
University of Kentucky
UKnowledge

Sanders-Brown Center on Aging Faculty
Publications Aging

8-2013

Hippocampal Sclerosis of Aging, a Prevalent and
High-Morbidity Brain Disease
Peter T. Nelson
University of Kentucky, pnels2@email.uky.edu

Charles D. Smith
University of Kentucky, charles.smith.md@uky.edu

Erin L. Abner
University of Kentucky, erin.abner@uky.edu

Bernard J. Wilfred
University of Kentucky

Wang-Xia Wang
University of Kentucky, wwangc@uky.edu

See next page for additional authors

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/sbcoa_facpub

Part of the Geriatrics Commons, and the Pathology Commons

This Article is brought to you for free and open access by the Aging at UKnowledge. It has been accepted for inclusion in Sanders-Brown Center on
Aging Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

Repository Citation
Nelson, Peter T.; Smith, Charles D.; Abner, Erin L.; Wilfred, Bernard J.; Wang, Wang-Xia; Neltner, Janna H.; Baker, Michael; Fardo,
David W.; Kryscio, Richard J.; Scheff, Stephen W.; Jicha, Gregory A.; Jellinger, Kurt A.; Van Eldik, Linda J.; and Schmitt, Frederick A.,
"Hippocampal Sclerosis of Aging, a Prevalent and High-Morbidity Brain Disease" (2013). Sanders-Brown Center on Aging Faculty
Publications. 98.
https://uknowledge.uky.edu/sbcoa_facpub/98

http://uknowledge.uky.edu/?utm_source=uknowledge.uky.edu%2Fsbcoa_facpub%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
http://uknowledge.uky.edu/?utm_source=uknowledge.uky.edu%2Fsbcoa_facpub%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu?utm_source=uknowledge.uky.edu%2Fsbcoa_facpub%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/sbcoa_facpub?utm_source=uknowledge.uky.edu%2Fsbcoa_facpub%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/sbcoa_facpub?utm_source=uknowledge.uky.edu%2Fsbcoa_facpub%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/sbcoa?utm_source=uknowledge.uky.edu%2Fsbcoa_facpub%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
https://uknowledge.uky.edu/sbcoa_facpub?utm_source=uknowledge.uky.edu%2Fsbcoa_facpub%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/688?utm_source=uknowledge.uky.edu%2Fsbcoa_facpub%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/699?utm_source=uknowledge.uky.edu%2Fsbcoa_facpub%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/sbcoa_facpub/98?utm_source=uknowledge.uky.edu%2Fsbcoa_facpub%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:UKnowledge@lsv.uky.edu


Authors
Peter T. Nelson, Charles D. Smith, Erin L. Abner, Bernard J. Wilfred, Wang-Xia Wang, Janna H. Neltner,
Michael Baker, David W. Fardo, Richard J. Kryscio, Stephen W. Scheff, Gregory A. Jicha, Kurt A. Jellinger,
Linda J. Van Eldik, and Frederick A. Schmitt

Hippocampal Sclerosis of Aging, a Prevalent and High-Morbidity Brain Disease

Notes/Citation Information
Published in Acta Neuropathologica, v. 126, issue 2, p. 161-177.

© Springer-Verlag Berlin Heidelberg 2013

The copyright holder has granted the permission for posting the article here.

The document available for download is the authors' post-peer-review final draft of the article.

Digital Object Identifier (DOI)
https://doi.org/10.1007/s00401-013-1154-1

This article is available at UKnowledge: https://uknowledge.uky.edu/sbcoa_facpub/98

https://uknowledge.uky.edu/sbcoa_facpub/98?utm_source=uknowledge.uky.edu%2Fsbcoa_facpub%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages


Hippocampal sclerosis of aging, a prevalent and high-morbidity
brain disease

Peter T. Nelson,
Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA. Division of
Neuropathology, Department of Pathology, Sanders-Brown Center on Aging, University of
Kentucky, Rm 311, Sanders-Brown Building 800 S. Limestone, Lexington, KY 40536-0230, USA

Charles D. Smith,
Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA. Department
of Neurology, University of Kentucky, Lexington, KY 40536, USA

Erin L. Abner,
Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA

Bernard J. Wilfred,
Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA

Wang-Xia Wang,
Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA

Janna H. Neltner,
Division of Neuropathology, Department of Pathology, Sanders-Brown Center on Aging,
University of Kentucky, Rm 311, Sanders-Brown Building 800 S. Limestone, Lexington, KY
40536-0230, USA

Michael Baker,
Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA

David W. Fardo,
Department of Biostatistics, University of Kentucky, Lexington, KY 40536, USA

Richard J. Kryscio,
Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA. Department
of Biostatistics, University of Kentucky, Lexington, KY 40536, USA. Department of Statistics,
University of Kentucky, Lexington, KY 40536, USA

Stephen W. Scheff,
Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA. Department
of Anatomy and Neurobiology, University of Kentucky, Lexington, KY 40536, USA

Gregory A. Jicha,
Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA. Department
of Neurology, University of Kentucky, Lexington, KY 40536, USA

Kurt A. Jellinger,
Institute of Clinical Neurobiology, 1070 Vienna, Austria

Linda J. Van Eldik, and

© Springer-Verlag Berlin Heidelberg 2013

Correspondence to: Peter T. Nelson, pnels2@email.uky.edu.

NIH Public Access
Author Manuscript
Acta Neuropathol. Author manuscript; available in PMC 2014 August 01.

Published in final edited form as:
Acta Neuropathol. 2013 August ; 126(2): 161–177. doi:10.1007/s00401-013-1154-1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA. Department
of Anatomy and Neurobiology, University of Kentucky, Lexington, KY 40536, USA

Frederick A. Schmitt
Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA. Department
of Neurology, University of Kentucky, Lexington, KY 40536, USA
Peter T. Nelson: pnels2@email.uky.edu

Abstract
Hippocampal sclerosis of aging (HS-Aging) is a causative factor in a large proportion of elderly
dementia cases. The current definition of HS-Aging rests on pathologic criteria: neuronal loss and
gliosis in the hippocampal formation that is out of proportion to AD-type pathology. HS-Aging is
also strongly associated with TDP-43 pathology. HS-Aging pathology appears to be most
prevalent in the oldest-old: autopsy series indicate that 5–30 % of nonagenarians have HS-Aging
pathology. Among prior studies, differences in study design have contributed to the study-to-study
variability in reported disease prevalence. The presence of HS-Aging pathology correlates with
significant cognitive impairment which is often misdiagnosed as AD clinically. The antemortem
diagnosis is further confounded by other diseases linked to hippocampal atrophy including
frontotemporal lobar degeneration and cerebrovascular pathologies. Recent advances
characterizing the neurocognitive profile of HS-Aging patients have begun to provide clues that
may help identify living individuals with HS-Aging pathology. Structural brain imaging studies of
research subjects followed to autopsy reveal hippocampal atrophy that is substantially greater in
people with eventual HS-Aging pathology, compared to those with AD pathology alone. Data are
presented from individuals who were followed with neurocognitive and neuroradiologic
measurements, followed by neuropathologic evaluation at the University of Kentucky. Finally, we
discuss factors that are hypothesized to cause or modify the disease. We conclude that the
published literature on HS-Aging provides strong evidence of an important and under-appreciated
brain disease of aging. Unfortunately, there is no therapy or preventive strategy currently
available.

Keywords
TDP43; TDP-43; TARDBP; Dementia; Aging; Neuropathology; FTLD; Epidemiology; Genetics;
Cognition; Neuroradiology; MRI; Hippocampus; Pathology; Arteriolosclerosis; Cerebrovascular;
Oldest-old

Introduction
Based on prior studies [30, 47, 61, 80] and recent consensus group diagnostic guidelines
[72], hippocampal sclerosis of aging (HS-Aging) is defined as neuronal loss and gliosis in
hippocampal CA1 and subiculum that is out of proportion to Alzheimer’s disease (AD)
neuropathologic changes in the same structures. There is an evolving awareness that HS-
Aging is a prevalent brain disease with an enormous impact on public health. Selected
references and how they have helped move the field forward are shown in Table 1. Note,
however, that there is overlap in the research subjects included in some of these reports, and
further, the field has advanced in recent years so caution must be exercised in interpreting
older literature.

This review is organized to convey the rapidly evolving understanding about HS-Aging in
terms of neuropathologic findings, epidemiologic considerations, cognitive domains affected
in HS-Aging, neuroradiologic reports, and current insights into the mechanisms underlying
HS-Aging. One emphasis of this review is to highlight features that distinguish HS-Aging
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from other brain diseases. This challenge is not unique to HS-Aging, because
neurodegenerative diseases tend to share clinical and/or pathological characteristics despite
clearly distinct underlying disease mechanisms. Table 2 provides a summary description of
the diseases that have most pathological overlap with HS-Aging. This review underscores
that HS-Aging preferentially afflicts individuals in advanced age (>85 years of age), a part
of the brain aging spectrum that is currently imperfectly understood. We also present data on
clinical and radiological findings in a subset of autopsy subjects evaluated at the University
of Kentucky Alzheimer’s Disease Center (UK-ADC).

Neuropathology of HS-Aging
As stated above, the definition of HS-Aging rests primarily on neuropathologic findings.
From a neuropathologist’s perspective, the term “hippocampal sclerosis” is potentially
misleading. The pathologic changes of HS-Aging generally extend beyond the hippocampus
proper. Further, the pathologic features are not fully conveyed by the term “sclerosis”,
which signifies “hardening” and which has been used to also designate distinct brain
diseases, such as those associated with epilepsy, FTLD, and others as described below. In a
very recent paper, a panel of experts addressed HS pathologic classification terminology
[92]. We note that this study focused on a patient cohort mostly younger than 80 years at
death, which in our experience shows a pathologic spectrum incompletely overlapping with
the boundaries of HS-Aging pathology as described below.

Key diagnostic features of HS-Aging pathology are found on hematoxylin and eosin (H&E)
stained brain sections (Fig. 1), whereas more specific features are visualized using
immunohistochemical techniques (Figs. 2, 3). H&E stains typically reveal neuronal dropout
in CA1 of hippocampus, subiculum, entorhinal cortex, and amygdala. Atrophy can be
marked in these areas. In severely affected cases, normal cellular components are replaced
by reactive astrocytes and the neuropil becomes highly rarefied (cell-, and neurite-sparse) or
frankly cavitary. Lymphocytic infiltrates or perivascular cuffing are not typically seen. We
have observed in affected hippocampi many abnormal small blood vessels, sometimes with
multiple small lumens and/or arteriolosclerosis (Fig. 1d, e).

Astrocytosis—astrocyte hypertrophy and hyperplasia—is a histopathologic feature of HS-
Aging [72], with the caveat that astrocytosis is also seen in innumerable other pathologic
conditions. In cases with HS-Aging pathology, reactive astrocytes are observed with
abundant eosinophilic cytoplasm, and glial fibrillary acidic protein (GFAP)-immunoreactive
cells and astrocyte processes in and near areas of neuron dropout (see composite; Fig. 3).
Currently, the relationship between astrocytosis and the HS-Aging disease process is not
understood. The astrocytic response may be exclusively reactive in HS-Aging brains.
However, an alternative hypothesis is that the astrocytes themselves play a contributory
pathogenetic role. Reactive astrocytes secrete neuroinflammatory signals that may
exacerbate other pathologies [1, 33, 83, 106]. It has been previously shown that in brains
with FTLD and TDP-43 pathology (FTLD-TDP), GFAP—the key intermediate filament of
astrocytes—is hyperphosphorylated and a target of damaging oxidative modifications [40,
66]. We found that a conspicuously large amount of detergent-insoluble (but urea-soluble)
GFAP protein is present in HS-Aging hippocampi (Fig. 4). This increase of GFAP led us to
consider that HS-Aging pathologic process, rather than severe NFTs, may strongly induce
astrocytic proliferation. Moreover, the strong induction of GFAP expression suggests that
TDP-43-positive inclusions might have a neurotoxic effect that might be comparable to or
stronger than that of NFTs (see below). There has not been previously a systematic study of
“cross-talk” between astrocytic and TDP-43 pathologies in HS-Aging to the best of our
knowledge. Ultimately, it remains unknown, like many other aspects of glial cell pathology,
whether this insoluble GFAP protein is benign or toxic.
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HS-Aging is also strongly linked to aberrant TDP-43 pathology (see Table 1; Figs. 2, 3). In a
recent study assessing brains of older patients (average age 88.6 years at death), both right
and left sides of the brain were sampled, including central hippocampal, rostral (entorhinal)
hippocampal, and amygdala tissue blocks [98]. Using this study design, among 79 HS-
Aging cases and 227 controls, 89.9 % of HS-Aging cases demonstrated aberrant TDP-43
pathology in contrast to only 9.7 % of non-HS-Aging control cases with TDP-43 pathology
[80]. Aberrant TDP-43 immunoreactivity is often seen in cells of the dentate granule layer,
CA1, subiculum, entorhinal cortex, and amygdala in HS-Aging cases [4]. In addition to
TDP-43-immunoreactive neurons, TDP-43-immunoreactive dystrophic neurites can also be
observed, particularly in CA1 and subiculum (Figs. 2, 3).

Hippocampal TDP-43 pathology is only moderately specific to HS-Aging. Aberrant TDP-43
immunohistochemistry is a key difference between HS-Aging and a subset of other brain
disorders linked to mesial temporal sclerosis, including epilepsy and vascular insufficiency
(Table 2); these conditions lack pathologic TDP-43 immunostaining [60, 80, 92]. By
contrast, in FTLD-TDP cases, both HS and aberrant hippocampal TDP-43 inclusions are
observed. While overlapping pathologic features between FTLD and HS-Aging have been
noted [14, 38], there are at least five key differences between HS-Aging and FTLD-TDP [5,
8, 20, 22, 65]: (1) FTLD-TDP tends to affect younger individuals (<65 years onset for
FTLD-TDP versus >80 years onset for HS-Aging); (2) FTLD-TDP generally affects brain
areas outside the mesial temporal lobe, whereas the anatomical distribution of the pathology
is very different in HS-Aging; (3) symptoms of HS-Aging are dissimilar to FTLD-TDP
which usually does not begin with an amnestic syndrome; (4) the genetic etiologies of
FTLD-TDP are mostly known but those of HS-Aging remain to be determined (see below);
and (5) FTLD-TDP is rare (<1 % of dementia cases when epidemiologic as opposed to
dementia clinic cohorts are studied) [99, 103, 109], whereas HS-Aging is a very prevalent
disease in community-sampled aged persons. It is important to note that TDP-43 pathology
is by no means specific to FTLD-TDP, so there may be fundamentally different underlying
cause[s] in HS-Aging than FTLD-TDP. HS-Aging may not be classified optimally in close
relation to FTLD-TDP unless, or until, further research supports a stronger link than is now
known. The analogy to FTLD may be most important to underscore the idea that diseases
with overlapping clinical manifestations (e.g., disinhibition or aphasia) may reflect a large
number of different underlying etiologies—FTD/FTLD can be caused by many different
gene mutations as described below.

As with FLTD-TDP, there is a complicated “border zone” between HS-Aging and AD
pathologies. Hippocampal TDP-43 pathology is often a co-morbid observation in cases with
AD pathology (see [4, 27, 80, 92, 107, 116, 123]). Does TDP-43 pathology in AD brains
relate directly to the degenerative changes seen in HS-Aging? There are good reasons that
researchers might come up with contradictory answers to this deceptively simple question.
Strong evidence exists for synergistic protein misfolding in AD brain. For example, some
degree of α-synucleinopathy is often seen in AD amygdalae, and α-synucleinopathy can be
observed along with plaques and tangles in APP gene mutation-linked familial AD cases
[58, 64, 94]. These phenomena could indicate that non-Aβ, non-tau protein mis-folding in
AD brains possibly includes TDP-43 as well as α-synuclein proteinopathies. However, the
brains of approximately 80 % of cognitively impaired nonagenarians harbor appreciable AD
(plaques and tangles) pathology [12, 18], so one can confidently predict that even if HS-
Aging pathology were independent of AD pathology, a very high percentage of HS-Aging
cases would still have substantial AD pathology, and vice versa! Notably, neither HS-Aging
nor aberrant TDP-43 inclusions are linked to APOE genotype, which strongly correlates
with AD pathology [61, 80, 84, 108]. We interpret published data to indicate that we still do
not know whether TDP-43 pathology in AD cases represent incipient HS-Aging pathology,
a subset of AD-related pathology, a synergistic combination, or a completely separate entity.
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In summary, the null hypothesis—namely, that HS-Aging and AD pathologies are
independent of each other—has neither been proven nor disproven.

Adding still more complexity to the pathologic diagnosis of HS-Aging is frequent lateral
asymmetry of the pathologic changes. Investigators from different research centers have
observed that HS pathologic changes seen on H&E stain may be recognized only on one
side—left versus right—in 40–55 % of cases [80, 123]. The neuropathologic observations
track well on radiologically observed hippocampal atrophy from the same cases [123].
However, in cases where the H&E-stained HS features are seen on only one side, the
aberrant TDP-43 immunohistochemical features are seen on the contralateral side (that lacks
neuronal dropout on H&E) [80]. This indicates that, despite an apparently “unilateral”
disease process (via H&E stain), there is a brain-wide disease condition indicated by
TDP-43 immunostaining. In support of the hypothesis that HS-Aging pathology affects
areas outside of the portion with changes detectable on H&E stains, the severity of global
cognitive impairment linked independently to HS-Aging pathology is similar whether the
H&E-based HS changes are bilateral or unilateral [77]. As a practical point, routinely
studying one side of the brain for workup with H&E stains will certainly lead to an
erroneous false-negative (H&E-based) diagnostic HS detection in approximately 25 % of
HS-Aging cases (also see [123]). These observations also provide insights into what may
constitute early HS-Aging pathology: hippocampal TDP-43 pathology without frank
“sclerosis”.

What does the TDP-43 pathology in HS-Aging indicate? Aberrant immunohistochemical
TDP-43 profiles are a pathologic landmark that signal both “reactive” (secondary to other
pathogenetic factors) and toxic (primarily pathogenetic) changes. Focusing on the reactive
aspect, TDP-43 pathology has been observed in human kindreds with numerous distinct
genetic abnormalities (e.g., mutations in GRN, C9orf72, OPTN, VCP, ANG, ATXN2,
UBQLN2, TMEM106B, and others [112]). The fact that mutations in the TDP-43 gene can
alone induce a neurodegenerative disease phenotype with TDP-43 inclusions [111], along
with other experimental observations [36, 59], confirms that TDP-43 inclusions are directly
or indirectly toxic.

HS-Aging pathology has also been linked to non-AD tauopathy [4, 11, 53, 71], although this
association is less strong and specific compared to TDP-43 pathology. Tau and TDP-43
pathologies have been proven to be sequelae of diverse primary genetic and environmental
causes. For example, both tau and TDP-43 pathologies are observed in postencephalitic
parkinsonism [63, 118]. Chronic traumatic encephalopathy (CTE) provides yet another
demonstration of specific environmental stimuli that can lead to both tau- and TDP-43-
immunopositive neuronal inclusions with associated neurological impairment [67, 97]. By
definition, the cell loss in HS-Aging hippocampi is beyond that which would be expected by
the AD-related changes alone, which in the hippocampus involves tau-positive
neurofibrillary tangles. However, it has been noted that there are HS-Aging pathologic
changes in some non-AD tauopathy cases and vice versa [4, 11, 53, 71]. There is also a
growing appreciation of non-“canonical” tauopathic changes in advanced old age including
cases with abundant glial tau or tau with atypical anatomical distribution [57]. Intriguingly,
Arnold et al. [6] reported that TDP-43 pathology in nondemented aged individuals co-occurs
with tau-positive argyrophilic grain pathology, perhaps indicating a preclinical state of
disease progression. We also have observed that many cases with HS-Aging pathology show
some tau pathology. In our experience, tauopathy seen in HS-Aging brains may diverge
from the Braak staging continuum [17], with phospho-tau immunoreactivity in dentate
granule cells, glial tau, and white matter tau changes. Here we provide data from a
representative case with HS-Aging pathology (Figs. 2, 3); to the best of our knowledge, a
systematic description of tauopathic changes in HS-Aging remains to be performed. This
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highlights a broader need for more published information about HS-Aging, guided by the
pathologic gold standard.

Epidemiology of HS-Aging
The prevalence and clinical correlates of HS-Aging pathology are of fundamental
importance. Autopsy series have shown that 5–30 % of brains in advanced old age harbor
HS-Aging pathology [25, 61, 80, 91, 123]. Differences in study design, including in
pathologic methodology and demographics, contribute to the study-to-study variability in
reported HS-Aging prevalence. Some studies reporting the low end of prevalence range may
have many false negatives due to assessing only one side of the brain. Two other key factors
influencing recognition of HS-Aging in autopsy cohorts are patient age and the date of the
study. In some classic dementia clinical–pathological correlation studies [15, 95], research
subjects had mostly died during their early 70s. HS-Aging is only infrequently observed at
those ages, and the researchers were at that time blamelessly unaware of HS-Aging
pathology (including TDP-43 pathology) as we now know it. Many of the published autopsy
series included persons recruited for a dementia research clinic. Autopsy cohorts of this type
are known to have skewed observations in clinical–pathological correlations: dementia
clinic cohorts tend to oversample AD, FTLD, and unusual diseases, while undersampling
aged cognitively intact individuals and persons with cerebrovascular pathologies [12, 21,
100].

We show data from The Nun Study (Fig. 5), a birth cohort followed from normal status with
extremely high autopsy rate which lacked some of the biases of dementia clinic cohorts [73,
117]. Note that among the subjects who died beyond 90 years of age, the rate of severe AD
pathology decreases, whereas the proportion of cases with HS-Aging pathology increases
dramatically. For individuals past 95 years of age, the rate of pathologic observation for
those two separate diseases is approximately the same. The appreciable late-life increase in
risk for HS-Aging pathology indicates that this disease belongs in a category, like age-
related macular degeneration and indolent prostate cancer [78, 96], that affects humans
preferentially in their 90s rather than in their 70s.

The epidemiologic data indicate that HS-Aging pathology is prevalent and correlates with
impaired cognition independently of AD pathology in advanced old age [77], which helps to
explain the “dissociation” between AD pathology and cognitive status in the “oldest-old”
[44, 80] (and see [16, 31]) The key consideration—that dementia is associated with HS-
Aging pathology rather than pure AD pathology in many individuals past age 90—is directly
relevant to clinical trials, biomarker analyses, and other dementia research studies.
Unfortunately, most clinical series are blind to this phenomenon because people with HS-
Aging pathology currently tend to be misdiagnosed during life as having AD (or only AD)
[84]. It follows that there is a great need for novel methods to identify living patients with
HS-Aging pathology.

Neurocognitive testing and neuroimaging findings linked to HS-Aging
An ideal HS-Aging diagnostic biomarker would identify individuals with HS-Aging
pathology during a clinical window when therapies might work. The specific experimental
goal is to recognize a particular feature or pattern that predicts HS-Aging pathology, versus
AD pathology, with confidence. Neurocognitive testing and neuroimaging studies have
begun to address this challenge.

Although there is overlap in the clinical manifestations of HS-Aging and AD, careful
analyses may identify distinctive behavioral and neurocognitive patterns reflecting
differences in the underlying neuropathology. These studies require longitudinal cognitive
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testing and state-of-the-art neuropathologic evaluations. For example, Dawe and colleagues
[28] found that HS cases have relatively atrophic hippocampi and correlated impairment in
episodic memory. Their data, albeit with low numbers of HS cases (N = 4), revealed
statistically significant differences in global cognition between AD (N = 40) and AD plus
HS (N = 9) when compared to control cases. However, global cognitive status in HS was
also adversely affected. Studies have not yet quantified the impact of HS-Aging on complex
cortical functions such as language, executive skills, and semantic memory early in the
course of disease. Data suggest that commonly used clinical measures such as verbal fluency
are not associated with hippocampal volume but rather correlate with frontal and temporal
gray matter volumes in AD [29]. Therefore, it is reasonable to posit that there may be
differences in the early presentation and clinical course of HS-Aging in contrast to other
neurodegenerative disorders. To highlight this potential clinical marker, cognitive scores
were explored in a large sample of HS-Aging cases and controls [80]. These analyses
suggested that patients with relatively preserved verbal fluency (cortically dependent),
despite profound world list delayed recall deficiency (hippocampal dependent), were at
higher risk for having HS-Aging pathology. In Fig. 6, we show data on neurocognitive
profiles of individuals who died with HS-Aging pathology, in comparison to a control
group, at early stages in the disease including baseline. These changes were distinct from the
pattern seen in individuals with AD pathology alone [80], although there has been recent
insights into subtypes of AD which add another layer of complexity [49, 75, 76]. Further
work is required to go beyond “group level” differences to identify markers that can
distinguish individuals with HS-pathology with high sensitivity and specificity. We note that
brains of many of the HS-Aging cases, as well as the controls, harbor AD pathology; it is not
necessarily fruitful to specifically pursue “pure” HS-Aging cases if they are in the minority
in a clinical context [2, 46, 123]. It is also unclear how the published studies that include
patients with hippocampal atrophy linked to epilepsy (see [41]) should be integrated with the
HS-Aging cognitive data literature. Another important question is the expected “natural
history” of HS-Aging, and whether the expected end-stage clinical syndrome is similar to, or
less severe, than AD. This remains to be definitively described through larger scale studies
to define a neurocognitive pattern for HS-Aging and to differentiate HS-Aging from other
neurodegenerative processes. Taking this into account, global dementia severity may be an
important factor in the search for a clinical profile.

For research aimed at developing novel HS-Aging biomarkers, brain imaging adds a layer of
study design complexity. Beyond the challenges related to autopsy cohorts (see above),
there are additional potential sources of bias in neuroimaging studies (e.g., cardiac
pacemakers precluding MRI). There are multifactorial “border area” problems: one must
operationalize both HS-Aging and AD pathologies. This implies that the severity of plaque
and/or tangle pathology threshold be quantified. Similarly, HS-Aging must also be carefully
defined based on severity, bilateral presence in the brain, degree of TDP-43 pathology, as
well as chronological age of the individual to distinguish HS-Aging from FTLD. It is also
difficult to control for cognitive status since HS-Aging and AD are likely to have non-
identical cognitive manifestations as described above. One must also take into account the
clinical and pathologic variability introduced by other frequent comorbid pathologies
including cerebrovascular pathology and α-synucleinopathies, and the importance of the
stage(s) in the diseases’ multiyear course one chooses to study. We show here a subsample
of cases who had MRIs at the UK-ADC with eventual autopsy-confirmed HS-Aging
pathology (Fig. 7), underscoring the evolving appreciation that it is the rule, and not the
exception, for older persons’ brains to harbor multiple disease processes [79, 87, 101, 123].
Finally, the technology used in both MRI studies, and the pathologic workups to which they
are compared, are constantly changing, so an “apples-to-apples” comparison can be a
challenge. Thus, because of many potential pitfalls, careful consideration of study design
and implementation will be required to identify specific HS-Aging biomarkers.
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At least partly because of the complexities described above, most of the published research
on HS-Aging neuroimaging characteristics is subsumed in the far larger AD literature. An
obvious fact is that hippocampal atrophy is pronounced in individuals with HS-Aging
pathology [28, 122], so it would be inaccurate to describe MRI-detected hippocampal
atrophy as a specific biomarker for AD. Detailed discussion on the topic of HS-Aging cases
within AD-oriented studies is beyond the scope of this review.

Relatively few published studies featured research volunteers who underwent MRI at some
point and also had autopsy evaluation to identify HS-Aging cases. Barkhof et al. [10] found
that many cases with medial temporal atrophy lacked primary underlying AD pathology (in
this study cohort, the sensitivity and specificity of severe atrophy for AD pathology was 63
and 69 %, respectively, which is consistent with the findings of Jack et al. [45]). Josephs et
al. [51] reported that aberrant TDP-43 pathology in AD cases tended to be found in
individuals with subsequent HS pathologically, although only 9/29 TPD-43(+) had
pathologically verified HS. Overall, the TDP-43(+) cases were older, with more cognitive
impairment, and more pronounced hippocampal atrophy than TDP-43(−) cases. In a report
more focused on cases with HS-Aging per se, Zarow et al. [122] described that the atrophy
and deformation of the hippocampus are considerably more severe in autopsy-confirmed
HS-Aging than in AD. HS-Aging hippocampal atrophy was found to be frequently laterally
asymmetric, and affected the hippocampus along the full rostral-caudal extent. Using
postmortem MRI, Dawe et al. [28] also reported stronger correlation between hippocampal
atrophy and HS-Aging pathology than AD pathology, and individuals with AD+HS
pathologies had similar (greatly atrophic) hippocampi to HS alone. In summary, the
radiographic findings to date essentially mirror the pathological observations, and the
common thread has been to show that hippocampal atrophy is more severe in HS-Aging
than AD. However, there has not been identification and independent validation of a
neuroimaging “signature” that is specific for HS-Aging.

Factors that may cause or exacerbate HS-Aging
The etiologic mechanisms underlying HS-Aging are still essentially a mystery, but some
clues and correlations have been reported. One of the first hypothetical etiological
connections was between HS-Aging and cerebrovascular disease. The context—the aged
human brain—is important to consider. “Cerebrovascular disease” is an umbrella term for a
large number of different types of diseases [19, 50, 81, 113, 115], and practically all patients
beyond age 90 have some morphologically discernible brain vascular pathologic changes in
comparison to younger cohorts [35, 78, 79, 88]. As mentioned above, blood flow changes,
reduced oxygenation, and glycemic fluctuations can profoundly damage the hippocampus
through “acute excitotoxic mechanisms” [37, 48] without inducing TDP-43 pathology [60,
80]; this process seems different from what is observed in HS-Aging cases. However, there
may be other cerebrovascular perturbation[s] that are etiologically linked with HS-Aging
pathology. Dickson et al. [30], in a seminal autopsy series, found a relatively high tendency
among 13 HS-Aging cases versus controls to have the specific pathologic diagnosis of
arteriolosclerosis. Arteriolosclerosis is characterized by altered morphology of small blood
vessel walls, particularly in arterioles. Jellinger observed that HS pathology with comorbid
AD pathology is often seen in patients with coronary atherosclerosis, while “pure” HS is
rare in older persons because of frequent co-morbidities [46]. As mentioned above, we also
observe convoluted blood vessels in HS-Aging cases and there is possibly a pathogenetic
link where chronic perturbations linked to arteriolosclerosis could directly lead to HS-Aging
pathology, or there may be a common upstream cause of these two pathologies.

As with the links between HS-Aging pathology and cerebrovascular disease, the
associations between specific genetic alleles and the risk for HS-Aging pathology require
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further exploration. There has not been a published genome-wide, systematic study of
genetic polymorphisms (genome-wide association studies or GWAS) that are linked to
autopsy-confirmed HS-Aging. The disease may not be mono-allelic. In a study focusing on
the FTLD risk gene GRN among AD cases, Dickson et al. [29] reported that a specific SNP
(rs5848 T allele) in GRN correlates with increased HS risk. It has been confirmed that the
rs5848 polymorphism is biologically important [32, 42, 52] and this genetic polymorphism
may well explain a subset cases with HS-Aging pathology. Hexanucleotide expansion
mutations in the C9ORF72 gene have been shown to induce hippocampal TDP-43
inclusions [74], with heterogeneous clinical and pathological presentations albeit more
related to FTD-type clinical manifestations, so C9ORF72 also is a candidate for HS-Aging
pathogenetically. In a RNA deep sequencing study, with small group sizes, no differences
were detected when small RNAs were compared between pathologically verified HS-Aging,
AD, DLB, and FTLD cases [39].

Moving outside the genes linked directly to FTLD-TDP, and also beyond the solid
endophenotype of pathologically confirmed HS-Aging, a number of researchers have used
MRI-detected hippocampal atrophy as an endophenotype for correlation with genetic
polymorphisms in human GWAS. Although these MRI phenotypes do not yet discriminate
HS-Aging from other causes of hippocampal atrophy (such as AD), this study design may
provide new directions that are directly relevant to HS-Aging pathogenesis. In Table 3, we
show a list of studies and the genes implicated in GWAS that use hippocampal atrophy as an
endophenotype. These studies have drawn on overlapping research subjects, particularly
from the AD Neuroimaging Initiative [ADNI] cohort [85], so they are not actually
independent of each other and Table 3 is not a “meta-analysis”. A fundamentally important
consideration in these studies—relevant for all studies related to HS-Aging—is the age of
the research volunteers. Note that most of the research volunteers in the MRI/GWAS, in
ADNI and other large clinical studies, had case/control diagnoses while in their middle 70s.
This age range would be too young to capture most cases with HS-Aging pathology in an
autopsy sample. While the same calculation does not necessarily apply to an (in vivo)
imaging study, we await future studies that use essentially the same research methods but
focus upon older research subjects.

Finally, the impacts of environmental factors should be considered as potential disease
modifiers. Specifically, TDP-43 pathology may be seen in the brains of individuals who
suffered chronic brain trauma such as CTE [54, 67]. This phenomenon, combined with the
advanced age of many affected individuals, lead us to speculate that HS-Aging may be, at
least in part, a manifestation of long-term brain “wear-and-tear”. We conclude that, as with
the many different gene polymorphisms that lead to FTLD-TDP [112], and diverse chemical
pathways that can induce TDP-43 perturbations in cultured cells [59], there could be
numerous different genetic and environmental factors that contribute to the process that
manifests as HS-Aging pathology in elderly persons’ brains.

Summary
HS-Aging is a prevalent, high-morbidity brain disease that affects people in old age.
Currently, HS-Aging is primarily defined by neuropathological observations including
hippocampal neuron loss and astrocytosis with aberrant TDP-43 immunoreactivity.
Important questions remain including ‘boundary issues’ with FTLD and AD, and whether or
not non-AD tauopathy or astrocytic changes contribute or co-occur pathogenetically. The
amnestic changes of HS-Aging tend to be conflated clinically with AD in aged patients,
which, given the high prevalence of HS-Aging pathology, presumably hinders or confounds
analyses of AD clinical trials. However, the specific neurocognitive characteristics of HS-
Aging, particularly as a potential method to help differentiate the disease from AD, have

Nelson et al. Page 9

Acta Neuropathol. Author manuscript; available in PMC 2014 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



seen recent progress, highlighting the relative preservation of verbal fluency in HS-Aging
patients. Radiographic and genomic changes are at this point in the early stages of providing
specific clinical biomarkers for HS-Aging, and many questions remain in terms of the
underlying pathogenesis of the disease. Ultimately, the epidemiology of the disease may be
driven by demographic trends: there is predicted to be dramatic increases in the number of
humans who live beyond 90 years of age (Fig. 5), and so HS-Aging—if no therapeutic
strategy is devised—will constitute an ever increasing public health problem. Further work
in the area of HS-Aging should be recognized as a priority for research and clinical care on
the scale of what the National Alzheimer Project Act (NAPA) has done for AD.
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Fig. 1.
Histopathology of HS-Aging: hematoxylin and eosin (H&E) findings. a Low-power
photomicrograph of hippocampal formation of a woman who died at 88 years of age with
dementia and HS-Aging pathology. Even at low power one can appreciate that the
hippocampus has atrophy and areas of neuropil rarefaction (blue arrows) in dentate granule
area, CA1, and subiculum. b For comparison sake, the brain of a man who died at age 77
with dementia and end-stage (Braak VI) AD, with dentate granules (DG), CA1, and
subiculum labeled. Note that even in AD the hippocampus (at the same scale as in a) is
somewhat larger and without the neuropil rarefaction. c In individuals with neither AD nor
HS-Aging, such as this 71-year-old cognitively intact male, with Braak stage I pathology,
the hippocampal neuropil appears homogenously pink and nondisrupted on an H&E stain. d
Other features of HS-Aging are shown in this medium-power photomicrograph of the boxed
area from a. Even at this magnification, the disruption of the normal hippocampal
architecture can be observed, along with thickened medium-sized blood vessel (green
arrow). e At higher magnification, from the hippocampus of a woman who died with
dementia at age 91 with HS-Aging pathology, this blood vessel profile (green arrow) shows
the arteriolosclerosis and thickened multilumen blood vessel profiles that can accompany
HS-Aging pathology. Scale bars a–c =1 mm, d =500 μm, e =150 μm
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Fig. 2.
Histopathology of HS-Aging: Phospho-TDP-43 and phospho-tau immunohistochemical
findings. Observations in brain sections from the same case are as shown in composite in
Fig. 3. These sections (dentate granule cells, a, b; CA1, c, d) have been stained with
hematoxylin (stain nuclei and some cell contour blue) and counter-stained with brown
chromagen. Sections a and c are stained for phospho-TDP-43 (clone 1D3, Millipore). Note
that in the dentate granule cells, there are immunoreactive inclusions in cell bodies (red
arrows), whereas there are prominent neuritic (narrow non-tapering nerve cell processes)
TDP-43+ staining in the CA1 area, in addition to some cellular staining (intranuclear
inclusion, green arrow). Phospho-tau staining (PHF-1, a gift from Dr Peter Davies) has
features that do not map well onto Braak staging. For example, there are relatively numerous
phospho-tau-positive dentate granule inclusions, whereas CA1 shows very little phospho-tau
immunoreactivity. Scale bars a, b =30 μm; c, d =50 μm
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Fig. 3.
Histopathology of HS-Aging: Composite low-power figure depicts the distribution of
pathology localized with multiple pathological immunomarkers. Sections were analyzed
from the brain of a man who died cognitively impaired at age 92 years; autopsy showed HS-
Aging and Braak stage II pathologies. An Aperio ScanScope XT with Genie™ image
recognition software was used to highlight the positive immunoreactivity. The top portion
shows the composite results of three nearly consecutive sections stained for phospho-tau
(blue), phospho-TDP-43 (red); and GFAP (yellow). Labeled are dentate granule cell layer
(DG, shown in green in top portion), CA1, and subiculum (bottom). Green arrows show
same abnormally enlarged Virchow-Robin space on both top and bottom figures. This
representative case shows that HS-Aging brains have a multifaceted pathological picture that
includes TDP-43 pathology, astrocytosis, tauopathy, and vascular profiles that are aberrant
in comparison to that which would be observed in younger control individuals. Future work
is required to identify the truly specific, and clinical disease-driving, feature(s) of HS-Aging
pathology
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Fig. 4.
Human subiculum affected by HS-Aging pathology contains abundant detergent-insoluble
glial fibrillary acidic protein (GFAP). For this experiment, tissue was isolated from
subiculum of six different cases, three HS-Aging and three controls. The tissue was
processed as previously described [43, 82] to isolate detergent-insoluble protein using a
method that ultimately solubilizes proteins with 7 M urea. Coomassie Blue stained urea-
polyacrylamide gel from the detergent-insoluble extract shows a ~50 kDa band that is
accentuated in HS-Aging cases (three leftward lanes on the gel). Individual 50 kDa gel
bands were excised for each of the six cases and the gel fragments were submitted separately
for liquid chromatography–electrospray ionization mass spectrometric (LC-ESI-MS)
proteomic analysis. Gel pieces were digested with trypsin, and LC-ESI-MS performed using
a ThermoFinnigan LTQ. Resulting MS spectra were searched against human proteins in the
Swiss-Prot database using the Mascot search engine (Matrix Science). In both the HS-Aging
and control cases, the overwhelming proportion of this 50 kDa band was GFAP. Shown at
the bottom right of the figure are the two proteins in this size range with the most peptide
query matched reads, for each of the six samples. With caveats appropriate for comparison
between two experimental groups comprising only three samples each, the cases with HS-
Aging pathology had larger amount of GFAP peptide fragments, covering almost the entire
span of the protein, than the controls (P< 0.03)
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Fig. 5.
Data related to HS-Aging epidemiology underscore the large, and increasing, public health
impact of HS-Aging. Data from The Nun Study [73, 110] among research subjects with
pathologic data (N = 526). The proportion of individuals with moderate or severe
Alzheimer’s disease (AD; moderate or severe neuritic amyloid plaque pathology and Braak
stages using two different threshold cutoffs, Braak IV and above and Braak V and above)
are compared to the proportion of individuals with HS-Aging pathology. Note that a
significant number of patients had both pathologies as would be expected. This is a birth
cohort that had been followed for many years, incorporating a full spectrum of cognitive
impairment, without many of the biases that are linked to dementia clinics, thus insights into
the population-level epidemiology. Median age of this cohort is >90 years of age at death. b
The late-life increase in HS-Aging pathology can be viewed in context of projected
demographic increases in numbers of very old persons predicted by the U.S. Census Bureau.
Source: http://www.census.gov/population/projections/data/national/2012/su
mmarytables.html
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Fig. 6.
Neurocognitive changes provide a clinical feature that distinguishes cases with eventual HS-
Aging pathology versus controls. Each data point represents an individual research
volunteer. N = 43 HS-Aging cases, and N = 75 controls, matched for age, gender, education
level, and APOE status with each of those parameters used as covariate. These 118
participants had a total of 966 yearly longitudinal assessments for an average of 8.2
assessments per participant. All were followed from nondemented cognitive state at
baseline. Plots show the distribution of values for the ratios of test scores of word list delay
(WLD): verbal fluency (VF) at baseline and at an examination 5.5–6.5 years prior to the
patients’ death. The timepoint of ~6 years prior to death was selected because this usually
was after symptom onset but before end-stage disease. All statistical analyses were
performed using SAS/STAT® 9.2 software. This figure is adapted from PT Nelson et al.
[76] Brain, published by Oxford University Press, and is reproduced with permission
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Fig. 7.
Magnetic resonance images (MRIs) from individuals with eventual autopsy diagnosis of HS-
Aging. This group of coronal MRIs from four individuals illustrates that HS-Aging
pathology is often associated with co-morbid brain diseases. a A 96-year-old female patient
with an acute stroke shortly before autopsy. Shown on the T1-weighted image are signs of
acute cortical swelling in the medial and inferior right temporal lobe due to a right posterior
cerebral artery stroke (arrowheads), subcortical white matter hypointensity from prior
ischemia (arrow), and marked left hippocampal atrophy (double arrow). Extensive vascular
disease, hippocampal sclerosis, and Alzheimer’s disease (Braak stage V) were found at
autopsy. b T2-weighted image from 80-year-old female patient demonstrates atrophy and
abnormally increased signal in the hippocampi (arrowheads). Autopsy 16 years later
demonstrated AD pathology, Braak stage VI, and HS. c HS with Braak stage III pathology
and stroke were found at autopsy 7 years after this scan demonstrates asymmetric right
medial temporal atrophy (double arrows) and dilation of the right frontal horn (arrow), d
T1-weighted scan from 86-year-old woman with slowly progressive memory loss and stroke
demonstrates asymmetric left medial temporal atrophy (double arrows). Autopsy confirmed
HS-Aging pathology
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Table 1

Prior studies of direct relevance to hippocampal sclerosis of aging (HS-Aging)

References HS-Aging (N)
Average death
age, cases Total (N) Notes and key contributions

[23] 3 N/A 22 HS cases were among non-AD dementia cases

[30] 13 89 81 HS linked to both advanced aging and arteriolosclerosis

[47] 5 78 67 HS linked to dementia, but not to CVD

[108, 119] 12 N/A 12 HS not linked to APOE genotype

[24] 8 78.5 8 Probably includes FTLD, anoxic, and HS-Aging cases

[7, 46] 28 AD/HS: 85;
other +HS: 78

1,000 “Pure” HS is rare; HS + AD is linked to atherosclerotic coronary artery
disease

[2] 7 (“pure”) 71 1,771 “Pure” HS is relatively rare, linked to CVD/anoxia

[9] 50 73 382 “Pure” HS cases in this series tended to be older

[114, 115] 41 N/A 443 HS is linked to AD, dementia, and infarcts

[61, 62] 16 85 134 HS is prevalent, not APOE linked in community sample

[11] 14 82 14 High rate of tauopathy/AGs in HS cases

[14, 38] 19 78 N/A HS dementia linked with FTLD but series almost certainly include true
FTLD cases

[121] 9 86 28 Neuronal loss in CA2 as well as CA1 in HS

[86] 2 90 15 HS pathology frequently seen in MCI (both with AGs)

[3] 8 84 18 HS in aged persons differs from FTLD-linked HS

[4] 21 83 188 TDP-43+ in 71 % of HS-Aging, ~23 % of “pure” AD

[28] 13 88 (pure) 100 HS-Aging has strong independent impact on cognition and hippocampal
atrophy

[90] 10 88 10 TDP-43 pathology in only 3/10 HS cases; mostly tau pathology seen in other
cases

[120] 31 83 130 HS often in mixed pathology cases; unilateral 50 %; 93 % of HS-Aging+ are
TDP-43+

[77, 80] 106 91 1,100 Defines cognitive impact of HS-Aging, with prevalence that approximates
severe AD in advanced old age

[84] 28 83 205 Patients with HS-Aging pathology are usually diagnosed clinically with AD

[122, 123] 11 84 43 HS cases showed prior severe MRI hippocampal atrophy

[27] 5 (“pure”) 89 (pure) 235 HS and TDP-43 pathology correlate with or without AD

[27, 93] 17 98 41 HS-Aging pathology correlates with dementia

[25] 11 N/A 104 HS-Aging pathology correlates with dementia

[92] ~27 78 260 (Younger) HS cases of many different etiologies

AD Alzheimer’s disease, AG argyrophilic grains, APOE apolipoprotein E, CVD cerebrovascular disease, FTLD frontotemporal lobar degeneration,
HS hippocampal sclerosis, MCI mild cognitive impairment, N/A not applicable
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Table 3

Studies using hippocampal volume as GWAS endophenotype

Reference Years Average Age of “AD” or
affected population

Genes linked to hippocampal atrophy in MRI-based GWAS

[89] 2009 75 S100A5, SCAMP1-LHFPL2, ARSB, EFNA5, IKZF1-AC020743.7, MAGI2, MAL2,
PRUNE2, RP11, ETS1, ARID2-SFRS2IP, CNAD1, FRMD6, C20orf132, RPN2, ZBP1,
FDPSP

[102] 2010 76 EPHA4, APOE, TP63, NXPH1, UBE2D1

[104] 2010 76 ZNF326, UTP20

[26] 2011 73 TTR

[34] 2011 75 ZNF292, PICALM

[70] 2012 75 SLC1A7, LPHN2, F5/SELP, ATF3, GCFC2, STXBP5L, NKAIN2, VPS13B, TLE1,
PICALM, LHFP, DLGAP1, APOE, COL18A1

[105] 2012 75 TESC, HMGA2, DDR2

[55, 56] 2012 75 MACROD2, SORCS2, GRIN2B, GALNTL4, NRXN3, AK130123,MAGI2, NPAS3,
RBFOX1, AY229892, ZMAT4, STAGS3L2, GAS7, ADARB2, GABRG3, CDH4,
CLSTN2, CDH13, GALNTL6, GALNTL6, PRKAG2, CHODL

[13] 2012 Multiple cohorts MSRB3-WIF1, HRK-FBXW8, DPP4, ASTN2

[68, 69] 2013 76 Complex patterns of genes with hypothesized interactions

Highly overlapping sample attainment in these studies
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