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ABSTRACT

The U. S. Geological Survey recently used the method of
residuals to delineate seven flood regions for the State of
Kentucky. As an alternative approach, the FASTCLUS
clusterlng procedure of the Statistical Analysis System
(SAS) is used in this study to delineate five to six cluster
regions in conjunction with statistical properties of the
AMF series, like the coefficient of variation as estimated
using method of L-moments, LCV, the parameters of the EV1
and GEV flood frequency distributions, and the specific mean
annual flood, QSP. For both cluster and USGS flood regions,
regionalized flood frequency growth curves are developed and
‘their performance evaluated using Monte Carlo simulation
technlques. Flood regions are then evaluated and compared
‘using trends in the hydrological characteristics of
important variables, performance of the regionalized flood
frequency growth curves, discriminant analysis and
regression equatlons relating flood quantiles to watershed
phy51cal characteristics. Results show that the cluster
regions are more distinguishable in terms of their flood
characteristics than the USGS regions. The. regionalized
flood frequency growth curves of the EV1 and GEV model are
more distinct for the cluster regions than the USGS regions,
although their performance in terms of bias and RMSE are
comparable. The standard errors associated with the
regression equations, developed for predicting the EV1 and
GEV flood quantlles, are similar for cluster and USGS
regions. '

Descriptors: Flood * ; flood frequency * ; simulation * ;
regionalization * ; '

Identifiers: Cluster Analysis; discriminant analysis;
method of residuals; USGS; Kentucky; flood
regions.
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CHAPTER 1

INTRODUCTION

Nature, Scope and Objectives

The problem of estimating flood levels for selected
frequencies (or return periods) is fundamental to flood
control and mitigation studies. This is often accomplished
by the use of flood frequency curves developed from
systematic flood records at gauged sites in a watershed.
However, due to the short or inadequate flow records at
these gauges, the predictive ability of such frequency
curves is limited. To overcome this problem, regionalized
flood frequency curves are developed using pooled data from
all gauges located in a hydrologically homogeneous flood
region. The accuracy and reliability of these regionalized
curves depends to a large extent on the procedures used to
delineate flood regions that have similar flood response. A
review of current literature indicates that a limited amount
of work has been done in addressing this vital problem of
flood regionalization. Furthermore, there exist three
distinct methods of regionalization, as described below,
that differ fundamentally in the type of approach used.

Method 1: Perform regicnalization using specific flood
characteristics of original or transformed annual
flood data (referred to as response or dependent
variables) as recorded at each of the gauged
sites. Included in the analysis will be other
hydrolegic, physical and climatic characteristics
of the watershed (referred to as attributes or
independent variables affecting flood response) in
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which the gauged site is located. After
identifying the homogeneous flocod regions, a
regional flood frequency curve is developed.

Method 2: An alternative approach to Method 1 above
involves the direct use of the underlying
probability distribution and its parameters at
each of the gauged sites to accomplish flood

regionalization. This is done by first performing
a flood-fréquency analysis using the annual fldod'
series at each of the gauged sites using commonly
accepted probability distributions. Select the -
most suitable distribution and its parameters
describing flood response at each gauge. Perform
regionalization using the probability
distributions and their parameters. 1In this
context, it must be emphasized that gauges within
a homogeneous flood region having similar
statistical parameters such as the mean,
coefficient of variation, and skewness will not
necessarily have similar underlying probability
law of flood response. '

Method 3: First perform a flood-frequency analysis

h using annual maximum flood data at each of the
gauged sites. A regionalization is then carried
out using flood quantiles at selected frequencies
(example : the 100~year, 50-year etc. flood
levels) as the response variables and other
hydrologic, physical and climatic characteristics
as the independent variables or attributes.

The three methods of regionalization described above
differ in the manner in which they utilize flood data at a
gauge. Furthermore, the problem remains as to how different
the above methods are in defining homogeneous flood regions.
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A secondary objective of the proposed study, therefore, will
be to examine this issue in detail.

This study will utilize the systematic flood records
available at all the gauges employed by the USGS in deriving
the flood frequency curve and its parameters that is most
appropriate for a particular gauged site. This information
will then be used to classify these sites into homogeneous
flood regions. The results from this study will provide a
valuable comparison by bringing out the inherent differences
in the three methods of flood regionalization described -
above. In addition, it will examine the most suitable flood
probability distribution that can be adopted for the State
of Kentucky to accurately describe the flood response of
each watershed. '

The United States Geological Survey in Louisville is
the federal agency primarily responsible for developing
regionalized flood information for the State of Kentucky.
They have, recently, completed the process of flood
regionalization using Method 3 described above. The
proposed study will, therefore, examine the problem of
regionalization of flood data in the State of Kentucky using
Methods 1 and 2. Results from the study should provide a
means for comparing these methods of regionalization with an
ultimate goal of developing the most accurate and reliable
procedure- for regionalizing flood data.

With the above discussion in mind, the specific
objectives of the proposed study are:

1) Perform flood regionalization using Methods 1 and
2 described above using flood data for the gauges
in the State of Kentucky.

2) Identify the probability distribution and its
parameters that best fits the annual flood series
at each of the gauged sites.

3) Define homogeneous flood regions based upon the



statistical characteristics of the maximum annual
flood data and the probability distributions and
their parameters.

4) Compare the homocgeneous flood regions as
obtained using Methods 1, 2 and 3. Results from
the USGS study will be used for Method 3.

Related Research

The index-flood method proposed by the U.S. Geological
Survey (Darymple, 1960) is a. classic example of early
attempts to regionalize flood data. The technique involves
the derivation of a regionalized frequency curve using the
median values of the ratios of flood discharges at various
frequencies to the mean annual flood as defined at each
gauge. A major requirement for the application of this
method is that the gauges used in the analysis must lie in a
hydrologically homogeneous region. Thus, the index-flood
method is a convenient way to regionalize flood frequency
data provided the hydrologically homocgeneous regions are
defined a priori.

_ The use of multiple regression analysis is now a widely
accepted method adopted by the U.S. Geological Survey for
developing regionalized flood frequency prediction equations
(McCabe, 1962; Sauer, 1964; Thomas and Benson, 1970; McCain
and Jarrett, 1976; and Richter et al, 1984). The technique
involves relating flood characteristics (as reflected by
flood magnitudes at selected frequency levels) at a
particular gauge to the physiographic, climatic and other
variables that affect or control flood response of a
watershed. Since this relationship is non-linear,a log
transformation is utilized to linearize it. Flood
characteristics are obtained at each gauge from log-Pearson
Type-III flood frequency distribution (in conjunction with a
regionalized coefficient of skewness), the latter derived
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using the procedures recommended by the Water Resources
Council (U.S. Department of the Interior, 1982). In order
to improve the accuracy of these equations, homogeneous
regions are defined using the method of residuals. A
residual is the difference between the observed and
predicted flood value at a gauged site. This is estimated
from the overall regression equation developed for the
entire region under investigation. It is assumed that the
general trends in these residuals reflect inherent
variations in the flood response of various sub—regions.-
This is the primary basis on which the regionalization of
flood/data is accomplished. After a detailed analysis of
the residuals, a regionalized flood prediction equation is
redeveloped using data from all gauges within a homogeneous
sub-region. This method of defining homogeneous sub-regions
using residuals from an overall regression egquation is
subjective. This is obvious since the causative factors
controlling flood response are not considered explicitly in
the process of defining the homogeneous regions. Residuals
often reflect statistical variations in the data sample and
any trends may be purely incidental. In recognition of
this, recent efforts of regionalizing flood data have
focussed on the use of more sophisticated statistical
methods. For example, DeCoursey and Deal (1974) used
discriminant analysis to define homogeneous flood regions
using floocd and basin characteristics of the watersheds as
defined at each streamflow gauge. The basic approach is to
classify homogeneous regions using the concepts of cluster
analysis. Clusters or groups are formed using flood and
basin characteristics at each gauge with the basic prenise
of maximizing within group similarity while at the same time
minimizing between group similarity. A complete linkage
algorithm of forming clusters, as proposed by Sokal and
Sneath (1963), is used. Discriminant analysis is used to
determine any misclassification of points or stations into a
cluster or group. Tasker (1982) extended this method of
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regionalizing flood data to gaging stations in Arizona. It
must be pointed out that, in both cases, flood
characteristics were obtained from flood frequency curves as
defined at each gauge and hence the general approach is
similar to Method 3 described in the previous section.

A completely different approach of regionalization of
flood data than the one described above was adopted by
Wiltshire (1986) in his efforts to define homogeneocus flcod
regions in England (this is similar to Method 1 described in
the previous section). Instead of using flood estimates
obtained from a flood frequency curve, his approach
incorporates specific propertieé (statistical) of the flood
series as the response variable. An iterative search is
then employed using the basin characteristics as the
independent variables (or attributes) so as to minimize the
variance of the response variable within a cluster or group
while simultaneously maximizing the variance between groups.
The multivariate technique used in the analysis is referred
to as Analysis of Variance (ANOVA) for a single response
variable and Multivariate Analysis of Variance (MANOVA) for
more than one response variable. The main advantage of
Wiltshire’s approach is that flood data at a gauge are
considered explicitly and the use of a fitted flood
frequency curve is avoided. However, as pointed out by
Wiltshire (1986), there are two weaknesses to his procedﬁre.
The first of these is that the annual maximum flood series
at each site is characterized by only one response variable,
namely, the coefficient of variation. For example, no
consideration is given for other flood characteristics like
the coefficient of skewness. The second problem is that the
resulting soclution in terms of basin groupings may not bhe
unique, i.e. different basin characteristics may also
produce a statistically significant result. The latter
problem could be resolved to a certain extent using physical
reasoning and geographic regions.



The use of probability distribution and its parameters
for regionalizing flood data has been attempted by several
investigators. Such approaches are similar to Method 2
described in the previous section. Houghton (1977) used the
Wakeby distribution and its parameters for regionalizing
flood experience in the United States and proposed four such
distributions for use in flood prediction. Kuczera (1982)
examined the relative performance of the Wakeby distribution
in estimating extreme flood events in comparison to other
more parsimonious probability distributions. The |
performance'was measured using a mean square criterion. 'In
a parallel study Kuczera (1982) shows how empirical Bayes
procedures can be used to combine site-specific and regional
information to improve upon site-specific estimators. Rossi
et al (1984) regionalized annual flood series using the
at~site estimates of a two parameter extreme value
probability distribution. Synthetic flood data, generated
using Monte Carlo techniques, was used to test the relative
' performance of several regionalization methods by
Lettenmaier and Potter (1985). Their results show that for
annual flood series having a high coefficient of variation,
improvements in regional flood estimation will come from '
improved estimators of the at-site mean annual flood, rather
than the regional (normalized) flood frequency distribution.
An overview of recent efforts in flood regionalization is
'~ given by Greis (1983).

Although considerable work, as discussed above, has
been advanced in developing robust flood frequency
probability distributions, little work has been done in
addressing the fundamental question of the selection of
homogeneocus flood regions. This is an extremely wvital step
in any effort to regionalize flood data based upon such
information from specific gauged sites.



CHAPTER 2
RESEARCH PROCEDURES

The accuracy and precision with which flood levels
(particularly those associated with large return periods
such as the 100-year flood level), can be estimated at
gauged and ungauged streamflow sites is primarily influenced
by (Cunane, 1987):

1) The form of the underlying flood frequency distribution
or model that best describes the underlying law of
flood response and the method of estimating its
parameters.

- 2) Amount and type of data used: a) at-site data; b)
at-site/regional and c) regional without at site data.

3) Type of flood frequency model: a) Annual maximum (AM)
flood series and b) Peaks over threshold (POT) flood
series (partial flood series). o

The above factors are incorporated into the study procedure
as discussed below.

CHOICE OF A FLOOD FREQUENCY MODEL

The choice of a suitable parent probability
distribution and the method to estimate its parameters
constitutes, by far, the most difficult step in the
development of a flood frequency model to best describe the
flood response of a watershed. The success of any flood
regionalization to estimate flood quantiles accurately is
heavily dependent on this choice. The major problem arises
from the fact that the true population flood frequency
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distribution that best fits the AMF data at a site is and
will, at least in the near future, be never known. However,
numerous efforts by researchers over the past few decades
has led to a general consensus that the annual maximum
floods come from populations with positively skewed
distributions and that these distributions are relatively
thick-tailed. Hence, the focus on contending probability
distributions has been primarily on a family of skewed
distributions. Furthermore, as suggested by Kuczera (1982), .
a good flood frequency model must possess the following '
properties: a) it must have the ability to estimate flood
quantiles with least bias and, hence, is efficient (measure
of accuracy); b) The model must also be resistant by having
the capacity to estimate extreme events, irrespective of
which contending distribution best repfésents the real
world, without a disastrous loss of pefformance as indicated
by a suitable measure such as low root mean sguare error
(measure of precision); and c) the flood frequency model
must perform well even if a misspecification of the |
underlying parent probability distribution occurs (a
property known as robustness). These are the primary
criteria that are given due consideration in the present
study for testing the performance and suitability of flood
frequency models selected for describing flood experience in -
Kentucky.

a) Flood Frequency or Probability Distributions: Numerous
probability distributions have been used to fit AMF data.
The following is a list of general forms of probability
distributions (refer to Table 2.1) that have been used by
various investigators either directly or in a simplified
form (example: 2-parameter distributions):

1. Generalized Extreme Value (GEV) and its special
case Extreme Value Type-I (EV1 or Gumbel)
2. Generalized Normal and log-Normal
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3. Pearson and log-Pearson Type-III
5. Wakeby

6. Generalized Pareto

7. Generalized Lambda

8. Generalized Logistic

7. Kappa

Each of the above distributions require at least three
parameters to be estimated which characterize the 1ocation;
scale and shape of the underlying probability distributien,
respectively. They have all been tested by numerous
investigators using various procedures for estimating their
parameters. Recent studies (Wallis and Wood, 1985, Kuc:zera,
1982, Lettenmaier et al, 1987, Landwehr et al, 1980) have
favored the Generalized Extreme Value, GEV, tocgether with
its special case, namely, the Extreme Value Type~I, EV1,
(referred to as Gumbel) and the Wakeby, WAK, distributions
for modeling AMF data. Furthermore, a relatively new
approach called L-moments has been recommended for
estimating the parameters of these distributions (Hosking,
1989) over the conventional methods used in the past such as
the method of moments and the maximum likelihood method.
The method of L-moments is closely linked to the probability
welghted moments (PWM) method of estimating parameters as
first introduced by Greenwood et al, 1979 and later used by
numerous investigators ( Landwehr et al, 1979, Landwehr et
al, 1980, Hosking et al, 1985, Hosking and wallis, 1987,
Wallis and Wood, 1985, Kuczera, 1982). A brief discussion
of the L-moments method, in conjunction with the theory of
probability weighted moments (PWM), is given below. This .
method is chosen as the preferred method for estimating the
parameters of the Gumbel(EV1), Generalized Extreme Value
(GEV) and the Wakeby (WAK) flood frequency prcbability
distributions in the present study.
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TABLE 2.1. Common Probability Distribution Used in Flood Frequency
Analysis (Hosking, 1988) ‘

Number of

Distribution  Code parameters Parameters F(x), x(F)
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b) Method of Estimating Parameters: Probability Weighted
Moments and L-Moments: A probability distribution,
having a distribution function F = F(x) = P(X < x) of a
random variable X, may be characterized by probability
weighted moments defined as (Greenwoecd et al, 1979):

P r _ S
or,s = EIX {reoO} {1 - FOO}II

S PR {1 - Fo}RdR),
| (2.1)

]

f:{x(F)}pFr (1 - F)%aF

where p, r and s are real numbers. If r=s=o and p is a

non-negative integer then MP o 0 represents the conventional
. ¥ ¥

moment of order p as used in the method of moments. If p, r
and s are positive integers then the probability weighted
moment, Mp,r,s can be related to the expected value of the
k-order statistic, xk:n’ of a random sample of size n drawn

from the distribution F by the following relationship:

- rls! o] 2.2
p,r,s (r + s + 1)! Exr+1:r+s+1 ( )
In particular, the probability weighted moments, Ml 0.7’
r r
and Ml . of which are linear functions of the expected value
r 4
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of the k-order statistic, Xk_n,'are sufficient to
characterize a distribution and can be defined as follows:

r
a = M o= Efx{1 - FX)}'1, £ = 0,1,... ,
1 k
= [ x(F) [1 - F(x)]" dF (2.3)
[
n
.1 2z - k
=% i1 % T F )
r —
B, = Moro" E[X{F(X)} 1, r = 0,1,...,
1 Kk (2.4)
= [ x(F) [F(x)]
. X
= =1 %1Fy )
Furthermore, @ and Br are related by the following
equations:
L k1t
¢ = L (-1) ( ) B » (2'5)
T o0 k" Tk : _
r k ,r .
B = Z (-1) ( ) Q. . (2'6)
T k=0 Kok .

As stated by Hosking (1986) although the probability
weighted moments (PWM’s) (Equations 2.3-2.4) can be used to
characterize the underlying probability distribution, they
are not useful by themselves in defining specific _
characteristics of a distribution like the scale and shape.
Instéad, certain linear functions of the PWM’s known as
L-moments give a better description of the location, scale
and shape of a probability distribution. As shown later
PWM’s and L-moments are closely related.

Consider a real-valued random variable, X, having a
distribution function, F(x) and an inverse function, x(F),
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and let xl:n<x2:n< ..... xn:n be the ordered statistic of a
random sample drawn from the population distribution of the
random variable X. L-moments can then be defined as a
linear combination the expected value of the above order

statistic as (Hosking, 1986):

) EX (2.7)

r-kir, r = 1,2,...,

where, the expectedrvalue of an ordered statistic, Exj'r’ is
defined as:
EX r! Iy x{F(x)}j—l{l - 1-‘(::)}""j dF(x) (2.8)

it T 3 - DI(x - 3!

Substituting Eq. 2.8 in Eq. 2.7, expanding the binomials in
F(x) and summing the coefficients of each power of F(x)
gives the following final expfession that can be used to
calculate the L-moments.

1 * .
A= { x(F) P__,(F) dF, r = 1,2,..., (2.9)

where,

* ' * 2.10
P_ (F) = I pr’kF (2.10)

k=0
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and

ky (2.11)

Note the similarity of Eq. 2.9 with the PWM as defined in

Eq. 2.1. The L-moments are simply linear combination of the

PWM’s, M (Eg. 2.3 and 2.5) and M (Eg. 2.4 and 2.86)
1,0,r 1,r,0

and, hence, are closely related by the fgllowing

relationships (Hosking 1986): '

r T * r % .
A =(-1  p ¢, = £ p ,B.,r=0,1,... {(2.12)
r+l k=0 r,k k k=0 r,k k

c) Interpretation and estimation of L-moments: As pointed
out by Hosking (1989), the L-moments Air Ay Aa.....kr '

and L-moment ratios T3_=7\‘,ﬂ2, T, =§\u/h,......rr =A_y are
useful quantities for summarizing a probability 2
distribution. The L-moments are similar to conventional
central moments while the L-moment ratios are similar to the
conventional moment ratios. The first L-moment, A, , is
equal to the mean and is, therefore, regarded as a measure
of the central tendency or location, the second L-moment, A,
; 1s a measure of scale or dispersion like the variance or
standard deviation. The moment ratios, T, and t, , which are
dimensionless forms of the third and fourth L-moments ( 2,
and Ah), are measures of skewness and kurtosis,
respectively. Thus, these L-moments and ratios together are
sufficient to estimate parameters that describe the
location, scale, skewness and kurtosis of a flood frequency
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distribution . Higher order L-moments and ratios have
similar interpretation as conventional method of moments for
further describing the character of the underlying
probability distribution.

The L-moments described above must be estimated from
observed maximum annual flood data at a gauged site prior to
any floocd regionalization effort. A natural estimator of
each L-moment (refer to Eq. 2.7 above) based on an observed
sample of data is a linear comblnatlon of the ordered data
values. Such an estimator is known as an L-statistic. In
practice, therefore, the L-moments can be estimated from an
ordered {lowest to highest value) random sample drawn from
an unknown probability distribution. Hosking (1989)
presents two such estimation procedures. The one used in
this study is referred to as a plotting position estimator.

A plotting position, p is a distribution-free estimator

1. !
of the probability of ;éﬁ-exceedance, F(xi:n), of an ordered
random variable Xl en’ Although this estimator is biased,
Hosking (1989) has observed in his study that it gives good
estimates of the parameters and guantiles when a
distribution is fitted to the data. In particular, Hosking
(1989) concludes that the plotting position estimator of the
form Pi.n = (i - 0.35)/n, where i is order number (or rank)
and n

of observed data value, X of random variable X,

sy ;
is the sample size, gave ;égd results for generalléeg _
extreme value distribution. Thus, the following equations
are used in the study to estimate the L-moments and PWM’s,ar
and Br (refer to equations 2.9, 2.3 and 2.4,

respectively).

_ln

i r
arIY,Gl'— n I (1 - pi=n) Xy
i=1
n (2.13)
b_Y,8] = ol oz p;_ %Xy,
1=1 *'R
1 ty,81 =nt 3 B* (p )
’ =n P, . b4
r 141 r-1"%1i:n i
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PROCEDURE FOR FLOOD REGIONALIZATION

Statistical estimates of flood guantiles, based on
at-site data only, are highly variable due to modeling and
sampling error. Consequently, a process of flood
regionalization, whereby flood data from several sites
within a homogeneous flood region (defined a priori) are
pooled together, is usually recommended. In the present
study, an at-site/regional flood data (refer to 1(b) above)
approach is adopted using the historical AMF series .
(systematic record) (refer to 2(a) above) from each of the
gauged sites in Kentucky. This data are transformed”to a
dimensionless form by dividing each observed flood value by
the mean annual flood at that site. An index-flood approach
for flood regionalization similar to the one used by Hosking
and Wallis (1987), and as described below, was used to pool
flood data from gauged sites within a homogeneous flood
region (the procedure used to delineate such regions is
discussed later). An IBM supplied computer program
(Hosking, 1988) is used, with some modifications, to
accomplish the regionalization. This computer program
allows the development of a regionalized flood frequency
distribution for commonly used probability distributions.
The method of L-moments is used to‘estimate regionalized
parameters. A step-by-step procedure of the index-flood
method used in this study is as follows:

1. Define flood regions that have similar underlying flood
response. These regions can be delineated either using
the statistical moments required to characterize the
underlying parent probability distribution or the
parameters of this distribution as estimated using the
statistical moments. In either case, the basic premise
is that regions having similar statistical moments or
parameters of the probability distribution must be
homogeneous with respect to their flood response.

17



Alternatively, such regions may be delineated on the
basis of the physical characteristics of the watersheds
that control flood response. In this study, both
approaches are used to identify flood regions.

2. Within each region assume that the regional flood
quantile estimate for a given return period, T, is
given by Q- This estimate is derived from the
probability distribution of normalized flood data
(dimensionless floocd variate) and hence is scale
independent. The normalized flood variate, X is
obtained by dividing each flood observation, Q; at a
site by an index flood, Q. The latter is usually
taken as the mean annual flood at the site as is done
in this study.

3. Estimate the at-site mean annual flood, 6,'at each
site, i, within a region using the average of observed
raw flood data as required in step 2 above and the
following step.'

4. Combine estimates, dps and Q, to obtain the flood
quantile estimate, QTi at site i within the region.

5. The accuracy and precision of the flood quantile
estimate, Qn;, at site i is then evaluated using Monte
Carlo simulation techniques.

DEVELOPHENT OF REGIONALIZED FLOOD FREQUENCY GROWTH CURVES

A frequency growth curve is simply a plot of a
cumulative probability density function and can, therefore,
be used to compute flood levels at various probability
levels of non-exceedance (flood quantiles). In this study
these curves are plotted with the normalized flood levels
(random variate) on the vertical axis and the probability of
non-exceedance on the horizontal axis of a Generalized
Extreme Value probability paper. A high value of
coefficient of variation and skew prevalent in the AMF data
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would cause this growth curve to be steeper reflecting more
variability in the data. Thus, a given normalized discharge
level will be associated with a smaller return period (or
probability of exceedance) than a flatter curve.
Furthermore, these growth curves can be directly related to
the flood response of the watershed (Acreman and Sinclair,
1986). For example, larger watersheds, responding to floods
generated from various sub-watershed contributions, may
exhibit greater variability in their flood response than
smaller watersheds. Hence, flood data from larger -
watersheds would have a larger coefficient of variation
resulting in a steep growth curve. The shape of the growth
is, also, influenced by other watershed physical and
climatic characteristics like watershed size,-slope,
landuse, soil and spatial and temporal effects of rainfall
inputs. 1In any event, differences in the shape of these
growth curves (regionalized) do reflect variations in flood
response, and can, therefore, be used to assess the degree
of heterogeneity of flood response between flood regions;

DELINEATION OF FLOOD REGIONS: CLUSTER ANALYSIS

The purpose of cluster analysis in the context of flood
regionalization, is to place gauged sites into clusters or
grouﬁs such that all the gauges within a cluster have
similar flood response and those in different groups have
dissimilar flood response. Therefore, the success of any
clustering technique would greatly depend on the variables
used to define similarity of flood response and some sort of
measure to cluster gauged sites that are closer than others
with respect to these variables. Since the flood response
of any watershed is dependent on the underlying probability
law of flood response, it is appropriate to use the
statistical moments that characterize this distribution
and/or the the-parameters of the probability distribution
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(as estimated from the moments) as the variables to measure
similarity (referred to as response variables in this study)
of gauged sites within a cluster. In order to accomplish
this, a criterion to group gauged sites having similar
statistical moments or parameters (or response variables) is
required. A commonly used method is based on the concept of
Euclidean distance. In particular the Mahalanhois distance,
as defined in the following equation, has the added
advantage when compared to an ordinary Euclidean measure
since it explicitly accounts for any correlations that might
exist between the variables used in clustering.

D’ = { X. - X, )' st (x, -x.) (2.14)
, i J L i 3j )
where,
D = Euclidean distance,
Xi and Xj = Vector of the response variables used

at a gauged sites i and j,
respectively, for measuring similarity
of floocd response, and

8 = pooled within-group covariance matrix.

In this study a clustering technique based on the

Euclidean distance measure described above is used to group
(or to bring together) gaﬁged sites into homogenecus flood
regions or clusters. Several clustering algorithms, such as
the average-linkage, nearest centroid sorting (referred to
as FASTCLUS), complete linkage or Ward’s minimum variance
can be used to perform the clustering based upon the
Eulidean distance given by Equation 2.14 (SAS, 1985). The
choice amongst these will depend on the data being analyzed
although the FASTCLUS disjoint clustering algorithm has an
intuitive appeal over the other methods since its procedure
allows for the movement of observations at every step of the

clustering process.
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a) Choice of the Clustering Algorithm: As mentioned above
there are several algorithms that are commonly used in
performing cluster analysis. The principal difference
betwéen each of these algorithms stems from the manner in
which they compute the Euclidean distance measure and the
manner in which the clustering is performed. Consequently,
the nature of the clusters formed will depend heavily on the
variables and their corresponding values. A brief
discription of characteristics and biases of the more
frequently used clustering algorithms that makes each
different or distinct from others is presented in SAS, 1985,
These inherent differences are used in this study to make
the final cheoice of the algorithm.

The FASTCLUS clustering technique, as available in the
Statistical Analysis System computer software, SAS (SAS
Institute 1985), is used to group (or to bring together)
gauged sites into distinct flood regions or clusters. This
procedure performs disjoint clustering on the basis of
Euclidean distances computed from the clustering variables
used. The FASTCLUS procedure differs from hierarchical
clustering procedures, such as Ward’s, by using cluster
seeds. Initial cluster seeds are observations which are
separated by at least a specified minimum distance.
FASTCLUS is an iterative procedure in which cluster seeds
arezrecomputed for each iteration. 1In each iteration, all
observations are assigned to the nearest seed, forming the
specified number of clusters, and the seeds are recomputed
as the means of the clusters. Observations are then
considered as seed replacements using two tests based upon
maximizing the distance between seeds. This iteration
process continues until a convergence criterion, bgsed upon
the maximum distance any seed is changed, is met. Then the
final clusters are formed by assigning each cbservation to
the nearest seed. The FASTCLUS procedure is sensitive to

outliers.

21



‘The FASTCLUS procedure described above is similar to
the procedure used by Wiltshire (1986) in his efforts to
regionalize flood data in England. In favor of this form of -
clustering, Wiltshire (1986) points out that "partitioning
imposes a certain degree of structure on the data and avoids
the undesirable tendency of hierarchical schemes to produce
one large dominant cluster located at the centroid of the
data with small satellite clusters toward the margins of the
data space". A similar situation was observed by the
authors when using hierarchical clustering-algorithms such
as Ward’s. This was the primary reason why the FASTCLUS
procedure is selected over the other methods in this study.
Based on the flood response variables, namely statistical .
moments required to characterize the underlying probability
distribution, the parameters of the probability distribution
and the specific mean annual flood, QSP (clustering
variables), disjoint clusters or flood regions are
successfully delineated.

one of the most difficult problems in cluster analysis
is the identification of the optimal number of clusters in a
data set that can be clearly distinguished from each other.
A review of current literature suggests that several
procedures, referred to as stopping rules, available for
addressing this vital issue. Such rules are often applied
in a subjective manner. To use these rules in the classical
- "test of hypothesis" setting requires the specification of a
null and alternate hypothesis, such as that the data are a
random sample from a multivariate normal population.
However, it has been shown that there can be large errors
associated with these tests if the hypotheses are not stated
correctly. Futhermore, there is the additional problem of
determining the sampling distribution of the criterion used
in the hypothesis testing. Ordinary tests like ANOVA F and
t-test are not valid for testing difference between
clusters, since clustering methods tend to maximize the
separation between clusters and hence violate the basic
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assumptions of such tests. In view of this, formal tests of
hypothesis are not used in this study. Instead, a number of
stopping rules are incorporated in a subjective manner while
selecting the optimum number of clusters. In doing so, the
principal objective of identifying homogeneocus cluster or
flood regions that can be discriminated easily based upon .
the attribute variables is given primary emphasis. Milligan
and Cooper (1983) used Monte Carlo simulations to evaluate
the performance of 30 stopping rules commonly used in
cluster analysis. Amongst these, several rules which gave
good performance are selected and discussed below.
Furthermore, since only 253 gauged sites are being used in
the flood regionalization study, it seemed impractical and
physically unrealistic to examine more than ten clusters.
Cosequently, the following stoppihg rules, as presented by
Milligan and Cooper (1983), are applied to 10 or fewer
cluster regions.

1) The goocdness of fit criterion, R2, has the usual
interpretation of the pfoportion of variance accounted
for by the clusters. Ward’s algorithm attempts to
maximize this when deciding on the clusters to merge at
each stage of clustering. As clusters are merged R2
will decrease and, hence, a rule of thumb is to stop

. clustering whenever there is a significant drop in the-
value of this criterion.

2) The ratio criterion is defined as the ratio of within
cluster sum of squared errors when the data are split
into two clusters to the squared errors when only one
cluster is used. In general, small ratio of this
criterion leads to the regection of the hypothesis of
one cluster. This criterion, as first proposed by Duda
and Hart (1973), gave the best performance amongst all
the other rules examined by Milligan and Cooper (1984).
The ratio criterion can be applied at each stage of the
clustering to the subpopulations invelved. Thus, at
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3)

any stage, if the ratio is small, the two clusters
being merged should remain separate. In contrast, a
larger value of this ratio would support the collapsing
of the two clusters into one. The Duda and Hart ratio
criterion can be related to the pseudo—t2 statistic
available in the SAS package by a reciprocal
relationship (SAS, 1985). The pseudo—t2 statistic is a
measure of the separation between clusters most
recently merged. Thus, a rule of thumb while selecting
the optimum number of clusters is to look for smali'
values of this statistic.

Another stopping rule that performed in the top
one-third of the stopping rules studied by Milligan and
Cooper (1983), was the pseudo-F statistic. While
similar to the F-statistic in ANOVA, the assumptions
associated with analysis of variance are not met in the
clustering setting and, hence the name "pseudo~F".

This statistic provides the measure of separation among
all clusters at any step in the clustering process.
Ideally, as the number of clusters decreases, the
pseudo-F statistic will decrease, then rise at the
point where the optimum number of clusters occur, and
then fall again (this is referred to as an "elbow”
effect). If such is not the case, the pseudo-F will

- continue to decrease as the clusters are collapsed. 1In

4)

this case, one could look for the largest gap of this
statistic in selecting the optimum number of clusters.
The cubic clustering criterion (CCC criterion)
developed by Searle (SAS, 1985) performed as well as
the pseudo~F statistic in the simulation runs by
Milligan and Cocoper(1983). This criterion is a
function of the observed RZ (refer to stopping rule 1)

2 assuming that the clusters, as

and the expected R
obtained from a uniform distribution on a hyperbox, are
hypercubes of the same size. Guidelines for using CCC

criterion include the plotting of CCC statistic versus
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the number of clusters with the peaks indicating the
possible cutoff point for extracting the optimum number
of clusters. Peaks associated with a CCC value greater
than or equal to 2 indicate a good number of clusters.

b) Selection of Suitable Fiood Characteristics for

" Clustering: As stated in the previous section, the success
of using cluster analysis to delineate homogeneous flood
regions depends to a large extent on the variables used to
define the flood characteristics at each of the gauged sites
(response variables). Since any data set of observations
can form clusters, it is imperative to choose variables
that reflect the flood experience as acqﬁgately as‘possible
in order to ensure flood homogeneity within a cluster. The
flood response of a watershed, as measured using the AMF
series at a gauge, is stochastic and is, therefore, governed
by an underlying probability law (distribution unknown a
priori). The latter can be evaluated by fitting the AMF
series to an assumed probability distribution using
statistical moments of various orders such as the fist order
moment. Consequently, it can be postulated that any two
gauged sites will have similar flood response if their
underlying probability distribution is the same. This would
also imply that the statistical moments used to fit the
probability distribution (involving the evaluation of its
parameters) and/or its parameters must be identical except
for the effects of scale. Based upon this premise, the
following clustering variables (flood response variables)
are initially used to perform cluster analysis using
FASTCLUS clustering algorithm. All the clustering variables
are standardized prior to clustering in order to suppress
any disproportionate effects during clustering.

1) L-moment ratios (dimensionless ratios of L-moments) of
normalized maximum annual peak flow data from each
gauged sites, namely, coefficient of wvariation, LCV,
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coefficient of skewness, LSK and coefficient of
kurtosis, LKUR. All these variables characterize the
form of the underlying probability distribution. For
two-parameter distributions the first L-moment, LCV is
adequate while for probability distributions with more
than two parameters higher order L-moment ratios will
be required.

2) The specific mean annual flood, QSP, defined as the
ratio of the mean annual flood at each site (as
estimated using raw flood data) to the watershed size
in square miles.

3) The parameters (as,éstimated using L-moments) of the
selected flood pragability distributions. The number
of parameters used will depend on the distribution
selected. Generally, two to three parameters
reflecting the location, scale and shape are required
for most probability distributions.

The final choice of suitable response variables for
obtaining the clusters is based upon the results of cluster
analysis, specifically, the ability to extract optimum =
number of clusters using a cutoff criterion, detailed
examination of trends in important hydrological
characteristics within and between regions, flood frequency
growth curves, discriminant analysis using the attribute
variables at each gauged site, and regression analysis
relating selected flood levels to watershed physical
characteristics. These results are presented in the next
chapter.

DELINEATION OF FLOCD REGIONS: USGS METHOD OF RESIDUALS

The U. S. Geological Survey curreﬁtly employs the
method of residuals to perform flood regionalization. The
technique involves the use of residuals from a regression
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equation relating a selected flow quantile (for example the
50-year flood level as obtained from an assumed probability
distribution of the AMF series at each gauged site) to the
physical and climatic characteristics of the watershed. The
probability distribution employed is log-Pearson Type-III.
This technique relies on the basic premise that the trends
in the residuals reflect regional differences in the flood
response of the watersheds. Thus, once a homogeneous region
is delineated then the regression equation relating the
flood response variable to the watershed characteristics
will have residuals that can be attributed to pure chance.
Unfortunately, the residuals.contain both chance variation
(time sampling error) and variation due to basin
characteristics (model error) without a measure of the
relative amounts of each (Riggs, 1973). This makes the
delineation of homogeneous flood regiohs a difficult, if not
an arbitrary, task to accomplish. Nonetheiess, this
procedure was used to delineate seven homogeneous flood
regions for the State of Kentucky (refer to Figure 2-1)
using flood data from all gauged sites used in the present
study (i.e. both the data sets set aside for gauged and
ungauged analysis). A regionalized skewness coefficient was
used for estimating the 50-year flood quantile of the _
log-Pearson Type-III frequency curve fitted to annual peak
flow data at each of the gauged sites.

VERIFICATION OF FLOOD REGIONS

a) Hydrological Characteristics of Flood Regions: For each
of the clustering scheme and method of residuals the
variation in important hydrologic characteristics (response
and attribute variables) within and between regions are
compared. Tables showing important statistics such as
range, minimum and maximum, mean, and median are used for
this purpose. These statistical characteristics of the
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hydrological attributes at each site within a flood region
provide a means to select clusters that may be similar or

distinct from others. They will also indicate the type of
watersheds that lie within each flood region.

b) Performance of Regionalized Flood Frequency Models: The
accuracy of delineation flood regions can be further
evaluated by examining the performance of the regionalized
flood frequency model. Commonly used measures of
performance are scaled values of bias and root mean squéfed
error (RMSE). In this study, this is carried out using
Monte Carlo simulation methods as oulined below.

1. For a selected probability distribution, estimate the
at-site parameters using method of L-moments.

2. Generate normalized flood flow sequences, having the
same record length in years as the historical
systematic AMF record at the site, using a suitable a
random number generator. A widely used random number
generator referred to as RAND is used in this study.
This is an IBM function that uses a multiplicative
linear congruential method for generating a uniform set
of pseudo-random numbers.

3. Using the IBM floocd regionalization computer program
(Hosking, 1988) a regionalized flood frequency model
(for the selected probability distribution) is
developed (for each region). A total of 100 simulation
runs are made. '

4. The regiocnalized flood frequency model developed in.
step 3 is used to estimate the flood quantiles at each
site using the index-flood method described earlier.

5. The scaled bias in the estimate a flood quantile at
each site is computed by taking the difference between
the simulated value and the historical estimate (based
on regionalized historical flood record) and dividing

29



this by the historical estimate. The RMSE uses the
square of this scaled bias.

6. Steps 2 through 5 are repeated for each of the 100
simulation runs. _

7. Based on the 100 simulation runs, regional average
values of bias and RMSE are then computed using the -
corresponding estimates at each of the gauged sites
within the region.

c) Discriminant Analysis: The success of any cluster
analysis in identifying flood regions that are homogeneous
within themselves but are distinct from the others depends
to a large extent on the ability to discriminate between
them. The variables to be used in discriminating between
clusters or regions must be those that control flood
response like the physical and -climatic characteristics of
the watershed(refer to nomenclature). Furthermore, the
classification of an ungauged site (does not have observed
AMF data) into a particular region can only be carried out
using the attribute variables used in the discrimination
process. '
The power of discriminant analysis is measured by the
correct reclassification of the gauged sites into their
respective cluster regions that are originally identified in
cluster analysis phase. A good discrimination can be
obtained when the percentage misclassification of gauged
sites is minimal. The success of accomplishing this
cbjective deﬁends on the attribute variables available for
discrimination. The overall objectives of discriminant
analysis in the context of flood regionalization are:

a) To further explain the differences between cluster
regions based upon hydrological variables (referred to
as attribute variables) that affect and/or contreol
flood response at each of the gauged site within a
cluster region. This would further explain why the
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flood regions (or clusters) are different with respect
to the response variables used in the clustering
process.

b) To use results from the dlscrlmlnant analysis to
classify ungauged.51tes that do not have their flood

response variables defined.

d) Regression Analysis: The ultimate objective or purpose
of regionalizing flood data is to develop regionalized
relationships for predicting the flood response (at selected
frequency levels) at both gauged and ungauged sites. For
gauged sites, the regionalized relationship can be used
together with at site information. The development of a
regional equatien for predicting flood response or quantiles
within a given region can be accomplished using regression
analysis by relating the flood level (dependent variable)
with important hydrologic variables controlling flood
response (independent or attribute variables). In the USGS
method of residuals approach, this is accomplished by
relating the log-Pearson Type-III flood quantile estimates
at each gauged site within a region to hydrologic variables
such as the geomorphic characteristics of the watershed.

The regression analysis is carried out using log-transformed
(base 10) data. The predictive capability of such equations
is determined by examining the residual error expressed in
percent (Tasker, 1978). Ideally, this erfor should be as

low as possible.

COMPARISOR OF FLOOD REGIONALIZATION METHODS

The main focus of this study, as stated earlier, is to
compare the two methods of flood regionalization, namely,
cluster analysis (Methods 1 and 2) and method of residuals
(Method 3). 1In the following chapter homogeneous flocd
regions delineated under these two methods are compared with
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those obtained by the method of residuals (refer to Figure
2.1) using the procedures discussed above. The following
specific questions are addressed:

a) How do the homogeneocus flood regions delineated in the
present study using cluster analysis, differ from those
derived by the USGS Method of Residuals in terms of the
watersheds and their hydrological characteristics?

b) How well are the regions discriminated by the attribute
variables under the two methods of regionalization?
What are the most significant attribute variables ﬁhat
provide the maximum discrimination?

c) For the selected probability distributions controlling
flood response at each gauged site, how do the results
of flood regionalization differ in terms of the
performance of the regionalized flood frequency growth
curves? What are the differences in the flood quéntile
estimates at each site? Flood quantile estimates from
the log-Pearson Type-III distribution will also be
included in this comparison.

d) What are the differences in the regréssion equations
that predict the floed quantiles (at various return
periods) for each region using the two methods of
regionalization? These regression equations are
necessary for predicting flood quantiles at ungauged
sites.

SPECIFIC RESEARCH PROCEDURES

Based on the overall procedures presented above, the
following specific steps are followed in conducting this
study:

a) Hydrologic data, necessary for performing a regional
flood frequency analysis, are obtained from the U.S.
Geological Survey, Louisville District. These include
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b)

observed annual flood data as measured at each of the
the gauged sites (referred to as response variables)
and physical, climatic and hydraulic characteristics of
the watersheds that affect flood response (referred to
as attributes).

Probability distributions recommended for use in flood
frequency analysis are selected after a careful review
of previous research efforts. The following
probability distributions, commonly employed in flood
frequency analysis (Kuczera, 1982) are employed:

a) Generalized Extreme Value (GEV) and its special
case, Extreme Value Type-I (EV1)
b) Wakeby

The parameters of the probability distribution will be
estimated using the method of L-moments.

Cluster Analysis is then used to form homogeneous flood
regions based upon important statistical properties of
the normalized AMF series and the probability
distribution selected in step (b). Properties such as
the mean, standard deviation, coefficients of

- variation, skewness and kurtosis (L-moments) and the

specific mean annual flood, QSP, and the parameters of
the probability distribution, as estimated from
L-moments, are used as indices to measure flood
response of each watershed.' The FASTCLUS procedure
available in the Statistical Analysis System (SAS,
1985) is used to obtain clusters or groups. The
purpose of this analysis is to place the gauged sites
into groups or clusters such that gauges within a
cluster have similar flood response and those in
different clusters have dissimilar flood response.
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d)

e)

f)

g)

For the flood regions delineated in step (c) above,
determine the most suitable regionalized probability
distribution applicable to each of the gauged sites
within the region using Monte Carlo simulation. This
is based upon a performance criteria, such as the mean
squared error and bias, that yield the most reliable-
estimates of extreme events. The simulation involves a
detailed frequency analysis of the AMF series using
regional parameters of the underlying probability
distribution.

For each flood region delineated in step (c) above,
summarize and evaluate the trends in the hydrological
characteristics and develop a regionalized flood
frequency growth curves for a given probability
distribution. Evaluate differences in the shapes of
these growth curves between regions and relate this to
differences in the hydrological characteristics.

Perform Discriminant Analysis to distinguish between
the clusters formed in step(c) based upon attribute
variables such as the physical, climatic and other
hydrologic characteristics of the watershed. The
discriminant scores, associated with each of the

- attribute variables, are used to evaluate any

misclassification of a gauged site into the homogerneous
flood regions defined in step(¢). This step will also
identify . the most important variables that affect or
control flood response of a watershed and can later be
used for developing flood prediction equations.

Within each cluster, perform'a stepwise regression
analysis with using select flood quantile levels as the
dependent variable and other watershed hydrologic

-attributes as the independent variables. This step

will alsc identify the most significant attributes
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variables controlling floocd response of the watersheds
within a cluster, and, additionally, provide a means to
compare them with the set of attribute variables that
contributed to the discriminant power between clusters
as described in step {c) above. Compare the mean
square and standard errors associated with the
regression equations developed for each cluster region
with similar equations ¢btained for the U.S5.G.S. method
of residuals flood regions. 1In this context, it must
be emphasized that the actual gauges on each clustéf
will not be identical to those being used in the method
of residuals study since the two methods are quite
different in the manner in which the homogeneous flood
regions are formed. However, the values of the errors
associated with the regression equation within each
cluster can be compared overall to those obtained from
the method of residuals in order to determine the most
suitable method of regionalization.
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CHAPTER 3

DATA AND RESULTS

DATA ACQUISITION

Annual maximum floodpeak data (AMF series) was
retrieved from WATSTORE by the U.S. Geological Survey,
Louisville District office. Additional hydrologic data
pertaining to each watershed corresponding to the gauged
streamflow sites was provided by the U. S. Geological Survey
office in Louisville. This data constitutes a part of the
information on the attribute variables (or independent
variables) to be used in the regionalization study.
Additional geomorphic variables for each watershed may be
.necessary to further improve the regionalization process.
Such data was not readily available at the completion of

this report.
The following is a detailed list of hydrologic,

physical and meteorologic data that is used in the flood

regionalization study.

1)

2)

The systematic historic AMF record at each of the
gauges in the State of Kentucky. Only gauges
located in watersheds with drainage areas less
than 1000 Square miles and having at least 7 years
of flood data is used in the analysis.

Physical chéracteristics affecting or controlling
the flood response of the watershed in which the
gauge is located. This includes watershed
contributing drainage area, Ac' length, Bl' shape
index, Bs, average slope, Bs, elevation, soil
type, and land use (percent impervious area etc.),

36



and
sl
slope, Sc. Geomorphic data such as the number and

‘average length of streams of different orders (for

and main channel length, L., sinuousity, S

computing geomorphic properties of each watershed
such as stream order, stream frequency, drainage
density, form factor and bifurcation ratio), and
the time of concentration were not readily
available at the completion of this study.

3} Climatic data such as seasonal (dry and wet
periods) and type of rainfall characteristics
experienced in each of the watersheds. The only
variable available at the time of this study was
‘the mean annual rainfall.

The list of flood response variables (dependent
variables) and the watershed attribute variables
(independent variables), to be used in the regionalization
study is shown at the end of this report under nomenclature.
Pertinent statistical of data corresponding to these
variables, as defined at each of the 253 gaging sites, is
included in Table A.1l, Appendix A. The values-of the '
response variables are derived by computing important
statistics of the normalized AMF data for each gauged site.
These statistics, either individuallf or in combination,
will be used in defining homogeneous flood regions using
cluster analysis as presented in the following sections.

DELINEATION OF CLUSTER FLOOD REGIONS

Using FASTCLUS algorithm, a detailed cluster analysis
is carried out using the response variables outlined in the
previous section and in Chapter 2 with the following
objectives.

1) To obtain optimum number of clusters or regions
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that are.physically realistic for representing
flood experience for the State of Kentucky.

2) The number of clusters selected must satisfy at
least one of the several available cutoff
criteria. This would ensure that each cluster is

'homogeneous within itself but heterogeneous with
respect to other clusters.

3) The number of gauged sites within a cluster must
be sufficiently high in order to permit any
statistical analysis.

4) The clusters must lend themselves to maximum
possible discrimination based on the attribute ~
variables (hydrological characteristics other than
those based on AMF data). This would maintain the
hydrologic distinction between the cluster “
regions. _

" 5) The misclassification of the gauged sites already
grouped and the ungauged sites to be assigned to a
cluster region must be minimal. |

With the above objectives in mind, results from cluster
analysis using FASTCLUS algorithm are initially screened for
the most suitable response variables to be used for further
analysis. These results suggest that ihdependeht clusters
or flood regions can be successfully formed using the
statistical L-moments, LCV, LSK, LKUR of the normalized
annual peak flow data, the parameters of the selected
probability distribution and the specific mean annual flood,
QSP taken individually or in combination. Clustering on
physical characteristics of the watershed gave cluster
regions that could not be discriminated well based on the
flood response variables.

As expected, the composition of each cluster and the
optimum number of clusters that can be extracted and
discriminated (based upon attribute variables associated
with the watersheds in which each of the gauged sites is
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located) continues to depend heavily on the type and number
of response variables used in the analysis. Consequently,
the final choice of clustering schemes, incorporating
different response or clustering variables, is based upon
the overall performance of each flood region. The following
sections discuss results of all the clustering schemes and
techniques used to delineate and evaluate the flood regions.

a) Clustering Cases: Twelve clustering schemes are -adopted
initially for further examination. Table 3.1 summarizes the
results of the FASTCLUS clustering procedure for the various
clustering schemes. Case 13 shown in this table applies to
USGS regions, as delineated using method of residuals, an@?
is included for the purpose of comparing the two method of
regionalization. These twelve cases, as shown in Table 3.1,
involve clustering with the response variables L-moments,
namely, coefficients of variation, LCV, skewness, LSK, and
kurtosxs, LKUR, respectively, the specific mean annual
flood, QSP, and the parameters of the EV1l (MEVL and AEVL),
GEV (MGVL, AGVL and KGVL) and Wakeby (MWKL, AWKL, BWKL,
CWKL, and DWKL) distributions. Each case is included in the
study with a specific purpose. For example, for the
clustering cases involving L-moments (Cases 1-3), Case 1,
with clustering variable, LCV, would be appropriate for
2-parameter flood frequency models that require location and
scale parameters to characterize the model completely. It
must be emphasized, that the use of normalized AMF data
standardizes the first moment (mean), characterizing the
location, to 1.0. Since the coefficient of variation, LCV,
reflects the dispersion (or scale) effects present in the
flood data, this statistic would be totally adequate to
describe a flood frequency model involving location and
scale parameters. For example, the EV1 distribution used in
this study can be characterized completely by LCV. 1In
contrast, a five parameter flood fregquency model like the
Wakeby would require all L-moments, LCV, LSK and LKUR and
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TABLE 3.l1. <¢Clustering characteristics of Cases Examined in

the Study
No. Cluster No. of 2 No. of Sites in
Variables Clusters R ccc  Each Cluster Region
1 LCv 6 0.953 =-6.66 78,33,42,20,70,10
2 LCV, LSKEW 6 0.830 =1.17 66,45,16,57,31,38
3 LV, LSKEW, ] 0.766 6.36 38,49,19,43,66,38
LEUR ‘
* -
4 LCV, QSP 5 0.759 =~4.50 89%16,93,30,25
* 7o
5 LCV, LSKEW, 5 0.689 1.97 79,17,75,44,38
QsP 7
6 LCV, LSKEW, - & 0.611 4.82 26,26,73,88,40
LKUR, QSP
7 MEVL, AEVL 6 - 0.953 23.80 79,34,41,20,70,9%
8 MGVL, AGVL 5 0.705 3.65 - ?4,30;29,45,74
RGVL '
9 MWKL, AWKL, BWKL 2 0.215 7.41 44,209
CWKL, DWKL
*
10 MEVL, AEVL, 5 0.775 12.24 43,10,91,79,30
QSP
*
11 MGVL, AGVL, -6 0.646 4.27 81,21,40,15,68,28
KGVL, QSsP ‘
12 MWKL, AWKL, BWKL 3 0.287 6.57 5,12,236
CWKL, DWKL, QSP
13¥ uscs mecrons 7 - - 32,68,26,20,38,31,38

# Regicons delineated by the Method of Residuals. Included for
comparative purposes

*# Indicates clustering cases selected in the study
(referred to as Cases 1-4)
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one higher order moment, LBMD. Cases 7-9 correspond to
Cases 1-3 with the exception that the actual at-site
parameters (as estimated from L-moments) of the appropriate
flood frequency model are used as clustering variables.
Hence, Case 1 would correspond to Case 7 since the
estimation of EV1 parameters require LCV (for normalized AMF
flows). Cases 4-6 and 10-12 are similar to the above cases
but include an important clustering variable, namely the
specific mean annual flood, QSP. Unlike all the other
clustering variables, which describe the underlying flood
frequency distribution, the specific mean annual flood
desc¢ribes the flood potential of each watershed. An
examination of at-site estimates of QSP for the 253 gauged
sites in Kentucky indicates that its value decreases as the
size of watershed increases.

The relative performance of the above 12 clustering
cases is evaluated in detail using the following results.

1. Results of the cutoff criteria for choosing optimum |
number of clusters,

2. Trends in the hydrological characteristics and
regionalized frequency growth curves,

3, Performance of the regional flood frequency model using
simulation, .

4. Results of discriminant analysis, and

5. Results of regression analysis relating flood quantiles
to watershed physical and climatic characteristics.

b) Selection of number of cluster regions and cases: Since
one of the main objectives of cluster analysis, in the
context of flood regicnalization, is to delineate
homogeneous flood regions that can be distinguished from
each other, the number of clusters obtained must not be too
few or large. With this in mind, several cutoff criterion
or stopping rules, as discussed in Chapter 2, are used to
determine the optimum number of cluster regions. An
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application of the stopping rules to the 12 clustering
schemes gave results shown in Table 3.1. For all schemes
the CCC criterion showed a peak or trough value going from
larger to smaller number of clusters than the optimum number
of clusters (refer to column 6 of Table 3.1) and the R2 was
quite high indicating a clear choice of the optimum number
of clusters. The inclusion of QSP as a clustering variable
changed the optimum number of cluster regions from 6 to 5

. with the exception of the case when the GEV parameters are
used in the clustering. Clustering on Wakeby parameters
gave only 2-3 regions and gave the worst overall performance
compared to all clustering cases examined in this study.
Hence, the Wakeby probability distribution is not considered
suitable for regionalizing flood data for the State of
Kentucky and is dropped from further consideration. Amongst
the remaining schemes, the inclusion of QSP as a clustering
variable (refer to scheme numbers 4, 5, 10 and 11 in Table
3.1) improved, although marginally, the overall performance.
Consequently, all results discussed in the following |
sections pertain to the following four cases (marked by an
asterisk "*" in Table 3.1) that are finally selected from
the twelve clustering schemes. These cases incorporate the
flood regiondiizations Methods i and 2.

- Case 1 : Clustering with LCV and QSP (Method 1)

Case 2 : Clustering with the Extreme Value Type-1
probability distribution parameters (MEVL and
AEVL) and QSP (Method 2)

Case 3 : Clustering with LCV, LSK and QSP (Method 1)

Case 4 : Clustering with the Generalized Extreme Value

parameters (MGVL, AGVL and KGVL) and QSP
(Method 2)

As mentioned in the previous section, Case 1 and Case 2
are similar since the clustering variable LCV is adequate to
estimate the parameters MEVL and AEVL of the EV1
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distribution. Also, Case 3 and Case 4 are similar since the
clustering variables LCV and LSK are used to estimate the
parameters MGVL, AGVL and KGVL of the GEV distribution. Aall
the four clustering cases gave, by and large, disjoint
cluster regions as illustrated in the bi-variate plots shown
in Figures 3.1-3.13. The numbers shown on these figures are
cluster numbers. It is obvious from these figures that the
the overlap between cluster regions increases as the number
of clustering variables increase (refer to Case 4, Figures
3.8~3.13). The bi-variate plot of EV1 parameters, MEVL '
versus AEVL (refer to Fig. 3.3), shows an inverse linear
relationship suggesting an increase in the location
parameter (mode) as the scale parameter decreases. The
bi-variate plot involving L-moments, as in Case 3,

" illustrates that LCV is directly proportional to LSK (refer
to Fig. 3.6).

The total number of éauged sites classified into each
of the cluster regions for the above four cases is shown in
the last column of Table 3.1. The smallest number actuai'
sites within a cluster is 10 (Case 2) which is adequate for
performing any statistical analysis within the region.

The number of gauged sites (not the actual gauges)
assigned to a particular cluster depends on the clustering
variables used in the analysis. This is illustrated in
Tables 3.2~3.7. Using Cases 1-4 (clustering with response
variables LCV, LSK, EV1l and GEV parameters and QSP), these
tables show the number of gaﬁges reassigned when the ’
clustering case is changed to one of the remaining cases.
Each row reflects the number of gauged sites reassigned to
the cluster numbers shown in the columns when clustering is
carried out using any other case in lieu of the one shown on
left hand side. For instance, the first row in Table 3.4
shows that of the 89 gauged sites (refer to last column of
Table 3.4) assigned to cluster 1 when using clustering
variables, LCV and QSP (Case 1), 65 sites are reassigned to
Cluster 1 when using LCV, LSK and QSP as clustering |
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variables (i.e. Case 3), 21 gauged sites are reassigned to
Cluster 3, and 3 sites to Cluster 4. Thus, there is a clear
evidence of movement in the gauged sites between clusters
when Case 1 and 2 are.compared against each other. A
similar comparison of Case 1 (clustering with LCV and QSP)
versus Case 2 (clustering with EV1 parameters and QSP) and
Case 3 (clustering with LCV, LSK and QSP) versus Case 4 (GEV
parameters and QSP) respectively (refer to Tables 3.2 and
3.5), also suggests movement, although to a lesser degree,
between cluster regions. Thus, the cluster regions |
delineated using the L-moments or parameters tend to be
dependent on the type and number of clustering variables
used. The effect of using different clustering variables
(although standardized) on the hydrolegical composition of
cluster regions delineated is illustrated further in the
following sections. |

c) Comparison of Cluster and USGS Regions: The seven flood
regions delineated by the USGS using the method of residuals
(refer to Figure 2.1), are quite different in terms of the

- actual gaged sites when compared to those obtained by '
cluster ahalysis. Since cluster regions are not coincident
with any gecgraphic or hydrologic boundaries, they can not
be illustrated in a convenient manner like the USGS regions
of Figure 2-1. Furthermore, the total and the individual
gauged sites incorporated within a region vary considerably.
This is clearly evident from a‘comparison—of the USGS method
of residuals regions with the cluster regions obtained under
each of the four cluster schemes (cases 1-4). For example,
Tables 3.8-3.11 compares the USGS regions with those
obtained under clustering Cases 1-4. In these tables, the
rows represent the cluster regions for a particular case
with the total gauged sites within each region shown in the
last column. In the same manner, the columns represent each
of the seven USGS regions (as delineated using method of
residuals) with the total gauged sites within a cluster
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shown in the last row. An examination of these tables
indicates, as expected, significant movement of gages
between the cluster and USGS regions.
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TABLE 3.2. Comparison of Actual Number of Gauged Sitea

Assigned Betwveen Case 1 and 2 Clustaering Schemes

MEVL, AEVL & QSP

| 1 ‘ 2 | 3 | 4 | 5 I Total
1 | 11 | e | & | o | o | 89
2 7T | 9 1 e | o | o | 16
Lcv

« 3 |} o | o | 13 | 79 | 1 93

Qsp .
4« | o | 1+ | o | o | 239 | 30
s | 235 | o | o | o | o | 25
Total | 43 } o | 91 | 79 | 30 | 233

TABLE 3.3. Cowparison of Actual Number of Cauged Sites
Assigned Between Case 1 and 4 Clustering Scheneas

GEV Parameters and QsPp

| X I 2 J 3 I 4 | ] | 6 ! Total
L | 47 o] 26| o 7| 9| 83
2 | o 9} s| of o] 2] 16
Lev
E 31 | | o] 1| o] s8] o] 93
QsP
: 4 | of 12| o} 15| 3] o] 20
s | e] o s8] o] o] 17| 25
Total | 81| 21 ] 40| 15| e8| 28 | 253

TABLE 3.4. Comparison of Actual Nunber of Gauged Sitas

Asgigned Batween Case 1 and 3 Clustering Schemes

LCV, LSKEW & QSP

’ 1 l 2 I 3 ] 4 | 5 I Total
1 | 5 | o } 22 | 3 | o | 89
2 | o | 2 | o | e | 14 | 16
ey
£ 3 | 3 | e | s¢ | 3 | o | 93
Qs
4 | 1 | o | o | s { 24 | 0
5 | w0 | 15 | o | o | o |

25

Total | 79 | 17 | 5 | 44 | 38|

253

TABLE 3.5. Comparison of Actual Rumber of Gauged Zitas
Assigned Batween Case J and 4 Clustering Schewas

GEV Parameters and QSP

H

I 1 I 2 | 3 I 4 I 5 | [ | Total
1 ] 3| 1] 26§ o] o} 13)] 79
1cv, )
2 [ o] o] 2] o] o] 15 17
LSKEW
& 3 | 42| o] 71| o] 28] o] 75
Qsp
4 | o] e] o 2| a2 o] a4
5 | o] 20| 5] 13| o] al] 18
Total | 81| 21| 40| 15| ea | 28 | 251
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TABLE 3.6, Comparimon of Actual Number of Gauged Sites TABLE 3,7. Comparison of Actual Number of Gauged Sites

Assigned Betwean Cases 4 and 2 Clustering Schemes Assigned Between Cases 3 and 2 Clustering Schemes
EV1l Parameters and QSP . EV1 Parameters and QSP
I 1 | 2 I 3 l 4 l 5 I Total I 1 l 2 | 3 | 4 | 5 | Tatal
GEV
.t ] o | o | 54 | 272 | o | 81 1 | 22 | o | 85 | 2 } 1] 79
A Lcv,
R 2 | 1 | 8 | o | o | 12 | 2 2 | 27 | o | o | o } o] 17
A 15K
o
: 3 } a2z | r | 22 } o | o | 40 F 3 | o | o | 32 | a3 | o] 75
E Qse
- L O 15 4 | o | o | 4 | n | 6| “
& 5 } o | o } 12 | s2 | s | (Y] 5 | s | 10 | o | o | 23 | 38
asp
6 | 25 | o | 3 | o | o | 28 Total | 43 | 110 | evr | T8 | 230 | 253
Total | 43 | 0 | sr» | 79 | 30 | 253
TABLE 1.8. Comparison of Actual Number of cauged Sites TABLE 3.9. Cosparison of Actual Number of Gauged Sites
Assigned Between Cluster Reglons (Casa 1) and USGS Reglons Assigned Between Cluster Reglons (Cases 3) and USGS Reglons
U. 5. G. S. Regiona » U. 5. G. 5. Reglons
I 1 | 2 | 3 I 4 I 5 I 6 I 7 I Total I 1 l 2 I 3 l 4 | 5 I 6 | 7 | Yotal
1 | 52|14 65| 5| as | 89 1 | 7)22 |13} 6] 14| 5] 13| 79
' Lev,
2 | 3] o) 2| o] 3| 3| 3] 16 2 | 4| 4| 2] o] 6] 2] 1] 17
Lcv ‘ LSKEW
& 3 Jm2| s|lu2zjujis| 7| 9 & 3 | s|29| 8| 9| 9| 5] s|] 75
QsP Qsp
4 | 6t 4| 1] o 3| 6110} 30 £ | 7121} 21 s8] s| s8] 4] a4
5 | 4] 7] 3] 21 6] 2| 2| 25 . s | 9] 1} 2) o] 4] 8| | 38

Total | 32 | 68 | 26 | 20 | 38 | 31 | 38 | 253 Total | 32 |a@ﬁﬁ%"25 | 20 | 38 | 31 | 38 | 253
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TARLE 3.10. Comparison of Actual Rumber of Gauged Sites
Assigned Between Cluster Regions (Cases 2) and USGS Regions

U. 8. G. S. Regions

i 2| 21 3} 4} 5“ s” 7” Total

! | | ! |

EV1
1 | 8] 9| ] 2}j12] 3| 3] 43
P
A
R 2 | 2] o) o o] o} 31| 6] 10
A
X
E 3 | 4|32 ]|14] 9] 14| 4| 14| 91
T
E
R 4 {12} 23] 5| 91 91 15| 6| 79
s
& s | 7] 41 1] o] 3| 6] g 30
QsP
Total | 32 | 68 | 26 -] 20 | 38 | 31| 38 | 253

TABLE 3.11. Comparison of Actual Number of Gauged Sites
Assigned Between Cluster Regions (Cases 4) and USGS Regions

U. S. G. S. Regions

l 1 l 2 l 3 .- 4 l 5 I 6 l 7 1 Total .
GEv 1 | s} 26| 10| 9| 10| 7'| 13 | 81
P : ,
A 2 | 5| 2] of of 21 4] 8] 21
R |
.
M 3 | 4112 7)1 3] 9] 21 &} 40
E
T .
E 4 | 2] 2| 1] o] 2] 3| 6] 15
R
s
s |10 |22 4| 8] 8]13] 4] 68
&
s 6 | s 7| 4] o} 7} 21} 3| 28
Total | 32 | 68 { 26 | 20 | 38 | 31| 38 | 253
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DEVELOPMENT OF FLOOD FREQUENCY GROWIH CURVES

The procedure for developing a regionalized flood
frequency growth curve was presented in Chapter 2. For the
four clustering cases (Case 1-4), a separate regionalized
flood frequency growth curve is developed for the EV1l and
GEV probability distributions using historical systematic
annual maximum floodpeak series (AMF series) from each of
the gauged sites within a cluster region. The index-flood
procedure presented in Chapter 2 is applied to accomplish
the regionalization. The regionalized weighted (by the
record length at each site) average L-moments and the
corresponding EV1 and GEV parameters are shown in Tables
3.12 and 3.13 for each of the cluster regions delineated
under the four clustering schemes. Similar data for the
USGS regions are included for comparative purposes. For the
USGS regions, the regionalized EV1 and GEV distributions are
fitted using the method of L-moments. The actual gauged
sites within each of the seven regions are identical to
those contained in the regions delineated by the method of
residuals (Choquette, 1988). B

The EV1 and GEV regionalized flood frequency growth
curves developed from the parameters in Table 3.13, are
illustrated in Figures 3.14-3.21. It is important to note
théf the cluster numbers assigned to each region will change
from case to case. Thus, cluster region number 5 in Figure
3.14 for Case 1 is not the same as cluster number 5 in Case
2. 'These numbers are arbitrarily assigned during the
clustering process. Similar curves are developed for the
USGS Method of Residuals regions are shown in Figures
3.22-3.23 for the EV1l and GEV distributions, respectively.
The vertical scale (showing normalized discharge values) for
the EV1 (Gumbel) distribution is drawn to half the scale
than the one used for the GEV in order to improve the
clarity of these frequency growth curves.
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TADLE 3,12, Conparison of Reglonal Average ;,g;..ng, Entimated Uslng TABLE 3.)3. Comparison of Negional Average Paramaoters of EV1 and GEV

Horwalized Mistoric AMF Data Probability Distributions Fitted to Hormalized Nistorla AMF Data /
1 &y = Reqlon w o=
qJ
Rugfion . Ho., » MHEVL AEVL HGVL AGVL KGVvL
Ho. ® MEAN K(rLcv} H(LSK) H({LKUR) M{LBMD)

Cluster Rogions:

Clustar Regions:
Case 1: Clustering onh LCV and QSP

Case 1t Clustering with LCV and gsp '
0,00 0.34 0.80 0.34 =0.01

: 3
3 1.0000 0.2383 0.1760 0.1810 0.078) 4 0,76 0.41 0.78 0.39 ~0.04
4 1.0000 0.2823 0.1988 0.183% 0.0786 1 0.73 0.47 0.70 0.40 -0.16
1 1.0000 0.3242 0.2758 0.1914 0.1016 2 0,68 0.56 0.83 0.44 -0.20
2 1.0000 0.3862 0.1058 0.1900 0.0809 5 0.63 0.64 0.55 0,42 -0.33
L 1.0000 0.4432 0.403% 0.2764 0.1687. .

Cama 21 Clustering on EV1 paramctars {MEVI., AEVL) and Q5P
Casa 21 Clustering on EV1 parameters (MEVL, AEVL) and QSP

4 4,81 0.23 0.81 0.24 0.01
4 1.0000 0.2310 0.1641 0.1829 0.0741 s 0.77 a.40 0.76 0.39 -0.05
s 1.0000 06,2801 0.2008 0.1834 0.0743 3 0.74 0.43 6.7t 0,39  -0.14
3 1.0000 0.3116 0.1637 0.1869 0.1001 2 0.70 0.52 0.56 0,43 =0.17
2 1.0000 0.3621 0.2817 0.2074 0.1097 1 0.6% 0.6% 0.58 0.4 -0.29
1 1.0000 0.41%96 6.3703 0.2451 0.1359
Case 3: Clustering on LCV, LSK and QSP
Casa )i Clustering with LCV, ISK a SP
" ! “ . 4 0.81 0.32 0.85 0.37 0.19
4 1.0000 0.2229 0.0520 0.132¢  0.0519 3 0.78 0.8 0.77  0.36  -0.05
3 ’ 1.0000 0.2613 0.2005 0.1713 0.0784 5 6.73 0.47 0.71 0,42  -0.11
s 1, 0000 0.3224 0.2420 0.185)3 0.0809 1 0.72 0,49 0.68  0.38  -0.22
1 1.0000 0.3383 0.3187 0.2178 0.1176 2 0.62 0.67 0.52 0.3 =0.42
2 1.0000 0.461 0.4672 0.3275 0.1847

Case 43 Clustaring on GEV parameters (MGVL, AGVL, XGVL) and QSP
Casa 4: Clustering on GEV parametars (HGVL, AGVL, KGVL) and QSP

. 5 0.80 0.34 0.82 0.37 0.10
5 1.0000 0.2379 0.1054 0.1379 0.0527 4 ¢.77 0,39 0.80  0.45 9.15
4 1.0000 0.2739 0.0767 0.1239 0.0644 1 0.76 0.41 0.74 0.34 -0.18
1 1. 0000 0.2627 0.2077 0.2218 0,1148 2 0.72 0.48 0.68 0.37 ~0,22
2 1.0000 0.3134 0.3218 0.2319 0.0952 3 0.79 0.51 0.68 0.47 -0.10
3 1. 0000 0.3564 0.2338 0.1185 0.0700 LI 0.65 0.61 0.56 0.36  =~0.40

6 1.0000 0,4233 0.4544 0.32236. 0.1868

: 05GS Regions:
USGSE Naglons
: 6 0.78 0.39 0.76 0.36 -0.08
€ 1.0000 - 0.2698 0.2230 0.1867 0.0743 1 0.77 0.40 0.74 0.4 -0.15
1 * 1.0000 0.2781 0.2728 0.2139 0.098%9 4 0.76 0.41 0.75% 0.9 -0.05
4 1.0000 0.281( 0.2037 0.1502 0.0801 2 0.76 0.42 0.74 0.38 -0.09
2 1.0000 0.2824 0.2265% 0.199¢ 0.1044 7 0.75 0.44 .73 0.37 -0.15
7 1.0000 . 0.303 0.2691 0.2028 0.1061 3 0.4 0.45 0,71 0.38 ~-0.15
: 1.0000 0.311% 0.2695 0.1830 0.0087 5 0.73 0.46 0.7¢ 6.8 -0.17
r

1200 2.1y 0.2832 9-296 9.1042 # MEVL, MGVL = location parameters (mwodes}; AEVL, AGVL =~ scale

parapeters; and KGVL = shape paramatar, .
Reglons arranged in Increaslng staepness of the corresponding [lood
frequency growth curves (i.e. Increasing LCV or LSK)

¢ Reglons arranged in Increasing gteepness of the corrasponding flood
fraquancy growth curvea (l.e. lncreasing LCV or LSK}




The shapes of the regionalized frequency growth curves
for cluster regions (not the actual cluster region numbers)
depends on the clustering variables and the underlying
probability distribution used. For example, for the EV1
distribution, the regionalized frequency growth curves are
different when clustering on LCV and QSP (Case 1) when
compared to clustering on LCV, LSK and QSP (Case 3). The
differences are more prominent with the GEV probability
distribution. It is clear from Figures 3.14-3.21 that EV1
distribution produces straight linear graphs with normalized
discharge ratios ranging from 0.0-5.0 since it has only two
parameters (as defined by the coefficient of variation,
LCV). This distribution would be appropriate for flood data
exhibiting a moderate skew close to the EV1 skew of 1.14.

In contrast, the GEV distribution produces pronounced
non-linear curves with normalized discharge ratios ranging
from 0.0-10.0 since it has an additional parameter to
captﬁre high skew commonly present in the flcod data (és
defined by the coefficient of skewness, LSK). Thus, the
three-parameter GEV distribution is able to model the upper
tail (return periods greater than 20 years) better than the
two-parameter EV1 distribution for highly skewed flood data.
This is clearly evident for regions that have steeper
regionalized flood frequency growth curves, and, hence are
characterized by high coefficients of variation, LCV, and
skewness, LSK. For example, in Figures 3.14 and 3.15 for

Case 1 (cluster regions delineated using variables BECV amd
QSP) cluster region number 3 has the flattest curve with
regionalized EV1 parameters of MEVL = 0.80 (lccation) and

AEVL = 0.34 (scale) and regionalized GEV parameters MGVL =

0.80 (location), AGVL = 0.34 (scale) and KGVL = -0.01

(shape). Since the shape parameter, KGVL, of the GEV

distribution is close to zero, the EV1 and GEV flood

frequency curves for this cluster region are similar.

However, a comparison of the regiocnalized flood frequency

curves for the steepest curves associated with cluster
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region number 5 (having regicnalized parameters for EV1 :
MEVL = 0.63; AEVL = 0.64 and for GEV : MGVL = 0.55; AGVL =
0.42 ; KGVL = =0.33) shows considerable difference in the
normalized discharge values for return periods greater than
20 years. 1In all clustering cases, the regionalized flood
frequency growth curves are distinct between regions
indicating a successful delineation of flood regions
(homogeneous within but distinct from other regions) using
cluster analysis. _ | _

An examination of the regionalized flood frequency
curves for the USGS regions, as illustrated in Figqures 3.22
and 3.23, shows very little difference between the fegions
for both EV1i and GEV probability distributions. In both
cases, the normalized flood discharge values range from
.0.0-5.0 similar to the EV1 distribution for the cluster
regions, Thus, at least in terms of their flood frequency
growth curves, the USGS regions show more homogeneity across
regions than the cluster regions. Furthermore, the frequency
growth curves are not very steep for all the seven USGS
regions (GEV shape parameter ranges from 0.0 to -0.17 as
shown in Table 3.13). -
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NORMALIZED DISCHARGE (Q/Q)

PROBABILITY OF NONEXCEEDENCE (IN PERCENT)
1 51020 | 50 70 80 90 95969798 99 99.5 = 99.8 99.9

[I /3 C5
| l c2
4 /
// ¢
i - A - BCa
// "/ / /
3 /z'/" al (/// /‘> C3
=
// 1 d
r/ﬂé/,"'z;: l///
¢ ey
: Il gaznt
/’%’::F’)p’“/
//f- g
|
3
L1
Qé/ g 1%
4l

1.0 11 1.5 2 3 45 10 1520 3040 50 100 200 500 1000
RECURRENCE INTERVAL IN YEARS

a 1 e C2 ¢ C3 o C4 o C5 0 C6

Fig. 3.14. EV1 Regionalized Flood Frequency Growth Curves for ‘
Cluster Regions (Case 1: Clustering Variables LCV and QSP)




19

NORMALIZED DISCHARGE (Q/Q)

PROBABILITY OF NONEXCEEDENCE (IN PERCENT)

1 51020 50 70 80 90 95969798 99 995 99.8 99.9

10 " /’" 5

9

: /

7 \ /// //' ¢z

6 ll W 11 e

> ||' N |

Y

4 ATE = % ca

3 || // T LT de
e T

i jEEE: s g

1 - ’,",

LT
1.

5 2 3 45 10 1520 304050 100 200 3500 1000
RECURRENCE INTERVAL IN YEARS

a 1 * C2 ¢ C3 o C4 o C5 o C6

1.0 11

Fig. 3.15. GEV Regionalized Flood Frequency Growth Curves for '.
Cluster Regions (Case 1: Clustering Variables LCV and QspP)




29

NORMALIZED DISCHARGE (Q/Q)

PROBABILITY OF NONEXCEEDENCE (IN PERCENT)
. . A
] ? 110 20 510 7.0 B’O ) 9'0 9.5?6.97 9.8 99 99I.5 99.8 99..9
o T /l C1
| cz
. / P
> e
/ / / o
S| ) C5
ML Pt C4
3 v, Pt / A
/ -l//, [ /
% J/a'//_/: //
_ '/;; :/,-—III/
2 r ;:M_ér -
Eafeit gl gy ‘
/%EE;_,»—"
Z: o
P
1 ‘
2
=gp
A
1.01 1.1. 1.5 2 J 4 = 10 1520 3040 50 100 200 500 1000
RECURRENCE ]NTERYAL IN YEARS
a C1 « C2 O C3 o C4 o C5
Fig. 3.16. [EV1 Regionalized Flood Frequency Growth Curves for
Cluster Regions (Case 2: Clustering Variables EV1 Parameters and QSP)




€9

NORMALIZED DISCHARGE (Q/Q)

PROBABILITY OF NONEXCEEDENCE (IN PERCENT)

1 5.1.0 2.0 5'0 7.0 BP 90 9.59.6.97 a8 9.9 99.5 99.8 999
10 . : s C1

8 ' ! ]

l ’

W A
6 | / ] cz

5 // /ﬂ; C3
4 /'/‘ //// cs
1 A
3 ,//,//j / / C4
e
2 ;;A‘F’—"’GMZ-1 .

T
1.01 1.1 115 2 3 45 10 15 20 3040 50 100 200 500 1000

RECURRENCE INTERVAL IN YEARS
a Ci . c2 o €3  ©C4 o c5

Fig. 3.1%. GEV Regionalized Flood Frequency Growth Curves for
Cluster Regions (Case 2: Clustering Variables EV1 Parameters and QSP)




9

NORMALIZED DISCHARGE (Q/Q)

PROBABILITY OF NONEXCEEDENCE (IN PERCENT)

] 5.1.0 2.0 5.0 7.0 8'0. 9.0 9.5?6.979.8 99 995 99.8 99.9
5 .
|~ c2
L <
4 _ A C1
/ /> Cs
,/ ] _
pg = /w C3
| L
2 ‘/A’/‘/ {//
',A” '%_,./n' :':__IL’/
2 -
1 Zi )V/
/:/ ‘f :::/nﬁ’
> -
//ﬁ‘
‘ 2=
1 LA
2 ”’::%
sZRE
’ |
1.01 1.1 1.5 2 3 45 10 1520 3040 50 100 200 500 1000
RECURRENCE INTERVAL IN YEARS
\ ‘ .
A (C1 | e C2 o C3 n C4 ¢ C5

| - .
Fig. 3.18. EV1 Regionalized Flood Frequency Growth Curves for
Cluster Regions (Case 3: Clustering Variables LCV, LSK and QSP)



S9

NORMALIZED DISCHARGE (Q/Q)

| PROBABILITY OF NONEXCEEDENCE (IN PERCENT)

1 s‘.{p 20 50 70 80 90 95969798 99 995 99.8 99.9
10
/cz

9 /

8 | / .

7 b C1

& / /
H/ //
|/

5 4 c5

/| L~ /

4 | /] //7/ L
Be c3

3 7 L/W,La/ /V‘

| L lle—T
, | | o = ,s[" | %4
.‘ A4 -!j; —1 471
1 i %’
= 1
i I

1.0 1.1}

Fig. 3.19.

1.5 2 3 4095 10 1520 304050 100 200 500 1000
RECURRENCE INTERVAL IN YEARS

* C2 o C3 o C4 o C5 . 0Cb

GEV Regionalized Flood Freguency Growth Curves for
Cluster Regions (Case 3: Clustering Variables LCV, LSK and QSP)




99

NORMALIZED DISCHARGE (Q/Q)

PROBABILITY OF NONEXCEEDENCE (IN PERCENT)

Cluster Regions (Case 4: Clusteri

ng Variables GEV Parameters and QSP)

1 51020 S0 70 80 90 9!5;5.!6.97 98 '9.9 9.5 99.8 999
5
F| /n ol
7 .
r C3
4 7/ /' C2
e
/ = o
4 ca
T o
J £ //VA////Q C5
L1 AT
// J% o //
A LF e
9 L 9’ 1
/-r f’: "’;/
/// :‘:,.
LA
ZiZ2s
,
e
1.01 1.1 15 2 J 45 10 1520 3040 50 100 200 500 1000
RECURRENCE INTERVAL IN YEARS
A Ci e C2 ¢ C3 o C4 - o C5 0 C6
Fig. 3.20. EV1 Regionalized Flood Frequency Growth Curves for



L9

NORMALIZED DISCHARGE (Q/Q)

. PR‘OBABILITY OF NONEXCEEDENCE (IN PERCENT)

'll 5l 1P 2'0 ‘0 7'0 810 %0 9’5‘.‘35'97 9.8 9’9 99‘.5 99‘.8 99.9
10 ‘ .
/ C6 CV C3/C1
A ) /
9 iy
8 — 7 //7
7 4 W /
| yz e
6 | / yég f
A :
- —H C4
5 J //,/X /;:1"-. C5
| AT | L
4 ‘ g .
| ) ;g%r’ I
| oy
3 } | )? l
2 WP d
A |
A7 1
Rz ]
1 & ui,

1.01- 1.1

a C1

Fig. 3.21.

15| 2 3 45 10 1520 3040 50 100 200 500 1000

RECURRENCE INTERVAL IN YEARS
+ C2 o C3 o C4 o C5 o C6

GEV| Regionalized Flood Frequency Growth Curves for

Cluster Regions (Case 4: Clustering Variables GEV Parameters nnd qQsp)



89

NORMALIZED DISCHARGE (Q/Q)

] 51020 |50 70 80

| | ‘
PROBABILITY OF NONEXCEEDENCE (IN PERCENT)

A

20 9586 97 98 89 995 99.8 99.9

5 ll
* | B
R7
| P R2 gy
| >
R6
3 47%
V";
L1
2
_'fﬂ
"’(
)
o
1 | pet”’
|
\
\
1.01 1.1 1.5! 2 3 4 5 10 1520 3040 50 100 200 500 1000

|
|
4 Ri .

Fig. 3.22. EV1 Regionalized

USGS

RECURRENCE INTERVAL IN YEARS

R2 o

Regions

R3 o R4 o R5 OR6 * R7

| Flobd Freciuency Growth Curves for



69

NORMALIZED DISCHARGE (Q/Q)

E"'ROBAB_ILITY OF NONEXCEEDENCE (IN PERCENT)

] 5 1 0 2.0 5.0 7.0 Bp 9‘0 9.596_97 QIE} ag | 95{.5 99;8 99.9
10 '
|
g |
8 |
|
7 |
|
6 | RS
| R3
| R7
5 ‘ /’/’ Ri
4 L x/‘fRz R6
V R4
. | =
T ,/
| LT
2 |
1 L LI
| =
r—*:—-’:g;
1.01 1.1 1.|5 2 3 45 10 15 20 3040 50 100 200 500 1000
RECURRENCE INTERVAL IN YEARS
A& R1 | » R2 ¢ R3 b R4 o R5 0 R6 * R7
| ) . ‘ .
Fig. 3.23. GEV Regionalized Flood Frequency Growth Curves for

USGS Regions



VERFICATION AND COMPARISON OF CLUSTER AND USGS FLOOD REGIONS

a) Hydrologic Characteristics of Flood Regions: The
presence of a high degree hetercogeneity (or the lack of
homogeneity) in the flood characteristics between gauged
sites within flood regions, as measured by important
statistical properties of the AMF series observed at the
site, can adversely affect the benefits derived from
regionalization. Ideally, one would like to delineate flood
regions that are homogeneous within themselves but distinct
from others. As pointed out by Lettenmaier et al (1987), an
implicit assumption of most index-flood methods of
regionalization, similar to the one used in this study, is
that the regions are homogeneous. This would imply that
statistical moment ratios of the AMF series, like the
coefficient of variation, LCV or CV (both measure the scale
of a flood frequency distribution and are closely related),
are identical at each of the gaged sites within a region.

In reality this will never be the case. With this in view,
Lettenmaier et al (1987) examined the effects of
heterogeneity of the coefficient of variation on various
flood regionalization schemes in conjunction with several
parent. flood probability distribution. They observed that
the advantage of using any regionalization method is reduced
fof'large values of régional average mean coefficient of
variation, M{CV), and the range, R(CV), of the values of the

coefficient of variation of flocod data at each of the gaged
sites within the region. Thus, these and similar studies
clearly indicate the importance of observing the
statistical trends of variables controlling flood response
within flood regions.

With the above discussion in mind, statistical trends
of important hydrologic characteristics, as measured each of
the gauged sites within each of the cluster and USGS
regions, are developed and examined in detail. For the four
clustering cases (Case 1-Case 4), these trends are
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illustrated in Tables 3.14-3.17. Specifically, trends in
the mean, median, maximum, minimum and range statistics_of
clustering variables (L-moments, QSP and parameters),
watershed physical characteristics and other hydrologic
variables are included in these tables. The cluster regions
in each table are arranged in the order of increasing
steepness (i.e. increasing coefficients of wvariation, LCV
and/or skewness, LSK) of the regionalized flood frequency
growth curve representing each region (refer to previous
section).

The trends in the mean and median values of the
clustering variables like the L-moments, parameters of the
probability distribution and QSP are quite obvious since
cluster analysis will group these variables into regions
having small, medium to large values. For instance, Table
3.14(a) shows a clear and distinct mean and median values of
regional average L-moment ratios (LCV, LSK and LKUR) and the
conventional method of moment ratios (CV, SK and KUR) when
clustering with LCV and QSP (Case 1). A similar trend is
observed for clustering Cases 2-4 as well.

Table 3.19 shows the variation of the regional median
values of the coefficient of variation, M(LCV) / M(CV),
including its range within each region, R(LCV) / R(CV). The
median value of the coefficient of variation, M(LCV), varies
from 0.241-0.434 over the five cluster regions for Case 1
and 0.228-0.467 for Case 2. The trend in the median
coefficient of variation, M(CV), (as estimated—from the - —
method of moments) varies from 0.438-0.936 for Case 1 and
0.375-1.035 for Case 2. A comparison of M(LCV) and M(CV)
for other clustering cases shows similar variation. For all
cases, M(LCV) and M(CV) are less than 0.467 and 1.035,
respectively. The range in the regional median coefficients
of variation, R(LCV) and R(CV), vary from 0.087-0.201 and
0.181-0.725, respectively, over all clustering cases. Thus,
each cluster region is fairly homogeneous with respect to
the variation of the regional median coefficient of
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T T reasons.,

variation. The differences of all regional mean and median
L-moments (LCV and LSK in particular), ranging from small to
large, make the cluster regions distinct from one another.
It is for this reason, as discussed in the previous section,
the cluster regions delineated for the four cases in this
study are each associated with a distinct regicnalized flood
frequency growth curve.

Variation in the mean and median values of other
physical characteristics, as illustrated in Tables o
3.14(b)-3.17(b), suggests that cluster regions for all four
cases (Cases 1-4) are grouped into areas having low, medium
or high mean annual flood response. Since drainage area,
A, is highly correlated with the mean annual flobd, o, it
follows a similar trend. Thus, the flood regions delineated
have either predominantly small, medium or large watersheds.
It is interesting to see that the clustering variable QSP
(the specific mean annual flecod) shows a reverse trend since
it decreases with increasing watershed size. In other words
small watersheds tend to generate a greater magnitude of |
direct runoff per unit area than do larger watersheds. The
trends in main channel length, Lc, and slope,_sc, and
watershed or basin length, Bc’ and slope, Bs' show similar

trends as the watershed drainage area, A since they are

cl
directly proportional to it. Finally, the watershed shape
index, Bg, and main channel sinuousity, Ss’ do not show a

significant trend between cluster regions for obvious

~These two dimensionless—variables are ratios of - ——— - - —-
quantities having similar magnitudes, either small or large.
An examination of the maximum and minimum values (range
is the difference) of all the hydrologic variables (refer to
the third and fourth rows of Tables 3.14(b)-3.17(b) for each
cluster region) shows some overlap between cluster regions.
For example, cluster region 3 for Case 1 (refer to Table
3.14(b)) contains generally the larger watersheds (a mean
and median of 203.6 and 104.0 square miles, respectively)
with a maximum watershed size of 960.0 square miles.
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However, a minimum watershed size of 0.2 square miles
indicates the presence of some small watersheds as well.
Since flood response is not entirely a function of watershed
size but depends on other physical and climatic factors,
these small watersheds are incorporated in cluster region 3
because of the small coefficient of variation, LCV,
associated with the floods produced. The presence of this
overlap between cluster regions is one of the reasons why
the ability to discriminate between them based on physical
attributes is not very high. This is demonstrated later in
section (c). '

Table 3.18 shows the trends in the hydrological
characteristics of USGS regions and is used to compare
similar variables between cluster and the the USGS regions.
A noticeable difference exists in the variation of M(LCV})
and M(CV) between USGS regions and cluster regions (refer to
Table 3.19). For example, the regional median coefficients
of variation, M(LCV) and M(CV), are quite uniform (varying
from 0.248-0.321 and 0.443-0.617, respectively) between the
USGS regions. However, these regions have a larger range
values of the median coefficient of variation, R(CV), when
compared to cluster regions indicating a diversity of
watersheds (small to large LCV and CV) contained within each
region. ‘

- An examination of the mean and median values of the
contribqting drainage area, Ac' (associated with each of the

have fairly uniform distribution of small to large
watersheds within their regions. A similar trend is
observed with the mean annual flood, Q, since this variable
is highly correlated with the contributing drainage area.

In contrast, cluster analysis tends to produce regions that
have either predcominantly small, medium or large watersheds
(refer to Tables 3.14(b)-3.17(b)). In this context, it must
be emphasized that small watersheds having low mean annual
flood, Q, are, generally, associated with high LCV and/or
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LSK values while using clustering schemes that included the
latter variables as clustering variables.

The distribution of the mean and median values of
watershed characteristics such as main channel sinucusity,
Ss’
magnitudes (i.e. either small or large), show similar

and basin shape, both of which involve ratios of similar

differences between cluster and USGS regions. Main channel
and basin length follow the same trend as the contributing
drainage area, AL, since these variables are highly
correlated to it. '

An examination of the ranges of the median values of
the hydrologic characteristics discussed above indicates
that, with the exception of main channel sinuousity,‘ss, and
basin shape indeg, Bs ( which remain similar for reasons
stated in the previous paragraph), the hydrologic
characteristics across all cluster regions show more
variability tﬁan the USGS regions. This is particularly an
important asset for discriminating between regions, and, as
illustrated later, is the main reason why the USGS regions
can not be discriminated easily.
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TABLE J.14{a). Comparissom of Important Statistics of Regional Moment
Ratics Using L-Moments and Conventional Method of Mecaents: Clustaring
wvith LCY and QSP *+

L

LeMomenca Hathod of Moments
Region No:i of #
.- F Sitas LY ISE LEUR [~ -1 EUR
Msan / median / max [ ain / range
3 3 6.238 0.176 0.12% 0.421 0.511 1.628
0.241 0.154 0.181 0.438 0.721 0.526
0.282 0.408 0.453 9.709 4.639 26,467
G.131 =g.130 0,033 0.202 -0,950 -1.816
0.151 0.533  0.43¢ 0.507 5.839 28.103
-+ 1.3 0.282 0,199 O.1m4 0.449 0.606 0.520
0.283 Q.148 0.161 0.485 0.422 -0.527
0.334 ©.435  0.317 0.673 2.511 7.484
0.221 =9.072 ~=-0.021 0,366 =-0.728 -2.348
9.113 Q.507 0.338 0.297 3.239 9.813
1 &9 0.324 £.276 0.191 0.623 1.1%0 2.556
a.318 4.296 a.182 0.618 1.274 1.515
0.408 0.540 ¢.384 a.908 3.902 19.932
0.285% =0.0%8 =90,002 0.484 -0, 435 -1.5%%
f.123 0.536 0.392 0.422 4.257 21.528
a is ¢.386 0.308 &.150 0.733 - 1.182 1.543
0.388 0.280 6.1469 0.701 1.122 0.412
C.487 0.473 ©.500 O.541 3.138 10.954
0.338 0.102 0.021 0.612 0.131 -1.424
0.129 0.371 0.479 0.329 3.00% 12.378
H 28 0.443 0.404 0.278 a.962 2.077 5.335
0.434 0.405 0.304 0.936 - 2.185 5.)122
0.530  0.514  0.47% 1.376 3.551 14.323
0.40L 0.190 0.045 0.732 0.471 -0.84%
a9.129 0,424 0.430 O. 644 3.000 15.163

++ Regions arranged in incrsasing steepness of the corrssponding flood
frequency growth curves (i.s. increasing LV or LSK)

* Regional averages of L-soment ratios are wveightsd by the number of
years of record at sach site within sach ragion. Conventional.
noment ratios are sinple arithmetic averages.

# The cosfficient of kurtosis, KOR, is computed ralative to the
norsal probability distribution which has a XUR = 3.0, Thersicre,
cbserved urtosis is obtained by adding a value of 1.0.

TABLE 3.14(b). Cowparison of Important Statistics of l-qi-:m.l
Bydrologic Charactaristics: Clustaring with LCV and QSP »+

‘.q' Q l{: T .l ’1 I'G ’C ’8 X
¥o. {cfs]) (sq. mi.} (csm) (mi) (mi) (%) (yTs}
¥ean / Wedian / wax / min
3 2539.6  203.8 $6.3 2.4 18.7 33.8  0.59 1.8 19.2
s8s8.4 "104.0 61.6 2.3 18.8 4.9 0,22 1.% 30
31384.4 963.0 1253.1 5.8 65.0 106.% 5.28 3.1 &8
1s.2 0.2 14.6 0.2 0.3 1.1 4.05 1.0 7
4 — 48%.1— — 1.2 -430.6 2.3— 1.5 1.7 1.78-1.2.13.1 — ... —_. .
277.8 0.5 410.3 2.0 1.4 1.7 1.47 1.1 10
2377.1 S.6 $92.7 6.1 3.9 4.4 4.66 1.3 34
43.6 0.1 37%5.8 0.9 0.5 0.6 0.53 1.0 7
1 6836.6 1%2.2 92.4 2.3 15.6 26.2 0.66 1.5 37.1
4752.0 5.8 73.2 2.2 13.2 1%.0 9.315 1.8 27
27599.9  936.0 251.0 €.3 S€.2 102.5 3.33 2.3 €3
40.8 9.2 18.0 ¢.7 0.6 0.7 0.04 1.0 7
32 414.1 1.1 «42.5 1.5 1.4 k.8 2.5 1.3 13.4
220.4 (0.6 384.7 1.4 0.9 1.2 1.14 1.1 10.5
2699.3 7.8 $33.9 2.4 7.2 9.2 .69 2.0 210
107.1 0.1 290.% 0.6 0.4 0.6 0,20 1.1 "
s 2301.9 26.1 174.6 2.0 5.0 E.0  3.07 1.3 17.4
sz, 1.3 183.7 1.9 2.4 2.9 1,40 1.2 1S
186781.4  246.0 J68.4 3.6 23.1 53.7 9.66 2.3 32
7.1 0.6 57.%3 0.3 ¢.5 0.7 0.201.8 -9

** Ragicns arranged in increasing steaepnesa of the corre-sponding
flood frequency groveth curves (i.s. incressing LCV or LSKEW).
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TABLE 3.15(a).

Comparison af Important Statistics of Regional Mowant

Ratios Using L-Moiments and Conventiconal Msthod of X
with EV1 Farzmaters and QSP v

tx: Clustering

Lefoments Mathod_of_Moments
Reqgion Ho: of
Moz sites LY LSE  LXR =4 s ==’
Mean / Msdian / aax f min
4 73 ¢,.226 8,142 0.182 0.408 0.754 1.337
© Be233 D.143 0.181 0.412 0.695 Q.422
a.268 0.408 0.468 0.709 4.689 21.487
8.131 =0.130 09.038 0.202 =-0,.950 =-1.63¢
R.137 0.518 0.430 6.%07 5.83% 23.103
5 J0 0.27% 0.165 0.161 0.405 0.5%1 0.455
0.277 0.147 0,181 0.482 0,380 -0,060
0.324 0.425 0.317 0.873 2.3511 T.484
0,221 =0.072 =-0.021 0,368 -0.728 -2.348
9.113 0.5%07 a.338 0.307 3.239 ‘9.812
| 1 0.314 0.280 0.182 0.592 1.340 2.5%42
0.310 0,242 8.179 g.5as 1.263 1.815
0.374 0.540 0.384 0.852 1.902 19.9%971)
9.270 =0.058 =0.008 0.446 =-0.455 -1.595%
D.104 0.596 0.392 a.406 4.357 21.528
2 10 9.374 a.288 G.206 0.716 1.286 1.963
. 379 0.280 G.205 0.7101 1.133 1.089
D.4268 0.473 0.500 9.928 3.138 10.95a
0.306 © 0.102 0.821 0.547 0.131 -1.424
0.3120 2.37% 0.479 0,343 J3.008 12.378
1 43 0,425 6.370 0.237 . 0.87T2 1.768 3.37
0.410 0.358 9.212 0.308 1.682 2.887
0.530 0.8514 G.475 1.3718 3.5%1 14.327
0.371 0.143 0.933 0.4651 0.306 -1.285%5
3.15% 0.471 0.442 0.735 3.245 15.608

Regions arranged in lncreasing stespness of the corrasponding flood

trequancy gqrowth curves (i.e. increasing LCV or LSK).

Regicnal avearages of L-moment ratios are weighted by tha number of

years of record at aach sita within each region.
mosant ratios are sizple arithmetic averages.

conventional

The cosfficient of kurtosis, KUR, is .cupund relative to the

normal probahility diseribution wvhich has a KOR = 3.0.
obsearved kurtosis is ebtained by adding a valua of 3.0.

Tharefore,

TABLE 3.15(b). Comparison of Important Statistics of Regional
Hydrologic Charactaristics: Clustering with EV1 Parametars and
QASE e .

Reg. .0 : W ose B, 5, L. 5. 5 X
No. {(cfs) (sg. mi.) {csw) (ai) {md} (W) (y=s)
Mean / Median / pax. ./ nin
' 8518.7  211.0 B5.3 2.4 18.8 35.0 .56 1.7 29.0
S858.4  104.0 58.0 2.3 16.7 4.4 0.17 1.6 39
31384.4  $60.0 253.1 5.8 6&.0 106.9 8.28 3.1 &8
35.2 0.3 4.6 0.2 0.8 1.1 0.05 1.0 7
5 468,95 T L 1 416.8 2247 LSS LT LTS .2 12087 0
262.4 0.7 3198.5 2.1 1.4 1.7 1.47 1.1 10
2377.1 1.0 292.6 6.1 1.9 4.4 4,66 1.5 34
38.6 0.1 241.3 1.1 0.3 0.8 0.53 1.0 7
3 7201.1  153.2  89.3 2.4 16.1 26.8 0.70 1.5 28.6
4834.8 $2.3  63.9 2.2 1l4.2 31.5 0,32 1.5 29
27598.% 836.0 251.0 6.3 50.4 102.5 3.84 2.0 €3
40.8 9.2 18.0 9.7 0.6 0.7 0.04 1.0 7
2 254.6 - 0.5 S48.0 1.2 0.7 1.1 2.53 1.4 13.]
210.7 - 0.4 S522.%5 1.1 0.7 0.9 2.44 1.3 10.5
€55.3 1.0 923.9 2.4 1.0 1.9 S.87 2.0 26
107.1 0.1 377.6 0.6 0.4 0.6 0.20 1.1 s
1 3176.9 9.1 182.6 2.0 7.3 1l.0  1.72 1.3 17.9
537.1 0.9 183.7 1.9 3.0 3.7 1.60 1.3 18
25299.4 936,90 378.8 1.6 56.2 99.& 9.66 1.5 44
67.1 0.5 27.0 0.3 0.5 0.7 0.08 1.0 3

*+* Ragions arranged in incressing stespness of the corre-sponding
flood frequency growth curves (i.e. increasing LCV or LSXEW).
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TABLE 3.16(a). Comparison of Inmportant. Statistics of Regicnal Moaent
Ratios Using L-Noments and Convanticnal Hethod of Momants: Clustering
with LCY,ISK and Q5P »*

L-Homsnts Method of Mowents
Region Ho: of 3
-1 Sltes oy . p 7.4 LXUR o F1 4 IR
Mean / wedian / max f xin / mange
4 44 0.223 0.031 0.132 0.380 0.071 -3.307
¢.228 0.058 0,119 0.378 0.191 -0.328
9.300 0.1%¢ 0.330 0.518 1.344 3.917
£.131 =-0.130 =0.021 ¢.202 =0.950 -1.34%
0.16% 0.320 0.401 0.718 2.2986 6.265
3 78 g.262 0.201 4.171 a.476 1.100 1.881
8.258 0.304 0.1%3 0.478 1.045 1.313
0,350 0.345  0.468 2.631 4.423 22.974
0.130 ©0.076 =0.001 0.316 0.09% -1.59%
0.170 0.369 0.46% a.318 4.328 .. 24.569
[ i 0.322 0.242 0.188 a9.573 0.836 0.936
0.306 0.222 0.165 0.568 o.807 9.197
0.426 0.473  ©.500 0.928 3.136  -10.9%54
0.225 =-0.056 0.031 8,369 ~0.582 -1.8571
0.201 0.529 0.479 0.559 3.718 12,525
1 T3 0.338 ©0.119% 0.21% a.659 1.640 3.508
0.345 0.323 0.1597 a.640 1.488 3.903
0.431  0.540 ©0.384 0.958 4.689 26,487
0.249  0.134  0.043% 0.502 0.311 ~0.958
0.182 0.406 0.339 0.466 4.378 27.425
2 17 0.462 0.467 0.128 1.084 2-423 6.724
0.467 0.472 0.243 1.035 2.531 6.773
£.51¢ 0.514 0.478 1.376 3.551 14.321
0.393 0,332 0.138 a.024 1.0324 -0.433
0.137 Q.302 0.319 0.582 2.527 14.808

»« Regions arranged in increasing stespnass of the corresponding flood
fragquency growth curves (l.a. increasing LCV or LSK).

+ Regicnal avaragas of L-mcument ratics are wvaighted by ths nuaber of
years of record at sach sits within sach region. ' Convantional
Rosent ratios are sinpla arithmetic avarages.

.# The coefficient of Yurtosis, XUR, ls coaputed relative to the
normal probability distribution which has a XUR = 3.0. Therefors,
obsarved kurtesis is obtalned by adding a value of 3.0.

TABLE }.1£{b). Comparison of Important Statistics of ¢t 1
Bydrologic Charscteristics: Clustaring with LCV,. I.mn:?:doq";ll -

Req. Q a, osP B, B, L_ s, 3, X
Ro. (cfs) (sq. ai.} (csm) (mi} (mi) {) (yTs}
Hsan / Median / wax / win
-4 4355,1 37.3 147.% 2.3 10,8 19.9 1.00 1.5 19.9
2198.8 17.6 152.2 2.0 7.1 3.8 0.17 1.3 1%
24353.3 745.0 373.5 5.8 37.4 92.6 8.28 2.7 64
35.2 0.1 22,0 0.2 0.5 0.6 0.05 1.0 7
“3— -10748.2— 265.2 —4BT6 2.5— 23.2- 4039 - 0.38-1.7 342z -
2958.53 235.9 47.8 2.3 22.5 38.4 g9.18 1.8 34
31J84.4 260.9 222.3 5.5 46,0 104.9 2.9% J.1 [ =]
198.5 1.1  14.5 0.8 1.7 1.9 0.05 1.0 .
s 427.3 1.0 460.6 2.1 1.3 1.5 2.0 1.2 12.9
254.1 0.6 421.9 1.3 1.0 1.3 1.88 1.1 10
24353.3 5.6 #92.86 £.1 3.9 4.4 S5.87 2.0 34
3s.2 0.1 27%5.3 0.6 0.4 0.6 0.20 1.0 7
1 S456.4 108,7 108.8 2.2 12.1 20.1 1,02 1.5 24.9%
31164.0 40.% 14,9 2.0 8.2 13.2  0.48 1.4 34
25299.4 936.0 30L.8 6.3 56.2 102.%5 9.6 2.8 S8
40.8 0.2 18.4 0.7 0.6 0.7 0.04 1.0 .7
2 2142.2 1.9 220.5 2.0 5.1 K.7  1.71 1.4 16.4
282.4 1.§ 236.0 2.0 3.3 4.2 1.40 1.4 13
1644623  246.0 378.8 1.8 23.1 S8.7 6.&9 2.8 32
117.9 0.6 61.8 0.3 0.3 0.7 0.10 1.0 9

*+ Ragions arranged in increasing stasprass of the corre-sponding
flaod frequency growth curves (i.a. ilnersasing LOV or LSKEW).
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TABLE 2.19 Comparison of Regional Mean Coefficients of Variation
and Their Ranges Within Cluster and USGS Flocoed Regions

Region Ro, of L-Moments es? - uegs&_o_r_umaz_ge
No: Sites M{LCV) RILCV} R _(LCV) M(CVY RICV) E_{CV)
e 1: Clu i W d QSp
3 a3 0.241 2.151 0.627 0.438 0.507 1.158
4 30 0.283 0.113 0.399 0.485 0.307 0.633
1 89 0.318 0.123 0.387 0.618 0.422 0.683
2 16 0.3886 0.12% 0.3324 0.701 0.329 0.469
5 25 0.434 0.129 0.297 0.936 0.644 0.688
se 2: Clusterij i a S
4 44 ' 0.228 0.169 0.741 0.375 0.314 0.837
3 75 0.258 0.170 0.659 0.478 0.315 0.659
5 38 0.306 0.201 0.657 0.56€ 0.559 0.988
1 79 0.345 0.182 0.528 0.640 0.466 0.728
2 17 0.467 0.137 0.293 1.035 0.552 0.533
se 3: us ing wi 1 ameters d P
4 79 0.232 0.137 ¢.591 0.412 0.507 1.231
L] 30 0.277 0.113 0.408 0.482 0.307 0.637
3 91 0.310 0.104 0.335 0.586. 0.406 0.653
2 10 0.379 0.120 0.317 0.701 0.381 0.544
1 43 0.410 0.159 0.388 0.808 0.725 0.897
4: Y ith GEV Pa ters and QSP
5 68 0.241 'D.189 ~ 0.701 0.416 0.335 0;805
4 15 0.273 0.087 0.319 0.448 0.181 0.404
1 8l 0.293 0.188 0.642 0.563 0.536 g.952
2 ‘21 0.318 0,193 0.607 0.612 0.516 0.843
3 40 G.356 0.159 0.447 - 0.653 0.320 Q0.490
é 28 0.432 0.192 0.447 0.930 0.5678 0.729
) USGS Regions

6 - 31 0.248 0.344 1.387 0.443 1.013 2.287
1 32 0.286 0.353 1.234 0.524 ¢.988 l.882
4 20 0.278 0.217 0.781 0.493 0.463 0.939
2 &8 0.293 0.360 1.229 0.521 0.970 1.862
7 38 0.307 0.261 0.850 0.573 0D.622 1.0886
3 26 0.321 0.271 0.844 0.614 0.754 1.228
5 38 0.301 90.370 1.229 0.617 1.131 1.833

# MLCV is the regignal median of LCV, RLCV is the range of LCV’s for
the region and R LCV is the normalized regional LCV (range/median).

@ MCV is the regional pedian of CV, RCV is the range of CV’s for the
region and R CV is the normalized regional CV (range/median}.
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b) Performance of Regionalized Flood Freqﬁency Models: The
performance of the regiocnalized flood frequency models is
evaluated using the following specific criteria in
conjunction with Monte Carlo simulation technigues:

1. The accuracy of the regional flood frequency model to
predict the flood levels associated with different
return periods as measured by the bias.

2. The precision (as reflected by the overall fit of the
model to the flood data) of the flood frequency model
as measured by the root mean square error (RMSE).

For each of the cluster regions delineated under the
four clustering schemes (Cases 1-4), AMF data is
synthetically generated at each of the gauged sites within
the region using procedures discussed in Chapter 2. 100
sequences, each having a record length equal to the historic
sfstematic flood record at the gauged site and drawn from
both EV1 and GEV populations, are used in the analysis. The
regional average L-moments and the corresponding parameters
based on synthetically generated flows and the simulation
runs compare well with the historical estimates for the
flatter regionalized flood frequency growth curves as shown
in Tables A.1-A.11, Appendix A. However, the simulated
sequences tend to underestimate the higher order L-moments
{(like LSK and LKUR) with this difference increasing as the
regionalized frequency growth curve gets steeper. As ‘
'pointed below, this is one of the main reasons why the GEV
distribution gives larger piases in the flood quantile
estimates than the EV1 distribution. The inability of Monte
Carlp simulated flood sequences to capture the larger
variability associated with historical estimates of higher
order moments, like the cocefficient of skew, has been widely
reported in literature and is referred to as the condition

of separation (Matalas, 1975).
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The average regional normalized bias and RMSE for

select flood quantiles, as estimated using EV1 and GEV flood
frequency models, are summarized for the four clustering
cases in Tables 3.20-3.23. Similar results for the USGS
regions are shown in Table 3.24. The following conclusions

are made for the four clustering cases:

a)

b)

As expected, the bias and RMSE generally increase with
the return period, T, and with the steepness of the
regionalized flood frequency growth curve. '
The bias changes from positive to negative as the
growth curve beconmes éteeper and, hence, is not uniform
across the cluster regions. This is true for both EV1
and GEV distributiops.over all return periods of
interest (10-100 year). Consequently, flood quantiles
are overestimated when the growth curves have small
slopes and underestimated as the curves become steeper.
In a recent study, Landwehr (1980) observed that if the
population skew is different (larger or smaller) than
the EV1 skew of 1.14, then an EV1 distribution would on
the average underestimate the flood quantiles. In this
study it appears to hold for a majority of flood
regions (particularly those with steep frequency growth
curves) indicating regionalized coefficient of skew
other than the EV1 skew of 1.14 (refer to Tables
3.14(a)-3.17(a})).
The biases and RMSE for the EV1 flood frequency model
are lower than the GEV model for all flood frequency
growth curves. However, one would expect the GEV model
to do better than the EV1 model, at least in terms of
the bias, since it has an additional shape parameter to
to better characterize the growth curves, in particular
the steep ones. Such is not the case in this study.
The larger biases associated with the GEV are
partly due to the condition of separation that exists
when using Monte Carlo simulated flood data. 1In cother
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<)

d)

words, the use of a three parameter distribution like
the GEV may give larger biases than a more parsimoniocus
distribution like the EV1 due the lower variability of
the coefficient of skew and higher order moments
observed in simulated flood sequences. Furthermore, as
pointed by Wallis (1985), the GEV distribution while
having a theoretical appeal for fitting flood data, the
asymptotic properties on which it is founded may not be
satisfied by the small number of independent flood
events commonly encountered in practice.

An examination of cluster regions for all four
clustering cases (Cases 1-4) indicates that the
regional average bias associated with flood levels less
than 100 years, ranges from -2.2% tp 0.1% for the EV1
distribution and from -14.2% to 0.1% for the GEV
distribution while the corresponding RMSE ranges from
9.2% to 21.8% and 9.2% to 43.9%, respectively. These
levels are comparable to values reported in previous
studies (for example refer to Lettenmaier et al, 1987).
Clustering on the parameters of the probability 7
distribution, as opposed to the L-moments used to
estimate them, reduces the bias and RMSE, nominally.
This occurs inspite of the fact the shape of the growth
curves is affected by the clustering variables used
(refer to section on development of flood frequency-
growth curves).

For the USGS regions the biases and RMSE of the

regionalized EV1 and GEV distribution are lower than the
cluster regions. This is partly due to the relatively flat
regionalized flood frequency growth curves associated with
all the seven USGS regions. The regional average bias for
all seven regions ranges from -0.9% to 0.1% for the EV1
distribution and -6.0% to 0.0% for the GEV distribution.
These biases are usually negative at higher return periods

(for example the 100 year) indicating an underestimation of
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flood levels. The RMSE ranges from 11.8% to 15.4% for the
EV1l distribution and 12.2% to 29.8% for the GEV
distribution. Also note that the bias and RMSE are fairly
uniform across the seven USGS regions.

A regionalized log-Pearson Type-III distribution (based
on L-moments) is not tested in this study since previous -
studies have clearly shown that EV1 and GEV outperform the
log-Pearson Type-~III distribution (Wallis, 1985) in
estimating flood quantiles. However, since current practice
continues to use this distribution, Tables 3.25-3.29 compare
log-Pearson Type-III flood quantile estimates (from the USGS
method of residuals study using WRC Bulletin 17-B) to the -
estimates of the EV1 and GEV distributions at select sites
within cluster and USGS regions. These sites are chosen to.
represent gauged sites that have small to large watershed
areas, low to high coefficient of variation and skewness
associated with the flood data, and the number of years of
systematic historic flood records range from 9 to 58 years.

- Since the true population flood quantile (for a given return
period) is unknown, these tables merely serve the purpose of
identifying whethér flood quantiles are under or over '
estimated by the recommended regionalized flood frequency
distributions in- this study. An examination of these tables
suggests that, with the exception of using the EV1
distribution at a few sites, flood quantiles are, generally,
overestimated when using log-Pearson Type-III distribution.
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TABLE 3.20. Regional Average Normalized Bias and Root Mean Sguare
Exror (RMSE) of Quantiles: Clustering with LSV and QSP *

uantiles Probability Region
Distribution .1 H i .y, 20 vr, S0 vyr, _100 yr, _1000 vr,

Bias
EV1 3 0.003 0.004 0.005 0.005 0.006
4 -0.001 ~-0.002 -0.002 =0.002 ~0.002
1 -0,001 =0.00) =-0,005 =0.007 -0.009
2 -0.002 -0.010 -0.017 ~0.021 -0.028
5 0.016 0.002 =0.010 =-0.017 -0.030
GEV 3 0.004 0.008 0.015 0.020 0.040
4 0.002 0.008 g.018 0.026 0.0861
1 -0.003 ~0,006 =0.009 =0.011 -0.016
2 -0.009 =0.019 =0.028 =0.033 -0.040
5 0.007 =-0.020 ~0.053 =0.078 -0.155
BMSE
EV1 3 0.094 0.095 0.09% 0.095 0.08%
4 0.156.- 0.156 ©.157 0.157 0.157
1 0.136 0.136 0.136 0.136 0.136
2 0.200 0.199 0.199 0.198 0.198
5 0.200 0.197 0.195 0.195 C.194
GEV 3 0.095 0.096 0.098 0.100 0.112
4 0.168 0.172 0.179 0.186 0.227
1 0.152 0.162 0.163 0.164 0.171
2 0.331 0.333 0.340 0.348 0.190
5 0.434 6.429 0.428 0.410 0.452

* Regigns arranged in incrsasing staepness of the corresponding flood
frequency growth curves (i.e. increasing LCV or LSK) -

TABLE 3.21. Regional Average Normalired Bias and Root Mean Sguare.
. IZrror (RMSE) of (uantiles: Clustering with EVi Paramstars and QSP «

Quantiles -
Erobability Region
Ristribution Ka: 19 yr. .20 vr., _50 yr. _100 vr, _1000 ¥x,

plas
EVL 4 0.002 0.003 0.004 0.004 0.005
. 5 0.002 0,002 0.002 0.002 0.002
3 0.000 =0,002 =0.004 -0.00% =-0.007
2 0.017 0.011 0. 006 0.003 -0.003
1 0.005 =0.607 -0.017 -0.022 -0.034
GEV 4 0.004 0.00% 0.01S 0.020 0.039
S  =0.002 0.004 6.015 0.024 0.0861
3 -0.006 -0.008 =0,013 ~0.015 -0.021
2 -0.015 -0.027 =0.039 -0.047 -0.064
1 =-0.009 =0,028 =0.053 =0.071 -0.127
RMST
EV1 4 0.092 0.092 0.092 0.092 ©.093
5 0.158 0.158 0.158 0.159 0.159
3 0.128 0.127 0.127 0.127 0.127
2 0.201 6.200 0.159 €.199 e.199
1 0.193 0.191 0.180 0.189 0.189
GEV 4 0.092 0.094 0.096 0.099 0.111
5 0.163 0.167 0.174 0.183 0.227
3 0.146 0.146 0.147 0.148 0.155
2 0.247 0.253 0.265 0.278 0.338
1 0.3395 0.382 0.380 0.381 0.397

* Regions arranged in increasing steepness of the corresponding flood
frequency growth curves (i.s. increasing LCV or LSEK)
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TABLYX 1.22. Regional Average Normaljzed Bias and Root Mean Sguare
Prror (RMSE) of Quantiles: Clustaring with LCV, LSXEW and QSp

Suantiles
Probability  Redgiop
Distribution Mo 10 vxr, _20 vx. _S9 vr. _109 vr, _1000 yr,
Bias
EV1 4 0.001 6.003 0.004 6.005 0.006
3 0.002 0.002 0.002 0.002 0.002
] 0.001 =0.002 =0.005 =-0.007 -0.010
1 0.001 =0.003 ~0.006 =0.008 -0.012
2 0.018 £.000 =0.015 -0.022 ~0.038
GEV 4 0,014 0.026 0.043 0.056 0.097
2 €.001 0.003 0.005 6.007 0.015
1 -0.001 -0,008 «~0.018 ~0.025 -0.048
-] -0.002 ~0.003 -0.002 0.000 0.011
2 -0.015 =-0.054 =-0.105 -0.142 -0.259
RMER
EV1 4 0.111 0.1} 0.3111 0.112 0.112
3 0.096 0.098 0.096 0.096 ¢.096
5 0.172 6.171 0.171 0.171 0.171
1 0.146 0.145 0.145 0.145 0.144
2 0.218 0.214 0.212 0.211 0.210
GEV 4 0.10% 0.109 0.116 0.124 0.154
3 0.0%8 0.09% 0.100 0.101 0.107
1 0.188 0.187 0.1a7 0.188 = 0.196
5 0.196 0.198 0.203 0.208 0.233
2 0.382 0.375 0.375 0.381 0-428

* Regions arranged in increasing steepness of the corresponding floed
frequency growth curves {i.s. increazing LCV or LSK)

TABLE 3.23. Regicmal Avarage Normalizsd Bias and Root Mean Sguars
ErTor (RMSE) of Quantiles: Clustaring with CEV Paramatars and QSP *

ouantiles
Exobahility  Region )
Rigtritution Eg: 1o wyx, 20 yr. 3% vr, _A90 yn, 21000 yr,

Biax
EV1 s 0.003 0.003 0.004 0.004 0.005
4 0.003 8.003 0.00) 0.003 0.003
1 0.002 0.001 0.000 0.000 0,001
2 =0.009 =0.012 =0.018 -G.018 -0.022
3 0.005 ~0.001 =0.005 -0.003 -0.013
6 0.013 0.000 -0.011 =-0,017 =-0.029
GEv s 0.009 0.017 °  0.029 . 0.038 0.070
& 0.009 0.026 0.051 0,072 ‘0.141
1 =0.003 ~0.007 =0.012 -0,018  ~0.011
3 «g0.004 =0.004 ~0.001 0.003 0.020
2 =~0.008 =0.01% =0.033 -0, 044 -0.077
6 0.016 =0.015 ~0.057 ~0.089 =-0.193
EMSE
v s 8.102 0.102 0.109 0.103 | 0.103
- 4 0.1485 0.165 0.166 0.167 0.168
1 0.114 0.114 0.114 0,114 c.114
2 0.176 0.175 0.176 0.176 0.176
3 0.159 0.158 0.157 0.187 0.157
[ 0.202 o.200 0.198 0,197 0.196
szv ] 0.096 .08 0.103 0.107 0.127
4 0.154 0.180 0.173 0.187 0.252
1 0,130 0,130 0.131 0.132 0.139
1 0.1864 0.165 0.168 0.171 0.189
2 0.210 0.211 0.219 0.227 0.26%
€ 0.43% 0.434 0.431 0.433 0.459

* Regions srranged in increasing stespness of the corresponding flood
frequency growth curves (i.s. increasing LV or LSX)
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TABLE 3.24. Regional Average Normalized Bias and Root Mean Square
Exrror {RMSE) of Quantiles: USGS Reglons +

. uantiles
10 yr, _20 yr. _S50 ¥r. _190 yr., 1000 vx.

Frobability Begion
Distrilution  Nau

Bias

EV1 6 -0.001 ~0.004 «0.006 -0.008 =-0.010
1 0.014 0.011 0.007 0.006 0.002
2 0.003 0,001 =0.002 =0.003 -0.006
4 =-0.00) =0.004 =0.008 =-0.007 -0,008%
7 0.000 ~0.002 =0.004 =0.005 -0.007
3 ©.007 0.004 0.002 0.000 -0.003
5 0.005 0.001 =-0.003 ~0.005 ~-0.009

GEV 6 0.000 =-0.002 ~0,005 =0.007 -0.010
7 ~0,.004 -0.007 ~-0.010° ~0.011 -0.015
4 0.011 0.017 0.026 0.034 0.066
2 -0.002 =0.004 =0.008 =0,007 =-0.010
1 ~0.007 ~0.014 =0.023 ~0.031 -0.055
3 0.000 -0.008 -0.017 -0.023 -0.043 _
5 =0.010 «0.01l% =0.029 =0.037 ~0.060

RMGE

EV1 4 0.139 0.138 0.138 0.128 0.138
1 0.158 0.155 G.155 0.154 0.154
2 0.138 0.127 0.3137 ° 0.137 0.137
4 0.118 0.118 0.118 0.118 0.118
7 0.142 0.143 0.142 0.142 0.142
3 g.154 0.154 0.154 0.15%54 0.152
5 0.152 0.151 0.151 0.150 0.150

GEV 4 0.162 0.162 0.165 0.168 0.185
7 0.175 0.176 0.179 0.182 0.198
4 ¢.122 0.126 0.134 0.142 0.181
2 0.154 0.154 0.155 0.157 0.164
1 0.182 0.182 0.184 0.186 0.202
3 0.278 0.279 0.281 0.284 0.2%98
5 0.178 0.179 0.183 0.187 0.209

¢ Regions arrangsd in increasing stespnass of tha corrasponding flood
frequency growth curves (i.a. increasing ICV or LSK)
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TABLE 1.29. Comparison of Quantiles of a Pew Selected Stations

within USGS Regions #

sStation * Suantiles +*
Clyater Station Area — Ixs of Values 20 yr Diff. 106 vy DifL.
Region He. (sq mi) Record &Y LSK (cLs) {3} (cf=} (%)
Gmbel/GEY LI
5 322100 223.0 22 0.24 0.21 11685 13 13069 20
0.24 0.21 12272 24 14973 29
0.44 1.45 98990 - 10900 -
315835 8.2 9 0.31 Q.41 127 =15 142 =13
0.31 Q.41 133 -11 153 =-13
0.62 .11 150 - 175 e
1 247100 3.3 31 9.16 0.07 1363 435 1533 53
0.16 0.07 1504 =3 1773 77
0.28 . 0.07 946 - 299 -
298535 0.7 - 10 . 0.51 0.55 497 -47 . 558 =55
0.51 0.55 546 -40 643 ~48
1.18 2.53 ~ 944 -—— 1240 -
2 283500 362.0 51 0.30 ¢.20 22649 -8 26516 -9
0.30 Q.20 24955 -3 28774 =1
0.368 1.18 25600 - 29100 -
237280 12.2 22 0. 44 Q.41 3627 =14 4064 -17
0.44 0.41 3821 -3 4406 =10
0.99 2.97 4230 - 4920 T
4 402020 3.0 19 0.19% -0.08 1325 23 1485 30
0.19 -0.08 1368 29 1553 37
9.33 0.74 1059 - 1140 -—
4049500 53.8 29 Q.21 Q.34 8675 =14 7482 -15
. 0.1 0.34 6392 =11 7830 -14
C.61 1.95 77640 - 9160 -
7 610503 . 0.8 10 0.24 -3.08 1797 13 2760 &0
0.24 ~0.06 1974 24 3827 121
M 0.40 =-0.58 1590 - 1730 -
302500 194.0 45 0.35 ¢.33 21865 -18 24588 -23
0.335 0.33 24025 =14 28401 | -11
9.7 2.17 26800 - 319300 -
3 284300 8.6 16 0.12 Q.09 83857 =15 9971 -18
0.32 0.09 9745 =7 11540 -5
0.54 0.18 1a500 - 12100 —
208600 202.0 29 Q.40 0.40 41858 -18 47124 -24
Q.40 0.40 46053 =10 54539 =12
0.86 2.26 51300 - 62200 -
5 415700 4.8 24 0.27 Q.01 1949 4 2197 7
0.27 0.01 2177 1s 2604 26
0.47 0.28 1370 - 2050 -
307900 173.0 48 0.36 0.42 27952 -22 jisgo . =29
- 0,36 Q.42 31219 =11 37336 =15
0.77 1.88 16000 — 44600 -—
4 The first and second station of sach ragion were selected based on a low

e

and a high station skew, Tespectivaly.

Regions are arranged in incresasing steapness of tha corresponding
flood frequancy growth curves (Ll.e. increasing LCY er LSK).
Coefficients of variation and skewness computed uaing L-moments for
EV1 and GEV distributions and method of moments using normalized

raw maximum AFS for log=-Pearson Type-III.

log-Pearson Type-III estimates conputed using Watsr Resqurcaes Council

guidelines - Bullatin 178. "Diff" is the percsntags difzerenca of
the guantile estipatas rsalitive to the log-Fesarson Type-III estimatas.
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c) Discriminant Analysis: In the previous section,
homogeneous flcod regions are identified using four
different clustering schemes (referred to as Cases 1-4)
using FASTCLUS clustering algorithm. Although a comparison
between the cluster regions is made using important
statistics of all hydrological attributes and the
performance of the regionalized flood frequency growth
curves, it remains to be seen as to what factors,'other than
the clustering variables employed, cause the fundamental
differences between these regions. For instance, if cluster
regions are delineated using LCV and QSP (Case 1), the five
regions identified can be generally classified as low,
medium and high flood regions based on the values of the
response variables. Since watershed drainage area, A, is
highly correlated with one of the clustering variables,
namely QSP, the differences between these clusters regions
can be further explained on the basis of this or other
physical attributes that control flood response of a
watershed. With this in mind, a stepwise discriminant
analysis is first performed in order to identify the most
significant (at 5% level of significance) attribute B
variables which provide maximum discrimination between the
flood regions. Application of this procedure toc the cluster
regions for all the clustering schemes gave results as
summarized in Table 3.30. Results of clustering cases 1-4
and USGS regions are also included this table. The
variables listed in column 3 of this table are the
significant attribute variables arfanged in the order of’
importance. The following conclusions are drawn:

a) Although the original set of attribute variables
defined at each gauge incorporated a brocad range of
hydrological characteristics of each watershed, the
most important variables controlling flood response
seem to be the geomorphic properties of the watershed'
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Table 3.30.

Results of Discriminant Results for all Flood

Region Delineation Cases Examined in the Study *=

Case Cluster " Signif. Discrim. Overall Discrimination
No. Variables Variables Score Percent
1 cv DAREA, CHANSLOP 627253 0.245
2 LCV, LSKEW DAREZ, BASLEN 65/242 0.269
3 LCV, LSKEW, DAREA, BASLEN 72/242 0.298
LKUR .
4 LCV, QsP DAREA, BASLEN 1117242 0.45%5
Sk LCV, LSKEW, DAREA, BASLEN 1057242 0.434
QsP
6% LCV, LSKEW, DAREA, BASLEN, 1027242 0.421
LEUR, QSP CHANSLOP
7 MEVL, AEVL DAREA , CHANSLOP 62/253 0.245
8 = MGVL, AGVL, DARER, BASLEN 79/242 0.3286
KGVL SHAPE
9 MWEKL, AWKL, DAREA 158/253 0.628
BWKL, CWEKL,
DWKL
10* MEVL, AEVL, DAREA, BASLEN, 114/242 0.471
QsP SHAPE, CHANSLOP,
STOR, CHANSIN, CHANLEN
11+ MGVL, AGVL, DAREA, BASLEN 88/242 0.364
KGVL, QSP CHANSIN, CHANLEN
12 MWKL, AWKL, _DAREA 1227242 0.504
BWKL, CWKL,
DWKL, QSP
13 USGS REGIONS DAREA, CHANLEN 41/242 0.169

** Because all physical characteristics are not
available for each station, some stations are
net included in the discriminant analysis.

* Clustering cases sslected in the study
{referred to as Cases 1l-4)
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such as its size and shape and main channel
characteristics.

b) Watershed drainage area, A, is the most significant
attribute for discriminating between clusters for all
the clustering schemes and USGS regions.

c) All the significant attributes listed in Table 3.30
describe the physical characteristics that control the
magnitude and timing of flood peak response of a
watershed. For instance, the magnitude of the flood
peak is proportional to the drainage area and its
timing is influenced by travel paths such as the basin
and main channel lengths.

The next step in discriminant analysis is to perform a
classificatory analysis of gauged sites in each cluster
region (for a given clustering scheme) in order to determine
the percentage gauged sites correctly classified in the
original cluster regions. To accomplish this the _
significant attribute variables are used together with the
DISCRIM procedure of SAS (1985) to perform a classificatory
discriminant analysis. Tables 3.31-3.34 summarize the
results for all the four clustering schemes (Cases 1-4)
selected in the study. .The horizontal rows in these tables
reflect the original cluster groupings while the wvertical
columns indicate the new cluster groupings into which each
site is classified based upon its attributes. If all gauges
are correctly classified then the row percentages of the
diagonal elements in these tables will be 100%. It is
obvious that such is not the case. The low percent
classification in some cases. indicates that the cluster
regions can not be discriminated well based upon the
attributes used in the analysis. An overall discriminant
score is computed by summing the sites classified correctly
(i.e. all sites along the diagonal). This total score
divided by the total number of sites béing classified gives
the overall percent correct classification. This value for
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each clustering scheme is shown in Column 5 of Table 3.30.
Based on these results the following conclusions are drawn:

a) With the exception of the clustering cases involving
the Wakeby probability distribution parameters (these
cases were dropped due poor performance in estimating
flobd quantiles), clustering cases 1-4 (labeled as
cases 4, 5, 10 and 11 in Table 3.30) provide the best
overall percent classification compared to all the
other cases considered in the study. The overall
percent correct classification ranges from 36.4% to
47.1%. '

b) Watershed drainage area, Ac, is the most significant
discriminating variable for all the clustering schemes.
The remaining variables listed in Table 3.30 are all
geomorphic that are closely related to the phyéical
aspects of the watershed.

c) In all clustering schemes there are at least two

" cluster regions that have a percent classification less
than 50%. This occurs with cluster regions that have
considerable overlap in their hydrologicél '
characteristics.

- The results of discriminant analysis for the seven USGS
flood regions uSing all the gauged site data as illustrated
in Table 3.35. An examination of the diagonal elements of
this tabkle clearly indicates that these regions can not be
discriminated between each other easily. In other words,
the classification of gauged sites into a region based upon
the attribute variables (referred to as discfiminating
power) can not be achieved with a high degree of certainty.
The average discrimination is only 16.9% when compared to a
maximum of 47.1% achieved using cluster analysis in
conjunction with EV1 parameters and QSP as the clustering
- variables (refer to Case 10 in Table 3.30). This further
supports the observation that each of the USGS flood regions
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has a mixed composition of watersheds with differing
hydrological characteristics. Hence, these regions are not
very homogeneous with respect to the characteristics
describing flood response. A similar observation was made
by Wiltshire (1986) who states that flood regions delineated
in a rather arbitrary manner and arranged to coincide with
geographical areas are likely to contain drainage basins
with a diversity of geomorphology whose flood frequency
characteristics may not be comparable. He further states
that in this situation a regional average frequency curve
will be peoorly defined. 1In contrast, the cluster regions
are not 6hly homogeneous with respect to the flood response
characteristics (response or clustering variables) but lend
themselves to a higher level of discrimination by variables
that affect these characteristics (attribute variables). A
comparison of the significant variables in the discriminant
analysis indicates that for both cluster and USGS regions
the geomorphic variables provide good discrimination with
contributing drainage area being the most important (refer
to Table 3.30). The remaining variables describe the
watershed and main channel dimensions.
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Table 3.31.

Classificatory Discriminant Analysis of Cluster
Regions Formed Using Clustering Variables LCY and QSP #*

Number and Percentage of Observations
Classified into Cluster Region

From
Cluster 1 2 3 4 5 Total
1 49 & 20 11 3 89
55.1 6.7 22.5 12.4 3.4 100.0
2 2 3 0 2 2 14
14.3 £7.1 0.0 14.3 14.3 100.0
3 k1] 3 31 13 S 90
42.2 3.1 3J4.4 14.4 5.8 100.0
4 L] 5 1] 21 o) 27
0.0 22.2 0.0 77.8 0.0 100.0
5 5 7 1 7 2 22
22.7 31.8 4.6 31.8 9.1 100.0
Total 94 o 52 54 12 242
Percent 38.8 12.4 21.5 22.3 5.0 160.0
Priors Q.20 0.2¢ 0.20 ©0.2¢ 0.20

Overall % correct classification = 1117242 = 46%

Significant variables at 5% level: drainage area, A

basin length, Bl’ basin shape, Bs’ and main channel

slope, sc'

cl

Table 3.32. Classificatory Discriminant Analysis of Cluster
Regions Formed Using Clustering Variables EV1 Parameters

and Q5P ¥
Number and Percentage of Observations
Classified into Cluster Region
From
Cluster 1 2 3 4 5 Total
1 5 11 10 2 11 39
12.8 28,2 25.8 5.1 28.2 100.0
F ] 2 6 1} o 1 9
22.2 66.7 0.0 0.0 11.1 100.0
3 4 [ £9 10 12 21
4.4 6.6 654.8 11.0 13.2 -100.0
4 3 3 34 25 12 77
3.9 3.9 44.2 32.5 15.6 100.0
-4 2 5 a 0 19 6
7.7 19.2 0.0 0.0 73.1 100.0
Total 15 31 103 17 5% 242
Pearcant 6.6 12.8 42.6 15.3 22.7 100.0
Priors 0.20 0.20 0.20 0.20 0.20

§$ Correct classification = 114/242 = 47%

Significant variables at 5% level: drainage area,
basin shape, B_, main channel s

basin length,

main channel s

B
iﬁﬁousity, ss' and"basin storage, STOR.

A,
lofe, Sq.
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Table 3.33. Classificatory Discriminant Analysis of Cluster
Regions Formed Using cClustering Variables LCV, LSX and QSP »

Humber and Percentagea of Obsaervations
Classified into Cluster Region

From
Cluatar 1 2 k| 4 L] Total
1 21 19 17 3 19 79
26.6 24,1 21.5% 3.2 24.1 140.0
2 2 4 1 [+} ? 14
14.3 28.6 7.1 0.6 5%50.0 100.0
3 15 7 48 1 4 . 75
20.0 9.3 &4.0 1.3 5.3 100.0
4 12 9 8 4] 11 40
30.0 22.%5 20.0 0.9 27.5 100.0
5 o 5 0 Q 32 34
-~ 0.0 18.9 30.6 1.7 30.2 100.0
Total S0 41 | 74 4 73 242

Percent 20.7 16.9 30.6 1.6 30.2 100.0

Priors 0.20 0.20 0©.20 0.20 0.20

% Correct classification = 105/242 = 43%

Significant variables at 5% level: drainage area, A, and
basin length, By.

Table 3.34. Classificatory Discriminant Analysis of Cluster
Regions Formed Using Clustering Variables GEV Parameters
and QSp & ’

Number and Percentage of Observations
Classified into Cluster Region

From

Cluster 1 2 3 4 5 [ Total

1 47 0 13 8 8 5 81
£5.0 0.0 16.1 9.9 9.9 6.2 100.0

2 1 4 2 .11 0 0 13

. 5.6 22.2 1i.1 61.1 0.0 0.0 100.0
3 11 5 7 12 2 2 19
28.2 12.8 18.0 30.8 S.1 5.1 100.0

4 0 2 2 10 o o 14

0.0 4.3 14.3 71.4 ©.0 0.0 100.0

5 13 7 11 6 19 3 &4
28.1  10.9 17.2 9.4 29.7 4.7 100.0

3 4 ] 5 8 3 -1 26
15.4 19.2 19.2 30.8 11.5 4.6 100.0

Total 81 23 40 55 a2 11 242

Percent J3.s 9.5 16.5 22.7 13.2 4.6 100.0

Priors 0.167 0.167 0.167 0.187 0.167 0.167

% Corract classificatjon = 38/242 = 35%

Significant variables at 5% leval: drainage area, A,
basin length, B,, main channel length, Lc' and
main channel sifiuousity, s,.
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Table 3.35. Classificatory Discriminant Analysis of
USGS Regions

Number and Percentage of Observations
Classified into U.S.G.S. Region

From
Cluster 1l 2 3 4 5 6 7 Total
1 22 s 0 1 0 5 2 81
73.3 0.0 16.1 9.9 9.9 16.7 6.7 100.0
2 29 1] 2 13 0 b 6 68
. 42.7 0.0 2.9 19.1 0.0 26.5 8.8. 100.0
3 a 0 2 5 4] 6 S 26
: 30.8 0.9 7.7 19.2 0.0 23.1 19.2 100.0
4 10 2 0 S 0 2 1 20
0.0 10.0 0.0 25.0 0.0 10.0 .0 100.0
5 17 0 3. 4 0 .6 5 35
48.6 0.0 8.6 1l1i.4 0.0 17.1 14.3 100.0
6 12 o 2 2 1 g 2 28
42.7 0.0 7.1 7.1 3.6 32.1 7.1 100.0
7 20 Q 1 o h 10 3 35
57.1 0.0 2.3 0.0 - 2.3 28.6 8.6 100.0
Total 118 2 10 30 2 56 24 242
Percent 48.8 0.8 . 4.1 12.4 0.8 23.1 9.9 100.0

Pricors 0.142 0.142 0.142 0.142 0.142 0.142 0,142

% Correct classification = 41/f242 = 17%

Significant variables at 5% level: drainage area, A_,

and main channel length, L. ©

99



d) Regression Analysis: The ultimate objective or purpose
of delineating distinct flood regions is to develop
regionalized relationships for predicting the flood respcnse
(at selected frequency levels) at both gauged and ungauged
sites. For gauged sites, such a regionalized relatiomnship
can be used together with at-site information for estimating
flood levels (Choquette 1988). In contrast, while using
cluster analysis, ungauged sites must first be classified
into a flood region based on significant physical attributes
of the watershed affecting flood response prior to using a
regionalized equation. For the method of residuals, this
classification is relatively straight forward since an
ungauged site is univocally assigned to the geographic

~ region in which it 1lies. )

Overall regression results, pertaining to the equations
developed for predicting the 20, 50 and 100 year flood
levels within the cluster regions (for all clustering cases
examined in this study), are shown in Table 3.36. Cases 1-4
(marked by an asterisk in this table) have the lowest '
weighted standard error when compared to the remaining
cases, For these four cases and USGS flood regions,
detailed regiocnalized regression equations for the EV1 and
GEV models are given in Tables 3.37-3.46.

Table 3.47 gives similar equations for the 50 and 100
yedr flood levels (20 year flood quantile regression
equations are not available) and are developed for the USGS
method of residuals flood regions using log-Pearson Type-III
distribution (Choquette, 1988). This table is provided for
the purpose of compariné the performance of the log-Pearson
Type-III, EV1 and GEV flood frequency models developed for
the seven USGS flood regions. It must be emphasized that
the flood levels used in developing these regression
equations are estimated from a log-Pearson Type-III flood
frequency distribution using a weighted skewness (based on
station and a map skew).
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TABLE 3.36. Regression Results for all Flood Region
Delineation Cases Examined in the Study

Case Cluster No. of Weighted Standard
No. Variables Regions Standard Error Error Range**
(%) (2)
1 Lcv 6 4.4 32.8 - 53.0
2 Lcv, LSKEW 6 44.9 39.8 - 56.5
3 Lcv, LSKEW, LKUR 6 45.2 38.2 - 53.1
a* Lcv, gsp 5 36.9 19.3 - 46.6
5* Loy, LSKEW, QSP 5 36.6 27.0 - 51.0
T8 LCV, LSKEW, 5 41.1 24.9 - 54,9
: LKUR, QSP
7 MEVL, AEVL € - 43.8 32.2 - 53.2
8 MGVL, AGVL, KGVL 5 44.5 39.0 - 56.1
9  MWKL, AWKL, BWKL, 2 45.8 448.0 - 54.1
CWKL, DWKL
* .
10 MEVL, AEVL, QSP 5 39.2 20.1 - 54.9
*
11" MGVL, AGVL, 6 39.1 23.4 - 52,2
KGVL, QSP

12 MWKL, AWKL, BWEKL, 6 -45.7 43.5 - 115.6
- CWKL, DWKL, QSP

13 USGS REGIONS 7 35.0 19.7 - 38.6

Indicates cases which are selected in the study
(referred to as Cases 1-4)
*%* Based on standard errors of regression equations of each
) region
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An examination of these tables suggests that the
standard errors associated with the regression equations
are, in general, comparable between the cluster and USGS
regions when EV1 and GEV models are used in the
regionalization. However, the standard errors are slightly
higher when using the log-Pearson Type-~III distribution
(compare Table 3.46 and 3.47). Hence, even for the USGS
flood regions (as delineated using method of residuals), it
appears that more accurate regression equations can be
developed by using either EV1 or GEV regionalized floodA
frequency models.

The independent variables and their exponents do not
change for a particular flood frequency model within a flood
region for different return period, T. This is not
surprising since the regionalized quantile levels
(normalized values) used in estimating the flood levels, Qs
are scalar multiples of each other. In other words, the
100-year flood quantile‘can be obtained from the 10-year
flood gquantile by multiplying the latter with a constant.
Hence, the correlation of flood quantiles with the
independent variables remains the same from one flood level
to the next. Consequently, the exponent term in the
regression equations (slope term in the log-relationship)
remains unaffected. The effects of scale are absorbed in
thé'intercept term. A similar reasoning applies when
comparing the regression equations (for a given flood
quantile, Q,, and flood reéion) between the EV1 and GEV
flood frequency models. Once again, the independent
variables and their exponents continue to be identical
within a flood region when the return period, T is changed.

For both cluster and USGS regions, the geomorphic
variables such as the watershed drainage area, Ac' main
channel slope, Sc' and sinuousity, Ss’ basin shape, Bs’ are
the most significant variables. For some cluster regions
the exponent of the independent variable (drainage area, Ac)
is greater than or equal to 1.0, indicating greater
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variability in the estimate of the flood quantile as the
drainage area increases (true for watersheds greater than
1.0 sg mi). These cluster regions, as compared to other
regions have predominantly small watersheds. Furthermore,
gauged sites within these cluster regions also have, in
general, short flood records (less than 10 years). Thus, a
possible explanation for the larger exponent of the drainage

area variable, A in the regression equations may be due

'
the fact that smgll watersheds experience greater
variability in their flood response as opposed to larger
watersheds due to their inability to dampen temporal effects
of rainfall. |

In applying the regionalized regressions equations
developed for cluster regions (Cases 1-4) for ungauged sites
(these sites do not have their flood characteristics
defined), one must first assign these sites to a particular
cluster region based solely on the physical attributes of '
the watersheds. Results of classificatory discriminant.
analysis (refer to Tables 3.31-3.34) of the gauged sites,
based on their physical attributes only (i.e. treating them
as ungauged sites), show the assignment of watersheds is not
with complete certainty. For instance when clustering with
LCV and QSP (Case 1), 49 of the 89 sites originally assigned
to cluster region 1 are re-assigned to this region while the
remaining sites are assigned to the cluster region 2, 3, 4
or 5. The posterior probabilities of these assignments are
given in the second row of Table 3.31 for each cluster
region. Consequently, in using the regionalized regression
equations shown in Table 3.37 for predicting the flood
levels at ungauged sites, one must use a weighted predicted
flood level as developed from all the regiconalized
regression equations associated with the cluster regions to
which the site is assigned. The weighting can be
accomplished using the posterior probabilities of being
assigned to each cluster region. Thus, the standard errors
of prediction must also be based on the regionalized
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regressions used. For each cluster region, a weighted
standard error may be computed using the following eguation:

m
eJ = .Z eji * pji for j = 1,2...m ...(3.1)
i=1
where,
ej = percent standard error at a site in cluster j,
&; < percent standard error at a site in cluster j
if it was classified into cluster i,
pji = posterior probability of a site in cluster’j
being classified into cluster i, and
m = number of cluster regions (equal to 5 or 6 in-

the present study).

For clustering Cases 1-4, values of eji-can be obtained from
the standard errors shown in Column 3 of Table 3.37-3.45 for
each cluster region i and the posterior probabilities, pji’
can be obtained from the rows of Tables 3.31-3.34. Based on
all the gauged sites that are classified into the cluster
regions, a weighted standard error can be computed for each
cluster region using Eq. 3.1 above. For USGS regions, the
problem of misclassification does not arise since ungauged
sites are assigned to a region on the basis of their

location in space.
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TABLE 3.37. Regression Modsls for Estimating the Expectad

EV1l Plood Quantiles for Various Return Pariods: Clustering !

on LCV and QSP (Case 1) °

Cluster Regression % standard R Ho. of
Region Equation ExTor sltas,
1 Qyq = 546 A 1081 0552 44 0.395 a8

2 Q,, = 967 A 0716 g “0-268 45, 0.95 13

3 Qyq = 382 A°°'771 g 0144 38.1 0.94 92

4 Q,, = 803 A 0-760 29.0 0.93 29

5 Qyo = 657 & 0-882 g "0-346 4 4 0.93 24

1 gy ™ 659 na""sl L°'°‘5’z 6.6 0.95 g8

2 Qgo ™ 1183 3 0°716 g “0-168 4 4 0.95 15

3 Qg = 449 A 0777 g 0.244 38.1 0.94 92

4 Qg = 958 a7 %60 29.0 0.9 29

s Qgq = 812 2 0:683 5 “0.346 4 4 0.93 24

1 Qg = T2 A MO0 0552 4y 0.98 88

2 Qg = 1245 3 00716 g "0.268 4, 0.95 15

3 @y = 499 20777 g O-244 8.1 0.54 92

4 @, = 2077 A 0960 25.0 0.93 29

0.682 _ ~0.346
S 0,40 = 927 A, 8, 46.6 0.93 24

TABLE 3.38.

on EV1 Paramatard and QSP {Casa 2}

Reqression Models for Estimating the Expected
EV1 Flood Quantiles for Various Raturn Periods: Clustering

Clustar Ragression &t Standard R: No. of
Regions Bquation Error Sites.
1 0,, = 550 2 0738 54.9  0.90 42
2 0,0 ™ 516 Lcl""‘ 20,1 ©0.90 &8

5.975 . -0.402
3 0,0 = 495 A L, 37.2  0.95 90
0.777 _ 0.169 .
4 Qup = 397 A 8, 38.6 0.9 17
5 0,0 = 781 20790 29.5 0.9 29
1 g, = 676 Ac°‘7s' 54.9  0.90 42
2 Qg, = 629 Lbl'sg‘ 26.1 0.90 8
0.975 _ —-0.402
3 Qgq = 592 A_ L, 17.2 0.95 36
0.777 _ 0.169
4 Qgq = 466 A, 8, 18.6 0.93 72
s Qg, = 928 Ad°"“° 29.5  0.93 29
1 Qg = 773 82798 54.9  0.90 42
2 Q. = 711250 20.1  0.90 8
3 Qg0 = 669 A°°'97’ L0402 37,2 0.95 90
4 Qg0 = 517 ac°'777 s, 1¢? 38.6 0.93 78
5 Qg = 1043 uc°'°°° 29.5  0.93 129
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TABLE 3.39: Regreassion Models for Estlmating the

EVL Flood Quantliles for Variocus Return P-r.i.ndu Clustaring
on LCV, LSK and Q3¢ (Case 3)

2

Cluster Regression % Standard R No. of
Reglon Equation ErTor Sites,
1.069 | -0.605  -0.119
1 QST A L, 5, 40.4  0.95 78
2 0y, = 659 A “0.776 51.0 0.90¢ 16
0.821 _ 0.227 . -0.194
3 Q= 395 A, 5, B, 32.7 0.1 74
4 @ =485 A “0.793 g~ 71t 40.1  0.95 139
5 @, = 887 A, ° 887 27.0  0.91 137
1.069 . =0.605 _ ~0,119
1 Qg = 694 A L, s, 40.4 0.95 78
2 Qg = 816 A, %0776 51.0  0.90 16
“0.021 , 0.227 . -0.194
3 Qg = 467 A, 5, B, 32.7 0.91 74
C0.793 . -0.911
4 Qg " 544 A 5, 40.1  0.95 39
5 Qg = 1072 A 087 37.0  0.91 37,
1.069 , -0.605 _ —0.119
1 Qg0 = 784 A, L 5, 40,4 o.95 78
2 Qg = 936 2,777 51.0 0.90 16
0.021 _ 0.227 _ -0.154
1 0,5 = 524 A, 8, B, 32,7 0.91 74
0.793 _ -0.911
4 Qg0 ™ 603 A, 5, £0.1  0.95 219
5 Q00 = 1207 20" 27.0  0.91 17

TABLE ).40.

EVY Flood Quant

nogrunnion Modals for Estisating the Expected
las for Various Return Periode: Clustaring
on GEV Parsmatars and Q5P (Case 4) -

Cluster Regression % Standard R No. of
Regions Equation Erxor - Sltes.
1 Qg0 = 480 20967 1, 0396 3.1 0.94 80
2 0,, = 893 A 0830 .23.4  0.94 20
3 0,0 = €61 A 1+325 4 -0.809 52.2  0.93 38
4 Qyq = 904 A M072 1.2 0.91 14
5 Qg0 566 Ac°'95’ Lc'n"s‘ 38.1  0.95 &3
6 0, = €88 A 0643 g ~0:306 42.0  0.95 27
1 Qgo = 504 200963 5, ~0-396 38,1  0.94 80
2 Qg = 1080 A 0+850 21.4  0.94 20
3 Qo = 803 A17335 o, 0-809 52.2  0.93 38
q Qg = 1076 A 1003 31.2  0.91 14
5 9y, = 666 A 0-962 4 "0-456 8.1 0.95 63
6 Qgp = 847 20643 g "0-206 42.0 0.9% 27
1 Qg = €40 A°°'"3 I.‘,'“':'96 38.1 0.94 80
2 Qg = 1227 2 2890 21.4  0.94 20
3 Qpgq = 910 A N335y, "0-809 52.2  0.93 8.
4 Qg0 = 1206 A 1002 31,2 0.91 14
5 Qg = 741 A ° 962 c'°"5‘ 9.1 0.95 63
6 Qg = 967 Ac° -643 g -0.206 42.0  0.95 37




TABLE 3.41.

Regression Models for Estinating the Bxpected
P¥1 Flood Quantiles for Various Return Periods for USGS Regions

Cluster Regression % Standard R® No. of
Regions Equatien Exrror Sites.
0.963 . =-0.396
1 @y = 716 A, L, S.0.196 38.4  0.95 29
2 0,y = 341 Ac°'73‘ 39.¢  0.36 &7
0.744 _ 0.029 _ =-0.070
3 @y = 320 A 5. B, 19.7  6.99 25
0.842  =0.517
4 9y = 289 A s, 27.1  0.99 1%
0.720
5 Q= 634 A, 33.2  0.97 37
0.624 _ -0.277
§ @ = 623 A s, 8.6  0.96 27
0.587
7 Q= 818 A, 36.9  0.95 37
i 0.963 . =0.396
1 Qg = 852 A, L, S.0.196 8.4  0.95 29
2 gy, = 408 Ac°'73‘ 35.9  0.95 &7
D.744 _ 0.029 _ =0.070
3 Qg = 622 A, s, B, 19.7  0.99 2%
0.842 _ ~0.517
4 Qg = 344 A s, 27.1 0.9 19
0.720
S Q. = 763 A, 33.2  ©0.97 37
0.626 _ -0.277
6 Qg = 739 A s, 38.6  0.96 27
0.987
7 Qg = 982 A_ 269 0.98 37
0.963 . -0.396 .
1 Q00 = 954 A, L, S.0.196 38.4  0.95 29
0.736
2 Q00 = 457 A, 39.%  0.36 67
0.744 _ 0.029 | -0.070
3 Qpq = 702 A, 5, B, 19.7 ©0.99 28
4 Qg = 385 2 0843 g "0-517 27.1  0.99 19
§ Qg ™ 860 2 0720 3.2 0.97 37
0.624 . -0.277
§ Q0 = 930 A, s, 8.6 0.96 27
7 Q4o = 1201 A %% 16.9 0.95 37
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TABLE 3.42:

ession Modela for Estimating the Expected
GEV Flood {luantiles for Varlous Return Periods: Clustering
on LCV and QSP (Came 1)

TABLE J.43:

Regression Models tor Fstimating the Expected
GEV Flood Quantiles for Various Return Periods: Clustering on
EV1 Parameters and (sP (Case 2)

Cluster Regression 1 standard nz No. of
Region No. Equation Brror Sites.
1 Qg = 412 A 1-081 , "0-552 44 ¢ 0.95 68

2 0,0 = 1012 a0 716 5 T0-168 495 0.95 1s

3 Q0 = as 22077 g 0-244 38,1 0.94 92

4 Qq = 816 Ac°"‘° 29.0 0.93 29

5 Q,, = 696 Ac°"” sc'o's“ 46.6 0.93 2

1 fgp = 530 A 1-081 f "0-352 354 0,95 88

2 Qg = 2358 A 0°716 5 “0-168 493 g.9s 15

3 gy = 488 A 0777 g 0144 s 0.54 92

P Qg = 987 20°780 29.0 0.93 29

s g, = 1018 A 0-692 5 “0.348 4 ¢ 0.93 24

1 Oy v 631 nql'°‘1 Ib'°‘552 18.6 0.95% 88

2 0y, v 1661 Ac°'71‘ sc‘°‘15° 19.3 0.95% 15

3 00 = 344 82717 g 0144 8.1 0.94 92

4 gy, = 1121 A 090 29.0 0.93 29

5 Qp = 1302 A°°"'z 5.7 M8 466 0.93 24

Clugter Regression t Standard R>  No. of
Region No. Equation Exror sitaes,
¢.750
1 Q0 = 582 A, 54.9  0.90 42
.59 :
2 Q,o = 537 1,1*5%¢ 20,1 6.90 @
1 Q,o = 509 A -975 1 ~0.402 37.3 0.98 90
0.777 _ 0.169
4 0,0 = 395 A, s, 3.6 0.93 78
0,960
5 Q,0 = 789 A, 29.5 0.9 29
0.758
1 Qgq ~ 824 A_ 54.9 0,90 42
1.596
2 Qgo ™ 704 L, 20.1 0.90 @
0.975 . —06.402
3 Qgy = 649 A, L, 317.2 0.95 90
0.777 _ 0.169
4 Qg = 464 A_ 5, as.6 0.91 78
0.980 H
5 Qgq = 956 A, 29.5 0.93 29
T Qg =~ 1053 Aco"5° 54.9  0.%0 42
1.596
2 Q0 "~ 34T L, 20,1 o090 8
0.975 _ -0.402
3 Qoo = 768 A, L, 17.2 0.95 90
0.777 _ 0.169
4 Q5 = 51220V 5 8.6 0.91 78
5 Qg = 1086 A°°'93° 29.  0.93 39
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TABLE 3.44.

Expect
GEY Flood Quantiles for Varlcus Return Periods; Clustering

Ragression Hodsls for Extimating the

on LCV, LSK and QSP (Casa J)

ud

Clustarx Regression % Standard nz No. of
Region No. Equation , ExTor Sites.
1 Qg = 601 A 069y "0-605 g <0119 o4 s 78
3 9,y = 69440776 _ 51.0  0.950 16
3 @y, = 399 A8 g 0027 g 01N 520 01 4
4 Qy, = 44s a0 s.'°'”1 40.1  0.95 39
5 0y, = 912 20" 7.0 0.91 37
1 Qg = 802 A1006% 1 70503 5 “0:119 4o 4 g.95 78
3 Qg = 1068 A% 77¢ 51.0 0.90 16
3 Qg = 402 3 00031 g 0-227 5 2019 337 41
4 Qg = 492 3 0773 g "0-9LL 40,1  0.95 39
s Qg = 1148 A %Y 17.0  0.91 37
1 Qg0 = 979 it L¢‘°"°’ sc“"119 40.4 0.95 78
2 0, = 2462 Ac°'77‘ 51.0 0.90 16
1 0y, = S04 A0 5 0237 5 01N g gy g
4 Q00 " 52 Ac°'7” si'°'911 40.1  0.95 39
5 Qg0 = 1345 20887 27.0  ©.91 237

TARLE 3.453.

on GEV Paramaters snd QSP (Case 4)

Regrassion Models for Extimating the BExpect:
GEV Flood Quantiles for Various Retuxn Pariods: Clustering

ed

% Standard R°

Cluster Regression No. of
Region No. Equation Error Sites.
0.963 _ —0.396
1 Qyq = 497 A, L, 38,1  0.94 60
2 05 = 935 200380 23.4  6.94 20
: 1.225 . -0.809
1 Qg = 672 A, L, £2.2  ©0.93 38
4 Qg = 871 A 1902 3.2 0,51 14
0.962 _ ~0.456 o
5 g0 = 566 A, Lo 3.1 0.9%
2.643 _ -0.206 . 17
5 Qg0 = 724 A, 8 43.0 0.95
0.963 , -0.396
. 0.94 90
1 Qgq = 635 A, L, 38.1
2 Qgq = 1246 Ac°"’° 23.4 - 0.94 20
1.225 , -0.809 . -
3 Qgo = 857 A, L, $2.2  0.9)
4 0y, = 988 A 1902 31,2 0.91 14
0.962 , ~0.456 . o.05 €3
5 Qgo = 666 A, L, 8.1
0.643 _ -0.208 o.a5 27
6 Qgp = 1093 A_ s, 42.0
0.963 , ~0.396 . 80
1 Qg = 5T A, L, 8.1 0.94
1 Qg = 1525 20890 2.4 0.94¢ 20
1.225 . -0.809 s2.2  0.93 238
3 Qygg = 1002 A, L. s
4 Q4 = 1062 Ac"°°’ 1.2 0.91 14
0.962 . —-0.456 . 0.95 63
5 Qg0 = 741 A, L, 38.1
0.641 _ ~0.206
: . . 0.9% 27
§ Qg = 1476 A, 8, 42.0




TABLE, 3.45. Regression Models for Estimating the
GEV Flood (mantiles for Various Return Periods for USGS Regions

Region Regression 3 Standard R® ¥o. of
No. Equation Error Sites.

0.963 . ~0.396 _ 0.196

1y = T42 A, L. s, 38.4 0,95 29

2 9,4 = 348 Ac°'73‘ 19.9  0.96 67

3 Qg = 684 0744 5 0-029 g Z0-070 495 g.ee 15

. 0.842 ., ~0.517

4 Q=292 A, s, 27.1  0.99 19

5 Qo - 658 A=°‘72° 13,2 0.87 37

6 9, = 636 1 0534 g ~0.277 8.6 0.96 27
0.587 -

7 Qy = 846 A 36.9  0.9% 37

1 Qg = 938 A 0963 g "0.396 sc°'19‘ 1B.4 0.9 29

. a.716

2 Qu, = 430 A, 9.9 0.986 47
0.744 _ 0.029 _ ~0.070

3 Qgy = 884 A s, B, 19.7 0.99 15
0.842 _ =0.517

4 Qgy = 354 A 5, 27.1 0.9 19
0.720

S Qg = 851 A, 33.2  0.97 37
0.624 . —0.277

§ Qg = 778 A, s, 18.6  0.%6 27

7 Qgy = 1077 Ac°'537 16.3 0.5 137
0.963 _ -0.396 _ 0.196

1 Qg0 ™ 1104 A_ L, S. 318.4 0.95 29
5.716

2 Qygp ™ 495 A_ . 19.9 0.96 67
9.744 . 0.02% . -0.070

3 Qg = 812 A, Se B, 19.7  0.99 25
0.842 _ =0.517

4 Qg = 404 A s, 27.1  0.99 13
0.720 :

5 Qg0 = 1020 A 33.2 0.97 37
0.624 _ «0.277

§ Qgq = 891 A_ s, 18.6  0.96 27
0.587

7 Qg0 = 1273 A, i 16.9  0.85 17
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TABLE 3.47. Regression Models for Estimating the Expected
log-Pearscn Type III Floed Quantiles for Various Return Pericds
for USGS Regions (Choquette, 1988) #*=*

Region Regression Standard No. of
No. Equation Error % Sites.

1 50 = 56 3 0939 5 0-67 44.7 33
2 Q50 = 670 a 0777 p T0-336 g T0.803 334 77

3 Qs0 = 849 a 0714 5 "0-392 23.4 26

3 gso = 363 2 0780 | 26.7 20

5 050 = 940 a_°-%%° 48.5 a0

6 so = 74 3 0-873 g 0.520 36.2 32

7 Qs0 = 1530 3 0639 p_"0:472 5 “0-379 47 ¢ 38

1 Q100 = 51 3 0+%78 5 0-669 47.8 33

2 Q100 = 798 A 0-777 5 70373 5 0-862 35, 97
3 Q100 = 1030 A 073 g "0-447 24.6 26

4 Q100 = 420 A_°"77° 26.7 20

5 Q100 = 1100 A_°-%%? 52.3 40

6 Q100 = 76 & 0-882 5 0-545 38.1 32

7 0100 = 1710 A 0839 p "0-466 5 "0-528 54 4, 3

#* Flood Regions delineated using Method of Residuals-using
WRC Bulletin 17-B guidelines with a gauged site and
regionalized weighted skew.
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CHAPTER 4

CONCLUSIONS

Based upon the FASTCLUS algorithm, cluster analysis is
used to identify distinct flood regions for the State of
Kentucky. Important statistical properties of the annual
maximum flood (AMF) series and other watershed hydrologic
data from 253 gauged sites in the State of Kentucky are used
in the analysis. Clustering variables used in the study are
the L-moments, namely the coefficients of variation, LCV,
and skewness, LSK of normalized maximum annual flood series,
the parameters of the EV1 and GEV probability distributions,
and the specific mean annual flood, QSP, based on the raw
maximum annual flood series. All clustering variables are
further standardized prior to clustering to suppress effects
of scale. A comparison of the regions delineated under the
two approaches, namely, cluster anaiysis and method of
residuals, is then carried out using the following steps:

a) direct comparison of gauged stations assigned to each
rejion; b) comparison of mean, median and range (difference
between the maximum and minimﬁm values) of distributicnal
characteristics of all hydrological variables (response and
attribute); ¢) performance of regiocnalized EV1 and GEV flood
frequency models; d) results of discriminant analysis; and
e) results of regression analysis relating regionalized
estimates flood quantiles of various return periods, Qpir to
watershed physical and climatic characteristics (referred to
as the attribute variables). The following conclusions are
made in this study:
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1.

While the USGS method of residuals regions are or at
least made to coiﬁcide with geographic or hydrologic
boundaries, cluster regions do not. A comparison of
actual gauged sites shows considerable difference.
Cluster regions differentiate characteristics that
control the underlying probability law of flood
response, whereas the method of residuals does not
address this issue directly. B
For cluster regions the shape of the regionalized flood
frequency growth curve depends on the clustering
variables and the underlying probability distribution
used. For EV1 distribution these growth curves are
linear with normalized discharge ratio ranging from
0.0-5.0. In contrast, the GEV distribution growth
curves become increasingly non-linear as the
coefficients of variation and skew increase. The
normalized discharge levels in this case rénge from
0.0-10.0. For the USGS regions the growth curves
practically plot on one another indicating homogeneity
of flood response between flcod regions. '
The regionalized EV1 and GEV flood frequency growth
curves show more differences between cluster regions
than between the seven USGS regions. This suggests
that the cluster regions delineated for Cases 1-4 are
homogeneous within themselves but distinct from each
other in terms of their flood response when compared to
the USGS regions. This property is essential for
deriving maximum benefit from any flood regionalization
effort.

An examination of statistical trends, like the mean and
median, of important hydrologic variables {both
response and attribute), such as the watershed area,
A, indicates that the cluster regions have lower
variability within each of the with respect to these
parameters than the USGS regions. Cluster regions are
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generally grouped into low, medium or large watershed
drainage areas and flood response areas (as measured by
fhe specific mean annual flood, QSP, and the mean
annual flood). In contrast, the USGS flood regions
have a mixed population within each of the seven
regions, thereby giving similar values across regions.
An exception to this are the trends observed for the
basin shape, Bs’ and channel sinuousity, Sg- These
variables, by virtue of their definition, involving
ratios of similar magnitude either small or large, show
similar variation between regions for both cluster and
USGS regions.

The performance of these regiocnalized EV1 and GEV flood
frequency models, in terms of regional average bias
(computed by taking the difference between simulated
and historical estimates of flood quantiles) and RMSE
(computed by taking the square of the bias) are
comparable for cluster ahd'USGS regions. For both
models and all flood regions (cluster and USGS), the
bias changes from positive to negative as the return

period increases (i.e. the flood frequency growth curve

becomes steeper) indicating an underestimation of flood
quantiles. This trend in the bias is partly due to the
condition of separation commonly found in Monte Carlo
simulated flood data. This condition of separation
causes simulated flow sequences to have less
variability (with the separation increasing with return
period) than the historical flood records resuitingrin
an underestimation of flooed quantiles when using
simulated flows at a gauged site.

The absolute value of the regional average bias is less
than 15% for all flood regions and flcod frequency
models when predicting flood quantiles having a return
period less than 100 years. This indicates a high
level of accuracy in the regionalized flood frequency
models developed in the study. In some cases, however,
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the RﬁSE is as high as 44% for regions having the
steepest flood frequency growth curves indicating a
lack of precision or fit. Paradoxically, this occurs
with the GEV flood frequency mocdel that should provide
a better fit considering the fact that ot has one
additional parameter to capture the high skew commconly
found in flood data. By and large the RMSE is less
than 20% for most cluster and USGS flood regions.

In both methods of delineating flood regions, the
geomorphic properties of the watersheds such as the
drainage area, basin shape, basin length, and main
channel length, slope and sinucusity provide the
maximum discrimination between flood regions.
Discrimination is based on the physical and climatic
characteristics of the watersheds (réferred to as
attribute variables). Watershed contributing drainage

‘area is the most important variable. The USGS flood

regioné have a low overall discrimination (16.9%)
compared to the cluster regions; which have a higher
overall discrimination of 47.1%. This further supports
the mixed hydrologic composition within the USGS '
regions.

For both methods of regionalization, the significént

‘variables (at a 5% level) in the regression analysis

relating EV1l and GEV flood gquantiles, Qpir ©of various
return periods to watershed physical and climatic

characteristics, are geomorphic properties of the

watersheds (as was the case with discriminant analysis)

with the watershed contributing drainage area, A, as
the most important variable.

The standard errors associated with the regression
equations are comparable for both methods. For cluster
regions, where the problem of simultaneously
classifying gauged and ungauged sites into several
cluster regions exists, the weighted standard errors
(based on the posterior probabilities and the
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io0.

11.

12.

corresponding regression equations of the cluster
regions to which a site is assigned) are used in making
this comparison.

The hydrological characteristics of flood regions and
their overall performance delineated using Method 1
(clustering on L-moments and QSP) are similar to those
of Method 2 (clustering on parameters of the EV1 and
GEV probability distributions). However, the actual
gauged sites within each region are quité different.

A comparison of flood quantile estimates at selected
sites indicates that the regionalized EV1 and GEV floocd
frequency models underestimate flood levels (50 and 100
year return periods) when compared to the log-Pearson
Type-I1I flood frequency model.

Overall it appears that regionalized EV1 and GEV flood
frequency models, in conjunction with the method of
L-moments to estimate their parameters, would better
represent flood experience in Kentucky even when using
the present flood regions as defined using the method
of residuals. This observation is based on the _
performance of these models in terms of bias and RMSE
and not on a direct comparison with a regionalized
log-Pearson Type-III flood freqﬁency distribution.
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NOMENCLATURE

The following symbols and variables are used in this study:

Lcv

LSK

LBMD
cv

SK

KUR
M(LCV)
M({LSK)
M {LKUR)

M(LBMD)

AMF

L K

0

Qs

QSP

L-moment ratib, t., (coefficient of wvariation),

of normalized AMFzseries;

L-moment ratio, t, (coefficient of skewness), of
normalized AMF series; _
L-moment ratio, t, (cogfficient of kurtosis), of
normalized AMF series;

L-moment ratio, t_ (coefficient of bi-modality),

5
of normalized AMF series;

coefficient of variation of raw AMF series;

= coefficient of skewness of raw AMF series;

= coefficient of kurtosis of raw AMF series;

H

regional weighted mean L-moment ratio, t2
(coefficient of variation);

regipnal weighted mean L-moment ratio, t3
(coefficient of skewness);

regional weighted mean L-moment ratio, t,
(coefficient of kurtosis);

regional weighted mean L-moment ratio,‘t5
(coefficient of bi-modality);

raw or normalized annual maximum floodpeak
series; |
normalized annual maximum flood value = Q/Q;

= raw annual maximum flood value in cfs;
= mean of raw AMF series in cfs (same as STMEAN);

= jndex-flood in cfs;

gauged site i estimate of flood level having a
return period of T years in cfs.

regionalized flood quantile estimate of
normalized AMF series;

specific mean annual flood = Q/AC in cfs/sdg.
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AGVL

KGVL

= rth shifted

mile

(same as SMDISCH) ;

cumulative probability density function (cdf);
= probability density function (pdf);

expected value of random variable X;

Legendre polynomial of function F;

= probability weighted moment;
= probability weighted moment;

probability weighted moment of order r, Ml,o,r;
= probability weighted moment of order r, Ml,rjoi

L-moment of

order r;

L-moment ratio of order r;

= sample estimate

sample estimate

sample estimate.

sample estimate
sample estimate
EV1 probability
sample estimate
EV1 probability
sample estimate
GEV probability
sample estimate
GEV probability
sample estimate
GEV probability

of
of
of
of
of
or
of
or
of
or
of
or
of
or

L-moment ratio;

the location parameter of the
frequency distribution;

the scale parameter of the

frequency diStribution;

the location parameter of the
frequency distribution; -
the scale parameter of the
frequency distribution;

the shape parameter of the
frequency distribution;

Extreme Value Type~l or Gumbel probability

distribution;

Generalized Extreme Value probability

distribution;

Wakeby probability distribution;

watershed
in square
watershed
watershed
BASLEN) ;

watershed

shape index =

or basin contributing drainage area
miles (same as DAREA);

or basin width in miles;

or basin length in miles (same

as

(Ac / B1 ) (same as
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BELEV
PRECIP

STOR
SINFL

BASIN

ELEV
ISTN

USREG

SHAPE) ;

= watershed or

watershed or

inches;

= watershed or
= watershed or

in in/nhr;

= watershed or
= main channel
= main channel

CHANSIN) ;
main channel
CHANSLOP) ;

basin mean elevation in feet;
basin mean annual precipitation in

basin storage in percent;
basin average soil infiltration

basin designation;
length in miles (same as CHANLEN);

sinuousity = (Lo / By) (same as

slope in percent (same as

gauged site mean elevation in feet;

residuals;

= gauged site USGS Station Number;

= return period in years;

= number of years of AMF data at a gauged site;
= region assigned to gauged site using method of
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TABLE AZ. Comparison of Regional Average Eistorical and Simulated
L-Momenta: Clustaring on LCT and QSP. »

Histeoris

Region Ic¥oments

Hes
3 1,0000 0.2383 0.1760 0.1810 0.0781
4 1.0000 0.2821 0.1988 0.1839 0.0786
1 1.0000 0.3242 0.2759 0.1914 0.1016
2 1.0000 0.3862 0.3053 0.1900 0.0809
s 1.0000 0.4432 0.4035 0.2784 0.1657

Region Average Simulated

Bo: L-Moments using FV1
3 1.0000 6.2403 0.1781 0.1676 0.0653
4 1.0000 0.2815 0.1817 0.1644 0.0560
1 1.0000 0.3153 0.1210 0.1547 0.0717
2 1.6000 0.3%36 0.2122 0.1488 0.0685
5 1.0000 0.3786 2.2239 0.1472 0.0789

Region Average Sizglated

Noz L-Koments using GEV
3 1.0000 0.2397 0.1370 0.1747 0.0722
4 1.0000 0.2796 0.2148 0.1883 0.07133
1 1.0000 - ©.3177 0.273% 9.2023 0.1047
2 1.0000 0.3833 0.2983 0.2033 0.1012
5 1.0000 0.4122 0.3533 0.2182 0.1348

s Reglons arranged in increasing steepness of the corresponding flood
frequency gzowvth curves (i.s. increasing LCY or LSK)

TABLE A3. Comparison of Regional Average Historical and Simulated
L-~Momants: Clustaring on EV1 Paramatars and QSP. *

. Bistoric

Ragion L-Momants

Ho:
4 1.9000 0.3310 0.1641 0.1829 0.0741 -
E . 1.8000 0.2801 0.2008 0.1834 0.0743

-3 1.0000 0.3116 0.2637 0.1859 0.1001

2 1.0000 0.3621 0.2837 0.2074 0,1097
1 1.0000 0.4196 0.3703 0.2451 0.1359

Regicn Average Slmulated

Noz L-Mopants using EV1
4 1.0000 0.2329 0.1767  ©.1437 0.0628
5 1.0000 " 0.,2798 0.12863 0.16%4 0.0564
3 1.0000 0.3053 0.1363 0.1554 0.0698
2 1.0000 0.3393 0.2078 0.1551 . 0.0638
1 1.0000 . 0.367% 0.2177 0.1477 0.075%

Region Ayserage Simulated

Nai LoMoments using GEY
4 1.00Q0 0.2329 0.1748 0.1730 0.0692
5 1.0000 0.2779 0.217% 0.1894 0.0716
E] 1.0000 0.3057 0.26809 0.1976 0.1015
2 1.0000 0.3423 0.2673 0.190% 0.0870
1

1.0000 0.395%0 0.3424 0.2305 0.1295

= Ragions arranged in increasing staspnass of tha corrsaponding flood
fraquency growth curves (i.e. increasing LCV or LSK)
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TABLE Ad4. Conparison of Regional Average Ristorical and Simulated
L-Mumants: Clustering on LCV, LSKEW and QS5P. *

Bistoric

Region IcMowents

Bo:
4 1.0000 0.2229 0.0530 0.1324 0.051%
3 1.0000 0.2613 0.2008 0.1713 0.0784
[} 1.0000 0.3224 0.2420 0.1853 0.0809
1 1.0000 0.3383 0.3187 0.2178 0.1176
2 1.0000 0.4615 0.4672 0.3275 0.1847

Region Averaqe Sipulated

Nas L-Moments using EV]
4 1.0000 0.22623 0.174% 0.1751 0.0815
3 1.0000 0.2612 0.1751 0.1618 0.0879
5 1.0000 0.3109 0.1991 0.1604 0.0627
1 1.4000 0.3240 0.1962 0.1545 0.0730
2 1.0060 0.3825 0.2274 0.1480 0.0817

Ragion A¥arage_Slpclated

No: L-Moments using GEV
4 1.0000 0.2241 0.0886 0.1432 0.0391
3 1.0000 0.2604 . 0.2050 0.1748 0.0782
1 - 1.0000 0.3296 0.3083 0.2158 0.1200
s 1.0000 0.3124 0.2465 0.191% 0.0847
2 1.0000 0.4221 0. 4047 0.2669 0.1533

+ Heglons arranged in increasing steepneas of the corrssponding flood
frequency growth curves (i.s. ilncressing LCV or LSK)

TABLE AS5. Comparison of Regional Avernge Historical and Simulated
L-Nomants: Clustaring on GEV Parametars and QSP. =

Biatoric

Region I=Moments

No: .
5 1.0000 0.2379 0.1054 0.1379 0.0527
4 1.0000 0.2735 0.0767 0.13239 0.0644
b3 1.0000 0.2827 0.2877 0.2218 0.1145
2 1.0000 0.3330 0.3218 0.2319 0.0952
3 1.0000 0.3568 0.233% G.1385 0.0700
§ 1.0000 0.4233 0.4544 0.3236 0.1868

Reaion Average Singlated

No: L=NMopentx usipg ¥¥1
L 1.0000 0.2299 0.1783 0.16388 0.0648
4 1.0000 0.273 0.1889 0.1787 0.0542
1 1.0000 0.2802 0.1841 0.153) 0.0687
2 1.0000 0.3186 0.1961 0.1555 0.0850
3 1,0000 0.3163 g.2029 0.1535 0.0741
s 1.0000 0.3871 0.2185 0,1494 0.0766

Region Axerage Simplated

.- L-Mowments uping GEV
s 1.0000 0.2386 0.1284 0.1498 0.0514
4 1.0000 0.2701 0.1240 0.1476 0.0451
1 1.0000 0.2800 0.2804 9.2113 0.1088
3 1.0000 0.3419 0.2429 0.1782 0.0921
2 1.0000 0.3229 0.3022 G.2191 0.1034
6 1.0000 0.3983 ©.4013 0.2682 0.1547

* Regions arranged in increzsing stespness of the corresponding flood
frequency growth curves (i.s. incressing LCV or LSK)
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TABLE AS. Coumparison of Regional Average Historical and Simulated
L-Momants: USGS Regjons. +

Bistoric

Regign l-Moments

Hoi
6 1.0000 6.2698 0.2230 0.1967 0,0743
1 1.0000 0.2781 0.2728 0.213% 0.0983
4 1.0000 0,2830 0.2037 0.1582 0.0d01
2 1.0000 0.2819 0.2268 0.1554 0.1044
7 1.0000 0.3034 0.2691 0.2028 0.1061
3 1.0000 0.3115 0.269% 0.18130 0.0887
5 1.0000 0.3118% 0.23%52 0.2081 0.1042

Reglog Averags Simulated

Ho: L=Moments using EV1
[ 1.0000 0.2622 0.12%0 0.1648 0.0548
1 1.0000 0.2679 0.1837 0.1596 0.086%
4 1.0000 0.2770 0.1872 0.1626 0.0702
2 1.0000 0.2815% 0.1881 0.1800 0.0682
7 1.0000 0.2559 0.1883 0.1564 0.0672
3 1.0000 0.3022 0.1909 0.1576 0.0639
5 1.0040 0.3040 0.1937 0.1877 0.0724

Begion Average Simulated

.- H LoMowsnty using GEV
s 1.0000 0.2658 . 0.2198 0.1904 0.0838
7 1.0000 0,3983 0.2668 0.2031 0.1026
4 1.0000 0.2821 0.2182 0.1804 0,0855
2 1.9000 0.2844 0.23%4 0.1845% 0.0843
1 1.0000 0.3729 0.2597 0.2037 0.0986
3 1.0000 0.3028 0.2586 0.1934 0.0943
5 1.0000 0.308) 0.2727 ©.2030 0.1041

* Regions arranged in increasing steepness of the corrassponding flood
fraquency growth curves (i.e. increasing LCY or LSK)

TABLE A.7. Comparizon of Regional Averags Bistoriec and Simulated
Paramsters: Cluatering on LCV and QsP. ’q *

) o CEV
Region #
No. » MEVL AEVL MWGVL AGVL XGVL
, EISTORIC PARAMFTERS
3 q.30 0.34 0.40 0.34 -0.01
4 a.76 0.41 0.7s8 0.39 =-0.04
p ! 9.1 0.47 0.70 0.40 =-0.18
2 9.68 0.5§ 0.53 0.44 =-0.20
L 0.8 C.64 Q.55 Q.42 =0.23
AVERAGE SIMULATED PARAMETFRS
3 0.80Q ¢.2% 0.9¢ . 0.34 -0.03
4 0.77 0.41 Q.76 d9.38 =0.07
1 a.74 0.43 0.71 9.19 =0.186
2 Q.71 .31 Q.68 Q.42 -0.19
5 0.68 0.35 0.59 Q.42 =-0.28

* Regions arranged in incrsasing stespnass of the corresponding flood
fraquency growth curves (f.s. incressing LCV or LSK)

# MEVL, MGVL = location parameters; AEVL, AGVL = scale paramaters;
and KGVL = shape parzmetar.
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TABLE A8. Comparison of Regional Average Historic and Sinulated
Paramaters: Clustaring on EV1l Paramecers and ¢5P. *

b 8 GEV
Region . #
No.® MEVL AEVL . MCEVL, AGVL KGVL
JISTORIC PARAMETERS -
4 0.31 0.33 0.81 0.34 0.0L
5 0.77 Q.40 a.76 0.39 -0.05
3 0.74 0.48 0.71 0.3% =014
2 0.79 0.52 . 0.8& 0.42 -0.17
1 0.65 0.81 0.58 0.43 =-0.29
AYERAGE. SIMULATED PARAMETERS
4 Q.81 0.34 ‘0.81 0.33 ° =0.91
L 0.77 G.40 0.76¢ 0.37 -3.07
3 9.7% Q.44 . a.72 0.38 -0.14
2 0.72 0.4% 0.569 0.42 -0.14
1 0.6% 0.53 0.82 O.42 -0.25

* Regions arranged in increasing stespness of the corresponding flocod
fragquency growth curves (i.e. incresasing ICV or LK)

# HMEVL, MGVL = location paramatars; AEVL, AGVL = s3cala parameters;
and KGVL = shape paranetar.

" TABLE A9. Comparison of Regional Average Historics and Simulated
‘Parametars: Clustaring on LV, LSKEW and QSP. »

V1l GEV
Region ¥
Ro. * MEVL AEVL MGVL AGTL EGVL
HISTORIC PARMMETERS
4 9.81 0.32 4.3% 9.37 0.19
3 2.78 g.38 - 0.77 0.36 =-0.05
H 0.73 Q.47 0.71 0.42 =0.11
1 0.72 0.49 0.63 0.8 -0.22
2 0.62 0.57 0.32 0.23 =-0.42
AVERAGE SIMULATED PARAMETERS.
4 0.1 2.33 0.3 0.38 0.12
3 0.78 0.38 9.77 0,36 -9,05%
5 Q.74 0.45 | 0.72 0.40 =-0.12
1 9.73 Q.47 Q.69 e.38 -2.20
2 c.58 0.53 0.58 0.449 =-0.34

* Regicns arranged in incrsasing stespnass of tha corrsspending flood
frequency growth curvas (l.s. increasing LCV or LsK) .

F - MEVL, MGVL = locaticn parametars; AEVL, AGVL = scale parameters;
and EKGVL = shaps paramataer. :
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TABLE Al0. Comparison of Regicnal Average Bistoric and Sizulaced
Paranataxs: Clusctaring on GEZV Paramecars and QSP. «

ZVL GEY
Ragjien #
¥o. MEVL AZVL MGTL AGTL XGVL
HISIORIC PARMCETRS
5 Q.30 0.34 0.82 9.37 0.1l9
4 0.77 ¢.33 o.s0 0.45 0.15
1 0.76 0.41 Q. T4 Q.34 ~0.11
2 9.72 Q.48 0.68 9.37 =0.32
3 2,70 - 0.51 Q9,58 0. 47 =9.10
[ 0.65 Q.41 0.5¢ 0.3& ~0.40
ATERAGE STMULATYD PARAMETTRS
S Q.80 .35 9.81 Q.36 9.07
4 0.77 d4.23 0.79 Q.41 Q.07
i .77 G.40 0.74 0.34 =3.18
2 0.72 3.46 . .49 2.37 =.20
3 4.72 .48 0.49 Q.44 =-0.11
L 0.69 0.53 0.60 9.38 =-2.,33

* Ragions arranged in increasing staepnass of the corrasponding flood
frecuency qrowth curves (i.s. increasing LCV or LSK}

# MEVL, MGVL = location paramatars; AEVL, AGVL = scala parazaters;
and KGVL = shaps paranmecsr.

TABLE All. Cowparison of Regional Avarage Historic and Simulated
Parasatars: Clustering en USGS Regions. »

Vi GEV
Region - F
No. * MEVL AEVL MCEVL AGTL FGVL

EISTORIC PARAMPTERS

] 0.79 2.39 0.76 0.36 -0.08
1 0.77 G.40 8.74 0.34 -0.15
4 0.768 a.41 0.73 [ =1 =-4.9%
2 0.76 .42 0.74 0.33 -0.09
7 “0.75 0,44 : 0.72 0.37 -0.15
3 0.74 0.45 Q.71 a.38 -1,15%
S 2.73 Q.46 2.70 Q.38 -0.17

AYERAGE SIMULATED PABAMETERS
[1 9.74 0.13 0.77 9.38 -0.08
i 0.78 a9.3% 8.7% 9.34 -Q.13
4 .77 2.49 0.73 9.38 -0.07
2 Q.77 0.41 0.7 c.3l3 =-0,08
7 Q.78 3.4 : 8.73 9.37 =-0.14
k) Q.73 0.44 9.72 ¢.18 =0.13
L

9.73 Q.44 0.71 ¢.38 =0.35

* Reglons arranged in increasing stespnass of %hs corresponding flood
[Tequancy grovth curves (i.e. increasing LCV or LSK)

# MEVL, MGVL » location parametars; AEVL, AGVL = scals parametars;
and KGVL = shapa parametar.

136



	University of Kentucky
	UKnowledge
	12-1989

	Regionalization of Flood Data Using Probability Distributions and Their Parameters
	Nageshwar Rao Bhaskar
	Carol Alf O'Connor
	Harold Andrew Myers
	William Paul Puckett
	Repository Citation


	tmp.1543859684.pdf.I1oMx

