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ABSTRACT 

This report presents a new methodology to model the time and space evolution of 

groundwater variables in a system of aquifers when certain components of the model, 

such as the geohydrologic information, the boundary conditions, the magnitude and 

variability of the sources or physical parameters are uncertain and defined in stochastic 

terms. This facilitates a more realistic statistical representation of groundwater flow 

and groundwater pollution forecasting for either the saturated or the unsaturated zone. 

The method is based on applications of modern mathematics to the solution of the 

resulting stochastic transport equations. _This procedure exhibits considerable advan-
' 

tages over the existing stochastic modeling techniques. In particular, the semigroup 

solutions are not restricted to small variances in the stochastic elements (perturbation 
i 

techniques), unsteady dynamic conditions are specifically considered, time and space 
.11 

randomness may be considered in the sources, the boundary conditions or the parame-

ters, and the methodology reflects a well-posed functional-analytic theory. Several 

basic example problems are presented in order to illustrate the application of the 

methodology to the modeling of complex spatially and temporally distributed sources 
I 

of interest in engineering hydrology today. Further potential applications of the 

method are very promising, including the modeling of non-conservative contaminants 
I 

in groundwater systems. 

,I 
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CHAPTER I - INTRODUCTION: 

Modeling Non-Point Sources in Groundwater 

We begin by stating the specific objectives of the research: (1) To derive a new 

mathematical modeling procedure to analyze and forecast distributed source problems 

in groundwater liquid and solid transport. (2) To develop new solutions of transport 

partial differential equations in porous media when the forcing functions, the parame

ters, the initial conditions and the boundary conditions are uncertain functions defined 

in stochastic terms. 

Let us discuss first the relation between the research objectives and the current 

modeling needs of distributed source problems in groundwater. Practical engineering 

problems involving groundwater transport modeling today require the prediction of the 

time and space evolution of a principal contaminant in an aquifer due to a particular 

contamination source. The accurate forecast of the concentration magnitude facilitates 

the design of appropriate preventive or remedial measures. The time and space evolu

tion of a contaminant plume in a gystem of aquifers is theoretically, and ideally, 
' 

predicted by a solution of the advective-dispersive partial differential equation in 

porous media subject to an appropriate set of boundary conditions and source func

tions. Solving this equation for the concentration distribution subject to the several 

physical and chemical uncertainties in the phenomenon of mass transport in aquifers 

and the insufficiency of hydrogeological and hydrochemical information is one of the 

main difficulties in engineering hydrology today (Fried, 1975; Anderson, 1979; Sim

mons, 1982; Matheron and De Marsily, 1980; Dagan and Bresler, 1979). The literature 

reports the innaccuracy of deterministic models in predicting contamination in situa

tions when the parameters, the. boundary conditions, and. the pollution sources are 

difficult to measure or when they vary erratically .in space and time. Modeling of reac

tive transport poses serious difficulties to the hydrologic community because of the ina-



bility of deterministic functions to represent the wide spectrum of variability of a non

conservative contaminant. It has also been reported the large differences between 

laboratory-measured dispersion coefficients and the corresponding field scale values. 

This discrepancy tends to increase as time or distance from the source increases (Smith 

and Schwartz, 19080; Sudiky, 1986). 

As a result of the above difficulties, some limited stochastic modeling techniques 

attempting to describe an uncertain quantity in stochastic terms have emerged (Tang 

et al., 1982; Schwartz, 1977; Gelhar et al., 1979; Simmons, 1982; Matheron and De 

Marsily, 1980; Sudiky and Cherry, 1979; Dagan, 1982; Gelhar and Axness, 1983; Dagan, 

1984; Warren and Skiba, 1964; Winter et al., 1984). While these stochastic methods 

have provided insight on the phenomenon of mass transport in aquifers, several incon-

sistencies and deficiencies have been note,d, which can be related to the limitations of 

the mathematical procedures employed (Smith and Schwartz, 1980). 

The main limitation of the existing stochastic methods relates to the assumption 

of small randomness required by the perturbation expansion solutions. The existing 

methods can only handle randomness in one quantity, and as a result the hydraulic 

conductivity has been assumed as the only source of uncertainty. The effect of ran

domness in the time or spatial distribution of the sources, randomness in the boundary 

conditions, or the randomness in the environmental evolution of the system has not 

been studied. In some cases the applications are limited to steady state asymptotic 

conditions of the concentration field and the· dynamic features of the system have not 
' 

been considered (i.e, Gelhar and Axness, J983). Som~ of the apparent stochasticity in 

· the hydraulic conductivity may be generated by small scale measurement approaches, 

and their unavoidable errors, to large scale contaminant migration as may be seen in 

the recent field work (Sudiky, 1986). Some of the approaches use Montecarlo simula

tions, which are expensive and empirical (i.e., Smith and Scwartz, 1980). Some of the 

existing modeling methods only provide information about the concentration variance, 

2 



without a description of the form of sample functions, different correlation functions 

and higher order moments, which would give a better information of the stochastic 

properties of the concentration process. Finally, the existing methods are in a sense 

parameter estimation techniques rather than methods to obtain explicit solutions for 

engineering forecasting purposes. 

There is a strong need for a general modeling methodology capable of predicting 

the stochastic properties of the concentration distribution, given the stochastic proper-

ties of the uncertain quantities. This methodology should be able to handle arbitrary 

large variances, randomness_ in any component of the differential equation, unsteady 

conditions, and be based on a well-posed mathematical theory. This general modeling 
! 

procedure would allow engineers, designers and planers to obtain a broad picture of the 

concentration evolution by identifying the relative importance of the different uncer

tain quantities and forecasting the general properties of the concentration field in a 

more realistic statistical sense. It is the main purpose of the present research report to 

present such new general methodology. 

The proposed methodology is based on the application of modern mathematics to 

the solution of stochastic transport equatipns (Bensoussan, 1977; Chow, 1979; Curtain 

and Falb, 1971; and Sawaragi et. al. 1978, among others). The solutions are obtained 

by blending some developments on the theory of stochastic partial differential equations 

in Hilbert spaces, the theory of stochastic evolution equations, and the theory of semi

groups of operators with some classical results on the heat flow ( diffusion) equation. 

These works have defined a functional-analytic framework to study many stochastic 

equations in mathematical physics. Applications of these concepts to the modeling of 

stochastic groundwater flow have generated important results (Serrano and Unny, 

1987(2); Serrano and Unny, 1986; Serrano et al., 1985(1), 1985(2) and 1985(3)). It is 

the aim -of the present research report to present a modeling procedure for the more 
' 

complex cases of solid and liquid transport in the saturated and the unsaturated zone 

3 



when the parameters, the boundary conditions or the sources are uncertain non-point 

functions of space and time. 

In what follows I assume that the advective-dispersive equation subject to some 

form of stochasticity is an appropriate form of modeling the dispersion phenomenon in 

porous media for certain regional-scale pollution problems. I do not discuss here the 

methods to derive transport equations, which are treated in detail elsewhere (i.e., Cush

man, 1987). In chapter II a general mathematical statement of the distributed ground

water pollution modeling problem is made. The relevant functional-analytic results 

leading to a new general solution of the differential equations is presented. The 

emphasis is on applications and the description is concentrated on main results. There

fore, theoretical aspects of existence and uniqueness of solutions, topological properties 

of solutions spaces and theorems have been omitted. In chapter II several application 

cases of modeling groundwater transport subject to different forms of uncertainty are 

shown in detail. These applications are chosen to satisfy the current needs in ground

water modeling and to illustrate the potentiality of the method in more complex cases. 

4 



CHAPTER II - RESEARCH PROCEDURES: 

Mathematical Statement and Solution of Distributed Groundwater Transport 

We begin our analysis by considering the problem of contamination of a shallow 

phreatic aquifer due to an industrial waste disposal pond which fully penetrates the 

aquifer. Assume that the chloride concentration in the pond varies erratically with 

time because industrial discharges are made randomly in time, and it is therefore 

difficult to describe them in deterministic terms. The groundwater velocity has been 

found to be fairly uniform, but the measured values of the aquifer dispersion coefficient 

are far from being constant and measurement errors al-e important. Finally it is known 

from the geology of the area that the main contaminant may react in certain places 
" 

because of local aquifer chemical constituents, and all attempts at finding a fixed reac

tion function have failed. The objective of the modeling tasks is to predict the migra-

tion of a main contaminant, such as the chloride concentration, along the main ground-

water flow direction with the aim of closing the site if the concentration levels reach 

certain maximum permissible levels for some drinking water wells located some dis

tance downstream. 

The modeling problem of this realistic example poses serious difficulties because of 
. ' 

the uncertain functions. w·e choose the advective-dispersive differential equation in a 

semi-infinite aquifer subject to a plane source at the origin and assume that it is valid 

for the problem in question. Assuming that the porous media is homogeneous and iso

tropic, and that the average groundwater velocity is constant throughout tbe length of 

the flow field, the differential equation is obtained after applying the divergence 

theorem to an integral equation statement of mass conservation in a control aquifer 

volume, and combining this with the equation of the Fick's first law (Hunt, 1983). 

Because we have the source, the dispersion coefficient and the reaction term as uncer

tain random functions, the concentration distribution will also be random: 



ac &c ac 
-
8 

- D(t, w)-2 + u-
8 

= g(x, t, w), 
t ax x (II.I) 

subject to 

C(O, t) = k(t, w); C(oo, t) = O; C(x, 0) = f(x), 

where C(x, t, w) is the stochastic process representing the concentration of the princi

pal contaminant in the fluid (mgr/lit); D(t, w) is the random process representing the 

aquifer dispersion coefficient (m 2/day); u is the average pore velocity, that is the flux 

velocity divided by the average porosity of the media (m/day); x is the coordinate 

parallel to the flow; t is the time coordinate; k( t, w) is the time-dependent concentra

tion at the origin (mgr /lit); f(x) is the initial concentration distribution across the 

aquifer (mgr/lit); and g( x, t, w) is the stochastic function representing the reaction 

term. Assume that the stochastic components are well-behaved and obtained after 

repetitive sampling in the aquifer and the pond 

The modeling problem reduces to t~e solution of eq.(II.1) subject to the known 

random functions g, le. and D and the boundary and initial conditions. By a solution 
,. 

we mean finding expressions for sample functions and some of the moments of the con

centration function which would better characterize the concentration distribution than 
I 

a single deterministic function. However, one may soon realize that it is not possible to 

obtain a solution of eq.(II.1) using the current perturbation or hierarchy techniques 

because these methods do not allow more than one random process or large variances 

(Adomian, 1983). In the search of better methods, we propose to use existing results of 

modern mathematics which will allow us to solve more general and more complex prob

lems than the one being described. 

We now consider the general stochastic groundwater pollution model. For the 

sake of notational economy, rigorousne~, flexibility and generality, let us write in 

abstract functional-analytical terms the general three-dimensional stochastic 

advective-dispersive equation in porous media as a stochastic evolution equation of the 

6 



form 

:; (x, t, w) + A(x, t, w)u = g(x, t, w), (x, t, w) t. GX[O, TJxn (Il.2) 

Q(x, t, w)u = F(w), (x, t, w) t. acx[o, TJxn 

u(x, 0, w) = u0(x, w), (x, w) t. cxn 

where u t. L 2(0, T; V) is the system output; g t. L 2(!J, B, P) is a second order random 

forcing function; GC]R 3 is an open domain subset of the three-dimensional real space 

with boundary 8G; 0 < T < oo; Q is a boundary operator; n is the basic probability 

sample space of elements w; L 2(JJ, B, P) = L 2(JJ) is the complete probability space of 

second-order random functions with probability measure P and B Borel field or class of 
i 

w sets; x represents three-dimensional spatial domain; A is an m-th order random par-

tial differential operator in space Hm( G) and it is given by 

Au = E (-1) k Dk(Pkl(x, t, w)D1u ), 
k,l:Sm 

where D is differentiation; Pkl(x, t, w) are randomly-valued stochastic processes 

representing the system parameters, which are assumed bounded and mean- squared 

continuous on [O, T]; m is the order of the space; the space 

T 

L 2(o, T; V) = {/:[O, T] - V: J II! II} dt < oo}, 
0 

for O < T < oo; V = Hm is the Sobolev ,~pace of order m of L 2(JJ)- valued functions; 

V CH C V', Vis dense in H, where. H = µ°; the no~m on Vis denoted by II II y; V' 

is the dual of V; g t. L 2(0, T; V'); and u0 f H X n is the system initial condition. For 

a more complete description of the above definitions the reader is referred to the avail-

able functional-analytic literature (i.e., Griffel, 1981; Hutson and Pym, 1980; Oden, 

1977; Showalter, 1977; Sawaragi et al., 1978; Bensoussan, 1977). 

7 



Theorems aud proofs c,pnceming the existence and uniqueness the solution to a 
i 

system given by eq.(II.1) have been extensively treated in Sawaragi et al., 1978; Ben-

soussan, 1977; Chow, 1979; and Curtain and Falb, 1971, among others. 

Randomness may enter the system given by eq.(II.2) in the following ways: (i) The 

random initial value problem, when u0 is random. (ii) The random boundary value 

problem, when F is random. (iii) The random forcing problem when g is random. (iv) 

The random operator problem, when A or Q is random. (v) The random geometry 

problem. It is the task of the modeler to determine which of the above cases represent 

the field problem and what are the most important or dominant random processes 

since the higher the number of random components, tp.e more complex the problem is. 

For cases (ii) and (iii) above, the operator A is deterministic and in many practical 

applications it is a time-independent operator. This situation will arise when the 
; 

parameters are deterministic functions independent of time. For example let us assume 

that this is the case in eq.(II.2), that the only uncertainty is due to the forcing term, 

and that the boundary conditions are deterministic. We would then transform the 

functional spaces for u in eq.(II.2) into an equivalent one for v in which the system has 

homogeneous boundary conditions, and the solution of the resulting evolution equation 

would be 

t 

v(t) = J1v0 + J J1_,h(x, s, w)ds, 
0 

(II.3) 

where v t L 2(0, T; V) is the system outp,11t; V = H[f is a closed subspace of Hm; H'(! 

is the closure of C0 ( G; L2(!1)) in Hm, tb,at is, H{f is the m-th order Sobolev space of 

second:order random functions with compact support; h(x, t, w) includes the function 

g(x, t, w) and the appropriate function(s) resulting from the space transformation, 

including the boundary conditions; v0(x) includes u0(x); J1 e l(H, H) is the evolution 

operator associated with A (Custain and Pritchard, 1978; Ladas and Lakshmikantham, 

1972; Butzer and Berens, 1967). If a transformation of spaces is not done, it is clear 

8 



that the operator must satisfy the prescribed boundary conditions. If the operator A is 

time independent and if the evolutional operator ft in the Hilbert space H satisfies: 

(ii) J0 = I, where I is the identity operator, and 

(iii) II Jtv - v II H - 0 as t - 0 for all v EH, 

where II II denotes the norm, then ft is said to be a strongly continuous semigroup. 

Properties (i) and (ii) above give the semigroup structure, whereas property (iii) is 

topological and defines the "strong continuity". 

Theoretically, we may be interested in finding the joint distribution function of all 

' orders that characterize the process v. This task is frequently too complicated and in 

many situations represents more than is needed. We often can consider simpler and 

necessarily less complete characterizations in the form of expectations, dispersions, 

covariances, joint moments, etc., which are called statistical measures. This view is 

supported by the fact that it is usually not feasible to collect enough field information 

to evaluate the joint probability density function of the input processes and the param

eters. Therefore, from the practical point of view, it is possible to calculate only the 

first few low order moments of the solution process v. The first two moments give con

siderable information of the joint probability density function of v. 

The mean value of v is given by 

t 

E{v(x, t)} = Jtvo + f Jt_,E{h(x, s, w)}ds, 
.o 

where E { } denotes the expectation operator. 

Now the second moment of v in eq.(II.3) is given by 

t1 t2 

(II.4) 

E{v(ti)v(t2)} = E{ [Jt,vo + J Jt,-,h(s)ds]. [J1 2vo + flt.-{ h(€)d€] }, (II.5) 
0 . 0 

where w has been omitted for convenience. Without loss of generality we assume that 

g 



h is a zero mean stochastic process. This is the result after a deterministic model has 

been optimized. Thus the second term in eq.(II.4) is equal to zero and eq.(2.5) becomes 

t1 t2 

E{v(t1)v(t2)} = 11,+1,vo + J J l1,+1.-a-eE{h(s)h(€)}dsdf 
0 0 

(II.6) 

· Note that the calculation of eq.(II.6) requires knowledge of the correlation of h and 

that towards this end should the field measurements be oriented. Higher order 

moments may be easily calculated in a similar way. 

If the operator A in eq.(II.2) is stochastic because one or more of the parameters is 

defined as a stochastic process, then is a non-linear stochastic partial differential equa

tion which in general has no exact solution. We follow in this case a procedure similar 

to the one used in [l] to decompose an ordinary stochastic differential operator into an 

infinite series in order to approximate the corresponding stochastic Green's function. 

We shall present a semigroup formulation for a general stochastic partial differential 

operator, such as the one introduced by S,errano and Unny (1987(1)) for the groundwa

ter flow equation subject to stochastic transmissivity. 

Let us write the operator A as 

A(x, t, w) = A(x) + R(t, w), (II.7) 

where A(x) is the deterministic, time independent, component and R(t, w) the random 

part or the portion of the partial differential operator containing the random in time 

parameters. It is clear that this time stochastic representation is equally valid for spa

tial stochasticity and that we prefer for now to solve the advective-dispersive equation 

with time stochastic parameters. Substit~ting eq.(II.7) into eq.(II.2), placing R in the 

write hand side and assuming for simplici°ty that· g and k are equal to zero, we have a 

randomly forced equation again whose solution is 

t t 

v = J1v0 + f J1_,h(s)ds - f J1_,Rv(s )ds (II.8) 
0 0 . 
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· It is not possible to solve eq.(II.8) explicitly because v is in the right hand side. Now 
' 

00 

we decompose v in the right hand side as an infinite series v = J::v;. Eq.(II.8) becomes 
. i-1 

t t 

v = J1v0 + J J1_,h(s)ds - J J1_,R(v1 + v2 + v3 + ... )ds (II.9) 
0 0 

where the semigroup J is now deterministic. Identifying v1 as the preceding term 

t 
f J1_ 8 v(s )ds, we can determine each v; in terms of the preceding v,._ 1• Thus 
0 

t t • 

v = J1v0 + J J1_,h(s)ds + J J J1_,RJ,_,h(r)drds (II.10) 
0 0 0 

t • r 

- ff f Jt_,RJ._,RJ r-eh(e)dedrds - ... , 
000 . 

where the last term in the series contains v. The basic idea here is that a random semi-

group operator, which may be difficult to derive in particular cases, can be determined 

in an easily computable series by decomposition of the differential operator A(x, t, w) 

into a deterministic operator A(x) whose semigroup is known or found with'little effort, 

and a random operator R(t, w) whose contribution to the total semigroup J1,w 

modification can be found in series form. The convergence question will not be treated 
I : 

here, since it has been discused elsewhere (Adomian, 1983). 

The mean value of v is obtained by truncating eq.(II.13) and taking expectations: 
IS\ 

t t 8 

E{ v} = J1vo + J J1_ 8E{h(s )}ds - J f J1_,E{RJ,_,} E{h(r)}drds, (II.11) 
0 00 

where statistical separability occurs between the semigroup and the forcing term. 

Physically this stems from the independent behaviour of the input function and the 

system parameters (i.e., there is not a functional relationship between the dispersion 

coefficient and the source terms). 
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Similarly, the correlation function is given by 

ti t1,6 

E{v(ti)v(t2)} = E{ [J11v0 + J J11_,h(s)ds - J J J11_,RJ,_,h(r)drds] 
0 0 .o 

,. '•fJ 
.[J12uo + J Jt,z-ph(p)dp - J J JtrfJRJ{J_,.,h("l)d"fd/J'J} 

0 00 

Assuming h a zero-mean temporal stochastic process and solving, 

'·'· E{v(t 1)v(t2)} = J11+12v§ + J f J11+t.--a-pE{h(s)h(p)}dsdp 
00 

t,t,{J 

- 2f ff Jt,+t.,-,-fJE{RJfJ_,.,}E{h(s)h("l)}d"fdf3ds 
000 

t .1 .. fJ 
+ J J J J J1 1+1.--,-fJE{RJ,_,RJ{J_,.,}.E{h(r)h("1)}drdsd"fd(3, 

0000 

" 

(II.12) 

(II.13) 

These are the results obtained by considering one term v 1 in the series of eq.(II.9). 

Obviously calculations can be extended up> to a desired degree of accuracy by consider

ing more terms. However, it is known that the series converges rapidly and that in 

some circumstances considering one term is sufficient'ly accurate, as demonstrated by 

the sensitivity analysis on the semigroup for the stochastic boussinesq equation in 

groundwater flow presented by Serrano, and Unny {1987(1)). 

In the chapter III, I shall illustrate the application of the above theory to the 

modeling of groundwater flow and pollution in engineering problems. The example 
i 

problems show the solution of special cases of eq.(II.1)" which appear in applications. 

The emphasis is on the illustration of the methodology rather than on the routine 

modeling steps. I use a we!l-known stochastic process in the applications, namely the 

White Gaussian Noise. This is done for simplicity and because the properties of this 

process closely resemble many physically-realizable processes after the deterministic 
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trend has been removed. It is clear, however, that any process in L 2(il) could be used, 

the properties of which should be derived from sample field measurements followed by 

an estimation algorithm (i.e., Godambe and Thompson, 1984). Other more "realistic" 

random process I use in the applications, particularly in spatially random problems, is 

the colored-Gaussian noise, which offers a generalization of correlated processes often 

found in the field. 
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CHAPTER ill· APPLICATION PROBLEMS: 

ill.I. Modeling Contamination at a Well Subject to Measurement Errors 

In chapter II we described a contamination problem in a shallow phreatic aquifer 

due to a pond receiving industrial waste. Suppose the facility is new and that due to 

budgetary restrictions, only one monitoring well was drilled. After studying the aver-

age amplitude of the chloride concentration in the pond it was decided to locate this 

well at a distance from the pond X such that the random variations in the boundary 
. 

condition could be neglected and replaced by their average value C0 • .As5ume also that 

the uncertainty in the dispersion coefficient is minim um, and that the reaction term is 

negligible. However, the instrumentation used in measurement concentration is rudi

mentary and the individuals performing the measurement are not experienced, in 

which case there are important errors in the concentration. The modeling problem 

reduces to predicting the concentration at the well over time. The modeling equation 

will be eq.(II.1) with a constant source boundary condition k = C0, an initial condition 

C(x, 0) = 0 and a forcing term at the well g(X, t, w) = w(t). 

We now assume that we may express <; as the superposition of two problems: 

C(x, t, w) = C 1(x, t, w) + C2(x, t), (III.I) 

where C1 is the solution to the differential equation satisfying the random forcing term 

and C2(x, t) is the solution to the differential equation satisfying the deterministic 

boundary condition. In this case, the operator A in eq.(II.1) such that 

a2 [) 
AC= (-D- + u-)C 

8x2 8x 

generates a strongly continuous semigroup J1 given by 

Jtf(x) = 
1 00 

(411Dt),,. £ { exp[ 
( x - ut - s )

2 
J· [ -exp 

4Dt 
(~ - ut + s)2 J} f(s)ds. 

4Dt 
(III.2) 



This is easy to see by analogy of eq.(II.1) with the classical heat flow (diffusion) equa

tion (Cannon, 1984; Zauderer, 1983; Li, 1972; Carslaw and Jaeger, 1971;Crank, 1979). 

It is easy to show that J1 in this case is a strongly continuous semigroup with the pro

perties of semigroups described in section 2 ([6]). These properties permit the calcula

tion of the concentration at time t + r, knowing some intermediate concentration at 
i 

time t. Most importantly, knowing the form of the semigroup we may obtain the solu-

tion of our differential equation. For the random component of the solution we have, 

according to eq.(II.3), 

or 

t 

C1(x, t, w) = Jtf(x) + f 11_,w(r)ds 
0 

It w(r, w) 
00J { C 1(x, t, w) = 2 exp[ 

0 (4:n"D(t-r) o 
(x-u(t-r)-s)2

] 

4D(t-r) 

- exp[ (x-u(t-r)+s)2] }d d 
4D(t-r) 8 

T. 

(III.a) 

(III.4) 

From this expression we can generate sample functions of the process 0 1 if sample 

functions of the process w are available. Sample functions are useful for testing models 

and for observing the qualitative behaviour of the system due to different types of exci-

tations. Statistical properties of the process C 1 may be calculated by applying 

eqs.(II.4) and (II.6), as we shall show. 

Now the solution of the deterministid component in eq.(III.1) may be approached .. 
in two ways: As stated in section 2, We may transform our functional space H1(0, oo) 

into a Sobolev space with compact support HJ(o, oo) by defining 0 2 in terms of a 

smooth function satisfylng the bound~ry conditions and replacing it into the 

differential equation. · This procedure will generate a forcing term and the problem can 

be solved as above by using the concepts of semigroups. The second approach results 
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after applying the Fourier transformation"to a reduced differential equation and pro-
·•. 

duces the same solution. Since this classical solution already exists in the literature, we 

will use it (Marino, 1974; Ogata and Banks, 1961): 

x 
1 

(x-u(t-r))2 Co 
Cix t) = Jexp[ J dr. 

' (41rD)1> 0 4D(t - r) (t - r)312 (III.5) 

Since C0 = is a constant, eq.(III.5) becomes (Ogata and Banks, 1961) 

Co x - ut ux x + ut } 
C2(x, t) = 4i(x, t) = - {erfc[ 1> J + exp(-D )erfc[ I>] , 

2 (4Dt) (4Dt) 
(III.6) 

where erfc( ) denotes the "error function complement" given by 

Simplifying the inner integral in eq.(III.4), and replacing eqs.(III.4) and (III.6) into 

eq.(III.1) we find the general solution of our model differential equation: 

t 
x-u(t-r) 

C(x, t, w) = 4i(x, t) + J erf[ ( ) Jw(r, w)dr. 
0 41rD t -T 

(III.7) 

d/3( t) As an illustration of the behaviour of the .solution, assume that the process w = dx 

has been identified as a Whi~e Gaussian N;oise process in time with the properties 

E{w(t)}=O, (III.8) 

where q is the variance parameter ( _m~r ) and li( ) is the Dirac's delta function. This 
lit. ay 

' 
would indicate that the randomness in the system comes from non-systematic measure-

. ment errors due to the limitations of the instrumentation and the data processing. 

Now taking expectations on both sides of eq.(III.7) and using eq.(III.8) we find the 

mean concentration to be 

E{ C(x, t)} = 4i(x, t). (III.9) 
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Now following eqs.(II.6), (III.7) and (III.8), the sec_ond moment of C is 

{ill.IO) 

If we let t 1 = t2 = t and subtract the square of the mean, eq.(IlI.10) becomes the vari

ance of C: 

t er.= J er/2[ x - u(t - r) ]dr. 
c q o (4D(t - r))11, 

{III.11) 

In order to have a quantitatjve observation of the above solution, eqs.(III.7), {III.9) and 

(III.11) were programmed in the micro-computer and numerical values of the mean 

concentration, a sample function and the standard deviation of the concentration with 

time where computed. An average pore velocity u = 0.2 m/day, a dispersion 

coefficient D =0.1 m 2/day, a concentration at the origin C0 = 10.0 mgr/lit, and a 

variance parameter q = 0.01 were assumed. The value of q is entirely arbitrary here. 

It is clear that the actual value should be determined from field measurements and an 

estimation algorithm (see for example Godambe and Thompson, 1984). The integrals 

were numerically. Fig. ill.I is a digital plotter output of the program for a well located 

X = 6.0 m from the pond. The solid line represents the evolution with time of the 

mean concentration, the continuous sinuous line represents the sample concentration, 

and the dotted lines represent the mean concentration plus and minus one standard 

deviation respectively. For high values of t, the calculations are more efficient if the 

differential equation is solved step wise with the output from one step becoming the ini

tial condition to the next one. This procedure could be easily adapted to eq.(III.7). 

The implications of the above results are crucial. The mean concentration coin

cides with the deterministic solution, whereas the sample concentration oscillates above 

and below the mean concentration with and increasing departure from the mean as 
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time increases. The exact measurement of the dispersion around the mean is given by 

the standard deviation function, which clearly shows a direct monotonic increasing 

magnitude with time. Thus the results indicate a Brownian type of behaviour of the 

concentration with a continuously increasing variance value, as one might have 

expected. This increasing departure between model values and measured values has 

been acknowledged in the hydrologic literature (Smith and Schwartz, 1980; Sudiky and 

Cherry, 1979) as one of the difficulties in using the existing models. Thus we may con

clude that a model such as the one presented replicates concentration distribution 

values with the same characteristics of the .ones measured in the field. 

Validation of the above model can,, be performed by comparing the statistical 

measures of the predicted concentration process at the well with the sample statistical 

measures of the concentration values measured at the well. When the set of predicted 

measures approach the corresponding observed measures the model is validated. This 

is a "weak" validation procedure though, and we know that a complete model valida

tion may never be accomplished, since the ergodic assumption in the input stochastic 

quantities does not necessarily imply ergodicity in the output processes. 

With a validated model as above, we may predict the concentration stochastic 

properties at the well or at any other drinking water well downstream. The model can 

be used to assess the risk of contamination in a more realistic statistical sense. 

m.2. Modeling of Non-Conservative Contaminant Migration 

Consider the groundwater modeling problem depicted in chapter II and assume 

that the most important source of uncertainty comes from the difficulty in identifying a 

fixed deterministic function representing the spatial erratic variation in the main con

taminant concentration due to the reaction between the main contaminant and the 

chemical constituents of the aquifer por~us media. For the purpose of the present 
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illustration, assume that other sources of uncertainty can be neglected, or are very 

small in magnitude with respect to the reaction term uncertainty. The modeling equa

tion is eq.(II.1) with the uncertain term appearing as a spatially random forcing func

tion g(x, w) = w(x), a constant source at the origin k = C0, and with initial condition 

C(x, 0) = 0. We assume that the deterministic trend' in the reactive term has already 

been removed and that we may represent the purely random component of this term as 

Wh•t G . N . . . d th . t" ( ) d/3(x) "th th a 1 e auss1an 01se process rn space an smoo rn 1me w x = dx w1 e 

properties given by eq.(III.8) with the dependent variable x instead of t. It is clear that 

the actual properties of the uncertain term ·will have to be obtained after an analysis of 

field concentration measurements along x and an appropriate ergodic assumption. 

The solution to the differential equation in this case is given by eq.(III.1), where C2 

is given by eq.(ill.6) and C1 is obtained from eqs.(II.3} and (III.2) as 

t 1 00 

C1(x,t,w) = J i. J { exp[ 
. o ( 41t"D( t-r) o 

( x-u( t-r)-s )2 ] 
4D(t-r) 

(x-u(t-r)+s)2 
} 

- exp[- 4D(t-r) J w(s,w)dsdr. 

(III.12) 

Eq.(ill.12) may be simplified for the calci.J.lation of sample functions by defining the 

sample functions of the w process as a limiting form of the random walk process 

(Papoulis, 1984). Thus we may define the sample functions of the w process as stair

case functions with constant values within each interval. The interval length is a 

modeling decision problem which depends on the availability of the sample data for w 

and the scale of the problem. For the purposes of this example, we will assume the 
i: 

interval length to be equal to one. Thus; w may be approximated as a step function 

w,-(x), such that w; is constant for i -1 <, x < i + 1. Thus eq.(III.12) may be written 

as 

k-t N 
c1(x, t, w) = E Ew,-M,-(t - k), 

k-Oi-1 

(III.13) 

19 



where N is a suitable truncation index, Th~ function M; is given by ·., 

1 Ji{ (a-s)2 (a+s)2
} M;(t - k) = .,. exp[ .. J - exp[ J ds, 

(1rb) i~I b b 
(III.14) 

where a = x - u( t - k ), and. b = 4D( t - k ). This equation can be written as 

1 i-1-a i-a i-I+a i+a M,{t - k) = -{erfc( .,. )- erfc(-.,.-)- erfc( .,. ) + erfc(-.,.-)}. 
2 b b b b 

(III.15) 

Now the mean concentration is given by eq.(III.9), and the concentration variance for 

the case when x 1 = x2 = x can be deduced from eqs.(II.6), (III.I), (III.8) and (III.12) to 

be 

t t I 

~ = q£ £ 41rD[(t-r)(t-p)J.,. (III.16) 

0000 

J J{exp[ 
0 0 

( x-u( t-r)-s )2 
[ 

4D( t-r) -exp 
(x--u(t-r)+s)2

]} 

. 4D(t-r) 

{ [ (x-u(t-p)-€)2
] [ 

. exp D( ) - exp 
4 t -p . 

• 2 
(x - u(t - p) + €) ]} 8(s - e)dsdedrdp. 

4D(t - p) 

Integrating with respect to e and solving the product of exponentials, we obtain two 

spatial integrals which may be manipulated into integrals of exponentials of second 

degree polynomials whose solutions are exact (Spiegel, 1968). Thus eq.(III.16) becomes 

(III.17) 

where a .:._ x - u( t - r), b = 4D( t ~ r), c = x - u(t - p), d = 4D(t - p), 
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b+d 
bd 'm.2 = 

-2cb -2da 

bd 

2da - 2bc d 2ad + 2bc 
h2 = bd ' an P2 = bd 

da 2 + bc2 

bd 

2bc -2da 
bd 

Eqs.(III.1), (III.9), (III.13) and (III.17) where programmed in the computer in order 

to calculate the mean concentration, a sample functidn and the standard deviation of 

the concentration at particuiar times. In the computation of eq.(III.13) for the sample 

function a special flags system was created in order to detect the proper raising and fal

ling limbs of the M/s functions. Otherwise eq.(III.13) converges in 3 to 4 iterations to 

desired levels of accuracy. Generally the longer the time t at which the simulation was 

desired, the longer the CPU time required for the computation. Again this problem 

could be solved by solving the differential equation iteratively in short time intervals as 

explained before. Fig. III.2 shows an example of the simulations carried out at 

t = 15 days. The variation of either the mean, a sample function and the standard 

deviation of the concentration around the mean with respect to distance is represented. 
i 

The same parameter values ,used in the previous appii~ation were inserted in the equa-

tions, except that the variance parameter was chosen as q = 0.1. The mean values 

coincide with the deterministic solution. 

The results demonstrate the expected direct increase in the dispersion of the con

centration around the mean with distance. This phenomenon has been noted in the 

hydrologic literature and it is interesting to observe that a model like this one may 

explain the stochastic nature of a set of field data whose erratic nature accounts for the 

reactive features of the main contaminant. However the most important result here 

indicates a direct increase in the statistical dispersion of the concentration around the 

mean with time. Although intuitively we should not .expect time stochasticity because 

we are dealing with a disturbing space st,ochastic process, the results suggest that by 

disturbing the advective-dispersive equation with a spatial stochastic process, the out

put concentration function will be a space-time stochastic process. This may be easily 
! 
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observed by studying the form of eq.(III.12). We may add that this phenomenon has 

not been mentioned in previous work related to the spatial stochasticity of the disper

sion process and that assumptions ignoring the time stochasticity of the system are 

probably not appropriate. We may conclude that the problem of space-time stochasti

city is a most interesting one and that much future research should be devoted to the 

analysis and implications of space-time stochasticity on the predictability of the con

centration function. In particular, measurement efforts should be devoted to the 

identification of the random processes involved. 

m.a. Investigating Pollution Variability Near a Source 

Let us now consider the groundwater pollution problem of chaptyer II when the 

highest degree of uncertainty comes from' the time variability of the concentration of 

the source at the origin and other uncertain terms ate comparatively small. Assume 

that in this extremely practical case there is a high degree of uncertainty associated 

with the history of deposition of solid or liquid wastes in the pond, and that the objec

tive of the modeling ·tasks is to predict the variability of the concentration near the 

pond. That is, some monitoring wells have been constructed a short distance from the 

pond and we wish to develop a model which would predict the random nature of the 

concentration at the wells. This will allow authorities to forecast the concentration 

values and to design and test remedial measures if appropriate. Assume that the aver-
' 

age concentration in the pond tends to be a constant C0 but there is a totally 

unpredictable component w(t, w) derived from the illegal nature of waste dump site. 
. ' 

For the purpose of the illustration, ~ume that field measurements have demon

strated that the function w is described by a White Gaussian Noise process in time 

with the properties described by eq.(III.8). The governing differential equation is 

eq.(II.l) subject to a boundary source k(t) = C0 + w(t) and with the forcing function, 
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the parameters and initial condition equal to zero. From eqs.(III.1 ), (ill.5) and (III.6), 

the general solution of the differential equation is given by 

C(x, t) = ~(x, t) + x Jex [ (x - u(t - r))2] w(r, w) dr. 
(41TD)~ o p 4D(t -T) (t - r)3f2 

(III.18) 

The mean concentration is E{ C(x, t)} = ~(x, t). By, following a procedure similar to 

the above section one finds the variance of the concentration at time t to be given by 

2 t ( ( 2 
E{ C2(x t)} =er.= ..£::.._ J 1 ex [x - u t - r)) Jdr. 

' c 41rD 0 (t-r)3 P 2D(t-r) 
(III.19) 

As in the previous sections, eqs.(III.18) and (ill.19) were used in the generation of sam

ple functions, the calculation of the mean· and the standard deviation of the concentra

tion with respect to time. The sample function was calculated by generating a sample 

of w as a limiting random walk function for an interval of one day and solving 

eq.(III.18). The integrals were solved numerically and the singularities were treated by 

using the Gauss-Legendre quadrature method (Hornbeck, 1975). 

Fig. III.3 shows the stochastic evolution of the concentration with respect to time 

for x = 0.5 m. The mean concentration at the pond was assumed C0 = 1.0 mgr /lit. 

The variance parameter was chosen as q = 0.01 and the rest of the parameters as 

before. The results indicate that the effect of time stochasticity at the boundary 

decreases as the distance from the boundary increases for a zero-mean stationary pro

cess. This of course depends on the type and variance of the disturbing process, but in 

general the concentration variance approaches to z1:1ro beyond several meters of dis

tance from the boundary anfi the process. is then gov~rned by the mean source concen

tration. This may indicate . qualitatively that the effect of stochasticity of the boun

daries is relatively less important than the effect of distributed-source stochasticity on 

the overall stochasticity of the concentration function. 
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ID.4. Modeling Large-Scale Groundwater Pollution Under Uncertainty 

A practical situation of uncertainty analysis in groundwater pollution arises when 

~e wish to predict the evolution of the contaminant deep in a geologic formation. 

Consider the case of a deep well dischargin·g a highly toxic liquid waste in a homogene

ous consolidated sandstone. Secondary pe'rmeability with low values of hydraulic con

ductivity allows seepage through the rock'a.nd this poses the question of the long term 

effect of the contaminating source on the regional groundwater quality. Using a larger 

representative scale, the governing differential equation is the randomly-forced 

advective-dispersive equation in a three-dimensional domain subject to a point source 

at the origin. After eq.(II.1),: 

(III.20) 

C(±oo, y, z, t) = C(x, ±oo, z, t) = C(x, y., ±oo, t) = O; 

C(x, y, z, 0) = O; C(O, O, 0, t) = C:0 , 

where C(x, y, z, t, w) f H 1(R 3
) is the sto~p.astic process representing the concentration 

of a principal contaminant in the fluid ( mgr flit); D1 is the longitudinal dispersion 

coefficient in the x direction ( m 2 /day); D2 is the lat~ral dispersion coefficient in the y 

and z direction ( m 2 /day); u is the average pore velocity in the x direction; x, y, z are 

the the three-dimensional cartesian coor<;linates; C0 'is a constant point source at the 

origin; and d/3( t)/dt = w represents a White Gaussian Noise process in time disturbing 

the system and. with the properties given by eq.(III.8). 

We assume that the· solution to this equation may be written as eq.(III.1), with x 

representing the three-dimensional coordinate system. The operator A, such that 
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generates a strongly continuous semigroup given by 

- 1 - oo oo oo - 1 (x-ut-x-')2 
Jtf(x, Y, z) = s(~~D D2t3)1,· J J J exp[-4t{ D 

7r I 2 -00-00-00 I 
(III.21) 

+ (y;:')
2 

+ (z;:')2 
}] f(x', y', z')dx'dy1dz1

• 

This is easy to see by analogy with eq.(III.2). Thus according to eq.(II.3), the solution 

for the random component C1 is 

· 1 { ( x-u( t-r)-x-')2 

4(t-r) D1 
(III.22) 

+ (y-y')
2 + (z-z'l2 }]dx1dy1dz1dr. 

·-D2 D2 

The space integrals have exact solutions. Thus 

t 

I{ x-u(t-T) } { . } C 1 = 1 + erf [ I> ] . 1 + erf [ I> ] . 
o (4D1(t-r)) (4Dit-r)) 

(ill.23) 

{1 + er![ z i. ]}w(r)dr, 
(4D 2(t-r)) 

where erf() denotes the "error function'\such that erf(z) = 1 - erfc(z). Similarly the 

solution for the deterministic component C2 in eq.(III.1) is deduced from eqs.(II.3) and 

(III.21) as 

t Co oo oo oo 

C2 = £ 8[ilD1D?(t-r)3JI> !J
00
J

00
exp[ 

; 1 {(x-u(t-T)-x1)2 
4(t-r) D1 

(ill.24) 

+ 
(y-y')2 (z-z')2 

..1., __ ......... _'-'-'-- + },5(_r'),5(_y1),5(_z')dx1dy'dz'dr. 
D2 D2 

or 

(III.25) 
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This integral has an exact solution. Thus 

Co ux { uR ut+R C2 = <P = exp(-D ) exp(-)[1-erf( i. )] 
81rD2R 2 1 . 2D1 (4D 1t) 

(ill.26) 

uR ut-R } + exp(--D )[l+erf( i. )] , 
2 1 (4D1t) 

where 

After eq.(II.4), the mean concentration function is given by eq.(III.9). Let us set 

(ill.27) 

(ill.28) 

and 

Er,(r) = {1 + er![ z i. ]}. 
(4D2(t-r)) 

(ill.29) 

After eqs.(II.6) and (III.8), we calculate the variance function by using eqs.(ill.1), (III.9) 

and (III.27) through (III.29). 

I t 

E{(C - <P)2} = ~ = qf j8(.r-E)Erz(r)Er:(€)Ery(r)Ery(€)Er.(r)Er.(€)d€dr, (ill.30) 
0 0 • 

or 

t 

a; = qf E;.( r)E;y( r)E;,( r)dr. (ill.31) 
0 
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This singular integral could easily and accurately be calculated by a numerical pro

cedure (i.e., Gaussian-Legendre quadrature). Contour lines representing sample func

tions, the mean and the variance of the concentration can be obtained to produce a 

three-dimensional representation of the evolution of the principal contaminant. 

ill.5. Modeling Groundwater Pollution Subject to Evolving Heterogeneities 

In this section we consider the groundwater pollution problem of chapter II when 

the modeler has identified the parameters as the most important source of uncertainty 
; . 

and other sources of uncertainty are negligible. To illustrate the theory presented in 

chapter II concerning the case of stochastic parameters, I consider here the contam

inant transport equation subject to time-stochastic dispersion coefficient. AB stated in 

chapter 1, much of the emphasis on parameter stochasticity in the hydrologic literature 

has been confined to the problem of small spatial stochasticity in the hydraulic conduc

tivity and the dispersion coefficient. The results of the present research demonstrate 

that it may not be appropriate to ignore the inherent temporal dynamic behaviour of 

the system. Therefore I introduce in tMs section a new solution to the mass transport 

equation in aquifers which acknowledges the dispersion coefficient as a fluctuating 

environmental parameter. This time-random fluctuations are due to the uncertainty 

generated by the complex dispersion process and the natural evolution of the system. 

The following development may also be applied to a spatially-random dispersion 

coefficient and velocity field, but we choose to analyze an untried temporal stochasti

city for cases when the spatial stochasticity could be neglected. The following solution 

also has the same advantages exhibited by all semigroup solutions, that is, it is not res

tricted to small variance in the parameter and that any stochastic process in £ 2(!1) 

could be used. 
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In this case the modeling equation is 

~~ - (D(t) + D1(t, w)) :~ + u ~~ = o, O < x < oo, t > O, (III.32) 

C(x, 0) = O; C(O, t) = C0 ; C(oo, t) = 0, 

where D(t) is a deterministic trend in the dispersion coefficient D; D1(t, w) is a stochas

tic process disturbing D. For this example, let us assume that D(t) = D is a constant 

and that D'(t, w) = w(t, w) is a White Gaussian Noise process in time with the proper

ties given by eq.(III.8). Following the procedure described in section 2, we write 

eq.(III.57) as 

ac _ D &c + "ac = D' &c. 
at ax2 ax ax2 (III.33) 

The solution of this equation is given by eq.(II.10) and (III.I) as 

t I 

C = 'P{x, t) + £ (47rD(t-r)l!o (III.34) 

00 

f {exp[ 
0 

(x-u(t-r)-s)2
] ' [ 

4D(t-r) -exp 
(x-u(t-r)+s)2 l}D' a2c dsdr 

4D( t-r) ax2 ' 

where the semigroup in eq.(II.10) is given by eq.(III.2); D' is spatially independent of C; 

and tli(x, t) is given by eq.(III.6) 

Next we define C = C 1 + C2 + C3 + · · · , and ' 

W(r, s) = exp[ 

Eq.(III.34) becomes 

(x-u(t-r)-s)2
] [ 

4D( t-r) - exp 
( x-u( t-r)+s )2 

] 

4D(t-r) 

t D'(r) • oo a2 
C = tli(x, t) + f 11, f W(r, s)-2 [C1 + C2 + C3 + ... ]dsdr 

o (47rD(t-r)) o as : 

(III.35) 

(III.36) 

The calculation of the series can be carried on to a desired accuracy. This is a compu

tational problem in which the number of;terms will vary according to the variance of 
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the stochastic processes involved and the desired accuracy. Let us truncate, for now, at 

the first term in the series and assume it to be e9.ual to the first solution, that is, 

C1 = tli. Thus we re-write eq.(III.36) as 

C =IP+ j D'(r) I> jw(r, s)cfltli(TZ s) dsdr. 
o ( 41rD( t1 )) o . 8s . 

(III.37) 

Integrating by parts twice wi.th respect to s and calculating the second derivative of W, 

it is easy to show that eq.(III.37) becomes 

I D'( r) 1 
D'( r)dr 

00 

C(x, t, w) = tli(x, t) + f I> -y(r)dr + f I> J 1/:(s, r)tli(s, r)ds, (III.38) 
. o (41rD(t--r)) o (41rD(t--r)) o 

where 

-y(r) = (x-u(t-r)exp[ (x-u(t--r))2 
]· 

4D(t--r) ' 
(III.39) 

1/:(r s) = 1 {ex [ (x-u(t--r)-s)
2 l[l + (x-u(t--r)-8 )

2
] 

' 2D( t--r) - P 4D( t--r) 2D( t--r) 
(III.40) 

+ ex [ (x-u(t--r)+s)2 l[l _ (x-u(t--r)+s)
2 

]}. 
P 4D( t--r) 2D( t--r) 

From this expression we can generate sample functions. The me1;1.n value of the concen-, 

tration is obtained by taking expectations on both sides of eq.(III.38) and using 

eq.(III.8): 

E{ C(x, t)} = tli(x, t) (III.41) 

i 
In order to calculate the concentration variance we use eqs.(II.13), (III.8) and (III.38). 

After some algebraic manipulation we obtain 

E{(C _ tli)2} = u; = qj :i(r)dr + 2qjj 'lf{s, r)tli(s, r)dsdT 
o 41rD( t--r)2 o o 41rD( t--r)2 

(III.42) 

+ qjjj 1/Js, T)'lf{P, r)tli(s, ;)tli(p, r) dpdsdT. 
o o o 41rD( t--r) • 
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Higher order moments can be obtained in ~ similar manner. 

Eqs.(III.6) and (ill.38) through (III.42) were programmed in the micro-computer in 

order to obtain several numerical examples of the stochastic properties of the concen

tration. An average pore velocity u = 0.2 m/day', a mean dispersion coefficient 

D = 0.1 m 2/day, a concentration at the origin C0 = 1.0 mgr/lit, and a variance 

parameter q = 0.1 were assumed. The integrals were numerically evaluated using 24 

points Gauss-Legendre quadrature, which gives very accurate values for singular 

integrals. It was found that the space integrals converge very rapidly. Fig. III.4 is a 

digital plotter output of the program for a point in space :z: = 6.0 m from the origin. It 

is interesting to note that as the observation distance increases the sample functions 
' 

become smoother. The mean concentration coincides with the deterministic solution, 

whereas the sample concentration oscillates above and below the mean concentration 

with and increasing departure from the mean as time increases. The exact measure

ment of the dispersion around the mean is given by the standard deviation function, 
' 

which shows a direct monotonic increasing magnitude with time. Thus the results indi-

cate a Brownian type of behaviour of the concentration with a continuously increasing 

variance value, as one might have expected. Thus we may conclude that a model such 

as the one presented in this section may explain the stochastic nature of the concentra-

tion in an aquifer. 
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CHAPTER IV - APPLICATIONS TO UNSATURATED FLOW MODELING: 
·, . 

This chapter of the report deals with new applications of the methodology to the 

modeling of groundwater flow in the unsaturated zone. It is intended to illustrate the 

wide range of applications of the methodology and the treatment and importance of 

different sources of uncertainty. For a moi;e detailed description of the model develop

ment and verification, the reader is referred to Serrano (1990(1) and 1990(2)). I also 

chose section IV.I for the illustration of the case of spatially random coefficients. The 
·, 

iteration algorithm is shown along with verification of the model with experimental 

data. For the micro-computer implementftion of this fascinating technique to approxi

mate non-linear stochastic systems please see Serrano (1990(3)). 

Laboratoi;y and field infiltration data exhibit a degree of erratic variability usually 

associated with measurement errors and · uncertainties in the phenomenon or unsa-

turated porous media flow. Traditionally, these uncertainties are ignored and averaged 

soil characteristic cuI"Ves are used in the inverse and direct modeling problems. How

ever it is highly desirable to develop models capable of reproducing the inherent varia

bility of soil moisture in order to study the true physics of flow at the laboratoi;y level 

and to reproduce more realistic infiltration data in natural watersheds. In section IV.I 

two models are tested as to their ability to replicate the erratic variability of experi-., 
mental horizontal infiltration data. The first model is based on the exact differential 

equation of infiltration, and the second model is based on the Boltzman-transformed 

differential equation. Both models are subject to a space or a time and space random 

soil-water diffusivity defined as uncertainty term. In section IV.2 a model is introduced 

as a new approach to predict vertical infiltration in hysteretic soils in real watersheds. 

For this purpose, the effect of time variabjlity of point rainfall is represented as a shot 

noise process, the hysteretic loops resulting from the natural wetting and drying cycles 

generate a correlated random soil-water 4.iffusivity process, and a solution or the verti-



cal infiltration equation is presented along with statistical properties. 

IV.I. Modeling Space and Time Vari~bility of Infiltration 

We begin our analysis by writing the equation representing the horizontal water 

content evolution in a horizontal homogeneous media. 

ao - ..£..[D(B) ae l = o 
Bt Bx Bx ' 

B(O, t) = 80 , B(oo, t) = en, B(x, 0) = B;,., 

(N.1) 

where B is the volumetric water content; t is the time coordinate (hr); x is the horizon

tal spatial coordinate (mm); and D is the soil-water diffusivity ( mm 2 /hr). 
ii 

Assuming that the most important element of variability, due to the combined 

effect of uncertainties in the unsaturated transport phenomenon and measurement 

errors, is the uncertai_nty in the spatial variability of D, we define this parameter as a 

random process of the form 

D(x, w) = JJ + D'(x,. w), (N.2) 

where lJ represents the expected value in the soil-water diffusivity, assumed to be con

stant, D'(x, w) represents the random spatial variability of this parameter; and w is the 

probability variable. We further assume \hat this random variability is one which 

increases erratically with distance, and thus we choose a suitable random process such 

as a Brownian motion process given by (J~zwinski, 1970) 

E{D'(x)} = 0, (N.3) 

where E{ } denotes the expectation. operator; q is the variance parameter; and 

min(x1, x2) denotes the minimum between the distances x1 and x2• 
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Substituting eq.(IV.2) into eq.(IV.1.), placing the terms containing random 

coefficients in the right hand side of the equation and rearranging, we obtain 

(IV.4) 

where w = 8
8
D' is the formal derivative of the Brownian motion process, that is a 
x . 

White Gaussian noise process given by 

E{w(x)} =O, (IV.5) 

where c'i( ) is the Dirac's delta function. In the above equations w has been dropped for 

convenience, but it is clear that because the differential equation contains random func-
· .· 

tions, the dependent variable, 0, is also a random process. Eq.(IV.4) can be treated as a 

stochastic evolution equation whose solution is given by (see eq.(II.8)) 

t 
O(x, t) = J10;,. + !P(x, t) + J J1_,.RO(r)dr, 

0 

(IV.6) 

where J1 is the strongly con~inuous semigroup associated with the diffusion operator 

I5 a2
2 

and it is given by (see eq.(III.2)) ax 

1 
00 (x...:... s)2 

J10(x,t)= \>J{exp[ ]-exp[ 
( 41TI5t) o 4!5t 

i. 

(x + s)
2 

]}O(s, t)ds. 
4!5t 

(IV.7) 

!P(x, t) in eq.(IV.6) is the particular solution due to the source boundary condition 

given by 

t 
!P(x,t)= x \>fexp[ 

(41r1T) o 

x2 00 - 0,. 
4!5( t -' r) ] ( t - r)3/2 dr. 

Since the source boundary condition is constant over time, this equation becomes 

x 
!P(x, t) = (00 - O,.)erfc [ J5 )1> ], 

(4 t 

(IV.8) 

(IV.9) 

where erfc[ ] denotes the "error function complement". Finally the operator R in 



eq.(N.6) represents 

a2 . a 
RO(x, t) = [D'(x, w)-2 + w(x, w)-

8 
]O(x, t). 

ax x 
(N.10) 

The third term in the right hand .side of eq.(N.6) contains 0. Thus we will 

approximate this integral by expanding, 0 as an infinite series of partial solutions 
·,;• 

0 = 01 + 02 + · · · (see eq.(II.9)). Since the initial condition is a constant equal to the 

right boundary condition, O;n = On, eq.(N.6) reduces to 

oo I 

O(x, t) = On + ~(x, t) + E J J1_,.RO;(r)dr. 
i-10 

(N.11) 

For dissipative systems such as the one in question, the convergence speed of this 

approximation series is extremely fast and ordinarily only a few terms in the series are 

needed, as I intend to show. Furthermore, since this is not a perturbation approxima-

tion, arbitrarily large variances in the stochastic terms can be included. We initiate the 

approximation by setting 01 = ~. which is the previous approximation and compute 

I 

recursively subsequent terms in the series by setting O;,.. J J1_,.R0;_1 dr. 
0 

Eq.(N.11) can be used to generate sample functions of the water content and, 

thus replicate experimental infiltration data, by generating sample functions of D' and 

w and solve for O numerically. We are also interested in computing the mean and the 

' variance of the water content as a function of x and t. After taking expectations on 

both sides of eq.(N.11) one obtains 

E{O(x, t)} = On + ~(x, t) (N.12) 

Similarly from eq.(N.11) it is possible to derive an expression for the second moment of 

O and after some algebraic manipulation ~ne obtains 

I t 0000 

<r, = qf ff f f(x, s, t - r)f(x, u, t -()E{R(s)R(u)}~s, r)~(u, ()duds d( dr. (N.13) 
0000 
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1 
f(x, s, t - r) = = I> {exp[ 

( 41rD( t - r)) 
(x - s )2 

4D(t - r)] - exp[ 
(x + s)

2 
]}; 

4D(t - r) 

E {R(s )R( u )}=[min(s,u )v';v';+U(s-u )v';v' .+u( u-s )v', v';+o(s-u )v', v' .; 

(IV.14) 

(IV.15) 

'v; = &
3 

; U( ) denotes the unit step function, and the rest of the terms as before. 
s . 

It was found that eq.(IV.4) and its solution only offered a partially satisfactory 

model for the variability of soil moisture data. Thus it was decided to study an alter

native model and the choice was the Boltzman-tr!..nsformed equation of eq.(IV.1) 

because of its importance as a classical solution of the corresponding deterministic 

problem. By defining a new independent variable ).. = x/t\ eq.(IV.l) reduces to the 

non-linear ordinary differential equation given by 

(IV.16) 

subject to 

dO 
0(0) = 00 O(oo) = On ~(oo) = o. 

' ' di\ 

For consistency we define the uncertainty term D as a stochastic process of ().., w) fol-

lowing the same rules of eqs.(IV.2), (IV.3) and (IV.5). Thus eq.(IV.16) becomes 

where the operator 

d2 d 
R(>.., w)O = [-D'(>., w)-2 - w(>., w)~]B; 

d>.. d" 

1 
and a=-. 

2D 

The general solution of eq.(IV.17) is given by 
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00 

B(),) = 1/t(>.) + f G(>., E)R(E)B(E)dE, (IV.19) 
0 

where the function 1/t is the solution satisfying the boundary conditions, and the kernel 

G is the impulse response function. With the aim of deriving a practical solution to 

model the water content variability in the soil domain, it was decided to simplify the 

right boundary condition of eq.(IV.16) and to represent the unsaturated flow problem 

as a two-point boundary value problem. Thus a simple expression for the 1/t function is 

(IV.20) 

where a is the the limiting right value of >. as given by the laboratory experiment, and 

A, B and C are constants. Eq.(IV.20) is actually an approximation of the series solu-

tion 

1/t(>..) = B - E(>.. - a>..3 + 3a2>..5 
o 3! 5! ... ' 

where E is a constant. 

G(>.. E) = U(>.. -E) { Z(f)Z(>..) _..fill}+ U(E->..) { [Z({)-Z(a))Z(>..) } (IV.21) 
' Z'(E)Z(a) Z'(E) Z'(E)Z(a) ' 

where Z(E) = [1/t(E) - Bo]/E, and Z'(E) is the first derivative of z evaluated ate. 

The integral term in eq.(IV.19) contains B. Thus we approximate this integral sue-

00 

cessively in the same way as that of eq.(IV.6). That is we define B = EB; and 
i-1 

eq.(IV.19) reduces to 

00 • 

B(>..) = 1/t(>..) + E JG(>.., E)R(E)B;(E)dE, (IV.22) 
i-10 

where the first approximation 81 = 1/t, and subsequent approximations are recursively 

evaluated as 

• 
B;(>.., E) = f G().., E)R(E)B;-1(E)dE. 

0 
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From eq.(N.22) the mean of the water content is 

E{O(>-)} = ~>.), (N.23) 

and the variance of the water content can be deduced after some algebraic manipula

tion to be 

a • 
CTj = I I G(>-, €)G(),, p)E{R(€)R(p)}<P(€)<P(p)dpd€, (N.24) 

0 0 

where E{R(€)R(p)} is given by eq.(N.15). 

\Ve now proceed to verify the models with the aid of the laboratory experiments. 

A somewhat qualitative verification of model eq.(N.11) is provided through a visual 

comparison between observed water content versus distance profiles with respect to 

simulated sample functions of the water content versus distance at the same times of 

breakthrough. This was easily accomplished by adopting an average diffusivity 

JJ = 100 cm 2 /hr observed in the experiment, generating a Brownian motion sequence 

and a White Gaussian noise sequence for an interval Llx = 1 cm (Jazwinski, 1970) and 

solving eq.(N.11) numerically for the same experimental times t = 1, 3 and 6 hr 

respectively. 

Unfortunately, the comparison of observed and simulated values of water content 

at corresponding times was not satisfactory. The reason for this discrepancy is the fact 

that at the heart of eq.(N.11) is the function ,P given by eq.(N.9), which is a solution 

of the linearized deterministic unsaturated flow equation. Therefore, a substantial 

improvement would be obtained if the function ,P is taken as the solution of the non-

linear deterministic equation. However, this task was not attempted since it was also 

observed that the computa·;ion of sample_ functions using eq.(N.11) already took too 

long time in a micro-computer. 

A more objective verification of model eq.(N.11) is provided after a comparison of 

the mean and variance of observed water content profiles with respect to the 
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corresponding simulated mean and variance values of the water content (Serrano and 

Unny, 1987(2)). The mean observed values were deduced from the experiments and the 

mean simulated values were computed after eq.(IV.12) for the same experimental times 

above. The comparison of the observed means with the simulated means confirmed the 

observations on the qualitative verification: Contrary to the observed means, the simu

lated means exhibited an exponential type of decay with respect to distance. 

Now the observed variance was computed from the experimental values at the 

different breakthrough times, after assuming that the observed variances were gen

erated by a stationary random process. This would produce a constant value of the 

variance with respect to distance for every breakthrough time. We realize it is not pos

sible to assess this assumption, but this is the best one can do with the available infor

mation, and at least the experimental variance values will help establish some bounds 

for the simulated variances. The observed variance at t = 1 hr was equal to 

1.003 X 10-4. The first experiment at t = 3 hr produced a variance in the water con

tent equal to 2.549 X 10-4, and the second experiment at t = 3 hr produced a variance 

equal to 6.809 X 10-4• The observed variance at t = 6 hr produced a variance equal to 

6.429 X 10-4
• The simulated variances were computed using a numerical approxima

tion of eq.(IV.13), which exhibited constant magnitudes with respect to distance for 

every specific time. For an avernge value of q = 0.0035 in eq.(IV.13), the simulated 

values of the variance at times t = 1, 3 and 6 hr were respectively 

6.119 X 10-4, 5.073 X 10-4 and 3.461 X 1q-4• Thus the simulated variances fall within 

the same range of corresponding experimental variances. It was then concluded that 

eqs.(IV.11), (IV.12), and (IV.13) are an unsatisfactory model for the sample functions 

and the mean of the water content evolution, but they constitute a good model for the 

replication of the variability of soil moisture around the mean. A substantial improve

ment of this model could be accomplished by incorporating a solution to the non-linear 

deterministic equation in the function 'P. This, however was not attempted since the 
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computation of these equations required considerable micro-computer time. 

Following a similar procedure, the qualitative verlfication of the second model we 

presented in chapter III is accomplished by comparing observed experimental profiles of 

B versus >. with corresponding sample functions generated from eq.(III.22). The follow

ing parameter values based on the experiments were used: lJ = 2.77 mm2/s, 

a = 0.1801 s /mm 2, a = 2.7 mm/sY., 80 == 0.458, Bn = 0.086, q =0.0002, 

A = E = 3.217 X 10-3, B = 9.651 X 104, C = 2.6057 X 1012
, and the computation 

interval .::1>. = 0.1 mm /s Ya_ It was noted that only two or three terms in the summation 

series in eq.(N.22) was necessary since the convergence speed was very fast and the 

computer time required was substantially less than the required for the previous model. 

Fig. N.3 illustrates the first three approximations of B versus >.. The fourth iteration is 

' negligible in magnitude (or insignificant at the usual scale of measurement of water 

content). Please see Serrano (1990(3)) for the computational features and an algorithm 

in the C computer language. Fig. N.1 illustrates the qualitative verification of this 

second model by depicting the evolution of B with respect to >. for all of the experi-

ments and a·plot of one sirr:.ulated sample function. Other simulated sample functions 

not illustrated were found to be similar and to evolve in a similar manner with respect 

to experimental values. 

This exercise demonst:·ates the the speed of convergence of the approximation 

technique for non-linear stochastic systems. The algorithm implementation in a 

micro-computer is extremely simple. The three iterations required about 3 seconds for 

the execution in a HARRIS HCX-7 mini-computer and about 15 seconds in an AT&T 

7300 micro-computer. 

A more objective verification of this second model was accomplished after compar

ing the experimental mean values and variances of the water content with respect to 

the corresponding simulated mean values and variances. The simulated mean of the 

water content as a function of >. was easily computed from eq.(N.23) and the simulated 
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variance as a function of A was computed after an approximation of eq.(IV.24). Fig. 

IV.2 shows a plot of the observed mean, the simulated mean, the observed mean plus 

and minus one observed standard deviation, and the simulated mean plus and minus 

one simulated standard deviation, al with respect to A. Generally the observed and 

simulated means are close one another, and the only discrepancy worth noting is the 

somewhat lower slope of the simulated mean at the wetting front. Also the simulated 

mean does not level to zero slope at A= a, following the simplification of the right 

boundary condition described previously, a small price to pay in the name of simpli

city. Now the observed standard deviation is a constant equal to 0.0214, whereas the 

simulated standard deviation starts with zero at A = 0 and monotonically increases 

with A up to a value of about 0.09 at A = a. Both simulated and observed are within 

the same order of magnitude. Thus it was concluded that the second model based on 

Boltzman-transformed equation represents a good tool for the prediction of the varia-
" 

bility of soil moisture evolution. 
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IV.2. Applications to Modeling Infiltration in Hysteretic Soils 

Modeling vertical infiltration in soils has been approached in the past in two main 

ways. In the first approach, hydrologists have recognized the difficulties associated 

with the solution of physically-based unsaturated flow equations and have opted for a 

large variety of empirical expressions with parameters to calibrate in optimization pro

cedures (i.e., Viessman et al., 1977). This approach, which has produced acceptable 

results for surface hydrologic computations, has not generated much understanding on 

the phenomenon of infiltration and distribution of water in unsaturated soils. In the 

second approach, soil physicists have attempted to produce solutions to physically

based equations describing horizontal or vertical infiltration in soils. Several quasi

analytical solutions of the non-linear unsaturated flow equation have been reported in 

the literature (i.e., Philip, 1955, 1972; Philip and Knight, 1974; Parlange, 1971, among 

others). Recently exact non-linear solutions for constant flux infiltration using Lie

Backlund transformations was reported (Sander et al., 1988; Broadbridge and White, 

Hl88). This approach has given much understanding of the phenomenon of infiltration 

in soils and in general the solutions have been in good agreement with experimental 

data. Other solutions in this category use a numerical algorithm to implement in a 

computer (i.e., Freeze, 1971; Neuman, 1973; Mohsenisaravi, 1981; and Nieber, 1979, 

1982 among others). These models have given valuable computational information to 

use in watershed simulation models. 

Most analytical solutions restrict their validity to specific laboratory conditions in 

which the infiltration rate at the source ~oundary is constant in time; and the soil is 

continuously wetted. In this situation the natural effects of hysteresis in the soil-water 

functional relationships are minimized. Therefore the application of these solutions to 

field conditions in watersheds where the rainfall regime is a highly erratic process com

posed of periods of rainfall followed by periods of drought is limited. Rainfall periods 
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will produce a partial wetting cycle in the soil profile and drought periods will produce 

a partial drying cycle in the soil profile. This situation will produce a set of soil-water 

functional relationships in which hysteresis is very important. The solution of the 

unsaturated groundwater flow equation subject to hysteretic functional relationships is 

very difficult to obtain. 

Most numerical solutions can handle time variability in the source boundary for 

specific rainfall patterns known a priori. Nevertheless, hysteresis in the soil-water 

functional relationships is seldom incorporated and a unique, usually empirical, set of 

relationships is used. The use of empirical, single-valued, functional relationships obvi

ates the difficulties associated with the unpredictability of hysteresis, although the 

predicted water content values do not represent the natural variability associated with 

the hysteretic soil. 

Other approaches have attempted to use stochastic concepts in an effort to 

describe the uncertainty of the infiltration phenomenon in a statistical manner. One of 

these studies (Dagan, 1983) defined the saturated hydraulic conductivity as a log

normally distributed random variable and by assuming analytical, single-valued, 

expressions for the soil-water functional relationships a solution of a simplified "piston 

flow" model of the infiltration equation was obtained. A constant flux infiltration dur

ing rainfall was assumed and spatial variability of infiltration was studied. Another 

interesting study (1-Itundu and Koch, 1987) derived two ordinary differential equations 

describing the surplus and the deficit conditions in the unsaturated zone. These equa

tions are forced by the random infiltration process, modeled as a Poisson process, and 

the evapotranspiration, modeled as a Brownian motion process. In an innovative 

approach the study in mention solved the resulting random differential equations and 

derived expressions for the first two moments. The above study motivates two ques

tions. The first question, one may ask, is what would be the random form of the soil

water diffusivity, D, which results from a Poissonian type of infiltration? This is a 
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question which can not be answered without conside~ing hysteresis in the soil-water 

functional relationships. The next question is: Is it possible to obtain a solution of the 

physically-based non-linear unsaturated flow equation when the top boundary is a Pois

son process and D is a stochastic process? This is a question which involves the solu

tion of a random partial differential equation, which would describe the time and space 

variability of the water content. The present setion of the report attempts to respond 

these questions. 

This section presents a new methodology for the analysis and solution of the unsa

turated groundwater flow equation subject to the uncertainty inherent to hysteresis. It 

is a theoretical analysis on the general form of the point precipitation process forcing 
I 

infiltration in natural watersheds and the subsequent hysteretic loops in the soil-water 

functional relationships. The solution of the infiltration equation subject to the resul

tant random processes is the main objective of the study with the hope to develop a 

more realistic statistical representation of the infiltration phenomenon. First a 

simplified Poisson process is assumed to represent the time variability of point rainfall 

in a hypothetical watershed. The water content variation over time at the top layer 

due to the Poissonian rainfall pattern is found to follow a shot noise process, in agree-

ment with existing literature on the topic. Second, a simulation experiment to syn-

thesize realizations of the D process in a hypothetical soil is performed. In this experi

ment sample values of the shot noise process describing water content in the root zone 

are used to reproduce the hysteretic loops in the water content versus pressure head 

relationship and in the hydraulic conductivity versus pressure head relationship, by 

emulating experimental scanning curves published in the literature. Using these sim u

lated functional relationships, a sample function of D is obtained. While this approach 

only gave qualitative information on the form of D, it was observed that the hysteretic 

wetting and drying cycles produced a highly erratic D process, which would be better 

described as a random process of an exponential type . of correlation. lt was then 
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assumed that D can be represented by a colored noise.: Third a new semigroup solution 

of the infiltration equation subject to a shot noise boundary condition and a colored 

noise D was obtained. Finally a computational procedure of each of the components of 

the stochastic solution, and of the first two moments is presented, along with observa

tions about the role of each of the components and the procedure for reduction of the 

model variance in practical field situations .. 

It is hoped that the results will encourage hydrologists and water resources scien

tists to use physically based equations subject to the natural environmental fluctuations 

encountered in the field, rather than empirical expressions. Since the theory and solu

tions of stochastic partial differential equations are now available, the modeler can now 

use a predictive tool which may give a better insight on the physical processes. 

IV.2.1. The Water Content at the Root Zone: Definition of the Top Boun

dary Condition 

\Ve begin our analysis by considering a typical homogeneous soil profile in a 

natural watershed having a gentle slope and a deep mean water table elevation for 

now. The regional hydrology is such that in the area considered the vertical infiltration 

is the main source of aquifer recharge. This would be the situation in an agricultural 

watershed whose regional groundwater flow occurs through an alluvial aquifer. The 

problem we consider is the statement and the solution of the boundary value problem 

modeling the vertical infiltration at a poi~t in the recharge zone, and in particular the 

prediction of the evolution of the volumetric soil-water content. 

The first difficulty the hydrologist.faces is the fact that the upper boundary is the 

ground surface which is subject to the complex time variation of the rainfall occurrence 

in the area, alternated by dry periods which allow the redistribution of moisture in the 
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soil. This erratic nature of the rainfall time distribution would pose serious difficulties 

in the exact solution of the differential equation governing infiltration, except in limited 

cases when assumptions of constant infiltration rate at the top boundary are made. 

The problem is further aggravated by recent hydrologic evidence of the existence· of a 

macropore flow zone in the top layer of most natural soils (see Sloan et al., 1983), usu

ally in the first 10 to 20 cm of the soil profile corresponding to the agricultural A hor-

izon. This macropore zone is created _by the penetration of roots from plants, animal 

burrows and natural soil weathering. 

The exact hydraulic interaction between the rainfall intensity and the soil-water 

content in the root zone is still unknown, although some mathematical models have 

been proposed in the literature. One of these models (Tsakiris et al, 1988) approxi

mates point rainfall depth as a Poisson process in time. This is indeed a simplification 

since it is well known that point rainfall follows a much more complex stochastic pro

cess (see Kavvas et al., 1987). Behind t~is assumption is the recognition of the root 

zone as a filtering entity of the rainfall intensity signal. For example, the complex 

hourly rainfall intensity curves would generate a daily infiltrated rainfall depth time 

series which can be easily observed as a Poisson process such that (Papoulis, 1984) 

(IV.25) 

where p(N(t) = n) is the probability of n storms in the interval (0, t]; tis time (days); 

n = 0, 1, 2, ... ; and A is the ~ean storm arrival rate in (0, t]. This process has the pro

perties 

E{N( t)} = At, E{N2( t)} = A2 t 2 + At, (IV.26) 

where E{} represents the expectation operator. The time T = ta in days between 

storms can be modeled ·as an exponential distribution of the form 

(IV.27) 
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with the properties 

I 
E{T} = ~· (N.28) 

Tsakiris et al (1988) assumed that the moisture depletion during rainless periods in the 

root zone is a function of the potential evapotranspiration and the field capacity and 

adopted the Thornthwaite and Mather equation for this purpose: 

(N.29) 

where B0(t) is the water content in the root zone (mm); (l is the initial water content 

(mm); PET is the potential evapotranspiration (mm); and FC is the soil field capacity. 

Because of its simplicity, in the present study we will adopt the Tsakiris et al 

(1988) model to represent the water content in the root zone in order to to obtain a 

description of the conditions at the top boundary, which we will call ''boundary layer", 

in our boundary value problem. This transition layer will resemble a similar concep-

tion in fluid dynamics except that in this case the representative scale ( the depth) of 

the boundary layer is significantly greater than that used in fluid dynamics problems 

because of the presence of the porous media. Therefore acceptable typical dimensions 

for the soil boundary layer will have to be of the order of the scale of existing measure

ment devices for soil moi:tur" (see Cushm:rn, 1987). For the present study we assumed 

a boundary layer depth of IO cm, a dimension appropriate for core sampling which also 

corresponds to the depth of the A horizon in many natural soils. 

Recognizing that this is only an approximative a.bstraction of the complex condi

tions in the top boundary, this model will serve our objective to develop a methodology 

to solve the infiltration equation when the top boundary is a time stochastic process. It 

is clear that the hydrologist will have to identify the particular time stochastic process 

representing soil moisture in the root zone by measuring the water content at the root 

zone over time. Then s/he can use a methodology such as the one presented in this 
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article to predict the statistical nature of the evolution of the water content at different 

depths. 

Summarizing, we assume that the input infiltration to the boundary layer is a 

Poisson sequence of pulses of the form (Papoulis, 1984) 

N(t) 
Z(t) = E X;8(J - t;), (IV.30) 

i-0 

where Z(t) is the moisture depth input (mm) in (0, t]; N(t) is the number of pulses in 

(0, t], which is Poisson distributed as in eq.(IV.25); X; is the infiltration pulse magni-

tude at t;, which is modeled in this case as an exponential distribution of the form of 

eq.(IV.26) with parameter ')'; t; are the random points in time with the intervals 

( t; - t;_ 1) modeled as an exponential distribution; and 8( ) is the Dirac's delta function. 

Following eq.(IV.29) we regard the unit impulse response, h( t), of the boundary 

layer as 

(IV.31) 

where a, is a parameter to determine. Then the output water content of the boundary 

layer system is found as 

t tN(t) 
90( t) = J Z(r)h( t - r)dr = J E X;8(T -t;)e-a(t-r)dT .. 

o o i-o 

Thus the water content at the boundary layer will be 

9o( t) = N.£) X;e -a(t - t,), 
i-0 

(IV.32) 

(IV.33) 

where the random variables N( t), X; and t; are assumed to be independent. The mean 

of Z(t) is 

E{Z(t)} = >.E{X}, (IV.34) 

and the mean of 90(t) is given by 
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t N(t) 
E{00(t)} = JE{ EX.8(t - t;)}e-"rdT. 

o i-o 

Solving, 

Now the correlation of Z( t) is found as 

Thus the correlation function of 00(t) is given by 

t1 t2 

E{Oo(t1)0o(t2)} = J J[>-2 + >-8(r-p)E{x2}e-"(t,-r)e-"(t,,-p)dpdr. 
0 0 

Solving we obtain, 

E{f) (t )l) (t )} 2>- [ >- >- -"'• >- -"''+( >- 1 ) -a(t,+t•l+ 1 -ct(t,-t.) o I vo 2 =--0 ---e --e --- e -e . 
oq·aa a a2 2 

(IV.35) 

(IV.36) 

(IV.37) 

(IV.38) 

(IV.39) 

The process fJ0 ( t) now defines the time distribution of the water content in the boun

dary layer. As a simulation experiment, two months of daily water content data in the 

root zone were generated using arbitrary values for the parameters which reflected typ

ical conditions of a homogeneous sandy soil in the torrid zone. It was decided for sim

plicity to model the number of storms N(t) as an exponential distribution with param

eter ~ = 0.2 day- 1
; the interarrival times t; as an exponential distribution with parame

ter A = 0.2 day-1
; the infiltration depths X; as an exponential distribution with param

eter 1 = 0.3 mm-1; the removal rate of moisture from the root zone was assumed to be 

a= 0.1 day- 1
; the the depth ·of the root zone d = 100.0 mm; a residual minimum 

water content was assumed as rm= 10%; and a maximum saturated water content (or 

porosity) of fJmax = 30%. These values do not intend to specify actual field conditions 

in a particular soil, but rather some hypothetical conditions in a soil in order to investi

gate the effect of time and space distribution of soil moisture due to general Poissonian 
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conditions of the water content at the top boundary. These Poissonian conditions at 

the top boundary will reflect the effect of the complex time variability of point rainfall 

in real situations. 

Using appropriate algorithms for the generation of exponential realizations 

([8]Haan, 1977) and eq.(N.33), Fig. N.4 was obtained. It describes the time variability 

of the water content with respect to time at the root zone. Note that wetting takes 

place almost instantaneously, whereas drying is a slow decay process. Such a wide. 

variability in the water content should be expected in the root zone of natural soils. 

IV.2.2. The Random Nature of the Soil-Water Dift'ussivity: A Simulation 

Experiment 

In the vertical infiltration equation the soil-water diffusivity, D(8), is defined as 

D(8) = K(8) !t, (N.40) 

where 8 is the soil-water content; K(8) is the soil-water hydraulic conductivity 

( m .. day- 1 ); and 1/) is the soil-water pressure head ( m ). 

Several laboratory techniques have been proposed to determine the functional rela

tionships of O versus 1/) and of I( versus 1/) in soil samples (i.e., Klute, 1965; Tanner and 

Elrick, 1958; Miller and Elrick, 1958; Rijtema, 1959; Kunze and Kirkham, 1962; Moore, 

1930; Youngs, 1964, Watson, 1966; Rose et al., 1965). These functional rel!!,tionships 

are used to numerically solve eq.(N.40) to obtain the relationship of D versus 8, which 

will subsequently be used to solve the vertical infiltration equation. Most of the exist

ing solutions of the vertical infiltration equation assume a fixed set of soil functional 

relationships and a unique relationship of D versus 8. However, it is well known that 

the soil functional relationships are not unique and are subject to hysteretic effects (see 

Hillel, 1980 for discussion). Thus the shape of the soil functional relationships will be 
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dependent on the way the soil was wetted· or dryed in the experiment. For example a 

continuous and gradual wetting of the soil will generate the "main wetting curves" in 

the soil functional relationships, and a continuous and gradual drying of the soil will 

generate the "main drying curves" in the soil functional relationships. When neither 

continuous wetting or continuous drying occurs, that is when the soil is subjected to 

cycles of partial wetting followed by partial drying, secondary or "scanning curves" 

between the main wetting curve and the main drying curve are generated. The loca

tion of the scanning curves will depend on the value of the relationships at the instant 

of time when a cycle changes from wetting to drying or from drying to wetting, and 

from soil physical properties not yet well understood. 

The unpredictability of the soil functi9nal relationships subject to the cyclic condi

tions will produce an uncertain relationship between D and B, which will in turn gen

erate an uncertain solution of the vertical infiltration equation. The degree of uncer

tainty will depend on the degree of hysteresis in the soil in question. The hysteretic 

phenomenon, which has puzzled scientists for a long time, has been the reason why 

solutions of the vertical infiltration 'equation have only been obtained under idealistic 

conditions of constant infiltration. These conditions are only realizable in laboratory 

settings which are rarely attained in natural soils of hydrologic watersheds, where rain

fall periods are followed by dry periods. Hysteresis is also the reason why hydrobgis+s 

mainly rely on empirical equations, rather than physically-based equations, for the <.'al

culation of infiltration and for the watershed simulation models requiring infiltration 

estimates. 

In order to investigate the effect of hysteresis in the soil functional relationships on 

the form of the soil-water diffusivity a simulation experiment was performed. The 

simulation was based on the results of Liakopoulus (1965), where detailed experimental 

information on the soil functional relationships of a fi:i.e sand was presented. We used 

the Liakopoulus data to represent the ph.ysical bounds of the main wetting curve, the 
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main drying curve and the general direction of the scanning curves of a hypothetical 

sandy soil. The hypothetical soil was assumed to represent a typical soil profile in a 

watershed whose point rainfall regime follows the Poisson process described in the pre

vious section. 

We showed in the previous section that the water content in the root zone of a soil 

forced by a Poissonian rainfall follows a shot noise process. A sample function of the 

shot noise process was used to generate (Fig. IV.4) realizations of daily water content at 

the root zone. Using this information on the time variability of the water content, real

izations of the daily pressure head in the root zone were generated. The pressure head 

was computed by emulating the main wetting curve, the main drying curve and the 

secondary scanning curves according to the Liakopoulus data. Fig. IV.5 shows a digital 

plotter output of 57 days of simulation. Note the main wetting and drying curves and 

the cyclic loops (scanning curves) as a result of partial wetting and drying of the rain

fall inputs. We remark that the objective of the exp~riment is not to calculate exact 

absolute values of the pressure head, but rather to reproduce the phenomenon of hys

teresis in the soil functional relationships and to observe the sort of stochastic process 

representing pressure head. in a soil subject to the complex rainfall characteristics 

affecting real watersheds. 

A similar procedure was used to generate 57 realizations of the hydraulic conduc

tivity. Fig. IV.6 shows the results of one of such simulations. Subsequently the two 

sets of synthetic data (Figs. IV.5 and IV.6) were used in conjunction with eq.(IV.40) to 

approximate realizations of the daily soil-water diffusivity. It is known that the numer

ical approximation of the derivative in eq.(IV.40) is not very accurate, but again the 

objective is to observe the nature of the time stochastic process representing daily soil

water diffusivity. 

Fig. IV.7 shows the 57 realizations of.such process. Note the high variability in D 

and that, at least in the root zone, D "jumps" to high values in relatively short periods 
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of time, whereas]!) recedes slowly in low values. The reason behind this resides in the 

fact that wetting takes place in shorter periods of time than drying. This differences in 

the timing of wetting and drying may be significantly atte~uated as depth increases. 

There is also an indication that the extreme high values in D are probable unattainable 

in real field conditions. In the simulation, these extreme high values are obtained as 

the soil-water content approaches saturation. However, it is known that except under 

prolonged ponding in the ground surface and because of capillary fringe effects in fine 

soils with shallo~ water table (Gillam, 1982) a condition not considered here, satura

tion rarely occurs. Under conditions of intense rainfall, the value of the water content 

would be somewhat below saturation because of the presence of entrapped air. This 

would suggest that the variance in the D process is probably lower than the one exhi

bited by our simulation. 

It is also noted that d·lring dry periods some persistence exist in the daily time 

series of D. To obtain a quantitative evaluation of this aspect, the serial correlation 

coefficient of the generated D series was computed. It was found that the correlation 

coefficient follows an exponential decay of the form 

-pl r1 = e , (IV.41) 

where r1 is the lag l serial correlation coefficient; and p a recession parameter found to 

be equal to 0.5 Oil this example. No further analysis of the D series was done sillce it 

was considered that the data only represents a hypothetical condition rather than an 

actual field situation. Further research is needed to determine the correlation structure 

of the time variability ill the soil-water diffusivity, its marginal probability density 

function, and its degree of stationarity. The research should involve some repetitive 

type of test in a soil profile in which the roil is excited by a rainfall process of known 

stochastic properties, the soil functional relatiollships and the soil-water diffusivity are 

determilled on a continuous basis. 
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The preliminary results of this simulation indicate that the random time variabil

ity in the rainfall occurrence generates hysteretic loops and an important degree of 

uncertainty in the time variability of the soil-water diffusivity which should be 

accounted for in the solution of the vertical infiltration equation. This uncertainty in 

D will generate an important uncertainty in the water content evolution in the soil 

profile. Since the main aim of the present study was the development of a methodol

ogy to solve the vertical infiltration equation which accounted for the time variability 

in the rainfall input and the variability in the soil-water diffusivity resulting from the 

inherent hysteretic process, several assumptions were made on the stochastic properties 

of the D process. Knowing that this is only an illustration of the methodology in the 

next section, future research will have to be done to deter.mine the exact stochastic pro

perties of D in actual soil profiles. 

It was assumed that the D process can be represei:.ted as 

D = lJ + D'(t, w), · (N.42) 

where JJ represents a deterministic component; and D'(t, w) represents a random com

ponent in the probabilistic variable w. Following the previous observation on the 

boundedness of D we adopted a significantly lower value for the mean D, that is 

JJ = 0.0162 m 2.day-1• The effect of seasonality was neglected in this example, knowing 

that its inclusion will not significantly complicate the procedure. The random com

ponent was assumed to follow a colored Gaussian noise. The latter follows in view of 

the evidence of persistence in our previous simulation of D: 

E{D'(t)} =O, (N.43) 

where q is the variance parameter equal to 1.56 m 2.day-1
• 
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IV.2.3. Solution of the Vertical Infiltration Equation 

Following the definition of the top boundary condition and the form of the so\!· 

water diffusivity in the last two sections, we attempt in this section the solution of the 

vertical infiltration equatio;:i. The partial differential equation governing the one

dimensional vertical infiltration in a homogeneous soil is given by (Bear, 1979) 

(IV.44) 

8(0, t, w) = 80(t, w), 8(00, t) = 0, 8(z, 0) = 8;(z), 

where 8 is the volumetric water content; t is the time coordinate (days); z is the verti-

cal spatial coordinate, positive downward ( m ); D is the soil-water diffusivity 

(m 2.day-1
), which we propose to be a stochastic process of the form of eq.(IV.42) when 

the top boundary is subject to the rainfall regime in a watershed; K(8) is the unsa

turated hydraulic conductivity of the soil ·(m2 .days-1); 80(t, w) is the stochastic process 

representing the time variability in the water content at the top boundary, the "boun

dary layer", which we assume to follow a shot noise process of the form of eq.(IV.33) 

when this layer is subject to the time variability typical of natural point rainfall pat

terns; and 8;(z) is the known initial water content alon6 the soil profile. 

The assumption on the form of D implies that we are neglecting its spatial varia-

bility. This means that in this study the time random variations in D occur in the 

entire soil profile, a condition feasible in srµall reaches of soil where a bulk D value can 

be measured. The effect of the spatial variability in D on the evolution of 8 was dis-

cussed in section IV.I. 

dK 
The term d

8 
= u is assumed constant in the present study and equal to 

0.0216 m.day-1, which is an average value taken from the Liakopoulus data. Clearly 

this term is not constant and varies directly with 8. Thus strictly speaking u would be 
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another time stochastic process presumably correlated with the D process. In the 

absence of experimental data on the correlation structure of of this term, we leave the 

investigation of this aspect to a future study. 

Another simplification of the formulation is the assumption of independence 

between the boundary process, 90 and the D process. Intuitively one may think that 

high rainfall intensity is associated with high values in D and low rainfall intensity is 

associated with low values in D. Therefore, some correlation could be expected 

between the above two processes. However, because of the attenuation effect of hydro

dynamic dispersion in unsaturated soils, this possible degree of correlation may be 

significantly reduced as depth increases. The issue is further complicated because the 

nature and the behaviour of D is not well understood yet. Once again we are in unk

nown territory and the absence of experimental information refrains us from speculat

ing further. Thus in the following treatment we assume that D is a system parameter 

which is physically independent of the input functions. This statistical independence 

between system parameters and environmental inputs has been reported in many other 

physical systems (see Adomian, 1983). 

The objective in this section is then the solution to the partial differential eq. 

(N.44) subject to a colored noise soil-water diffusivity and a shot noise boundary con

dition. The following solution of the stochastic partial differential equation (N.44) is 
' 

based on the results presented in chapters II and III of this report (also see Serrano et 

al., 1985(1), 1985(2), 1985(3); Serrano a~d Unny, 1986; Serrano and Unny, 1987(1), 

1987(2); and Serrano, 1988(1), 1988(2)), where functional analytic concepts were 

applied to obtain new solutions to similar stochastic partial differential equations in 

subsurface hydrology. 

Let us replace eq.(N.42) into eq.(N.44) and put the random component on the 

right hand side to obtain 
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(IV.45) 

subject to the same boundary and initial conditions of eq.(IV.44). The solution to this 

transport evolution equation is (Serrano, 1988(1); Serrano, 1985(2)) 

t &o 
O(z, t) = <P(z, t) + J10;(z) + J J1_,.D'(r)-2 dr, 

O az (IV.46) 

where <li(z, t) is the solution due to the stochastic boundary condition given by (Ser-

rano, HJ88(1 )) 

t 

<li(z, t) = z ,,. J exp[ 
( 41l'D') o 

(z - u(t - r))2 Oo(r) 
4D'(T - r) J (t - r)312 dr. 

(IV.47) 

J10;(z) in eq.(IV.44) is the solution due to the deterministic initial condition, where J1 is 

the strongly continuous semigroup (Serrano et al., 1985(2)) associated with the evolu

tional operator in eq.(IV.44 ). The semigroup operator in this case is given by (Serrano, 

1988(1)) 

1 00 

J16;(z)= ,,.J{exp[ 
(41l'D't) o 

(z - ut - s )2 (z - ut + s J2 ]}6,·(s)ds. 
4D't J - exp[ 4D't (IV.48) 

vVe now define O in the right hand side of eq.(IV.46) as the series 

0 = 61 + 62 + 03 + · · · . Eq.(IV.46) becomes 

t a2 
6(z, t) = J16,(z) + <P(z, t) + J J1_,.[)1(r)-

2 
(01 + 62 + ... )dr. 

O az . (IV.49) 

Now set 61 equal to the previous part of the solution, <P(z, t), and truncate at the first 

term to obtain 

. t a2 
6(z, t) = J16;(z) + <li(z, t) + f J1_,.[)'(r)-

2 
<li(z,r)dr. 

O az 
(IV.50) 

For a .justification of the above approximation procedure and a discussion on the- con

vergence see Serrano (1988(2)). We are truncating at the first term in the expansion 
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for simplicity and because we assume we are dealing with relatively small variances in 

D. Obviously more terms will have to be .included in the case of arbitrary large vari-

ances. Note that the solution we are presenting is not a perturbation solution, and 

therefore it is not limited to small variances in the stochastic functions, which is the 

most important limitation in the existing perturbation solutions. 

From eq.(IV.50) we may obtain sample functions of the water content at different 

depths and at different times. These sample functions help us observe the evolution of 

the water content distribution under different conditions. We are also very interested 

in obtaining statistical measures of the water content, which characterize the stochastic 

prop~rties of the water content process. In particular it is very desirable to derive 

expressions to calculate the mean and the variance of the water content as a function 

of the same measures of D and B0• In most engineering applications the modeler only 

has available the first two moments of the input processes and rarely information on 

their join probability density function. Therefore the first two moments of the solution 

are the only feasible statistical measures. In order two obtain such measures, we exam-

ine first each of the terms in eq.(IV.50). 

The mean of the boundary solution is given by 

t 

E{<P(z, t)} = z ,,_ f exp[ 
( 41rlJ) o 

Using eq.(IV.36) this becomes 

E{<P(z, t)} = 

(z - u(t - r))2 E{Bo(r)} 
4.lJ(t - r) J (t - r)3/2 dr. 

(z - u(t - r))2 
J (1 - e-"'') dr. 

4.lJ(t-r) · (t-r)312 

The correlation function of the boundary solution is, from eq.(IV.47), 

(IV.51) 

(IV.52) 

(z - u(t 1 - r))2 
~-~--',;_]exp[ 

4D(t 1 - r) . 
( z - u(t2 - .;))2 ](IV.53) 

4.lJ( 12 - .;) 

E { B0( T )B0( .;)} . 
. d.;dr. 
(t _ r)3/2(t _ .;)3/2 
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Using eq.(IV.39) this becomes 

(z - u(t1 - r))2 

]exp[ 
41J(t 1 - r) 

(z - u(t2 -e))2 

_4_1J_( t""""2 ---e-l -J 

Using eqs.(IV.52) and (IV.54) the variance of p will then be 

Var{P(z, t)} = E{<t2(z, t)} - E2{P(z, t)}. 

(IV.54) 

(IV.55) 

Now the mean of the third term, which we shall call I(t), in the solution eq.(IV.50) is 

simply 

E{I(t)} = 0, (IV.56) 

in which eq.(IV.43) has been used. Using again eq.(IV.43) we find an expression for the 

correlation function of I( t ): 

Using Eqs.(IV.56), (IV.57) and (IV.43), setting t1 = t2 = t, and the previously men-

tioned assumption of independence between P and D', we obtain the variance of I( t): 

(IV.58) 

where the correlation of Pis given by eq.(IV.54). We are now in a position to calculate 

the first two moments of the water content. In eq.(IV.50) the mean water content is 

given by 

E{O(z, t)} = E{P(z, t)} + J18;(z), (IV.59) 

where eq.(IV.56) has been used, and the mean of Pis given by eq.(IV.52). 
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Finally, using eqs.(N.55) and (N.58), it is easy to show that the variance of the water 

content is given by 

Var{O(z, t)} = E{IP(z, t)}- E 2{8(z, t)} = Var{4i(z, t)} + Var{I(z, t)}. (N.60) 

The above derived expressions for sample functions, the mean and the variance were 

used in the numerical computations of the next section. Computation of each of the 

partial terms involved in the expressions was done in order to observe the contribution 

of each of the stochastic components to the combined random behaviour of the water 

content. The objective of the exercise was to evaluate the relative importance of each 

of the terms in order to identify the individual components crucial in the reduction of 

the variance of the water content forecast. 

IV.2.4. Computational Rasults and Analysis 

In this section we explore the computational features of each of the terms in the 

stochastic solution of the vertical infiltration equation, its mean and its variance as 

developed in the previous section. We begin by considering the deterministic com-

ponent in the solution eq.(N.50), 110.-(z), which is defined by eq.(N.48). Assuming 

that the typical scale of the instrument measuring field water content is 0.1 m, then 

the bulk water content will be constant at 0.1 m intervals. Thus the deterministic 

component will reduce to 

N 
.ftO.-(Z)= E0;A1;,' 

j-1 
(N.61) 

where the depth Z takes the discrete values 0.1, 0.2, 0.3, · ·_- ; 8 i is the measured ini

tial water content at the above· discrete intervals; j = 1, ,2, ... , N; and the function M; 

is the spatial integral of eq.(N.48) solved at 0.1 m intervals in which O i is constant. 

For· example, when j = 1, 
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l 0.1 

(1rb )'" { {exp[ 
a - s)2 

b ] - exp[ (a +s)2]}d 
b s, (IV.62) 

where a = Z - ut; and b = 4/Jt. This equation can be written as 

(IV.63) 

which in turn can be written as 

1 { a 0.1-a a O.I+a } 1'11 '- - erfc(---;,;;)- erfc( .,. ) - erfc(--;,;;) + erfc( .,. ) , 
2 b b b b 

(IV.64) 

where er/c( ) denotes the "error function complement". In general, for any i 

1 { z"--0.1-a j a i--0.I+a i+a 
J,.,fi = - erfc( .,. ) - erfc( .,. ) - erfc( .,. ) + erfc( .,. )}.(IV.65) 

2 b b b b 

Interestingly, convergence of eq.(IV.61) to a desired ac:uracy was achieved after two or 

three steps. The accuracy of the above scheme was tested by setting () j = 1.0,for all i, 

and noting that J1(J; was equal to one. It was also found that a stepwise computation, 

at 1 day intervals, was the most accurate. 

The deterministic solution results from a linearization of the infiltration equation. 

It is known that this solution by itself is a poor model for vertical infiltration. In the 

present study the deterministic solution was compared with the observed data 

presented by Liakopoulus (1065), by computing eq.(IV.61) with the same initial condi

tion presented in the above study. It was found that the deterministic solution sub

stantially underestimates the values of the water content. This may indicate that the 

simulated values of D and u are probably lower in magnitude than the ones adopted. 

However this modification of the parameters would not produce a good fit with the 

observed data because the deterministic solution does not include the physical depen

dence between the parameters and (), This suggests that a better deterministic solution 

should account for the high values in D and u in zones of high () and the low values in 
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the parameters in zones of low 0. However, a deterministic solution which includes this 

parameter dependence with the water content is very difficult to derive. No further 

analysis or "calibration" of this component was attempted, since the motivation of the 

present work is the understanding that the deterministic, linearized, solution is not an 

appropriate tool to represent real field conditions. In _the present study this component 

is only a part of the total stochastic solution. 

For the rest of this study an arbitrary initial condition was assumed and its evolu

tion over time was computed after eq.(IV.60). Fig. IV.8 illustrates the behaviour of the 

deterministic component. 

Now the second term in eq.(IV.50) is the partial solution due to the stochastic 

boundary condition, <Ji(z, t), which is given by eq.(IV.47). Here the sample boundary 

water content values were discretized at 1 day intervals. Thus 

Z 1E·-1 Ji [ (Z - u(t - r))2 J B /e-°'' d 
<Ji(z, t, w) = ., exp T 

( 41l'l1t ;-1 ;-1 411( t - r) ( t - r)312 
' 

(IV.66) 

where O / is the initial value of the boundary water content, 00 , at the left boundary of 

the time interval (that is at the time T = j-1); and T 1; (j-1, j]. Each step-wise 

integral was solved by a 24 point Gauss-Legendre quadrature with good results. Again 

accuracy was tested first by setting O / and e-"'' equal to one and assuring that <Ji was 

equal to one. 

Fig. IV.9 shows the boundary component of the stochastic solution with respect to 

time at three different depths. It was found that the closer the observation point is to 

the upper boundary, the higher the variabiJjty in the water content due to the random 

nature of rainfall. This would explain the difficulty in forecasting the water content 

near the ground surface. As depth increases, the boundary component of the water 

content will take longer time to react and its variation over time is smoother. Thus for 

depths beyond 0.8 m the water content will slowly increase to a steady mean value and 

its variability over time with respect to this mean value will be small. This feature is 
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in agreement with field observations of the water content which seem to indicate that 

the water content in deep soils tend to maintain a steady constant value even thoug_h 

the rainfall on the surface is highly variable. 

It is interesting to observe the spatial variability of the water content at different 

times. Fig. IV.IO illustrates the water content versus depth at different times. Note 

that as time increases, the water content profile tends to a smooth steady curve. 

The calculation of the third term in eq.(IV.50) involves the generation of sample 

functions of the colored noise process representing the time variations in the soil-water 

diffusivity, D'. Generation of sample functions of a colored noise process with correla

tion function given by eq.(IV.43) can be easily achieved by making the transformation 
0 

q = !!:../!_ and noting that a' zero-mean stationary Gaussian process with exponential 
2 

correlation 

(IV.67) 

can be generated by an ordinary differential equation forced by white Gaussian noise 

(Jazwinski, 1970): 

dD'(t) + D (t) = u d,8(t) 
dt p p dt ' 

subject to D'(t = 0) = D0
1, where D0' follows a normal distribution 

d~~t) = w(t) is white Gaussian noise with 

E{w(t)} = O, 

The solution of eq.(IV.68) is 

t 
D'(t) = D0

1e-P1 + upf e-p(t-•lw(s)ds, 
0 

which can be used to generate sample functions of D'. 
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(IV.68) 

N(O i:.J2.). 
' 2 ' 

and 

(IV.69) 

(IV.70) 



This equation can be further reduced after recalling that the typical time scale in 

our simulations is one day and assuming that any time variation in an interval of less 

than a day is not recognized. This is equivalent to assume that the w process is con-

stant in intervals of one day. Thus eq.(N.70) becomes 

;-t j 
D'(t) = D0'e-P1 + up E w(j) f e-p(t-•lt1s, (N.71) 

j-1 j-1 

where w( j) is the value of the white Gaussian noise process at discrete times 

j = 1, 2, ... , t. Solving the integral this equation reduces to 

j-t . 
D'(t) = D0'e-P1 + ue-P1(1 - e-P) E w(j)e-PJ_ (N.72) 

j-1 

This equation was used to generate realizations of the D' process which was needed in 

the calculation of the third term in eq.(N.50). Since the colored noise variance param

eter was previously chosen as q = 1.56 m 2. day- 1
, and p = 0.5, then u = 2.5. 

The third term in eq.(N.50) is due to the random component in the soil-water 

diffusivity, D', in the stochastic equation (N.44). This term was first approximated as 

(N.73) 

where ..12( ) is a suitable forward finite difference approximation of the spatial second 

.derivative; D / is the value of D' at time j; and <P ;-i is the value of the boundary solu

tion along depth at time j-1. Since the differentiation operation may be an unstable 

procedure, some smoothing of the function J,<P ;-i may be useful. Each of the t 

integrals was solved using a Gaussian quadrature. It was found that this procedure 

took too long in a micro-computer and a further simplification was formulated as fol

lows: 

(N.74) 
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In this case l(t) was approidmated stepwise and computational time was drastically 

reduced. 

Fig. IV.11 shows a sample function of the I component of the water table gen

erated from eq.(IV.74). Note that sometimes this component will lead the total value 

of the water content beyond the interval 0-30%. As with any statistical analysis, the 

physical bounds will limit the numerical value of the sample function. 

Adding the three components of eq.(IV.50) (Figs. IV.8, IV.9, and IV.11, 

corresponding to eqs.IV.69, IV.74 and IV.82 respectively), we obtain the total sample 

water content, an illustration of which is shown in Fig. IV.12. In this example the first 

0.6 m of the soil profile is maintained at saturation. This only reflects the particular 

choice of parameters and the nature of the forcing rainfall used in the present example. 

It was earlier noted that saturation may rarely occur in the boundary layer and there

fore the boundary water content values used in this example are probably too high. In 

any case, the soil moisture profiles will be spatially smooth curves, varying erratically 

in time, which describe the random nature of the water content due to the random 

nature of the forcing rainfall and the randcm nature d:· the hysteresis process. 

The next step is the calculation of the mean water content as given by eq.(IV.59). 

Fir5t we compute the mean boundary component, E{P(z, t)}, by using eq.(IV.52). 

This equation was approximated using a similar procedure to the one used to calculate 

the sample P(z, t) values, except that in this case the integral was much easier to solve. 

Fig. IV.13 shows the mean boundary component with respect to time at three different 

depths in the soil. It is illustrative to compare these means with the sample boundary 

components at corresponding depths (Fig .. IV.9). Using this information a~d eq.(IV.59), 

the mean water content was computed and plotted with respect to time for the same 

typical depths (Fig. IV.14). Again the ~hape of these curves reflect the particular 

choice in the parameters, the properties of the forcing rainfall, and the particular 

choice in the initial condition for the simulation. 
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The next step is the calculation of the variance of the water content as described 

by eq.(N.60). First we compute the variance of the boundary component Var{ IP}, 

which was done in a similar way to the calculation of the mean, E { IP}. Fig. N.15 

describes the mean and one standard deviation of the boundary component with 

respect to time at z = 1.0 m. The large values in the variance reflect the high variabil

ity of the rainfall used in the simulation. It was also found that low values in the 

parameter a, that is an upper layer of soil which quickly looses water through evapo

transpiration, results in significantly lower values in the variance of the boundary com-

ponent at depth. 

The second term in eq.(N.60) is the .variance of I, Var{I(t)}, which was approxi

mated from eq.(N.58) as follows: 

(N.75) 

where the correlation of IP is given by similar approximation of eq.(N.54). It was 

found that the mean of I was about 7 .2 and the standard deviation was 9.6. In Fig. 

N.11 the mean plus and minus one standard deviation of I was plotted: Finally 

eq.(N.60) will give the variance of the water content. 

The results indicate that the variance of the predicted water content is largely 

dominated by the variance of the boundary component. The particular selection in the 

parameters of the boundary component produced large variance values which in some 

cases force the theoretical water content beyond the physically realizable values. This 

indicates that the variability of rainfall selected for the example calculations is prob

ably too high. The results also suggest that the modeler should perform a series o( 

measures of the upper-soil water content in order to determine the stochastic properties 

of the boundary component. this exercise will in turn tend to reduce the variance in 

the predicted water content at depth. 
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CHAPTER V - PRACTICAL MODELS FOR THE DffiECT 

AND INVERSE PROBLEMS 

In this section we attempt to present a balanced methodology to investigate the 

effect of random variability, or uncertainty, in the values of physical parameters 

involved in groundwater differential equations on the behaviour of the dependent vari

ables. A ''balanced" methodology, in our opinion, implies a procedure the modeler may 

use to either forecast the statistical properties of the dependent variable knowing the 

corresponding statistical properties of the uncertain parameter, or estimate the parame

ters of the random process assumed to describe the random nature of the parameter 

knowing the statistical properties of the groundwater dependent variable. Since 

parameter uncertainty seems to pose a challenging problem in subsurface hydrology 

today, a methodology which draws from the same consistent theoretical background for 

either the direct of the inverse problem may be found useful. 

The procedure is based on the concepts introduced in chapter II, which may be 

found to be related to linear systems theory of deterministic ordinary differential equa

tions, and its extension to some non-linear cases, and therefore a fundamental element 

is the derivation of a system impulse response function, which we previously called the 

semigroup operator. In this section new exter.sions to the important case of spatial 

parameter variability and to cases where popular numerical methods can be used. It is 

emphasized throughout the necessary steps to transform the governing differential 

equation subject to parameter uncertainty into a stochastically-forced evolution equa

tion whose solution is straight forward. Thus the solution will employ a deterministic 

impulse response function which will be contained within every term of the approxima

tion. The method is specifically suited for the investigation of the effect of high varia

bility or high uncertainty in the parameters; the solution of the equations is systematic; 

the method is accurate and the computational effort is small; it does not require 



artificial logarithmic transformations of the parameter; it does not require parameter 

variability to be small (small perturbation methods); and it does not require spectral 

decomposition or any other domain transformation for the solution. 

Section V.l concentrates on models applicable to cases where the input random 

processes are general space and time random functions. First a deterministic example 

is presented with the purpose of illustrating the general methodology, the stability of 

the approximations and the convergence rate. Then an application to the investigation 

of groundwater pollution subject to spatial variability in the velocity field is studied. 

Section V.2 introduces models based on semi-analytical solutions of the stochastic 

differential equation, which can be employed when the input uncertainty occurs with 

respect to only one of the independent variables and therefore use the convenient 

features of numerical methods. The handling of the resulting stochastic matrices is 

with a groundwater flow case subject to time variability in the transmissivity. The 

case when spatial erratic variability in the transmissivity is present is discussed, and a 

groundwater pollution case when spatial erratic variability in the velocity field is the 

most important uncertainty term is also discussed. Finally in section V.3 we introduce 

a method for the parameter estimation of random processes involved in groundwater 

differential equations and for the estimation of the mean value of the equation physical 

parameters. This method utilizes the solution of the stochastic differential equation, 

and therefore the system impulse response function, rather than the differential equa

tion itself along with field measurements of the dependent variable. 

V.1.1. Models to Investigate the Effect of Parameter Variability 

Before studying the etfect of random variability of a system parameter on the 

· dependent variable of a groundwater differential equation, let us visualize the accuracy 
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of the decomposition method with a simple deterministic example. Consider the prob

lem of groundwater pollution by a conservative contaminant in an infinite homogene

ous aquifer, as governed by the advective-dispersive equation: 

ac - D &c + u ac = o, (V.1) 
at ax2 ax 

C(-oo, t) = C(oo, t) =0, C(x, 0) = C0(x), 

where C is the contaminant concentration (mgr /lit); D is the average aquifer disper

sion coefficient ( m 2 /day); u is the average aquifer pore velocity ( m /day); x is horizontal 

distance from an origin ( m ); t is time (day); and the initial condition, C0 is a smooth 

known function of x. 

The solution to this differential equation is (Serrano, 1088(2)) 

C(x, t) = J(x, t)C0 = 
1 

00 
( x - ut - s )2 

I!. J exp[ . D ]C0(s)ds, 
(41rDt) _00 4 t 

(V.2) 

where J is the impulse response function (in this case the strongly continuous semi

group) associated with the spatial differential operator in eq.(V.l ). Now assume that 

the initial condition may be represented as an impulse function of magnitude equal to 

10 mgr /lit for 30 < x < 50, and equal to zero everywhere else, that is 

C0(x) = 0 IOH(x - 30).H(x - 50), (V.3) 

where H( ) denotes the unit step function. This initial condition would represent an 

accidental spill penetrating the saturated zone at an average concentration of 10 

mgr /lit over an area 20 m in length. Substituting eq.(V.3) into eq.(V.2) yields 

C(x t) = <I>(x t) = 5{ er/[ 30 - x + ut J _ er![ 50 - x + ut]} 
' ' (4Dtt (4Dt)l!o ' 

(V.4) 

where er/ ( ) denotes the "error function". 

Let us now assume that we wish to investigate the effect of an increase of 100% in 

the magnitude of tb.e velocity field u. In that case, eq.(V.1) becomes 

68 



ac &c ac ac 
- - D-- + u- = -u-
at ax2 ax ax. 

The solution to this equation is 

I ac 
C(x, t) = J(x, t)C0 - uf J(x, t-r)-a dr, 

O x 

which can be expanded as 

t 1 00 

C(x, t) = <l>(x, t) - uf 11, J exp[ 
o (41rDt) -oo 

(x - ut - s)2 
J BC(s, r) dsdT 

4Dt as ' 

after using eqs.(V.2) and (V.4). 

(V.5) 

(V.6) 

(V.7) 

We now expand C in the right side of eq.(V.7) as the series (Serrano, 1988(2)) 

C = C1 + C2 + · · · , and set C 1 = <I>, which is the first and most important partial 

solution. In general 

t ac;-1 
C; = -uf J(x, t-r) a dT, i > 2. 

O x 
(V.8) 

Thus the equation describing concentration in the aquifer subject to a 100% increase in 

the velocity field will read 

N e ac;-1 
C(x, t) = <l>(x, t) - u EI J(x, t-r) a dr, 

i-10 X 

(V.9) 

subject to eq.(V.8). N is a suitable number of iterations such that C reaches a degree 

of accuracy on the order of the representative scale of resolution of the concentration 

measurement device used in the field. In cases when the impulse response function has 

well-behaved first and second derivatives, and when the domain has homogeneous 

boundary conditions, integration by parts of the integral term in eq,(V.9) may 

significantly simplify the solution and increase the convergence speed. In that case-

numerical evaluation of the derivatives of previous iterations is not necessary and sta-

bility improves substantially. 
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As an illustrative example, assume an initial velocity u = 0.2 m/day, 

D = 0.1 m 2 /day and and compute the breakthrough curves at t = 30 days after the 

spill. Fig. V.l illustrates the exact concentration magnitude versus distance, the con

centration as obtained by the one approximation, and the concentration as obtained by 

two approximations. The exact concentration versus distance, was calculated from 

eq.(V.4) for u = 0.4 m/day, after the 100% increase in the original velocity. The con

centration by one approximation was computed from eq.(V.9) with u = 0.2 m/day, and 

corresponds to the first term in the equation. The concentration by two approxima-

tions was obtained by adding the first two terms in eq.(V.9) with N = 1. Thus Fig. V.l 

illustrates that the concentration profile after an increase in the velocity field of as 

much as 100% of the original magnitude is accurately estimated after the first two 

approximations in eq.(V.9). The effect of an increase of 120%, or higher, in the original 

value of the velocity field can be accurately estimated by three approximations. Fig. 

V.2 illustrates the first three approximations individually. Note the uniform conver-

gence of the approximation. 

The programming effort or computer time required for the implementation of 

eq.(V.9) is not high. A simple 24-point Gauss-Legendre quadrature was employed for 

the integral term with a first-order central finite difference approximation for the 

d · t" "th" h · t 1 Th BCi(s,"T) eriva 1ve w1 m t e m egra . e term Bs WIIS approximated as 
8C1(s, t) 

8s 

under the assumption that the change in the basic shape of C 1 is small within the 

simulation period of 30 days, as compared to its spatial variability. As with any other 

numerical approximation scheme, care should be taken to control unstability between 

iterations. In the example in question, the infinite integral was accurately estimated by 

dividing it into three parts: 0 < x < 36, 36 < x < 56, and 56 < x < 80. Observing 

that every subsequent iteration is based on the previous approximation (see eq.(V.8)), 

error propagation or magnification should be minimized by smoothing, or curve inter

polation, of each iteration. This is specially true after the third iteration and when the 
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equation contains random terms. 

The above example illustrates the important advantages of the decomposition 

method we already mentioned. 

V.1.2. Groundwater Pollution Subject to a Spatially Erratic Velocity Field 

Consider again the modeling problem of section V.1.1 and assume that the hydro

geology of the area is such that the measured groundwater velocities at discrete points 

in the aquifer over a long pe,·iod of time suggest that the velocity field is a highly vari

able (uncertain) function which could be described as u(x, w) = u + u'(x, w), where u 
is a long-term mean, u1(x, w) represents the zero-mean spatially random component in 

the velocity field, and w is the probability variable. In this case eq.(V.l) becomes 

(V.10) 

subject to the same set of boundary conditions. Proceeding in a similar manner as 

before, the solution to this equation is 

N t 1 oo 
C(x,t)='P(x,t}-Ef """"i" J exp[ 

i-20 (411-D(t··-T) -oo 

(x-u(t-r)-s)2
] '( ) 8C;-1(s,r) d d (V ll) 

( ) 
U s,W a S T, • . wt- s . 

subject to C1(x, t) = 4i(x, t), 4i(x, t) as given by eq.(V.4) ifwe use the same initial con

dition eq.(V.3), and 

( -( ) )2 ac. x-u t- -s I '( l ,-1 d d ."' 
( ) 

U B,W a S T, 1....-~. 
4D t- s -

(V.12) 

Note that the impulse response function is the same as that given by eq.(V.2) with u 
instead of u, and ( t - r) instead of t. Eq.(V.11) can be used to generate sample func

tions to observe the qualitative nature of the concentration evolution if sample func

tions of u1 are available. In most engineering applications, however, only the first lower 
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order moments are available after statistical inference on the limited historical meas

urements of the velocity field. Thus it seems natural to develop expressions which 

would describe the correspcnding lower order moments of the concentration field. 

According to the earlier results in this section a value of N = 1 in eq.(V.11) produced 

an accurate estimation of the concentration. After taking expectations on both sides of 

eq.(V.12) we obtain the mean concentration: 

E{ C(x, t)} = <li(x, t), (V.13) 

where E{ } denotes the expectation operator. For N = 1 the mean concentration coin

cides with the deterministic component. It is a modeling decision to include additional 

terms if it is judged that the variances of u/ are so high that the first approximation is 

crude. The computational effort required by additional terms is small. Fig. V.3 shows 

the mean concentration vers·.1S distance 30 days after the spill according to eq.(V.13), 

and one sample realization of the concentration using eq.(V.11) with the same deter

ministic parameters as before. In this experiment the random component of the velo

city field, u1
, was assumed to follow a Gaussian colored noise process in space with vari

ance parameter q = 0.1 and decay parameter p = 0.01 (see eq.(V.14)). This is a com

mon assumption adopted by researchers, but of course in practical applications the 

functional form of u1 must be supported by long-term field measurements. A sample 

function of a colored-noise groundwater velocity with the above properties is necessary 

in eq.(V.11) in order to obtain a sample function of the concentration. For the practi

cal details about the numerical generation of such a sequence the reader is referred to 

Serrano (1990(1)). Fig. V.3 indicates that the lowest variability in the concentration 

field appear where the concentration gradients tend to zero. 

The variance and the covariance of the concentration can be derived from the 

two-point (time-or space) correlation function, which in turn depends on the correlation 

structure of the groundwater velocity as derived from field measurements. The correla

tion function of the colored-noise velocity field assumed before is defined as 
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E{ '( ) '( )} R ( ) -, lz1-•2I 'U X1, t 'U X2, t = u X1, X2 = qe , (V.14) 

where q and p are constants. Using eq.(V.11), the variance of the concentration at a 

particular point in time and space reduces to 

t t 
2 JJJ( )J( c ) -pjs-el 8<P(s, T) 84i(c, J) d d 

O"c(z,t) = q 
O O 

x, s, t-r x, ._, t-"{ e Bs ae "Y T, (V.15) 

where the approximation N = 1 has been adopted again. An additional approximation 

h. h d bl 1 • B<P(s, r) B4i(s, t) ~ all C 
W IC seems to pro _uce re.JSOna e resu ts IS as = as 10r T. are 

should be taken to minimize unstability in the computation of the concentration vari

ance. Fig V.4. shows the standard deviation of the concentration versus distance 30 

days after the spill according to eq.(V.15). Once again, the lowest values of the stan-

dard deviation occur at locations where the concentration gradient tends to zero, that 

is at x < 33, x >57, and particularly at the peak concentration, 43 < x < 48. The 

highest values of the standard deviation ( the expected highest variability in concentra

tion values) occur at locations where the concentration gradients are maximum, that is 

at 36 < x < 40 and at 51 < x < 55. This phenomenon can ·be interpreted from 

eq.(V.15) and an observatic1 of Fig. V.3. All the computations in this section were 

done by writing corresponding programs in C and running them in UNIX-based micro 

and mini-computers. 

V.2. Special Cases with Semi-Analytical Soluti~ns 

The methodology illustrated in the previous sections is systematic and general 

enough to handle cases when the parameter uncertainty entering the differential equa

tion is modeled as a time ai; :i space random process. In such a case the development of 

numerical solutions of the st:>chastic differential equation is not straight forward, since 
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the solution of the equation constitutes a family of functions (a random process) for 

which the finite difference derivatives have to be defined. Thus the discretization of the 

differential equation has to be carefully investigated to assure th.at the solution of the 

discretized equation satisfies .n some specified sense the original differential equation. 

Some modeling problems allow a discretization in certain dimension and therefore 

the advantages of numerical methods can be beneficial. In certain circumstances the 

modeler observes that the variability associated with one or more of the parameters is 

more important with respect to one of the independent variables. In these cases where 

the stochasticity is important with respect to one of the independent variables, and 

negligible with respect to the other independent variables, certain simplifications which 

reduce the complexity of the impulse response function and that of the solution are 

possible. 

V.2.1. Regional Groundwater Flow Subject to Time-Variable Transmissivity 

Consider the case of a two-point boundary-value problem describing regional 

groundwater flow in a horizontal phreatic aquifer bounded by rivers. Assume that the 

fluctuation of the aquifer transmissivity is a highly variable time function while at i!ie 

same time its bulk magnitude, as estimated by a series of pumping tests, does not 

change drastically with respect to distance. The governing differential equation reduces 

to 

8t 
T(t, w) a2h _ i.f..tl. 

S 8x2 - S ' 
(V.16) 

8h 

h(O, t) = h1, h(L, t) = h2, h(x, 0) = h0(x), 

where h(x, t, w) is the elevation of the water table (Dupuit assumptions) with respect 

to the bottom of the aquifer ( m ); x is the horizontal distance from the left boundary 
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( m ); h 1 and h2 are the constant left and right heads at the rivers respectively ( m ); h0 is 

a smooth initial head across the aquifer, as interpolated from a few field piezometers; L 

is the length of the aquifer ( m ); t is the time coordinate (days); S is the aquifer specific 

yield; T( t, w) is the time random process representing the aquifer transmissivity 

( m 2 /day); and i( t) is the aquifer recharge, which in this case is assumed spatially 

independent ( m ). 

Eq.(V.16) can be further reduced after assuming h(x, t) = V(x) + u(t, x, w) where 

V( x) = h 1 + h2 ~ h 1 x is a smooth steady state function and u is the stochastic tran-

sient function satisfying 

au --at 
T( t, w) a2u _ .illl. 

8 ax2 -s' 

u(O, t) = u(L, t) = O, u(x, 0) = h0(x) - V(x). 

(V.17) 

Now assume that the transmissivity function can be defined as T( t, w) = T + T'( t, w), 

where T represents the average transmissivity and T' represents the zero-mean random 

component. Thus eq,(V.17) becomes 

(V.18) 

The similarity of eq.(V.18) to eq.(V.10) may suggest a straight-forward solution at this 

stage. However due to the fact that eq.(V.18) is an evolution equation forced by a time 

stochastic process a discretization with respect to distance is plausible. 

Let us formally subdivide the spatial domain into n + 2 nodes equally spaced by a 

distance .dx, so that k = 0 at x = 0 and k = n + 1 a,t x = L. Discretizing the spatial. 
' 

derivatives with a simple central finite-difference approximation, eq.(V.18) for the node 

k at time t will be 

• 
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(V.rn) 

After applying this equation to every node, including the boundary nodes, we can write 

the resulting system of differential equations in matrix form: 

dU(:, w) -AU(t, w) = G(t) +A'(t, w)U(t, w), U(O) = Uo, 
t . 

(V.20) 

where U is a n X 1 unknown column vector containing the values of uk at the different 

nodes; A is a n X n conductivity matrix containing values of a = T 
2 

; G is the 
S.Llx 

known column vector containing recharge values, b = i~); A' is a square random 

matrix identical in form to A, except that instead of constants, a, it contains the ran

dom processes a' = T' 2 ; and U0 is the known column vector containing the initial 
S Llx 

condition, u 0,. The arrays are respectively 

"1 -2ii -a 0 0 

"2 
- -2a - 0 a a 

0 - -2a -a a 
U= A= G= 

b 

b 

b 
Uo = 

Thus we have reduced the stochastic partial differential equation (V.18) into an ordi

nary vector stochastic differential equation (V.20) whose impulse response function, and 

therefore its solution, is simpler. However the price to be paid is measured in terms of 

loss of stability, increased computer space and time requirements. 

The solution to eq.(V.2C) is 

t 
U(t, w) = J(t)U0 + J J(t - s)A'(s, w)U(s)ds,, (V.21) 

0 
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where 

A A°2t2 I't3 

J(t) = e t =I-At+ -- - -- + · · · 
2! 3! 

is the impulse response function; and I is the identity matrix. The computation of the 

impulse response function, or the exponential of a matrix in this case, should not be 

done by the approximation of its formal Taylor series expansion, since the results may 

prove inaccurate. Many different methods about how to approach the problem are 

contained in Moler and Van Loan (1978) and Umari and Gorelick (1986). For the 

present application we note that if the eigenvectors associated with the matrix A are 

linearly independent, then a.·, n X n modal matrix M may be formed (that is a square 

matrix whose columns each contain an eigenvector of A) from the eigenvectors and the 

similarity transformation (Kraus, 1987) 

with Nr1 the inverse of M, can be used to diagonalize A into the spectral matrix S 

composed of the eigenvalues, >-,of.A: 

S= 

>-1 0 0 0 

0 >-2 0 0 

o o :>--3 o 
0 

0 

0 

o o o >-n 

The matrix .it' can be reclaimed from its spectral matrix via A= MSNr1
• Any func· 

tional of A can be expressed as f(A) = f(MSNr 1
) = Mf(~ )Nr1 = MJ(>-)Nr1

• This 

expression may well be the simplest method for the evaluation of of the exponential of 

a matrix, that is J( t) = eAt = Me'1 Nr1
• 

Returning to the solution equation (V.21), and following the same procedure of 
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and following the same procedure of section 2 for the approximation of the third term 

in the equation we obtain 

t N t 
U(t, w) = J(t)U0 + I J(t - s)G(s)ds + EI J(t - s)A'(s, w)U';(s, w)ds. (V.22) 

O i-10 

For practical applications sample functions of a' in A' and measured values of b in G 

are approximated as staircase sequences. Setting t = 1 day ( an assumed representative 

time scale for the recharge), then we can simulate realizations of U recursively at inter

vals of time one day apart: 

1 N I 

U(t) = J(l)Vi-i + [I J(l - s)ds]G(t) + EI J(l - s)A'(t)U';(s)ds, (V.23) 
O i-10 

where G and A' are constants within the integration limits. A further simplification is 

obtained with the trapezoidal rule, valid for small Llt, 

N 
U(t) = J(I)Vi-i + Ya(I + J(I))G(t) +Ya(!+ J(I))A'(t) EU';, 

i-1 
(V.24) 

where the semigroup properties of the impulse response matrix have been used (Ser

rano, 1988(1)); U'1 = J(l)Vi-t, the first term in eq.(V.24), and in general 

U'; =Ya(!+ J(l))A'(t)U';-1· 

Eq.(V.24) indicates ti.tat realizations of the 'groundwater table elevation Vi can be fore-

casted based on the previous realization U1_ 1• This can be easily done if sample func

tions of the elements a' of A' are available. In the present experiment we assumed a' 

to be a white Gaussian noise process, that is E { a'( t)} =- 0 and 

E{a'(ti)a'(t2)} = qli(t1 - t2), where li( ) iii the Dirac's delta function and q is the vari-

ance parameter. Thus sample functions of the vector U in eq.(V.24) can be computed 

by using generated white Gaussian noise sequences (Jazwinski, 1970). 

From eq.(V.22), assuming N = 1 is sufficiently accurate, we may derive the mean 

of U as 
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t 

E{U(t)} = J(t)Ui-i + f J(t - s)G(s)ds, (V.25) 
0 

which coincides with the deterministic solution. E{U(t)} is a n X 1 vector whose ele

ments are E{u1}, k = 1, ... , n. From eq.(V.22) the two-point correlation function can 

be derived. Combining the correlation function and the mean, it is easy to show that 

the variance of U is 

t 

uitt) = qf J(V. -2s)A2J(V.)[U1-1·U1-1lnxn• 
0 

(V.26) 

where the product of the Vi-I vectors is the "outer product" making a square matrix; 

and the matrix A:2 contains as elements the coefficients (either 0, 1 or -2) of A'. We 

can approximate a variance expression consistent with the sample functions model 

(eq.(V.24)) by integrating at L1t = 1 day intervals. 

<7Lr(t) = .!L { [J(V.A2[U?-ilnxnl + [J(I)A2J(V. [Ut:..ilnxnl }, 
2 " 

(V.27) 

where o-2U(t) is a n X n covariance matrix. This equation indicates that the head vari

ance at any point at time t in the aquifer may be calculated based on the aquifer heads 

at time t-1. We note in passing that we are dealing with matrices whose unstability 

should be minimized, particularly when high recharge values are present. 

As an illustration, simulations were conducted by assuming S = 0.14, 

L = 10.0 m, L1x = 1.0 m, h1_ = h2 = 1.0 m, 

[( = 0.06 m/day, T = 0.06 m 2/day, andq,\"' 0.252• Since the calculations involve the 

estimation of an impulse response matrix, and the recursive evaluation of head vectors 

and variance matrices, the problem is best suited for a spreadsheet software applica-

tion. We used a Smart Spreadsheet with Graphics application on a AT&T 7300 UNIX 

microcomputer. The spreadsheet package offers an ideal environment for the 

automatic computation of the matrix eigenvalues and eigenvectors necessary for the 

evaluation of the impulse response matrix. Many other functions can be accessed and 

79 



controlled by the user such as the generation of a matrix with random values as ele

ments, which is indispensable in the calculation of heads sample functions. The matrix 

stability and error propagation can be step-by-step observed in the spreadsheet. 

Fig. V.5 is a graphical output from the spreadsheet package implementing 

eq.(V.24),which illustrates an arbitrary initial head versus distance and two sample 

functions at t = 5 days and at t = 10 days, after an assumed recharge sequence. Fig. 

V.6 is a breakthrough curve of the groundwater head with time at x = 5 m. Fig. V.7 

shows the head standard deviation with distance at three different days, as computed 

from eq.(V.27). As expected the maximum standard deviation occurs in the middle of 

the aquifer, where the heads are maximum, and zero at the boundaries, where the 

heads are deterministic. Finally Fig. V.8 shows the mean groundwater head and the 

mean head plus one standard deviation with respect to time at x = 5.0 m. 

The above procedure is well suited for the investigation of the variability and the 

forecasting of groundwater flow subject to the time uncertainty associated with the 

transmissivity. In general a similar methodology could be developed for the investiga

tion oCgroundwater pollution when there is a time uncertainty associated ·with one of 

the parameters. In either case the discret\zation in the spatial domain reduces the par

tial differential equation.into an ordinary vector differential equation whose solution is 

mathematically simpler. However the computational procedure involved in the numeri-

cal evaluation of the corresponding matrices has an associated degree of unstability 

which the modeler has to face. 

V.2.2. Regional Groundwater Flow Subject to Spatially-Variable Transmis

sivity 

Consider a similar situation to the one depicted. in section V.2.1, but in this case 

i.: 

so 



the dominant uncertainty is associated with spatial variability in the transmissivity, 

rather than time variability. For instance the series of field-scale values of transmis-

sivity, as obtained from long-term pumping tests, exhibit an erratic behaviour with 

respect to distance, while they tend to be ~onstant with respect to time at a particular 

location. This situation is realistic when the evolution of groundwater heads at the 

chosen representative time scale (i.e., one day) is very slow compared with its variabil

ity with respect to the spatial coordinates (i.e., the head changes considerable along the 

aquifer length). Thus the transmissivity may be represented as the random function 

T(x, w) = T + T'(x, w), where again T represents the mean value and T'(x, w) is a 

zero-mean spatially random process representing the variability with respect to the 
I 

mean in the values of the transmissivity. Eq.(V.17) reduces to 

au. T a2u. ilt' - - --- = .!.l.!.L + R(x w)u. · 
at 8 ax2 8 ' 

where the random operator R is given by 

R( ) = .!..(T'( )1-._ + 8T'(x, w) x, w u. x, w 2 .
8 s ax x 

a 
ax)u.. 

(V.28) 

(V.2Q) 

Since the transmissivity varies randomly with respect to distance, then we may discre

tize the time domain in the differential equatiol! at equal intervals separated by Ll t. 

Replacing the time derivative by a simple backward finite difference approximation, 

then we can write eq.(V.28) as an ordinary stochastic differential equation whose 

independent variable is x only and whos~ dependent variable is is the head at a fixed 

time t: 

(V.30) 

where u.
0

( x) is the head across the aquifer at the previous time step ( t - Ll t ); 

a 2 = - 8-; b = _!__; i again is the recharge at time t ( m ); and the operator R is given 
TLlt T · 

by eq.(V.29) with the partial derivatives replaced by total derivatives. 
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The solution to eq.(V.30) is given by 

L . L 

u(x, w) = J J(x, c;)[bi(c;) + a2u0(c;)Jdc; + f J(x, c;)R(c;, w)u(,;)dc;, (V.31) 
0 0 

where J(x, ,;) is the impulse response function associated with the ordinary differential 

operator in eq.(V.30). It is easy to show that this function is given by (Serrano, 

1990(2)) 

(V.32) 

where H( ) is the unit step function; 

(V.33) 

(V.34) 

C (,;) = C (c;)[l _ tanh(aL)J· 
2 4 tanh( a,;) ' (V.35) 

(V.36) 

C4(c;) = . cosh(a{) ; 
atanh( aL )[smh( a,;) - tanh( a,;) J 

1 
(V.37) 

and sinh( ) denotes the hyperbolic sine function. We now follow a procedure ehnil,tr 

to the applied in the previous problems for the treatment of u in the last right-hand 

term of eq.(V.31 ). Thus the general solutibn of eq.(V.30) reduces to 

L L NL 

u(x, w) = 11f J(x, c;)u0(c;)dc; +bf J(x, c;)i(c;)dc; + E J J(x, c;)R(c;, w)u;(c;)d~.38) 
0 0 · i-10 

subject to 

L 

u1(c;) = <P(c;) = a J J(x, c;)u0(c;)dc;, 
0 

which is the first term in the right side of eq(V.38), and in general 
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L 

u;(E) = J J(x, E)R(,;, w)u;-1(E)d,;. 
0 

Eq.(V.38) indicates tha~ we can generate sample realizations of the groundwater head 

recursively, step by step in time. For instance, the heads across the aquifer at time t 

can be forecasted if the observed or generated values of the head at time t - L1t and 

dT' 
sample functions of the processes T' and dx are available. Generally eq.(V.38) is 

evaluated numerically using an appropriate quadrature. 

Difficulty arises with the evaluation of the third term in the right-side of the equa-

tion since it contains derivatives of the u;_1, the previous iteration. For values of 

N < 2, and with relatively low variances in the random terms, unstability may be kept 

under control. For greater values of N and for large variances, "smoothing" of each 

iteration may increase the speed of convergence and minimize unstability of the solu-

tion. The physical reasoning behind this smoothing is the fact that the phreatic sur-

face in between piezometric measurements is a smooth curve whose spatial derivatives 

are bounded. An objec~ive way to smooth each iteration is to fit a polynomial of the 

form u;_1 = a0 + a1x + a 2x2 + ... + anxn and to use its algebraic expression to compute 

the derivatives of u;_1• By choosing n points from the raw values of the previous itera

tion, u'; for i = 0, ... , n, forming the Vandermonde matrix (Chapra and Canale, 1988) 

and the vector equation 

1 Xo xz 
0 

1 X1 xf 

1 Xz x? 

x8 ao 

x? a1. 

x; az 

= 

u' 0 

'/ 
U I 

u' 2 

u' n 

one can calculate the coefficients a;, This can be easily done by inter-facing a 
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subroutine to solve the above vector equation with the main program doing the actual 

iteration for u. 

For the present experiment we assumed the random component of the transmis

sivity to follow a colored noise process with the properties E { T'( x)} = 0 and 

E{T'(x1)T'(x2)} = qe -p •,-•, • The first spatial derivative of this process has the pro

perties (Jazwinski, 1970) 

{ dT'(x)} = { dT'(x1) dT'(x2)} = 
E dx O, E dx dx 

Sample functions of these processes can be generated by a linear ordinary differential 

equation forced by white Gaussian noise (see Serrano, 1990(1) for details). The mean 

groundwater head can be computed from eq.(V.38). Assuming that N = 1 gives an 

acceptable degree of accuracy ( although this is not always the case) it reduces to 

L L 

E{u(x)} = af J(x, €)u0(€)d€ + bfJ(x, €)i(€)df (V.39) 
0 0 

Under the same assumption, the head variance can be deduced from eq.(V.38) as 

LL 

a-;(,)= ff J(x, €)J(x, "t)E{R(€)R("!)}4>(€)4>("f)d€d"t, (V.40) 
00 

where the correlation of the operator R, after some manipulation is given by 

E{R(€)R("!)} = -%-e-P e--r [VlV~ - p'vf'v\ - p've'v~ + p2've'v7], s ,; (V.41) 

a24>(€) .i 
and the operator 'vf4>(€) denotes af . The evaluation of eqs.(V.40) and (V.41) has 

to be done numerically. Fig. V.9 illustrates the mean and the mean plus or minus one 

standard deviation as computed from eqs.(V.39) and (V.40) respectively, when q = 1_.0, 

p = 0.1, Ll t = 1.0 day, an arbitrary smooth initial condition 110 , and the rest of the 

parameters as before. A program in C was written ,for the calculations. The results 

obtained with a computer program proved more efficient and with less memory 
·, 

84 



requirements than comparatively a similar problem run in spreadsheets. However the 
' 

main advantage of using spreadsheets lies in the possibility to visualize and control the 

partial results step by step, and the graph_ics capabilities. A model such as this could 

be used to forecast the groundwater heads across the aquifer subject to strong and 

erratic spatial variability in the transmissivity. 

V.2.3. Groundwater Pollution Subject to Spatially-Variable Velocity Field 

Let us consider again the case of dispersion in an infinite aquifer subject to a space 
' . 

stochastic velocity field as described by e\l.(V.10) in section V.1.1. Since u'(x, w) is a 

random process in space, we may attempt. a discretization of the time domain with the 
. - I 

hope that the resulting ordinary stochastic differential equation is simpler to solve, 

while maintaining an accurate, stable, estimation of the concentration field. A physical 

justification comes from the observation that the time evolution of the concentration at 

a point may be small at intervals of time of a few weeks, while its spatial variability is 

important. Proceeding as in section V.2.21 eq.(V.10} reduces to 

d2 C dC dC 
- - a- - bC = -( bC0 - m-} 
dx2 dx dx ' 

(V.42} 

- I . 

where a = ; ; b = D~t; m = ; ; C0(x) is the concentration at time t - Ll.t; C(x, w) 

is the concentration profile at time t; and'the rest of the terms as before. The solution 

to this equation is given by 

OO N OO dC·(E) 
C(x, w) = b _L J(x - E}Co(E)dE - ld . .LJ(x - E)m(E, w) Je dE, (V.43) 

subject to · 
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00 

C1(x) = 4i(x) =bf J(x - e)Co(e)de, 
-oo 

and in general 

The impulse response function in eq.(V.43) can be found by solving the homogeneous 

eq.(V.42) after applying the Fourier transformation with complex integration, or any 

other suitable technique. This will give 

az 
where k = - + b. 

4 

Comparing the analytical solution of eq.(V.10), that is eq.(2.11 ), to the correspond

ing semi-analytical solution eq.(V.43), it is possible to observe that the semi-analytical 

solution is simpler to evaluate. 

The mean concentration function is o_btained after assuming an appropriate value 

of N (i.e., N = 1) and taking expectations on both sides of eq.(V.43): 

E{C(x)} = 4i(x). (V.44) 

From eqs.(V.43) and (V.44) the variance of the concentration at a point can be deduced 

as 

00 00 

UZ,(,) = ~ f f J(x -e)J(x - 1 )e-pfe--rly"e4i(e)v'.y4i('Y)d1 df 
D -00-00 

(V.45) 

Comparing eq.(V.15) with eq.(V.45) we note again that the variance of the semi

analytical solution is simpler to evaluate than that of the analytical solution. Thus we 

conclude that whenever a semi-analytical solution is reasonably accurate in a problem, 

it should be attempted. 
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V.3. On the Parameter Estimation Problem 

In the previous sections models for the direct problem or forecasting groundwater 

variables, and their statistical properties, in the presence of parameter uncertainty were 

introduced. A fundamental requisite for the application of these procedures was the 

avaifability of the statistical properties associated with the uncertain parameter, either 

from direct field measurement or from an estimation algorithm based on field data. 

Combining the statistics of the parameters with a solution of the stochastic equation 

governing the hydrology of the output variable, our objective was accomplished. Alter-, 

natively, the inverse problem focus on thfl estimation or the values or the parameters 

by using the governing differential equation, an optimization algorithm, and a set of 

field values of the output variable. 

Most of the available results on the parameter estimation of groundwater parame

ters have been approached from the deterministic point of view and relatively little has 

been done on the topic for the case when uncertainty is present, which is the general 

case. A popular approach for the latter is the geostatistical approach, which offers con

venient results in some cases, but as pointed by Dietrich and Newsam (1989) the use of 
. . i 

a finite-difference representation of the differential equation may lead to serious prob

lems of unstability. Efforts to attack the problem from a stochastic point of view are 
r~ 

proliferating in the literature (see Ginn -_.and Cushman, 1990 for a review). A very 

important fundamental result has been recently introduced by Unny (1989), where a 

maximum likelihood algorithm in combination with the governing differential equation 

is proposed in orcler to obtain the values or the parameters. An advantage of this 

method is the use of direct field measurements in the presence of uncertainty. 

In the present section I would like to propose a method for the parameter estima-

tion in the presence of uncertainty which makes specific use or the solution of the sto

chastic differential equation. An important role in this process is played by the impulse 
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response function of the system, in the same _way that this function plays a critical role 

in the direct problem. Using the solution of the stochastic differential equation, rather 

than the differential equation itself, the numerical evaluation of derivatives is no longer 

needed thereby minimizing the eventual unstability. We will illustrate this approach 

for the parameter estimation of stochastic processes assumed to be present in the 

differential equation, hoping to extend the method to the estimation of the mean of the 

parameters themselves in a future article. This is done for consistency and complete-

ness with the previous sections in this article, were assumptions of random processes 

governing the erratic nature of the parameters is always made, thereby raising the 
. ' 

question on the estimation of the parameters of these disturbing processes. 

Consider the regional groundwater flow problem discussed in section V.2.1, and for 

simplicity assume an infinite domain, a constant transmissivity, no recharge, and the 

combined measurement and model uncer~ainty represented in this case as a white 
' . 

Gaussian noise process in time, W', in the forcing function. Assuming that previous 

investigations have indicated that this is !!- correct transient model for the area under 

study, the governing equation, corresponding to eq.(V.18) is 

au T &u 
at - S ax2 = W'(t, w), -oo < x < oo, 0 < t < oo, (V.46) 

u(-oo, t) = u(oo, t) = O, u(x, 0) = u0(x). 

The objective is to estimate the magnitude of the variance parameter, q, of the process 

W' forcing the differential equation by using the solution of the stochastic differential 

equation (V.46), which is written as 

t 

u(x, t, w) = J(x, t)u0(x) + f J(x, ~ - r) W'(r, w)dr, (V.47) 
. 0 
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where the impulse response (unction is given by 

1 J(x, t)u0 = _....;;;.T __ 
(41r-t)v. s 

The mean head is 

00 

J exp[ 
-oo 

E{u(x, t)} = J(x, t)u0(x). 

2 .1 
(x - s) · 

T ]u0(s )ds, 
4-t s 

(V.48) 

(V.4Q) 

The correlation function at to points of coordinates (xi, ti) and (x2, t2) respectively is 

t, 

E { u( xi,t i)u( x2, t2) }=J( xi,ti)u0J( x2,t2)u0+qf J(xi,ti-r)J( x2, t2-r)dr, ti <t2, 
0 

from which the variance at a particular point (x, t) r~duces to 

t 

(V.50) 

o-;(,,t) = qf J2(x, t -T)dT. (V.51) 
0 

t. 
In this equation the function 1/:{x, t) = J J2(x, t - r)dr is well behaved, deterministic 

0 

and relatively simple to evaluate. Now eq. (V.51) suggests that the estimate of the 

variance parameter at a particular point, i,,t i simply. 

A - 6";(,,t) 
q,,t - 1/:{x, t)' 

(V.52) 

where u;(,,t) is the head variance as computed from field measurements taken at a 

piezometer located at the point (x, t). It is expected .that the point estimate of q will 

be a function of distance. Taking a spatial· measure, the best estimate of q is given by 

00 00 ~2 d. • • s.u;(.,t)s. 
q = J s.q,,1(s)ds = J .,, ) , ; 

-oo -oo 'f'\.s, t 
(V.53) 

where the integrals can be approximated' based on a collection of piezometers drilled 

across the aquifer. This intrinsically implies an assumption of stationarity, which may 

not be realistic in certain cases, but convenient. Quadrature methods of integration 

gg 



recommend the evaluation of the integrand at a few points only. This suggests that 

between 6 to 10 piezometers drilled at thei 'specific locations required by the quadrature 

would be sufficient. The selection of the value of t should be in agreement with the 

representative time scale of tlie measurement strategy. Eq.(V.53) provides a systematic 

way to estimate the parameter q using field measurements of the head and the impulse 

response function of the differential equation. Since integration is a more stable pro

cedure than differentiation, the value of q must be bounded. 

Since the above result is based on the assumed differential equation (eq.(V.46) in 

this case), a procedure to define the form of the random process entering the equation 

is needed. Usually a long-term observation of the behaviour of transient components of 
' 

groundwater heads would suggest the form of the random process perturbing the 

differential equation. For instance, a groundwater head following an erratic form 

characterized by a Brownian motion type of function in time would indicate a model 

differential equation forced by white Gaussian noise. However we suspect that in many 

practical applications it would be difficult to deduce such a process. 

Let us consider the more general case when the above process is unknown. From 

eq.(V.47) the solution of the differential equation is 

u(x, t, w) = J(x, t)u0 + g(x, t, w), (V.54) 

where the random function g results from the convolution integral of the known 

impulse response function, J, with an unknown perturbing random process. Presum

ably this function is a zero-mean process since u represents the stochastic transient 

component, which will result in the mean given by eq.(V.49). This equation provides a 
I 

criterion for the estimation of the mean of the parartieter ~. The estimation problem 
'· 

T is simply to find the numerical value of 8 such that the expected value of u, as 

obtained from measurements across the aquifer, follows eq.(V.49). In fact this is the 

criterion inherent in many estimation algorithms, including "trial and error", only here 

(' 
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we are providing a mathematical justification. 

Let us return to the problem of estimation of the parameters of the random func

tion g. From eq.(V.54) it is possible to obtain sample functions of g, that is 

g(x, t, w) = u(x, t, w) - J(x, t)u0 , where '!j comes f~m field measurements. Studying 

the correlation structure of many sample .functions one can make assumptions on the 

form of g. Suppose for example that it :was found that a correlation function of the 

form E{g(x, t
1
)g(x, t2 )} = qe -p t,-t. could be fitted. This means that the variance of 

u is equal to q, and therefore an estimate of q is given by 

00 

i = J s. o;(,.i)ds, (V.55) 
-oo 

where a; is obtained from field measurements. Finally, for the estimation of the 

parameter p we use the two-point correlation function of u, 

' 
from which we can obtain a measure of the parameter p: 

p= 
1 

00f Gov{ s, t1, t2} 
s. In[ · Jds, 

-oo q 
(V.57) 

where Cov{ } denotes the two point covariance obtained from field measurements; and 

In[ ] denotes the natural logarithm function. 

The above results indicate that a similar methodology could be used to estimate 

the parameters involved in groundwater pollution models, which would use the solution 
1·~ 

of the stochastic differential equation along with field measurements of the concentra

tion field. to higher dimensions is straight forward. 

,, 
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CONCLUSIONS 

A new methodology to model the time and space evolution of groundwater vari-

ables (groundwater potential, contaminant concentration, water content, etc., either in 

the saturated or the unsaturated zone) in a system of aquifers was presented. The 

method is specifically suited to handle non-point sources and is capable of handling the 

case when certain components of the model, such as the geohydrologic information, the 

boundary conditions, the magnitude and variability of the sources or physical parame

ters or a combination of the ~bove are uncertain and defined in stochastic terms. Some 

of the advantages with respect to conventional methodologies are the possibility to 

include high variances in the stochastic terms; the approach is systematic and easy to 

implement in a numerical algorithm; it does not require excessive computer time; and it 

is supported by a well-posed, rigorous mathematical theory. 

The method is based on applications of modern mathematics to the solution of the 

resulting stochastic transport equations. It was found that this new methodology 

presents considerable advantages over the existing modeling methods. Thus the theory 

satisfies a more general modeling need by providing, if desired, a systematic global con-

centration information on the sample functions, the mean, the variance, correlation 

functions or higher-order moments base1 on sirr.ilar information of any "size", any

where, of the input functions. This more realistic statistical representation of the con-
' 

centration distribution is a valuable tool in designing and testing preventive or reme

dial alternatives by engineers and planners
7 

Several individual applications were .shown in order to illustrate the methodology 

when the different cases of uncertainty appear in groundwater flow and pollution prob-

!ems. The method could be used to solve more difficult cases of groundwater pollution 

modeling subject to complex reactive transport problems. 
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