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Abstract 

The soiption of dichlorobenzene and trichlorobenzene on carbonate and shale rocks 

collected in Kentucky demonstrate that rock organic matter content is a good indicator of 

soiptive reactivity in rock systems. Although this is similar to soil systems, significant 

differences between soiption in rock and soil systems exist. Soiption isotherms on these 

rocks are nonlinear and soiption can be an order of magnitude higher than predicted using 

correlations from soils and their organic matter content. This soiption reaction could lead 

to significant concentration tailing during contaminant cleanup. Experimental elution of 

trichloroethylene from rock filled columns verified that cleanup times might be extended due 

to both soiption and diffusion into rock. 
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Introduction 

Water below the ground surface can be contaminated by chemical spills, leaking 

storage tanks, and improper disposal. Particularly vulnerable, however, may be that water 

which resides within the fractures and dissolutional cavities of sedimentary rock. This water 

can be contaminated by pollutants admitted directly through dumping in sinkholes or below

grade waste disposal, and indirectly through water moving through thin soil layers. Because 

water flow rates in these systems can be large, ranging up to thousands of meters per day, 

contaminants may travel widely and disperse haphazardly in a relatively short amount of 

time. These waters are often used for drinking water, agricultural uses, and may eventually 

combine with surface or other groundwaters. Consequently, the dissipation of the 

contamination, or renovation of these waters is important. 

Subsurface rock can contain mixtures of carbonate and clay, sand, and other 

materials reflecting both terrestrial and marine origin. Carbonate rocks may contain more 

than 90% calcium carbonate and arise from marine deposition of calcium-containing marine 

life and various cementing agents. Other rocks contain components of terrestrial origin such 

as clays and sands. Water flow through these rocks can be complex, ranging from karst 

caverns, where substantial dissolution of rock has occurred, in carbonate rock to fissures and 

fractured rock of mixed composition. 

Reactions of contaminants with these rocks which act to retain the contaminants are 

collectively referred to as sorption. Contaminant appearance at some point within such a 
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system will then depend both on the flow rate and the extent to which it is sorbed. Whereas 

considerable research has been performed on the sorption interactions of relatively nonpolar 

organic compounds in soils, sediments and aquifer sands (Schwarzenbach and Westall, 1981; 

Chiou et al., 1983; K.arickhoff, 1984), little is known about the interactions of organic 

compounds in rock systems. This report describes an investigation of the sorption of three 

relatively nonpolar organic compounds on a series of different sedimentary rocks of mixed 

composition. The results will be compared to sorption in soils. 

Sorption Models 

Sorption is ·the process of chemical distribution of a compound between a dissolved 

form and a sorbed form. The extent to which a compound is sorbed reflects compound, 

solid, and solution properties, and the resulting distribution can be shown as a relationship 

between sorbed and solution concentrations often referred to as the sorptioli isotherm. A 

variety of models are available by which this sorption isotherm is described mathematically. 

A linear sorption model depicts an amount of contaminant sorbed, q., as directly 

proportional to the solution concentration of contaminant, C,: 

(1) 

This linear sorption isotherm suggests a sorption energy whic!;i does not vary with coverage 

and can arise from a hornogenous surface or phase where the contaminant accumulates. The 

distribution coefficient, K0 , can be estimated a priori for soils and sediments using the 

compound's organic carbon normalized partition coefficient, Koc, and the fractional organic 
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carbon content of the soil(W /W), f0c= 

(2) 

A variety of correlations are available relating Koc; to physical/chemical properties of the 

contaminant. One correlation which has been developed from the sorption of a series of 

chlorinated benzenes on soils (Schwarzenbach & Westall, 1981) is: 

logK0c = 0.49 + 0. 79 * log K 0 ,., (3) 

An alternative way of presenting this apparent uniformity of sorption by soil organic 

m~tter is through nonnalizing the sorption on all soils by their organic carbon content: 

2=K C 
f, OC e 
oc 

(4) 

Although this simple model is computationally efficient and useful for parameter estimation, 

recent evidence suggests that there can be two problems: 1) the Koc; may not be the same 

for each soil, and, 2) there may be nonlinearity in the solid/solution phase relationship. 

Variations in Koc have been attributed to different forms of organic matter and to mineral 

sorption. Isotherm nonlinearity may arise from surface adsorption phenomena and 

absorption where the interactions between absorbed molecules increases or decreases their 

affinity for those matrices (Weber et al., 1992). 

Although a variety of models are available to describe nonlinear sorption isotherms, 
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the Freundlich isotherm model often describes experimental data quite well over a large 

concentration range: 

(5) 

The KF, the Freundlich unit capacity coefficient, and n, the Freundlich exponent, reflect 

different aspects of the sorption process, but to date it is not possible to predict them 

independently unless the n is unity, in which case the Freundlich isotherm reduces to the 

linear isotherm model (Equation 1). The Freundlich isotherm model can be linearized by 

taking the logarithm of both sides: 

log q, = log KF + n log C, (6) 

where the slope of the log-linear line is the Freundlich exponent. Similar to Equation 4, the 

Freundlich isotherm can be normalized to the organic carbon content of the solid phase and 

the resulting linearization, 

log q, 
foe 

K 
= log __!._ 

foe 
+nlogC =logKF +nlogC 

' "" ' 
(7) 

demonstrates that the slope of the linear line would be unaffected, but that the intercept, the 

organic carbon normalized Freundlich constant or KFOc, differ from the ~ of Equation 6. 

Contaminant Transpon 

Water flow in rock systems can occur along bedding planes, fissures, 

fractures or in karst conduits. Flow along such natural openings in rock is frequently 
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referred to as preferential flow. Porosities in these systems may be very low, yet ground 

water velocities can be rather high (Freeze and Cherry, 1979). Realistic modeling of 

contaminant movement in these rocks must address reactions of the contaminant. Sorption 

during transport through rock may be related to the surface area which is available for 

reaction, but the relationship between particle surface area and reactive surface area is not 

straightforward. The total reactive surface area of rock may be much greater than the 

external surface area of a sample. In soils, the organic matter has been shown to act as a 

phase into which organic contaminants accumulate. In rocks, researchers have not identified 

the source of sorption reactivity and its relationship to available surface area. Archie( 1952) 

defined primary porosity to be the fluid external to the rock mass which contains the 

flowing water, whereas secondary porosity may be fluid filled regions not directly in contact 

with flowing water and can be internal to the rock mass. 

The partitioning of a contaminant between a solution and media has particular 

significance with respect to contaminant transport in ground water. Sorption will slow 

down, or retard, the movement of a contaminant. A simple model for transport of a 

compound in porous media is the one dimensional advective/dispersive equation 

(8) 

where D, is the dispersion coefficient in the x direction, V. is the rate of advective transport 

in the x direction, Pi, is the dry bulk density, and 0 is the porosity (volume of voids/volume 

total). 
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Ifwe assume that the sorption reaction is at equilibrium, and a linear isotherm model 

equivalent is appropriate, after substitution and rearrangement, equation 8 can be written 

(Freeze & Cherry, 1979): 

(I+~) ac = D a2c _ v ac 
a p at x ax2 x ax 

(9) 

Therefore, when fast reversible reactions with linear isotheons describe partitioning, the 

average velocity of contaminant movement relative to ground water movement is the 

retardation factor, R, 

R = v. = 1 + ( Pb) K 
Ve 0 P 

(10) 

where v, is average linear velocity of ground water and v0 is the apparent velocity retarded 

species. 

The retardation factor is independent of contaminant concentration for a linear 

isotherm model, but when sorption is described with a non-linear isotherm, retardation 

factors are concentration dependent. Sorption follows a non-linear isotherm, and the 

expression for the retardation factor will depend on concentration. For example, if the data 

can be described with Freundlich isotherm, the retardation factor is (van Genuchten and 

Wierenga, 1976): 
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R = J + ( P.) n KF c•-I 
0 

( 11) 

For a Freundlich isotherm model where the exponent is less than unity, the result is a 

retardation factor which increases as the solution concentration is lowered. 

Equilibrium sorption conditions in soils may not be reached instantaneously and may 

require months or years (Ball and Roberts, 1991). This nonequilibrium behavior has been 

explained by mass transfer at the grain scale (Weber et al., 1991 ). The intra-particle 

diffusion model assumes that diffusion occurs in saturated pores within particles and that 

this diffusion is also slowed by equilibrium sorption within the pores (Grathwohl and 

Reinhard, 1993). The quantity of mass diffused per unit area, or the flux, will likely by 

proportional to the concentration gradient (Freeze and Cherry, 1979). !fa porous media has 

a finite sorption capacity, equilibrium is approached most quickly when the concentration 

gradient, and therefore flux, is at a maximum. As the concentration gradient decreases, flux 

will correspondingly decrease. As a result, when sorption approaches equilibrium, either .due 

to sorption or desorption, the rate of mass transfer slows. This relationship may act to slow 

the cleanup of contaminated systems. 
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Experimental 

The reactions of contaminants with solid phases in the subsurface may be important 

determinants of contaminant travel and removal times. In this report, a series of 

experiments which examine the sorption of hydrophobic organic compounds on natural 

sedimentary rocks are described. 

Rock samples were collected from near-surface and at depth from different locations 

in Kentucky. Both mechanical coring and hand collection from outcrops were used. 

Properties of the rocks collected are shown in Table 1. i'rior to use in the sorption 

experiments, the rocks were crushed with either a jaw crusher or a Soil Test Versa Tester 

30 M (Evanston, IL) compression machine. Where smaller particle sizes were desired, the 

crushed rock was finely ground with a laboratory mill (Tekmar Analytical Mill) to reduce 

the particle size to pass a #60 (250 microns) sieve. 

Organic carbon content of the rocks was determined after first exhaustively treating 

the rocks with acid. Rocks were treated with either nitric (0.5 N) or hydrochloric (0.5 N) 

acid and then the residue analyzed for total carbon using a TOC analyzer. Little difference 

in the measured organic carbon content was noted for these different treatments. Surface 

area determination was made with nitrogen adsorption on a AUTOSORB-6 surface area 

analyzer. 

The organic compounds used in this research were i ,4-dichlorobenzene (DCB), 1,2,4-

trichlorobenzene (TCB) and trichloroethylene (TCE). They were dissolved in reagent grade 

methanol to form different stock solutions ranging from 250010 19000 mgll of the solution. 
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Table I. Properties of the rocks used in Experiments 

Rock type Depth of Collection Surface Area (m2/g) Organic Carbon 
from surface(ft) % 

Fayette 8 3.54 - 0.60 

Martin 10 2.95 0.14 

Hardin 108 7.59 0.46 

Tates Creek 10 2.43 0.062 

Clays Ferry 10 -- 0.075 

Cowbell 40 6.39 0.10 
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Equilibrium sorption of the compounds was determined after mixing known 

quantities of rock, M, with known volumes of fluid, V, in glass vials. After addition of the 

organic compound using a microliter syringe to attain the initial concentration, C0, the vials 

were capped with Teflon faced septa, wrapped with Parafilm, and tumbled end over end for 

a time period sufficient to reach equilibrium. After this time period, the final solution 

concentration, c •. of solute in the reactor was measured. Because of the volatility of these 

solutes, solid/liquid separation was through centrifugation. The supernatant was extracted 

with hexane to isolate the contaminant and the hexane was _analyzed using gas 

chromatography (Hewlett Packard 5890) with electron capture detection. The apparent 

quantity of solute sorbed was obtained using the relationship 

v 
*-M 

(12) 

The time required to attain an apparent equilibrium with the rock material was 

determined through a rate study. Samples prepared as described above were centrifuged and 

analyzed for the solute concentration overa period of 14 days. The results for one rock and 

TCB are shown in Figure 1. It was determined that for the rock fragments examined, 

equilibrium was reached in 3 days for trichlorobenzene and less time was required for 

dichlorobenzene and trichloroethylene. During the three day equilibration period, solute 

losses in the reaction vials were determined to be an average of 8.5% for trichlorobenzene 

and 5.5% for dichlorobenzene. The impact of these losses on sorption determination could 

be reduce by controlling rock/solution ratios to achieve overall reductions in solution 
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Figure I. Results of a TCB sorption rate study on Fayette rock. 
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concentration which exceeded 50%. These losses may be due to volatilization and or 

sorption onto the reactor components. Extraction of vials with hexane indicated that at least 

60% of the lost solute could be recovered. Consequently, the sorption data is corrected by 

using the method used by Lion et al., 1990, where the lost solute was assumed to be 

reversibly sorbed to reactor components and the corrected sorbed phase concentration 

calculated from: 

M 
*-v 

(13) 

Where the equilibrium constant, KL, in the above expression is found from the loss analysis 

and assuming that losses in the reactor follow a linear isotherm dependent on the final 

concentration of solute in the vial. The magnitude of the correction can be seen in the data 

in the Appendix and for the rocks examined it ranges from I% to 9% of the apparent sorbed 

phase concentration. 

Standard solutions of the organic compounds were prepared and analyzed during all 

experiments. The standards are made by injecting the organic compound into the extraction 

vial containing hexane and water in a I: I ratio. Losses in preparing the standards could be 

minimized by injecting solute directly into water with hexane on top and capping the vial 

immediately after injection. 

Rock material divided into a large (#20 - #30, 600 - 850 µm) and small (#40 - #60, 

200 - 450 µm) size fractions was used in column experiments. All particles were 

extensively rinsed before use to minimize the presence of fines. Ground water solution was 
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Figure 2. Schematic of column apparatus used in flow through experiments. 
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prepared to simulate the natural systems where large scale contaminant transport takes place, 

and to minimize any dissolution of samples. This was solution of distilled, deionized water 

with 48.80 meq/L ofNaHC03 and 0.94 meq/L ofN8iC03• The pH was 8.13. Although this 

mixture was undersaturated with respect to calcite, even at equilibrium it would permit only 

minor dissolution. The column system is shown in Figure 2. 

In column experiments, flow was driven through a 25 cm Jong, 1 cm diameter HPLC 

column (Supelco Inc. Bellefonte, PA) with a peristaltic pump (Masterflex, Cole-Parmer, 

Chicago, IL) for the simulated groundwater and a syringe pump (Harvard Apparatus, South 

Natick, MA) for the contaminant. The syringe pump was variable speed, and adjusted to 

match the flow in the peristaltic pump. A mixing tee (Alltech, Deerfield, IL) connected the 

stainless steel tubing output line (Supelco Inc., Bellefonte, PA) of each pump to a single 

column feed line. This tee had separate on/off valves for each input line, allowing a rapid 

switch between Jines. The contaminant contacts only glass and stainless steel during the 

entire process and should minimize the sorption of organic contaminant to reactor 

components (Lion et al., 1990). 

Rock media was placed into the column in 1 cm lifts. The column was tapped on 

a hard surface to promote settling between each lift. The weight of the column was used 

to determine the mass of media. The column was operated in an upflow mode. After 

column filling, de-aired ground water solution was pumped through the column at the rate 

of approximately 7 pore volumes per hour. After 30 pore volumes of water had passed 

through the column, the top frit was removed and rinsed with distilled, deionized water to 

remove any minor accumulation of rock material at the column exit. This was done with 
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the column remaining in its vertical position to minimize water loss. The flow of deaired 

ground water solution was resumed once the frit was replaced. A minimum of ten 

additional pore volumes of ground water solution were passed through the system after frit 

cleaning. At the appropriate time, flow was switched from the peristaltic pump/ground water 

supply to the syringe pump/contaminant supply. There was virtually no flow interruption 

during the switching process. The syringe consistently contained 15 ml of contaminant, 

approximately 2 pore volumes, which was delivered to the column at the same rate as the 

ground water solution. 

Samples of the column effluent were taken from tubing at the end of the column in 

7 ml, chloride-free vials containing known amounts of hexane and ion chromatograph eluant. 

Sampling began before any contaminant had passed through the column and continued at 

regularly spaced intervals for varying amounts of time. Sampling continued for a minimum 

of 25 pore volumes. 

Sample vials were weighed to determine the volume of captured liquid. They were 

agitated for several minutes and contacted for an additional 30 minutes to ensure TCE 

separation into hexane. The hexane portion of samples were analyzed for TCE in the gas 

chromatograph. The aqueous portion of the samples were analyzed for chloride in a Dionex 

LCM-3 ion chromatograph with conductivity detector. 
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Results and Discussion 

Sorption Equilibria in Rock Systems 

In Figure 3, the TCB sorption isothenns on the rocks are shown as the sorbed phase 

concentration, q., as a function of the equilibrium solution concentration, C,. It is apparent 

from the Figure that when normalized for the mass of the original rock, a wide range of 

sorption intensity is exhibited for the different rock samples. The isothenns are distinctly 

nonlinear and Freundlich isotherm parameters were calculated from logarithmic transformed 

data. Log transformed data is preferred in this case because of the error is proportional to 

concentration and this transformation almost normalizes the residuals. The Freundlich 

isotherm model parameters are shown in Table 2. Confidence limits on the Freundlich 

exponent, n, confirm that in all cases it is less than unity. 

The sorption of DCB was always lower than the sorption ofTCB on a rock sample. 

This suggests a hydrophobic motivation for the sorption reaction and is consistent with the 

sorption of these compounds onto soils and sediments reported by previous investigators. 

In Figure 4, the sorption of DCB and TCB is compared on three of the rock materials. The 

degree of nonlinearity for both compounds is similar on each rock, and, as can be seen in 

the confidence limits of Table 2, on many rocks it is not possible to statistically distinguish 

differences between the exponents for the two compounds. Although similar Freundlich n 

values suggest similar distributions of association energies across the concentration range 

examined for the two solutes, it is probably more accurate to compare these isotherms at 

similar sorbed phase concentrations. It was found that normalizing the solution phase 
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Table 2. The Freundlich isotherm model parameters for sedimentary rock. 

Rock Type TCB DCB 
n Kr, n Kr, 

(95% C.l.) (ug/g)(Vmg)' (95% C.l) (ug/g)(Vmg)' 

Fayette 0.65 (+/- 0.08) 196.75 0.57 (+/- 0.06) 71.4 

Martin 0.64 (+/- 0.04) 23.44 0.55 (+/- 0.13} 11.8 

Hardin 0.62 (+/- 0.05) 106.6 0.71 (+/- 0.10) 40.4 

Tates Creek 0.67 (+/- 0.09) 10.86 0.90 (+/- 0.06) 5.63 

Clays Ferry 0.81 (+/- 0.04) 17.64 0.90 (+/- 0.05) 10.8 

Cowbell 0.76 (+/- 0.05) 27.6 0.87 (+/- 0.1) 19.6 
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concentration for the solubility (liquid or subcooled liquid) of the contaminant as shown in 

Figure 5, led to isotherms which are identical. This equalization of sorption after 

normalization for solubility of the solute is also consistent with a sorption motivated by 

hydrophobicity of the solute. 

The extent of isotherm nonlinearity on these rock materials leads to Freundlich 

exponents which range from 0.6 to 0.9. This suggests regions on these rocks which are 

heterogeneous with respect to the energy of association for organic compounds. As such, 

the presence of multiple solutes would be expected to lead to competition during sorption. 

Indeed, the sorption of DCB on the Fayene rock material was measured in the presence and 

absence of TCB and the sorption of DCB was reduced as shown in Figure 6. 

The nonlinear sorption isotherms do not permit calculation of Koc values for the 

rock samples, because it is based on a linear isotherm model, but the effect of organic 

content on the sorption of DCB and TCB can be seen in Figure 7 where the sorption has 

been normalized for the organic carbon content of the rock. It is significant that the organic 

carbon normalized isotherms are coincident and when compared to the s01ption which would 

be expected from soil organic maner,the sorption by these rocks is greater than that 

anticipated from a soil Koc- The disparity between organic carbon normalized sorption and 

that predicted for a soil increases as the concentration is reduced. The BET surface area 

may also be linked to SOiption capacity of the rock, but as shown in Figure 8, the sorption 

surface area does not provide the same degree of agreement as organic carbon normalization, 

although those rocks with the highest organic carbon content show the highest sorption on 

a surface area basis. 

21 



1,000 

DCB DCB w!fCB 
··O·· -----

Fayette 

Qr;J:) 
• .el 

0 •. · 
9· 6. 

0 

i ~ 100 o .. ·· ., 
er 

10 
0.01 

r:5 0 
, -,' I , . I 

0.1 

0 

o_ . ..- o 

Ce (mgtl) 

,· 

'I I 

1 

Figure 6. Comparison of DCB sorption on Fayette rock material with and 
without the presence ofTCB and also the TCB sorption on fayette. 

22 

10 



100,000 

Fayette 

----Martin 
··O·· 
Hardin 

Tates Creek 

-0-
Cowbcll 

*"" 

1,000 L... ...... --'-----....!..---'-'-'---"-------'----'-'--'-'----'-----'----......... 

100,000 

30,000 

3,000 

0.01 0.1 IO 
TCB Cc (mg/I) 

, 

Fayette 

----Martin 
··0-· 
Hardin 
.......... 

Tates Creek 

-0-
Cowbell 

•* 

0.1 1 
DCB Cc (mg/I) 

Figure 7. Experimental data and Freundlich isotherm models for sorption of(a) 
TCB (b) DCB by five rocks normalized to the organic carbon fractions of the 
rocks compared to range reported on soils. 

23 

10 



F::.~e ~i~ ~:i~ Tat~eek c_o~ell ,.,,-/ 

• 
• ., .. 

(0.6) ..... 
0 

_,, · 
. 0 -~ . _,,·. / -~:~b ~*·; 

•.,..· /. ~-- ~ 
• ,_ ... . .,-(0.1~ 

. ~ · · o9*·. "': ~...--_,, c9. . ~< . . / .. ~ /. .c:r .,,,,...,o 
. (5 . :,,JiK ·V 

.(0:46) _,, _,, ~v 
. .,-0 .,,_"f' 

/ / 0.. . . 
0/ / . / / / ..... :-.11------

/ . · (0.10) 

• 

_,, ""!'~-- . (0.062) 0.3 '---«----'----'---'-'-'---'--'------'----'-....... ..___ ____ ..____._'--' 

0.01 0.1 1 10 
TCB Ce (mgt:l) 

Figure 8. Experimental data and Freundlich isotherm models for sorption of 
TCB by five rocks, nonnalized to the surface areas of the rocks. Rock foe 
shown in parenthesis. 

24 



The increasing sorption on the rock material with increasing solute hydrophobicity 

and increasing rock organic carbon content suggest that organic matter within the rock is 

a source of sorption reactivity. To further confirm this, two samples were combusted in a 

muffle furnace at 450 degrees centigrade for 24 hours, a process which should remove most 

of the organic carbon. The loss of material upon ignition was 3.5% and 0.4% for Fayette 

and Tates Creek respectively. Sorption isotherms performed on the residue remaining and 

adjusted for the loss of mass through ignition are shown in Figure 9. It can be seen that the 

sorption on ignited rock is very weak when compared to the untreated rock. This minimum 

sorption might be attnbuted to sorption on mineral fragments or losses from the reactor. 

-
It may not be surprising that the results on rocks differ from that found in soils. The 

organic matter in sedimentary rock is quite different from the organic matter in soils. During 

rock-forming processes, Digenesis of organic matter leads to a reduction in its oxygen 

content relative to soil organic matter (Durand et. al, 1980). Such changes might be 

expected to reduce the solubility of the organic matter and lead to formation of a more 

hydrophobic organic matrix. With respect to sorption of organic contaminants, these changes 

may form surfaces in the rock material which act to adsorb organic contaminants, rather than 

a matrix within which they partition. · 

One sedimentary rock which contains large quantities of organic matter is coal. To 

further study the effect of sedimentary rock organic matter on sorption, the sorption of TCB 

was determined on four coal samples. The results, shown in Table 3 and Figure 11, 

demonstrate that sorption isotherm nonlinearity is also observed in these systems. When the 

solid phase concentration is normalized to the fraction of organic carbon and the isotherms 

25 



600 
Fayette 

0 
0 

0 

2 4 6 8 
TCB Ce (mg/I) 

0 

Tates Creek 

0 

2 4 6 
TCBCe(mwl) 

Figure 9. Comparison of TCB sorption on heat treated and untreated samples 
(a) Fayette, (b) Tates Creek. The losses due to treatment were 3.5% and 0.4% 
for Fayette and Tates Creek respectively. 

26 

10 

8 



Table 3. Freundlich isotherm model parameters and organic carbon contents for coal 
samples. 

Rock Type TCB OC% 
n KF 

Canada Coal 0.59 3592.0 72.6 

Sub Bituminous 0.66 5490.4 54.38 

Anthracite 0.39 5258.3 79.6 

Lignite 0.68 3146.0 40.06 
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are plotted, the isotherms coincide, much like the sedimentary rocks, although here the 

organic carbon is 40-73% of rock mass compared to 0.01-0.J % with shales and limestones. 

In Figure 12, the organic carbon normalized coals and shales/limestones are 

compared to those of soils. Although the ranges for coal are slightly below those of the 

shales/lime stone, they are all considerably above that of the soils. Considering the wide 

range of organic matter contents (0.01-73%), the agreement is quite close. Although it is 

not possible at this time to make conclusions regarding the differences in sorption between 

the different limestones, shales, and coals, the organic matter in coals may be less accessible 

to sorbing organic molecules. 

To determine the extent to which the organic matter in rocks might be obscured by 

mineral components, several rock samples were extracted with acid. The two samples, 

Fayette and Limestone, had acid extractable fractions of20 and 90%, respectively. Sorption 

isotherms performed on the residue remaining and adjusted for the loss of mass through acid 

treatment are shown in Figure I 0. That its removal did not increase sorption also indicates 

that the sorptive regions on the rocks were not obscured by carbonate. 

Sorption on Rocks in Flow through Systems 

A series of column experiments which sent two pore volumes of TCE contaminated 

fluid into columns containing rock material indicated that sorption non-equilibrium was 

observed during breakthrough and elution in the column. As shown in Figure 13, the 

effluent concentration failed to reach the influent concentration and the breakthrough was 

very close to that of the tracer, much faster than that predicted with the sorption isotherm. 

Flow interruption studies, which halted flow shortly after the column contaminant 
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concentration had peaked, were used to provide additional contact time for the rock to 

proceed towards equilibrium. A drop in effluent concentration during interruption verified 

• 
that additional sorption was taking place and could also be used to quantify the extent of 

the reaction. The results of an interrupt study with larger limestone media are shown in 

Figure 14. The distinct drop in solution concentration after the flow interruption confirms 

that the continuous run was not at equilibrium. The tracer did not show the same reduction 

in concentration _after extended contact, suggesting that a sorptive-diffusive rate limitation 

was operative. Further extending the contact time to three days led to a further drop in 

solution concentration 

It was not possible to determine if equilibrium was attained after the three day 

contact time from column data alone. However, comparing column sorption to the 

limestone isotherm presented in Figure 15, shows that the three day interrupt point reached 

80% of the equilibrium sorption and the one day attained slightly less that 40% of 

equilibrium sorption. 

It is significant that column flow interruption achieved sorbed quantities near those 

predicted by the.isotherm because the isotherm was obtained with limestone with diameters 

less than 75 microns, while the column data was obtained with limestone from 600 to 850 

microns in diameter. Sorption capacity in the grain interior may not be available for 

sorption/diffusion, but in this research, although surface area had an effect on the rate of 

sorption, the ultimate sorptive capacity was not strongly impacted. While that is consistent 

with the minor effect of the carbonate removal on sorption capacity shown earlier, it is not 

clear at this time how the organic matter accessibility occurs. The distribution of organic 
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matter over the external surface area and throughout these intra-particle spaces cannot be 

determined at this time. 

Contaminant removal from sedimentary rock which has contacted TCE will be 

expected to exhibit the same nonequilibrium which occurs during loading. Because the 

nonequilibrium is coupled with non-linear sorption, the release of contaminants from rock 

may appear to slow as concentration is reduced. This important aspect of contaminant 

behavior in rock systems can be observed by comparing the elution portions of breakthrough 

curves. In Figure 16 elution of TCE from the limestone is presented with the concentration 

expanded on a log scale, the magnitude of concentration tailing can be seen. Although the 

concentrations in the column effluent are low, the long concentration-tail which results has 

significance for remedial work. Although contact time was only 9 minutes, or 

approximately 2 pore volumes at an initial concentration of 6.3 mg/I, 12 pore volumes 

beyond the contact time were required to reduce contaminant concentration to 2 µg/1. 

Subsequent flushing of_ the column with hexane indicated that some TCE still remained in 

the rock after 30 pore volumes of fresh water had passed through the column. Because 

similar behavior was not observed in the tracer, suggests that a time dependent desorptive 

mechanism such as a sorptive/diffusive process is occurring. 

Concentration tailing during elution for two different sizes of limestone media are 

compared in Figure 16. Both displayed concentration tailing above the detection limit for 

approximately 12 pore volumes beyond the contaminant plug, however, the magnitude of 

tailing in the small limestone is greater and is consistent with the higher sorption observed 

during loading. Higher surface area permits greater access to reactive regions in the rock 
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and facilitates more sorption during identical contact periods. The resulting higher 

concentration after similar periods of elution would be expected from a higher mass flux 

from more available sorption sites. The increased surface area of the small limestone will 

increase the rate of sorption and desorption even if the maximum sorption capacity is not 

appreciably different. 

The concentration tailing during elution form contaminated rocks was also dependent 

on flow rate. Figure 17 shows the breakthrough and elution of the 650-850 µm limestone 

-
at fast and slow flow rates. Similar to the particle size effect, slower flow rates effected 

greater sorption and consequently higher effluent concentrations during elution. In Figure 

18, the flow rate variation is compared during elution expressed as the contaminant flux 

normalized for the initial quantity sorbed. At short times, the additional length of time 

required for the contaminant plug to travel through the column at the slow flow rate is 

obvious. However, contaminant flux once the plug has passed, the contaminant flux out of 

the column is similar for both flow rates. This suggests that it is diffusion out of the rock 

controls contaminant release not fluid flow rate.· This flux is consistent with a slow release 

of contaminant from the interior of the rock particle, as would be expected of diffusion from 

internal sorption sites as the rate limiting mechanism. In this case, increase in flow rate may 

have little or no effect on contaminant movement. 
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Summary 

The sorption of hydrophobic organic contaminants occurs on rock material and may 

have to be considered in evaluating contaminant behavior in subsurface environments. The 

extent of sorption observ_ed in a series ofrocks was closely linked to the rock organic matter 

content, and it was greater than would be predicted for a soil of similar organic carbon 

content. 

In the prepared samples examined in this research, accessibility of the sorptive 

regions was not enhanced by carbonate removal or particle size changes over a narrow size 

range. Because these samples may also have contained some fine material, it may be 

premature to generalize a facile access to all sorption regions, but there are indications that 

sorption regions internal to the rock are accessible. 

The extent to which sorption on rock organic matter may be amenable to 

generalization through the use of a correlation between rock organic carbon content and 

sorption is made more difficult because of the nonlinear isotherm, however it was shown 

that rocks can adsorb about 5-10 times more cootamioanl than that which would be 

predicted from the organic matter content and correlations from soils. We were able to 

discern an isotherm which shows a Freundlich type affinity across a wide concentration 

range. The extent of isotherm nonlinearity using a Freundlich model exponent, ranged from 

0.6 to 0.9. 

The nonlinear sorption isotherms and internal sorption capacity apparently 

contributed to substantial concentration tailing during elution froin a column. Whereas an 
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unreactive tracer behaved almost ideally, the TCE was still detectable in effluent after IO 

pore volumes of clear water were passed through a column containing a relatively low 

organic carbon rock. It is apparent that cootamioaot removal under nonideal flow conditions 

may require long times to achieve desired concentration reductions. The rate at which 

contaminant is eluted in rock systems appears to be at least partially limited by the rate of 

diffusion out of the rock matrix. 
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APPENDIX 

Data from the Sorption Experiments 



Table Al. Experimental data ofTCB sorption by Fayette shale. 

Sample Weight Weight Initial Final ug/g of Corrected 

number of water of Rock Concentration Concentration TCBonrock ug/gonrock 

g g mg/I mg/I ug/g ug/g 

12.31 0.149 0.20 0.02 14.93 14.76 

2 12.44 0.150 0.40 0.05 29.39 29.02 

3 12.58 0.149 0.60 0.13 39.47 38.48 

4 12.63 0.150 0.79 0.13 56.00 55.02 

5 12.IO 0.163 1.04 0.17 63.98 62.81 

6 12.35 0.154 1.42 0.27 92.40 90.46 

7 12.45 0.165 1.61 0.31 97.97 95.85 

8 12.68 0.168 1.49 0.34 87.03 84.73 

9 12.91 0.101 2.93 1.33 205.39 201.62 

10 !'2.56 0.122 4.52 1.70 290.85 275.06 

11 12.29 0.126 6.16 2.71 335.39 311.66 

12 12.81 0.152 7.39 3.13 358.35 334.66 

13 12.30 0.117 9.24 4.08 542.61 503.99 

14 12.89 0.140 10.29 4.19 561.58 526.80 

15 12.47 0.144 12.15 5.11 611.49 571.60 
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Table A2. Experimental data ofTCB sorption by Manin shale. 

Sample Weight Weight Initial Final Sorbed Corrected 

number of water of Rock Concentration Concentration TCB on rock Sorption 

g g mg/I mg/I ug/g ug/g 

11.58 1.197 0.22 O.o2 1.92 1.90 

2 12.05 1.190 0.42 0.06 3.59 3.54 

3 11.96 1.266 0.63 0.09 5.06 4.98 

4 11.84 1.249 0.85 0.14 6.67 6.55 

s 11.65 1.169 1.08 0.20 8.73 8.56 

6 11.94 1.251 1.26 0.23 9.88 9.68 

7 11.72 1.181 I.SO 0.28 12.04 11.78 

8 11.47 1.162 1.75 0.34 13.93 13.64 

9 12.70 1.002 2.98 1.23 22.22 20.82 

10 12.58 1.128 4.51 1.74 30.91 29.16 

11 12.29 1.032 6.16 2.69 41.33 38.45 

12 12.45 0.891 7.61 3.48 57.70 53.33 

13 12.34 1.332 9.21 3.54 52.52 49.57 

14 12.31 1.013 10.76 4.38 77.54 72.75 

15 11.961 1.083 12.66 5.20 82.40 77.25 
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Table A3. Experimental data ofTCB sorption by Hardin shale. 

Sample Weight Weight Initial Final uglgof Corrected 

nwnber of water of Rock Concentration Concentration TCB on rock uglgonrock 

g g mg/I mg/I ug/g ug/g 

12.60 0208 0.20 0.03 10.50 10.36 

2 12.61 0.201 0.40 0.07 20.54 20.14 

3 12.61 0.196 0.60 0.15 29.09 28.24 

4 12.30 0.185 0.82 0.18 42.13 41.04 

5 12.57 0.200 1.00 0.23 48.18 46.88 

6 12.49 0.201 1.20 0.30 55.29 53.60 

7 12.50 0.204 1.40 0.32 67.65 65.88 

8 12.33 0.201 3.07 1.48 97.67 89.49 

9 12.60 0.207 4.51 1.91 158.01 147.56 

10 12.78 0.159 5.92 3.02 231.28 209.43 

11 13.03 0.214 7.27 3.34 238.90 220.59 

12 12.63 0.172 8.99 4.62 321.32 290.72 

13 12.81 0.189 10.34 5.14 352.41 321.12 

14 12.89 0.225 11.75 5.37 365.99 338.24, 
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Table A4. Experimental data ofTCB sorption by Tates Creek Limestone. 

Sample Weight Weight Initial Final uglgof Con-ected 

number of water of Rock Concentration Concentration DCB on rock uglg on rock 

g g mg/I mg/I ug/g ug/g 

12.13 1.068 0.41 0.18 2.62 2.43 

2 12.63 1.075 0.60 0.24 4.19 3.94 

3 12.10 1.415 0.83 0.26 4.85 4.64 

4 12.63 1.075 1.19 0.41 9.23 8.81 

5 11.86 1.262 1.48 0.61 8.17 7.66 

6 12.05 1.007 1.66 0.78 10.56 9.72 

7 11.98 0.800 1.57 0.81 11.33 10.24 

8 12.66 1.171 2.97 1.14 19.81 18.70 

9 12.49 1.019 4.51 2.41 25.75 23.08 

10 12.45 1.264 6.04 2.93 30.66 28.06 

11 12.51 1.287 7.51 3.82 35.95 32.61 

12 12.37 2.105 9.12 4.85 25.09 22.53 

13 12.40 1.064 10.61 5.98 53.97 47.70 

14 12.22 1.198 12.30 6.45 59.75 53.83 
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Table AS. Experimental data ofTCB sorption by Cowbell shale. 

Sample Weight Weight Initial Final Scrbeil Corrected 

number of water of Rock Concentration Concentration TCB on rock Sorption 

g g mg/I mg/I ug/g ug/g 

12.J 7 0.605 0.41 0.11 6.09 5.90 

2 11.96 0.631 0.63 0.20 8.09 7.74 

3 12.16 0.553 0.82 0.29 11.74 11.17 

4 12.09 0.524 1.04 0.42 14.31 13.45 

5 11.80 0.592 1.27 0.49 15.65 14.77 

6 12.30 0.501 1.43 0.59 20.59 19.29 

7 12.13 0.570 1.65 0.60 22.46 21.32 

8 12.31 0.583 1.53 0.68 17.84 16,55 

9 12.23 0.533 3.08 1.44 37.57 34.61 

JO 12.22 0.548 4.62 2.14 55.27 50.99 

11 12.05 0.569 6.24 3.23 63.90 57.75 

12 12.38 0.546 7.60 3.95 82.54 74.48 

13 12.38 0.547 9.1 I 4.59 102.49 93.14 

14 12.29 0.560 10.71 5.62 111.80 100.69 

15 12.09 0.476 12.43 6.30 155.91 141.52 
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Table A6. Experimental data of DCB sorption by Fayette shale. 

Sample Weight Weight Initial Final ug/g of Ccmected 

number of water of Rock Concentration Concentration DCB on rock ug/gonrock 

g g mgll nigll ug/g ug/g 

12.27 0.101 1.29 0.76 63.95 58.35 

2 11.76 0.143 2.69 1.41 105.20 98.23 

3 11.97 0.110 3.96 2.68 139.89 122.43 

4 12.02 0.173 5.26 3.10 150.50 137.58 

5 11.98 0.180 6.60 4.06 168.81 152.64 

6 12.09 0.121 7.85 5.52 232.06 199.06 

7 12.29 0.109 9.01 7.07 217.98 170.30 

8 12.50 0.133 10.12 6.95 299.33 260.01 

9 12.58 0.106 5.03 3.55 175.70 150.44 

10 12.50 0.134 10.12 7.46 249.15 207.33 

11 12.11 0.136 0.27 0.11 14.20 13.59 

12 11.89 0.083 0.56 0.35 30.10 27.10 

13 12.19 0.123 0.81 0.38 43.10 40.84 

14 12.24 0.102 1.08 0.56 62.50 58.43 

15 11.75 0.199 0.28 0.05 13.40 13.21 

16 12.13 0.174 0.55 0.15 27.80 27.19 

17 12.26 0.148 0.81 0.24 47.40 46.22 

18 12.64 0.157 1.05 0.39 53.10 51.23 
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Table A 7. Experimental data of DCB sorption by Martin shale. 

Sample Weight Weight Initial Final Sorbed Cmrected 

number of water of Rock Concentration Concentration DCBoo.rock Sorption 

g g mwJ mwJ ug/g ug/g 

12.02 1.112 1.32 0.31 8.64 8.44 

2 12.27 1.013 2.58 1.18 16.89 16.03 

3 11.80 1.125 4.02 1.98 21.38 20.13 

4 12.14 1.054 5.21 3.20 23.13 20.92 

5 12.19 0.969 6.49 3.68 35.37 32.60 

6 11.95 1.119 7.94 4.99 31.53 28.34 

7 12.13 1.011 9.13 5.81 39.85 35.68 

8 11.74 1.124 10.78 6.06 49.24 45.44 

9 11.38 1.047 0.24 0.02 2.42 2.41 

10 11.98 1.009 0.45 0.21 2.86 2.71 

11 12.26 1.208 0.66 0.26 4.11 3.95 

12 11.95 1.081 0.91 0.38 5.77 5.52 

13 12.09 1.019 1.12 0.57 5.78 5.37 

14 12.16 1.361 1.56 0.66 8.01 7.66 

15 12.23 1.006 1.77 0.95 9.95 9.25 
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Table A8. Experimental data of DCB sorption by Hardin shale. 

Sample Weight Weight Initial Final ug/gof Corrected 

D1DI1ber of water of Rock Concentration Concentration DCB on rock ug/g on rock 

g g mg/I mg/I ug/g ug/g 

11.85 0.219 1.33 0.58 40.75 38.85 

2 11.83 0.289 2.67 1.27 57.56 54.44 

3 11.88 0.261 3.99 2.17 83.05 77.15 

4 11.86 0.270 5.33 3.16 95.22 86.88 

5 11.88 0.223 7.99 5.47 134.50 117.02 

6 12.23 0.224 9.05 6.10 161.40 141.43 

7 12.09 0.210 10.46 7.46 172.94 147.19 

8 12.43 0.189 5.09 3.30 118.02 104.97 

9 12.23 0.311 10.34 6.25 160.88 146.14 

10 11.69 0.141 0.28 0.14 12.00 11.31 

11 12.16 0.096 0.54 0.34 26.35 23.80 

12 12.30 0.170 0.80 0.38 30.76 29.11 

13 12.39 0.147 1.07 0.69 32.25 28.77 

14 12.42 0.055 0.27 0.23 9.46 6.39 

15 11.80 0.121 0.56 0.31 24.04 22.21 

16 13.15 0.134 0.75 0.56 19.62 16.36 

17 12.29 0.134 1.08 0.74 30.78 26.68 
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Table A9. Experimental data of DCB sorption by Tates Creek Limestone. 

Sample Weight Weight Initial Final ug/gof Corrected 

number of water of Rock Concentration Concentration DCB on rock ug/gonrock 

g g mg/I mg/I ug/g ug/g 

12.03 1.282 0.45 0.29 1.54 1.38 

2 12.29 1.472 0.66 0.38 2.34 2.15 

3 12.29 1.145 0.88 0.55 3.60 3.24 

4 12.21 1.154 1.11 0.78 3.53 3.04 

5 12.31 1257 1.32 0.88 4.32 3.80 

6 12.55 1.305 1.51 0.95 5.39 4.84 

7 12.12 1.257 1.79 I.II 6.52 5.88 

8 11.72 1.582 0.23 0.13 0.72 0.66 

9 11.39 2.532 0.48 0.22 1.15 1.09 

10 11.56 2.460 0.70 0.24 2.17 2.10 

11 11.04 3.073 0.98 0.31 2.42 2.35 

12 12.66 0.630 1.25 0.72 10.70 9.84 

13 12.59 0.917 2.51 1.59 12.63 11.32 

14 12.18 1.041 3.90 2.39 17.56 15.88 

15 12.33 0.869 5.13 3.34 20.88 22.54 

16 12.42 1.068 6.37 4.31 23.89 20.88 

17 12.77 1.092 7.43 5.17 26.44 22.81 

18 12.52 1.039 8.84 6.29 30.69 26.14 

19 12.18 1.176 10.38 7.19 33.08 28.62 
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Table AlO. Experimental data of DCB sorption by Cowbeffshale. 

Sample Weight Weight Initial Final Sorbed Corrected 

number of water of R.oclc Concentration Concentration DCRonrock Sorption 

g g mgll mgll ug/g ug/g 

1 12.04 0.631 0.45 0.29 3.13 2.80 

2 12.04 0.700 0.90 0.38 8.88 8.48 

3 11.87 0.694 1.14 0.41 12.50 12.08 

4 12.37 0.666 1.31 0.50 15.19 .14.56 

5 11.82 0.679 1.60 0.87 12.80 11.89 

6 11.91 0.710 1.82 0.90 15.47 14.56 

7 11.87 0.581 1.33 0.42 18.74 18.23 

8 12.44 0.606 2.54 1.57 19.95 18.01 

9 12.34 0.630 3.84 1.69 42.28 40.30 

10 12.40 0.633 5.10 2.56 49.73 46.72 

11 12.16 0.773 6.50 2.94 56.02 53.24 

12 11.93 0.713 7.96 3.81 69.30 65.47 

13 12.40 0.630 8.92 3.96 97.76 93.08 

14 12.00 0.686 10.54 5.52 87.87 82.08 
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