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Abstract

Hippocampal sclerosis of aging (HS-Aging) is a common, high morbidity-associated 

neurodegenerative condition in elderly persons. To understand risk factors for HS-Aging, we 

analyzed data from the Alzheimer’s Disease Genetics Consortium and correlated the data with 

clinical and pathologic information from the National Alzheimer’s Coordinating Center database. 

Overall, 268 research volunteers with HS-Aging and 2957 controls were included; detailed 

neuropathologic data were available for all. The study focused on single nucleotide 

polymorphisms previously associated with HS-Aging risk: rs5848 (GRN), rs1990622 

(TMEM106B), and rs704180 (ABCC9). Analyses of a subsample that were not previously 

evaluated (51 HS-Aging cases and 561 controls) replicated the associations of previously 

identified HS-Aging risk alleles. To test for evidence of gene-gene interactions and genotype-
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phenotype relationships, pooled data were analyzed. The risk for HS-Aging diagnosis associated 

with these genetic polymorphisms was not secondary to an association with either Alzheimer 

disease or dementia with Lewy bodies neuropathologic changes. The presence of multiple risk 

genotypes was associated with a trend for additive risk for HS-Aging pathology. We conclude that 

multiple genes play important roles in HS-Aging, which is a distinctive neurodegenerative disease 

of aging.

Keywords

Alzheimer disease; Hippocampal sclerosis; KATP; SUR2; Genome wide association study 
(GWAS); Progranulin; Frontotemporal lobar degeneration (FTLD)

INTRODUCTION

Hippocampal sclerosis of aging (HS-Aging) is diagnosed neuropathologically when neuron 

loss and astrocytosis are observed in the hippocampal formation, and are not considered 

attributable to Alzheimer disease (AD)-type plaques and tangles (1-3). Although there are 

other brain diseases with pathologic changes that are described as “hippocampal sclerosis,” 

HS-Aging is distinguished by the presence of TDP-43 pathology and the absence of severe 

symptoms or clinical signs of frontotemporal dementia (4-8). HS-Aging is a relatively 

common disease in elderly persons (2, 7, 9, 10) and is associated with substantial disease-

specific cognitive impairment (11, 12). Even at state-of-the-art research institutions such as 

U.S. Alzheimer’s Disease Centers (ADCs), HS-Aging tends to be misdiagnosed as AD 

clinically because of overlapping manifestations (7, 12, 13), and therefore autopsy data are 

essential for accurate disease diagnosis.

There is no known disease-modifying treatment for HS-Aging. One factor impeding 

development of therapeutic strategies is that disease mechanisms are still incompletely 

understood. Vascular disease may contribute to HS-Aging pathology or, alternatively, 

pathogenetic factors may overlap with those of frontotemporal lobar degeneration (FTLD) 

(2, 10, 14, 15).

Genetic risk factors for HS-Aging have recently been characterized, yielding new insights 

into disease mechanisms. In contrast to AD, APOE gene variants are not associated with 

altered risk for HS-Aging (7, 9, 12, 13, 16). Here, we discuss “risk alleles” that are single 

nucleotide polymorphisms (SNPs), and risk genotypes (combinations of alleles), associated 

with altered manifestation of a phenotype. The association of a SNP with a specific 

phenotype (in the present study, autopsy-diagnosed HS-Aging pathology) is expressed 

commonly using 2 parameters: 1) odds ratio (OR), which represents the odds of HS-Aging 

pathology for individuals with the risk genotype relative to the odds for those without the 

risk genotype; and 2) probability (p value) of observing an OR at least as large as the one 

discovered, given the sample sizes, and assuming no underlying association between the 

SNP and the phenotype.

Hippocampal sclerosis pathology in AD cases was associated with SNPs previously 

associated with FTLD, namely rs5848 (GRN) and rs1990622 (near TMEM106B) (17-20). A 
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prior genome wide association study (GWAS) that focused on HS-Aging pathology as an 

endophenotype reported that 2 SNPs in near-perfect linkage disequilibrium with each other 

(rs704178 and rs704180) in ABCC9 are associated with HS-Aging pathology, with OR = 2.1 

and an overall p value = 1.4 × 10−9 when all the cohorts’ data were combined (21). For 

practical reasons, we will refer only to rs704180 hereafter.

To learn more about genetic polymorphisms associated with HS-Aging pathology, we 

examined genomics data from the Alzheimer’s Disease Genetics Consortium (ADGC), 

correlated with clinical and pathologic data from the National Alzheimer’s Coordinating 

Center (NACC) database (22-24). Data were analyzed from ADC research volunteers who 

had been examined clinically with subsequent neuropathological evaluation, to test whether 

previously reported HS-Aging risk alleles (rs5848, rs1990622, and rs704180) can be 

replicated, and to evaluate gene-gene interactions. We also tested whether or not the 

association between those alleles and HS-Aging pathology is related to AD or dementia with 

Lewy bodies neuropathologic changes among genotyped subjects in the relatively large 

NACC autopsy cohort.

MATERIALS AND METHODS

Patient Subjects

The ADGC accrued genomics data from 29 different ADCs (more than 10 cases each from 

26 ADCs, more than 100 cases each from 20 ADCs) with multiple iterations of SNP data 

(23, 25, 26), which were analyzed together with neuropathological and clinical data gathered 

through NACC (24). Research using NACC data was approved by the University of 

Washington Human Subjects Division; protocols at individual ADCs were approved of and 

regulated by local Institutional Review Boards. NACC data were obtained from the 

Minimum Data Set, Uniform Data Set, and Neuropathology Data Set (12, 24). The 3 allele 

identities were analyzed according to ADGC SNP nomenclature and were rs5848 (A/G); 

rs1990662 (A/G; note that other reports have used T/C for this allele, the “A” allele is 

analogous to “T” allele in other reports whereas the “G” allele we report is analogous to “C” 

allele); and rs704180 (this is an A/G allele in near-perfect linkage disequilibrium with 

rs704178, which is a G/C allele; G/C alleles are challenging because of reverse strand 

issues, so we recommend using rs704180 as the referent allele). Neuropathologic 

evaluations were performed according to center-specific protocols, including whether 

neuropathologists studied left, right, or bilateral hippocampi (12), and entered into a 

standardized format for NACC purposes. Only individuals who died after age 60 were 

included in this study. HS-Aging case/control operationalization in NACC were described 

previously (12, 21); details of the NACC parameter definitions are presented in the 

Supplemental Material. Relatively few persons with FTLD-TDP, FTLD-tau, other FTLD 

subtypes, or spongiform encephalopathy were genotyped in our available database 

(Supplemental Material). These subjects were excluded from the analyses because the 

subsample with FTLD and prion subtypes (together comprising 188 individuals, 24 with 

HS-Aging pathology) was underpowered for statistical comparisons.

After exclusions, data from a total of 2343 NACC/ADGC research subjects with genotype 

and autopsy information outside of UK-ADC data were available for analyses at the time of 
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our prior published HS-Aging GWAS (21). Some cases are included in the current study and 

not the HS-GWAS project because they met inclusion criteria as stated; however, these 

research subjects are not an independent cohort for the purpose of a replication experiment. 

Notably, the current study included patients who died before the year 2000. Subgroup 

analysis confirmed that the rate of HS diagnosis was lower before 2000 but this enabled a 

complete assessment of the NACC/ADGC data. Additional data from 612 research subjects 

with genotype and NACC autopsies were available for the present study that were not 

available for previous analyses and were not previously analyzed in our studies. These cases 

provided an independent subgroup to retest the association between putative risk alleles and 

HS-Aging pathology. The 612 cases comprising a replication cohort were accrued from 26 

different ADCs; average number of cases per ADC was 23.5; median number of research 

subjects included for analyses per ADC was 21; and the maximum number of included 

research subjects from one ADC was 79. The main reason for these cases being now 

available for this study is that there was a round of database-wide quality control (QC) and 

imputation that was performed by the ADGC in the spring of 2014; this effort was 

completed after the dates the HS-Aging GWAS paper was submitted and reviewed. This 

QC/imputation refined the availability of genotyped NACC cases and enabled inclusion of 

research subjects that were previously excluded due to covariate coding that was suboptimal. 

For example, over 500 research subjects’ data were excluded from the NACC/ADGC 

analyses previously because they were classified as having an inappropriate age parameter, 

although those cases were within the included age range. Further, and beyond the issues 

related to imputation and QC, the database analyzed in the current study included data from 

122 research subjects whose genotyping data appeared in the database after the time-stamp 

of the database used for the HS-Aging GWAS. Additional QC were performed on all of the 

cases and found that the specific targeted SNP calls for rs5848, rs1990622, and rs704180 

were of adequate technical quality but data from 6 additional research subjects were 

removed due to a first-degree relationship following KING-Robust analysis.

Neuropathology

Features of AD neuropathologic changes were operationalized as diffuse plaques (most of 

the autopsies predated the universal application of Thal Aβ staging), neuritic plaques, and 

neurofibrillary tangles (NFTs). Diffuse plaques were graded according to cortical density 

(frequent, moderate, sparse, or none operationalized with NACC parameter “NPDIFF”), 

Consortium to Establish a Registry for Alzheimer's Disease (CERAD) stages of neuritic 

plaque densities (frequent, moderate, sparse, or none) operationalized with NACC parameter 

“NPCERAD”) (27), and NFTs according to Braak stages for neurofibrillary pathology 

(Stages 0-VI operationalized with NACC parameter “NPBRAAK”) (28). Dementia with 

Lewy bodies (DLB) pathology was characterized according to established guidelines using 

NACC parameter “NPLEWY,” which indicates whether pathology "is consistent with 

criteria of Consortium on Dementia with Lewy bodies for Lewy body pathology, brainstem 

predominant type," "Lewy body pathology, intermediate or transitional (limbic) type," or 

"Lewy body pathology, diffuse (neocortical) type" (29).
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Clinical and Genomic Data

Clinical data including the Mini-Mental State Examination (MMSE) (30) were collected by 

trained clinicians and interviewers as previously described (12, 31). Genomic data from 

ADGC were transferred from PLINK format into Microsoft Excel spreadsheet for additional 

studies, with subsequent analyses performed using R 3.1.0 (32).

Statistics

Statistical methods included marginal logistic regression that was used to construct 

confidence intervals (CI) for odds ratios and to test for association between candidate SNPs 

and HS-Aging pathology. Three modes of inheritance (MOI) were examined for each SNP 

using conventional genotype transformations: additive MOI (number of risk alleles, i.e., 0, 1 

or 2); dominant MOI (at least 1 risk allele = 1; 0 otherwise); and recessive MOI (2 risk 

alleles = 1; 0 otherwise). Contingency tables were used to calculate HS-Aging pathology 

odds ratios and supporting CI for combinations of risk genotypes (using recessive for 

ABCC9 and dominant for TMEM106B and GRN). Chi-square and Fisher exact tests were 

used to compare HS-Aging pathology prevalence between individuals with both a ABCC9 

A_A genotype (for rs704180) and a TMEM106B A_A genotype (rs1990622) and others, for 

deaths occurring prior to 2000 and after, respectively. Similarly, MMSE between these 2 

groups was examined with a 2-tailed Student t-test. Chi-square tests were used to compare 

differences in the prevalence of AD and DLB neuropathologic changes for each gene.

RESULTS

Patient demographic data and presence or absence of HS-Aging are summarized in Table 1. 

The genotyped research volunteers from NACC were predominantly patients with severe 

AD pathology (see below). More detailed information about HS-Aging pathology cases and 

controls in the NACC dataset without genomics data have been reported (12). Because of 

the more permissive inclusion criteria and the lack of GWAS-related screening exclusions, 

the number of subjects in the current study is larger than in the prior GWAS (21). From 

among the 268 pathologically verified HS-Aging cases and 2957 controls with genotype 

data now available for analyses, there were 51 HS-Aging cases and 561 controls that were 

not available for analyses in the previous GWAS study (21); these cases were not from the 

UK-ADC cohort. NACC and ADGC data also included 31 HS-Aging cases and 239 controls 

from the UK-ADC. DNA samples from these individuals were analyzed in the prior study 

using PCR-based SNP characterization (21). PCR data from UK-ADC cases agreed with the 

ADGC SNP data (not shown); therefore ADGC-derived SNP data were used for UK-ADC 

data in the analyses where all the data were pooled.

A focus of the present study was genetic polymorphisms that previously were associated 

with risk for developing HS-Aging pathology (Fig. 1). Of the 3225 individuals included in 

the study overall, 3210 (99.5%) had SNP calls for rs1990622 (TMEM106B), 3213 (99.6%) 

had SNP calls for rs704180 (ABCC9), and 2732 (84.7%) had SNP calls for rs5848 (GRN). 

The OR with 95% CIs for the 3 putative risk alleles assuming additive, dominant, and 

recessive MOIs are shown in Table 2. For all 3 SNPs, the same risk alleles (i.e. rs5848 “T”, 

rs1990622 “A”, and rs704180 “A” alleles) showed positive association with HS-Aging risk 
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as in prior published studies (17-21). Data from the entire cohort showing the proportion of 

individuals with HS-Aging pathology stratified by SNP genotype and age at death are shown 

in Figure 2, which conveys the descriptive trend with regard to their association with HS-

Aging pathology. Note that unlike the case for the GRN and TMEM106B SNPs, patients 

who are heterozygous for the putative ABCC9 risk allele show greater risk than those that 

are homozygous lacking the risk allele in the oldest age category, indicating a recessive 

MOI. The trend toward greater HS-Aging risk for individuals with both risk alleles spans a 

broad age range and, as expected, the overall HS-Aging prevalence is highest among the 

“oldest-old” (7, 14, 33). Among cases that were not analyzed previously (and with the 

caveat that the sample size was smaller than the previous study [21]), the OR for the 

association between HS-Aging pathology and rs1990622 suggested a strong association 

(Table 2). These data were compatible with prior studies in terms of the probable MOI for 

these SNPs; specifically, there was an apparent recessive MOI for rs704180, but more 

probably an additive or dominant MOI for rs5848 and rs1990622.

All the cases were analyzed together (n = 3225 total) to test for evidence of gene-gene 

interactions and genotype-phenotype effects. Individuals with more than 1 risk genotype had 

risk for HS-Aging pathology that trended higher than with either gene’s risk allele(s) alone, 

but the data indicated an additive effect rather than synergistic or superadditive effect (Fig. 

3). For additional statistical information, p values for Figure 3 comparisons are provided in 

Supplemental Material.

A prior study showed that recognition of HS-Aging by neuropathologists at autopsy has 

increased over the past decade at ADCs (12). We hypothesized that as a consequence of 

under-diagnosis some patients who came to autopsy prior to 2000 would have the HS-Aging 

disease, despite no HS pathologic diagnosis having been made at that time. Thus, cases with 

the HS-Aging genetic risk alleles could have lower tested cognitive performance before 

death even without an HS diagnosis. Data presented in Figure 4 confirm that there was 

lower diagnostic rate of HS-Aging pathologic changes prior to vs. after 2000 (overall 

proportion of cases with HS pathologic diagnosis was 1.7% before 2000 and 11.7% after 

2000, p < 0.00001). The MMSE score difference between persons with vs. without HS-

Aging pathology among individuals who died after the year 2000 (mean final MMSE scores 

23.0 vs. 18.1, p < 0.0001) is in agreement with prior studies about cognitive impairment 

associated with HS-Aging pathology (11, 12). Among patients lacking HS-Aging diagnosis 

and also without advanced AD pathology (Braak stages IV and lower) who died prior to 

2000 (but not afterward when the pathologic diagnoses were presumably more accurate), the 

average final MMSE score for people with both risk alleles (rs1990622 A_A and rs704180 

A_A) was lower than that of the other genotypes (p = 0.03). Among persons with advanced 

AD pathology (Braak stages V and VI), the average final MMSE scores were much lower; 

we assume that most of the cognitive impairment in those individuals was due to AD (not 

shown).

Although the gene polymorphisms we tested could cause or exacerbate HS-Aging pathology 

through direct mechanisms, a potential confounder is that TMEM106B, ABCC9, and/or GRN 

polymorphisms may be associated with altered AD or DLB pathology, which could lead to 

secondary brain changes that were subsequently diagnosed as hippocampal sclerosis at 
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autopsy. Indeed, it has been hypothesized that both TMEM106B and GRN play a 

pathogenetic role in AD (34-36). The proportions of NACC cases with AD and DLB 

pathologies, stratified by risk allele genotype, are presented in Tables 3 and 4 (which 

essentially depict the percentages of cases in each category). The data do not support a role 

for these specific TMEM106B, ABCC9, or GRN alleles in AD pathogenesis because the risk 

SNPs are not associated with altered levels of AD-type plaques (“diffuse plaques” or 

“neuritic plaques” according to CERAD grading of plaque densities [27]) or NFTs (Braak 

staging [37]). Moreover, there is no evidence for increased risk of any DLB subtype in 

association with the HS-Aging risk alleles. There were insufficient numbers of genotyped 

FTLD cases available to test the link in those diseases; therefore, these cases were excluded 

(for details on exclusions see Supplemental Material).

DISCUSSION

In the large NACC autopsy dataset derived from multiple research centers, the risk of 

developing HS-Aging pathology showed variation that was associated with specific 

previously described polymorphisms in TMEM106B, ABCC9, and GRN. The current study 

constitutes the first replication of the previously described association between the ABCC9 

risk genotype and HS-Aging. Among persons with both risk-associated TMEM106B and 

ABCC9 genotypes, there was higher-trending risk for being diagnosed with HS-Aging 

pathology than individuals with either of these risk genotypes by themselves. The HS-Aging 

associated gene polymorphisms are not associated with an increased risk for AD or DLB 

pathologic changes. These observations indicate that multiple genetic influences are 

important in the pathogenesis of HS-Aging.

There are limitations inherent to the study design. NACC data derive from ADC memory 

disorder clinics, comprising a pooled sample that imperfectly reflects characteristics of the 

broader population. For example, FTLD prevalence tends to be 5% or higher at memory 

disorder clinics, whereas in epidemiological samples FTLD prevalence is usually <1% of 

demented participants (21, 38, 39). However, in the present sample, the FTLD cases were 

minimal because these were not yet analyzed for GWAS among the available NACC/ADGC 

dataset. Also due to the cohort being derived from ADCs, there may be ascertainment bias 

toward sampling a subgroup of HS-Aging cases that clinically resemble AD (12). The 

paucity of HS pathologic diagnoses before 2000 indicates a change over time in diagnostic 

practices, and there are methodologic differences across ADCs that directly influence 

phenotype instantiation. For example, sampling half the brain leads to false-negatives 

because HS-Aging pathology is unilateral on hematoxylin and eosin stain in 40% to 55% of 

cases (7, 10). There also was inadequate sample size to determine conclusively the gene-

gene interaction effects governing the 3 risk alleles. Despite these considerations, the NACC 

database represents a high-quality composite data source, extensively audited and sourced 

from state-of-the-art research centers, enabling the analyses of genomic determinants of 

human diseases.

For the understanding of genotype-phenotype correlations, this study, along with other 

recent scholarship (17, 20, 40-42), underscores the critical importance of using pathologic 

observations for diagnosis because clinicians may fail to detect specific underlying diseases. 
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Here we focused on particular SNPs that were previously associated with HS-Aging 

pathology. From our analyses, 3 salient issues emerged: first, the strong correlation between 

the TMEM106B SNP (rs1990622) and HS-Aging pathology; second, the replication of 

observable association between ABCC9 SNP (rs704180) with HS-Aging pathology; and 

third, a reflection on how these SNPs may all contribute to a common disease characterized 

by TDP-43 pathology.

There was evidence for a strong role for TMEM106B in HS-Aging pathology in the current 

study. We note that in the prior HS-Aging genomics study (21), we used data from fewer 

volunteers (included here were 2343 research subjects, plus 612 new subjects, not counting 

UK-ADC subjects, versus a total of 1636 from the prior study). As expected, the inclusion 

of substantial numbers of additional research subjects produced slightly different results. 

However, the analytic outcomes of the current study were not outside the range of 

expectations. Specifically, the 95% CI of the odds ratios for GRN, TMEM106B, and ABCC9 

with regard to risk for HS-Aging pathology in the current study overlap with the 95% CI of 

the prior study. The TMEM106B SNP rs1990622 is a risk allele for FTLD, as determined by 

a GWAS (43). Subsequent studies have found that the same rs1990622 allele is associated 

with altered risk for amyotrophic lateral sclerosis and for neurodegeneration linked to 

C9ORF72 repeat expansions (44, 45). Also, the same allele is associated with HS pathology 

in older individuals (17, 20), and a GWAS corroborated the association (21), as does the 

present study. There is some evidence that rs1990622 may also change risk for AD (34, 35), 

although we see no evidence for that in the NACC dataset.

Unlike TMEM106B, ABCC9 is not known to be associated with FTLD nor with any other 

neurodegenerative diseases. However, ABCC9 gain-of-function mutations do cause Cantu 

syndrome, in which neurovascular anomalies have been observed (21, 46, 47). Blood vessel 

pathology is relevant because ABCC9 is physiologically involved in vasoregulation (46, 48, 

49) and, autopsy-confirmed brain arteriolosclerosis is on average more severe in HS-Aging 

cases vs. controls (14, 50). An ABCC9 SNP within the same intron and only 1152 base pairs 

away from rs704178 (which is in near-complete linkage disequilibrium with rs704180) has 

been associated with sleep duration and depressive symptoms (51, 52). ABCC9 is a member 

of an evolutionarily conserved family of genes that encode large proteins with multiple 

membrane spanning domains, other family members having been implicated in human 

diseases. For example, ABCC7 (also known as CFTR) is the susceptibility gene in cystic 

fibrosis, and ABCC8 mutations cause congenital hyperinsulinsim (53). The role of the 

ABCC9 gene product, SUR2, is to modify "KATP" potassium channel function (46); 

therefore, it is notable that a new GWAS (published after primary review of the current 

study) has shown that KCNMB2, another potassium channel modulator, is also a possible 

risk allele for HS-Aging pathology (54). Additional work is needed to characterize more 

confidently the associations between potassium channel physiology and HS-Aging 

pathology.

In gathering experimental evidence about disease mechanisms, a critical clue is the 

pathologic biomarker, TDP-43 (4, 5). The “border-zone” between HS-Aging and 

hippocampal TDP-43 pathology is not clearly defined, either in the research community or 

in consensus-based neuropathologic diagnostic criteria (2). Recent studies from different 
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centers, however, have established that HS-Aging pathology and hippocampal TDP-43 

pathology both tend to occur in the same brains, and both are correlated with cognitive 

impairment (8, 11, 12, 20, 55-58). HS-Aging may prove to be the most prevalent TDP-43 

proteinopathic condition (2). The contradistinction from AD-type pathology is supported by 

the lack of association between HS-Aging pathology and APOE polymorphism (7, 9, 12, 

16). By contrast, if TMEM106B, ABCC9, and GRN each contribute to HS-Aging 

pathogenetically, they may do so through a mechanism related to TDP-43 pathology. This 

was anticipated for TMEM106B and GRN polymorphisms (17, 59), because both of those 

genes are directly linked to risk for FTLD-TDP (43, 60, 61). The current study provides 

fresh information indicating additive risk among persons harboring a relatively common 

genotype that combines risk alleles. Approximately 20% of included subjects had the 

rs704180 “A_A” allele and at least one rs1990622 “A” allele. Interestingly, it has been 

reported that ABCC9 protein is found in the “endosomal/lysosomal” compartment during 

ischemic stress conditions in cardiac myocytes (62), and this cellular compartment may be 

where TDP-43 pathology is intensified through TMEM106B and GRN mechanisms also 

(63-67).

In summary, we confirmed that specific TMEM106B, ABCC9, and GRN SNPs each are 

associated with HS-Aging pathology in the NACC cohort. None of the SNPs are exonic and 

the disease usually manifests among the “oldest-old” (7, 14), perhaps indicating relatively 

subtle dysregulation in concert with other factors that are yet to be elucidated. These results 

provide yet more indication that the human aged brain is an extremely complex system 

impacted simultaneously by diverse environmental stimuli, comorbid pathologies, and 

genetic vulnerabilities.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Genomic context for the 3 single nucleotide polymorphisms (SNPs) shown in the 

chronological order that they were discovered to be relevant to hippocampal sclerosis in 

aged populations (17, 18, 21, 43, 59). (A) rs5848 (annotated as a T/C SNP) resides in the 

proximal 3' untranslated region of the GRN gene on chromosome 17q. (B) rs1990662 (an 

A/G SNP) resides approximately 7 kb downstream from the annotated 3' untranslated region 

of the TMEM106B gene on chromosome 7p. (C) SNP rs704180 (an A/G SNP) resides 

within an intron in the ABCC9 gene on chromosome 12p. Figures are derived from UCSC 

Genome Browser, genome.ucsc.edu, using human genome assembly GRCh37. SNP, single 

nucleotide polymorphism.
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Figure 2. 
Proportion of cases with Hippocampal sclerosis of aging (HS-Aging) pathology by age 

group at death and genotype. (A-C) Genotypes are shown for rs1990622 (TMEM106B; 

panel A); rs704180 (ABCC9; panel B); and rs5848 (GRN; panel C). These analyses factor in 

the results of all the cases (n = 3498 total), with case/control operationalizations as described 

in Methods. Note that HS-Aging pathology is most common in the “oldest-old”, and that the 

previously described risk genotypes (rs1990622 A_A; rs704180 A_A; and rs5848 T_T) have 

the highest risk for HS-Aging pathology across multiple age groups. For statistical analyses 

of relevant odds ratios, see Table 2.
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Figure 3. 
Genotype combinations and the risk of being diagnosed with HS-Aging pathology. Each 

case (total n = 2709) included here had genotype information for each risk allele (rs5848, 

rs1990622, and rs704180). For these data, odds ratio (OR) was assessed in comparison to 

the individuals that lacked all three risk alleles: rs5848 (T_T), rs1990622 (A_A), and 

rs704180 (A_A). In terms of potential confounders that might affect HS-Aging pathologic 

diagnosis (age and year of death), the control group had average age at death 80.1 years and 

average 2001.7 year of death. The number of persons in each group (N), average age at 

death, OR, and 95% confidence intervals (CI) are shown for each combinatorial subgroup. 

For a similar analysis that assumes a dominant mode of inheritance for TMEM106B and 

GRN, see Supplemental Materials. MOI, mode of inheritance; dom, dominant; rec, 

recessive.
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Figure 4. 
Additional evidence of additive effects for ABCC9 and TMEM106B SNPs in hippocampal 

sclerosis of aging (HS-Aging) pathology. In both panels, “ABCC9+” means rs704180 A_A 

and “ABCC9-” means rs704180 A_G or G_G; “TMEM+” means rs1990622 A_A and 

“TMEM-“ means rs1990622 A_G or G_G. (A) The proportion of individuals with HS-

Aging by pathological diagnoses is shown, stratifying by ABCC9 and TMEM106B 

genotypes. Note that as previously shown, the neuropathologic diagnosis of HS-Aging 

pathology was relatively unusual prior to 2000. In these pre-2000 cases, among a subset of 

patients without either diagnosis of HS-Aging or AD (Braak Stage <=IV), neuropathologic 

changes, cases with both TMEM106B and ABCC9 risk genotypes shows lower global 

cognitive status as indicated by final MMSE scores (p = 0.03), compatible with the 

hypothesis that a substantial proportion of these individuals had undiagnosed HS-Aging 

pathology. Statistical tests are Chi-square except for the pre-2000 HS-Aging pathologic 

evaluations for which there was a low cell count and the Fisher exact test was used. NS, not 

significant; MMSE, Mini-Mental State Examination; SNP, single nucleotide polymorphism.
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Table 1

Demographic Data for 3255 Subjects

NACC data outside UK-ADC available for use in prior study1 (n = 2343)

Male Female

Age group at
death (y) HS− HS+ HS− HS+

60's 120 6 77 4

70's 433 28 363 23

80'S 422 36 491 48

>90 72 14 179 27

Total 1047 84 1110 102

NACC data unavailable for use in prior study (n = 612)

Male Female

Age group at
death (y) HS− HS+ HS− HS+

60's 117 0 88 1

70's 84 10 67 3

80'S 65 10 77 8

>90 20 7 43 12

Total 286 27 275 24

Data from UK-ADC (n = 270)

Male Female

Age group at
death HS− HS+ HS− HS+

60's 11 1 12 0

70's 31 2 43 2

80'S 46 3 60 9

>90 11 4 25 10

Total 99 10 140 21

Total HS−:   2957

Total HS+:   268

HS− or +, hippocampal sclerosis of aging absent or present; NACC, National Alzheimer’s Coordinating Center; UK-ADC, University of Kentucky 

Alzheimer Disease Center1 (21).
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Table 2

Risk Alleles, p Values, and Odds Ratios, with 95% Confidence Intervals for National Alzheimer’s 

Coordinating Center Datasets

NACC data available for use in prior study
(n = 186 HS−Aging, 2157 controls)

Additive
MOI

Dominant
MOI

Recessive
MOI

SNP Risk allele* Odds ratio
(95% CI)

Odds ratio
(95% CI)

Odds ratio
(95% CI)

ABCC9
(rs704180) A 1.51

(1.22-1.89)
1.46

(0.99-2.17)
1.90

(1.40-2.60)

TMEM106B
(rs 1990622) A 1.16

(0.94-1.44)
1.18

(0.80-1.75)
1.24

(0.91-1.70)

GRN (rs5848) T 1.25
(0.99-1.59)

1.33
(0.97-1.82)

1.35
(0.80-2.30)

NACC data unavailable for use in prior study (Replication cohort)
(n = 51 HS−Aging, 561 controls)

Additive
MOI

Dominant
MOI

Recessive
MOI

SNP Risk allele* Odds ratio
(95% CI)

Odds ratio
(95% CI)

Odds ratio
(95% CI)

ABCC9
(rs704180) A 1.38

(0.93-2.05)
1.13

(0.59-2.18)
2.00

(1.10-3.60)

TMEM106B
(rs 1990622) A 1.86

(1.22-2.86)
2.70

(1.21-3.84)
2.14

(1.21-3.84)

GRN (rs5848) T 1.74
(1.12-2.69)

2.24
(1.16-4.33)

1.92
(0.80-4.59)

HS−Aging, hippocampal sclerosis of aging; CI, confidence interval; MOI, mode of inheritance, SNP, single nucleotide polymorphisms.

Data are for the additive, dominant, and recessive models of MOI.

*
See Materials and Methods for description of rationale for risk allele identification.
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Table 3

Proportion of Research Subjects with Alzheimer Disease Neuropathologic Changes

Proportion of Subjects with Alzheimer Disease Neuropathologic
Changes by Risk Allele

Gene
(SNP)

Number of
risk alleles n*

Braak V or
Braak VI NFTs

Severe CERAD
neuritic amyloid
plaque density

Severe diffuse
amyloid plaque

density

GRN
(rs5848)

0 1463 0.71 0.79 0.64

1 1041 0.72 0.80 0.64

2 228 0.74 0.82 0.63

TMEM
(rs 1990622)

0 638 0.71 0.81 0.65

1 1517 0.71 0.78 0.65

2 1053 0.70 0.80 0.62

ABCC9
(rs704180)

0 780 0.73 0.80 0.64

1 1584 0.71 0.80 0.65

2 847 0.68 0.77 0.62

CERAD, Consortium to Establish a Registry for Alzheimer’s Disease; SNP, single nucleotide polymorphism. Neuropathologic changes are: 
advanced Braak stages, CERAD neuritic plaque densities, or diffuse amyloid plaque densities. According to SNP genotype: GRN (rs5848 “T” is 
risk allele), TMEM106B (rs1990662 “A” is risk allele), and ABCC9 (rs704180 “A” is risk allele). None of the pathologic features differ between 
columns at p < 0.05. The sample size refers to those available with Braak staging; there was some variance between pathologic variables in 
pathologic variable missingness.

*
This sample size refers specifically to cases with Braak staging and genotype data
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Table 4

Proportion of Research Subjects with Lewy Body Neuropathologic Changes According to Single Nucleotide 

Polymorphism Genotype

Proportion of Cases with Lewy Body
Neuropathologic Changes by Risk Allele

Gene
(SNP)

Number
of Risk
alleles n

Brainstem-
predominant

subtype

Intermediate-
limbic

subtype

Neocortical-
diffuse
subtype

GRN
(rs5848)

0 1463 0.031 0.070 0.122

1 1041 0.035 0.080 0.115

2 228 0.039 0.079 0.105

TMEM
(rs 1990622)

0 638 0.020 0.066 0.130

1 1519 0.034 0.078 0.106

2 1053 0.037 0.076 0.116

ABCC9
(rs704180)

0 781 0.033 0.088 0.118

1 1583 0.033 0.068 0.110

2 848 0.031 0.075 0.116

Single nucleotide polymorphism (SNP) genotypes: GRN (rs5848 “T” is risk allele), TMEM106B (rs1990662 “A” is risk allele), and ABCC9 
(rs704180 “A” is risk allele). None of the pathologic features differ between columns at p < 0.05.
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