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1 Introduction

Quantum quench is a protocol to manipulate quantum system by changing its Hamiltonian

while the system at all times follows unitary time evolution. Usually the system before

the quench is taken to be in the ground state. Loosely speaking quantum quenches can be

divided into two broad types: “sudden” quantum quenches when the change of Hamilto-

nian is instantaneous Ĥ0 → Ĥ1, and the so-called “smooth” quantum quenches when the

Hamiltonian is continuously changed from Ĥ0 to Ĥ1 over some finite time interval δt.

Dynamics of many-body systems following a quantum quench has become an active

topic of research recently due to progress with an experimental control of cold atom sys-

tems [1–3]. An important question that emerged in this context is whether an isolated

quantum system in a pure non-stationary state can thermalize and be described by some

statistical ensemble. This question has received a lot of attention and has been studied

intensively both analytically and numerically [4–7].
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A particular interesting scenario is when a quench occurs near or across a critical

point. When the quench is “slow” in comparison with the gap or other relevant IR

scale local observables exhibit Kibble-Zurek scaling [8–11]. In the opposite regime of a

sudden, i.e., instantaneous quench when H0 describes a conformal theory Calabrese and

Cardy have obtained universal exact results for the two dimensional theories [12, 13]; also

see [14, 15] for recent developments in perturbative formulation of the instantaneous quan-

tum quench problem near criticality in the 1 + 1-dimensional case. In [16–23] the authors

studied an intermediate regime of fast but smooth quenches in a CFT deformed by a

relevant operator O. The considered protocol did not assume that the relevant pertur-

bation has to vanish at any point before or during the quench, thus also covering non-

conformal theories. Quite remarkably they found that the one-point function of O during

the quench, as well as the excess energy density after the quench, exhibit universal be-

havior controlled by the conformal dimension ∆ of O. In the limit when the duration of

the quench δt → 0 and d
2 ≤ ∆ < d the response of the system becomes singular, which

is at odds with the predictions of sudden quench approximation [12, 13, 24, 25]. The

authors concluded that the fast and sudden protocols represent two different types of pro-

cesses, with the latter being physically unachievable for field theoretic systems with infinite

UV cutoff a−1
0 →∞.

In this paper we consider continuous relativistic systems undergoing a smooth and

spatially-homogeneous quantum quench. Following [20, 22], we argue that when the quench

is fast, i.e. δt is much smaller than all relevant physical scales of the problem except for

the UV cutoff, δt� a0, the behavior of the system during and shortly after the quench is

independent of the IR details and governed by physics at the UV fixed point. Furthermore,

when the amplitude of the quench is small compared with an appropriate power of δt the

system’s response can be found in terms of the conformal perturbation theory around the

UV CFT. Our findings extend and generalize previous results concerning fast quenches

in several important ways. In particular, we put forward a new argument elucidating

the mechanism behind the above-mentioned universal behavior, which is not limited to

conformal theories or their perturbative deformations, but emerge in any field theory in

an appropriate limit. We employ conformal perturbation theory to compute one- and

two-point correlation functions of arbitrary scalar operators to leading order and establish

associated universal scalings. Finally, we argue that at late times, beyond the reach of

perturbation theory, the system thermalizes in a sense that expectation values of local

observables equilibrate to their thermal values.

We start our consideration in section 2 by describing the wave-function of the system

after the quench. We argue that the form of the wave-function justifies conformal per-

turbation theory and ensures thermalization at late times. This qualitative consideration

is followed by an explicit calculation of one- and two-point function during and after the

quench in the conformal perturbation theory. In particular, we calculate time-dependent

expectation values for all primary scalars at leading order and for O up to second order in

perturbation. This is done in section 3. For the two-point functions we discuss different

regimes when the operators in question are time- or spatially-separated. Universal behavior

of these correlators is a subject of section 4. We conclude with a discussion in section 5.

– 2 –
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2 Wave-function and thermalization after the quench

We start our consideration by describing the evolution of system’s wave-function following

a quantum quench. We assume that the system in question is described by a conformal

field theory in the UV, while the details of the IR behavior are not important. The UV

cutoff and IR scale where the UV CFT description breaks down will be denoted as a−1
0 and

m respectively. For the sake of simplicity in this section we assume that before and after

the quench the system is described by the same Hamiltonian H0,

H(t) = H0 + λ(t)

∫
dd−1xO , (2.1)

where the deformation O is relevant in the UV and has scaling dimension ∆ < d. The

time-dependent coupling

λ(t) = δλ f(t/δt) (2.2)

is a “pulse” of amplitude δλ ∝ `∆−d, and f(t) is a dimensionless smooth function which

vanishes sufficiently fast outside some interval of order one centered around t = 0. Since

λ(t) approaches zero at infinity it has a well-defined Fourier transform which we denote as

λ̃(ω). A more general case when λ(t) asymptotes to a non-zero constant is delegated to

appendix A.

Before the quench the system is in the ground state |0〉 of H0. Time dependent wave-

function can be decomposed in terms of energy eigenstates of H0, |Ψ(t)〉 =
∑
an(t)|n〉.

Expanding in δλ, at leading order in perturbation theory the probability of vacuum decay

is given by (see appendix A)

P = lim
t→∞

∑
n 6=0

|an|2 = (2π)d−1V
∑
n 6=0

|λ̃(En)|2δ(~pn) |〈0|O(0)|n〉|2 . (2.3)

Here ~pn and En is the momentum and energy of the state |n〉. Clearly, because of the

translational invariance of (2.1) only states with zero momentum contribute to |Ψ(t)〉. The

sum in (2.3) can be conveniently expressed in terms of the spectral density function

ρ(p2)Θ(p0)

(2π)d−1
=
∑
n

δd(p− pn) |〈0|O(0)|n〉|2 , (2.4)

that controls imaginary part of 〈0|O(p)O(−p)|0〉 via Källén-Lehmann representation. Com-

bining (2.3) and (2.4) gives probability density

P =
P

V
=

∫ ∞
0+

dω ρ(ω2)|λ(ω)|2 . (2.5)

Local operator O acting on vacuum can only create localized states, which can be

colloquially thought of as a cluster of particles. Transitionally-invariant states |n〉 should

be understood as these localized states smeared over the entire space. Probability density

P then has an interpreted of dP/dV , the probability of creating a localized excited state

within a unit volume of space during the quench. Creation of particles at different locations

are independent random processes, with the full number of excited states created within any

– 3 –
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given volume given by the Poisson distribution. More precisely (2.5) describes creation of

states with different energies, which at leading order in perturbation theory are independent

Poisson processes. Accordingly, average energy density produced during the quench will

be given by

ε =
Ē

V
= lim

t→∞

〈Ψ|H0|Ψ〉
V

=

∫ ∞
0+

dω ω ρ(ω2)|λ(ω)|2 , (2.6)

and energy fluctuations by

∆E2

V
= lim

t→∞

〈Ψ|H2
0 |Ψ〉 − 〈Ψ|H0|Ψ〉2

V
=

∫ ∞
0+

dω ω2 ρ(ω2)|λ(ω)|2 . (2.7)

Spectral density function ρ(ω2) is not known in general. But for large ω � m it

can be deduced from the short-distance behavior of 〈0|O(x)O(0)|0〉, which is fixed by the

conformal symmetry in the UV (see appendix B),

ρ(ω2) ∝ ω2∆−d . (2.8)

In the case of CFT equation (2.6) can be also derived using the standard Ward identity

for the stress-tensor, see appendix C for details.

For ∆ > d/2, the integrand in (2.5) grows with ω. When λ(t) is a smooth function,

e.g. λ(t) ∝ e−(t/δt)2
, its shape provides a dynamical upper cutoff at ω ∼ δt−1, where

the integral is saturated. This means typical localized states produced during the quench

will have energy E ∼ δt−1. The average energy density and energy fluctuations follow

from (2.6), (2.7)

ε ∼ `2∆−2d δtd−2∆ , ∆E2 ∼ V `2∆−2d δtd−2∆−1 . (2.9)

In the discussion above we implicitly assumed that the resulting density of particles

after the quench is not too large such that the probability of particles to interact during

the quench is small. To justify this assumption we consider volume ∆V = ∆Ld−1 such

that the probability of finding a localized state inside ∆V after the quench is of order one,

P∆V ∼ 1 , ∆L ∼ δt
(
`

δt

)2(d−∆)/(d−1)

. (2.10)

Here ∆L is a typical distance between two neighboring localized states and due to causality

these states would not be able to interact during the quench so far

`� δt , (2.11)

and consequently ∆L� δt. The same condition ensures that Compton wavelength of the

created particles δt is much smaller than the distance between them ∆L, which justifies

treatment of these states as fully localized.

When m−1 � δt � a0 and ` � δt, qualitative time evolution of the system can

be summarized as follows. During the quench ground state decays into a diluted “gas”

of highly excited localized states each of an approximate energy δt−1. Typical distance

between these states ∆L is large enough such that up to time t ∼ ∆L these states do

– 4 –
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not interact with each other. This specifies the limits of applicability of the conformal

perturbation theory. Up to the times

t . δt

(
`

δt

)2(d−∆)/(d−1)

(2.12)

dynamics of the system can be described in terms of the UV CFT, but once the localized

excitations start colliding, perturbative approximation breaks down and the system equili-

brates. Although beyond this point we can not describe system’s dynamics in detail, energy

distribution (2.6), (2.7) will remain the same so far Hamiltonian is time-independent. Ac-

cordingly, (2.7) shows that at late times energy fluctuations ∆E will scale with the volume

as V 1/2. Combined with the standard argument of eigenstate thermalization this means

local physics will be thermal, with the effective temperature determined by energy den-

sity (2.6),

T ∼ δt−1(δt/`)2(d−∆)/d . (2.13)

As a consistency condition (2.23) requires the effective temperature to be high in compar-

ison with the IR scale, T � m, which introduces a constraint on ` in terms of δt and m.

In other words, our qualitative description of |Ψ(t)〉 allows us to make a highly non-

trivial prediction that following the quantum quench system will thermalize in the sense

that local observables will equilibrate to their thermal values. Let us emphasize here that

the system always remains in a pure state and never approaches true thermal ensemble.

This can be seen already from the expression for ∆E (2.9), which is different from the energy

fluctuations for the conformal field theory in a Gibbs state, ∆E2 ∼ V T d+1. Accordingly,

the prediction of thermalization can be only extended to local quantities, confined to the

subregion much smaller than the full volume V .

In conclusion we discuss the limit when the fast and smooth quench approaches the

sudden one, δt ∼ a0. When the quench is truly instantaneous with λ(t) given by the

step-function1 λ̃(ω) ∼ ω−1, the probability integral (2.5) diverges for ∆ > (d+ 1)/2. This

means the actual upper limit in (2.5) will be given by the physical UV cutoff a0, i.e. during

the quench vacuum decays into some highly excited states of energy a−1
0 . These excitations

can not be described in terms of the UV CFT and the resulting state has no universality,

i.e. it is sensitive to the details of UV physics. This explains the very different physical

behavior observed for sudden and fast quenches in [16–21].

2.1 Path integral formalism

The picture described in the previous section, which invoked particles and localized states,

may look too qualitative to be precise. In what follows we reproduce main results of the

previous section using a non-petrubative path integral formalism.

Let us consider a field theoretic system governed by the time independent Hamiltonian,

Hin. We assume that the system resides in the ground state, |0, in〉 when Hin starts to

1To show that the divergence of (2.5) is a result of an abrupt change of λ and is not related to its

asymptotic behavior at large t, one can consider a rectangular-shaped pulse with λ̃ ∼ sin(ωδt)/ω, which

would suffer from the same divergence.

– 5 –
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experience a continuous homogeneous deformation (smooth homogeneous quench) leading

to a time independent Hamiltonian Hout in the future

Hin −→ H(t) −→
t→∞

Hout . (2.14)

The coupling λ(t) in (2.1) is an interpolating parameter between the Hamiltonians. For

example, if Hin exhibits conformal symmetry while λ(t) vanishes asymptotically, this a

setup representing a smooth CFT-to-CFT quantum quench with Hin = Hout = H0. Let

us emphasize though that our discussion is more general and asymptotic Hamiltonians do

not have to be equal.

The quantum quench results in a non-trivial transition matrix, S, between the eigen-

states |m, in〉 and |n, out〉 of the momentum operators Pµin = (Hin, ~P ) and Pµout = (Hout, ~P )

respectively. In our case spatial momentum is conserved and therefore S may be written

as follows

Snm ≡ 〈n, out|m, in〉 = δnm + i (2π)d−1 δ(~pn − ~pm)Tnm , (2.15)

where δnm is an “identity matrix” mapping energy eigenstates of Hin and Hout. It de-

scribes an adiabatic i.e. infinity slow transition of Hin into Hout when the non-trivial part

Tnm vanishes.

Unitarity of S requires

Im Tmm =
(2π)d−1

2

∫
dn δ(~pn − ~pm) |Tnm|2 , (2.16)

where the integral runs over continuum of “out” states. This relation is basically a version

of the optical theorem. In (2.16) we introduced the measure over the out-states

dn =
dω dd−1~p

(2π)d−1
Ω(ω, p) , (2.17)

with help of the properly normalized density of states Ω(ω, p).

In this paper we focus on the initial state |m, in〉 = |0, in〉, therefore in (2.16) we have

~pm = 0 and2

Im T00 =
(2π)d−1

2

∫ ∞
0

dω

∫
dd−1~p

(2π)d−1
Ω(ω,p) δ(~p) |Tω0|2 =

1

2

∫ ∞
0

dω Ω(ω,0) |Tω0|2 . (2.18)

The probability of the system to be in a vicinity of an excited state |ω, out〉 6= |0, out〉
is given by

dP |0,in〉→|ω,out〉 =
dd−1~pdω

(2π)d−1
Ω(ω, p) |Sω0|2 = V dd−1~p dωΩ(ω, p) δ(~p) |Tω0|2 , (2.19)

where V is the full volume of space

V ≡ (2π)d−1δ(~p)
∣∣
~p=0

=

∫
dd−1~x ei~p·~x

∣∣∣
~p=0

. (2.20)

2Besides the total energy ω and momentum ~p, the final state |n, out〉 may have many other quantum

numbers. Matrix element Tω0 is defined such that Ω(ω, 0)|Tω0|2 includes the sum over these quantum num-

bers.

– 6 –
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Now we see that the right hand side of (2.18) (up to an overall volume factor) has simple

interpretation in terms of the total probability for the vacuum to decay into states |0, in〉 →
|ω, out〉 during the quench3

V Im T00 =
1

2
−
∫ ∞

0
dω Ω(ω, 0) |Tω0|2 +

V 2

2
|T00|2 =

1

2

∫
dP |0,in〉→|ω,out〉 +

V 2

2
|T00|2 . (2.21)

The transition amplitude T00 is given by the sum of all connected and disconnected

vacuum diagrams with at least one insertion of O. With help of (2.15) it can be easily

related to the effective action Γeff[λ], which is a sum of only connected diagrams

exp(iΓeff) ≡ 〈0, out|0, in〉 = S00 = 1 + i V T00 . (2.22)

In perturbation theory we expand T00 =
∑∞

j=1 T
(j)
00 , where T

(j)
00 is proportional to δλj . Up

to second order in δλ we find

V T
(1)
00 = −

∫ ∞
−∞

dt dd−1~xλ(t)〈0, in|O(t, ~x)|0, in〉 , (2.23)

V T
(2)
00 =

i

2

∫ ∞
−∞

dt1λ(t1)

∫ ∞
−∞

dt2λ(t2) 〈0, in|T
(
O(t1)O(t2)

)
|0, in〉 ,

where in the second line the correlator is time-ordered, and we introduced shorthand no-

tation O(t) ≡
∫
dd−1~xO(t, ~x). In general 〈0, in|O|0, in〉 is non-vanishing and real. Hence,

combining (2.21) and (2.22) we have to second order in δλ

2 Im Γ
(2)
eff = 2V ImT

(2)
00 − V

2
(
T

(1)
00

)2
=

∫
dP |0,in〉→|ω,out〉 . (2.24)

On the other hand, from (2.23)

2 Im Γ
(2)
eff = Re

∫ ∞
−∞

dt1λ(t1)

∫ ∞
−∞

dt2λ(t2) 〈0, in|T
(
O(t1)O(t2)

)
|0, in〉con. (2.25)

We see that
(
T

(1)
00

)2
subtracts the disconnected part from the correlator of two O’s leaving

the connected piece. Using Källén-Lehmann representation

〈0, in|T
(
O(t1, ~x1)O(t2, ~x2)

)
|0, in〉con. = −i−

∫ ∞
0

dµ2ρ(µ2)

∫
ddp

(2π)d
ei p·(x1−x2)

p2 + µ2 − iε
. (2.26)

Integrating over t1, t2, ~x1 and ~x2 gives

2 Im Γ
(2)
eff = V Im−

∫ ∞
0

dµ2ρ(µ2)

∫ ∞
−∞

dω

2π

|λ(ω)|2

−ω2 + µ2 − iε
. (2.27)

Using (2.24) and the standard identity

Im (−ω2 + µ2 − iε)−1 = πδ(µ2 − ω2) , (2.28)

we recover (2.5), see also appendix A.

3Integral on the right hand side of (2.18) includes ground state. However, it should be excluded from the

probability of vacuum decay, therefore in (2.21) we split the integral into two parts: constant contribution

of the vacuum state and integral over the excited states only (dashed integral stands to remind that vacuum

is excluded).
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We notice that both (2.6) and (2.7) are given by the connected piece of the two-point

function (2.26). This is a general rule, at all orders in perturbation theory the momenta

of energy distributions 〈H〉out, 〈〈H2〉〉out = 〈H2〉out − 〈H〉2out, etc., will be given by the

connected diagrams contributing to the effective action (2.22). In particular, to calculate

the k-th moment of energy distribution 〈〈Hk〉〉out to second order in λ, it is enough to

multiply the integrand in (2.5) by ωk. Thus, for instance, if ∆ > d/2 and δt satisfies (2.11),

one can replace ρ(ω2) with its conformal counterpart (2.8) to find

〈〈Hk〉〉out =
(4π)

d
2N

22∆Γ(∆)Γ
(
1 + ∆− d

2

) δλ2

δt2∆−d+k−1

∫ ∞
0

dω̃
|f(ω̃)|2

ω̃d−2∆−k

(
1 + h δλδtd−∆ + . . .

)
,

where ω̃ = ω δt is a dimensionless energy, h is some constant, whereas ellipsis stand for

higher order terms in δλ δtd−∆ � 1 and IR scale mδt � 1. It follows that higher order

corrections are suppressed in the limit δt→ 0 justifying the conformal perturbation theory

around the UV fixed point. Note also that for any ∆ satisfying the unitarity bound the

k-th moment of energy distribution for k > 3 exhibits divergence in the limit δt→ 0.

3 Quenched one-point functions

As argued in the previous section, a field theoretic system subject to a fast quench can

be described in terms of an appropriate UV CFT. In this section we use conformal per-

turbation theory to calculate one-point function of arbitrary scalar operators following the

quench. Previous works employing conformal perturbation theory in a similar context in-

clude [26, 27]. We assume that the microscopic theory (2.1) is a deformation of a conformal

theory H0 = HCFT, and λ(t) vanishes at infinity, thus describing a CFT-to-CFT quench.

Using Schwinger-Keldysh we expand time-dependent wave-function of the system up

to second order in δλ,

|Ψ(t)〉 = e−iHCFT(t−t′)

(
|Ψ(t′)〉+ (−i)

∫ t

t′
dt1 λ(t1)O(t1)|Ψ(t′)〉 (3.1)

+ (−i)2

∫ t

t′
dt1 λ(t1)

∫ t1

t′
dt2 λ(t2)O(t1)O(t2)|Ψ(t′)〉+ . . .

)
,

where O(t) =
∫
dd−1~xO(t, ~x) with O(t, ~x) = eiHCFT(t−t′)O(~x) e−iHCFT(t−t′) being the stan-

dard Heisenberg operator in the unperturbed CFT. The state within the parenthesis is

what we usually call the “interaction picture” state, while |Ψ(t)〉 is the so-called “in” state.

In what follows we are going to calculate 〈O〉, where the expectation value is taken in the

“in” state. Of course, the hierarchy of scales discussed in the previous section, a0 � δt� `,

is implicitly assumed throughout this section as well to ensure validity of the conformal

perturbation theory.

We derive the universal scaling of 〈O〉 in the limit of fast but smooth quenches δt→ 0

confirming and generalizing previous holographic and free field theory calculations [17–21].

The logarithmic enhancement found in holography [16–18] and free field theories [19–21]
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for special values of d and ∆ are shown to hold for any CFT and the overall constant factor

is explicitly evaluated.4

3.1 First order

For a CFT starting in the vacuum state before quench at linear order in δλ

〈O(t, ~x)〉 = 〈0|O(t, ~x)|0〉 − i
∫ t

−∞
dt′
∫
dd−1~y λ(t′)〈0|[O(t, ~x),O(t′, ~y)]|0〉+O(δλ2) , (3.2)

where we used (3.1) with t′ = −∞, assuming the initial state is the vacuum state of the

unperturbed CFT, |Ψ(−∞)〉 = |0〉. Thus, the correlators on the right hand side of (3.2)

are evaluated in the unperturbed CFT.

Using translational invariance the integral over space can be evaluated explicitly. We

relegate the details of the calculation to appendix D (see (D.11) there), while here present

the final answer∫
dd−1~x 〈0|[O(t, ~x),O(0, 0)]|0〉 = −iN 2π

d+1
2

Γ
(
d−2∆+1

2

)
Γ(∆)

sign(t) |t|d−2∆−1 . (3.3)

Here N is the normalization constant of the Euclidean two-point function of O. With help

of (3.3) and 〈0|O(x)|0〉 = 0 we obtain for the linear correction

δ(1)〈O(t, ~x)〉 =
−2π

d+1
2 N

Γ(∆)Γ
(
d−2∆+1

2

)δλ ∫ t

−∞
dt′

f(t′/δt)

(t− t′)2∆−d+1
. (3.4)

This expression exhibits a UV divergence for d/2 ≤ ∆ < d. It emerges at the upper

bound t′ = t where the two operators O(x) in the commutator collide. We regulate the

integral by introducing a sharp UV cut off a0, i.e., the integral runs over t′ from −∞ to

t − a0. Then to calculate the divergent terms one has to Taylor expand h(t′/δt) in the

vicinity of t′ = t and carry out the divergent integrals. These divergences are ought to be

canceled by adding appropriate counterterms. We note that if t lies outside the support of

λ(t), δ(1)〈O〉 is finite and counterterms are not necessary. From now on we only consider

the scheme-independent logarithmic divergence. This can be achieved, for instance, by

employing dimensional regularization or analytically continue in ∆.

When no logarithmic divergence is present, it follows from (3.4) that the one-point

function exhibit the following scaling [17–20, 23],

δ(1)〈O(t, ~x)〉 =


a1(t)δλδtd−2∆ , t ∈ supp

(
λ(t)

)
,

δλδt

t2∆−d+1

(
b1 + b2

δt

t
+ . . .

)
, δt� t� ` .

(3.5)

Here a1(t), b1 and b2 are of order one and fixed by (3.4). In the limit δt → 0 (3.5) is

singular for ∆ > d/2, and as argued in [17–20], it suggests that instantaneous process,

δt = 0, can not actually be realized. This singularity is clearly at odds with the“sudden

4See also appendix A in the recent publication [23] where the authors carry out some of the calculations

presented in this section.
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quench” approximation of [12, 13, 24] when the wave-function does not change which must

result in 〈O〉 = 0 across the quench. The crucial parameter which separates these two

scenarios is the ratio δt/a0. When the latter is small, the dynamics is well described by the

UV CFT, but when δt is smaller than a0, (3.5) is no longer applicable. In case of lattice

models this transition can be studied explicitly [23].

When (3.4) exhibits a logarithmic divergence, the expression for δ(1)〈O〉 is local, and

for t within the support of λ(t) the scaling receives an additional logarithmic enhancement.

These logarithmic terms show up for ∆ = (d− 1 +n)/2 with n = 1, 2, . . . , d+ 1, where the

upper bound on n is fixed by the requirement ∆ ≤ d. In this case

δ(1)〈O(t,~x)〉
∣∣∣
∆= d−1+n

2

=
2π

d+1
2 N

Γ
(
d−1+n

2

)
Γ
(

2−n
2

)
Γ(n)

dn−1

dtn−1
λ(t) log(a0/δt)+. . . , n= 1,2, . . . ,d+1 ,

(3.6)

where ellipsis stand for non-universal finite terms. This expression can be further simplified.

When n is even and n ≥ 2, poles of gamma function in the denominator cancel the log

term. These poles are equivalent to log(1/a0) in the dimensional regularization scheme.

Thus for even n there is precise cancellation between these zeros and logarithmic divergence

of the integral over time, and we get the following exact and local expressions5

δ(1)〈O(t,~x)〉
∣∣∣
∆= d−1+n

2

=−
2π

d−1
2 NΓ(n2 )

Γ
(
d−1+n

2

)
Γ(n)

dn−1

dtn−1
λ(t)

×

(−1)
n
2
π

2
, for even n∈ 2,4, . . . ,d+1 ,

(−1)
n+1

2 log
(
a0/δt

)
, for odd n∈ 1,3, . . . ,d+1 .

(3.7)

The cut off dependence inside log is eliminated by an appropriate counterterm. Now we

clearly see the logarithmic enhancement log δt relative to the naive scaling δtd−2∆ for even

integer n = 2∆− d+ 1.

It is instructive to compare our results with [19, 20], which were considering free field

theories with the time-modulated mass. In the case of free scalar, ∆ = d−2 (or equivalently,

n = d− 3), λ(t) = m2(t) and O = φ2/2. Hence,

〈0|O(x)O(0)|0〉 =
1

4
〈0|φ2(x)φ2(0)|0〉 =

1

2
〈0|φ(x)φ(0)|0〉2 =

Nφ

x2(d−2)
, (3.8)

where Nφ =
Γ
(
d−2

2

)2

32πd
. Substituting into (3.7), we find

δ(1)〈φ2(t, ~x)〉 =


4(−1)d/2

(16π)
d−1

2 Γ
(
d−1

2

)∂d−4
t m2(t) log(a0/δt) + . . . for even d ≥ 4 ,

2π(−1)
d−1

2

(16π)
d−1

2 Γ
(
d−1

2

)∂d−4
t m2(t) for odd d ≥ 5 .

(3.9)

These results agree with [19, 20].

5Note that for even n eq. (3.7) gives an exact answer, while for odd n we suppressed a finite non-local

term since it can be changed by rescaling a0, and therefore is non-universal.
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For free fermions ∆ = n = d− 1, λ(t) = m(t) and O = ψ̄ψ. Accordingly

〈0|O(x)O(0)|0〉 = 〈0|ψ̄ψ(x)ψ̄ψ(0)|0〉 =
Nψ

x2(d−2)
, (3.10)

where Nψ = 2[ d
2

] Γ
(
d
2

)2

4πd
. Substituting into (3.7), we find

δ(1)〈ψ̄ψ(t,~x)〉=


2
d
2

+1 (−1)
d+2

2

(16π)
d−1

2 Γ
(
d−1

2

)∂d−2
t m(t) log(a0/δt)+. . . for even d≥ 4 ,

2[ d
2

] π(−1)
d+1

2

(16π)
d−1

2 Γ
(
d−1

2

)∂d−2
t m(t) for odd d≥ 3 .

(3.11)

Again we find agreement with [20].6

3.2 Second order

Let us now study 〈Oi〉, the one-point function of a scalar primary of arbitrary conformal

dimension ∆i 6= ∆, ∆i < d. In this case Euclidean correlator 〈OOi〉 vanishes, thus there

is no linear correction to 〈Oi〉, and the leading response is quadratic in δλ. Using (3.1) we

get after setting t′ = −∞ and performing simple algebra

δ(2)〈Oi(t, ~x)〉 = 2 Re

∫ t

−∞
dt1λ(t1)

∫ t1

−∞
dt2 λ(t2) 〈0|

[
O(t1),Oi(t, ~x)

]
O(t2)|0〉 . (3.12)

This ordered correlator can be evaluated by assigning an appropriate iε prescription

to the Euclidean three point function. As a general rule, to enforce right ordering of the

operators, an operator that is to the “left” of another should have algebraically smaller

negative imaginary part in the time direction.

Let us start with a particular case ∆i = 2∆. In this case, the Euclidean three point

function simplifies

〈0|O(x1)Oi(x)O(x2)|0〉E
∣∣∣
∆i=2∆

=
C

|x1 − x|2∆|x2 − x|2∆
. (3.13)

Adding the appropriate small imaginary components to the times yields

Re 〈0|
[
O(t1, ~x1),Oi(t, ~x)

]
O(t2, ~x2)|0〉

∣∣∣
t≥t1≥t2

=
2C sin2(π∆)(
− s2

1

)∆(− s2
2

)∆ Θ(−s2
1)Θ(−s2

2) , (3.14)

where we introduced s2
1 ≡ −(t− t1)2 + (~x− ~x1)2 and s2

2 ≡ −(t− t2)2 + (~x− ~x2)2. Plugging

this expression into (3.12) and integrating over ~x1 and ~x2 gives us the desired leading order

contribution

δ(2)〈Oi(t, ~x)〉
∣∣∣
∆i=2∆

=
4πd+1C

Γ2(∆)Γ2
(
d−2∆+1

2

)δλ2

(∫ t

−∞
dt′

f(t′/δt)

(t− t′)2∆−d+1

)2

. (3.15)

6Up to an overall sign our results match eqs. (3.14), (3.15) in [20] provided that (2π)
d−1

2 → (2π)d−1 in

eq. (3.10) of that paper. We thank authors of [20] for correspondence on this matter.
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Using (3.4) it can be written simply as

δ(2)〈Oi(t, ~x)〉
∣∣∣
∆i=2∆

=
C

N2

(
δ(1)〈O(t, ~x)〉

)2
. (3.16)

Next let us consider general ∆i. In this case (3.12) can be written as

δ(2)〈Oi(t,~x)〉=C

∫ t

−∞
dt1λ(t1)

∫ t1

−∞
dt2λ(t2)

(
I1(T1,T 2,T )−I1(T 1,T 2,T )+ c.c.

)
, (3.17)

where the bar over T 2
i ≡ (ti − t − iε)2 for i = 1, 2 denotes complex conjugate, T 2 ≡

(t1 − t2 − iε)2 and we have defined7

I1(T1,T2,T )≡
∫
dd−1~x1

∫
dd−1~x2

1(
~x2

1−T 2
1

)∆i
2
(
~x2

2−T 2
2

)∆i
2
(

(~x1−~x2)2−T 2
) 2∆−∆i

2

.

(3.18)

To evaluate the above integral we make use of the Mellin-Barnes representation. This

procedure is straightforward but tedious. The details of this calculation are presented in

the appendix E, the final answer is given by

I1(T1,T2,T ) =
(
−T 2

)d−1−∆i
2 −∆ πd−1

Γ
(
d−1

2

)
Γ2
(

∆i

2

)
Γ
(

2∆−∆i

2

)
×

[
Γ
(2∆−d+1−∆i

2

)
Γ
(d−1−∆i

2

)
Γ
(2∆i−d+1

2

)
Γ

(
∆i

2

)
×z

d−1−2∆i
2

2 F4

(
∆i

2
,
2∆i−d+1

2
;

3+∆i−d
2

,
d+1+∆i−2∆

2
;
z1

z2
,

1

z2

)
+Γ
(2∆−d+1−∆i

2

)
Γ
(d−1−∆i

2

)
Γ
(d−1

2

)
Γ

(
∆i

2

)

×z
d−1−2∆i

2
1

(
z1

z2

)∆i
2

F4

(
∆i

2
,
d−1

2
;
d+1−∆i

2
,
d+1+∆i−2∆

2
;
z1

z2
,

1

z2

)
(3.19)

+Γ
(2∆−d+1

2

)
Γ
(d−1−∆i

2

)
Γ
(d−1+∆i

2
−∆

)
Γ

(
∆i

2
+∆−d+1

)
×zd−1−∆−∆i

2
2 F4

(
∆i

2
+∆−d+1,∆− d−1

2
;

3−d+∆i

2
,

3−d−∆i

2
;
z1

z2
,

1

z2

)
+Γ
(d−1−2∆+∆i

2

)
Γ
(∆i+1−d

2

)
Γ
(

∆− d−1

2

)
Γ

(
∆−∆i

2

)
×zd−1−∆i

2 −∆
1

(
z2

z1

) d−1
2 −∆

F4

(
∆−∆i

2
,∆− d−1

2
;
d+1−∆i

2
,

3−d−∆i

2
;
z1

z2
,

1

z2

)]
.

Here zi = T 2
i /T

2 are two dimensionless parameters and F4(a, b; c, d; x, y) is the Appell’s

hypergeometric function of two variables (it is defined in (E.7)).

As a consistency check we take the limit ∆i → 2∆. As expected, I1 in this case

dramatically simplifies. Because of the overall vanishing factor 1/Γ(∆ − ∆i/2), all the

7To maintain right ordering of 3 operators in (3.12) one has to add distinct imaginary parts iε and 2iε

to Lorenzian times of O(t1) and Oi(t, ~x). However, this difference is not significant in this calculation, and

therefore we use iε instead of 2iε.
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terms but the last one in (3.19) vanish, and we end up with

I1(T1, T2, T )
∣∣∣
∆i=2∆

=
πd−1Γ2

(
∆− d−1

2

)
Γ2(∆)

(
T 2

1 T 2
2

) d−1
2
−∆

. (3.20)

Substituting this into (3.17) we recover (3.15).

The general expression for δ(2)〈Oi(t, ~x)〉 is bulky, but it is straightforward to use it to

derive the universal scaling in the limit δt→ 0. Setting for simplicity t = 0 yields

δ(2)〈Oi〉
∣∣∣
t=0
∼ (δt)−∆i

(
`

δt

)2(∆−d)

. (3.21)

In particular, 〈Oi〉 diverges in the limit δt → 0 if ∆i > 2(d −∆). Moreover, the latter is

always the case for Oi satisfying unitarity bound ∆i > (d−2)/2, provided that (3d+2)/4 <

∆ < d.

An important corollary of our calculation is the estimate of the validity of perturbation

theory. When ∆i = ∆ perturbation theory is valid so far δ(2)〈O〉 � δ(1)〈O〉. In the limit

t� δt, (3.17) gives

δ(2)〈O〉
∣∣∣
t�δt

= δt−∆

(
`

δt

)2(∆−d)(
b̃1

(
t

δt

) d−1
2
−∆ (

1+. . .
)
+b̃2

(
t

δt

)d−1− 3
2

∆ (
1+. . .

))
,

(3.22)

where ellipsis stand for O(δt/t) terms, and numerical coefficients b̃i are of order one. Com-

paring this with (3.5) gives two conditions, with the dominant (a more restrictive) one being
t� δt

(
`
δt

) 2(d−∆)
2∆−d+1 , d− 1 < ∆ < d ,

t� δt
(
`
δt

) 2(d−∆)
∆ , d−2

2 < ∆ < d− 1 .

(3.23)

Presence of more than one condition may indicate there are several mechanisms in place

restricting the validity of the conformal perturbation theory. It is interesting to note that

when the two conditions coincide, which happens for ∆ = d−1, the validity condition (3.23)

coincides with the qualitative estimate (2.12).

4 Quenched correlators

In this section we study the response of the system to a fast quantum quench as reflected

in the two-point correlation function of primary operators Oi and Oj with the respective

conformal dimensions ∆i and ∆j . The relevant deformation of HCFT and its conformal

dimension will be denoted by Ok and ∆k respectively.

To justify the conformal perturbation theory we require

δt, t, r � ` , (4.1)

where t and r are the characteristic temporal and spatial separations of operators Oi and

Oj . In other words, we probe the theory sufficiently close to the UV fixed point, such that

the IR scale ` introduces only perturbatively small corrections within the UV CFT.
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Our primary goal is to derive the universal scaling of the two-point function in var-

ious limits. We start by studying the case when two operators Oi and Oj are inserted

simultaneously at different points in space, and then extend our analysis to the opposite

regime when both operators are inserted at the same spatial point, but at two different

times. Finally, in section 4.3 we show that various scalings obtained in this section can be

reproduced with the help of the OPE.

At late times and large distances δt � t, r � ` the equal time correlator

〈Oi(t, r)Oj(t, 0)〉 after a smooth quench approaches that one in the instantaneous quench

scenario. However, at early times t ∼ δt these two scenarios disagree even if the spa-

tial distance is large δt � r � `. Moreover, the disagreement also persists for late time

δt � t � ` temporal correlator of two primaries, 〈Oi(t, 0)Oj(0)〉. This confirms the ex-

pectation of [19–21] that these two protocols result in two very different states after the

quench, as explained in section 2.

4.1 Spatial correlators

In the case of spatially separated operators the analog of (3.2) takes the following form

〈Oi(t, ~x)Oj(t, 0)〉 = 〈0|Oi(t, ~x)Oj(t, 0)|0〉 (4.2)

− i
∫ t

−∞
dt′ λ(t′)

∫
dd−1~y 〈0|[Oi(t, ~x)Oj(t, 0),Ok(t′, ~y)]|0〉+O(δλ2) .

Of course, 〈0|OiOj |0〉 = 0 unless ∆i = ∆j . The three point function in the integrand

is obtained by an appropriate analytic continuation of its Euclidean counterpart. For

simplicity we introduce

∆ijk ≡ ∆i + ∆j −∆k . (4.3)

Then the Euclidean three point function reads

〈0|Oi(x)Oj(y)Ok(z)|0〉E =
Cijk

|x− y|∆ijk |x− z|∆kij |y − z|∆kji
. (4.4)

The Lorentzian ordered correlator that we need can be obtained from the above Euclidean

expression by adding small imaginary component to the Lorentzian times of each operator8

〈0|[Oi(t,~x)Oj(t,0),Ok(0,~y)]|0〉=
Cijk(

−(t−iε)2+~y 2
)∆kji

2
(
−(t−iε)2+(~y−~x)2

)∆kij
2 |~x|∆ijk

−
Cijk(

−(t+iε)2+~y 2
)∆kji

2
(
−(t+iε)2+(~y−~x)2

)∆kij
2 |~x|∆ijk

.

(4.5)

In principle, one can repeat now the same steps as in appendix D and get the desired

formulas. However, the calculations become a bit cluttered because of proliferation of theta

functions (see appendix F). Hence, we do it in a slightly different way using Mellin-Barnes

representation (E.1).

8See appendix D for a simple example.
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From (4.2) linear response to the quench (leading correction to a pure CFT two-point

function) can be written as

δ(1)〈Oi(t, ~x)Oj(t, 0)〉 =
2Cijk

x∆ijk

∫ t

−∞
dt′ λ(t′) Im

(
J(t− t′, x)

)
, (4.6)

where we have defined

J(t, x) ≡
∫
dd−1~y

1(
− (t− iε)2 + ~y 2

)∆kji
2
(
− (t− iε)2 + (~y − ~x)2

)∆kij
2

. (4.7)

Introducing Feynman parameter u to integrate over ~y, yields

J(t, x) =
π
d−1

2 Γ
(
∆k − d−1

2

)
Γ
(∆kji

2

)
Γ
(∆kij

2

) ∫ 1

0
u

∆kij
2
−1(1−u)

∆kji
2
−1
(
u(1−u)x 2−(t−iε)2

) d−1
2
−∆k . (4.8)

To carry out integration over the Feynman parameter u we employ Mellin-Barnes repre-

sentation (E.1) with ν = ∆k − d−1
2 , A2 = u(1− u)x2 and M2 = (t− iε)2,

J(t,x) =
π
d−1

2

2πiΓ
(∆kji

2

)
Γ
(∆kij

2

) (4.9)

×
∫ c+i∞

c−i∞
ds

(
−(t−iε)2

)s
(x2)ν+s

Γ(−s) Γ(ν+s)Γ
(

∆kij

2 −ν−s
)

Γ
(

∆kji

2 −ν−s
)

Γ
(
d−1

2 −ν−2s
) .

For |M2/A2| > 1 we close the contour to the left encompassing the infinite series of

poles of Γ(ν + s) and possibly finite number of poles associated with Γ
(

∆kij

2 − ν − s
)

and Γ
(

∆kji

2 − ν − s
)

. However, recall that we analytically continue various parameters

(such as d, ν and scaling dimensions) to the values where the integrals converge. Other

values are treated by analytic continuation. In particular, both ∆kij and ∆kji are positive

to ensure convergence of the integral over Feynman parameter u. Thus the poles of Γ(ν+s)

are separated from the poles of other gamma functions occurring in the above integral, and

we can readily evaluate the sum over the residues of Γ(ν + s). The final result is given by

J(t,x) =
π
d−1

2 Γ
(
∆k− d−1

2

)
Γ(∆k)

(
−(t−iε)2

)∆k− d−1
2

3F2

(
∆kij

2
,

∆kji

2
,∆k−

d−1

2
;
∆k

2
,

∆k+1

2
;

x2

4(t−iε)2

)
.

(4.10)

The bounds on various parameters which we imposed to ensure convergence of the integrals

can be relaxed now. Substituting the above result back into (4.6) yields

δ(1)〈Oi(t,~x)Oj(t,0)〉=
2π

d−1
2 Γ

(
∆k− d−1

2

)
Γ(∆k)

Cijk

x∆ijk
Im

∫ t

−∞
dt′

λ(t′)(
−(t−t′−iε)2

)∆k− d−1
2

×3F2

(
∆kij

2
,

∆kji

2
,∆k−

d−1

2
;
∆k

2
,

∆k+1

2
;

x2

4(t−t′−iε)2

)
. (4.11)
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Obviously, one can suppress iε in the argument of the generalized hypergeometric function

in the region where it is analytic.

Equation (4.11) is convenient to explore various limits. For instance, the late time

behavior of the linear response is given by

δ(1)〈Oi(t, ~x)Oj(t, 0)〉
∣∣∣
x,δt�t

'
−2π

d+1
2 Cijk

Γ(∆k)Γ
(
d+1−2∆k

2

) δt δλ td−1−2∆k

x∆ijk

∫ ∞
−∞

dξf(ξ) . (4.12)

In the limit of fast and smooth quenches δt → 0 this contribution vanished, which agrees

with the behavior in case of a sudden quench. Of course, the genuine late time behavior

t � ` requires a more elaborate analysis since the conformal perturbation theory is not

reliable in this regime. We also remark, that when ∆k = d−1
2 , as is the case for free fermion

mass operator, the two-point function becomes t-independent.

Next we turn to study early times when the conformal perturbation theory is valid.

Setting t = 0 for simplicity and considering x� δt and x� δt gives

δ(1)〈Oi(0, ~x)Oj(0, 0)〉
∣∣∣
x�δt

' −2π
d+1

2

Γ
(∆kji

2

)
Γ
(d−∆kji+1

2

) Cijk
x2∆i

δλ

(δt)∆kji−d

∫ 0

−∞
dξ

f(ξ)

(−ξ)∆kji−d+1

+ (i↔ j) , (4.13)

δ(1)〈Oi(0, ~x)Oj(0, 0)〉
∣∣∣
x�δt

' −2π
d+1

2

Γ (∆k) Γ
(
d−2∆k+1

2

) Cijk

x∆ijk

δλ

(δt)2∆k−d

∫ 0

−∞
dξ

f(ξ)

(−ξ)2∆k−d+1
.

Note that the integrals over ξ are finite if we employ dimensional regularization scheme

and choose the scaling dimensions such that the logarithmic divergence is not present.

As can be seen from (4.13) the two-point function becomes singular in the limit of fast

quenches δt → 0 while δλ and x are held fixed, if ∆kij > d or ∆kji > d. Our calculation

demonstrates that during the quench the universal scaling of spatial correlators flows from

δtd−2∆k when x ∼ δt to δtd−∆kji when x� δt.

Finally, we note that for the special conformal dimensions when n = ∆kji − d + 1

is integer and odd there is a logarithmic enhancement of the scaling in (4.13), while for

even integer n this scaling is balanced by zero of the gamma function in the denominator

of (4.13).9 This behavior is similar to the one discussed above (3.7). In particular, for

t ∼ δt we find

δ(1)〈Oi(t, ~x)Oj(t, 0)〉
∣∣∣
x�δt,∆kji=d+n−1

=
2π

d−1
2 Γ
(
n
2

)
Γ
(
d−1+n

2

)
Γ(n)

Cijk
|~x|2∆i

dn−1

dtn−1
λ(t) (4.14)

×


(−1)

n
2
π

2
, for even n ∈ N+ ,

(−1)
n+1

2 log
(
a0/δt

)
, for odd n ∈ N+ .

9Similar argument holds for two other terms in (4.13) with 2∆k and ∆kij playing the role of ∆kji.
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4.2 Temporal correlators

Now let us study the case when Oi and Oj are inserted at the same spatial point, but at

two different times. Using (3.1) we find the following linear response

δ(1)〈Oi(t1,0)Oj(t2,0)〉=−i
∫ t2

−∞
dt′
∫
dd−1~yλ(t′)〈0|

[
Oi(t1,0)Oj(t2,0),Ok(t′,~y)

]
|0〉

−i
∫ t1

t2

dt′
∫
dd−1~yλ(t′)〈0|

[
Oi(t1,0),Ok(t′,~y)

]
Oj(t2,0)|0〉 . (4.15)

Then using (4.4) we have

〈0|[Oi(t1, 0)Oj(t2, 0),Ok(0, ~y)]|0〉 = (4.16)

Cijk(
− (t2 − iε)2 + ~y 2

)∆kji
2
(
− (t1 − 2iε)2 + ~y 2

)∆kij
2
(
− (t1 − t2 − iε)2

)∆ijk
2

−
Cijk(

− (t2 + 2iε)2 + ~y 2
)∆kji

2
(
− (t1 + iε)2 + ~y 2

)∆kij
2
(
− (t1 − t2 − iε)2

)∆ijk
2

,

and

〈0|
[
Oi(t1, 0),Ok(0, ~y)

]
Oj(t2, 0)|0〉 = (4.17)

Cijk(
− (t2 + iε)2 + ~y 2

)∆kji
2
(
− (t1 − iε)2 + ~y 2

)∆kij
2
(
− (t1 − t2 − 2iε)2

)∆ijk
2

−
Cijk(

− (t2 + 2iε)2 + ~y 2
)∆kji

2
(
− (t1 + iε)2 + ~y 2

)∆kij
2
(
− (t1 − t2 − iε)2

)∆ijk
2

.

To maintain right ordering of various operators in (4.15) we added two small imaginary

parts iε and 2iε to the appropriate Lorentzian times. However, for the calculations we

carry out in th section this difference between iε and 2iε matters.

Substituting these expressions into (4.15) and integrating over ~y, gives

δ(1)〈Oi(t1, 0)Oj(t2, 0)〉 =
4π

d−1
2 Cijk

Γ
(
d−1

2

) (
− (t1 − t2 − iε)2

)∆ijk
2

∫ t2

−∞
dt′ λ(t′)Im

(
I2(T1, T2)

)
− i

2π
d−1

2 Cijk

Γ
(
d−1

2

) (
− (t1 − t2 − iε)2

)∆ijk
2

∫ t1

t2

dt′ λ(t′)
(
I2(T1, T 2)− I2(T 1, T 2)

)
, (4.18)

where the bar over T 2
i ≡ (ti − t′ − iε)2 denotes complex conjugate, and we have defined

I2(T1, T2)≡
∫
dy

yd−2(
−T 2

1 +y 2
)∆kij

2
(
−T 2

2 +y 2
)∆kji

2

(4.19)

=
(
−T 2

2

) d−1−2∆k
2

Γ
(
d−1

2

)
Γ
(

∆kji−d+1
2

)
2Γ
(

∆kji

2

) (
−T 2

2

−T 2
1

)∆kij
2

2F1

(
d−1

2
,

∆kij

2
,
d+1−∆kji

2
;
T 2

2

T 2
1

)

+
Γ
(
d−1−∆kji

2

)
Γ
(

1−d+2∆k
2

)
2Γ
(

∆kij

2

) (
−T 2

2

−T 2
1

)1+2∆k−d
2

2F1

(
∆kji

2
,

1−d+2∆k

2
,

3−d+∆kji

2
;
T 2

2

T 2
1

).
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Equation (4.18) combined with (4.19) is what we need to analyze various limits. For

instance, if t1, t2 � δt then it can be readily seen that the linear response of the temporal

correlator vanishes as δt → 0. However, an interesting scaling emerges in the limit of fast

but smooth quenches if, for example, t1 � δt while t2 is set at some value within the

support of λ(t). Indeed, setting for simplicity t2 = 0 and assuming sufficiently large ∆j ,

one gets in this regime

I2(T1, T2)
∣∣∣
t1�δt,t2=0

'
(
− T 2

2

) d−1−2∆k
2

Γ
(
d−1

2

)
Γ
(

∆kji−d+1
2

)
2Γ
(

∆kji

2

) (
−T 2

2

−T 2
1

)∆kij
2

.

Substituting into (4.18), yields

δ(1)〈Oi(t1, 0)Oj(0, 0)〉
∣∣∣
t1�δt

' (4.20)

+
2π

d−1
2 Γ

(
∆kji−d+1

2

)
sin
(π(d−1−2∆k)

2

)
Γ
(

∆kji

2

) e−i
π∆ijk

2
(δt)d−∆kji

t2∆i
1

Cijk

∫ 0

−∞
dt′

λ(t′)

(−t′)∆kji+1−d

−
2π

d−1
2 Γ

(
∆kji−d+1

2

)
sin
(
π
2 ∆kij

)
Γ
(

∆kji

2

) ei
π(d−1−2∆j)

2
(δt)d−∆kji

t2∆i
1

Cijk

∫ ∞
0

dt′
λ(t′)

t′∆kji+1−d .

This expression clearly demonstrates that the two-point temporal correlator for large but

fixed t1 and small t2 is amplified (and in fact diverges) in the limit δt → 0 for sufficiently

large ∆j .

4.3 Universal scaling via OPE

In this subsection we illustrate that the universal scaling (4.13) of the quenched spatial

correlator, which emerges in the limit of fast and smooth quenches, can be recovered using

the OPE. We start from the simplest regime x� δt. In this limit we replace

Oj(0, ~x)Oj(0, 0) ∼
Cijk

Nix∆ijk
Oi(0) + . . . , (4.21)

where Ni is normalization constant of the Euclidean correlator 〈OiOi〉E. As a result, the

problem of computing (4.2) reduces to (3.2) where ∆ is identified with ∆k. In particular,

combining (3.4) with the coefficient of the above OPE yields the desired formula appearing

in the second line of (4.13). Similarly, one can derive late time behavior (4.12).

To understand how to use OPE in the limit x� δt, we rewrite the string of operators

appearing in the integrand of (4.2) as follows

[Oi(0, ~x)Oj(0, 0),Ok(t′, ~y)] = Oi(0, ~x)[Oj(0, 0),Ok(t′, ~y)] + [Oi(0, ~x),Ok(t′, ~y)]Oj(0, 0) .

Both commutators on the right hand side vanish unless Ok sits inside the past/future light

cone centered at the insertion points of Oi or Oj . Now since λ(t) vanishes outside the time
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interval of order δt, we deduce that in the regime x� δt the relevant domains of two light

cones are disjoint small neighborhoods of Oi and Oj respectively. Their size is of order

δt and they are separated by a large space-like distance of order |~x|. Thus for Ok sitting

within these domains, only one of the commutators on the right hand side survives, and

OPE can be used to replace it. For example, in Euclidean space we have

Oj(0, 0)Ok(t′E, ~y) ∼
Cijk

Ni(t
′ 2
E + ~y 2)

∆jki
2

Oi(0) + . . . . (4.22)

Hence, following the iε prescription outlined in the previous section, we obtain

[Oj(0, 0),Ok(t′, ~y)] ∼ 2 i
Cijk
Ni
Oi(0, 0) Im

1

(−(t′ + iε)2 + ~y 2)
∆kji

2

+ . . . , (4.23)

or equivalenly,

[Oj(0, 0),Ok(t′, ~y)] ∼ 2 i
Cijk
Ni
Oi(0, 0)

Θ(−s2)

(−s2)
∆kji

2

sin

(
π∆kji

2

)
sign(t′) , (4.24)

where s2 = −t′ 2 + ~y 2. Of course, up to the trivial replacements i ↔ j and ~y → ~y − ~x,

this relation also holds for [Oi(0, ~x),Ok(t′, ~y)]. Pluging this expression back into (4.22)

and (4.2), yields

δ(1)〈Oi(0,~x)Oj(0,0)〉
∣∣∣
|~x|�δt

=−2Cijk
sin
(π∆kji

2

)
|~x|2∆i

∫ 0

−∞
dt′λ(t′)

∫
dd−1y

Θ(−s2)

(−s2)
∆kji

2

+(i↔ j) .

(4.25)

The integral over ~y is straightforward, and the final answer matches the first expression

in (4.13).

5 Conclusions

In this paper we discussed global quantum quenches in field theory, focusing on the regime

when the typical time-scale of interaction δt is much shorter than all other physical scales

except for the UV cutoff. We outlined qualitative time evolution of the wave-function

following the quench and argued that for the times not exceeding critical value (2.12)

behavior of the system can be described in terms of the conformal perturbation theory.

Finally, we used conformal perturbation theory to calculate time-dependence of one- and

two-point correlation functions of scalar primaries of arbitrary dimensions and established

new universal scaling behavior for these quantities: (3.5), (3.21), (4.13), (4.20).

Our results raise a number of interesting questions. Besides time evolution of local

quantities, which were studied in this paper, it would be interesting to use conformal

perturbation theory to evaluate dynamics of non-local quantities as well, e.g. growth and

spread of entanglement entropy following the quench [28–30]. Of particular interest would

be to shed light on universal behavior of entanglement which was previously established

holographically in [31, 32].
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One of the results of this paper is the prediction of thermalization, that following

the fast global quench local observables eventually equilibrate to their respective thermal

expectation values. Dynamics of thermalization goes beyond the scope of the conformal

perturbation theory, but still should be described in terms of the non-perturbative CFT

dynamics. This gives hope that relaxation dynamics may exhibit some universal scaling

behavior. Conceivably, such a universal scaling can be established numerically in case of

(1+1) dimensional models [23], see also [15] for numerical studies of instantaneous global

quenches near criticality. We hope to address this and other related questions in the future.
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A Transition probability: direct calculation

In what follows we derive the total probability for vacuum decay using the traditional

technique of time-dependent perturbation theory. If we perturb the Hamiltonian H →
H + V(t), then the expression for the first order transition amplitude to an eigenstate |n〉
of the unperturbed Hamiltonian reads [33]

an0 = −i
∫ t

−∞
〈0|V(t′)|n〉eiEnt′ dt′ = −e

iEnt

En
〈0|V(t)|n〉+

1

En

∫ t

−∞
〈0|∂V(t′)

∂t′
|n〉eiEnt′ . (A.1)

The first term on the right hand side is the first order correction to the ground state

wave function due to the perturbation. It has nothing to do with transition amplitude

and we suppress it in what follows. Of course, this term vanishes for sufficiently large t

if perturbation asymptotes to zero. The decay probability P to second order in λ(t) is

given by

P =
∑
n 6=0

|an|2 (A.2)

= (2π)d−1V
∑
n 6=0

δ(~pn) |〈0|O(0)|n〉|2

E2
n

∫ t

−∞
dt′′e−iEnt

′′
λ̇(t′′)

∫ t

−∞
dt′eiEnt

′
λ̇(t′) + . . . ,

where V is the volume of space (2.20), dot denotes derivative with respect to time, and we

substituted V(t) = λ(t)
∫
O into (A.1) and used the identity

〈0|∂V(t)

∂t
|n〉 = λ̇(t)〈0|O(0)|n〉 (2π)d−1δd−1(~pn) . (A.3)
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If the instant t is taken after the quench is over (when λ(t) is constant), we can

substitute t→∞ and rewrite decay probability in terms of the Fourier components of λ̇(t)

as follows10

P = (2π)d−1V
∑
n 6=0

δ(~pn) |〈0|O(0)|n〉|2

E2
n

|λ̇(En)|2 + . . . . (A.4)

The sum over n can be carried out using the definition (2.4). Indeed, for any function f(p)

we have ∑
n

|〈0|O(0)|n〉|2 f(pn) =

∫
ddp

∑
n

f(p)δd(p− pn) |〈0|O(0)|n〉|2

=

∫
ddp

(2π)d−1
f(p)ρ(p2)Θ(p0) . (A.5)

Thus we get11

P = V−
∫ ∞

0
dω ρ(ω2)

|λ̇(ω)|2

ω2
+ . . . . (A.6)

If λ(t) approaches zero in the asymptotic future, then one can replace
˙̃
λ(ω)→ iωλ̃(ω),

which is the standard identity for the Fourier transform in this case. Hence, we recover

transition probability used in the main body of the text

P = V−
∫ ∞

0
dω ρ(ω2)|λ(ω)|2 + . . . . (A.7)

B Conformal spectral function

In this appendix we calculate the conformal spectral function used in the text. Let us

consider a correlation function of two scalar primaries in a d-dimensional Euclidean CFT,

〈O(x)O(0)〉 =
N

|x|2∆
=
N(4π)d/2Γ(d/2−∆)

4∆Γ(∆)

∫
ddp

(2π)d
eipx

(p2)d/2−∆
. (B.1)

The same correlation function can be rewritten in terms of Källén-Lehmann representation

N(4π)d/2Γ(d/2−∆)

4∆Γ(∆)

1

(p2)d/2−∆
=

∫ ∞
0

ρ(µ2)
dµ2

p2 + µ2
, (B.2)

where the spectral function ρ(µ2) is defined in (2.4) and the sum runs over the complete

set of eigenstates |n〉 of the momentum operators Pµ.

Since the theory is conformal, we deduce that the spectral function is homogeneous,

ρ(µ2) = Cµ2α. Using (B.2) leads to

N(4π)d/2Γ(d/2−∆)

4∆Γ(∆)

1

(p2)d/2−∆
= C p2α

∫ ∞
0

x2αdx2

1 + x2
. (B.3)

10Note that dot in the case of λ̇(En) does not stand for the derivative with respect to time.This is just a

Fourier transform of λ̇(t) = dλ/dt(t).
11Dashed integral stands to emphasize that contribution of the vacuum state should be excluded.
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Integrating over x, yields

α = ∆− d

2
, C =

N(4π)d/2

4∆Γ(∆)Γ
(
1− d

2 + ∆
) . (B.4)

Note that by definition the spectral function is positive definite, hence ∆ ≥ (d − 2)/2 to

ensure positivity of C, which recovers the well-known unitarity bound.12

C Work done on the system

In this appendix we derive expression for the energy density after the quench in case of a

conformal theory (C.4) using the Ward identity

dE
dt

= ∂tλ(t)〈O(t, 0)〉 . (C.1)

This approach was previously used in the context of holographic and free field theory

calculations in [16–21].

Note that the right hand side of the Ward identity is finite in the limit a0 → 0

since we implicitly assume that O is renormalized and the action is equipped with all

necessary counterterms to subtract the UV divergences of 〈O〉. In fact, we employ analytic

continuation in d (or ∆), and therefore only logarithmic terms in (3.7) survive. However, as

we argue below these terms do not contribute to the total energy pumped into the system

during the quench. This is consistent with our previous analysis of the energy density in

section 2.

Substituting (3.4) into (C.1) yields

dE
dt

=
−2π

d+1
2 N

Γ(∆)Γ
(
d−2∆+1

2

)∂tλ(t)

∫ t

−∞
dt′

λ(t′)

|t− t′|2∆−d+1
+O(λ3) . (C.2)

The work done on the system can be obtained by integrating over time and taking the

limit t� δt. The leading order correction reads

E(2) =
−2π

d+1
2 N

Γ(∆)Γ
(
d−2∆+1

2

) δλ2

δt2∆−d

∫ ∞
−∞

dξ′′
∫ ξ′′

−∞
dξ′

∂ξ′′f(ξ′′)f(ξ′)

|ξ′′ − ξ′|2∆−d+1
. (C.3)

The integral on the right hand side is finite, and there is no logarithmic enhancement of the

scaling δt2∆−d. Indeed, the power law divergences are irrelevant since we employ analytic

continuation in d or ∆, while from (3.7) all possible logarithmic terms in the integrand

are proportional to ∂tf∂
n−1
t f for some odd n = 1, 2, . . . , d + 1. Thus up to vanishing

boundary terms ∂tf∂
n−1
t f ∼ (−1)

n−1
2

1
2∂t(∂

n−1
2

t f)2 is a total derivative which vanishes upon

integration. Finally, integrating (C.3) by parts and using Fourier representation of λ(t)

results in

E(2) =
(4π)

d
2N

22∆Γ(∆)Γ
(
1 + ∆− d

2

) ∫ ∞
0

dω
|λ(ω)|2

ωd−2∆−1
. (C.4)

12When ∆ = d−2
2

, the coefficient C vanishes and according to (B.2) the spectral function takes the form

ρ(µ2) = C̃δ(µ2) with C̃ = 8πd/2N

Γ
(

d−2
2

) .
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This formula combined with conformal spectral function calculated in appendix B agrees

with (2.6).

Note that the energy density is manifestly finite and positive. If the unitary bound

d − 2∆ ≤ 2 is satisfied, both the integrand and the numerical pre-factor are positive.13

Moreover, for smooth λ(t) with compact support the integral over ω converges at both

ends. When the unitary is saturated (e.g. deformation by the scalar mass operator in a

free theory) the logarithmic divergence at the lower bound of the integral is compensated

by vanishing numerical pre-factor, and we end up with finite and positive answer. Of

course, (C.4) is only applicable provided that the theory is conformal or ∆ > d/2 and λ(ω)

is sufficiently broad to ensure transitions into the high energy states where the theory is

described by a UV CFT.

To summarize, the results presented here recover the scaling behavior found in [16–21],

see also [26]. We also calculated the numerical coefficient in front of the scaling factor for

a generic CFT. Of course, this coefficient depends on the shape of the pulse. Provided δλ

is small enough the higher order corrections in δλ are suppressed by at least one power of

δλδtd−∆ � 1 relative to the leading order result (C.4).

D Commutator

In this appendix we calculate the vacuum expectation value of the commutator of two

primaries O(x) having conformal weight ∆. Based on the Euclidean correlator

〈0|O(x),O(y)|0〉E =
N

|x− y|2∆
, (D.1)

the following relation holds in Lorentzian time14

〈0|[O(t, ~x),O(0)]|0〉 =
N(

− (t− iε)2 + ~x2
)∆ − N(

− (t+ iε)2 + ~x2
)∆ . (D.2)

Defining now the interval between the insertion points s2 ≡ −t2+~x 2, we rewrite it as follows

〈0|[O(t, ~x),O(0)]|0〉 =

[
N(

s2 + iε
)∆ − N(

s2 − iε
)∆
][
θ(t)− θ(−t)

]
(D.3)

Obviously, this expression vanishes in the limit ε→ 0 if s2 > 0. For s2 < 0, the commutator

is readily evaluated if one substitutes

lim
ε→0

(
− |s2| ± iε

)
= |s2| exp(±iπ) (D.4)

into (D.3). Hence,

〈0|[O(t, ~x),O(0)]|0〉 = −2Ni
sin(π∆)

(−s2)∆
Θ(−s2) sign(t) , (D.5)

where Θ(x) is the standard step function that equals 1 for x > 0 and vanishes for negative x.

13One can also reverse this argument and argue that positivity of the total energy results in the uni-

tary bound.
14We use translational invariance to set one of the insertion point at the origin.
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Note that the point s2 = 0 should be treated in the distributional sense. If, for instance,

∆ = n is an integer, then (D.5) vanishes identically unless s2 = 0. In particular, starting

from (D.3) one can use the equality between the distributions

lim
ε→0

1

z ± iε
= P

1

z
∓ iπδ(z) , (D.6)

to show that for integer ∆ = n

〈0|[O(t, ~x),O(0)]|0〉 = 2πNi
(−1)n

Γ(n)
δ(n−1)(s2) sign(t) , (D.7)

where n − 1 derivatives of the delta function are taken with respect to its argument. It

is instructive to show that generic expression (D.5) agrees with (D.7) in the limit ∆→ n,

and we illustrate it now.

First, we integrate (D.5) over spatial directions∫
dd−1~x 〈0|[O(t, ~x),O(0)]|0〉 = −2Ni sin(π∆) sign(t)

∫
dd−1~x Θ(−s2)

1

(−s2)∆
. (D.8)

In spherical coordinates, we have∫
dd−1~x Θ(−s2)

1

(−s2)∆
=

2π
d−1

2

Γ
(
d−1

2

) ∫ t

0
dr rd−2 1

(t2 − r2)∆
=
π
d−1

2 Γ(1−∆)

Γ
(
d−2∆+1

2

) |t|d−2∆−1 .

(D.9)

Hence, for general ∆∫
dd−1~x 〈0|[O(t, ~x),O(0)]|0〉 = −iN 2π

d−1
2 Γ(1−∆) sin(π∆)

Γ
(
d−2∆+1

2

) sign(t) |t|d−2∆−1 , (D.10)

or equivalently, using the identity Γ(1 − z)Γ(z) = π/ sin(π z), we finally obtain∫
dd−1~x 〈0|[O(t, ~x),O(0)]|0〉 = −iN 2π

d+1
2

Γ
(
d−2∆+1

2

)
Γ(∆)

sign(t) |t|d−2∆−1 . (D.11)

Next, we use (D.7) to repeat the same calculation for a particular case of integer ∆ = n.

This time we have∫
dd−1~x 〈0|[O(t, ~x),O(0)]|0〉 = −2πiN

Γ(n)
sign(t)

( d

dt2

)n−1
∫
dd−1~x δ(~x 2 − t2) . (D.12)

In spherical coordinates∫
dd−1~x δ(~x 2 − t2) =

2π
d−1

2

Γ
(
d−1

2

) ∫ ∞
0

dr rd−2 δ(r − t) + δ(r + t)

2|t|
=

π
d−1

2

Γ
(
d−1

2

) |t|d−3 . (D.13)

Thus we get for integer ∆ = n∫
dd−1~x 〈0|[O(t, ~x),O(0)]|0〉 = −iN 2π

d+1
2

Γ
(
d−2n+1

2

)
Γ(n)

sign(t) |t|d−2n−1 . (D.14)

The above expression is in full agreement with the general formula (D.11). This completes

the proof that the general distribution (D.5) converges to (D.7) in the limit ∆→ n.
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E Master integral (3.18)

In this appendix we evaluate (3.18). Our main tool is the Mellin-Barnes (MB) representa-

tion15

1(
A 2 −M 2

)ν =
1

Γ(ν)

1

2πi

∫ c+i∞

c−i∞
ds

(−M2)s

(A 2)ν+s
Γ(−s) Γ(ν + s) , −ν < c < 0 . (E.1)

We start from shifting the integration variable ~x1 → ~x1 + ~x2 and using the MB for the

first two terms in the denominator of the integrand in (3.18)

I1 =
−1

(2π)2Γ2
(

∆i
2

) ∫ c+i∞

c−i∞
ds1 Γ(−s1) Γ(∆i/2 + s1)

∫ c+i∞

c−i∞
ds2 Γ(−s2) Γ(∆i/2 + s2)

×
∫
dd−1~x1

∫
dd−1~x2

(−T 2
1 )s1(−T 2

2 )s2

|~x1 + ~x2|∆i+2s1 |~x2|∆i+2s2
(
~x 2

1 − T 2
) 2∆−∆i

2

. (E.2)

Next we integrate over ~x2 and ~x1 with integral over ~x2 being done first,

I1 =
−πd−1

(2π)2Γ
(
d−1

2

)(− T 2
)d−1−∆i

2
−∆
∫ c+i∞

c−i∞
ds1

∫ c+i∞

c−i∞
ds2 z

s1
1 zs22

×
Γ(−s1)Γ(−s2)Γ

(
∆i + s1 + s2 − d−1

2

)
Γ
(
d−1−∆i

2 − s1

)
Γ
(
d−1−∆i

2 − s2

)
Γ2
(

∆i
2

)
Γ
(

2∆−∆i
2

)
× Γ

(
∆i

2
+ ∆ + s1 + s2 − d+ 1

)
, (E.3)

where we introduced two dimensionless parameters zi = T 2
i /T

2, and the following master

integrals have been used16

∫
dd−1~x

1

|~x+~x1|2α|~x|2β
=π

d−1
2

Γ
(
α+β− d−1

2

)
Γ
(
d−1

2 −α
)

Γ
(
d−1

2 −β
)

Γ(α)Γ(β)Γ(d−1−α−β)

(
~x2

1

) d−1
2
−α−β

,∫
dd−1~x

(~x2−T 2)α |~x|2β
=π

d−1
2

Γ
(
α+β− d−1

2

)
Γ
(
d−1

2 −β
)

Γ
(
d−1

2

)
Γ(α)

(
−T 2

) d−1
2
−α−β

.

(E.4)

Taking t sufficiently large results in |z1| > 1. In this case we should close the s1-contour

15The real constant c is chosen such that the integration contour separates the left and right series of

poles of the gamma functions occuring in the integrand.
16Two integrals (E.4) can be evaluated using the common technique of Feynman parametrization.
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to the left

I1

∣∣∣
|z1|>1

=
πd−1

2πiΓ
(
d−1

2

)(−T 2
)d−1−∆i

2
−∆

∞∑
n=0

(−1)n

Γ(n+1)
z
d−1

2
−∆i−n

1

∫ c+i∞

c−i∞
ds2

(
z2

z1

)s2

×
Γ
(
∆i+n+s2− d−1

2

)
Γ(−s2)Γ

(
∆i
2 +n+s2

)
Γ
(
d−1−∆i

2 −s2

)
Γ2
(

∆i
2

)
Γ
(

2∆−∆i
2

)
×Γ

(
∆−n− d−1

2
−∆i

2

)
+

πd−1

2πiΓ
(
d−1

2

)(−T 2
)d−1−∆i

2
−∆

∞∑
n=0

(−1)n

Γ(n+1)
z
d−1−∆i

2
−∆−n

1

∫ c+i∞

c−i∞
ds2

(
z2

z1

)s2

×
Γ
(

∆i
2 +∆+n+s2−d+1

)
Γ(−s2)Γ

(
∆− d−1

2 +n+s2

)
Γ
(
d−1−∆i

2 −s2

)
Γ2
(

∆i
2

)
Γ
(

2∆−∆i
2

)
×Γ

(
∆i

2
−n−∆+

d−1

2

)
. (E.5)

It follows from (3.12) that we only need to consider the range t1 > t2, i.e., when |z2| > |z1|.
In this range the s2-contour should be closed to the left, and we obtain

I1

∣∣∣
t1>t2, |z1|>1

=
πd−1

Γ
(
d−1

2

)(−T 2
)d−1−∆i

2 −∆
∞∑

m,n=0

(−1)n+m

Γ(n+1)Γ(m+1)

Γ
(

∆i

2 +n+m
)

Γ
(
∆−n− d−1+∆i

2

)
Γ2
(

∆i

2

)
Γ
(

2∆−∆i

2

)
×z

d−1
2 −∆i−n

1

Γ

(
∆i+n+m− d−1

2

)
Γ

(
d−1−∆i

2
−m

)(
z2

z1

) d−1
2 −∆i−n−m

+Γ

(
−d−1−∆i

2
−m

)
Γ

(
d−1

2
+n+m

)(
z2

z1

)−∆i
2 −n−m


+

πd−1

Γ
(
d−1

2

)(−T 2
)d−1−∆i

2 −∆
∞∑

m,n=0

(−1)n+m

Γ(n+1)Γ(m+1)

Γ
(
∆+n+m− d−1

2

)
Γ
(
d−1+∆i

2 −∆−n
)

Γ2
(

∆i

2

)
Γ
(

2∆−∆i

2

)
×zd−1−∆i

2 −∆−n
1

Γ

(
d−1−∆i

2
−m

)
Γ

(
∆i

2
+∆+n+m−d+1

)(
z2

z1

)d−1−∆−∆i
2 −n−m

+Γ

(
∆+n+m−∆i

2

)
Γ

(
∆i−d+1

2
−m

)(
z2

z1

) d−1
2 −∆−n−m

]
, (E.6)

The double sum in this expression is known as Appell’s hypergeometric function of two vari-

ables

F4(a, b; c, d; x, y) ≡
∞∑

m,n=0

xm

m!

yn

n!

(a)m+n(b)m+n

(c)m(d)n
(E.7)

where (a)m = Γ(a + m)/Γ(a). Thus, we can rewrite I1 in terms of linear combination of
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four Appell’s hypergeometric functions17

I1 =
(
−T 2

)d−1−∆i
2
−∆ πd−1

Γ
(
d−1

2

)
Γ2
(

∆i
2

)
Γ
(

2∆−∆i
2

)
×

[
Γ
(2∆−d+1−∆i

2

)
Γ
(d−1−∆i

2

)
Γ
(2∆i−d+1

2

)
Γ

(
∆i

2

)
×z

d−1−2∆i
2

2 F4

(
∆i

2
,
2∆i−d+1

2
;

3+∆i−d
2

,
d+1+∆i−2∆

2
;
z1

z2
,

1

z2

)
+Γ
(2∆−d+1−∆i

2

)
Γ
(d−1−∆i

2

)
Γ
(d−1

2

)
Γ

(
∆i

2

)

×z
d−1−2∆i

2
1

(
z1

z2

)∆i
2

F4

(
∆i

2
,
d−1

2
;
d+1−∆i

2
,
d+1+∆i−2∆

2
;
z1

z2
,

1

z2

)
+Γ
(2∆−d+1

2

)
Γ
(d−1−∆i

2

)
Γ
(d−1+∆i

2
−∆

)
Γ

(
∆i

2
+∆−d+1

)
×zd−1−∆−∆i

2
2 F4

(
∆i

2
+∆−d+1,∆− d−1

2
;

3−d+∆i

2
,

3−d−∆i

2
;
z1

z2
,

1

z2

)
+Γ
(d−1−2∆+∆i

2

)
Γ
(∆i+1−d

2

)
Γ
(

∆− d−1

2

)
Γ

(
∆−∆i

2

)
×zd−1−∆i

2
−∆

1

(
z2

z1

) d−1
2
−∆

F4

(
∆−∆i

2
,∆− d−1

2
;
d+1−∆i

2
,

3−d−∆i

2
;
z1

z2
,

1

z2

)]
.

Note that we suppressed the restriction t1 > t2, |z1| > 1 in (3.19) since other values are

treated by analytic continuation.

F Spatial correlator without MB

In this appendix we study quenched spatial correlator without use of the MB representation.

The calculations presented here clearly illustrate the advantage of MB method used in the

text. First, we introduce s2
1 ≡ −t2 + (~x− ~y) 2 and s2

2 ≡ −t2 + ~y 2 to rewrite (4.5) as follows

〈0|[Oi(t,~x)Oj(t,0),Ok(0,~y)]|0〉= sign(t)

|~x|∆ijk
(F.1)

×

 Cijk(
s2

1+iε
)∆kij

2
(
s2

2+iε
)∆kji

2

−
Cijk(

s2
1−iε

)∆kij
2
(
s2

2−iε
)∆kji

2

 .
17We used the following identity

Γ(x− n) =
Γ(x)Γ(1− x)

(−1)nΓ(1− x+ n)
, n ∈ N

to match (E.7) with various terms in (E.6).
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Taking the limit ε→ 0, we arrive at

〈0| [Oi (t, ~x)Oj (t, 0) ,Ok (0, ~y)] |0〉 = −
2 i Cijk sin (π∆k)(
−s2

1

)∆kij
2
(
−s2

2

)∆kji
2

sign (t)

|~x|∆ijk
Θ
(
−s2

1

)
Θ
(
−s2

2

)

−
2 i sign (t) Cijk

|~x|∆ijk

 sin
(
π∆kij

2

)
(
−s2

1

)∆kij
2
(
s2

2

)∆kji
2

Θ
(
−s2

1

)
Θ
(
s2

2

)
+ (i↔ j , 1↔ 2)

 . (F.2)

Substituting this expression into (4.2) and considering first |~x| > 2|t − t′| for all t′

within the interval of order δt around t′ = 0, results in the following linear correction to a

pure CFT two-point function18

δ(1)〈Oi (t, ~x)Oj (t, 0)〉 = −2Cijk
sin
(
π∆kji

2

)
|~x|∆ijk

×
∫ t

−∞
dt′λ

(
t′
) ∫
|~y|<|t−t′|

dd−1~y
1(

− (t− t′)2 + (~y − ~x)2
)∆kij

2
(

(t− t′)2 − y2
)∆kji

2

+ (i↔ j)

= −2Cijk
sin
(
π∆kji

2

)
|~x|∆ijk

2π
d−2

2

Γ
(
d−2

2

) ∫ t

−∞
dt′λ

(
t′
) ∫ t−t′

0
dy yd−2

×
∫ π

0
dθ sind−3 θ

1(
y2 + x2 − 2yx cos θ − (t− t′)2

)∆kij
2
(

(t− t′)2 − y2
)∆kji

2

,

+ (i↔ j) (F.3)

where in the second equality we introduced the standard spherical coordinates around ~x.

Now we expand the integrand in the limit x� t and x� δt to carry out the remaining

integrals. The leading and next-to-leading terms are given by

δ(1)〈Oi (t, ~x)Oj (t, 0)〉
∣∣∣
x�t,δt

=
−2π

d+1
2

Γ
(

∆kji

2

)
Γ
(
d−∆kji+1

2

) Cijk
|~x|2∆i

(F.4)

×
∫ t

−∞
dt′λ

(
t′
) (
t− t′

)d−∆kji−1

(
1 +

2 + ∆i −∆j

d−∆kji + 1

(t− t′)2

|~x|2
+ . . .

)
+ (i↔ j) .

This expression is free of the logarithmic divergences unless t is within the support of λ(t′)

and ∆kji ≥ d and/or ∆kij ≥ d are integers. At late times, t � δt, or equivalently for

sufficiently fast but smooth quenches, (F.4) is finite and approaches zero. However, at

early times this is no longer true. To illustrate this point explicitly let us choose t = 0,

18Recall that λ(t′) vanishes sufficiently fast outside a finite interval of order δt around the origin, therefore

this region only contributes to the integral over t′.
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then (F.4) takes the same form as (4.13)

δ(1)〈Oi (0, ~x)Oj (0, 0)〉
∣∣∣
x�δt

=
−2π

d+1
2

Γ
(

∆kji

2

)
Γ
(
d−∆kji+1

2

) Cijk
|~x|2∆i

δλ

(δt)∆kji−d
(F.5)

×
∫ 0

−∞
dξf (ξ) (−ξ)d−∆kji−1

(
1 +O (δt/x)2

)
+ (i↔ j) ,

where ξ = t′/δt is a dimensionless parameter.
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