, Y = specific weight of the fluid, 

I',- = momentum correction factor, 8 = slope angle, P = fluid 

density, = shear stress and ~ = infiltration intensity. 

The other variables appearing in the equation are described 

in Fig. 1.1. 

The continuity equation becomes: 

tf sece + :x (vy) = I -S ( 1.8 ) 

No known solutions exist for equations l.7a,b and 

1.8 in their present form. Approximate solutions to these 

have however been obtained after some oversimplifying 

assumptions and the discarding of many terms. The method of 

characteristics seems to have been popular with most 

researchers (see eg. Henderson and Wooding (1964]). 

7 



Grace and Eagleson have carried out a systematic 

study of the orders of magnitude of the terms appearing in 

equations l.7a and l.7b. This then provides physically 

justifiable reasons for discarding or retaining a term. 

Normalization of these dimensional equations was then 

carried out by defining dimensionless ratios linking all 

variables with appropriate reference variables. A similar 

analysis was carried out on the non dimensional equations, 

In the process of carrying out an 'Order of Magnitude 

Analysis' the following assumptions were made 

1) Surface tension effects are negligible in 

both model and prototype. 

2) Roll wave formation, if present is 

dynamically similar in model and yrototype. 

3) There is no infiltration in the model. 

4) Dep,th to length ratio of the model, 1.e. 

(Y/L) should be less than 0.003. 

5) Slope of the bed surface of the model 

should be greater than 5 degrees, 

where cf 

6) For both prototype and model overland flow 

cf ta ne < < 4, 

is the non dimensional frictional coefficient, 

7) The overland flow is two dimensional, 

It may be noted that l,7a and l.7b are the most 

general forms of these equations, The expression for the 

dimensionless over-pressure term p* may be obtained from the 

non dimensional form of the momentum equation in 
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the n direction ( obtained from l.7b ), From the 'Order of 

Magnitude Analysis' presented by Grace and Eagleson it 

follows that all terms regarding rainfall, infiltration and 

Y/L may be neglected in the expression for the over-pressure 

for the prototype in case of steep bed slopes, A similar 

analysis for the model gives an expression for the 

normalized over-pressure which is identical to the one 

obtained for the prototype, For reasonable modelling, the 

model slope should be greater than 5° to include the 

frictional and gravitational effects. This expression for 

the over-pressure term may be substituted into the 

dimensionless momentum equation in the x direction obtained 

from l.7a. Then for small slopes and for B = l ( where 

B = momentum correction factor ) the commonly used momentum 

equation may be obtained after some further simplification. 

Finite difference solutions adopting various 

schemes for solving the differential equations were 

investigated. Woolhiser and Liggett [1967] considered the 

acceptable numerical methods which can be used in connection 

with shallow water equations primarily with overland flow 

applications, Their study provides suitable guidelines for 

choosing stable finite difference schemes, For small values 

of e, i.e. for mild slopes, (1.1) and (1.2) may be written 

as 

ah + 11 ah + h ~ = q 
at -ax at 

( 1. 9 ) 
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( 1.10 ) 

where s0 is the sine of the slope angle for small slopes. 

The shallow water equations can be treated more generally by 

adopting a dimensionless representation. Then 

v2 
s = 0 
O C2H 

0 

( 1.11 ) 

in which, Ho= normal flow depth for flow Qo = qLo at the 

end of the reach under consideration (at x = Lo); Vo is the 

normal velocity for Qo = qLo at x = Lo· When the flow in the 

reach of length Lo comes in as lateral inflow q, 

( 1.12 ) 

The quantities Ho, v0 and Lo are frequently used as 

normalizing constants and the following dimensionless 

variables are defined: 

u* = u 
h* 

h x VO 
; = 

Ha x* =- t* = tr-VO La 0 
( 1.13 ) 

Also we have, 

Fa 
VO 

k 
Solo 

=-- = 
F2 VgH0 HO 0 

( 1.14 ) 

Then the dimensionless shallow water equations are: 

( 1.1 5 ) 

( 1.16 ) 
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The dimensionless lateral inflow, is obtained by 

dividing the lateral inflow by the maximum rate, qmax· It is 

worth noting that the dimensionless time is related to the 

'time of equilibrium', a t* value of 1.0 being the time 

required for a fluid particle to traverse the reach under 

the normal flow conditions. The dimensionless flow equations 

have only two parameters F 0 and K (excluding R) instead of 

four as in the original equations. Fig. 1.2 shows the sketch 

defining the general one dimensional flow problem: 

UTERAL INF\..CW Cl 

Fig. 1.2 DEFINITION SKETCH OF OVERLAND FLOW 

In any finite difference scheme to solve equations 

(1.15) and (1.16), the partial derivatives are approximated 

by finite differences. Where non-linear equations are 

involved, these differencing techniques can be very 

complicated. Liggett and Woolhiser [ 1967] have tried to 

determine how well various finite difference schemes work 

for the overland flow problem. 

As a nl,\merical scheme, the characteristics method 

has some advantages as pointed by Liggett and Woolhiser. It 
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is accurate because the characteristics trace the path of 

the disturbances, The characteristics have an adaptive 

property i.e. they tend to be closer together in areas of 

rapid change. The method of characteristics is also 

reasonably fast and for a given accuracy criteria it covers 

maximum ground on the x-t plane. Yet another advantage is 

that it does not have to face the 'starting problem'. The 

usual initial condition of dry surface often leads to 

singularities which create certain difficulties. However, 

it suffers from the chief disadvantage of not having a 

uniform mesh spacing. A special interpolation subroutine 

needs to be incorporated which consumes time of both man and 

machine, not to mention the extra large high speed memory 

space required to handle medium sized problems. 

Explicit methods refer to those finite difference 

schemes where the results at any time step may be explicitly 

obtained using values from previous time steps. 

Unfortunately, in non-linear partial differential 

equations, precise stability criteria can rarely be found. 

It was commonly agreed among investigators that the Courant 

condition 

~! ( I u I + cl ~ 1 
( 1.17 ) 

is a necessary condition for stability of an explicit finite 

difference scheme. However it is by no means sufficient, In 

general explicit methods are unsatisfactory for even very 

approximate calculations. 
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Implicit Method is usually a safe method and 

involves solving a set of simultaneous equations for each 

row of points at every time step. Centered differencing is 

used to ensure stability. Newton's method is commonly used 

for solving the non-linear system of equations. The user is 

left with the onus of prescribing an initial guess. 

Therefore prior knowledge as to the behaviour of the 

solution must be known to the user. A 'double sweep 

method' which requires only a 2 by 2 matrix inversion and is 

very efficient has been suggested. This method was 

subsequently used by other investigators in their work (e.g. 

Morris [1980]). Liggett and Woolhiser [1967] have made a 

study into the various methods and presented them in a 

tabular form. 

Amein [1968] considered the need for a fast (i.e. 

rapidly convergent) and accurate method for numerical 

solutions of unsteady flows. He evolved such a method 

consisting of a centered finite difference scheme and 

solving the resulting system of non-linear simultaneous 

equations by the generalized Newton's method. 

To illustrate the validity of his method, Amein 

solved a problem originally considered by some other 

researchers. He has presented an excellent comparison with 

three different methods viz. storage routing equation, 

explicit method and method of characteristics. It was seen 

that the solutions of the problems obtained by the direct 

implicit method are in very good agreement with the best 
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results (i.e. when smallest time steps are used) of the 

characteristics method and are quite close to the results 

obtained from the explicit method. He also observed that the 

linear system of simultaneous equations (arising from 

Ne~ton's method) has very few non zero elements, and that 

these are clustered around the diagonal. This property of 

the matrix can be exploited for fast solutions. 

It was soon realized that the complete Saint-

Venant equations are too complex to be solved analytically. 

Hence, since the early sixties hydrologists have tried to 

obtain physically justifiable approximations which are 

easier to handle and operate. Lighthill and Whitham (1955] 

have considered a class of wave motions which are physically 

quite distinct from the classical wave motions encountered 

in dynamical systems, They stated that the kinematic waves 

possessed one wave velocity at each point because of the 

conservation law or the continuity equation: 

( 1.18 ) 

where, q is the flow quantity passing a given point in unit 

time and k is the concentration (i.e. quantity per unit 

distance). Kinematic waves are non dispersive but they may 

change form due to non linearity (i.e. wave velocity, c, 

depends on q). Hence continuous wave forms may develop 

discontinuities due to faster waves overtaking slower ones, 

These are called shock waves. The properties of such shock 
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'waves have been described. A detailed treatment of flood 

movement in long rivers is then considered where kinematic 

waves play a leading· role. It is the contention of the 

authors that the dynamic waves are rapidly attenuated and 

the main disturbances are then carried downstream by 

kinematic waves. It was found that if (J/2)Vo and 

are taken as typical wave velocities for kinematic 

and dynamic waves respectively, then F = 2 (where F is the 

Froude number v
0

J/gh
0

) is the value at which these 

velocities are approximately equal. It appears that 

kinematic conditions prevail and dynamic effects die out 

exponentially when F < 1 (subcritical flows). For F > .2, the 

approximate theory ceases to apply. For subcritical flow 

case the equations were further 1 in ear ized and it was 

noticed that the complete solution contains both kinematic 

and dynamic wave fronts. 

In 1964, Henderson and Wooding developed the 

kinematic wave approximation to the equations of overland 

flow on a plane. This involves significant simplification in 

the momentum equation where the friction slope is considered 

equal to the bed slope and all other terms are neglected. An 

analytical solution to the kinematic wave model for overland 

flow on a sloping plane was obtained by them. However their 

analytical solution was valid only for constant rainfall and 

constant infiltration in time and space. Further, they did 

not specify any lower boundary condition to the stream. 

In a comprehensive treatment of overland flow on a 
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plane surface, Woolhiser and Liggett [1967] determined an 

exact series solution to the dimensionless equations in Zone 

A (see Fig.l.J), the portion of the solution domain enclosed 

Upstream 
Bour.dory 

Zone D 

Zone A 

Downstream 
Boundary 

L..------------------------------~------x 
X=O X=I 

Fig •. 1.3 ZONES IN THE (x,t) PLANE 

by characteristics originating at x = 0, t = 0, and x = 1, t 

= 0 and the line t = 0. Zone A is the region of the x-t 

plane where the solution is dependent only upon the initial 

condition. Zone Bis the region where the solution is 

dependent on the initial and the downstream boundary 

condition but not on the upstream boundary condition. Zone C 

is the region where the solution depends on the initial and 

upstream boundary condition, Zone D is the region where the 

solution is influenced by the initial condition and both the 
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boundary conditions, 

Woolhiser and Liggett [1967] considered an 

algebraic approximation t'o the series solution for the 

velocity of flow and the possible error involved in adopting 

such a technique, Normal depth normalizing was adopted for 

non dimensionalising the shallow water equations where the 

lateral inflow was represented by a step function, However 

for very small values of Fo = vn/ vgH (Froude number for ,, n 

normal flow at x* =l), critical depth normalizing was used, 

They obtained most numerical solutions by the method of 

characteristics described earlier, For very large values of 

K (= S
0

L
0 

I H
0
F~) many difficulties arose with the numerical 

integration, The problem was reformulated and solved. It was 

noticed that the outflow hydrograph rises as t*3/2 until 

equilibrium is reached and then remains f 1 at, 

The difficulties in solving equations (1.15) and 

(1.16) for large Kare in part associated with boundary 

conditions. The problem was clearly defined including all 

boundary conditions and approximations by Vieira [1983] and 

appears later in the text (see page 25). It was noticed that 

supercritical flows have numerical difficulties at upstream 

boundary while the numerical integration rapidly lost 

accuracy at the downstream end for subcritical flows, 

Woolhiser and Liggett have solved for the intersection point 

of the characteristics beginning at (0,0) and x* = 1, t* = 0 

-the time of intersection of these characteristics can be 

found by setting \, = \, and was found to be dependant only 
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on Fo and R: 

F 2/3 
T = ( 3/ 4 _Q_ ) . 

aB ,.,--;f 
( 1.19 ) 

where a and B represent the forward and backward 

ch~racteristics respectively (see Fig.1.4). 

The variation of Zone A domain with changes in Fo 

and were clearly demonstrated in a graph by 

Woolhiser and Liggett. The effect of the dimensionless 

parameters Fo and K on the rising hydrographs were studied 

by them and the results compared with those obtained by 

previous investigators. They concluded that there is no 

single unique dimensionless rising hydrograph. Also as K 

becomes larger the hydrographs are independent of F 0 and 

approach the case for Ks infinite. This case corresponds to 

the kinematic solution given by Henderson and Wooding 

[1964]. Woolhiser and Liggett concluded that the kinematic 

wave approximates most physical cases. No recession cases 

were considered till later by Morris [1978]. 

An exact analytical solution to the full Saint-

Venant equations describing flow over a plane on a wide 

channel with general turbulent friction was obtained by 

Brutsaert [1968]. His solution is applicable only to Zone A. 

The lateral ·inflow was assumed uniform. He concluded that 

for very large slopes or for a large roughness of the plane, 

the solution reduces to the one obtained using the Kinematic 

Wave approximation. 

Woolhiser [1974] considered the kinematic 

18 



approximation and the effects of varying and Kon the 

rising portion of the hydrographs. He stated that the 

kinematic model is a gross simplification of the momentum 

equation (1.2). In fact, the kinematic wave yields 

analytical solutions only for rainfall rate independent of 

any space or time variation and when very simple geometries 

are being taken into consideration. These solutions give an 

insight into the problem. Care must be taken while modelling 

flows using this approach since it is incapable of 

accounting for backwater effects. Woolhiser has further 

looked into the friction factors and hydraulic resistance 

offered to overland flow - especially those arising from 

boundary roughness. He presented a very informative table 

containing the resistance parameters for overland flows 

giving values of laminar resistance, Ko, Manning's 

coefficient T) and Chezy's C for typical surfaces. It has 

been observed that the effect of impact of raindrops may 

have non-negligible effect on flows. Since incorporating 

this 'over-pressure' term directly into the equations 

governing flows makes them too complicated, their effects 

may be introduced by a judicious control over the friction 

factor coefficients. Hydrologic applications include 

modeling real life problems; the first step of which is to 

decide upon the model geometry. An example of geometric 

simplification, involving maintaining a close geometric 

similarity between prototype watershed and the idealized 

network or cascade of planes and channels that specify the 
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model geometry has been considered by Woolhiser [1974]. He 

concluded that the Kinematic approximation is good enough 

for most urban and rural watersheds. 

Morris [1978] considered a new implicit finite 

difference method for the solution of the equations (1.1) 

and (1.2). The method described uses central differencing 

for inside points and backward and forward differencing for 

upstream and downstream boundaries respectively. The double 

sweep algorithm adopted from Richtmyer's method was used 

(see also Liggett and Woolhiser [1967]). Morris introduced 

the zero-depth-gradient condition for subcritical flows. 

Using this downstream boundary condition she was able to 

obtain stable results for cases where the numerical schemes 

of Liggett and Woohiser [1967] failed. She demonstrated 

experimentally that the difference between the subcritical 

flow hydrographs obtained from critical flow boundary 

condition and zero-depth~gradient boundary condition 

decreases as Fo and K increase. The results were compared 

with those obtained from the method of characteristics and 

variation in the hydrographs with changes in Fo and K were 

also studied. It was noticed that the solutions could be 

improved by reducing t,.x and Lit ; reduction in Lit being more 

effective. The recessi~n curves for various values of F 0 

and K were also provided as new material in this paper. The 

recession becomes more rapid (in terms of normalized time 

unit) as Fo and K increase. Morris [1978] later discusses 

th·e val id it y of the zero-depth-gr ad ien t boundary condition 
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and the range of the parameters for which it is applicable, 

It is also observed that the kinematic wave, though simpler, 

needs to be used with caution as its applicability is 

limited to rather steep slopes. 

Beven [1979] described a more general kinematic 

channel network routing model which has a flow relationship 

that can accommodate both high and low flow characteristics. 

Velocities of flows in networks of steep and rough channels 

have been shown to vary non-linearly, both with increasing 

discharge and downstream distance in the network. He 

observed that while the overall velocities of the flow of 

water were markedly non-linear, they approached a nearly 

constant value at high discharges, He presented a 

generalized kinematic routing method with a more flexible 

approach to specification of velocity-discharge 

relationships so that they can incorporate the case of a 

non-linear channel system at low flows and a linear system 

at high flows into a single model. Routing experiments were 

carried out for a channel network system to compare i) a 

simple additive 'routing' method in which inputs to each 

reach at a given time are merely added to give cat~hment 

flow neglecting all channel effects, ii) a non-linear 

kinematic routing model based on reach measurements and 

usual flow relationships like the Chezy or Manning equation 

and iii) the generalized kinematic routing model described 

in the. paper, He demonstrated that for low to medium 

discharges (ii) and (iii) lead to very similar hydrographs 
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which were different from the additive method. He has then 

drawn conclusions regarding the use of a particular 

velocity-discharge relationship under various physical 

conditions. It was observed that for low discharges the non

linear relationship needs to be employed but that for high 

discharges there exists a nearly constant relation between 

the velocity and discharge. 

Parlange et al. (1981] presented a more general 

analytical solution to the kinematic flow approximation by 

considering the excess rainfall (usually precipitation -

infiltration) as an arbitrary function of time. This is a 

generalisation of the earlier solutions which were 

applicable when excess rainfall is constant for a finite 

time interval. They have shown that for the case of constant 

rainfall their solutions reduce to those obtained by 

previous investigators. However, their solution cannot 

incorporate spatially varying rainfall, 

Hjelmfelt (1981] studied the influence of time 

distribution of rainfall on peak discharge using the 

kinematic approach, Most previous efforts had used constant 

rainfall intensity to estimate overland flow hydrographs. 

The peak discharge has been shown by him to be a function of 

surface length, total precipitation, ·storm duration and time 

to equilibrium for an equivalent rainfall of constant 

intensity. Time of concentration depends on watershed 

characteristics but also varies with rainfall intensity 

which in turn varies with time, Hjelmfelt observed that the 
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thunderstorm time distribution of rainfall causes the 

watershed to respond more rapidly than the same amount of 

rainfall distributed uniformly over the same period. The 

time of concentration for thunderstorm rainfall was found to 

be less than that of rainfall of constant intensity. The 

time duration of rainfall has no influence on the peak 

discharge if this time is less than the time of 

concentration. Consider the ratio of the duration of 

rainfall and the time to equilibrium. If this ratio lies 

between 0.87 and 1.08, the uniform rainfall leads to a peak 

greater than the true thunderstorm rain distribution, 

possibly because slower time for total watershed 

contribution with uniform rainfall allows more water to 

accumulate. On the other hand storms of longer duration 

yield higher peaks when distributed according to 

thunderstorm rain pattern. This is because the intensity of 

the early portion of the thunderstorm distribution is 

greater than that used for the equivalent uniform rainfall 

and the peak discharge is determined by this early portion. 

Usual design procedures use rainfall of constant intensity 

for a duration equal to the time of equilibrium. Hjelmfelt's 

analysis indicates that the peak discharge at the design 

condition will be slightly greater for rainfall of constant 

intensity than for rainfall with thunderstorm time 

distribution. A correct value of time to equilibrium is 

essential for estimation of peak discharge which is however 

obtained by trial and error for time variant rainfall. The 
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constant intensity approximation is valid for rainfall 

durations which are close to the time to equilibrium or 

less. As the relative duration increases, the approximation 

becomes less valid. Therefore an erroneous value of time to 

equilibrium can lead to significant under design. 

Morris and Woolhiser [1980] examined the partial 

equilibrium hydrographs (i.e. hydrographs generated by 

lateral inflow that ceases before the steady state is 

reached) and recession hydrographs. Both the Diffusion and 

Kinematic models were compared with the Saint-Venant 

equations. An extra variable D* (or normalized duration of 

rain) was also needed in partial equilibrium cases. In 

general, the kinematic hydrographs receded much faster. 

Unless the values of Fo and K were very large, kinematic 

approximation did not do a very good job of replicating the 

original equations. 

The diffusion approximation is especially good for 

small Fo and large K. The dimensionless. momentum equation 

becomes: 

( 1.2 0 ) 

and, substitution into the continuity equation gives: 

ah* + _a_((h!/2( 1 
3h* 

1/2 
1 ( 1.21 ) 

F
2

k 
) ) = R* 

ax* ax* ax* 
0 

The initial and boundary conditions are similar to those 
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discussed by Vieira [1983] and appear later in the text(see 

page 25). Morris and Woolhiser [1980] used an implicit 

finite difference scheme to solve equation (1.21) and have 

compared the results with the Saint-Venant equations. The 

diffusion wave does a very good job of replicating the 

rising limbs of the partial equilibrium hydrographs. As Fo 

tends to zero and K tends to infinite the diffusion equation 

approaches the full Saint-Venant equations. Morris and 

Woolhiser concluded that the complete Saint Venant equations 

or at least the diffusion equation must be used for overland 

flows on flat grassy slopes, even though K may be very 

large. 

In his paper (referred to earlier in the this 

chapter) Vieira [1983] examines the validity of 

approximations for the Saint-Venant equations for overland 

flow, He started by considering the solution through 

characteristic curves and stated that, for subcritical 

flows, the solution domain may be divided into four zones 

viz. A,B,C,D, see e.g. Woolhiser and Liggett [1967], He has 

then further analyzed the nature of the solution in each 

zone, The dimensionless equations (1.15) and (1.16) are re-

written here for convenience in the notation used by Vieira: 

.£!! + u .£!! + ~= 1 
aT ax ax 

( l.22a ) 

2.1!. + u 2.!!.. + F-2(aH) k ( 1 -
u2 lJ 

= -) - H aT ax o ax H 
( l.22b ) 

( where all symbols have usual significance ) , 
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In Zone A, the solutions are dependent only on the 

initial condition of the dry channel. Bence equations 

(l.22a) and (l.22b) reduce to ordinary differential 

equations. The differential equations have been solved 

analytically using the initial conditions (1.23) by 

Brutsaert [1968]: 

U(X,0) = B(X,0) = 0 ( 1.23 ) 

For large K it was found that the solution is of the form 

B = T , U = Tl/2 ( 1.24 ) 

As T increases, the upper and lower boundary conditions 

begin to take effect. TaS (see equation (1.19)) is the value 

where the Zone A solution ceases. In case of supercritical 

flows Zone A is bounded by line T = 0, X =land the forward 

characteristic starting at the point X = O, T = O. The flow 

is influenced only by initial and upper boundary conditions. 

In Zones B, C and D, Woolhiser and Liggett [1967] 

used characteristics method for solving the equations for 

subcritical flow using the following boundary conditions. 

U(O,T) = 0 ( 1.25 ) 

U(l,T) = B(l,T)l/2/Fo ( 1.26 ) 

When the characteristics method was not suitable, they used 

an implicit finite difference scheme which is generally 

suitable for medium sized computers. However solutions for 

Fo < 0,4 and for large values of K could not be obtained 
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for critical flow downstream boundary condition (1.26). 

Morris [1979] used the zero-depth-gradient lower boundary 

condition i.e. aH/ax = O. It was found that the difference 

in solutions using the two lower boundary conditions 

decreases for increasing F 0 and K. 

The following thus are the end conditions for 

solving equations (l.22a) and (l.22b): 

i) Initial Condition :- This is the dry slope 

or empty channel condition 

H(X,0) = U(X,0) = 0 ( 1.23 ) 

ii) Upper Boundary Condition·-

U(O,T) = 0 ( 1.27 ) 

This condition influences both supercritical and subcritical 

flow outside Zone A. 

iii) Lower Boundary Condition:-

a) The Critical Flow Condition 

U(l,T) = H(l,T) 1 f 2 /Fo ( 1.26 ) 

is usually created when slope ends at the steep bank of a 

river. 

b) The Zero-Depth-Gradient Condition 

aH(l ,T) = O 
ax 

For supercritical flows, 

( 1.28 ) 
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U(l,T) > H(l,T)l/2/Fo ( 1.29 ) 

The kinematic wave approximation is valid for K > 

50, and all the other terms in the momentum equation (1.19) 

are negligible when compared to the term k(l - u2;H). 

Equation (l.22b) reduces to 

k( l-U 2 H) = 0 ( 1.30 ) 

Hence, 

u2 
= H ( 1.31 ) 

which, on substitution into equation (l.22b) yields the 

Kinematic Wave Equation: 

l!:!_ + a(H3/2) 
aT ax = 1 ( 1. 3 2 ) 

Equation (1.32) may be solved using the initial condition 

(l.23) to obtain the solution given by equation (l.24). The 

rising portion of the hydrograph is given by 

Q=HU=T3/2 (1. 3 3) 

There is only one hydrograph for this approximation as the 

equation (1.32) is independent of Fo and K. The hydrograph 

rises as T 3 / 2 till equilibrium when T = 1, then Q = 1 for 

all values ofT>l. 

The diffusion wave is very realistic for slow 

subcritical flows on mild slopes, For small Fo, (say Fo 

<< 0.8) and large K, the product Fo2K is not negligible and 

the momentum equation reduces to: 

( 1.34 ) 
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which when substituted into (l.22b) gives the diffusion wave 

equation 

( 1.35 ) 

The upstream boundary condition (1.27) substituted into 

(1.34) gives: 

aH(O,T) = 
ax F

2 
k 

0 ( 1.3 6 ) 

Substituting the critical flow downstream boundary condition 

in equation (1.34) gives: 

aH(l,T) = k(F2
0 

_ l) 
ax ( 1.37 ) 

Solutions of (1.35) under (1.36) and (1.37) for constant Fa 

and K have been obtained by Morris and Woolhiser [1980] 

using an implicit finite difference scheme. The results are 

dependent on the parameters F 0 and K. 

Substituting the zero-depth-gradient boundary 

condition (1.28) into (1.34) we have : 

( 1.38 ) 

Vieira has used an implicit finite difference scheme to 

obtain solutions to (1.35) with this boundary condition. 

The solutions are dependent on F 0 2K, and reduce to the 

kinematic case for F 0
2K tending to ~ . Hence the kinematic 

wave is a special case of the diffusion approximation. 

Vieira [1983] also considers two other less popular 

approximations; namely the gravity wave approximation and 
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the zero depth gradient approximation. 

The solutions obtained under various approximations 

have then been compared for different boundary conditions. 

Vieira has then drawn figures to illustrate where these 

approximations are valid in terms of Fo and K (see Fig. 

1.4). The following conclusions may be drawn: 

• 
20 
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• 
20 
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10 

Fig. l.4b 
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ZERO-DEPTH-GRADIENT 
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i) The kinematic wave approximation is 

independent of Fo and K and as such is valid only for large 

values of Fo and K (say K > 20 Fo < 0.5). It is 

applicable for steep hill slopes and may be used with either 

of the downstream boundary conditions. 

ii) On smooth urban slopes, values of K lie 

30 



between 5 and 20; both kinematic and diffusion 

approximations are valid and either of them may be adopted. 

However for lower values of F 0 , (say F 0 < 0.5) the diffusion 

wave is very good. It performs better than the kinematic 

wave for all cases. 

iii) The zero-depth gradient condition should 

be used for higher values of Fo and K. The Diffusion Wave 

results are sensitive to F 0 2K. It is interesting to note 

that the hydrographs are dependant on the product Fo 2K, and 

not on F 0 and K individually. 

The study presented by Vieira has clearly stated 

the conditions under which any particular approximation may 

be valid - very useful information for the practising 

engineer. For reasons already mentioned, the full Saint

Venant equations are rarely used. 

1.4 PROJECT OBJECTIVES :-

The overall objective of this report is to 

determine new analytical solutions to the hydraulics of the 

overland flow problem to provide depth and discharge values 

over the flow domain under physically justifiable initial 

and upstream-downstream boundary conditions, This is 

achieved through the following: 

a) The hydraulic equations of gradually varied 

unsteady overland flow (Saint Venant Equations) are 

approximated by the diffusion wave which is more realistic 

than the kinematic wave. The diffusion wave model is 

developed for the overland flow plane and many cases of 
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initial and end conditions of practical interest are 

considered. 

b) The approximate analytical solutions for the 

diffusion wave model of overland flow are developed and then 

tested by 

i) the comparison of these solutions with the 

corresponding numerical solutions of the diffusion wave and 

the full Saint Venant equations under various hydraulic, 

topographic, boundary and rainfall-infiltration conditions 

which are typical of Eastern Kentucky watersheds. The 

numerical kinematic wave solutions are also obtained to 

compare the performance of the diffusion wave against the 

kinematic wave. 

ii) the comparison of these approximate 

analytical solutions of the diffusion wave to those 

numerical results of overland flow studies given in the 

literature. 
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CHAPTER 1. SOLUTION FOR STEEP SLOPES 

2.1 DESCRIPTION ·-

As discussed in the previous chapter, analytical 

solutions to the full Saint-Venant equations are very 

difficult to obtain if not impossible. The diffusion wave 

approximation itself is not amenable to complete analytical 

solution without some further simplifications. It has been 

stated in the literature (e.g. Morris [1978]. Vieira [1982)) 

that under the cases of large F 0 and K, the zero-depth

gradient downstream boundary condition is a justifiable 

substitute to the critical depth condition, The upstream 

boundary condition is one of zero influx. This· implies that 

while there is no inflow at x = 0, it is possible to have a 

finite depth with time. This condition does not match with 

the initial condition of zero depth (i.e. the dry channel 

condition) and hence causes some uncertainty at the point x 

= 0 and t = O. This difficulty may be avoided while using 

finite difference schemes by using backward differencing for 

the first few time steps and then switching to a more 

accurate Crank - Nicolson type scheme. In this way no 

decision needs to be made about values at the 

initial/boundary points at the corners. 
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However when steep slopes are being considered, 

there is not much scope for the water to accumulate at the 

top of the overland flow plane (x = 0) as it will flow away 

immediately. Hence the water depth here is practically 

negligible for all times t > O. Under these circumstances 

it is reasonable to assume 

h(O,t) = 0 ( 2 .1 ) 

as the upstream boundary condition. This assumption is 

further strengthened when performing the steady state 

analysis for the diffusion wave. This chapter deals with a 

numerical series solution for the diffusion wave under the 

upstream boundary condition of (2.1) and zero-depth-gradient 

downstream boundary condition. The first two and three terms 

in the series are considered to demonstrate the efficacy of 

this method as compared to finite differencing or the method 

of characteristics. Semi analytical solutions are also 

obtained under the above mentioned conditions. These 

analytical solutions are compared to the complete Saint 

Venant equations (see Fig. 2.2,2.3). 

2.2 THEORY OF THE NUMERICAL SERIES SOLUTION:-

The governing differential equation is 

ah 1;2 
E ~) } = q(x,t) ax 

( 2.2 ) 

where, 

( 2. 3 ) 

subject to an initial condition of 
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h(x,O) = 0 

and the boundary conditions 

h(O,t) • 0 

ah(l,t) = O 
ax 

( 2.3a ) 

( 2.4a ) 

( 2.4b ) 

Assume that the solution is of the form given by the 

following infinite sine series , 

ii = i: ( 2. 5 ) 
n=l 

where hn(t), n = 1,2, ••• , , are all functions of time only 

and the x dependence comes from the sine terms. It may be 

further assumed that the first few terms of the series are 

the dominant ones and the contribution of terms for higher n 

is negligible. In fact, it was found that for most 

instances, two or three terms are quite adequate. Hence 

where h 

N -
h = i: 

n=l 
h (t) 

n 
sin ( 2. 6 ) 

is an approximation to hand is equal to h for 

sufficiently large N. 

A variant of Galerkin's method is now adopted. The 

interval of interest (0,1] is partitioned into N equal 

subintervals. The residual ~ is defined as 

ah 
= -+ 

at 
3 {h3/2 (1 - E 
3x 

ah 1/2 
-) } ax - q(x,t) ( 2. 7 ) 

From (2.6) we notice that there are N unknowns 

(i.e. n = 1,2, .... ,N) and hence N independent 

differential equations are required. These are obtained by 
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integrating the residual over each of the N subintervals and 

setting it to zero. The partition of the interval is given 

by 

O l 2 N-1 
~:O = - < - < - < •••• < -- < 

N N N N 
N = 1 
N 

and the N differential equations are obtained from 

K/N 
JK-1 ~ dx = 0 

N 

, k = 1,2,•••,N 

ah ax 
at 

K/N a 
+ 1K-l ax 

N 

3/2 
{h (1 - E 

ai, 112 
) }dx -

ax 

K/N 

f K-1 

N 

q(x,t)dx 

k = 1,2, ••• ,N 

( 2. 8 ) 

0 

( 2 • 9 ) 

The equation (2.9) may be stated in matrix form as 

[R]{h} + {F} - {Q} = {O} ( 2.10) 

where the following results are obtained after 

simplification 

[R] = r -kn -

{ F} = 

and • {Q} 

and {h} 

2 [cos { (2n-l) ,r (k-1)} 
(2n-l),r 2 N 

- cos { (2n-l) n k} 
2 N 

for n,k = 1,2, ....... ,N ( 2.11 ) 

3/2 :ii, I K/N 

fk = h (1 - E -) 
ax K-1 

N 

k = 1,2, ..... , N ( 2 .12 

= qk = !KIN q(x,t)dx 
K-l_ 

N 

k = 1,2, ..... , N ( 2 .13 

is the vector denoting the derivatives of 
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the components hn (n = 1,2, ... ,N) with respect to time. 

This then provides a system of ordinary 

differential equations. Note that the form of the solution 

chosen in equation (2.5) automatically satisfies the 

boundary conditions stated above. The initial condition is 

satisfied when solving the N initial value problems obtained 

from (2.10) under the following starting conditions 

n = 1,2, •••••• ,N ( 2.14 ) 

The system of ordinary differential equations 

given by (2.10) has been solved numerically by using the 

IMSL subroutine DVERK which employs a Runge-Kutta-Verner 

fifth and sixth order method. It has automatic error and 

step size control capabilities and was found to be reliable 

for this problem. For a large N, the matrix R has been 

inverted using another IMSL routine LINV2F which produces 

high accuracy solutions. The. performance of this numerical 

technique has been shown in Fig. 2.2. 

2.3 THEORY OF THE ANALYTICAL SOLUTION:-

The numerical solution discussed in the previous 

chapter provides sufficient insight to obtain analytical (or 

semi-analytical) solutions. These are dependent on the 

number of terms chosen in the series solution. The theory 

involved in using two terms is explained in this section and 

may be easily generalised to include cases for larger N. 

components 

It may be assumed that h(x,t), and hence all the 

hn(t), approach a constant asymptotic value for 
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time t = "" under continuous uniform rainfall. From equation 

(2.10) the equations for N = 2 emerge as 

l 
= - - F = 

2 

h + r h = !. - (h - h )
3

/
2 

+ F = 
r21 l 22 2 2 l 2 

where, 

l 3/2 
F =(-) 

r'2 

( 2.15a ) 

( 2.15b ) 

( 2.16 ) 

Expanding equations ( 2.15a) and ( 2.1 Sb) we have the 

following equations 

(2.17) 

and 

( l 2h ) 3 [ l - ET, r'2 (1 - 2h ) ] = ..!.._ 
+2 4 2 fi 

( 2.18 ) 

Equation (2.18) is a non-linear equation in hz but may be 

solved by using Newton's method. More terms would similarly 

lead to more equations, albeit non-linear. The solution to 

this set of equations gives the asymptotic steady states. 

The right hand sides of equations (2.15a,b) may be 

expanded in Taylor series about the steady states as follows 

afl 
fl (h1,h2l = f1 <ii1,ii2l + ah1 Ch1,h2l <h1 - h1> 

( 2.19a ) 

( 2.19b) 
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From (2,15a,b), we have 

fl (hl,h2) = f2(hl,h2) = O 

Equations (2.19a,b) may be written as 

f2 (hl,h2) = a21 h + a h + b 
1 22 2 2 

where, 

[A] = [ a .. l 
ati ci\,ii2 l 

= 1J ahj 

{K} = = 

( 2.20 ) 

( 2.2la) 

( 2.2lb ) 

i,j = · 1, 2 ( 2.22a ) 

....... ( 2.22b ) 

Say [BJ = [R]- 1 [A] and {D} = [R]- 1 {K}. Substituting these 

relations in ( 2.21 ) we have 

{h} = [ B ] • ( h} + { D} ( 2.23 ) 

where {h} ~ {hk}, is the vector of solution components to 

be substituted in (2.6). 

This is a linear system of differential equations 

with constant coefficients. Its solution may be expressed as 

follows 

[BJ (t-t
0

) 
{h(t)} = e {c} + ( 2.24 ) 

where the column vector (C} is obtained from the initial 

condition at time t = t 0 • Therefore 

{h(t 0 l} = {C} ( 2.25 ) 
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2,3,1 The Rising Hydrograph :-

F o r t h e r i s in g p o r t i o n o f t he h y d r o gr a p h, t O = 0 

and {c} = {O}. Hence the solution reduces to the form 

t 
{h ( t)} = f e [BJ ( t- s) {D} d s ( 2 .2 6 ) 

0 

This expression has been evaluated by using 

eigenvalue theory (see Bronson [1973], chp, 29) to obtain 

the rising portion of the hydrographs. 

2.3.2 The Recession Portion:-

Recession starts once the rainfall stops. Assuming 

tr to be the duration of rain, the outflow hydrograph may 

developed as in section 2.3.1. At time t = tr, we obtain the 

solution for b(tr) from equation (2,26), This serves as 

the initial condition for the recession portion, The 

procedure followed is similar to the one explained above 

except that the lateral inflow q(x,t) is zero and the Taylor 

series expansion is about .(bl*• h2*) which are the two 

components of the solution evaluated at the time when the 

lateral inflow ceases, Maintaining the same notation for 

convenience, the solution to the recession portion may be 

given as 

{h ( t )} 

where {C} = 

= exp([B](t-tr)){C} + e.xp([B]t), 

!~ exp(-[B]s)ds, {D} 
r 

{h(tr)l obtained from equation (2.26). 

( 2.27 ) 

This is the analytical solution to the individual 

components h 1 and b 2 for both rising and recession parts. 
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The complete solution with space dependence may be obtained 

by substituting in equation (2.6). Fig. 2.3 shows the 

performance of this technique, 

2.4 PERFORMANCE OF THE SERIES SOLUTION SCHEME ·-

The numerical solution discussed in section 2.2 

has many advantages in comparison to the method of 

characteristics and finite differencing. It is 

computationally more efficient and simpler to formulate. It 

does not use any variant of Newton's method for solving a 

set of non-linear equations as in the method of 

characteristics or finite differencing and hence saves a lot 

of time. It involves solving a system of initial value 

problems for which good software packages are available. The 

IMSL subroutine DVERK is found to be adequate for this 

problem, The program performs eight function evaluations per 

step and from these two estimates of the dependent variable 

are obtained based on the fifth and sixth order 

approximations. A comparison of these two estimates provides 

a basis for step size selection. The equations appearing in 

the analysis are simple in form and structure. The level of 

accuracy may be increased by increasing the number of terms 

considered in the sine series. 

The major setback of the analytical solution seems 

to be the solution of a system of non linear equations to 

obtain the steady state values for each case of F 0 , Kand 

rainfall intensity. This can be avoided by using TABLE 2.1 

which presents the steady state values for two term sine 

49 



series solutions under a constant and uniform dimensionless 

l,a t er a 1 inf 1 ow of 1. 0. Inter med i ate values may be obtained 

through a similar procedure (Section 2.3). 

The numerical series solution for the case of N = 

2 performs better than both the method of characteristics 

and finite differencing. The solution obtained on 

considering three terms in the series is better than the two 

term approximation and is practically coincident to the 

solution obtained from the numerical solution to the Saint 

Venant equations. This means that convergence i-s very fast 

and very few terms are required for most practical cases. 

This is perhaps the most desirable feature of this new 

method. 

This technique also provides valuable insight into 

the problem and provides guidelines for developing an 

analytical solution for both rising and recession portions. 

The two term analytical solution overestimates the outflow 

hydrographs in the initial region. However as time increases 

and the steady state is approached, the solution becomes 

very good. This is expected since, for the rising portion of 

the hydrograph, the right hand sides of equations (2.15a,b) 

are expanded in Taylor series about the steady state. The 

truncated series is therefore a good approximation in the 

neighbourhood of the steady state but looses accuracy as it 

moves further away in time. The overall shape of the profile 

is similar to the numerical Saint Venant solution. The 

recession portion has typical exponential behaviour and is 
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TABLE 2.1 

Table showing steady state values for two-term 

analytical solution 

------------------------------------------------------------
FO = 0.25 FO = 0.50 

K 

hi h2 bl h2 ------------------------------------------------------------
2 0,3350 -0.6650 l. 3121 0.3121 

4 0.2914 -0.7086 1.1777 0.1777 

6 1.3550 0.3550 l. l 004 0.1004 

8 1.3121 o.3121 1.0579 0.0579 

10 1.2726 0.2726 l,0327 0.0327 

12 1.2369 0.2369 1.0164 0.0164 

14 1.2053 0.2053 1.0051 0.0051 

16 1.1777 0.1777 0.9969 -0.0031 

18 1.1538 0.1538 0.9906 -0.0094 

20 1.1332 0.1332 0.9857 -0.0143 

22 1.1156 0.1156 0.9817 -0.0183 

24 1.1004 0.1004 0.9784 -0,0216 

26 1.0874 0.0874 0.9757 -0,0243 

28 1.0762 0.0762 0.9734 -0.0266 

30 1,0664 0.0664 0.9715 -0,0285 

32 1.0579 0.0579 0.9698 -0.0302 

34 1. 0 5 04 0.0504 0,9683 -0.0317 

36 1.0438 0.0438 0.9669 -0.0331 

38 1.0379 0.0379 0.9657 -0.0343 

40 1.0327 0.0327 0.9646 -0.0354 

42 1.0280 0.0280 0.9637 -0.0363 

44 1.0238 0.0238 0.9629 -0.0371 

5 1 



TABLE .hl (continued) 

------------------------------------------------------------
FO a 0.75 FO = 1.00 

IC 

hi h2 hl h2 ------------------------------------------------------------
2 1.1538 0.1538 1.0579 0.0579 

4 1.0438 0.0438 0.9969 -0.0031 

6 1,0076 0.0076 0.9784 -0.0216 

8 0.9906 -0.0094 0. 96 98 -0.0302 

10 0.9808 -0.0192 0.9646 -0.0354 

12 0.9746 -0.0254 0.9613 -0.0387 

14 0.9701 -0.0299 0. 9 5 90 -0.0410 

16 0.9669 -0.0331 0.9573 -0.0427 

18 0.9644 -0.0356 0.9559 -0.0441 

20 0.9624 -0.0376 0.9548 -0.0452 

22 0.9608 -0,0392 0,9540 -0.0460 

24 0.9595 -0.0405 0,9533 -0.0467 

26 0.9584 -0.0416 0,9526 -0.0474 

28 0.9574 -0.0426 0.9521 -0.0479 

30 0.9566 -0,0434 0.9516 -0.0484 

32 0.9559 -0.0441 0.9513 -0.0487 

34 0.9553 -0,0447 0.9509 -0.0491 

36 0.9547 -0.0453 0.9506 -0.0494 

38 0.9542 -0.0458 0.9503 -0.0497 

40 0.9537 -0.0463 0.9501 -0.0499 

42 0.9534 -0.0466 0.9498 -0.0502 

44 0.9530 -0.0470 0.9496 -0.0504 

46 0.9527 -0.0473 0.9494 -0.0506 
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reasonably close to the corresponding numerical results. 
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CHAPTER .b_ ANALYSIS OF STEADY STATE 

3.1 DESCRIPTION :-

One of the ways of tackling highly non linear time 

and space dependent partial differential equations is to 

assume the solution to be composed of two parts, The first 

part consists of solving the problem assuming steady state 

conditions exist. This is physically justifiable for the 

problem under consideration since if the rain durat.ion is 

infinite (practically speaking tr greater than time of 

concentration of the reach) a steady state is achieved. The 

problem reduces to an ordinary non linear differential 

equation for the one dimensional overland flow, The second 

part of the solution process involves finding transient 

solutions which when superimposed on the steady state 

solution, yield the complete solution. 

The steady state solution also provides a better 

understanding of the nature of the water profile. It may, 

for example, provide information on the cases when zero 

depth upstream boundary condition may be used instead of the 

zero influx condition. This important aspect of the solution 

of the process has received very little attention in the 

literature, An efficient method for numerically evaluating 

the steady state profiles and analytical approximations for 
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some of the cases are developed in the following sections. 

3.2 THE STEADY STATE THEORY :-

The steady state diffusion equation is given by 

~ {h 3/2(l _ E dh 
dx dx 

-
q (x) 

where, h(x) is the steady state solution, 

lirn q(x,t) = q(x) 
t--

lirn h(x, t) = h(x) 
t--

( 3 .1 ) 

( 3.2a ) 

( 3.2b ) 

The steady state solution h(x) is such that it satisfies 

the boundary conditions for the complete solution h(x,t). 

Therefore the initial condition is satisfied by the 

transient solution. Hence 

dh (0) 
= a ( 3 .3a ) 

dx 

dh (1) 
= b 

( 3.3b ) 

dx 

where a and b = for critical depth 

downstream boundary condition and b = 0 when zero-depth-

gradient downstream boundary condition is used. 

Equations (3.1) and (3.3) constitute a non linear 

two point boundary value problem which is rather difficult 

to solve. Integrating equation (3.1) over the interval 

[O,l], we obtain 

- 3/2 dh (1) 
112 

h(l) (1 - E dx ) h(O) 
312

(1 - E 

- 1/2 
dh(O)) = fol q (x)dx ( 

dx 
3. 4 ) 

Substituting the boundary values from (3.3), we have 
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which reduces after simplification to 

h(l) = {(l - Eb)-
112 f~ q(x)dx}213 

r1 q(x)dx 
0 

( 3. 5 ) 

( 3. 6 ) 

This provides an analytical expression for the steady state 

ordinate at x = 1. For constant and uniform rain q(x) = 1, 

and 

h (1) = (1 - Eb) -l/3 ( 3. 7 ) 

For er it ical depth lower boundary condition, we have from 

equation (3. 7) 

h(l) = Fo2/3 ( 3. 8 ) 

and the corresponding expression for the zero-depth-gradient 

downstream condition is 

h(l) = 1 ( 3. 9 ) 

It may also be noticed that for F 0 = 1 • bis 

identically zero for all values of K. Under this condition 

the steady state profile for either lower boundary condition 

is the same. 

3.3 .I!!l NUMERICAL STEADY STATE SOLUTION:-

Integrating equation (3.1) over [O,x] we have 

- 3/2 dh 1/2 x - ( 3 1 O ) 
h(x) (1 - Edx) = !

0 
q(x)dx • 

Under conditions of constant rainfall, equation (3.10) is 
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b.3(1 - e::) = x2 

Using the transform at ion x + z = 1, we have 

dh -= 
dz 

2 
{ (1-z) _ l} /e. 

-3 
h 

( 3.11 ) 

( 3.12 ) 

where the initial condition for h(z) (obtained from equation 

(3.7) after transforming the variables) is 

- -1/3 
h(z) lz=O = (1 - e:b) ( 3.13 ) 

Equations (3.12) and (3.13) form an initial value 

problem. The numerical solution may be obtained by using the 

IMSL routine DVERK. The results obtained for the steady 

state are very good (see Fig. 3.3, 3.4). 

3,4 ANALYTICAL APPROXIMATIONS TO STEADY STATE ·-

Polynomials have been adopted for most 

approximations in this section because of the relative ease 

in handling them during integration and differentiation. The 

case for the zero-depth-gradient boundary condition is much 

simpler to replicate. All the analytical expressions satisfy 

the boundary conditions i.e. matching slopes at both ends x 

= 0 and x = 1. The complete behaviour of the steady state is 

known at the lower boundary. The curvature and higher 

derivatives at this point may be determined by succesive 

differentiation of the governing equation. 

Among the many polynomials tried, the cubic which 

matches the slope at x = 0 and the ordinate, slope a~d 
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curvature at x = 1 was found to be closest to the numerical 

solution (see Fig. 3.3). This is however only valid for 

cases where F 0 2K is less than 1.5 (Fig. 3.3e,f). For greater 

values of the product the solution for steep slopes 

discussed in the previous chapter is applicable (see Fig 

2.2, 2.3), Analytical approximations to the steady state 

solution for critical flow lower boundary condition are very 

difficult to simulate. Taylor series expansion about either 

end are valid only in the immediate neighbourhood of the 

particular point and hence cannot be used in general (see 

Fig. 3.4). 

3.5 TRANSIENT SOLUTIONS :-

The complete solution to the diffusion equation is 

of the form 

h = h(x) + <P(x,t) ( 3.14 ) 

where <P(x,t) forms the transient portion and is usually 

dependent on both x and t. This transient solution may be, 

for example, a cosine series such as 

<l>(x,t) = i:: 
n=l 

<P (t) 
n 

cos n1rx ( 3.15 ) 

Since the steady state solution already satisfies the 

boundary conditions, the slope for the transient solution 

must be zero at both ends, i.e. 

H(O,t)/ax = o ( 3.16a) 

a~(l,t)/3x = O 
( 3.16b ) 
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The initial condition for the transient reduces to 

equation (3,17) after simplification 

~(x,O) = ~o(O)+E 
n=l 

~ (0) cos nnx = -h(x) 
n 

( 3.17 ) 

Considering a one term approximation for the transient, we 

have 

( 3.18 ) 

which means that the initial condition is satisfied for at 

least one point in [0,1] from the mean value theorem. There 

is an error in such an approximation, but this can be 

improved upon by considering more terms in the transient and 

satisfying the initial condition at more points. Following 

the procedure outlined in section 2.2, i.e. integrating the 

residual over the interval [0,1] converts the problem to an 

initial value problem. This solution mode has been 

investigated for the zero-depth-gradient condition and the 

results for the outflow hydrograph are in close agreement 

with the corresponding numerical solutions (see Fig.3.5), 

There is an error caused at x = 0 due to considering only 

one term, The scope and applicability of this solution 

procedure are discussed in the next chapter, The scheme 

developed in this section is not applicable to flows with 

critical depth at the downstream end. 
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CHAPTER!~ DISCUSSION !Jill. CONCLUSIONS 

4,1 DISCUSSION ·-

~ good numerical scheme is one which is stable and 

converges rapidly. Non-linear systems of differential 

equations frequently involve the solution of non linear 

simultaneous equations. Most schemes for solving such a 

system use a variant of Newton's method and are economical 

if convergence is achieved within a couple of iterations. 

Some researchers have found it preferable to use Richtmyer's 

algorithm or the 'double sweep method' which involves the 

inversion of a 2 * 2 matrix for which expressions can be 

written directly, 

Both the method of characteristics and finite 

difference schemes are acceptable techniques. They suffer 

from the disadvantage of involving long and formidable 

equations. Their stability can be ensured by using 

appropriate time steps and space discretization. The series 

solutions discussed in the text are very simple to formulate 

and convergence is very rapid. For most cases two terms are 

adequate. The many instances considered show that this 

scheme performs very well (see Fig. 2.2, 2.3). It is an 
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entirely new solution procedure adopting a different 

approach to the problem and is therefore important in its 

own right. It has all the properties of a good numerical 

solution. 

Analytical solutions developed by previous 

researchers involve linearization of the differential 

equation (usually through regular perturbations). The 

analytical procedure described in the text preserves the 

non-linearity in the problem to a greater extent. The system 

of non-linear equations solved for preparing TABLE 2.1 are 

solved only once for each combination of F 0 and Kand may be 

used for later work. 

It is clear from this study that the zero-depth

gradient at the downstream is a much simpler condition to 

handle than the critical flow requirement at the lower end. 

The concept of breaking up the solution procedure into two 

parts is reasonable when the physical system represented by 

the differential equation reaches a steady state. A 

difficult problem may 

the solutions of two 

therefore be solved by superimposing 

simpler ones. Polynomials cannot 

capture the steep behaviour of the steady state profiles in 

cases of critical flow downstream boundary condition (see 

Fig 3.4). Bence superimposing the transients also becomes 

difficult because the initial condition for the transient 

components are determined by the steady sta~e. 

The diffusion wave theory is superior to the 

kinematic wave though it is more difficult to solve, The 
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insensitivity of the kinematic wave to the field conditions 

and its inability to account for backwater effects are among 

its severe drawbacks. Therefore it cannot be used with 

complete confidence in problems of channel networks. Hence a 

solution which is simple in structure and can incorporate 

the effect of Fo and K is a signicant contribution to this 

field. 

4.2 CONCLUSIONS :-

The diffusion wave is too difficult a problem to 

attempt a blanket solution for all cases using the Fourier 

series approach. Hence different solution procedures were 

adopted for steep slopes and mild slopes. Sin~e the 

kinematic wave is just a single profile a simple solution is 

feasible in this instance. 

The diffusion wave is known to perform well for 

small Fo and large K. A large value of K usually indicates 

steep bed slopes and the solution discussed in section 2.2 

is applicable in such cases. The performance of the solution 

indicates that the boundary condition of zero depth at the 

upstream produces similar outflow profile to the one 

produced by the zero influx upper end condition (see Fig. 

2.2, 2.3). Physically this implies that not much water 

accumulates at the beginning of the ovezland flow plane for 

such cases. An inspection of the steady state profiles shows 

that the depth at x = 0 is practically zero for cases of 

Fo2K greater than 1.5 (Fig. 3.3e,f, 3.4e,f). Hence the 

solution procedure of section 2.2 may be used under the 
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condition stated above. It may be noted here that the zero

depth-gradient condition is valid for large vaues of Fo 2 K. 

However the Diffusion wave is a good approximation for small 

Fo ( < 0.5 ) and large K ( > 10 ,say). 

It may also be observed that the upstream boundary 

condition has little or no effect on the outflow 

hydrographs. For important problems like channel networks 

and catchment-stream problems it is the profile at the 

outflow section of the overland flow plane that is of 

primary significance. The efforts of most previous 

researchers have been concentrated in this phase of the 

solution. Therefore, when the profile at x = 1 is of 

interest, the solution procedure outlined in section 2.2 may 

be used for all those cases where the zero-depth-gradient 

downstream is a valid approximation. 

The analytical expression (obtained as an 

approximate solution for steep slopes) is found to perform 

very well in the neighbourhood of the steady state 

(Fig.2.3). The recession profiles beginning close to the 

steady state are more accurate as a result. For design 

purposes, the most critical piofiles are of major interest. 

This implies that the full profile needs to be developed 

before the recession starts. The steady state would 

therefore seem to be a good indicator of peak flood 

discharge and the analytical expression (discussed in 

section 2.3) may be employed in such cases. 

Section 3.4 deals with the steady state solution 
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procedure for cases where F 0 2K is less than 1.5 and when 

zero-depth-gradient downstream end condition and zero-inflow 

upstream boundary condition are used (see Fig 3.3). This 

therefore covers all cases for this end condition. The case 

for critical flow at x = l is not amenable to a solution of 

this form because the steady state has very steep slope 

requirements and cannot be matched by using polynomials 

(Fig. 3 • 4). 

The steady state analysis reveals several 

interesting features. Complete knowledge of the behaviour of 

the steady state solution at the outflow section is 

obtained. For the zero-depth-gradient condition,· the· steady 

state reaches its maximum normalized depth of 1.0 here. 

However the critical flow downstream boundary requirement 

yields a different profile. The maximum does not occur at x 

= 1 because of the severe negative slope at that end. The 

case for Fo = 1 reduces identically to the zero-depth

gradient condition for all values of K as far as the steady 

state profile is concerned. 

The key variable in both kinematic and diffusion 

approximations is K. The smplification of the momentum 

equation is valid only for large K. For smaller values of K 

(say K < 5), the terms in the momentum equation are not 

negligible. Hence, results for greater values of Kare found 

to be better than those for smaller K (see Fig. 2.2). It may 

be noticed that the kinematic wave approximation naturally 

satisfies the zero-depth-gradient downstream boundary 
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condition and the zero depth condition at x = 0. Therefore 

it is analogous to the case of Fo = 1. This is phys'.cally 

reasonable since the kinematic wave works well for steep bed 

slopes on which the flows are close to being critical. 
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Symbol 

c 

FO 

g 

h 

Ho 

h* 

h 

u 

u~':, U 

x 

NOMENCLATURE 

Definition 

Chezy's coefficient 

Froude number for normal flow conditions 

Acceleration due to gravity 

Depth of flow 

Normal flow depth 

Non-dimensional depth 

Truncated series solution ,or 

Steady state values 

2 
SOLO/HOFO 

Length of overland flow reach 

Lateral inflow per unit area per unit time 

Non-dimensional lateral inflow 

Dimensionless 'friction slope' 

Non-dimensional slope of the plane 

Time 

Duration of rain 

Non-dimensional time 

Average velocity of flow 

Non-dimensional velocity 

Velocity for normal flow at X = Lo 

Co-ordinate in direction of flow 
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Symbol 

y 

·fl 

p 

e 

NOMENCLATURE(Contnd.) 

Definition 

Non-dimensional x 

Momentum correction factor 

Specific weight of water 

l/Fo2K 

Manning's coefficient 

Density of water 

Angle of slope 
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APPENDIX 

Reference for Outflow Profiles 

This list contains references to all those profiles 

used for comparison purposes. Profiles developed by the 

author are not listed. 

Figure No. • Description Reference 

2.2a,b Full St. Venant Vieira [1983] 

2.2a,b Diffusion approx. Vieira [19'.83] 

2.2c,d Full St. Venant Morris [1978] 

2.2e,f Full St. Venant Vieira [1983] 

2.2e,f Diffusion approx. Vieira [1983] 

2.2g,h Full St. Venant Morris [1978] 

2.2i,j Full St. Venant Morr is [1978] 

2.3a,c Full St. Venant Vieira [1983] 

2.3a,c Diffusion approx. Vieira [1983] 

2.3b,d Full st. Venant Morr is [1978] 

2.3e,f Full St. Venant Morris [1978] 

3.Sa,b Full st . Venant Morris [1978] 

3.Sc,d Full st • Ven ant Vieira [1983] 

3.Sc,d Diffusion approx. Vieira [1983] 

3.Se,f Full St.Venant Morr is [1978] 
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